
Compositional Analysis of
Timed-arc Resource Workflows

with Communication

Sine Viesmose Birch Christoffer Moesgaard

des105f15, Spring 2015, Aalborg University





1 Resume

Workflow analysis is a relatively new and widely researched topic often used
to find design errors like deadlocks and livelocks in business workflows by ab-
stracting away the data and focusing on the flow of the system. The notion of
soundness is used to verify that workflows do not have the mentioned design
errors. Soundness for workflows is an area which has been studied, redefined,
and extended, both concerning new features but also different classes of work-
flows. We propose timed-arc resource workflows (TARWFN), which have the
possibility to save information in a workflow between executions, extended with
the ability to communicate with other workflows. We introduce a notion of
local soundness and strong local soundness for TARWFN, sequential composi-
tion, and an algorithm for checking (strong) local soundness by reducing it to a
formalism for which efficient soundness checking algorithms already exist. We
make it possible to analyse workflows individually, while still retaining a notion
of soundness for sequential composition. For strong locally sound workflows we
can determine minimum- and maximum execution times of the workflow, mak-
ing it possible to approximate the entire workflow with a single transition having
the minimum- and maximum execution times as its guards. The algorithm is
implemented in the publicly available, open-source model checker TAPAAL. We
demonstrate the usability of the workflows on a real-world smart house. The
smart house has 16 lights, 16 buttons, a motion sensor and a buzzer and a con-
troller. The controller gets the button pushes and translates that into events
for the house. The house is modeled in TAPAAL and ends up with a controller
consisting of 89 TARWFNs run sequentially together with 35 components to
model the environment. The size of the state space of the house renders normal
state space exploration infeasible. With TARWFNs we are able to approximate
the smart house such that we are able to conclusively answer questions about
the house within reasonable time.
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Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Abstract

We propose timed-arc resource workflows (TARWFN), which have the
possibility to save information in a workflow between executions, as well as
being able to communicate with other workflows. We introduce a notion
of local soundness and strong local soundness for TARWFN, sequential
composition, and an algorithm for checking (strong) local soundness by re-
ducing it to a formalism for which efficient soundness checking algorithms
already exist. We make it possible to analyse workflows, still retaining a
notion of soundness for sequential composition. For strong locally sound
workflows we can determine minimum- and maximum execution time of
the workflow, making it possible to approximate the entire workflow with
a single transition having the minimum- and maximum execution times
as its guards. The algorithm is implemented in the publicly available,
open-source model checker TAPAAL. We demonstrate the usability of
the workflows on a real-world smart house. The size of the state space of
the house renders normal state space exploration infeasible. With TAR-
WFNs we are able to approximate the smart house such that we are able
to conclusively answer questions about the house within reasonable time.

2 Introduction

Workflow analysis is a relatively new and widely researched topic often used to
find design errors like deadlocks and livelocks in business workflows by abstract-
ing away the data and focusing on the flow of the system. One way to model
workflows is based on Petri nets [1] and also has various extensions, including
time and resources. A lot of research has already been done in the area of work-
flows, which was introduced in the late 90s by Van der Aalst [2, 3]. Petri nets [4]
are a commonly used formalism to describe workflows, because it gives a way
to formally prove properties about workflows with well-defined semantics while
still providing a graphical representation [1]. The anomalies of workflows can
be found through the notion of soundness [2], which is a criterion to guarantee
different properties including proper termination and the absence of deadlocks
and livelocks.
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Soundness for workflows is an area which has been studied, redefined, and
extended, both concerning new features but also different classes of workflows.
Many research groups have looked into extending workflows with different kinds
of resources. Both K. v. Hee et al. [5] and G. Juhás et al. [6] have looked into
non-consumable resources, where the resources must be returned before the
workflow ends. G. Juhás et al. further looks into the parallel composition of
identical workflows. Some researchers have also extended the workflow formal-
ism with communication places, often called interface places [7]. There exists
many real-world examples where the nature of the net does not correspond to
the already defined extensions of workflows. An example is a smart house with
a controller running in a loop, always checking for new events to handle and
ensuring that the house is up to date. The controller has a lot similarities with
a workflow with communication, but it also needs to store information between
runs of the subparts.

Our contribution We introduce a workflow formalism making it possible to
save information in a workflow between executions, as well as being able to com-
municate with other workflows through special interface places. We introduce
a notion of local soundness and strong local soundness for our workflow as well
as an algorithm for checking soundness by reducing our workflow to a formal-
ism for which efficient soundness checking algorithms already exist. The local
soundness allows workflows to be analysed individually, and sequential composi-
tions of workflows will still be sound. Checking strong local soundness allows us
to determine a minimum- and maximum execution time of the workflow, mak-
ing it possible to over-approximate the entire workflow with a single transition
having the minimum- and maximum execution times as its guards. Our notion
of soundness gives the opportunity to decompose workflows, analysing them in-
dividually and only analyse the over-approximations together. The algorithm
is implemented in the publicly available, open-source model checker TAPAAL
[8]. We demonstrate the formalism with a case study of a smart house with 16
lights, 16 relays, 16 buttons, a motion sensor and a buzzer. The smart house is
modelled as a timed-arc Petri net with 124 components, 89 of them timed-arc
resource workflow nets running sequentially in a loop. Verifying the smart house
model is a non-trivial problem as the state space is simply too large. Our meth-
ods show promising results, and we are able to decompose the model and analyse
each workflow separately, over-approximating the cycle, making it possible an-
swer questions about the smart house which otherwise would be impossible to
verify. Our proposed model is scalable, since the verification decomposes the
model and verifies individual workflows and never the net as a whole. Further-
more, the individual workflows can be over-approximated further in order to
speed up verification, by using scaling techniques developed by Birch et al. [9]

Related Work We have chosen to focus on Petri net based workflow and
how to expand the notion of soundness to save information in the workflow
together with communication with other workflows. Soundness refers to a set
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of properties that ensures that the workflow will not deadlock and always has
the possibility to terminate, and when it does it will always terminate properly,
which in the classical sense includes that the net will be empty of tokens. Frank
Puhlmann and Mathias Weske introduce the notion of lazy soundness [10, 11],
which allows tokens to stay behind, when the workflow ends as long as the
tokens left behind stay behind and can never reach the output place. Our ap-
proach exploits the same idea, but differs in that we only allow tokens in a
subset of places, and allow tokens to already be present at the beginning of
the execution, as well as the fact that our workflows include timing. Other
researchers have extended the classical workflow model and provide efficient
analysis algorithms. Sidorova, Stahl, and Trčka [12] introduce data into the
workflow which allows the workflow to read, write and delete data during the
execution. Like them, we also store information in the workflow, but we only
use tokens to represent the extra information. Several researchers have intro-
duced resources [13, 14] and have developed resource constraint nets. Common
for all the work is that the resources cannot be created nor destroyed during
the execution. Juhás, Kazlov, and Juhásová [6] use the resources to look at
soundness, when multiple instances of the same workflow execute in parallel.
For parallel execution of workflows, researchers have also looked at workflows
that can communicate with each other [7, 15, 16]. Their soundness consists of
global soundness, which requires that the structure of all workflows is known
beforehand. Kindler, Martens, and Reisig [17] use scenarios to describe the com-
munication, allowing local soundness to be proven without knowing the rest of
the workflows. This differs from our approach in that we focus on sequential
composition of workflows, and that we also include workflows with timing. Ear-
lier it has been proved that for sound workflow nets it is possible to abstract it
to a single transition, see Chapter 4 in [18] and for workflows with inhibitor arcs
the work has been extended in [19]. For strongly sound timed-arc workflows this
is not the case and we can only make an approximation of it. For a more com-
plete overview of soundness and workflows, we refer to the overview paper [20]
by Van der Aalst. We utilize the approximation technique for explicit state
space exploration implemented in TAPAAL [9]. The technique is a bit similar
to [21], where the greatest common divisor is used to reduce the constants of a
timed arc Petri net.

3 Motivation

When parallelism is introduced into a computational model, an issue known
as state-space explosion can occur. State-space explosion is when the size of
the state space increases exponentially, and as such makes it very difficult or
even impossible to search through the entire state space. A way to remedy this
problem is to reduce the size of the state space by creating a simpler model
that approximates the behavior of a more complex system, while still retaining
a number of properties.

One way of modeling systems is in the form of a series of workflows where
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control passes through each workflow in sequence. Using known analysis tech-
niques it is possible to determine an upper- and lower bound for the execution
time of each workflow, making it possible to replace the workflow entirely with
a single transition emulating the time bounds of the workflow. Such an approx-
imation is beneficial in cases where we would like to determine the overall time
bounds of a sequence of workflows. However, the existing workflow formalisms
can be very limiting and many real life systems cannot be modeled as workflows
directly, but can have parts which look very similar to workflows.

Figure 1: Simulation model of the smart house

In this report we have chosen to focus on a case study regarding home
automation in a real house [22]. A picture of a physical simulation model of
the house can be seen in Figure 1 [22]. All lights and buttons of the home are
managed by a controller, for which we have some constraints. The controller has
a program loop with a driver for each component running sequentially, where
each cycle determines the state of the different components and reacts according
to a set of rules. The home automation system can implement different actions
for different durations of button presses, so the drivers would need to save
information regarding the duration of a button press and whether a button
press is currently taking place. The relays for the lights need to receive an
impulse of a certain length in order to change state and if the impulse is too
long the relay will burn out. This could be modeled with workflows, but we
need to be able to “remember” information in a workflow between executions,
as well as being able to allow a simple form of communication between workflows
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and other components, e.g. a component for a button communicating with its
corresponding driver. The communication between different components can be
modeled with interfaces — shared places which can be used to send events, be
resources or act like boolean variables. For a normal sized house, these kind of
timed-arc Petri nets are too big to be verified directly and so identifying these
sub-workflows and replacing them with a much simpler over-approximation will
provide a way to verify these kinds of real-world applications.

We would like to determine whether or not, given the different rules for the
buttons in the house, if it is possible, with the right combination of button
presses, to reach a state where a relay can receive an impulse resulting in it
burning out. This could for instance happen if an impulse is initiated in a button
driver, but the time it takes for the program loop to reach the button driver
again to end the impulse is too long. We would like to determine if it is possible
to send an impulse that is too short, which would result in unreliable behavior
of the relays. We would also like to determine the overall responsiveness of the
buttons in the house.

We have identified three research questions, which we will try to answer in
the report.

a) How can we exploit the notion of workflows, while still being able to remem-
ber information between different initializations of the workflow process?

b) What kind of information do we need to remember and what kind do we
need to be able to communicate to other components in the net?

c) Will this formalism provide a way to verify real-world examples of large nets,
and which constraints are there?

4 Definitions

4.1 Petri nets

Petri nets were developed by Carl Adam Petri [4], as a modeling language for
the description of distributed systems. A Petri net is a directed bipartite graph,
and contains two different types of nodes places and transitions. The nodes
are connected via arcs, connecting places with transitions and transitions with
places. An example of a Petri net can be seen in Figure 2. The net consists of
six places represented by circles, and five transitions represented by rectangles.
The net models a driver for a button controlling a light, determining whether
or not the light should turn on when the button is pressed. The control flow
in the model is represented by a token in the in place. In the initial marking,
only the transition pushButton is enabled because of the presence of the token
in in. Firing the transition consumes the token in the in place, and produces
a token in each of the places ButtonPushed and Pushing. The following formal
definition is based on work by Wil van der Aalst [3].

Definition 1 (Petri net [3]). A Petri net is a 5-tuple (P, T, IA,OA, w) where
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in

ButtonPushed

Pushing

EvalPress Change

out

pushButton

endPush

TooShort

ToggleLight

Accept

Figure 2: Model of a driver for a button controlling a light

• P is a finite set of places,
• T is a finite set of transitions. (P ∩ T = ∅),
• IA ⊆ P × T is a finite set of input arcs,
• OA ⊆ T × P is a finite set of output arcs, and
• w : IA∪OA → N is a function assigning weights to input and output arcs.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈
P | (p, t) ∈ IA}. Similarly, the postset of output places of t is defined as
t• = {p ∈ P | (t, p) ∈ OA}. Places in the net may contain zero or more tokens.
A state or marking in the net is a distribution of tokens over places, a marking
M on N is a function M : P → N. To compare markings we define a partial
ordering. For any two markings M1 and M2 we write M1 ≤ M2 iff for all
p ∈ P : M1(p) ≤ M2(p). The set of all markings over N is denoted by M(N).

A given Petri netN = (P, T, IA,OA, w) defines a LTS T (N) = (M(N), T,→),
where the states are the markings of N and the transitions are as follows.

1. A transition t is enabled in marking M iff for each input place p ∈ •t we
have M(p) ≥ w((p, t)).

2. An enabled transition t may fire, consuming tokens according to the
weights from each input place of t and producing tokens according to
the weights in each output place of t, producing a new marking M ′ where
M ′(p) = M(p) − w((p, t)) + w((t, p)) for every place p ∈ P . If (p, t) or
(t, p) is not an arc, assume that w((p, t)) = w((t, p)) = 0.

Given a Petri net (P, T, IA,OA, w) and a marking M , we use the following
notation:

• M1
t−→ M2: transition t is enabled in marking M1 and firing t in M1 results

in marking M2

• M1 → M2: There is a transition t such that M1
t−→ M2

• M1
σ−→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads from marking M1

to marking Mn, i.e., M1
t1−→ M2

t2−→ . . .
tn−1−−−→ Mn
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A marking Mn is called reachable from M1, written M1 → ∗Mn, iff there
is a firing sequence σ such that M1

σ−→ Mn. The set of all markings reachable

from a given marking M is denoted by [M〉 def
= {M ′ | M →∗ M ′}

4.2 Workflow Nets

The following is based on definitions by Wil van der Aalst [2] with a few alter-
ations. Workflow nets (WFNs) is a workflow representation based on a subclass
of Petri nets. WFNs differ from Petri-nets by having two special places in and
out, which denote the beginning and the end of a workflow procedure. As such,
processing of a case in a workflow begins with placing a token in in, and ends
when a token is placed in out.

Definition 2 (Workflow net [2]). A WFN is a 7-tuple (P, T, IA,OA, w, in, out)
where (P, T, IA,OA, w) is a Petri net and in ∈ P and out ∈ P are places such
that

1. there exists a unique place in ∈ P , such that •in = ∅,
2. there exists a unique place out ∈ P , such that out• = ∅,
3. for all p ∈ P \ {in, out} we have •p 6= ∅ and p• 6= ∅, and
4. for all t ∈ T we have •t 6= ∅.

The example Petri net seen in Figure 2 is also an example of a valid work-
flow. A marking M is an initial marking Min for N = (P, T, IA,OA, w, in, out)
if for all p ∈ P \ {in}, M(p) = 0 and M(in) = 1. Likewise a marking is a final
marking Mout of N if for all p ∈ P \ {out}, M(p) = 0 and M(out) = 1.

When working with workflow nets it is beneficial to be able to ensure proper
termination of a procedure. A notion of workflow soundness is therefore intro-
duced. A workflow is said to be sound if the workflow always has the option to
reach a final marking, and at termination there is only a token in the out place.
The following definition of soundness is a modified version taken from [2].

Definition 3 (Soundness of WFNs). A Workflow net N = (P, T, IA,OA, w, in,
out) where Min is the initial marking and Mout is the final marking, is sound
iff

1. for every marking M ∈ [Min〉 reachable from the initial marking Min ,
there exists a firing sequence leading from marking M to marking Mout

∀M.(Min →∗ M) ⇒ (M →∗ Mout), and

2. marking Mout is the only marking reachable from marking Min , with at
least one token in place out

∀M.(Min →∗ M ∧M ≥ Mout) ⇒ (M = Mout).
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Wil van der Aalst has an extra third condition for soundness in [2], which
states that there are no dead transitions in (N,Min). The condition makes
soundness even stronger, but for the purpose of this report, it does not mat-
ter and removing it makes it possible for us to add the different extensions of
workflows directly without introducing new formalities.

4.3 Workflow Nets with Resources

Workflow nets usually abstract away resources such as machines or manpower,
which may restrict the nets. Resource-Constrained Workflow nets (RCWFNs)
are used to consider the influence of resources on the behavior of a workflow
net.

Definition 4 (Resource-ConstrainedWorkflow Net [6]). a Resource-Constrained
Workflow Net (RCWFN) is a 7-tuple (P, T, IA,OA, w, in, out), where (P, T, IA,
OA, w) is a Petri net, with P = Pstatic ] Pnormal where Pstatic is a set of static-
places (shared resource holders) and Pnormal is a set of normal places, and
in ∈ P and out ∈ P are places, such that

• there exists a unique place in ∈ P , such that •in = ∅,
• there exists a unique place out ∈ P , such that out• = ∅,
• for all p ∈ P \ {in, out} we have •p 6= ∅ and p• 6= ∅, and
• for all t ∈ T we have •t 6= ∅.

The initial marking Min is redefined to be a marking, where for all p ∈
Pnormal \ {in} we have Min(p) = 0, and Min(in) = 1. Similarly for Mout

where for all p ∈ Pnormal \ {out} we have Mout(p) = 0, Mout(out) = 1 and
Mout(s) = Min(s) for all s ∈ Pstatic .

An example of a workflow net with resources can be seen in Figure 3. The
workflow describes the fact that at most four relays must be turned on at the
same time. For a workflow to start there must be less than four active relays.
When it turns a relay on, it consumes a token from the resource place Relays,
and hold that token for as long as the relay is turned on. When the impulse
ends, the token is again freed and the relay turned off again and the workflow
ends.

in 0.0

Relays

#4

RelayOn

out

startImpulse endImpulse

Figure 3: A RCWFN of a system controlling the number of active relays
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The soundness is redefined such that a RCWFN can be sound for a single
instance or multiple instances of the same workflow running in parallel. Here
we only look at single instance soundness.

Definition 5 (Single instance soundness of RCWFN [6]). An RCWFN (N,Min)
is sound for a single instance if

1. for every marking M ∈ [Min〉 reachable from the initial marking Min ,
there exists a firing sequence leading from marking M to marking Mout

∀M.(Min →∗ M) ⇒ (M →∗ Mout),

2. marking Mout is the only marking reachable from marking Min , with at
least one token in place out

∀M.(Min →∗ M ∧M(out) > 0) ⇒ (M = Mout), and

3. for every marking M reachable from marking Min , the number of tokens
in static places are never increased above Min :

∀M.(Min →∗ M) ⇒ ∀d ∈ Pstatic .M(d) ≤ Min(d).

The RCWFN in Figure 3 is sound for a single instance. The soundness
definition has a consequence that all resources are non-consumable and must be
returned before the workflow ends. That kind of resources still has merit, and
there exists many real-work examples, where the limitation does not matter.
An example could be doctors in a hospital, who can be used to treat patients,
and after treating a patient can go on to treat other patients. Treating a patient
would never result in the loss of a doctor.

4.4 Timed-Arc Petri Nets

Petri nets can also be extended with time instead of resources to better model
a reality where timing matters. Before we can extend workflow nets, we must
introduce extended timed-arc Petri nets in the discrete time setting, henceforth
just timed-arc Petri nets (TAPNs). The following formal definition of timed-arc
Petri nets and enabledness is taken from work by Birch et al. [9]. The definitions
are for a discrete time setting, but are applicable for a continuous time setting
as well.

Let N0 = N ∪ {0} and N∞
0 = N0 ∪ {∞}. We define the set of well-formed

time intervals as I def
= {[a, b] | a ∈ N0, b ∈ N∞

0 , a ≤ b} and a subset of I used in
invariants as I inv = {[0, b] | b ∈ N∞

0 }.

Definition 6 (Timed-Arc Petri Net). A TAPN is a 9-tuple
N = (P, T, TUrgent, IA,OA, g, w,Type, I) where P , T , IA, OA and w is defined
as in the earlier sections.

• TUrgent is a finite set of urgent transitions such that TUrgent ⊆ T ,
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• g : IA → I is a time constraint function assigning guards to input arcs,
• Type : IA ∪ OA → Types is a type function assigning a type to all arcs,
where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that

– if Type(a) = Inhib then a ∈ IA and g(a) = [0,∞),
– if (p, t) ∈ IA and t ∈ TUrgent then g((p, t)) = [0,∞),
– if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly

one (t, p′) ∈ OA such that Type((t, p′)) = Transportj and w((p, t)) =
w((t, p′)),

– if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is
exactly one (p, t) ∈ IA such that Type((p, t)) = Transportj and
w((p, t)) = w((t, p′)), and

• I : P → Iinv is a function assigning age invariants to places.

An example of a timed-arc Petri net can be seen in Figure 4. The TAPN
models the same situation as earlier, now just with added time intervals. From
in it cannot delay and it must immediately fire the transition pushButton. The
button can only be pushed for at most 20 time units, and it takes at most 1
time unit to evaluate the push. If the button where pushed for more than 10
time units, the light is toggled. The changing of the light takes exactly 20 time
units.

0.0in

inv: ≤ 0

ButtonPushed
inv: ≤ 20

Pushing

EvalPress
inv: ≤ 1

Change

inv: ≤ 20

out

pushButton

endPush

TooShort

ToggleLight

Accept

[0, 10]

[11
,∞

)

[20, 20]

Figure 4: Timed model of a driver for a button controlling a light

Let B(N0) be the set of all finite multisets over N0. A marking M on a
TAPN N is now a function M : P → B(N0) where for every place p ∈ P and
every token x ∈ M(p) we have x ∈ I(p). The set of all markings over N is
denoted by M.

We use the notation (p, x) to denote a token at a place p with the age
x ∈ N0. We write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a marking with n
tokens of ages xi located at places pi where 1 ≤ i ≤ n and we define size(M) =∑

p∈P |M(p)|. A marked TAPN (N,M0) is a TAPN N together with an initial
marking M0 with all tokens of age 0.
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Definition 7 (Enabledness). Let N = (P, T, TUrgent, IA,OA, g, w,Type, I) be
a TAPN. We say that a transition t ∈ T is enabled in a marking M by the

multisets of tokens In = {(p, x1
p), (p, x

2
p), . . . , (p, x

w((p,t))
p ) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, x
w((p′,t))
p′ ) | p′ ∈ t•} if

(a) for all input arcs except inhibitor arcs the tokens from In satisfy the age
guards of the arcs, i.e.

∀(p, t) ∈ IA.Type((p, t)) 6= Inhib ⇒ xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

(b) for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p satisfying the guard is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t))

(c) for all input and output arcs which constitute a transport arc the age of the
input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj ⇒
(xi

p = xi
p′ ∧ xi

p′ ∈ I(p′)) for 1 ≤ i ≤ w((p, t)).

(d) for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((p, t)).

A given TAPN N = (P, T, TUrgent, IA,OA, g, w,Type, I), defines a TTS
T (N) = (M(N), T,→) where the states are the markings and the transitions
are as follows.

• If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can be fired and produce the marking M ′ = (M \ In) ]Out where
] is the multiset sum operator and \ is the multiset difference operator;

we write M
t−→ M ′ for this switch transition.

• A time delay d ∈ N0 is allowed in M if (x+ d) ∈ I(p) for all p ∈ P and all
x ∈ M(p) and there does not exist any t ∈ TUrgent and any d′ ∈ [0, d) such
that t becomes enabled after the time delay d′, i.e. by delaying d time
units no token violates any of the age invariants and the delay can at most
last until an urgent transition becomes enabled. By delaying d time units
in M we reach the marking M ′ defined as M ′(p) = {x+d | x ∈ M(p)} for

all p ∈ P ; we write M
d−→ M ′ for this delay transition.

We write M
d,t−−→ M ′ for a delay transition M

d−→ M ′′ followed by a switch

transition M ′′ t−→ M ′.
A marking M is called divergent if for every d ∈ N0 we have M

d−→ M ′ for
some M ′. A marking M is a deadlock if there is no d ∈ N0, no t ∈ T and no

marking M ′ such that M
d,t−−→ M ′.
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Definition 8 (Logic). Let M be a marking and ϕ be a logical formula on the
form

ϕ ::= p ./ n | p ./ p | deadlock | ¬ϕ | ϕ ∧ ϕ

where p ∈ P , ./∈ {=, <,>,≤,≥} and n ∈ N0. The semantics of ϕ is

• M |= p ./ m iff |M(p)| ./ m.

• M |= deadlock iff for all t no d exists such that M
d,t−−→ M ′.

• M |= ¬ϕ iff M 6|= ϕ.
• M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2.

Definition 9 (Closed Timed-arc Petri Net). A TAPN N = (P, T, TUrgent, IA,
OA, g, w,Type, I) is called closed if and only if for all (p, t) ∈ IA we have
g((p, t)) = [a, b] and for all p ∈ P we have I(p) = [0, b], for some a, b ∈ N∞

0 .

The general TAPN can be infinite in the number of tokens and thus have an
infinite state space. But even if we only look at bounded TAPN with respect
to the number of tokens in the net, the state space can still be infinite because
of the ages of the tokens. The following presents results taken from [23, 24] to
reduce the state space to a finite state space, where the corresponding LTS will
be timed bisimilar.

Assume Cmax is a function to compute the maximum constant associated
with a place. The function is Cmax : P → (N ∪ {−1}). If the place is untimed,
the place has the associated value −1. The consequence of Cmax is that all ages
of tokens in place p, which are strictly greater than Cmax(p) are irrelevant and
can be discarded when computing the state space. Cmax can be computed as
in [23].

Let M be a marking of a TAPN N . Then M> and M≤ be defined as
M> = {x ∈ M(p) | x > Cmax(p)} and M≤ = {x ∈ M(p) | x ≤ Cmax(p)}. From
the definition we have M = M> ]M≤. We say that two markings M and M ′

in the net N are equivalent, written M ≡ M ′, if M≤ = M ′
≤ and for all p ∈ P

we have |M>(p)| = |M ′
>(p)|. For all tokens in place p with age below Cmax(p)

the two markings are the same, and for all tokens above, the number of tokens
are the same, but they do not necessarily have the same age.

The relation ≡ is an equivalence relation and it is also a timed bisimulation
where delays and transition firings on one side can be matched by exactly the
same delays and transition firings on the other side and vice versa.

Theorem 4.1 ([23]). The relation ≡ is a timed bisimulation.

Definition 10 (Cut [24]). LetM be a marking. We define its canonical marking
cut(M) by cut(M) = M≤ ] {Cmax(p) + 1, . . . , Cmax(p) + 1}︸ ︷︷ ︸

M>(p) times

Lemma 1 ([23]). Let M,M1 and M2 be markings. Then (i) M ≡ cut(M), and
(ii) M1 ≡ M2 if and only if cut(M1) = cut(M2)

From Lemma 1 it is clear that for a TAPN N the corresponding LTS will
be bisimilar with N , where all markings M ∈ [Min〉 reachable from Min have
been replaced with cut(M).
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4.5 Timed-Arc Workflow Nets

Timed-Arc Workflow Nets (TAWFN) have the same definitions as workflow
nets, the only difference being the class of Petri Nets they are defined on.

Definition 11 (Timed-Arc Workflow Net [24]). A TAWFN is an 11-tuple N ′ =
(P, T, TUrgent, IA,OA, g, w,Type, I, in, out), where (P, T, TUrgent, IA,OA, g, w,
Type, I) is a TAPN and in ∈ P and out ∈ P are places such that

1. in ∈ P and •in = ∅,
2. out ∈ P and out• = ∅,
3. for all p ∈ P \ {in, out} we have •p 6= ∅ and p• 6= ∅, and
4. for all t ∈ T we have •t 6= ∅.

The example seen in Figure 4 is also an example of a valid timed-arc workflow
net, where in is the input place and out is the output place. All other places
have both non-empty pre- and postset, and all transitions have a non-empty
preset.

For TAPN the initial marking Min is Min = {(in, 0)}. A final marking Mout

for TAPN is a marking, where |Mout(out)| = 1 and for all p ∈ P \ {out} we
have |Mout(p)| = 0.

The following definitions of soundness, strong soundness, minimum- and
maximum execution times come from J. A. Mateo et al. [24].

Definition 12 (Soundness of TAWFN [24]). A timed-arc workflow net N =
(P, T, TUrgent, IA,OA, g, w,Type, I, in, out), where Min is the initial marking, is
sound if

1. for every marking M ∈ [Min〉 reachable from the initial marking Min ,
there exists a firing sequence leading from marking M to some final mark-
ing Mout

∀M.(Min →∗ M) ⇒ (M →∗ Mout), and

2. Final markings Mout are the only markings reachable from marking Min ,
with at least one token in place out

∀M.(Min →∗ M ∧ |M(out)| ≥ 1) ⇒ M is a final marking.

With soundness it is possible to calculate the minimum execution time of
a workflow, but not the upper bound — nor does it give a guarantee that the
workflow will actually terminate. Strong soundness overcomes these problems.

Definition 13 (Strong Soundness of TAWFN [24]). A timed-arc workflow net
N = (P, T, TUrgent, IA,OA, g, w,Type, I, in, out) is strongly sound if

1. N is sound,
2. every divergent marking reachable in N is a final marking, and
3. there is no infinite computation starting from the initial marking.

{(in, 0)} = M0
d0,t0−−−→ M1

d1,t1−−−→ M2 . . . where
∑
i∈N0

di = ∞

14



Given a TAWFN N , let Min be the initial marking and Mfinal(N) be the
set of final markings of N . Then we have that T (Min) is the set of all execution
times from the initial marking to the final marking, formally defined as:

T (Min)
def
= {

n−1∑
i=0

di | Min = M0
d0,t0−−−→ M1

d1,t1−−−→ · · · dn−1,tn−1−−−−−−−→ Mn ∈ Mfinal(N)} .

Lemma 2 (Minimum execution time). Given a sound TAWFN N , the mini-
mum execution time of N in marking Min , defined as min T (Min) is computable.

Proof. The proof for this is given in [24].

Lemma 3 (Maximum execution time). Given a strongly sound TAWFN N ,
the maximum execution time of N in marking Min , defined as max T (Min) is
computable.

Proof. The proof for this is given in [24].

5 Timed-Arc Workflow Nets with Resources

We introduce our own notion of timed-arc workflow nets with communication
and stored information, inspired by the previously defined principles of timed-
arc workflow nets, resource-constrained workflow nets and workflows with com-
munication.

Often when working with workflows, it is useful to be able to interact with
an outside environment and even save information in the workflow between
executions, e.g. if the workflow is part of a larger net and the workflow is in
idling. However, these additions usually violate the rules of proper workflows,
which means that common workflow analysis techniques are not applicable. We
therefore introduce an extended definition of workflows with the addition of
interface and status places, and define a notion of soundness.

The set of places are split into three sets of disjoint places. Status, interface
and normal places. Status places are used to save information in the workflow
between executions, and these places must be internal in the workflow. Interface
places are used to interact with the outside environment in a workflow. We only
allow interface places to act as untimed places with binary information. As such,
no timing information may be associated with the interface places. Throughout
this report we will use an abstract representation of this type of workflows, as
can be seen in Figure 5. Status places are represented as dashed circles and
interface places as solid circle within a dashed circle. The normal places are
abstracted away within the gray diamond of the model.

Definition 14 (Timed-Arc Resource Workflow Net). A Timed-Arc Resource
Workflow Net (TARWFN) is a TAPN N = (P, T, TUrgent , IA,OA, g, w,Type, I,
in, out) with P = Pinterface]Pstatus]Pnormal where Pinterface is a set of interface
places, Pstatus is a set of status places and Pnormal is a set of normal places such
that
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Figure 5: Abstract reprensentation of a timed-arc resource workflow net

1. there exists a unique place in ∈ Pnormal , such that •in = ∅,
2. there exists a unique place out ∈ Pnormal , such that out• = ∅,
3. for all p ∈ Pnormal ∪ Pstatus \ {in, out} we have •p 6= ∅ and p• 6= ∅,
4. for all t ∈ T , we have •t 6= ∅,
5. for all p ∈ Pinterface , I(p) = [0,∞),
6. for all (p, t) ∈ IA where p ∈ Pinterface , g((p, t)) = [0,∞),
7. for all arcs a = (p, t) ∈ IA or a = (t, p) ∈ OA where p ∈ Pinterface ,

Type(a) 6= Transport , and
8. for all (t, out) ∈ OA, we have Type((t, out)) 6= Transport .

An example of a timed-arc resource workflow net can be seen in Figure 6.
The TARWFN models the same situation as Figure 4 with the exclusion that the
pressing of the button and changing the lights are now communicated in/out of
the workflow. This allows the workflow to simply focus on the controller aspects
of the process. The place PushStarted is a status place, where information about
the press of the button is saved, when the controller has acknowledged a push.
The button press is saved for the future runs of the controller. ButtonPushed
and ToggleLight is interface places used for communication with other TAPNs.

Definition 15. Given a TARWFN N = (P, T, TUrgent , IA,OA, g, w,Type, I,
in, out) the sets of markings Mpassive ,Minitial and Mfinal are defined as:

• Mpassive is the set of all markings such that the places Pstatus ∪ Pinterface

contain an arbitrary distribution of tokens, and for every p ∈ Pnormal we
have |M(p)| = 0

• Minitial is a set of initial markings, defined as the set of passive markings
with an added token of age 0 in in.

• Mfinal is a set of final markings, defined as the set of passive markings
with an added token of age 0 in out .
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Figure 6: Timed model of a driver for a button controlling a light with commu-
nication.

A marking M is called active, if for at least one p ∈ Pnormal , |M(p)| ≥ 1.
As we focus on models consisting of a sequential composition of several smaller
workflows, we would like to define a notion of well-behavedness for the workflows
when they are not currently involved in an active marking. Well-behavedness is
to ensure that the workflows do not introduce deadlocks or change the state of
interface places unexpectedly. So intuitively all reachable markings reachable
from a passive marking should also be a passive marking, the distribution of
tokens in interface places should stay the same for the reached marking and
the initial passive marking and lastly from every reached marking it should be
possible to make an arbitrarily long delay.

A marking M is time computation divergent if for every d > 0 there ex-
ists a combination of switch- and delay transitions M →∗ M ′ such that the
accumulated delay on the computation is at least d.

Definition 16 (Well-behaved timed-arc resource workflow net). A TARWFN
N = (P, T, TUrgent , IA,OA, g, w,Type, I, in, out) is well-behaved if for any mark-
ing M ∈ [Mpassive〉 reachable from some Mpassive ∈ Mpassive of N :

1. |M(p)| = 0 for all places p ∈ Pnormal ,
2. |M(p)| = |Mpassive(p)| for all places p ∈ Pinterface , and
3. M is time computation divergent.

With the set of possible initial markings we can define local soundness for
TARWFN with status places and interface places. The soundness is very similar
to soundness for TAWFN with the difference that it has to be sound for all the
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initial markings, and that the workflow can leave tokens behind as long as the
tokens are only present in status and interface places.

Definition 17 (Local soundness of timed-arc resource workflow net). A well
behaved TARWFN N = (P, T, TUrgent , IA,OA, g, w,Type, I, in, out), is locally
sound if for all initial markings Min ∈ Minitial :

1. for every marking M ∈ [Min〉 reachable from marking Min , there exists
a firing sequence leading from marking M to some final marking Mout ∈
Mfinal :

∀Min ∈ Minitial∀M.(Min →∗ M) ⇒ (M →∗ Mout), and

2. final markings Mout ∈ Mfinal are the only markings reachable from mark-
ing Min , with at least one token in place out :

∀Min ∈ Minitial∀M.(Min →∗ M ∧ |M(out)| ≥ 1) ⇒ M ∈ Mfinal .

Likewise we can define strong local soundness.

Definition 18 (Strong local soundness of timed-arc resource workflow net).
A TARWFN N = (P, T, TUrgent , IA,OA, g, w,Type, I, in, out) is strong locally
sound if:

1. N is locally sound,
2. every divergent marking reachable in N from some Min ∈ Minitial is a

final marking, and
3. there is no infinite computation starting from a marking Min ∈ Minitial

Min = M0
d0,t0−−−→ M1

d1,t1−−−→ M2 . . . where
∑
i∈N0

di = ∞.

The TARWFN in Figure 6 is strong locally sound.

Definition 19 (Minimum execution time). Given a locally sound TARWFN
N , the minimum execution time of N is defined as min

Min∈Minitial

min T (Min).

Definition 20 (Maximum execution time). Given a strong locally sound TAR-
WFNN , the maximum execution time ofN is defined as max

Min∈Minitial

max T (Min).

5.1 Sequential Composition

If we execute two workflows sequentially after each other, we would like to
establish that the composition too is a TARWRN and give a bound on the
execution time of the composition. Informally, the composition merges the
interface places of the two TARWFNs and executes the first workflow followed
by the immidiate execution of the second workflow. An example of sequential
composition of workflows can be seen in Figure 7. In Definition 21 the formal
definition of the sequential composition is given.
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Figure 7: Example of sequential composition of two workflows

Definition 21 (Sequential composition of TARWFN). Let N1 = (P1, T1,
TUrgent1, IA1,OA1, g1, w1,Type1, I1, in1, out1), N2 = (P2, T2, TUrgent2, IA2,OA2,
g2, w2,Type2, I2, in2, out2) be two TARWFN with (P1 \ Pinterface1 ) ∩
(P2 \ Pinterface2 ) = ∅ and T1 ∩ T2 = ∅. Then the sequential composition N1;N2

is a TARWFN N = (P, T, TUrgent , IA,OA, g, w,Type, I, in, out) where

• P = P1 ∪ P2 \ {out1}, where Pnormal = Pnormal1 ∪ Pnormal2 , Pinterface =
Pinterface1 ∪ Pinterface2 and Pstatus = Pstatus1 ∪ Pstatus2 ,

• T = T1 ∪ T2,
• TUrgent = TUrgent1 ∪ TUrgent2,
• IA = IA1 ∪ IA2,
• OA = OA1 \ {(t, out1) | t ∈ T} ∪OA2 ∪ {(t, in2) | (t, out1) ∈ OA1},

• g((p, t)) =

 g1((p, t)) if (p, t) ∈ IA1

g2((p, t)) if (p, t) ∈ IA2

[0,∞) otherwise

• w(a) =

 w1(a) if a ∈ IA1 ∪OA1

w2(a) if a ∈ IA2 ∪OA2

1 otherwise
,
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• Type(a) =

 Type1(a) if a ∈ IA1 ∪OA1

Type2(a) if a ∈ IA2 ∪OA2

Normal otherwise
,

• I(p) =

{
I1(p) if p ∈ P1

I2(p) if p ∈ P2
,

• in = in1, and
• out = out2.

The sequential composition of TARWFN is local soundness preserving, as
stated in the following theorem.

Theorem 5.1 (Sequential composition of TARWFN preserves local soundness).
Let N1 = (P1, T1, TUrgent1, IA1,OA1, g1, w1,Type1, I1, in1, out1), N2 =
(P2, T2, TUrgent2, IA2,OA2, g2, w2,Type2, I2, in2, out2) be locally sound well-behaved
TARWFNs. Then the sequential composition N1;N2 is locally sound.

Proof. For N1;N2 to be locally sound we need to establish that the composition
is indeed a TARWFN and that it satisfies the soundness constraints.
Given that N1, N2 are valid TARWFNs, the composition is also a valid TAR-
WFN, because it satisfies the following constraints:

The requirements of the composition states that only interface places can be
shared. From this we get that Pinterface ∩ Pstatus = ∅, Pinterface ∩ Pnormal = ∅
and Pnormal ∩ Pstatus = ∅ also hold for the composition, because N1 and N2

both are valid TARWFN.

1. in = in1 ∈ Pnormal is a unique place with •in = ∅.
2. out = out2 ∈ Pnormal is a unique place with out• = ∅.
3. As out1 is merged with in2, in2 gets the preset of out1 and so every place

p ∈ P \ {in, out} has a non-empty pre- and postset.
4. We do not add new transitions, so for every t ∈ T the preset is non-empty.
5. We do not add new interface places, so for all p ∈ Pinterface , the invariant

makes the place untimed.
6. We do not add arcs from interface places, so for all (p, t) ∈ IA, p ∈

Pinterface , the guard is untimed.
7. We do not add arcs to interface places either, so no arcs to or from interface

places are transport arcs.
8. We do not add arcs to out = out2, so for all (t, out) ∈ OA, Type(t, out) 6=

Transport.

For the composition to satisfies the local soundness constraints defined in
Definition 17, we need to show that it is also well-behaved. The composition
is well-behaved because it satisfies the following constraints for all markings
M ∈ [Mpassive〉reachable from a passive marking Mpassive ∈ Mpassive taken
from Definition 16.

• Since N1 and N2 are both well-behaved M cannot have a token in a normal
place, since all behavior is local in each of the nets. Only interface places
are shared.
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• Again, neither N1 nor N2 is capable of altering the distribution of tokens
in interface places in a passive marking and so the composition cannot
either.

• Both parts can delay independently of each other, so the composition is
capable of delaying in a passive marking as well.

Lastly we need to prove that the composition satisfy the two local soundness
constraints for every marking M ∈ [Min〉 reachable from an initial marking
Min ∈ Minitial .

• We know that N1 is locally sound, so from every initial marking Min ∈
Minitial we can reach a marking with a token in out1 (corresponding to
a final marking of N1), and since the composition is sequential and out1
and in2 is merged after reaching a final marking of N1 the execution of
N2 begins with a restricted set of initial markings. Now we have that the
restricted set of initial markings is a subset of Minitial2 . Since N2 as it
is locally sound, all initial markings in Minitial2 must be able to reach
a final marking of N2, and so also for all initial markings in the subset.
Lastly as out2 = out this is also a final marking for the composition of
the two workflows. And as such from every marking M ∈ [Min〉 reachable
from an initial marking Min ∈ Minitial we can reach a final marking.

• And likewise if |M(out)| ≥ 1 then it must be a final marking. We have
just showed that N2 will get enabled with a subset of the possible initial
markings, and since N2 is locally sound, then for all markings M reachable
in the composition if |M(out)| ≥ 1 ⇒ M ∈ Mfinal .

Theorem 5.2 (Sequential composition of TARWFN preserves strong local
soundness). Let N1 = (P1, T1, TUrgent1, IA1,OA1, g1, w1,Type1, I1, in1, out1),
N2 = (P2, T2, TUrgent2, IA2,OA2, g2, w2,Type2, I2, in2, out2) be strong locally sound
TARWFNs. Then the sequential composition N1;N2 is strong locally sound.

Proof. The proof follows the same arguments as the proof of Theorem 5.1.

The composition is soundness preserving and we would like to be able to
calculate the bounds for the execution times. The following theorem gives those
bounds.

Theorem 5.3. Let N1, N2 be strongly sound TARWFNs with minimum execu-
tion times min1,min2 and maximum execution times max 1,max 2, respectively.
Then for the sequential composition N1;N2 the minimum execution time min
is bounded by min ≥ min1 + min2 and the maximum execution time max by
max ≤ max 1 +max 2.

Proof. min:
Since the composition is sequential, the minimum execution time reduces to the
minimum execution time of N1 followed by the minimum execution time of N2

given the restricted set of initial markings. We are given min1 for N1 and the
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composition does not alter the behavior of N1, so this will stay the same. The
set of initial markings M′

initial2 for N2 will be a subset of Minitial2 for N2,
which might remove runs with the minimum execution time of N2 and so the
minimum execution time of N2 will be at least min2. Formally, the minimum
execution time of the composition comprises to

min = min1 + min
M∈M′

initial2

(M →∗ Mout)

min ≥ min1 +min2

max :
The proof for the upper bound follows the same arguments as above.

Beware that these bounds may not be tight since some initial markings in
N2 might be disabled because of the final markings of N1. An example hereof

Pin1

inv: ≤ 2
0.0

TA1 TB1

Pin2 inv: ≤ 10 sendEvent

TA2 TB2

Pout2

[1
, 2
] [2, 2]

[5
, 1
0]

[1,∞
]

Figure 8: A locally sound composition with an higher minimum execution time
than the sum of the minimum execution times of the two components.

can be seen in Figure 8. The workflows each have minimum execution times of
1, when run independently, while their composition has a minimum execution
time of 6.

Our workflow composition operator is not complete though. See Figure 9,
where the composition is locally sound, but the second TARWFN illustrated by
the boxes is not locally sound. As an initial marking is defined by having an
arbitrary distribution of tokens in interface places, the initial marking with no
tokens in pinterface does not lead to a final marking, and as such, the workflow is
not locally sound. This situation can never occur in the sequential composition
of the two workflows, as every final marking of the first workflow leaves a token
in the pinterface for the initial marking of the second workflow.
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Figure 9: Example of a locally sound sequential composition, where the second
workflow is not locally sound on its own.

6 Soundness Checking

Checking (strong) local soundness for the class of TARWFN is undecidable. To
get to this result, we can reduce the problem to checking (strong) soundness for
the class of TAWFN.

Theorem 6.1. Local soundness is undecidable for timed-arc resource workflow
nets.

Proof Idea. The set of all TARWFNs is a superset of the set of all TAWFNs.
Let N = (Pinterface ∪ Pstatus ∪ Pnormal , T, TUrgent, IA,OA, g, w,Type, I, in, out)
be a simplified TARWFN with Pstatus ∪ Pinterface = ∅. Then N is simply a
TAWFN and therefore checking local soundness for N is the same as checking
soundness for N . Soundness for the class of TAWFN is undecidable [24] and so
it is also undecidable for the superclass of TARWFN.

We will therefore in the rest of the report restrict the TARWFN to be 1-safe
TARWFN.

Definition 22 (1-safe marking). Let N =
(Pinterface ∪Pstatus ∪Pnormal , T, TUrgent , IA,OA, g, w,Type, I, in, out) be a TAR-
FWFN. A marking M of N is 1-safe iff for all places p ∈ P , we have |M(p)| ≤ 1.

We call the set of all 1-safe markings Msafe .

Definition 23 (1-safe workflow). A TARWFN N =
(Pinterface ∪ Pstatus ∪ Pnormal , T, TUrgent , IA,OA, g, w,Type, I, in, out) is 1-safe
iff for all reachable markings M ∈ [Min〉, where Min ∈ Msafe ∩Minitial , M is
1-safe.
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In the following section we will also restrict the status places such that only
one status place can be active at a time1.

Definition 24 (1-active marking). Let N =
(Pinterface ∪Pstatus ∪Pnormal , T, TUrgent , IA,OA, g, w,Type, I, in, out) be a TAR-
WFN. A marking M of N is said to be 1-active iff

∑
p∈Pstatus

|M(p)| ≤ 1.

We call the set of all 1-active markings Mactive .

Definition 25 (1-active workflow). A TARWFN N =
(Pinterface ∪Pstatus ∪Pnormal , T, TUrgent , IA,OA, g, w,Type, I, in, out) is 1-active
iff for all reachable markings M ∈ [Min〉, where Min ∈ Mactive ∩Minitial , M is
1-active.

For the subclass of 1-safe, 1-active well-behaved TARWFN (strong) local
soundness checking is decidable. We will in this section prove decidability for
this subclass by reduction to (strong) soundness for bounded TAWFN for which
there exists efficient soundness checking algorithms [24].

To reduce the problem to soundness checking of bounded TAWFN, the orig-
inal TARWFN needs to be transformed to a TAWFN. Following this, there are
several challenges to overcome in order to use the existing algorithms directly:

(A) 1-safe check. How do we check if the TARWFN is 1-safe in all possible
configurations, as defined in Definition 23?

(B) 1-active check. How do we check if the TARWFN is 1-active in all possible
configurations, as defined in Definition 25?

(C) Well-behaved TARWFN. How do we check that the TARWFN is well-
behaved, as defined in Definition 16?

(D) Soundness. How do we check soundness and strong soundness, as defined
in Definition 17 and Definition 18?

6.1 Preliminaries

We begin by introducing two transformations used to solve the problems of
how to simulate initial and final markings of a TARWFN in a TAWFN. The
transformations are used to check (A)–(D) as stated in the previous section.

6.1.1 Solution to initial markings

As an initial marking in a TAWFN can only contain a token in the in place,
we need to simulate running the original workflow with each of the different
initial markings. The initial marking of a TARWFN can contain an arbitrary
distribution of tokens in interface places and a token in either of the status

1For multiple status places it proved difficult in practice to model locally sound workflows
if it was not restricted to 1-active.
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places. Given a TARWFN N , let Ninitial be a TAPN where we simulate initial
markings in the following way. An illustration of this process can be seen in
Figure 10. We define C to be C = maxp∈Pstatus

Cmax(p) + 1. For each possible

in

s1 s2 s3

out inv: ≤ 0

N

i1

i2

i3

pnin

inv: ≤ C

page
inv: ≤ C

tinit

tno

ts3

ts2

ts1

pi1

inv: ≤ 0
ti3a

ti3b

pi2

inv: ≤ 0
ti2a

ti2b

pi3

inv: ≤ 0
ti1a

ti1b

pstart

inv: ≤ 0

tstart

[C, C]

Figure 10: The net Ninitial

combination of status and interface place we simulate the corresponding initial
marking as follows. We add two places to the beginning of the net, pnin and page
and a transition for each of the status places. Each of the places have invariants
corresponding to C and are connected with transport arcs through each of the
status place transitions. This setup allows us to be able to place every possible
age of token into every status place. Following this, we add a place and two
transitions for every interface place. The places and transitions are chained,
allowing the net to place tokens into the interface places by choosing between
the two transitions for each interface place. Additionally, as interface places do
not contain timing information, we simply add a ≤ 0 invariant to each of the
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corresponding places. Finally, we add an arc to the old in place triggering the
start of the actual workflow.

Definition 26. We define Mgenerated = {M | M ∈ Msafe∩Mactive∩Minitial ∧
∀p ∈ Pinterface .|M(p)| ≥ 1 ⇒ M(p) = {(p, 0)} ∧ ∀p ∈ Pstatus∀x ∈ M(p).x ≤ C}.

For a well-behaved, 1-safe, and 1-active TARWFN, Mgenerated corresponds
to the set of simulated initial markings in Ninitial .

Lemma 4. Let N be a well-behaved TARWFN. Then Mgenerated ⊆ Minitial .

Proof. From Definition 26 and the construction in Figure 10 we have that
Mgenerated ⊆ Minitial .

Lemma 5. Let N be a well-behaved TARWFN. Then for all M ∈ Minitial there
is M ′ ∈ Mgenerated such that cut(M) = cut(M ′).

Proof. From Definition 14 we have that interface places must be untimed and so
for all p ∈ Pinterface we have Cmax(p) = −1, and so all tokens in interface places
will have the age reduced to 0 by cut , which are exactly the ages of tokens in
markings in Mgenerated .
For status places we know cut will reduce any token in p of ages above Cmax(p)+
1 to Cmax(p)+ 1 and since for all p ∈ Pstatus we have C ≥ Cmax(p)+ 1, we have
that all token ages are at most Cmax(p) + 1 for all p ∈ Pstatus and these are all
possible by definition of Mgenerated .
Both sets have a last token, (in, 0). This token will always have an age, which
is at most Cmax(in) + 1 and so stays the same for the cut marking.

6.1.2 Solution to final markings

A final marking of a TAWFN can only contain tokens in the out place and as
such, we need to be able to remove the tokens in status and interface places
when the workflow reaches one of the final markings from the TARWFN. This
is achieved by creating a cleanup phase, where we remove all tokens from the
status and interface places in sequence. The cleanup phase starts when the net
reaches the “old” final marking. We ensure with inhibitor arcs that the status
or interface place is cleaned before going advancing in the process. The cleanup
phase ends when all status and interface places have been cleaned. Given a
TARWFN N , let Nfinal be a net where we remove tokens in status and interface
places when the final marking has been reached. An illustration of this process
can be seen in Figure 11. Additionally to the illustration we also add a new
place pblock, which has inhibitor arcs to all transitions in N . A token is placed
in pblock, when the cleanup phase begins and is consumed again when tcleanup
fires.

6.1.3 Transformed model

We define Ntrans as a TARWFN N where both transformations in Subsub-
section 6.1.1 and Subsubsection 6.1.2 have been applied. The final transformed
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Figure 11: The net Nfinal

model can be seen in Figure 12, where Initial and Final contains the transforma-
tions contained within the dashed boxes in Figure 10 and Figure 11 respectively.
The construction of the transformed workflow can be seen in Definition 27

Definition 27 (Transformation). LetN = (Pinterface∪Pstatus∪Pnormal , T, TUrgent ,
IA,OA, g, w,Type, I, in, out) be a TARWFN. The workflow W is an algorithm
that on inputN constructsNtrans = (Ptrans , Ttrans , TtransUrgent , IAtrans ,OAtrans ,
gtrans , wtrans ,Typetrans , Itrans , intrans , out trans) and Min−trans such that

• Ptrans = P ∪ {pnin, page, pnout, pstart, pblock} ∪ {pi | i ∈ Pinterface} ∪ {sout |
s ∈ Pstatus} ∪ {iout | i ∈ Pinterface},

• Ttrans = T ∪ {tinit, tstart, tcleanup, tno} ∪ {tia | i ∈ Pinterface} ∪ {tib | i ∈
Pinterface} ∪ {ts | s ∈ Pstatus} ∪ {icleanup | i ∈ Pinterface} ∪ {scleanup | s ∈
Pstatus} ∪ {iclean | i ∈ Pinterface} ∪ {sclean | s ∈ Pstatus},

• TUrgent−trans = TUrgent ,
• IAtrans = IA ∪
{(pnin, tno), (page, tinit), (pstart, tstart), (out , s1clean), (pblock, tcleanup)}∪{(pnin, ts) |
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Figure 12: The net Ntrans

s ∈ Pstatus} ∪ {(pi, tpia
) | i ∈ Pinterface} ∪ {(pi, tpib

) | i ∈ Pinterface} ∪
{(pi, icleanup) | i ∈ Pinterface}∪{(ps, scleanup) | s ∈ Pstatus}∪{(sout, icleanup) |
i ∈ Pinterface} ∪ {(iout, scleanup) | s ∈ Pstatus} ∪ {((s + 1)out, icleanup) |
i ∈ Pinterface ∧ s 6= |Pstatus |} ∪ {((i + 1)out, scleanup) | s ∈ Pstatus ∧ i 6=
|Pinterface |} ∪ {(s, i1) | s = |Pstatus |} ∪ {(i, tcleanup) | i = |Pinterface |} ∪
{(pblock, t) | (p, t) ∈ IA},

• OAtrans = OA ∪
{(tinit, pi1), (tcleanup, pnout), (tstart, pin), (tno, page), (s1clean, pblock)} ∪
{(ts, page) | s ∈ Pstatus} ∪ {(tia , pi+1) | i ∈ Pinterface ∧ i 6= |Pinterface |} ∪
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{(tib , pi+1) | i ∈ Pinterface ∧ i 6= |Pinterface |} ∪ {(tia , pstart) | i ∈ Pinterface ∧
i = |Pinterface |} ∪ {(tib , pstart) | i ∈ Pinterface ∧ i = |Pinterface |} ∪ {(tib , i) |
i ∈ Pinterface} ∪ {(ts, s) | s ∈ Pstatus} ∪ {(icleanup, iout) | i ∈ Pinterface} ∪
{(scleanup, sout) | s ∈ Pstatus}∪{(iclean, iout) | i ∈ Pinterface}∪{(sclean, sout) |
s ∈ Pstatus},

• gtrans((p, t)) =

 [C,∞) if (p, t) = (page, tinit)
g((p, t)) if (p, t) ∈ IA
[0,∞) otherwise

• wtrans = w,

• Typetrans((p, t)) =



Inhib if p ∈ Pinterface ∪ Pstatus and t = sclean
Inhib if p ∈ Pinterface ∪ Pstatus and t = iclean
Inhib if p ∈ Pinterface ∪ Pstatus and t = tcleanup
Inhib if p = pblock and (p, t) ∈ IA
Transport if (p, t) = (pnin, ts) where s ∈ Pstatus

Type((p, t)) if (p, t) ∈ IA
Normal otherwise

,

• Typetrans((t, p)) =

 Transportm if (t, p) = (ts, page) where s ∈ Pstatus

Type((t, p)) if (t, p) ∈ OA
Normal otherwise

,

• Itrans(p) =

 [0, C] if p = pnin or p = page
I(p) if p ∈ P and p 6= pout
[0, 0] otherwise

Lemma 6. The transformed net Ntrans is a TAWFN.

Proof. From Definition 11 we have four requirements that needs to be fulfilled
for the constructed TAPN to be a valid TAWFN.

1. pnin ∈ P ′ and •pnin = ∅.
2. pnout ∈ P ′ and p•nout = ∅.
3. No arcs are removed so all p ∈ P \ {in, out} still have •p 6= ∅ and p• 6= ∅

and for the added places which are not the new input and output places
they have nonempty pre- and postset by the construction, see Figure 10
and Figure 11, and the old input place now has an input arc such that
•in = tstart, and the old output place an output arc such that out• =
tcleanup.

4. No arcs are removed, so all transitions t ∈ T have a nonempty presets.
For the newly added transitions no presets are empty. This is clear from
looking at Figure 10, Figure 11 and Figure 12.

6.2 Solutions to problem A & B

In order to be able to give a conclusive answer regarding soundness, we need to
ensure that the transformed workflow is both 1-active and 1-safe. We therefore
construct a TAPN NAB = (PAB , TAB , TUrgentAB , IAAB ,OAAB , gAB , wAB ,
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TypeAB , IAB , inAB , outAB) that uses the initialization phase introduced in Sub-
subsection 6.1.1, where the net Ninitial is modified by adding a single place,
pcount , with input and output arcs such that a token is added to the place
pcount whenever a token is added to a status place, and removed whenever a
token is removed from a status place. For the construction see Figure 13.

0 in

s1 s2

out inv: ≤ 0

i1

i2

i3

pnin

inv: ≤ C

Initial

pcount

Figure 13: The TAPNNAB used to check if a TARWFNN is 1-safe and 1-active.

After the construction it is simply a matter of exploring the state space to
find the bound for each place in the net. If every place has a bound smaller or
equal to 1, the net is 1-safe. Additionally, if the bound for pcount is less or equal
to 1, the net is 1-active.

Lemma 7. The TARWFN N is 1-safe if and only if for all p ∈ PAB \ {pcount}
in NAB the bound for p is less or equal to 1.

Proof. “⇒”
Let the TARWFN N be 1-safe. Then for all markings M ∈ [Min〉, where
Min ∈ Minitial we have that for all places p ∈ PAB , |M(p)| ≤ 1 and so must the
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bound for p be less or equal to 1 for all p ∈ PAB \ {pcount}. By Lemma 4 and
construction of NAB we have that for all p ∈ P of N , we have that the bound
for p is less or equal to 1.
“⇐”
Let the bound for p be less or equal to 1 for all p ∈ PAB \ {pcount}. Then by
Lemma 5 we have that all the behavior from N is still possible in NAB . That
means that for all markings M ∈ [Min〉 reachable from some Min ∈ Minitial

and for all p ∈ P , we have |M(p)| ≤ 1 and so N is 1-safe by Definition 23.

Theorem 6.2. Checking if a TARWFN is 1-safe is decidable.

Proof. Start searching the state space for a marking M such that M(p) ≥ 2 for
some place p ∈ PAB \ {pcount}. If such a marking exists the search terminates
and by Lemma 7 we have that the net is not 1-safe. If such a marking does
not exists the TARWFN must be 1-safe. Since the TARWFN is 1-safe and the
number of status places finite, the place pcount is bounded and therefore NAB

is bounded. Because NAB is bounded the state space of NAB is finite and at
some point the whole net is searched and the search terminates [25].

Lemma 8. A TARWFN N is 1-active if and only if the bound for pcount is less
or equal to 1 in NAB.

Proof. “⇐”
Let the bound for pcount be less than or equal 1. By construction |M(pcount)| =∑
p∈Pstatus

|M(p)|, see Figure 10, for all reachable markings M ∈ [M0〉. Since the

bound for pcount is less than or equal 1 then
∑

p∈Pstatus

|M(p)| ≤ 1 for all reachable

markings M and so must NAB be 1-active. By Lemma 5 we have that then N
is also 1-active.
“⇒”
Let the TARWFN N be 1-active. Then

∑
p∈Pstatus

|M(p)| ≤ 1 for all markings M ∈

[Min〉, where Min ∈ Minitial , and by the construction of NAB and Lemma 4 we
have that

∑
p∈Pstatus

|M(p)| = |M(pcount)| for every reachable marking M , and so

the bound for pcount is less than or equal 1.

Theorem 6.3. Checking if a 1-safe TARWFN is 1-active is decidable.

Proof. The net is 1-safe and therefore bounded. It then follows from [25] that
searching through the whole state space is deciable and the rest of the argument
follows from Lemma 8.

6.3 Solution to problem C

For a TARWFN to be well-behaved, it has to satisfy three conditions as defined
in Definition 16.

The conditions state that every marking reachable from a passive mark-
ing must also be a passive marking, that in every marking reachable from
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a passive marking the distribution of tokens in interface places must remain
unchanged, and that every marking reachable from a passive marking must
be time computation divergent. We construct a timed-arc Petri net, NC =
(PC , TC , TUrgentC , IAC ,OAC , gC , wC ,TypeC , IC , inC , outC) that allows us to ver-
ify these three conditions. The construction can be seen in Figure 14.

in

s1 s2 s3

out inv: ≤ 0

i1

i2

i3

i1′

i2′

i3′

pdelay

inv: ≤ 1

tdelay

0

pnin

inv: ≤ C

page
inv: ≤ C

tinit

tno

ts3

ts2

ts1

pi1

inv: ≤ 0
ti3a

ti3b

pi2

inv: ≤ 0
ti2a

ti2b

pi3

inv: ≤ 0
ti1a

ti1b

pstart

inv: ≤ 0

tstart

[C,∞)

[1,∞)

pnout

Final

Figure 14: The TAWFN NC , used to verify that a TARWFN N is well-behaved.

The initial net follows from Ntrans from Figure 12, with the addition of an
added place for each interface place, in which a token is placed whenever a token
is placed in the original interface place during the initial phase, together with
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ensuring a time delay of 1. The net also shortcuts the execution of the net going
directly to out from pdelay. Note that an additional transition has been added,
with input arc from pdelay with a guard of [2,∞] and an output arc to in in
order for the workflow to be structurally correct, so •in 6= ∅. The transition is
never active due to the invariant, and as thus, the transition has been omitted
from the drawing.

As a token is placed in the pdelay place, we have placed tokens in status
and interface places and the original TARWFN is in a passive marking from
MgeneratedPassive={M \ {(in, 0)} | M ∈ Mgenerated}.

To verify the first two conditions, we search through the state space from
the point where there is a token in pdelay , and by keeping the token there, we
can visit every marking reachable from some initial passive marking Mpassive ∈
MgeneratedPassive . From that point it is then a matter of determining whether
or not a token is placed in a normal place, and whether the amount of tokens
in an interface place differs from its copy. Formally the net is verified with the
query φ = ¬EF(pdelay = 1∧ ((p1 = 1∨ · · · ∨ pn = 1)∨ (i1 6= i′1 ∨ · · · ∨ im 6= i′m))
where {p1, . . . , pn} = Pnormal and {i1, . . . , im} = Pinterface .

Finally, the third condition states that every passive marking must be time
computation divergent. To validate this we use the fact that before the workflow
starts, we must always wait at least Cmax (pstatus) + 1, where pstatus is the
currently active status place. Since Cmax + 1 preserves the full behavior given
token ages and that interface places must be untimed, it is sufficient to check if a
time delay of 1 can be done in all simulated passive markings, which corresponds
to checking that from all markings reachable from some initial marking it should
be true that we can reach a marking with a token in pdelay until we reach
a marking M where (pdelay , 1) ∈ M . This cannot be checked with the logic
defined in Definition 8, but it can be checked with a soundness check of NC .

Lemma 9. The TARWFN N is well behaved if and only if φ is satisfied and
NC is sound.

Proof. “⇒”
Let the TARWFN N be well-behaved. Then no passive markings will be able
to move tokens to normal places and the distribution of tokens will remain
unchanged in interfaces. Then φ must be true, because it is not possible to have
a token in pdelay, which corresponds to a passive marking and have a token
placed in a normal place, and neither is it possible to add or remove tokens to
interface places. Likewise it should always be possible to make a delay of any
length and therefore also of length 1 in a passive marking and so NC must be
sound by [24], because from the construction of NC it is always possible to reach
pdelay, and since the delay is always possible to reach out and from out it is
always possible to reach pnout .
“⇐”
Let φ hold for NC and let NC be sound. Then no marking in MgeneratedPassive

could reach a marking in which there still is a token in pdelay and a token
in a normal place nor alter the distribution of tokens in interface places. This
satisfy the first two conditions of well-behavedness in Definition 16 by Lemma 5.
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Since NC is sound then from all reachable markings it is possible to reach
a final marking, which have a token in pnout by [24]. Since all traces must
go through pdelay, where we must delay 1, we have that from every marking
M ∈ MgeneratedPassive it is possible to make a delay of 1. Since all tokens in
status places have ages that are at most C and interface places must be untimed
it follows from Lemma 1 that an arbitrary longer delay is also possible from all
M , such that (pdelay, 0) ∈ M . This satisfies the third condition of Definition 16
and so must the TARWFN N be well-behaved.

Theorem 6.4. Checking if a 1-safe, 1-active TARWFN is well-behaved is de-
cidable.

Proof. The proof follows from Lemma 7 and [26] that states that reachability
checking for bounded marked TAPNs is decidable and we can search the whole
state space with the TAPAAL query φ. Together with [24] that states that
soundness checking of bounded TAWFNs is decidable, and a 1-safe TARWFN
N can produce a bounded TAWFN NC .

6.4 Solution to problem D

If N is 1-active, bounded (1-safe) and well-behaved we are able to check that
the TAWFN Ntrans is (strongly) sound, using the (strong) soundness algorithm
by Mateo et al. [24], which provides us with a soundness result and if (strongly)
sound a minimum (and maximum) execution time. As can be seen in Subsec-
tion 6.1, the transformation includes an added delay of C = max

p∈Pstatus

Cmax (p) to

every execution in order to create tokens in status places of the right ages, so in
order to determine the actual minimum- and maximum execution times of the
N , we subtract C from the soundness results from the analysis of Ntrans .

Lemma 10. If in Ntrans there is a computation starting from the initial mark-
ing Min = {(pnin, 0)}, Min →∗ Mfinal, where Mfinal is a final marking of

Ntrans , then the computation can be written as Min →∗ M
tstart−−−−→ M ′

in →∗

M ′
final

cleanup−−−−−→
∗
Mfinal, such that M ′

in →∗ M ′
final is a computation in N and

M ′
final is a final marking of N .

Proof. By construction of Ntrans , see Figure 12, we can always reach a mark-
ing M from Min, where we can fire tstart and reach a marking M ′

in. From
Lemma 4 we know that M ′

in ∈ Minitial . Furthermore we have by construction
of Ntrans that there exists a marking M ′

final in between M ′
in and Mfinal such

that M ′
final(out) = 1 and for all places p ∈ Pnormal , |M ′

final(p)| = 0, because
only clean up transitions from interface and status places exists, and so M ′

final

must be a final marking of N . Since the construction of Ntrans is simply N with
added behavior before and after the execution of N , M ′

in →∗ M ′
final must also

be a computation of N .

Lemma 11. Let N be a 1-safe, 1-active well-behaved TARWFN and Min be
some initial marking for N . Then if in N there is a computation cut(Min) →∗
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Mfinal, then there exists a run in Ntrans , starting from the initial marking of
Ntrans , M

′
in = {(pnin, 0)}, M ′

in →∗ cut(Min) → Mfinal → M ′
final, such that

M ′
final is a final marking of Ntrans .

Proof. From Lemma 5 we have that for every marking Min ∈ Minitial there
exists a marking M ′′

in ∈ Mgenerated such that cut(Min) = cut(M ′′
in), and by con-

struction of Mgenerated we know that there exists a marking Mgen ∈ Mgenerated

such that cut(M ′′
in) = Mgen. And by construction of Ntrans , see Figure 12, we

have that there exists a computationM ′
in → Mgen. And sinceMgen = cut(Min),

there exists a computation Mgen → Mfinal in Ntrans . And from there only
cleanup transitions is possible until all interface and status places are cleaned
and tcleanup can be fired and reach M ′

final. M ′
final must be a final marking of

Ntrans , because all places except interface and status places cannot have tokens
in them, otherwise Mfinal would not have been a final marking of N .

Lemma 12. Let a TARWFN N be well-behaved, 1-active, 1-safe. Then N is
locally sound if and only if the transformed TAWFN Ntrans is sound.

Proof. Because of Lemma 4, Lemma 5, Lemma 10, Lemma 11, we know that
Ntrans is a TAWFN where we simulateN and we can use [24] to decide soundness
of Ntrans .

Lemma 13. Let a TARWFN N be well-behaved, 1-active, 1-safe. Then N is
strong locally sound if and only if the transformed TAWFN Ntrans is strongly
sound.

Proof. Follows from Lemma 4, Lemma 5, Lemma 10, Lemma 11 and [24].

Theorem 6.5. Checking local soundness and strong local soundness is decidable
for 1-active, 1-safe TARWFN.

Proof. Follows directly from Lemma 12 and Lemma 13.

7 Implementation

Algorithms for verifying that nets are 1-safe, 1-active and well-behaved, as well
as algorithms for verifying (strong) local soundness have been implemented in
Java in the model checker TAPAAL. A GUI menu for local workflow analysis has
been implemented as well, which can be seen in Figure 15. Nets in TAPAAL
can be split into several components which can contain shared places, places
which can exist in multiple components, while still structurally functioning as a
single place. As such, the components and the shared places is not a syntactical
addition to TAPNs, but serves merely as a means of organizing large nets. Our
implemented algorithm works on the assumption that each workflow has its
own component, where each interface place is a shared place. The menu allows
the user to specify the status and interface places in the workflows, as well as
specify an approximate maximum constant used for scaling the constants in the
workflow, which can be toggled with the “Exact” option. The “Prelim.” toggles
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Figure 15: Screenshot of the GUI

whether the analysis should include a check to determine whether the workflow
is 1-safe, 1-active and well-behaved. The user is able to monitor the verification,
see which net is currently being analysed, which part of the analysis is currently
active, as well as the elapsed time and the memory usage. The menu is found
in TAPAAL, under the “Tools” menu, labeled “Local workflow analysis”. An
overview of the different status and interface places associated with the different
workflows in TAPAAL, can be seen in Appendix A.

The source code for TAPAAL including our implemented algorithms and
GUI is hosted on Launchpad and can be found at:

https://goo.gl/CpumWj

The case study TAPAAL models are located in the “models” folder in the
root of the repository. In order to obtain Cmax values for the different workflows,
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we have made a modification to the discrete TAPN verification engine used by
TAPAAL. The source code for the modified verification engine is similarly hosted
on Launchpad and can be found at:

https://goo.gl/NnrWlB

8 Case Study: A Smart House

We have chosen to focus on a smart house and its components based on [22].
The smart house consists of a number of different hardware components. 16
buttons, 16 relays, 16 lights, a motion sensor, a buzzer and a controller. The
controller in the system runs a program loop where it in each cycle determines
the states of the different hardware components producing events, evaluates a
number of rules given the events, and sends impulses to turns the lights on
or off. The controller also has an alarm state that can be toggled, as well as
the ability to differentiate between night and day. The relays in the house are
impulse relays, which need an impulse of a specific duration in order for them
to change their state between on and off. The impulse must not be too long
otherwise the relays will burn out. Due to restrictions on the amount of power
the controller is able to supply, a maximum of four relays can receive an impulse
at the same moment [22].

We have chosen to model the smart house in TAPAAL including its var-
ious hardware components and the different rules, also integrating a number
of measured worst case execution times in microseconds into the model [22].
As no information regarding best case execution times was available, we have
integrated best case execution times for each model as 25 % of the worst case
execution times. All constants in the model are in microseconds. A general
overview of the control flow in the modeled controller can be seen in Figure 16.
Each of the different components in the controller have been modeled as TAR-
WFN and are explained in more detail in the following sections. For each of
the examples we have divided the set of interface places into input and output,
according to how the interface place is used. This is not an extension to the
workflow formalism, but merely a way for us to illustrate our usage of the in-
terface place in the design. In addition to the controller, we have also modeled
each of the hardware components in the house, including the buttons and the
actual relays connected to the lights and the buzzer.

Event drivers The house features a total of 17 event drivers, 16 for each of
the buttons and one for the motion sensor. Each button driver monitors the
state of a physical button and determines whether or not a button press has
occurred in the system. The movement driver monitors the state of the motion
sensor and sends a movement event to the controller. The movement driver
has been modeled in such a way that it can only produce an event every two
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... 17x event drivers

...

Rule 1

Rule 37
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Figure 16: Overview of the controller in the case study smart house

seconds [22]. Table 1 shows the status and interface places of a button driver.
Three different types of button press events can occur in the system, illustrated
in Figure 17. A single push, which is when the button is pressed for at most
500 ms; a long push, which is when the button is pressed for at least 501 ms;
and a double push, which is when the button is pressed for at least 501 ms and
at most 1000 ms, followed by a second push within 1000 ms after the start of
the first push. The state of the physical button as well as the three events are
modeled as interface places. The length of a button press is saved as a token in
a status place. The full model of a button driver can be seen in Appendix C.
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Interface Status

I ButtonPressed Pushing

O ButtonSinglePush SavedPush

ButtonLongPush DoublePushDetected

ButtonDoublePush

Table 1: Interface and status places for a button driver. The dashed line sepa-
rates input and output places

a)
0ms 500ms 1000ms

b)

c)

d)

e)

Figure 17: Durations of button presses corresponding to button events, a) single
push, b) long push, c) long push, d) double push, e) double push

Actuator driver The house features a total of 16 actuator drivers, one for
each of the lights. Each actuator driver handles a physical relay connected to
a light in the house and determines whether or not an impulse should be sent
to the relay toggling it on or off. Table 2 shows the status and interface places
of a driver connected to a relay controlling a light in the house. The driver can
receive an event to toggle the light, and send an impulse to the relay, which
is modeled with interface places. As only four relays can receive impulses at
a time in the house, each of the four relays are modeled as interface places as
well, acting as resources. The relays need an impulse of a certain length in order
to turn on, which is modeled with a status place containing the length of the
impulse. The full model of a light relay driver can be seen in Appendix B.

Rules Rules in the smart house are defined using a syntax specified in [22],
consists of a number of conditions followed by a set of actions performed in
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Interface Status

I LightDriverToggle Timer

O LightImpulse ChangeState

Relay1

Relay2

Relay3

Relay4

Table 2: Interface and status places for a light driver. The dashed line separates
input and output places

certain intervals. Our model of the system features a total of 37 rules, modeled
as separate components:
Two rules for each of the buttons to turn a corresponding light on and off:

If Button1.singlePush when Light1 == 0 then Light1 := 1 in 0 for ∞;

If Button1.singlePush when Light1 == 1 then Light1 := 0 in 0 for ∞;

Two rules to turn all of the lights in house on or off:

If Button15.longPush when true then Light1 := 1 in 0 for ∞; Light2
:= 1 in 0 for ∞; . . . Light16 := 1 in 0 for ∞;

If Button16.longPush when true then Light1 := 0 in 0 for ∞; Light2
:= 0 in 0 for ∞; . . . Light16 := 0 in 0 for ∞;

Follow-me rule, for turning on hallway lights in sequence:

If Button.singlePush when Day == 1 then Light7 := 1 in 0 for 10;
Light8 := 1 in 10 for 20; Light10 := 1 in 10 for 20;
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Night motion rule, turning on corridor lights at night when motion is detected:

If MotionSensor.motion when Day == 0 then Light7 := 1 in 0 for 30;
Light8 := 1 in 0 for 30; Light10 := 1 in 0 for 30;

Buzzer rule, turning on the buzzer and outside lights when movement is detected
and alarm mode is on:

If MotionSensor.motion when Alarm == 1 then Buzzer := 1 in 0 for 5;
Light1 := 1 in 0 for 5; Light2 := 1 in 0 for 5;

Interface Status

I MovementDetected Timer

AlarmOn

O Light1On

Light1Off

LightDriver1Toggle

Light2On

Light2Off

LightDriver2Toggle

BuzzerOn

Table 3: Interface and status places for the buzzer rule. The dashed line sepa-
rates input and output places

Table 3 shows the status and interface places in the model of the buzzer rule.
If the rule detects movement while the alarm is on, it starts a timer and turns
on the lights and the buzzer in turn. When the timer exceeds five seconds, the
lights and buzzer are turned off again. The full model of the buzzer rule can be
seen in Appendix D. The remaining two special rules are similar in structure.
The night motion rule, follow-me rule, and the two rules for turning every light
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on and off have been further split into smaller workflows, in order to speed up
verification due to the number of interface places in the workflow.

Relays The house features 16 physical relays connected to the lights. The
relays receive an impulse event from the corresponding relay driver initiating
a toggle of the relay. As mentioned earlier, the impulse has to be of a certain
length in order for the relay to toggle with certainty. For an impulse shorter
than the required minimum we cannot be sure whether the relay toggles or not,
which leads to a failure state in the model. Additionally, the model includes a
failure state for when the length of an impulse is too long, causing the relay to
burn. The full model of a relay for a light can be seen in Appendix E.

External components The various external components of the system, e.g.
the buttons, the state of the alarm, and the time of day, are modeled as simple
using TAPNs. Figure 18 shows the modeling of a physical button in the house.
The component runs as its own process and serves to produce an arbitrary
sequence of button presses to the controller through the ButtonPressed place.
The remaining external components are identical in structure.

ButtonPressed 0 ButtonNotPressed

Press

Release

Figure 18: Model of a button

8.1 Analysis

Having modeled the smart house we would like to answer the following questions,
as described in Section 3.

• Is it possible to reach a state where a relay burns out?

• Is it possible for a relay to receive too short an impulse, causing random
behavior of the light switch?

• What is the responsiveness of a button push?

Statistics for the full model are shown in Table 4. Each of the components
in the controller, as seen in Figure 16 is a TARWFN. As can be seen, the
size of the state space renders explicit state space analysis infeasible, however
using our compositional workflow analysis techniques we are able to determine
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Components 124
- of them workflows 89
Places 727
Transitions 1445
Input arcs 2662
Output arcs 2419
Inhibitor arcs 1354
Pairs of transport arcs 181
Tokens 41
Shared places 271

Table 4: Statistics of the TAPN model of the smart house with 16 buttons, 16
lights, a motion sensor and a buzzer. Further 37 rules for the house has been
modeled.

over-approximated minimum- and maximum execution times for the cycle in
the controller. The analysis was run on a computer running 64-bit Linux, with
a 2.60 GHz Intel i5 CPU and 8 GB of RAM.

8.1.1 Controller

The constants in the components are too large to verify with the directly with
explicit state space exploration, so before running our compositional analysis
we will therefore apply the over approximation techniques described in [9]. We
scale every constant in a workflow to be between 0 and an approximated C.
For all checks, the approximated C can be very low and still provide conclusive
answers, but with the disadvantage that the found minimum- and maximum
running times are very imprecise. A selection of results for the first round of
tests can be found in Table 5. All components were able to be verified with a
very small approximated C. In total running the checks with an approximated
C of 10 took 29.097 seconds.

Name Min Max Time (s) Mem (MB) Approx. C
ButtonDriver1 0 100001 0.24 N/A 10
MovementDriver 0 200001 0.038 N/A 10
RulesNightMotion 0 1000001 0.17 3 10
RulesFollowMe 0 500001 0.563 N/A 10
RulesBuzzer 0 500001 3.598 N/A 10
RulesSimpleOff1 44 176 0.03 N/A 10
RulesSimpleOn1 44 176 0.025 N/A 10
RulesLongOn 44 176 0.023 N/A 10
RulesLongOff 44 176 0.022 N/A 10
LightDriver1 0 60002 1.143 7 10

Table 5: Result on running all parts of the algorithm with a very low C
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Running our algorithm on the over-approximated model of the controller (89
components) in the case study, excluding a check to determine whether each
component is 1-safe, 1-active and well-behaved, as these are already verified
during the first run, took 3 hours and 19 minutes. An overview of the results
can be found in Table 6. For all components see Appendix F. The approximated
C for each component was set such that we could still verify the components.
Many of the workflows include constants ranging from microseconds to seconds
in size, resulting in an additional loss of precision of the smallest constants, when
every constant in the net is scaled down, but we are still able to get reasonable
results, and the analysis ends up with a minimum execution time of 1496 and
maximum of 27273 for the cycle in the controller.

Name Min Max Time (s) Mem (MB) Approx. C C
ButtonDriver1 0 251 300.884 5371 4000 1000001
MovementDriver 0 334 287.32 5642 6000 2000001
RulesSimpleOff1 44 176 0.03 N/A 176 176
RulesSimpleOn1 44 176 0.025 N/A 176 176
RulesLongOn 44 176 0.023 N/A 176 176
RulesLongOff 44 176 0.022 N/A 176 176
RulesNightMotion 0 2001 213.498 4288 5000 10000001
RulesFollowMe 0 1429 256.681 4778 3500 5000001
RulesBuzzer 0 2501 268.768 4034 2000 5000001
LightDriver1 0 688 382.581 5228 3500 300001

Table 6: A selection of results on running the strong soundness check.

8.1.2 Verification of Relay Safety

In order to determine whether or not it is possible for a relay to burn, or if the
relay can receive too short an impulse, we construct the net NRelay in Figure 19.
The dashed “Light” box corresponds to the model seen in Appendix E. The
remaining components of the controller have been abstracted away and replaced
with a transition simulating the minimum- and maximum execution times of the
components, obtained through the local strong soundness analysis. We simulate
running the light driver, where between runs can manipulate all interface places
except LightImpulse, as long as the reached passive marking is still 1-safe. Fi-
nally, we explore the state space to determine whether one of the failure places
in the relay model can be reached, corresponding to either the relay burning or
an impulse being too short.

NRelay cannot reach a failure state and since it is an over-approximation
of the original smart house, neither can the smart house. The questions were
answered with an approximated C = 50, and it took 2.26 seconds, led to 157991
discovered markings, where 64186 were explored, using 18 MB of memory.
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0

inv: ≤ 0

LightDriver
inv:

≤ 26585

[1496, 26585]

...

...

LightImpulse

Light

Failure

TooShort

Figure 19: NRelay

8.1.3 Responsiveness of a Button Push

To measure the responsiveness of a button push in the system, we construct the
TAPNNButton which can be seen in Figure 20. The net contains a button driver,
one of the simple rules for turning a single light on, as well as a light driver,
running in sequence abstracting away every other component of the program
loop. We have an environmental assumption that no buttons have been pressed
in the last 0.5 seconds. We assume this rather than simulating every possible
starting condition for a specific reason: due to the structure of the controller,
certain lights are treated more fairly than others under certain circumstances.
In the program loop, the light drivers are evaluated in the same order each time,
which means that in cases where the system receives a large amount of button
presses from each button in the house, certain lights may never be turned on,
seeing as only four relays can receive an impulse at a time. This results in
situations where the first few light drivers constantly occupy the relays, turning
on and off, making the later light drivers wait to use the relays forever. For these
situations to arise, it would require four or more people to rapidly press buttons
in the house, which is unrealistic in an everyday setting. We also assume that
the push is a normal single push, which is longer than 35 ms2 and shorter than
50 ms.

We say that the system is responsive given the environmental assumption
for a button push if the light switches on within 200 ms of the start of the
button push. The system satisfies this if the model in Figure 20 cannot reach
the failure state. To reach the failure state is must have been in wait longer
than 200 ms without the light being turned on in the meantime.

NButton cannot reach failure and since it is an over-approximation of the
original smart house, neither can the smart house. The question was answered

2The button push has to be longer than the found maximum execution time of the con-
troller, otherwise there is a run where the push is too short to be recorded by the system.
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Figure 20: NButton

with an approximated C = 1001, and it took 11.37 seconds, lead to 504116
discovered markings, where 292817 were explored, and used 86 MB of memory.
We have tested the system and it takes less than 110 ms for the light to turn on,
so we can conclude that the system is responsive for a single button push.

8.2 Evaluation

We have looked into how the precision and time are affected by adjusting the
approximated C, and how the time is spent during the verification.

The trade-off between time and precision can be seen in Table 7. Here we
have verified the button driver and the buzzer rule including 1-safe & 1-active
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and well-behaved checks, with different approximated C, ranging from 1 to 4000.
It is clear to see that with small constants the explicit state space exploration
is very fast, even with a high number of interface places (the buzzer rule has
9), but the computed min and maximum execution times are way to imprecise
to be used to answers any of the questions asked for the case study. With a
maximum execution time of 5 seconds for the buzzer rule it is definitely possible
to burn a relay, and the system will not feel responsive at all. As we increase the
approximated C, the time and memory consumptions go up, but the bound for
the execution times gets tighter. For both nets, the well-behaved check for these
workflows consumes more memory than the soundness check, which is why the
tests ran out of memory for lower values of C than before, see Table 6.

ButtonDriver RulesBuzzer
Approx. C Min Max Time (s) Mem (MB) Min Max Time (s) Mem (MB)

1 0 1000002 0.088 N/A 0 5000002 1.205 4
10 0 100001 0.24 N/A 0 500001 3.617 N/A
100 0 10001 1.682 17 0 50001 28.704 150
500 0 2001 11.848 92 0 10001 155.512 886
750 0 1334 23.317 247 0 6667 234.004 1378
1000 0 1001 38.216 417 0 5001 325.091 1874
1500 0 667 79.38 859 0 3334 479.388 2916
2000 0 501 132.008 1476 - - - >6000
3000 0 334 276.061 3144 - - - >6000
4000 - - - >6000 - - - >6000

Table 7: Button driver and buzzer rule run with different approximated C. As
C increases, so does the precision, but also the time and memory consumption.

As can be seen from Table 6 and Table 7 neither the button driver nor the
buzzer rule can be run with as high C when 1-safe, 1-active and well-behaved
checks are run as well. In Table 8 we have run a button driver, a light driver
and the three big rules to determine where the time is spent. As it can be
seen, 1-safe, 1-active and well-behaved condition 1 and 2 are a bit faster than
the soundness queries, and they also use a lot less memory. The latter because
PTrie [27] can be used here. For the last three parts the time is almost evenly
split and the differences is in how many interfaces the components versus the
structure of the components. For the shown workflows the soundness and the
well-behaved check are the most time consuming operations.

ButtonDriver1 LightDriver1 RulesBuzzer RulesFollowMe RulesNightMotion
1-safe & 1-active 10.54% 15.41% 17.32% 12.61% 10.19%
Well-behaved cond. 1&2 7.81% 12.06% 17.41% 16.25% 10.86%
Well-behaved cond. 3 27.63% 19.67% 25.06% 29.48% 28.96%
Soundness 27.82% 26.86% 20.13% 21.20% 25.54%
Strong Soundness 26.19% 26.00% 20.07% 20.46% 24.45%
Verification time 35.497 s 111.317 s 298.795 s 66.821 s 19.266 s

Table 8: Distribution of time during verification of the five big nets with ap-
proximated C = 1000.
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9 Conclusion

We have proposed a formalism for workflows with interface and status places,
which makes it possible to remember information in a workflow between ex-
ecutions as well as a simple form of communication with other TAPNs. For
communication purposes we determined that binary information was sufficient
and thus we do not allow timing information in interface places, which in turn
also greatly reduces the state space during verification. For status places, we
deemed the timing aspect much more critical, as it is often necessary to save
specific timing information in the net. We have proposed a notion of local
soundness and strong local soundness for the formalism, as well as an algorithm
for checking (strong) local soundness by reducing the workflow to a workflow
for which efficient soundness algorithms already exist.

The formalism shows promising results. Using our formalism we modeled a
smart house including its controller and various hardware components, as well as
the rules regarding the interactions between the various components. Using our
soundness algorithm we managed to verify properties of the real-world model
that would otherwise be impossible to verify. We discovered that the amount
of interface places in the model has a significant impact on the verification
time, as adding more interface places increases the amount of initial markings
that are generated during verification. The size of the approximated C of the
net similarly has an impact on the net, but we were able to successfully apply
over-approximation techniques by Birch et al. [9] to scale the constants allowing
the workflows to be verified at the cost of precision. Despite the loss of precision,
we were successfully able to verify various properties on the model in reasonable
time.

10 Future work

Our algorithm only works on 1-active workflows, because in practice it turned
out to be difficult to construct workflows with multiple active status places that
did not create situations where tokens are added in a way that made the work-
flow either not 1-safe or not sound for the full set of initial markings. For the
subset of reachable markings from a single initial marking, the workflows were
sound. So a direction for future work is to instead of explicitly considering every
possible combination of status and interface places, only consider combinations
which can be reached during normal execution. We could introduce a notion of
cyclic soundness, where we only consider a single initial marking of a TARWFN,
restarting the net whenever a final marking is reached while repopulating the
interface places with every legal combination of tokens. Thus the combinations
of tokens in status places are only those which can occur naturally during exe-
cutions. For a net to be cyclically sound it would thus have to be locally sound
for every possible cycle reached from a single initial marking.

On the same note, it could be interesting to be able to apply a specification
with different conditions on the sets of status (and interface) places on the
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workflow. Thus making it possible to say that a group of status places is 1-active,
having multiple groups. That allows the workflow to be modeled in such a way
that multiple status places can be active at a time. Another idea is to link
interface and status places to simply reduce the set of initial markings needed
to be searched. For example if certain places never have a token at the same
time, or if certain places always have tokens in them at the same time as for
instance is the case in the LightDriver model where LightImpulse and Timer
are linked in such a way.

Another interesting aspect is automatic detecting of status places. Currently
the set of status places is provided to the algorithm beforehand, but an attempt
could be made at determining the set of status places automatically. Running a
soundness check in a net with status places without specifying the set of status
places beforehand would fail, as a token will most likely be present in the net
when the out place is reached. Using this information, the offending place can
be added to the set of status places in the model and the soundness check can
be run again eventually reaching a fixed point with regards to the set of status
places.

Overall, our workflow analysis was limited by memory constraints when ver-
ifying soundness. The verification engine in TAPAAL used for the experiments
utilizes PTries [27] for verification, significantly reducing the memory consump-
tion. PTries are however not implemented for workflow analysis. It could be
interesting to work on implementing PTries or a similar memory efficient data
structure to determine the effect of the analysis and the precision of the results.

Lastly, we could look into automatic optimization of the timing in status
places. During the initial phase of the workflow transformation, every age of
token is produced in status places. It could be interesting to analyze the timing
constraints on the status places and thereby only generate the minimum amount
of tokens required to cover every outcome, creating a LTS that is bisimilar with
the one created when generating tokens of every age up to Cmax + 1, thus also
significantly reducing the state space.
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A Status and Interface Places

When running the strong local soundness algorithm, the user needs to specify,
which places are interface and status places before the verification begins. In
Table 9 all status places for the smart house modeled in TAPAAL are shown for
the components. For components with multiple copies, only a single component
is shown. The rest follow the same structure. The remaining components does
not have any status places.

The interface places are all shared places which do not have a name ending
with start or end.

Component Status places
ButtonDriver1 Pushing DoublePushDetected SavedPush
LightDriver1 Cooldown Timer ChangeState
RulesNightMotion Timer
RulesBuzzer Timer
RulesFollowMe TimerA TimerB
MovementDriver timerSinceLastSent

Table 9: Status places for the components of the smart house. For components
that are not in this table nor have a copy presented here, there are no status
places.
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B Light Driver

Light1Impulse

LightDriver1Start

inv: ≤ 0

LightDriver1Toggle

LightDriver2Start

inv: ≤ 0

Relay1

0.0

Relay2

0.0

Relay3

0.0

Relay4

0.0

Wait

inv: ≤ 4

ReadyRelay

ReleasedRelay

inv: ≤ 0

Init

inv: ≤ 0

ChangeState

Check

inv: ≤ 0

Timer

Pre

inv: ≤ 0

checkRelay

inv: ≤ 588

cooldown

Done

undoToggle NoEvent

skipsendImpulsedoNothing

endImpulse

noRelays

RemoveImpulse

stillSwitching

Clean
RemoveTimer Both

UseRelay1

UseRelay2

ReleaseRelay4

UseRelay3

UseRelay4

ReleaseRelay3

ReleaseRelay2

ReleaseRelay1

error

start

resetRelay

extraDelay

cooldownDone

stillCoolingDown

[1, 4]

[300001,∞)

[147, 588]

[200001,∞)

[0, 300000]:1

:1

:1

:1

:1

:1

:1 :1

[0, 200000]:1

:1
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C Button Driver

Button1Pressed

Button1DriverStart

inv: ≤ 0

0.0

Button1SinglePush

Button1LongPush

Button1DoublePush

Button2DriverStart

inv: ≤ 0

EvaluateAction

inv: ≤ 0

WhichPush

inv: ≤ 0

Pushing

PossibleLongPush2

inv: ≤ 0

Wait2

inv: ≤ 36

SavedPush

LongPushDetected2

DoublePushDetected

ChangeState

inv: ≤ 0

DontChange

inv: ≤ 0

PushStarted ContinuePushEndPushNoPush SecondPushStarted

SinglePush

LongPush

DoublePush

DoNothing

Done

SavePush

TooLate

LongPush2

SinglePushExists

LongPushExists

DoublePushExists

LongPush2Exists

ContinueSecondPushEndSecondPush

T0

T1ifTrue

ifFalse

ifNone

[1000001,∞)

[0, 500000]

[1000001,∞)

[0, 500000]

[1000001,∞)

[9, 36]

:1

:1

[500001, 1000000]:1

:1

:1

:1

[1000001,∞):1

:1

[0, 1000000]:1

:1
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D Buzzer Rule

Light1Off

0.0

Light1On

Light2Off

0.0

Light2On

LightDriver1Start

inv: ≤ 0

LightDriver1Toggle

LightDriver2Toggle

MovementDetected

AlarmOn

BuzzerOn

RulesBuzzerStart

inv: ≤ 0

P3

inv: ≤ 0

Timer

TurnOff1Start

inv: ≤ 0

TurnOn1start

inv: ≤ 0

TurnOff2start

inv: ≤ 0

TurnOn2start

inv: ≤ 0

TurnOffBuzzerstart

inv: ≤ 0

TurnOnBuzzerstart

inv: ≤ 0

Delay

inv: ≤ 176

NoEvent BeginTimerMovementButNoAlarm

TurnOnLights

DoNothing

ResetTimer

TurnOffLights

AlreadyOff1 TurnOff1 CancelTurnOn1DoNothing1 AlreadyOn1 TurnOn1CancelTurnOff1 DoNothing1b

AlreadyOff2 TurnOff2 CancelTurnOn2DoNothing2 AlreadyOn2 TurnOn2CancelTurnOff2 DoNothing2b

T0

TurnOff

AlreadyOff

TurnOn

AlreadyOn

[5000001,∞)

[44, 176]

[0, 5000000]:1

:1
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E Light

Light1Impulse

Light1Off

0.0

Light1On

FailureTooShort

timer1

inv: ≤ 5000

timer3

P4

timer2

inv: ≤ 200000

startImpulse Toggle

RelayBurned

Done

turnOffturnOn

T0

endedTooShort
WayTooShort

[500000,∞)[200000,∞):1 :1

[5000,∞):1
:1
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F Result from strong local soundness checks

Here are all tables with data from all 89 components in the model. Table 10
shows all 17 event drivers, Table 11 shows all 16 light drivers, Table 12 shows
all rules and lastly Table 13 shows all the subparts for big rules we needed to
verify the controller with a small enough cycle time.

Name Min Max Time (s) Mem (MB) Approx. C C
ButtonDriver1 0 251 300.884 5371 4000 1000001
ButtonDriver2 0 251 300.701 5384 4000 1000001
ButtonDriver3 0 251 300.181 5409 4000 1000001
ButtonDriver4 0 251 301.373 5400 4000 1000001
ButtonDriver5 0 251 301.31 5392 4000 1000001
ButtonDriver6 0 251 300.681 5403 4000 1000001
ButtonDriver7 0 251 300.932 5381 4000 1000001
ButtonDriver8 0 251 301.024 5377 4000 1000001
ButtonDriver9 0 251 301.142 5400 4000 1000001
ButtonDriver10 0 251 300.114 5405 4000 1000001
ButtonDriver11 0 251 300.814 5390 4000 1000001
ButtonDriver12 0 251 300.02 5375 4000 1000001
ButtonDriver13 0 251 300.666 5389 4000 1000001
ButtonDriver14 0 251 300.38 5415 4000 1000001
ButtonDriver15 0 251 301.366 5383 4000 1000001
ButtonDriver16 0 251 300.76 5409 4000 1000001
MovementDriver 0 334 287.32 5642 6000 2000001

Table 10: Results from running the local strong soundness check on button and
movement drivers
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Name Min Max Time (s) Mem (MB) Approx. C C
LightDriver1 0 688 382.581 5228 3500 300001
LightDriver2 0 688 380.646 5227 3500 300001
LightDriver3 0 688 383.308 5236 3500 300001
LightDriver4 0 688 382.553 5230 3500 300001
LightDriver5 0 688 383.126 5230 3500 300001
LightDriver6 0 688 382.938 5238 3500 300001
LightDriver7 0 688 382.925 5227 3500 300001
LightDriver8 0 688 382.277 5228 3500 300001
LightDriver9 0 688 381.171 5233 3500 300001
LightDriver10 0 688 381.415 5231 3500 300001
LightDriver11 0 688 381.054 5229 3500 300001
LightDriver12 0 688 382.213 5230 3500 300001
LightDriver13 0 688 380.55 5238 3500 300001
LightDriver14 0 688 382.882 5237 3500 300001
LightDriver15 0 688 382.912 5233 3500 300001
LightDriver16 0 688 381.752 5240 3500 300001

Table 11: Results from running the local strong soundness check on the light
drivers
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Name Min Max Time (s) Mem (MB) Approx. C C
RulesSimpleOff1 44 176 0.03 N/A 176 176
RulesSimpleOff2 44 176 0.026 N/A 176 176
RulesSimpleOff3 44 176 0.025 N/A 176 176
RulesSimpleOff4 44 176 0.025 N/A 176 176
RulesSimpleOff5 44 176 0.026 N/A 176 176
RulesSimpleOff6 44 176 0.026 N/A 176 176
RulesSimpleOff7 44 176 0.027 N/A 176 176
RulesSimpleOff8 44 176 0.027 N/A 176 176
RulesSimpleOff9 44 176 0.025 N/A 176 176
RulesSimpleOff10 44 176 0.045 N/A 176 176
RulesSimpleOff11 44 176 0.047 N/A 176 176
RulesSimpleOff12 44 176 0.031 N/A 176 176
RulesSimpleOff13 44 176 0.032 N/A 176 176
RulesSimpleOff14 44 176 0.061 N/A 176 176
RulesSimpleOff15 44 176 0.043 N/A 176 176
RulesSimpleOff16 44 176 0.025 N/A 176 176
RulesSimpleOn1 44 176 0.025 N/A 176 176
RulesSimpleOn2 44 176 0.028 N/A 176 176
RulesSimpleOn3 44 176 0.026 N/A 176 176
RulesSimpleOn4 44 176 0.033 N/A 176 176
RulesSimpleOn5 44 176 0.028 N/A 176 176
RulesSimpleOn6 44 176 0.032 N/A 176 176
RulesSimpleOn7 44 176 0.028 N/A 176 176
RulesSimpleOn8 44 176 0.03 N/A 176 176
RulesSimpleOn9 44 176 0.041 3 MB 176 176
RulesSimpleOn10 44 176 0.028 N/A 176 176
RulesSimpleOn11 44 176 0.048 N/A 176 176
RulesSimpleOn12 44 176 0.046 N/A 176 176
RulesSimpleOn13 44 176 0.055 N/A 176 176
RulesSimpleOn14 44 176 0.04 3 MB 176 176
RulesSimpleOn15 44 176 0.035 N/A 176 176
RulesSimpleOn16 44 176 0.03 N/A 176 176
RulesLongOn 44 176 0.023 N/A 176 176
RulesLongOff 44 176 0.022 N/A 176 176
RulesNightMotion 0 2001 213.498 4288 5000 10000001
RulesFollowMe 0 1429 256.681 4778 3500 5000001
RulesBuzzer 0 2501 268.768 4034 2000 5000001

Table 12: Result from running local strong soundness checks on rules
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Name Min Max Time (s) Mem (MB) Approx. C C
RulesNightMotionSub1 0 0 0.084 N/A 0 0
RulesNightMotionSub2 0 0 0.078 N/A 0 0
RulesFollowMeSub1 0 0 0.016 N/A 0 0
RulesFollowMeSub2 0 0 0.08 N/A 0 0
RulesFollowMeSub3 0 0 0.027 N/A 0 0
RulesFollowMeSub4 0 0 0.026 N/A 0 0
RulesFollowMeSub5 0 0 0.085 N/A 0 0
RulesLongOnSub1 0 0 0.085 N/A 0 0
RulesLongOnSub2 0 0 0.083 3 0 0
RulesLongOnSub3 0 0 0.09 N/A 0 0
RulesLongOnSub4 0 0 0.087 N/A 0 0
RulesLongOnSub5 0 0 0.096 N/A 0 0
RulesLongOnSub6 0 0 0.014 N/A 0 0
RulesLongOffSub1 0 0 0.095 N/A 0 0
RulesLongOffSub2 0 0 0.091 N/A 0 0
RulesLongOffSub3 0 0 0.104 N/A 0 0
RulesLongOffSub4 0 0 0.09 N/A 0 0
RulesLongOffSub5 0 0 0.081 N/A 0 0
RulesLongOffSub6 0 0 0.018 N/A 0 0

Table 13: Results from running the local strong soundness check on the subnets
for the rules
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