
Type Systems And Programmers:
A Look at Optional Typing in Dart
Mark Faldborg Troels Lisberg Nielsen

Supervisor :
Bent Thomsen

June, 2015

Abstract
This thesis describes the evaluation of a programming language con-

struct, namely type systems, using methods from social science research.
We investigate whether there is a significant difference in development
time between developers using either a statically typed API or a dynam-
ically typed API by conducting a controlled empirical experiment. The
controlled empirical experiment is conducted using Dart, a language with
optional typing, and DartPad, a web-enabled IDE for Dart. The result
of the controlled empirical experiment is inconclusive. Additionally we
conduct interviews as an inquiry into how developers view types. Inter-
viewees say that static typing improves security, has a documenting effect,
and functions as a social contract with other developers. They also say
that dynamic typing affords faster development time.

This thesis can be considered a starting point for future research.

1

2

Acknowledgements
We would like to thank our supervisor Bent Thomsen. We had many interesting
discussions together and we drew on his extensive knowledge about program-
ming languages. We entered into unfamiliar knowledge areas knowing that we
could rely on his guidance and supervision.

We are grateful that members of the Google Dart team–Erik Ernst, Luke
Church, and Rico Wind–were willing to spend some time discussing our project
and our experiment design with us. We benefited from their expertise in this
area and we were inspired by their insightful ideas on the matter.

3

4

Contents

1 Introduction 11
1.1 Type Systems . 11

1.1.1 Genesis of Types . 12
1.1.2 Static Typing versus Dynamic Typing 14

1.2 Programming Language Evaluation Methods 15
1.2.1 Performance Benchmarks 16
1.2.2 Formalisation . 16
1.2.3 Case Studies and User Studies 16
1.2.4 Usability Frameworks . 17
1.2.5 Controlled Empirical Experiments 17

1.3 Summary and Demarcation . 18
1.4 Our contributions . 18

2 Experiment Design 18
2.1 Epistemological Considerations 19

2.1.1 Deductive and Inductive Process 19
2.1.2 Empiricism . 19
2.1.3 Constructionism . 20
2.1.4 Quantitative and Qualitative Research 20

2.2 Methods and Techniques Used 21
2.2.1 Controlled Empirical Experiments 21
2.2.2 Statistical Analysis . 22
2.2.3 Interview . 22
2.2.4 Survey . 22

2.3 Experimental Procedure . 23
2.3.1 Survey . 23
2.3.2 Solving Tasks Using an API 24
2.3.3 Interview Procedure . 25

2.4 Task Design and API Design . 25
2.5 Data Gathering . 27
2.6 Participant Sampling . 27

3 Tools Used 28
3.1 Dart . 28

3.1.1 Why Dart? . 28
3.2 DartPad . 29

3.2.1 Modifications . 29

4 Experiment Experiences 29
4.1 Initial Pilot Test . 31

4.1.1 Observations . 32
4.2 Subsequent Interviews . 32
4.3 Subsequent Experiments . 33

5

5 Experiment Data Analysis 33
5.1 Collected Data . 33
5.2 The Data . 34
5.3 Null Hypothesis . 34
5.4 t-test . 34
5.5 Visual Presentations . 35
5.6 Summary . 35

6 Interview Findings 37
6.1 Summary of Interviews . 37

6.1.1 Types (or Lack of Types) Went Unnoticed 37
6.1.2 Types Discourages Certain Behaviour 37
6.1.3 Type Annotations Have a Documenting Effect 37
6.1.4 Variable Names . 37
6.1.5 Color Parameter . 38
6.1.6 API Improvements . 38

6.2 Notes for Language Designers . 39

7 Threats to Validity 39
7.1 Participants . 39
7.2 Approach . 40
7.3 Software Used . 40

8 Conclusion 41

9 Future Work 42
9.1 Scale Up Controlled Empirical Experiment 42
9.2 Perform a Proper Survey . 43
9.3 Extend Experiment to a Social Setting 43
9.4 Source Code Analysis . 43

References 44

A Dart Introduction Source 47

B Experiment Plan 48
B.1 Checklist . 48
B.2 Welcome “Message” . 48
B.3 Outline Pre-experiment . 49
B.4 Interview Guideline . 49
B.5 Interview Questions . 49

C Interview Notes 50
C.1 Participant Three . 50
C.2 Participant Four . 52
C.3 Participant Five . 53
C.4 Participant Six . 54
C.5 Participant Seven . 57
C.6 Participant Eight . 58
C.7 Participant Nine . 61
C.8 Participant Ten . 65

6

D Shapes Tasks 69
D.1 Task 1 . 69
D.2 Task 2 . 69
D.3 Task 3 . 69
D.4 Task 4 . 70

D.4.1 Frame 1 . 70
D.4.2 Frame 2 . 70
D.4.3 Frame 3 . 71

D.5 Task 5 . 71
D.5.1 Frame 1 . 71
D.5.2 Frame 2 . 71
D.5.3 Frame 3 . 72
D.5.4 Frame 4 . 72

E Shapes Library Source Code 72

7

8

Abbreviations
Here is a list of abbreviations used in this work:

API Application Programming Interface

IDE Integrated Development Environment

OOP Object Oriented Programming

IDA Instant Data Analysis

HCI Human Computer Interface

ANOVA Analysis Of Variance

API Application Programming Interface

PPIG Psychology of Programming Interest Group

9

10

1 Introduction
The science behind the design, construction, and evaluation, of programming
languages is ever evolving. The programming language research area encom-
passes many disciplines. These disciplines are related to one another and they
all depend on each other and they all contribute to each other. An incomplete
categorisation or listing of relations between these disciplines might include:

• The relation between programming language research and the develop-
ment of general purpose computers: Construction of compilers, inter-
preters, and virtual machines, to enable cross-platform programming.

• The relation between programming languages research and mathematical
research (e.g. research in the area of computability): Formalising pro-
gramming language aspects and programming language constructs and
subsequently proving attributes and qualities about them.

• The relation between programming language research and software devel-
opment: The developer experience, which includes the design of intuitive
and easy-to-use programming languages and programming language con-
structs.

• The relation between programming language research and problem solv-
ing in other research areas: The applicability of certain programming lan-
guages and programming language constructs in solving certain kinds of
problems. For instance, an inquiry into the applicability (disadvantages
and advantages) of various concurrency models to certain concurrency
problems.

Figure 1 is an illustration of these disciplines and their relations to each other.
To illustrate how the development of general purpose computers and math-

ematical research affect one another we go back in time and find some early
ideas on the matter. In “Computer Science and its Relation to Mathematics”
(1973) Donald Knuth cites Charles Babbage on the effect of building the first
machines (general purpose computers). In 1864 he wrote:

As soon as an Analytical Engine [i.e. a general purpose computer]
exists, it will necessarily guide the future course of the science.
Whenever any result is sought by its aid, the question will then
arise–By what course of calculation can these results be arrived at
by the machine in the shortest time?

And the development of general purpose computers have indeed greatly influ-
enced mathematics. And, of course, the development of general purpose com-
puters have greatly been influenced by mathematics. This is an example of
different disciplines affecting one another.

1.1 Type Systems
This thesis is in inquiry into types and type systems. Type systems have influ-
enced:

• Work on compilers, interpreters, and virtual machines (which we cate-
gorise into the discipline of general purpose computing)

11

Research in / Design of:
Programming Languages

and
Programming Language Constructs

Software
Development

Problem Solving
(Other)

Development of
General Purpose

Computers

Mathematical
Research

Figure 1: Program language determination.

• The formalisation of programming languages (which we categorise as the
discipline of mathematics)

• The design of intuitive languages (which we categorise as the discipline of
software development)

Our inquiry into type systems start with the relation between type systems
and software development. We are not looking for essential features, that de-
termine the usefulness of type systems. We are making a contribution to a
particular aspect of type systems: The relation between type systems (as a pro-
gramming language construct) and software development. But we also realise
that such a contribution cannot exist on its own and that it is deeply related to
other aspects surrounding type systems (as a programming language construct).

1.1.1 Genesis of Types

It is outside of the scope of this thesis to go through the entire history of types
and type systems in programming languages. We will, however, briefly look at
the genesis of types and type systems and use it to illustrate our point that
different disciplines (such as mathematical research and programming language
research) affect one another. Types can be traced back to set theory. Bertrand
Russell proposed typed set theory as a response to Russell’s Paradox in an

12

appendix to “The Principles of Mathematics” (1903)1. Russel introduced types
to deal with paradoxes, which shook the foundation of set theory (and thus
of mathematics). Types were introduced into programming languages with a
different goal. [19, p. 8] says:

The first type systems in computer science, beginning in the 1950s
in languages such as Fortran [...], were introduced to improve the ef-
ficiency of numerical calculations by distinguishing between integer-
valued arithmetic expressions and real-valued ones; this allowed the
compiler to use different representations and generate appropriate
machine instructions for primitive operations.

We see Babbage’s premonition at play here–types are introduced to optimise
runtime execution of programs–but this time with a twist: It should be con-
venient for the developer2. We might categorise this wish for convenience into
the discipline of software development. This specific runtime optimisation was
made possible by the development of new hardware (which we categorise into
the development of general purpose computers). Further optimisations were
made possible by types. [19, p. 8] continues:

In safe languages, further efficiency improvements are gained by
eliminating many of the dynamic checks that would be needed to
guarantee safety (by proving statically that they will always be sat-
isfied). Today, most high-performance compilers rely heavily on
information gathered by the typechecker during optimization and
code-generation phases. Even compilers for languages without type
systems per se work hard to recover approximations to this typing
information.

Later, more powerful type systems would be developed which enabled new steps
of progress. [19, p. 10] says:

In computer science, the earliest type systems were used to make
very simple distinctions between integer and floating point repre-
sentations of numbers (e.g. in Fortran). In the late 1950s and early
1960s, this classification was extended to structured data (arrays of
records, etc.) and higher-order functions. In the 1970s, a number of
even richer concepts (parametric polymorphism, abstract data types,
module systems, and subtyping) were introduced, and type systems
found in programming languages and those studied in mathematical
logic, leading to a rich interplay that continues to the present.

1See http://plato.stanford.edu/entries/russell-paradox/ for more informa-
tion on Russel’s Paradox and how different type theories have been suggested to deal with
it.

2[19] cites an article by Backus which says[1, p. 168]: “Of course one of our goals was to
design a language which would make it possible for engineers and scientist to write programs
themselves for the 704. We also wanted to eliminate a lot of the bookkeeping and detailed,
repetitive planning which hand coding involved”. Backus also mentions economics as another
driving force behind Fortran; specifically the change in difference between the cost of (access
to) computer equipment and engineer/programmer wages. We exclude economic disciplines
from our analysis even though we realise the importance of such disciplines. We have to do
some kind of demarcation to keep the analysis manageable.

13

http://plato.stanford.edu/entries/russell-paradox/

This interplay is an example of the two disciplines, programming language re-
search and mathematical research, affecting one another. If we then jump for-
ward to automatic theorem provers, which often rely on powerful type systems
such as dependent types[19, p. 9], we see that the development of type systems
in programming research is feeding back into mathematics.

1.1.2 Static Typing versus Dynamic Typing

With the introduction of types into programming languages followed a long-
running discussion on the matter. Both language designers and software devel-
opers disagree on the disadvantages and advantages of static type checking and
dynamic type checking. [9, p. 2] summarises some of these disagreements:

In literature, typical arguments for static type systems [...] are for
example:
Static type systems...

• capture a large fraction of recurring programming errors
• have methodological advantages for code development
• reduce the complexity of programming languages
• improve the development and maintenance in security areas

On the other hand common arguments against static type systems
[...]:

• Static type systems unnecessarily restrict the developers
• No-such-method exceptions which are caused at run-time be-
cause of missing type-checks do not occur that often

• No-such-method exceptions mainly occur because of null-pointer
exceptions (which also occur in typed programming languages)

The arguments for and against static type systems seem to be valid
but contradict each other.

In these contradictions we find tensions between “capturing recurring pro-
gramming errors” and “unnecessarily restrict[ing] developers” when using a
sound static type system. Language designers have to decide how to handle
this tension. The designers of some very popular programming languages are
struggling with this tension:

C# introduced the dynamic keyword in C# 4.0, this allows programmers to
create dynamically typed variables in the otherwise statically typed C#.

Python designers is currently (summer of 2015) in the process of introducing
type annotations into Python 33. An argument is that large software
products written in Python will benefit greatly from it.

Ruby Yukihiro “Matz” Matsumoto, the creator of ruby, said in a 2014 talk4

that he would like to have optional typing in Ruby 3.0.
3Function annotations: https://www.python.org/dev/peps/pep-3107/
4Talk: https://www.youtube.com/watch?v=85ct6jOvVPI

14

https://www.python.org/dev/peps/pep-3107/
https://www.youtube.com/watch?v=85ct6jOvVPI

TypeScript is a superset of JavaScript which has optional static type check-
ing5.

Language designers draw inspiration from each other and in the discussion
of dynamic/static/optional typing language designers often point to Dart. Dart
developers have decided on an interesting approach to resolve the tension sur-
rounding type systems[7, p. 2]:

[The permissiveness of the Dart type system] is the consequence
of a conscious trade-off by language designers: Sound type systems
require programmers to handle a large amount of complexity in order
to enable a sufficiently expressive style of programming. Conversely,
a type system that is not sound can be simpler and more flexible.
In general, the Dart type system detects obviously wrong typing
situations instead of guaranteeing type correctness [...]

Dart developers opted for an unsound type system to gain a flexible (less re-
stricting) programming language. This is becoming a popular trend in language
design, introducing static typing to reduce errors, or introducing optional typing
to reduce friction.

1.2 Programming Language Evaluation Methods
So, what do we do about the issue of “static versus dynamic typing”? The
discipline of programming language research and design is probably a probably
a good place to start. In this section we take a look at the techniques that
programming language researchers and designers use to evaluate programming
languages.

In programming language research and design, a typical process of develop-
ing or improving a programming language can be represented as an iteration of
activities6:

1. Come up with (or revise) an idea for a programming language (construct).

2. Implement the programming language (construct).

3. Evaluate the implementation of the programming language (construct).

4. Repeat (go to step 1).
5TypeScript website: http://www.typescriptlang.org/
6 Descriptions of a similar process can be found in literature about Smalltalk. Daniel

Ingalls writes about the design process of Smalltalk in [12]:
Our work has followed a two- to four-year cycle that can be seen to parallel the
scientific method:

• Build an application program within the current system (make an obser-
vation)

• Based on that experience, redesign the language (formulate a theory)

• Build a new system based on the new design (make a prediction that can
be tested)

Smalltalk-80 system marks our fifth time through this cycle.

15

http://www.typescriptlang.org/

The process of coming up with a programming language idea is rarely (if ever)
the subject of scientific (or philosophical) discussion. In this part of the pro-
cess, researchers are free to use whatever means that are available to them. The
process of implementing the programming language (construct) as a compiler,
interpreter, virtual machine, library etc. is not a matter of scientific (or philo-
sophical) discussion either7. Things are different when it comes to evaluating an
implementation of a programming language (construct), however. Researchers
have different opinions on programming languages. To add some order and
rigour to the discussion and evaluation of implementations of programming lan-
guage (constructs), researchers have come up with and (partially) agree on some
criteria or means of validation, which programming language implementations
should adhere to, to be considered a contribution to programming language
research.

The following sections describe some of these means of validation along with
the applicability of them with regards to our work on types and type systems.

1.2.1 Performance Benchmarks

In research areas related to concurrency and databases it is customary to use
performance benchmarks as a means of evaluating developed languages (and sys-
tems). Researchers use an “agreed upon” set of algorithms and problems in such
performance benchmarks. These problems and algorithms include: Consumer-
Producer, Unbalanced Search Tree, Floyd’s Algorithm, Discrete Fourier Trans-
form, k-means, Matrix-Vector Product, Weighted Point Selection, Histogram
Threshholding. [17, p. 2] says “The set P of parallel programming problems was
chosen from already suggested problem sets in literature [...]. Reusing a tried
and tested set has the benefit that estimates for the implementation complexity
exists and that problem selection bias can be avoided by the experimenter.”

Performance benchmarks do not really tap into the developer experience of
using types and type systems so we will refrain from performing any performance
benchmarks in this work.

1.2.2 Formalisation

Another common approach used to evaluate a new language (construct) is to
formalise parts of it and then prove certain qualities about it. For instance, to
prove that a particular type system is able to ensure soundness before runtime.
Some of the classic evaluation criteria, developed by people like R.D. Tennent,
use formalisation and rationalisation to evaluate programming languages[25].

Formalisation seems to draw some inspiration from the discipline of math-
ematics. We are not particularly interested in this discipline with regards to
type systems so we will not consider formalisation further in our work.

1.2.3 Case Studies and User Studies

Other approaches are centred in user studies and case studies. Such case studies
range from free form and informal to controlled experiments. For instance, we

7It is worth noting that maximising or improving the efficiency of people involved in the
implementation process is a matter of serious study. A programming language (construct) is
rarely (if ever?) rejected due to the process used to implement it.

16

know that Logo designers and Smalltalk designers conducted such studies in the
1970-80s[14, 21]. Little detail seem to be available about how they performed
these studies but they were probably fairly informal. Recent informal case stud-
ies include a study of Diamondback Ruby[5]. Diamondback Ruby is a version
of Ruby that includes static type inference. In the study four skilled developers
use Diamondback Ruby to solve one of two tasks (the other task is solved using
regular Ruby). The study also includes interviews with participants.

Case/user studies involve software developers. We are thus in the discipline
of software development and within our area of interest.

1.2.4 Usability Frameworks

Another example of work, related to evaluating the usability of programming
languages, is to apply a framework developed in the area of Human Computer
Interface (HCI). An example of such a framework is Cognitive Dimensions. The
Cognitive Dimensions framework was used to evaluate an early version of C#[4].

Usability frameworks certainly lie within our area of interest since it includes
software developers in a very direct way.

1.2.5 Controlled Empirical Experiments

Section 2.2.1 contains a description of controlled empirical experiments but for
now it suffices to use a simplistic description of controlled empirical experiments.
It can be though of as an experiment where two groups are pitted against each
other and researchers check if there is any measurable and significant difference
between the two groups. For instance, the two groups can use different pro-
gramming languages to solve the same task and researchers can check if either
group is faster than the other.

Andreas Stefik and Stefan Hanenberg are some of the proponents of this ap-
proach to programming language evaluation. They have published some fairly
well-known articles about controlled experiments that they have conducted[24,
9]. Stefik and Hanenberg call certain discussions in programming language de-
sign “programming language wars”[23]. It is the idea that one programming
language, or programming language construct, is better than all others. Stefik
and Hanenberg direct their criticism towards the methodology and discourse in
such discussion: Discussion are focused on anecdotal evidence, or toy problem
testing which leads to misconceptions about what the actual problem is[23].
Stefik and Hanenberg suggest that programming language communities dupli-
cate effort (e.g. by repeatedly attempting designs, which have already been
tried and discarded by others). They believe language designers duplicate ef-
fort when they move into seemingly new territory because design decisions are
seldom backed by evidence. The solution suggested by Stefik and Hanenberg is
to design languages based on evidence and to publish findings. Markstrum has
made similar claims and points[15]. Kaijanaho has observed that there has been
an increase in publications pertaining to evidence based programming language
design in recent years[13, p. 86].

Controlled empirical experiments include software developers in the eval-
uation of programming language (constructs). It is thus within our area of
interest.

17

1.3 Summary and Demarcation
The disciplines of software development, mathematics, and programming lan-
guage design, affect one another. In this myriad of disciplines, types (and type
systems) arose and ever since types were introduced into programming lan-
guages, designers have been discussing the advantages and disadvantages of
types. It is clear that some tension exists between creating an easy-to-use pro-
gramming language and a type system with certain qualities (e.g. soundness).
In programming language research different techniques can be used to evalu-
ate programming languages: Performance benchmarks, formalisation, case/user
studies, usability frameworks, and controlled empirical experiments. Due to
constraints on time and resources we will not focus on usability frameworks.
We identify the following evaluation techniques to be applicable in the evalua-
tion of types and type systems and to be within our area of interest:

• Case/user studies including interviews.

• Controlled empirical experiments.

1.4 Our contributions
To gain insight into the evaluation methods (case/user studies including inter-
views and controlled empirical experiments) we consulted material from the area
of social science, where these methods seem to originate. We can summarise
our contributions as:

• A description of the application of social science research methods (i.e. in-
terviews and controlled empirical experiments) in programming language
design and evaluation. Our experiences with this process might benefit
others who consider doing something similar.

• A qualitative assessment of the opinions and ideas about types and type
systems that eight developers have. Programming language designers can
use this information in their design work.

• An extension of the work of others, who have applied controlled empirical
experiments in the area of programming language evaluation, into online
experimentation which we deem feasible.

2 Experiment Design
The driving force or impetus behind our work is presented in Section 1. Our
work is particularly driven by:

• The “static vs dynamic typing” discussion.

• The use of social science research methods in programming language de-
sign and evaluation.

This section describes our experiment design and considerations that we
made as part of our design work. We are transparent about our method and
considerations because it allows readers to evaluate our work and it also allows
others to gather inspiration from our work.

18

2.1 Epistemological Considerations
Epistemology is concerned with the way in which knowledge is generated and
validated. The inclusion of social science research methods into programming
language research results in two different scientific traditions encountering each
other. This encounter required us to go through some epistemological consider-
ations, that we wish to describe.

2.1.1 Deductive and Inductive Process

In traditional natural science a hypothesis is generated from existing knowl-
edge and theory[3, Chap. 2]. The hypothesis is turned into testable entities
and actionable tests. Tests are then performed and test results either add/-
subtract support to/from the original hypothesis. This is called a deductive
process: Theories and knowledge result in (drive) research and data gathering.
The opposite is called an inductive process: Data gathering and research result
in (drive) theories and knowledge. An inductive process can involve both the
generation of new hypotheses but also the revision of previously stated hypothe-
ses. We refer to material, that has its entry point in a deductive process, as
deductive material and likewise we refer to material, that has its entry point in
a inductive process, as inductive material.

As part of our work we studied both programming language research ma-
terial and social science research material. It was by no means an extensive
study of literature but it helped us get some idea of the differences between
the two areas. It is our impression that researchers of social sciences are more
accepting of inductive material than researchers of programming languages. It
is our impression that there is a wide-spread acceptance of deductive mate-
rial in programming language research. Inductive material seems to garner less
acceptance but it is accepted at conferences such as PPIG8.

As part of our work we compare how long developers take to solve certain
tasks using either a dynamic or static version of a provided Application Pro-
gramming Interface (API). There is a deliberate hypothesis and the goal is
clear: We want to test if type annotations afford a significant improvement in
developer efficiency. In such work we take a deductive stance. That is, we use
a deductive process as our entry point. An inductive stance is taken in our
investigation into how developers define, think about, and use types, through
unstructured interviews. Notice the difference: Part of our work has its entry
point in a deductive process where we test hypotheses and another part has its
entry point in an inductive process where we explore and generate hypotheses.

2.1.2 Empiricism

[3, p. 23] summarises empiricism as:

[Empiricism is] a general approach to the study of reality that sug-
gests that only knowledge gained through experience and the senses
is acceptable. In other words, this position means that ideas must
be subjected to the rigours of testing before they can considered
knowledge.

8http://www.ppig.org/

19

http://www.ppig.org/

Our comparison of task completion times of developers using either a dynami-
cally typed or a statically typed API is clearly founded in an empirical episte-
mology.

2.1.3 Constructionism

Our work is not restricted to empiricism and we extend our work into construc-
tionism. [3, p. 34] says about constructionism:

Constructionism essentially invites the researcher to consider the
ways in which social reality is an ongoing accomplishment of social
actors rather than something external to them and that totally con-
strains them. [...] Constructionism also suggests that the categories
that people employ in helping them to understand the natural and
social world are in fact social products.

[3] uses the example of “masculinity” as such a category, pointing out that
the meaning of “masculinity” depends on time and place. In a similar manner
we wish to look how developers view types and type systems. We do this by
conducting unstructured interviews with developers.

2.1.4 Quantitative and Qualitative Research

[3, p. 35] summarises some of the differences between quantitative and qualita-
tive research:

[...] quantitative research can be construed as a research strategy
that emphasizes quantification in the collection and analysis of data
and that

• entails a deductive approach to the relationship between theory
and research, in which the accent is placed on the testing of
theories;

• has incorporated the practices and norms of the natural scien-
tific model and of positivism in particular; and

• embodies a view of social reality as an external, objective reality

By contrast, qualitative research can be construed as a research
strategy that usually emphasizes words rather than quantification
in the collection and analysis of data and that

• predominantly emphasizes and inductive approach to the rela-
tionship between theory and research, in which the emphasis is
placed on the generation of theories;

• has rejected the practices and norms of the natural scientific
model and of positivism in particular in preference for an em-
phasis on the ways in which individuals interpret their social
world; and

• embodies a view of social reality as a constantly shifting emer-
gent property of individual’s creation.

20

Positivism is very similar to empiricism in this context and we will not distin-
guish between the two.

Putting types (as a programming language construct) into the context of
quantitative and qualitative research, we arrive at two epistemological assump-
tions:

• Types (as a construct) is external to developers and affects developers.
This effect can be shown by empirically testing a hypothesis.

• Types (as a construct) is the creation of developers, in the sense that they
attribute meaning to types, and the concept of types is constantly shift-
ing. It is possible to understand these individual interpretations through
interviews.

Notice that these assumptions are not necessarily contradictory. We can imagine
types as something external to the developer that may or may not affect the
developer (efficiency). But we can also imagine types as something that different
developers assign different meaning to. Or perhaps something that the same
developer assign different meaning to in different contexts.

2.2 Methods and Techniques Used
This section describes methods and techniques we make use of in this work.

First a short introduction about empirical experiments, an introduction to
statistical analysis, interview techniques and surveying methods.

2.2.1 Controlled Empirical Experiments

In the tradition of empirical and quantitative research, we find the method of
controlled empirical experiments[8, Chap. 4]. Controlled empirical experiments
are founded on the idea that variables affect each other in a given situation. A
variable is an aspect of a situation. Before a controlled empirical experiment is
conducted researchers come up with a hypothesis and some measure which is
used to gauge that hypothesis (that is, a deductive process approach is used).
The measure is sometimes called a surrogate measure. Researchers then identify
variables that can influence the measurement of the hypothesis. These variables
are called independent variables. Variables affected by independent variables are
called dependent variables. Researchers try to minimise or control the effect of
independent variables in a controlled experiment. Researchers then introduce
a treatment (a change of factors or aspects of a situation) and see if the hy-
pothesised change in the surrogate measure occurs. If the hypothesised change
occurs, then it adds support to the stated hypothesis which increases researcher
belief that a relationship exists between the treatment and the measured effect
(that is, an inductive process is used).

If it is not possible to minimise or control all independent variables, then
researchers can instead perform observational studies or quasi-experiments[8,
p. 136]. Software development is littered with hard-to-control independent
variables such as problem domain, environment, tools, processes, skill level,
background, and many more. It is almost impossible to minimise all of these
confounding variables and as a result it is rare to see controlled empirical ex-
periments in software development.

21

2.2.2 Statistical Analysis

When collecting quantitative data the use of statistical analysis is a sound idea.
In our experiment we will use hypothesis testing for the quantitative data we
collect. The dependant variable used in our experiment is time.

We will define a H0 (null hypothesis) and attempt to reject it based on
the data we collect. To do this we need to show that the two sets of data
differ significantly. This can be done using Student’s t-test. If two sets of data
differ significantly the H0 can be rejected and an alternative hypothesis (H1)
formulated.

2.2.3 Interview

[3] classifies interviews into: structured interviews, semi-structured interviews,
and unstructured interviews.

Structured interviews have prepared questions and answers, that intervie-
wees can pick from (e.g. “Strongly agree”, “Somewhat agree”, “Somewhat
disagree”, “Strongly disagree”). This is called “closed questions”[3, p. 246].
Questions are asked in the exact same order and in a standardised manner.
Structured interviews and closed questions benefit from consistency and com-
parability. However, it is difficult to come up with exhaustive answers when
preparing closed questions.

Interviewees are encouraged to answer questions however they see fit in un-
structured interviews. This is called “open questions”[3, p. 246]. Open ques-
tions allow unusual responses to arise. It is also possible for interviewers to
gauge the level of knowledge interviewees posses. Unstructured interviews with
open answers can take up more time than structured interviews. The lack of
structure also introduces variability which eliminates (or reduces) comparability
of answers.

Unstructured interviews tend to be similar to conversations[3, p. 471]. Semi-
structured interviews have an interview guide with a list of topics or questions to
be covered in the interview. Interviewers can ask questions that do not appear in
the interview guide and the interviewer is free to vary the wording of questions.
This gives the interviewer some flexibility. In semi-structured and unstructured
interviews it is acceptable (even encouraged) to go off on tangents.

Problems with interviews include “acquiescence” and “social desirability
bias”[3, p. 227]. Acquiescence is when interviewees tend to either agree or
disagree with all questions. People sometimes reply to a series of questions in a
similar manner which is unrelated to the content of the questions. Social desir-
ability bias happen when interviewees give answers that they deem to be more
socially acceptable. For instance, interviewees might try to please researchers by
giving them information that support their research (and neglect to give them
information that does not support their research).

2.2.4 Survey

Surveys, or self-completion questionnaires, is a way of getting answers for “closed
questions”[3, p. 243], similar to a structured interview but using a form of input
instead, typically a computer, which can then be mechanically analysed after
the fact.

22

Surveys are a good entry point for large scale research, e.g. postal question-
naires[3, p. 232] which go out to a large population by mail.

Together with automating the experiment a well-designed survey would allow
us to reach a larger slice of the population of programmers out there. Even when
considering the lower response rates[3, p. 235] these two things together would
allow us to engage with a larger slice of the population without adding to the
cost of doing the experiment.

2.3 Experimental Procedure
Each experiment involve just one participant. The experiment consists of three
parts:

• A short survey.

• A number of tasks, which participants are asked to solve using a provided
API. The API is called Shapes.

• A semi-structured and informal interview with open answers.

In the following three sections we describe each part of the experimental proce-
dure.

2.3.1 Survey

Figure 2: Survey that participants are asked to fill out.

Figure 2 shows the survey questions that are asked. The purpose of the
survey is to gather data related to the software development experience of the
participants.

23

Figure 3: Task 3 that participants are asked to solve.

2.3.2 Solving Tasks Using an API

As part of the experiment participants are asked to solve five tasks. The five
tasks are available in Appendix D. Figure 3 shows one of the tasks that partic-
ipants are asked to solve. A possible solution for this task is:

1 main(){
2 var surface = new Surface();
3 surface.addShapes([
4 new Rectangle(300, 100, 100, 100, "red"),
5 new Rectangle(300, 200, 100, 100, "green"),
6 new Circle(100, 200, 100, "green")
7]);
8 surface.draw();
9 }

Participants have to use a provided API called Shapes to solve the tasks.
The full Shapes source code is available in Appendix E. Two versions of the
API exists: A static version and a dynamic version. Each participant is assigned
either a static version (with correct and detailed type annotations) of the API
or a dynamic version (where every type annotations is either var or dynamic).
In a controlled experiment it is important to assign treatments to participants
at random to avoid biases that researchers might not be in control of[8, p.
154]. A common approach is to assign all participants a random treatment
before experimentation begins. However, we did not know how many would
participate in our experiment so we opted for a different approach. We decided
that the first participant use the static API and the second participant use the
dynamic API and so on. We alternated between the static/dynamic API version
between every consecutive experiment. This ensured two groups (dynamic and
static) of equal size. It may not seem random, but we left the scheduling (and
re-scheduling) of experiments to participants. The scheduling was outside of
our control (and thus random to us). In this way we were not able to predict
or determine which participants would use the dynamic or the static version of
the API9.

9Even so, it is possible that some hidden bias exist in the scheduling of experiments that

24

2.3.3 Interview Procedure

An interviewer interviews each participant immediately after they have com-
pleted all tasks. The interview is oral and individual. We have prepared inter-
view questions, which function as a minimum for the interview. These questions
are available in Appendix B.5. No answers were prepared for interviewees and
they give open answers. We ask follow-up questions if interviewee answers merit
it. If a follow-up question is found to be particularly interesting we add it to
the list of prepared questions to ask other interviewees. Because of the unstruc-
tured nature of the interview questions are not asked in the exact same manner
every time. We lose some consistency in the interview due to this and it reduces
comparability of answers. On the other hand, we are able to explore intervie-
wee responses much further than we can with prepared answers. The lack of
structure also makes it possible for participants to inadvertently answer later
questions when answering a question. In these cases we remind participants of
something they said, which was related to the question, and then ask the (partly
answered) question and ask them if they have something to add.

Before the interview starts we explain our work to participants. After par-
ticipants have solved all tasks and before the interview starts we also reveal
to participants that we are studying two cases: One in which participants use
a dynamically typed API and one in which participants use a statically typed
API. At this point we are very open about what we are working on. Some
participants are interested in our findings so far but we refrain from disclosing
preliminary findings to avoid biasing participants.

2.4 Task Design and API Design

To conduct the experiment we had to design an API as well as some tasks for
participants to solve. This section describes some of the considerations that we
made when preparing the Shapes API and tasks.

Researchers have conducted experiments on API usability and the effects of
types. We have studied some of these experiments (e.g. [22][9][18][6][20]) to find
inspiration for our experiment. API usability experiments vary on:

• The presence or absence of documentation for the API.

• The presence or absence of type annotations.

• The presence or absence of type checking.

• The domain of the API.

• The number of lines of code necessary to solve tasks.

• The amount of time necessary to solve tasks.

• The number of classes and methods in the API.

we are not aware of. We do not consider it a serious threat, though.

25

API Documentation, Type Annotations, and Type Checking: The
Shapes API contains DartDoc10 documentation. We observed that participant
used the documentation and it seemed to help them. We believe the documen-
tation was helpful to participants.

As mentioned in Section 2.3.2, we made two versions of the Shapes API and
randomly assigned participants either the static version or the dynamic version.

Static type checking is available in DartPad. DartPad periodically analyses
the code and displays error and warning messages at the bottom of the screen.

API Domain: [22] uses the domains of role playing games and car insurance
claims. [6] uses the domain of a delivery service. We have picked a different
domain. The ideal domain is one which all participants are equally familiar with
before the experiment. We picked the domain of drawing geometric shapes on
a surface grid. We know of the domain from introductory programming courses
where simple drawing operations were used to teach programming basics. It is
a domain that most people are familiar with but that few people master. 2D
game programmers, for instance, might master such a domain and be signifi-
cantly faster than other developers. We do realise that participants, who are
mathematically and geometrically inclined, might have an unfair advantage but
we do not expect the geometry skills of participants to vary too much.

To add some complexity to the tasks we also ask participants to generate
a couple of animations using a couple of Animation classes, which we have
included in the API. The Animation API is designed like an old-fashioned
frame-by-frame animation. Alternatively animations could have been done using
geometry manipulation (e.g. rotate(...), moveTo(...), and resize(...)).
Sleeping between such manipulations turned out to be difficult. A regular sleep
(...) call did not seem to be available in the Dart standard library–perhaps due
to the asynchronous behaviour of JavaScript in browsers. But it was possible
to execute a method after waiting x seconds and we used that to implement
frame-by-frame animation.

Number of Lines and Amount of Time Necessary To Solve Tasks:
[18, p. 3] says:

From the perspective of LOC the programming tasks could be con-
sidered as trivial–up to 15 LOC were required to solve programming
tasks.

In comparison none of the submitted solutions in our experiment contained more
than 33 lines of code.

The average time to complete each (of two tasks) in [18] is between 12
minutes and 40 minutes. In [22], each task (of three tasks) took between 12
minutes and 28 minutes on average. In [20] two tasks were solved; each took
more than one hour to solve. In [9, p. 25] participants had up to 27 hours to
complete a scanner and a parser. In comparison participants took between 2
minutes and 13 minutes to complete each of the five tasks in our experiment.

Seven (of eight) participants completed all five tasks. One (of eight) par-
ticipant completed four tasks (of five tasks). Since participants were able to

10https://www.dartlang.org/tools/dartdocgen/

26

https://www.dartlang.org/tools/dartdocgen/

complete almost all tasks we are confident the tasks are sufficiently easy and
familiar to participants to be used in an experiment.

Number of API Classes: [22, p. 102] says:

All [...] tasks have in common that a relative high number of classes
need to be identified by the subjects, instances of these classes need
to be constructed, and these instances must be used as parameters
or target objects in relative simple code that does not contain any
loops or conditions.

We designed our tasks to be similar to this. However, our API contains less
classes and our tasks require less classes to be used to solve tasks. The tasks
are solvable without the use of conditionals and loops, since they might incur
additional cognitive load on participants, which might distract participants from
API interaction.

[6, p. 4] says:

[...] the API is rather small (about 2000 lines of code) [...]

In comparison, our API is 288 lines of code.

2.5 Data Gathering
We use DartPad for the experiment. DartPad is a web-based Dart Integrated
Development Environment (IDE) which consists of a frontend and a backend
service. The frontend runs in any modern JavaScript-enabled web-browser and
the backend runs as an HTTP server. The frontend sends Dart source code to
the backend, which compiles it to JavaScript. The frontend can then execute this
JavaScript code. It is easy for us to log the source code sent from the frontend
to the backend. The backend is also able to analyze Dart source code and
respond with warning and error messages (“Expected semicolon”, “Expected 3
parameters but got 4” etc.). The frontend sends Dart source code to the backend
to be analyzed when the user stops typing. We are also able to log these requests,
which gives us even finer grained data on source code development.

We ask participants to push a “start”-button when they start solving the
first task. We also ask developers to push a “submit”-button when they believe
that they have finished each task. We log these events along with a timestamp.
These timestamps can be used to calculate how much time participants spend
on each task individually and how long it takes each participant to solve all
tasks.

Participants are asked to “think out loud” while they solve tasks. We record
audio of this. We also record audio of the interview. This allows us to re-
listen to the interview and perhaps pick up on details that we missed during the
interview. Throughout the entire experiment one of us is writing notes.

2.6 Participant Sampling
Our participant sample is a convenience sample[3, p. 201]. Participants were
sampled from our friends and personal acquaintances. The sampling did not

27

serve a particular purpose and it was certainly not drawn from a general popu-
lation. Participants have similar geographical location, educational background,
and are around the same age.

We made a weak attempt at leveraging the social network of participants
(this is sometimes called snowball sampling[3, p. 202]) by asking participants
if they know anybody, who would answer questions differently, in the hope
that this would uncover individuals with completely different opinions than our
participants. In the end, however, we did not follow these leads.

3 Tools Used
In the experiment we used two tools, the Dart language and the DartPad IDE.
This section gives an introduction to the Dart language and why we chose it,
followed by an introduction to DartPad and the modifications we made to it.

3.1 Dart

The Dart11 language developed by Google, the language is designed to be used
for scripting on the server- and client-side.

Dart appears to take inspiration from several places12:

Dart is a lot like Java and C#, it has types, and shares a lot of syntax with
them.

Dart takes some ideas from JavaScript, allowance for dynamic types, and
anonymous functions are simple to define (using => and () syntax).

Method cascading (the .. operator) comes from Smalltalk13.

As of March 201514 Dart for client-side development will compile to JavaScript.
Dart has previously targeted both JavaScript and a Dart VM integrated into
a special version of the Chrome browser. Dart now focuses on creating a good
experience when compiling to JavaScript.

3.1.1 Why Dart?

We decided to go with Dart for our experiment due to its optional typing.
It allows us to write two APIs which differ only in whether or not they have
type annotations or not. Hanenberg and Spiza used Dart similarly in [22] as
a dynamic and static language. We have also had some contact with Dart
developers/designers from Google giving us some insight into the language.

11http://dartlang.org/
12See the FAQ on the Dart website: https://www.dartlang.org/support/faq.html
13http://news.dartlang.org/2012/02/method-cascades-in-dart-posted-by-gilad.

html
14http://news.dartlang.org/2015/03/dart-for-entire-web.html

28

http://dartlang.org/
https://www.dartlang.org/support/faq.html
http://news.dartlang.org/2012/02/method-cascades-in-dart-posted-by-gilad.html
http://news.dartlang.org/2012/02/method-cascades-in-dart-posted-by-gilad.html
http://news.dartlang.org/2015/03/dart-for-entire-web.html

3.2 DartPad
DartPad 15 is a web-based IDE for developing Dart code, written in Dart. The
IDE uses Dart Services 16 which is a webservice that analyses and compiles Dart
code via a RESTful API.

The IDE is developed by Dart developers and the goal is to create a service
which is useful for developing and sharing short Dart snippets.

In our experiment we base our modifications off of DartPad (and Dart Ser-
vices) from April 2015, the project is still in rapid development so any images
of the editor or descriptions of its functionality may be outdated.

In Figure 5 part of the DartPad UI is shown. The bottom of the image
shows banners for info, warnings, and errors, notifying the developer about
any mistakes they may have made. The image also shows completion, here on
methods for an integer type variable.

3.2.1 Modifications

To facilitate using DartPad for our experiment we had to modify the environ-
ment. This involved creating instrumentation, UI changes, and introducing a
code example as introduction.

Instrumentation was done by modifying the Dart Services to log all calls
made from DartPad with a timestamp. We also introduced two new verbs,
Start and Submit, which respectively were used to determine when a
participant started solving the first task and when a task was completed.

UI changes to facilitate the experiment:

• New “start” and “submit”-buttons. They can be seen in Figure 5.
• A pop-up showing key bindings. It can be seen in Figure 4.
• Replacing the HTML and CSS tabs with a Shapes tab since partici-
pants did not need access to HTML and CSS. Participants, however,
needed to have access to the library source code. It can be seen in
Figure 5.

A code example with a short Dart introduction was written. It is available
in Appendix A. It was written to introduce the participant to the Dart
syntax and give an overview of Dart features.

4 Experiment Experiences
In this section we describe some of the experiences we had with conducting
experiments and interviews. This section is not so much result-oriented as it is
process-oriented. This makes the process more transparent and allows others
to evaluate our work and it might also be of help to others, who are thinking of
doing similar work.

15Demo: http://dartpad.dartlang.org/
Development: http://github.com/dart-lang/dart-pad

16http://github.com/dart-lang/dart-services

29

http://dartpad.dartlang.org/
http://github.com/dart-lang/dart-pad
http://github.com/dart-lang/dart-services

Figure
4:

T
he

first
thing

our
participants

see
w
hen

using
D
artPad.

30

Figure 5: The different parts of the DartPad UI.

4.1 Initial Pilot Test
The first two times we performed the experiment were pilot-tests, we were look-
ing to find flaws and record oddities, which needs to be taken care of. We did
these a week before the first actual experiment to give us time to adjust.

This section lists some of the observations and changes we made after these
two pilot-tests.

Observations made during the test, not directly linked to our participants:

The oral introduction we gave participants was too informal and a script was
needed. We created a bullet list which contained points which should be
mentioned in the introduction, this can be seen in Appendix B.

No participant used the documentation tab. Perhaps because it was not visible
enough. Participants had to switch from a console output tab to a docu-
mentation tab to see it. We decided that the documentation tab should be
activated when participants are working on tasks, since the console output
was not used for debugging by either participant. The documentation tab
is now active after pressing the “start”-button.

The canvas element in HTML5 seems to use relative positioning in some
browsers. Thus drawing a single shape, which is relative to nothing else
in the canvas, places the shape in the upper left corner no matter what
position is given. This confused participants. This was solved by adding
a background to our Surface class. Any figure drawn by participants
would then be placed relative to the background, which is the expected
behaviour.

31

We removed an assignment, one involving a series of Shape objects drawn on
the screen, since it was similar to the first three and it did not add much.

We added a request for participants to “think out loud” since the first partic-
ipant did some things which were hard to interpret.

We would like to know what participants think of when they think of types so
we introduced a question asking them to define types to the interviewer.

Observations made by our participants:

Participants did not know if they were supposed to recreate the grid in the
task description. The Surface drawn in DartPad now contains a grid as
a background to make it clear that the grid is there as a guide and that
it is not necessary to recreate it.

The Shapes documentation was unclear about colours so we introduced some
text that explains how colours are used. Colours are specified using strings
such as "red" and "green".

The introduction code had to be deleted manually by participants. This
was confusing. The editor now replaces the introduction code, when the
“start”-button is pressed, with an appropriate Surface initialisation.

Documentation for Shape did not explain how the positional arguments are
interpreted. Some participants thought the positional arguments specified
the upper left corner of the bounding box. This was remedied by indicating
the centre of each shape with a dot (both in the task description and
in DartPad) and explicitly stating in the documentation that positional
arguments refer to the centre of the shape.

4.1.1 Observations

We observed some factors that helped us confirm that our experiment design
choices were sensible.

The auto complete feature was used heavily by both participants.
Both participants responded positively to the environment and the tasks in

the interview following the experiment.
The time taken to complete all six tasks was about 45 minutes for both

participants. We wanted the experiment to take at most 30 minutes, an amount
of time we see as reasonable for solving a set of simple tasks without becoming
fatigued. By making the documentation clear in some areas in which it was
unclear before (positional arguments and colour arguments of shapes), giving
the Surface a background, rewriting task two to be clearer, and removing a task
(the third animation task) we figured the tasks would take about 30 minutes.

4.2 Subsequent Interviews
During subsequent interviews (that is, interviews after the two pilot-tests) some
participants mentioned that they had worked with similar APIs. We therefore
added a question to our interview plan, asking the participants if they had used
a similar API. When we asked participants about situations where they would
either prefer static or dynamic typing, some mentioned the availability of an IDE

32

as an important factor. We added this as a possible suggestion that we could
make to participants to get the ball rolling when we asked the same question in
later interviews.

We asked participants if they had any general comments about the API
and some early participants commented on the fact that the color-parameter
of Shape constructors is a string-type. We found these comments interesting
so we added a (follow-up) question to our interview plan. We would first ask
participants about general API comments and if they did not mention the color
-parameter we would ask them what they thought of it. We found it interesting
that everyone seemed to have an opinion on the matter (almost everyone thought
it was a bad idea).

We asked participants if they “know anybody who would answer these ques-
tions differently”. We initially added the question in an attempt to leverage
the social network of our participants and recruit new participants (with dif-
fering opinions). But instead, this question generated some responses that we
certainly did not expect. As soon as we asked this question participants started
expressing different opinions and ideas about types that they attributed to other
people. Through this question, participants were able to express what they be-
lieve other people think of types. This generated plenty of statements about
perceptions about type systems and as such it turned out to be an effective
question.

4.3 Subsequent Experiments
We allowed participants to do almost anything they wanted when solving the
tasks. We told participants that they could search the internet and use any
other means that they might need. Very few participants used this “freedom”
and most just stuck to DartPad functionality. One participant opened two
instances of DartPad (in separate side-by-side windows) to have the shapes
library source code next to his own code. We did not expect this but we
allowed the participant to do it when he asked us if he could. Two participants
searched the internet for Dart List documentation.

During experiments one of us sat next to the participant and one of us would
sit a bit further away and write notes. This was not an optimal setup since only
one of us could see what the participant was working on. This situation could
probably have been improved by using a usability lab with a video-feed of the
participant’s screen.

5 Experiment Data Analysis
In this section we discuss the data collected through DartPad, as explained in
Section 2.5. The experiment had ten participants.

The data was put into a data structure in Python and loaded in an iPython
Notebook for easy querying.

5.1 Collected Data
The collection of data is explained in Section 3.2, the data collected consists of
HTTP access logs with timestamps. Each participant is separated into a log

33

of their own, making it simpler to parse, a task is defined as beginning after a
start or submit call and ending with a submit call.

5.2 The Data
The participants were given the dynamic or static version of the API based
on their id number, even numbered were given the dynamic version and odd
numbered were given the static version.

In Table 1 the completion times per task per subject are presented. The
first two participants (1 and 2) are missing because they were part of the “pilot
test” in which the experiment was handled differently, most noticeable is that
the IDE was configured differently and the tasks were less clear in these two
cases.

The final time for participant 4 was not recorded because the active part of
the experiment was cut short. This results in our t-test not including Task 5.

5.3 Null Hypothesis
To perform a t-test a H0 must be formulated. This H0 is based on the H0
presented by Spinza and Hanenberg in [22].

Using a dynamically typed programming language has no significant
impact on the time taken to solve a set of simple programming tasks.

The null hypothesis can be rejected if we find that there is a significant
difference between the two groups’ total completion times.

5.4 t-test
To be able to reject the H0 we need to show that there is a significant difference
between the completion times that we collected from the two groups. We do
this using a t-test; to reject the H0 we need a p < .05 level of significance.

The test was performed using the SciPy stats.ttest_ind17 function on the
total time taken to complete all tasks, which is available in Table 1.

The result of the t-test shows p ≈ .46 a p-value far above .05, this means
that we cannot reject the H0.

The high p-value might reflect the fact that we have very few participants
in our data set. Increasing the t-value decreases the p-value. The t-value cal-
culation has the property that increasing the number of participants increases
the t-value (and thus lowers the p-value), assuming that the standard deviation
and calculated mean value remain the same as the number of participants in-
creases[10, p. 214]. We can speculate that the p-value is high because we did
not gather enough data but of course we cannot know for sure.

Analysing Subgroups after failing to reject the H0 sometimes subgroups
are considered for analysis, however in our case the idea of analysing subgroups,
or indeed rearranging the data to show a different H0, is not likely to work since
the amount of data and variance in it is not big.

17http://scipy.org/

34

http://scipy.org/

Task 1 Task 2 Task 3 Task 4 Total
Participant 3 380.739 152.358 166.613 244.427 944.137
Participant 4 707.684 460.391 173.975 518.663 1860.713
Participant 5 616.493 172.740 228.372 639.234 1656.839
Participant 6 262.358 117.277 114.524 215.804 709.963
Participant 7 827.568 276.537 213.190 657.909 1975.204
Participant 8 504.384 200.667 223.172 607.632 1535.855
Participant 9 506.978 320.431 338.935 312.832 1479.176
Participant 10 279.632 111.776 78.013 366.791 836.212

Table 1: Completion Times in Seconds.

5.5 Visual Presentations
Figure 6 presents the Table 1 data as two separate figures with lines for each
participant split, Figure 6a is the dynamic group, Figure 6b is the static group.

When looking at the data in this format, as two separate graphs, it becomes
clear that the groups have the same tendencies, although one group was slower
overall it would seem that with a larger sample a pattern could emerge. What
we see is that on tasks where a new concept is introduced the participants get
slower because they have to learn the new concept. Specifically:

Task 1 In which the whole API is introduced. There is also the introduction
of the language however we do not see this as much of a challenge since
the language is close to languages people knew.

Task 4 In which animations are introduced.

Looking at the graphs in Figure 6 two groups emerge:

Climber is the group of participants 4, 5, 7, 8, and 10, who have a clear pattern
of first learning the API and then applying it. Noticeably on Task 1 and 4,
as mentioned above, where they are slow followed by Task 1 and 5 where
they all (except for participant 4 since they did not finish Task 5) improve
their time.

Stable is the rest of the participants (3, 6, and 9), the group shows almost
no impact from being introduced to a new concept. Most noticeable is
participant 9 swaying only with a few minutes between assignments.

In a larger study it might be interesting to see if these two groups (with a
similar split) continue to be distinctly visible. It might also be interesting see if
new groups arise, that is developers who show a different pattern.

5.6 Summary
The amount of data collected through quantitative means in these experiments
is small and in Section 5.4 we are unable to show that there is a significant
difference in task completion time between participants using a typed API and
participants using an untyped API.

The graphs in Section 5.5 suggests that the difference between the groups
is in learning new things, this can also be attributed to programmers being
different.

35

(a) Completion Time per Participant (Dynamic)

(b) Completion Time per Participant (Static)

Figure 6: Line plots for each group.

36

6 Interview Findings
In total we interviewed ten participants. Section 6.1 summarises some of the
points that interviewees made. Section 6.2 contains some points that language
designers might find interesting. Notes for eight of the interviews are available
in Appendix C.

6.1 Summary of Interviews
6.1.1 Types (or Lack of Types) Went Unnoticed

After participants had solved the given tasks we informed them that every
participant is given one of two versions of the Shapes library: A dynamic version
or a static version. Participant 8 and 9 spontaneously told us that they could not
remember if they had used a dynamic or static version of the API. Participant
6 thought he had used a Shapes API which included type annotations when in
fact he had not. It seems that some participants are not particularly conscious
about specified types when they are programming (or they quickly forget them
after they are done programming).

6.1.2 Types Discourages Certain Behaviour

When asked about the usefulness or function of static types, participant 3 and
8 brought up the idea that types were used to discourage or prevent other de-
velopers (e.g. novices or colleagues) from doing certain things. Exactly what is
prevented is not explicitly stated but participants mention “weird things”. It is
believed that less skilled people are able to do “stupid things” in dynamically
typed languages; things that they cannot do in statically typed languages. The
gist of it seems to be that dynamic languages allow people to write code which
is hard to read and static languages discourage some of this behaviour. Partic-
ipant 6 said that without types “we can only hope that they (other developers,
presumably) do as we ask them”, which can be interpreted as saying that types
can be used to discourage others from doing certain things. Developers, who
work in dynamically typed languages, have to be more “rigid” or “consistent”
when writing code. Participant 9 compared people demanding static types (and
other static checks) to “fascists” (as comedic hyperbole).

6.1.3 Type Annotations Have a Documenting Effect

Participants 3, 5, 6, 7, and 9 said that type annotations have a documenting
effect, can help others understand the code, or can be used to communicate
information to other developers. The lacking communicative effect of missing
type annotations is considered bad in many cases. This does not just apply
to dynamic typing but also to type inference. Type inference seem to only be
acceptable when type information is immediately obvious (e.g. assignment of a
newly created object (through a direct constructor call) to a local variable).

6.1.4 Variable Names

Participant 6, 7, 9, and 10 mentioned variable names as something which gener-
ates expectations and which can be used to communicate information to other

37

developers (e.g. type information). Variable names can be used to communicate
type information (like in our dynamic version of the API). But since such type
information is not enforced (by a compiler or similar) it requires more discipline
on the part of the developer. However, it opens up the opportunity of passing
“string-like” objects (or values) around without requiring them to be of type
String. This is believed to be beneficial in some cases. Names generate expec-
tations about variables and types from previous knowledge and context. Dur-
ing experiments we observed that these expectations guide the developer when
trying to figure out the API. For instance, the developer might expect some
functionality to belong to a certain class so the developer will lookup methods
on this class when looking for that functionality. If the class does not live up to
the expectations of the developer a number of strategies seem to be employed to
then figure out how to use the API (e.g. reading documentation, reading source
code, moving on to another likely scenario (of expectations) based on previous
knowledge and context.)

6.1.5 Color Parameter

Everyone of the participants suggested changing the color constructor param-
eter of Shape (sub)classes to either an enumeration type or to static variables
on a class. Participant 9 initially did not like the idea of using a String but
then suggested that the API should be kept as “thin” as possible. It might be a
good idea to stick with a String-typed color since the underlying API (which
is part of the Dart standard library) uses the String type for colours.

6.1.6 API Improvements

Participants had different ideas about how to improve the API. Participant 3
would have liked an addAnimationFrames(List<AnimationFrame> frames)method
on the Animation class. In retrospect it is fairly obvious to us that this method
is missing. We have similar addShapes(List<Shape> shapes) methods on both
the Surface class and the AnimationFrame class, so it is easy to see why de-
velopers would expect an addAnimationFrames(List<AnimationFrame> frames)
method to exist as well. Participant 3, 6, and 9 suggested that the construc-
tor of AnimationFrame should take a list of Shape objects, and the Animation
constructor should take a list of AnimationFrame objects. Such functionality
would communicate that these classes function as containers that are somewhat
“immutable”. It would also save a method call to add the contained objects.
Participant 9 made two suggestions and divided them into a “Java-style” and a
“C#-style”:

• A parameter-less constructor with addAnimationFrames(..) and addShapes
(..) methods to add contained object.

• A constructor, which takes a list of contained objects, as a different style.

(Unfortunately it seems he made a mental slip and referred to both styles as
Java-style at some point, so it is not clear to us which is which). Participant
9 then suggested that the API-designer should take his intended audience into
consideration when making the choice: Java developers or C# developers.

38

6.2 Notes for Language Designers
Through the interviews we heard the similar thoughts expressed about types.
We note these below with nouns and a short assessment of what they could
mean. These are meant as notes for future language designers about type sys-
tems:

Documentation (Positive) having a explicit type annotations has a docu-
menting effect. It can be used to communicate purpose and intention
about how code should be used. AnimationFrame f communicates what
the purpose of f is much better thant var f.

Documentation (Negative) a type signature helps programmers create a so-
cial contract with other programmers which explain how code should NOT
be used.

Faster Development participants think dynamic typing afford faster source
code development.

Safe a language with static typing is seen as safer than one with dynamic
typing18.

7 Threats to Validity
The experiment performed was done in an informal, qualitative manner making
it likely that validity is under threat from several directions, in this section we
list some more prevalent threats to validity.

7.1 Participants
It is unlikely that we got a good representation of the population since all
participants came from a rather small group:

• They were all male.

• Most selected C# as their favourite language.

• They all selected an imperative language for their favourite (the set of
languages selected were: C++, C#, and Python).

• Most were friends of ours.

A more diverse group could have meant different results.

Participants were not encouraged to solve the tasks in any particular
way this meant that some wrote the code to be “production-grade”, some had
fun with the code, and some treated it like a race, finishing as quickly as they
could. In the end we think what we did was the right choice since the other
two options could have resulted in bigger problems because of interpretation.
Asking for “production-grade” code can be interpreted in several ways since
production-grade does not actually mean anything. Making the experiment a
race could mean that some participants got stressed, or produced incorrect code.

18We are unsure what participants mean when they say that static typing is more secure.

39

7.2 Approach

The introduction was not consistent this can result in different results be-
cause participants don’t have the same base knowledge, this was to some extend
remedied by allowing participants to ask questions during the experiment.

List initialiser syntax is not part of the introduction. This meant that
participants who wanted to use a list, which is a valid way to solve some of the
tasks, they would have to guess or search on the internet.

The introductory code was too long it contains examples which are only
required for understanding the source of the library. It also contains information
which is not useful in solving the tasks. String concatenation and string inter-
polation are not useful for solving the tasks. Some of the participants reported
that this threw them off.

Participants were helped when we observed a problem during the experi-
ment we would step in an help. We did this because our primary goal was not
to evaluate Dart or DartPad but type systems.

Using time as the dependant variable can be seen as a poor choice be-
cause of the implications that slower means worse. But since this study is
exploratory in nature and we are looking for anything that suggests a huge gap
between dynamic and static typing the choice seems obvious.

7.3 Software Used

The IDE DartPad was a beta version, this resulted in some quirks which were
discovered during the experiments.

DartPad errors, and warnings were not displayed in a clear manner. Meaning
they do not always jump out at the programmer. Even though the introductory
code included a warning most did not seem to notice it.

Some naming conventions from Dart, underscore indicating private members,
were not covered in the introduction. This could lead to confusion about which
methods are actually meant to be called.

Search did not work which meant that participants were unable to search in
the shapes source code which resulted in some confusion and may have
contributed to some workflows not being possible.

Copying from library was not possible several participants tried to copy
a piece of code from the API source to the main editor, this was not
possible.

The editor would change state unprovoked e.g. when pressing “submit”
the code would disappear which is not necessarily the expected behaviour.

40

8 Conclusion
In Section 1 we categorised disciplines relating to programming language re-
search and design. We made it clear that our interest is in the relation between
the discipline of programming language design and the discipline of software de-
velopment. We briefly described the history of types in programming languages
and how different disciplines affect types as we know them today. The process
of designing, building, and evaluating programming language (constructs) was
introduced with an emphasis on the evaluation aspect. The applicability and
relevance of known evaluation techniques in relation to our work with evaluating
types and type systems was summarised. We arrived at the idea that user/case
studies including interviews and controlled empirical experiments could inform
the “static versus dynamic typing”-debate.

Section 2 described epistemological considerations and techniques used in
our work. Mainly:

• Distinguishing between inductive and deductive processes in science.

• Empiricism and constructivism.

• Quantitative and qualitative research.

It also described our experiment design. Our design consisted of three parts:

• A survey.

• An experiment where participants solved simple tasks.

• An interview with open questions.

Dart and DartPad was described in Section 3 along with the modifications
necessary to conduct the experiments. Modifications include:

• Instrumentation of Dart Services to enable data collection.

• An example with introductory Dart code was added to DartPad.

• Buttons to mark the beginning of the experiment was added along with a
button used to submit final task solutions.

• The removal of unnecessary tabs and the addition of a source-code tab
containing the Shapes source code.

• A pop-up showing key bindings.

During experimentation we made certain observations and adaptations which
were described in Section 4. We removed a task because we realised tasks it was
very similar to other tasks and added very little in terms of results. DartPad
was modified to remove the example with introductory Dart code when exper-
imentation started to make things easier for participants. Participants were
confused by the grid, which was present in tasks but not in the canvas drawn
in DartPad. We therefore added the grid to both the task description and the
canvas drawn in DartPad to reduce participant confusion. We also adapted the
interview guideline throughout our work.

41

A walk through and analysis of quantitative data gathered in our controlled
empirical experiment was presented in Section 5. We were unable to reject our
null hypothesis that “using a dynamically typed programming language has no
significant impact on the time taken to solve a set of simple programming tasks.”.
When looking at data representations, in Section 5.5, we found two patterns,
participants were distinctly a part of one of two groups, climber or stable. The
climber group took time to learn and apply a concept and were able to do it
multiple times, each time a new concept was introduced they would need to
learn it. The stable group took about the same time to solve each task, new
concepts having no impact on their actual time to completion.

Interview findings were described in Section 6 along with notes that program-
ming language designers might find useful. Specifically that some developers:

• See the documenting effect of type annotations as beneficial. It can be
used to communicate purpose and intent.

• See types as a way of establishing a social contract with other developers
about how code should NOT be used.

• Believe that dynamic typing affords faster source code development.

• That static typing affords better security than dynamic typing.

Section 7 described the threats to the validity of our results. A small data
set and a lack of diversity in participants threaten our results.

9 Future Work
9.1 Scale Up Controlled Empirical Experiment
In Section 5.4 “t-test” we speculated that our experiment results might be incon-
clusive because we were unable to gather enough data. Since we use a browser-
based IDE to conduct the experiment, we think it is possible to increase the
scale of the experiment by having people participate online. This allows us to
gather much more data which might increase confidence in experiment results.

Some changes to the DartPad IDE is necessary before the experiment can
be scaled up. In our experiment we present tasks to participants on paper.
To perform the experiment online, tasks have to be presented to participants
in their browser. It is also necessary to construct something which can auto-
matically validate participant submissions to distinguish between correct and
incorrect submissions. We think it is possible to construct a modified Shapes
library that instead of drawing shapes and animations validates the constructed
object graph. For instance, the draw() method on the Surface class could
be replaced with code that validates the objects that have been constructed
and added to the surface. Similarly, the animate() and animateForever()
methods on the Animation class can be replaced with code that validates each
AnimationFrame. Each code submission would then automatically be executed
against this modified Shapes library to determine if the submitted code is a
valid solution.

However, putting the experiment online and opening it up to a much larger
crowd also increases the risk of malignant users entering into the experiment to

42

disrupt it. People might submit fake data or flood the service with bad requests.
Such floods might be filterable but more persistent disruption might lead to more
sophisticated and subtle subversion of the experiment. One might even imagine
that proponents of certain type systems initialise a covert campaign to craft
responses that influence the final result in their “favour”.

9.2 Perform a Proper Survey
Using the knowledge we gained through our experimental work we can design a
proper survey and put it online. We can have people participate online in both a
controlled empirical experiment as well as answer a survey. This would allow us
to check for interesting correlations between task completion results and survey
responses. It is possible to gather some inspiration from work by Meyerovich
and Rabkin[16] who have conducted some interesting online surveys.

9.3 Extend Experiment to a Social Setting
It appears to us, that many of our participants see much of the value of type
annotations and type checks in social settings, as we pointed out in Section 6.1
“Summary of Interviews”. It might be interesting to conduct an (exploratory)
experiment, which include social aspects and group dynamics. We have not
encountered many articles involving experiments in software development in a
social setting, but we did find [2]. In [2] a software development project is
simulated in 80 minutes in a fairly low-tech way (e.g. the language used is
“paper based”). Participants are divided into groups and each group has to
build a module, which is part of an overall system (an “automated conference
management system”). The simulation includes many factors, which may or
may not be interesting to look into when experimenting with type systems.
Certainly, many of them will have to be ignored, but one thing, which caught our
eye, is that participants in different groups have to agree on module interfaces
and that these interfaces inevitably require changes. We imagine an experiment,
which involves a very high level domain specific language in two versions: One
which includes type annotations and one which does not. The two versions
could be used in experiments, where a number of groups of developers have
to adhere to a (vague) requirement specification. Since we have no idea what
might be observed in such an experiment we have no concrete suggestions on
what to record, measure, or ask participants. But it might be interesting to see
if any serious differences arise from the use of (or the lack of type) annotations
in such an experiment.

9.4 Source Code Analysis
We gathered many snapshots of participant (about 100 snapshots per task per
subject). It might be interesting to do some analysis on this data, perhaps
similar to the work in [11]. This involves specifying conceptual language con-
structs (e.g. anonymous function, class definition, loop) and identifying the use
of them in source code. Each conceptual language construct is then counted
in each snapshot. For instance, it is possible to count the uses of type annota-
tions, anonymous functions, conditionals, loops etc. over time. These successive
counts can illustrate the progress (and regression) that developers make as they

43

try to solve a problem. Combining such data with completion times and survey
results could make it possible to do even more interesting analysis. For instance,
we might gain some insight into which kind of developer uses certain language
constructs. A similar hypothesis has been suggested in [16, p. 5], which says:

[...] when studying generics in large Java software, Parning et al.
[...] found that only 1-2 individuals in each project are responsible
for most of the uses. Who are these people?

Similarly we can ask: Do people, who use lambda expressions, have something
in common? Who predominantly use type annotations in their code?

References
[1] John Backus. “The History of FORTRAN I, II, and III”. In: SIGPLAN

Not. 13.8 (Aug. 1978), pp. 165–180. issn: 0362-1340. doi: 10.1145/
960118.808380. url: http://doi.acm.org/10.1145/960118.
808380.

[2] A. F. Blackwell and H. L. Arnold. “Simulating a Software Project: The
PoP Guns go to War”. In: Proceedings of the 9th Annual Meeting of
the Psychology of Programming Interest Group (1997), pp. 53–60. url:
https://www.cl.cam.ac.uk/~afb21/publications/PPIG97.
html.

[3] Alan Bryman. Social Research Methods. 4th ed. Oxford University Press,
2012. isbn: 978-0-19-958805-3.

[4] Steven Clarke. “Evaluating a new programming language”. In: 13th Work-
shop of the Psychology of Programming Interest Group. 2001, pp. 275–289.

[5] Mark T. Daly, Vibha Sazawal, and Jeffrey S. Foster. “Work In Progress:
an Empirical Study of Static Typing in Ruby”. In: Workshop on Evalu-
ation and Usability of Programming Languages and Tools (PLATEAU).
Orlando, Florida, Oct. 2009.

[6] Stefan Endrikat et al. “How Do API Documentation and Static Typ-
ing Affect API Usability?” In: Proceedings of the 36th International Con-
ference on Software Engineering. ICSE 2014. Hyderabad, India: ACM,
2014, pp. 632–642. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.
2568299. url: http://doi.acm.org/10.1145/2568225.2568299.

[7] Erik Ernst et al. Managing Gradual Typing with Message-Safety in Dart.
Oct. 2014.

[8] Norman Fenton and James Bieman. Software Metrics: A Rigorous and
Practical Approach. 3rd edition. CRC Press, 2014. isbn: 978-1-4398-3823-
5.

[9] Stefan Hanenberg. “An Experiment About Static and Dynamic Type Sys-
tems: Doubts About the Positive Impact of Static Type Systems on De-
velopment Time”. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’10. Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 22–35. isbn:
978-1-4503-0203-6. doi: 10.1145/1869459.1869462. url: http:
//doi.acm.org/10.1145/1869459.1869462.

44

http://dx.doi.org/10.1145/960118.808380
http://dx.doi.org/10.1145/960118.808380
http://doi.acm.org/10.1145/960118.808380
http://doi.acm.org/10.1145/960118.808380
https://www.cl.cam.ac.uk/~afb21/publications/PPIG97.html
https://www.cl.cam.ac.uk/~afb21/publications/PPIG97.html
http://dx.doi.org/10.1145/2568225.2568299
http://dx.doi.org/10.1145/2568225.2568299
http://doi.acm.org/10.1145/2568225.2568299
http://dx.doi.org/10.1145/1869459.1869462
http://doi.acm.org/10.1145/1869459.1869462
http://doi.acm.org/10.1145/1869459.1869462

[10] S.A. Haslam and C. McGarty. Research Methods and Statistics in Psychol-
ogy. SAGE Foundations of Psychology series. SAGE Publications, 2003.
isbn: 0761942939.

[11] Exploring Problem Solving Paths in a Java Programming Course. 2014,
pp. 65–76.

[12] Daniel HH Ingalls. “Design principles behind Smalltalk”. In: BYTE mag-
azine 6.8 (1981).

[13] Antti-Juhani Kaijanaho. “The extent of empirical evidence that could
inform evidence-based design of programming languages : a systematic
mapping study”. Jyväskylä Licentiate Theses in Computing. University
of Jyväskylä, 2014. isbn: 978-951-39-5791-9. url: http://urn.fi/URN:
ISBN:978-951-39-5791-9.

[14] Alan C. Kay. “The Early History of Smalltalk”. In: The Second ACM
SIGPLAN Conference on History of Programming Languages. HOPL-II.
Cambridge, Massachusetts, USA: ACM, 1993, pp. 69–95. isbn: 0-89791-
570-4. doi: 10.1145/154766.155364. url: http://doi.acm.org/
10.1145/154766.155364.

[15] Shane Markstrum. “Staking claims: a history of programming language
design claims and evidence: a positional work in progress”. In: Evaluation
and Usability of Programming Languages and Tools. ACM. 2010, p. 7.

[16] Leo A. Meyerovich and Ariel S. Rabkin. “Socio-PLT: Principles for Pro-
gramming Language Adoption”. In: Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software. Onward! 2012. Tucson, Arizona, USA: ACM, 2012,
pp. 39–54. isbn: 978-1-4503-1562-3. doi: 10.1145/2384592.2384597.
url: http://doi.acm.org/10.1145/2384592.2384597.

[17] Sebastian Nanz, Scott West, and Kaue Soares da Silveira. “Benchmarking
Usability and Performance of Multicore Languages”. In: CoRR abs/1302.2837
(2013). url: http://arxiv.org/abs/1302.2837.

[18] Pujan Petersen, Stefan Hanenberg, and Romain Robbes. “An Empirical
Comparison of Static and Dynamic Type Systems on API Usage in the
Presence of an IDE: Java vs. Groovy with Eclipse”. In: Proceedings of the
22Nd International Conference on Program Comprehension. ICPC 2014.
Hyderabad, India: ACM, 2014, pp. 212–222. isbn: 978-1-4503-2879-1. doi:
10.1145/2597008.2597152. url: http://doi.acm.org/10.
1145/2597008.2597152.

[19] Benjamin C. Pierce. Types and Programming Languages. Cambridge, MA,
USA: MIT Press, 2002. isbn: 0-262-16209-1.

[20] Lutz Prechelt and Walter F. Tichy. “A Controlled Experiment to Assess
the Benefits of Procedure Argument Type Checking”. In: IEEE Trans.
Softw. Eng. 24.4 (Apr. 1998), pp. 302–312. issn: 0098-5589. doi: 10.
1109/32.677186. url: http://dx.doi.org/10.1109/32.
677186.

[21] Cynthia J Solomon and Seymour Papert. “A case study of a young child
doing Turtle Graphics in LOGO”. In: Proceedings of the June 7-10, 1976,
national computer conference and exposition. ACM. 1976, pp. 1049–1056.

45

http://urn.fi/URN:ISBN:978-951-39-5791-9
http://urn.fi/URN:ISBN:978-951-39-5791-9
http://dx.doi.org/10.1145/154766.155364
http://doi.acm.org/10.1145/154766.155364
http://doi.acm.org/10.1145/154766.155364
http://dx.doi.org/10.1145/2384592.2384597
http://doi.acm.org/10.1145/2384592.2384597
http://arxiv.org/abs/1302.2837
http://dx.doi.org/10.1145/2597008.2597152
http://doi.acm.org/10.1145/2597008.2597152
http://doi.acm.org/10.1145/2597008.2597152
http://dx.doi.org/10.1109/32.677186
http://dx.doi.org/10.1109/32.677186
http://dx.doi.org/10.1109/32.677186
http://dx.doi.org/10.1109/32.677186

[22] Samuel Spiza and Stefan Hanenberg. “Type Names Without Static Type
Checking Already Improve the Usability of APIs (As Long As the Type
Names Are Correct): An Empirical Study”. In: Proceedings of the 13th
International Conference on Modularity. MODULARITY ’14. Lugano,
Switzerland: ACM, 2014, pp. 99–108. isbn: 978-1-4503-2772-5. doi: 10.
1145/2577080.2577098. url: http://doi.acm.org/10.1145/
2577080.2577098.

[23] Andreas Stefik and Stefan Hanenberg. “The programming language wars:
Questions and responsibilities for the programming language community”.
In: Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software. ACM. 2014,
pp. 283–299.

[24] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into
Programming Language Syntax”. In: Trans. Comput. Educ. 13.4 (Nov.
2013), 19:1–19:40. issn: 1946-6226. doi: 10.1145/2534973. url: http:
//doi.acm.org/10.1145/2534973.

[25] R.D. Tennent. “Language design methods based on semantic principles”.
English. In: Acta Informatica 8.2 (1977), pp. 97–112. issn: 0001-5903.
doi: 10.1007/BF00289243. url: http://dx.doi.org/10.1007/
BF00289243.

46

http://dx.doi.org/10.1145/2577080.2577098
http://dx.doi.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://doi.acm.org/10.1145/2577080.2577098
http://dx.doi.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973
http://dx.doi.org/10.1007/BF00289243
http://dx.doi.org/10.1007/BF00289243
http://dx.doi.org/10.1007/BF00289243

A Dart Introduction Source

1 // Mandatory imports
2 import ’dart:html’ as darthtml;
3 import ’dart:math’ as dartmath;
4 import ’dart:async’ as dartasync;
5 // End of mandatory imports
6
7 // Some practical information about classes:
8 class PracticalClass{
9 // Underscores mean private, both for methods and fields.

10 // It is not enforced but should be respected.
11 int _i = 99;
12 var _name;
13
14 // getters and setters are regular function but typically defined as
15 // one-liners using the arrow "=>" syntax.
16 set i(int n) => _i = n;
17 int get i => _i;
18 // Both can be called like a field:
19 // practicalInstance.i = 99
20 // practicalInstance.i
21
22 // Constructor writing has a convenient syntax "this" which allows

you
23 // to assign directly to a name when constructing.
24 PracticalClass(this._name, int this._i);
25 }
26
27 main() {
28 //
29 // This is a short introduction to Dart. Feel free to delete it when
30 // you have read it.
31 //
32
33 // Anonymous functions, or lambdas, can be written like so:
34 var greet = (thing){
35 return "hello " + thing;
36 };
37 // Lambdas which are only one logical line can be defined using the

"=>"
38 // arrow syntax, making more compact.
39
40 print(greet("world"));
41
42 // Generics work just like in C# and Java:
43 var dict = new Map<String, int>();
44
45 // We can store integer values at string indexes:
46 dict[’99’] = 00;
47 dict[’world’] = 99;
48
49 print(dict);
50
51 // Optional typing is a central part of Dart.
52 // This tutorial has already used both static and dynamic typing.
53
54 // The two statements below are equivalent (for i and j).
55 String i = "hello world from i";
56 var j = "hello world from j";
57
58 // Assigning an integer value to a String variable results in a

47

warning:
59 i = 1; // <- Warning
60 j = 1;
61
62 // But warnings do not stop the program from working.
63 print(i);
64 print(j);
65
66 // The cascading operator ".." is a useful tool when working with

lists:
67 var l = [];
68 l..add("These")
69 ..add("are")
70 ..add("words")
71 ..add("in")
72 ..add("a list");
73
74 // This is equivalent to calling the ’add()’ method on the ’l’

variable five times.
75 // It is a useful for setters and other mutating methods.
76
77 // Concatenation is done automatically if bare strings are placed

next
78 // to each other.
79 String sentence = "This " "sentence " "is "
80 "constructed " "by " "concatenation.";
81
82 print(sentence);
83
84 // Finally Dart has string interpolation. Using $NAME or ${STATEMENT

}.
85 print("${l.join(’ ’)} and $i is a number.");
86 }

B Experiment Plan
B.1 Checklist

• Is the service responding correctly (is it primed or whatever)?

• Can the shapes lib be located (eg. is the test document error free)?

• Do we have the papers ready in set order (assignments, declaration of
consent,welcome message)?

• That we are recording!

• That the participant has pen and paper

• That either static or dynamic library has been assigned to the participant

B.2 Welcome “Message”
Welcome to our Dart experiment and thank you for participating. Today we
will be looking at how developers interact with APIs. You will be given a
number of tasks to solve using a new API, you are free to use the development
environment and the web browser in solving any problems you encounter. The
environment your will be using is an editor called DartPad, the editor is still
in beta so you may encounter bugs. Dart is a C#-like language with optional

48

type annotations. We are interested in the process of using types so it will be
very helpful if you “think out loud” during the experiment. Feel free to use the
provided paper and pen.

We would like you to sign this declaration of consent, it gives us permission
to use the data we collect today for our research. The data will be anonymised.

Before we begin we ask you to fill out this short questionnaire, pertaining
primarily to your experience with programming.

B.3 Outline Pre-experiment
• Welcome - what we are working on API interaction etc.

• Tasks - these require an API called Shapes for which documentation and
source is provided

• Language is Dart and the editor is DartPad bugs may occour

• C#-like with optional typing

• “Think out loud” please

• Feel free to use pen and paper

• Consent form.

• Questionnaire

• Short “this is what DartPad is”

B.4 Interview Guideline
This short interview will be less formal and we encourage you to tell us if you
feel we missed something in the questions.

What we are trying to figure out is how programmers interact with APIs in
two distinct situations; when type annotations are available and when they are
not. This is also why we use Dart since it has gradual typing.

B.5 Interview Questions
• How did the IDE impact your work?

• What are your thoughts on working with Dart?

• Define types in your own words.

• What do you use types for?

• Do you think in types (when programming)?

• Do you feel that types were on your mind when solving tasks?

• Do you have a mental model of types when solving problems?

• Do you have any general comments about the tasks?

• Do you have any general comments about the API?

49

• What do you think about using a string-type for colours?

• Have you used similar libraries before?

• Generally speaking, do you prefer static typing or dynamic typing?

• Can you think of any situations where you prefer static to dynamic typing
(and vice versa)? For instance19:

– Large vs small systems
– Many vs few developers
– (Parsing unstructured or semi-structured data)
– (Certain editors or IDE availability)

• Do you know anybody who would answer these questions differently?

C Interview Notes
We did not record audio from the two first (pilot-study) participants and they
are therefore not included in this section. We used ELAN20 to annotate audio
files with notes (this allowed us to go back and re-listen to specific parts of
interviews). Converting audio recordings of interviews into written notes took
about 4-5 minutes for every minute of interview audio. Notes were translated
from Danish to English since the interviews were conducted in Danish.

C.1 Participant Three
• Wrote and thought about Dart code as Java.

• Thinks about types as meta-information about empty space in memory.

• Types are used when allocating memory. Compares it to allocating spaces
in a parking lot. A bus takes up more space than a car.

• Uses types because he has to.

• Uses types to explain something to other programmers.

• Thinks about other programmers when programming.

• Refactors code and used refactoring when he solved (shapes) tasks.

• Sees a connection between type annotations and the number of comments.

• He writes more comments in Python (dynamic language) than in Java
(static language).

• Does not like type inference in X10. Which tells him that his thinking is
typed as opposed to untyped.

19We would give participants some time to think and we would mention one of these to
get the ball running if they appeared to be stuck. We preferred to refer back to things that
participants had already mentioned in earlier answers.

20https://tla.mpi.nl/tools/tla-tools/elan/

50

https://tla.mpi.nl/tools/tla-tools/elan/

• Static typing can be troublesome. Typecasts are annoying.

• The advantages of static typing outweigh the disadvantages.

• Would prefer an Enum color argument to a String color argument.

• An Enum color enables auto-completion which is beneficial.

• Is familiar with statically defined colours (as static class variables) from
the Android platform.

• AnimationFrame constructor should take a list of Shape objects.

• Animation is missing an addAnimationFrames(List<AnimationFrame> frames
) method.

• Prefers static type checking because he has worked more with it and is
more familiar with it.

• It is more fun to program in Python than in Java.

• In a previous project, he achieved primary goals in a Python project faster
(than he would have in a static language).

• The division of classes into individual files in Java requires some more
effort upfront, when compared to Python where you just write something
and refactor it afterwards.

• Java programming requires an IDE. C and Python can be programmed
in VIM. IDE is used to keep track of things.

• He sometimes writes classes in Java just to realise that he does not need
them.

• Feels safer programming with other programmers in dynamic languages if
they are competent.

• Would advise interns (novices) to use static programming languages.

• Thinks static programming languages have better readability and code is
more manageable.

• Sees more “black magic” (weird stuff) in dynamic languages.

• Thinks it is easier for less skilled developers to do stupid things in dynamic
languages.

• Other people say similar things about types.

51

C.2 Participant Four
Participant four identified a bug where part of the DartPad interface (part of
the code input area) did not respond to clicks. This was due to a hidden HTML
element which we removed after participant four was done. This was the only
change we made to DartPad after our pilot tests.

• Missing “Go to definition”-functionality (known from Visual Studio) was
hard to be without.

• DartPad lacks a debugger but a debugger was not necessary for these
tasks.

• Types are things that you adhere to. You know which values can be put
into a variable.

• Missed type annotations in method declarations.

• It is okay to use var in something like: var circle = new Circle() (the
resulting type is obvious)

• Does not program in dynamic languages.

• Overwhelming with the entire shapes library in a single file. Would have
preferred a folder/file structure with a separate file for each class.

• It would be easier to navigate the combined shapes library using “Go to
definition”-functionality (known from Visual Studio).

• Tried to search the shapes library but DartPad did not have search func-
tionality.

• Expected color parameter to be an Enum. Had to read that it was a
String.

• An Enum colour enables auto-completion which is beneficial.

• With an Enum colour you know that you have spelled the name of the
colour correctly.

• Generally prefers static typing.

• Static typing ensures that you know what goes into a parameter. A textual
description is not sufficient.

• You can lookup the class (mentioned in a parameter list) if you want to
know more about it.

• The worst place for type annotations to be missing is in method declara-
tions.

• Missing type annotations (due to type inference, for instance) is not so
bad in a local scope. Local assignments are manageable without type
annotations.

• Dynamic typing can be beneficial if a variable changes type because it is
not necessary to do typecasts (like it is in static languages).

52

• Thinks Python might be better for smaller projects.

• Type annotations are helpful on larger projects, which might have several
developers.

• (Dynamic) developers risk forgetting which types are accepted in parts of
the code and type annotations can therefore also be helpful in one-man
projects. For instance when doing maintenance.

• When asked if he knows anybody, who would answer the questions differ-
ently, he points to the interviewer. He believes the interviewer programs
in dynamic languages21.

• It is okay to use dynamically typed variables in a local scope. It is also
okay to use statically typed variables in local scope. It is also okay to mix
dynamically and statically typed variables in local scope.

C.3 Participant Five
• It is useful to be able to lookup method parameters using the documen-
tation window in DartPad. It is directly visible.

• Is used to method parameter documentation to appear next to the cursor
(as in Visual Studio).

• Found Dart to be easy and similar to C#.

• Weird assignment errors are avoided by using static type checks.

• Static type checks is a (beneficial) security factor.

• Static type checks can be used to reduce the number of errors.

• It makes sense to think about shapes (such as rectangles and circles)
as types. However, Input/Output types are usually not thought about
as types. I/O is usually thought about as a place where things can be
dumped.

• Animation and AnimationFrame did not live up to expectations (generated
by their names).

• Did not object to color parameter being a string. Has worked with similar
string colour parameters before.

• Expected a Color class with a RED constant.

• A Color class is seen as restricting but it also increases confidence that
input is known.

• A String color opens up the possibility of invalid colour inputs. In such
situations he would test what happens if an invalid colour is entered in–
just as he tested the default colour (by not passing in a color argument).

21The interviewer and interviewee know each other and the interviewee is indeed cor-
rect. The interviewer programs in dynamically typed languages (but also statically typed
languages).

53

• It might be difficult to get started with the tasks. You have to learn it
(the API) first.

• It was relatively easy to solve the task once you got the hang of it.

• Generally prefers static languages but it depends on the situation.

• Type annotations makes code more readable and increases the security
factor.

• Likes the var keyword in C# and Dart (type inference).

• var is useful when you instantiate an object right next to the variable
declaration.

• var keyword can be confusing when the return value of a method call is
assigned to a variable. The type of the variable may not be immediately
obvious.

• In dynamic languages it can be convenient to allow parameters to be of
varying types. For instance, color could be either a string or a Color
instance and you could then write code that handles both cases.

• Has not discussed types with that many people. It is uncommon to discuss
types.

C.4 Participant Six
• Thought about Dart code as “JavaScript with types”.

• Types are nice to have. They give you an idea about what is okay to
throw into (a variable or method).

• Coding without type annotations requires a more “rigid” and “consistent”
way of writing code.

• Problems can arise when types are missing from parameter lists.

• Likes type annotations in the API (parameter list of public methods) and
Dart lets you do that.

• A type is a primitive in programming languages.

• Types are used to associate a value with behaviour or some properties so
that you know they adhere to certain rules and that they behave like a
bunch of other types (perhaps he meant values?).

• Compares types to numbers in mathematics: Real numbers, integers etc.

• Types give you “sameness” and uniformity. Sameness and uniformity
makes it easier to express programs.

• Types make it easier to transfer knowledge (through code).

• Types make it easier to keep a consistent coding style.

54

• Without types we can only hope that “they (other developers, presumably)
do as we ask them to.”

• Types are a uniform description of units or values in our program.

• Would have liked to give a formal description of types but is unable to
remember it off the cuff.

• Has trouble grasping large projects without types.

• Type-prefixes in variable names can be okay (code convention). E.g.
stringName is a string-ish thing in a dynamic language.

• Type annotations in large projects can be used to check that the program
is correct.

• Type annotations are useful until you reach the compile phase. At that
point they are not so important.

• The name of types is incredibly important. It says something about what
the type is used for and what kind of properties it has.

• If the Shape class had been named Entity it would have created other
expectations.

• The name (of a type) gives you a mental picture of how the you can work
with the type and how it fits into the overall framework.

• It is important that types have names that are telling in relation to their
role in the underlying framework.

• Memorised the Shapes API and did not inspect it further.

• Believed the Shapes source code contained types. (Participant used an
untyped version and was surprised when he found that the source code
did not contain type annotations.)

• If parameter names (in Shapes) had been gibberish it would have taken
longer to understand the API.

• Telling names suggest that you can use a purely dynamic approach.

• Has experience with other frameworks that are similar to Shapes.

• Had some previous knowledge (experience with similar libraries). It is
possible to transfer “programming techniques” between “domains”. (Not
sure what is meant by this.)

• It should be possible to instantiate the container class AnimationFrame
through its constructor. Unpractical to have to spend (source) lines
putting things into it.

• (At this point the interviewer mentions cascading. Interviewee (with re-
gret) sees a missed opportunity to utilise cascading and speaks favourably
about cascading.)

55

• String color argument was a nice shorthand.

• The choice between String color and some other type for color depends
on the situation.

• String color is good in a educational setting but it is not good for pro-
fessional game development. Suggest HEX-based color.

• color could be mapped to a dict (dictionary).

• C# uses Enum (type) for colors.

• Enum gives you pre-determined colours. But if you are in a situation where
you need freedom it is hopeless. You can only hope that it knows what
“salmon pink” is.

• How you decide to handle color depends on your target audience.

• Prefers statically typed languages.

• Forgets his own API. Static is an advantage (in such situations.)

• (Static languages) provides you with a compiler that can tell you where
you forget the details.

• Has trouble naming variables and thus forgets what variables are used for.
(Static languages are helpful in these situations.)

• Does not see static types as a crutch but more as a support.

• The choice between static and dynamic language depends on the size and
type of project.

• It might be possible to gain an advantage with dynamic languages in
smaller projects because you do not have to formalise interfaces. (If)
smaller projects will not see heavy extension and maintenance (dynamic
typing can be beneficial).

• Duck-typing makes it possible to make quick jumps in (program) be-
haviour.

• Large, heavy, political projects with many developers benefit from static
types. (Types) functions as a formal contract between users (probably
means developers), who might have different mentalities and code cultures.
(Code) conventions are not enough.

• The kind of program, that you are developing, is also important (on
whether or not to use static or dynamic typing).

• Static typing probably makes a difference in systems that are formal and
have stringent requirements.

• Learning systems and sandboxes can probably benefit from dynamic typ-
ing. Beneficial when trying out different concepts. You do not have to
rigidly adjust type lists.

• (Static) types is a tool that you have to consider if you want to use at the
beginning of a project.

56

C.5 Participant Seven
• Is used to Visual Studio and found Dart to be similar to C#.

• There is different types in programming languages: Numbers are integer,
float, or decimal; Strings are strings or chars; and then there is a lot of
objects like you know from other languages.

• Types influence how you think about problems and solutions.

• Programs in JavaScript, which is a typeless language, on a daily basis.

• Programs in C# on a daily basis.

• Types are used to tell something to other programmers.

• You can communicate type information through variable names.

• It is practical when the IDE is able to tell you the type of a variable. For
instance, if you 150 lines below (the declaration).

• There seems to be some difference between how var functions in Dart and
C#.

• Types can be used to document your code without using too many com-
ments.

• The compiler uses type annotations to perform type checks. It is not
something the developer thinks about, the developer is concerned with
documenting his/her code.

• Sometimes the developer is smarter than the compiler. Optional typing
can be beneficial in such cases.

• Has not worked with APIs similar to shapes before.

• Knows HTML canvas (which shapes is based on) but it does not have
classes for individual shapes.

• To a Java or C# programmer, it is probably easier to understand the
shapes library than it is to understand JavaScript and HTML canvas.

• Animation is missing a method to add several AnimationFrame objects to
it and AnimationFrame is missing a method to add several Shape objects
to it.

• Documentation says the method (addShape(Shape shape)) takes a Shape
object but it is not possible to instantiate a Shape. You have to pass it a
class (probably referring to Diamond, Rectangle, Circle). (Shape is an
abstract class.)

• Found it weird to use a string for color. Would have preferred an Enum.
That way you know you write something correct.

• (With String color) you do not know whether to use uppercase or low-
ercase.

57

• Prefers a pre-specified list of colors.

• JavaScript is not the best dynamic language. Python is better.

• Prefers static or dynamic typing depending on what the job is.

• Dynamic languages are nice if you want to create lists with (objects of)
different types.

• If you want to know the type of the things that you throw around in the
program, then it (the language) should not be dynamic.

• It is easy and fast to write code in Python because you do not have to
think so much and you do not have to write so much.

• Sometimes it might be faster to write code in a dynamic language.

• Signed and unsigned integers often leads to problems in C.

• Other developers, he knows, hate JavaScript.

• Hard to know what other people think of static and dynamic typing.

• Some people probably prefer static types because it documents the source
code.

• If the IDE is able to tell you the type (of variables) then you can probably
do without type annotations.

• People (academics) who do work in source code analysis probably prefer
100% type annotation.

C.6 Participant Eight
• (He did not notice that he had used an untyped version of the API. Ac-
tually, he suspected that we had switched between a typed version and an
untyped version of the API during the experiment without him noticing.)

• (Worked on a computer that we provided. Had some trouble with the
keyboard which meant that he did not always get completion suggestions
as expected.)

• The IDE is fine and seems sensible. Documentation is placed differently
than the pop-up that he is used to.

• Dart can be written like JavaScript. It becomes personal very quickly
depending on how you decide to write your things.

• (Participant asks if Dart is a version of JavaScript. We tell him that it
compiles to JavaScript.)

• Dart seems familiar.

• A type is a specific input to a specific thing. I prefer when it is type-
based. Because I know what fits where. It is like those play things where
the square fits square and the circle in the circle. It is easier to make your
way around but when you do not need it is annoying.

58

• At work we use types to lock people down so that they do not fuck our
things up. To really hold people down. We use both JavaScript and C# so
it is difficult. And through JSON objects so it quickly becomes complex.
But it is possible.

• (When asked if he thinks in types) Yes, but probably not in the type but
more in what the type expresses. And in optimisation problems because
we quickly run out of RAM. So you have to take that into consideration.
Some types are hard to serialise so you have to keep that in mind.

• But it depends on the situation, the task, and the language that I use.

• We do a lot of work on (online) APIs so we try to stick to simple types.

• A colleague does machine intelligence work and then decimals, doubles,
and ints can make a huge difference in whether we use two or four or
sixteen gigabytes of RAM.

• In such situations the types express the same thing but they take up
different amounts of memory. And we juts want to express some very
simple things.

• (When asked about comments on the API) I expected to get a closed
(source) API. I expected to just get some functions thrown at me and
then I can dig into them. So this is very overwhelming because there is
many things that you never dig into. It would be nice to have a quick
overview. There is animations and this and that and then you can open
them up.

• I would have collapsed all of them. If you do not know the structure then
it is hard to manage.

• (We ask how he would present the classes and methods) I would have
the classes with collapsed methods and I would have removed all private
attributes because I cannot use them for anything. So that I only have to
grasp the things that I have to use. (At this point the phone that we use
to record receives a phone call and the interview is temporarily stopped.)

• The API could be presented as you always do: Show an introduction with
how you do this and that and then you can go more into depth as you
need specific things.

• It would be nice to have the (working area) and the API side-by-side. If
I had had a mouse it might have been different for me.

• (We tell him that an earlier participant actually opened two windows to
have them side-by-side.) I did not think of that. It is nice (to have things
side-by-side) when you are programming.

• (Do you have any comments about the functionality of the API? The
composition of classes and methods?) No, it seems sensible. You put a
Shape into an AnimationFrame to put it into a Animation. It is a good
hierarchy.

59

• (Participant asks if it is possible to re-use objects between frames by just
changing the (shape) object. It is only the last change which is displayed
in all frames in that case.) That is something that I would have tried out
at some point.

• (When asked if he generally prefers statically typed or dynamically typed
languages) I cannot remember the difference. Which is which?

• (We try to explain: Dynamically typed languages like JavaScript and
statically typed languages like C# or perhaps Java is a better example
since it requires you to put in types. Whereas in JavaScript you can put
anything into a list.) You can do that in C# as well now.

• I use it very differently. When I make my code nice I use static typing.
When I throw something together I use dynamic typing but it is hard to
read because you have to read other parts to figure out what the hell you
put into it. But when we write generic methods that have to take all kinds
of crap it is okay to be able to put everything into it. So again, it depends
on the task.

• (When asked if he can think of other factors than the task that might
lend itself to static/dynamic typing) His colleague, who works on machine
intelligence systems, seem to be happy with dynamic typing. He can create
methods that take almost anything and can find minimum and maximums.
But it is pain to read afterwards. And, again, with APIs we like to be
able to lock people down.

• (So dynamically typed systems are nice to use but hard to maintain?)
They are incredibly annoying to maintain. You have to tread carefully
when you make them in such situations, since this is large systems. But it
is nice to be able to put anything into them. I imagine that it is possible
to optimise it much further if you make it static because you know what
you are working with.

• (You mention a large system written in a dynamic language. Do multiple
developers work on it?) No, he works on it alone.

• (Did he take over the code from someone else?) Yes, he has decided to
rewrite it completely. There is different versions of the code and you learn
new ways of doing things.

• (You talked about some unstructured or semi-structured data. Some ar-
rays in arrays.) Yes, we use a lot of arrays in arrays and dictionaries
in dictionaries. When you do image processing you have to look certain
things up incredibly fast. Today I heard differences between 0.7 seconds
and 20 minutes depending on whether arrays were initialised or gradually
extended.

• (Do you know anybody who would have answered these questions differ-
ently?) Everyone hates JavaScript. 99% of JavaScript is crap because you
can do whatever you want because you are not locked down. You can put
everything into everything. You can turn a class into bool on the spot.
And that breaks a lot of things and it is incredibly hard to read again.

60

It is not nice. Frontend people like JavaScript because it works. But it
is a mess when you can really do what you want. Some people hate that
unstructured part of it.

• (So you think a lot of the trouble with JavaScript can be traced back to
not locking down developers sufficiently? And that it allows developers to
do inappropriate things?) Yes, inappropriate and ugly things. It works
but it can get incredibly ugly.

C.7 Participant Nine
• Did not notice that he had used a typed version of the API.

• Naming was sensible. If things had been named “a1”, “a2”, “a3” etc. then
it would be a different matter.

• DartPad was no problem to use. IDE is often the least that you are up
against in such matters.

• Dart takes the best parts from C#, Python and Ruby and combine them.

• Dart is missing some of the elegance of Ruby.

• Dart seems to be missing something like LINQ from C#. But it is possible
that you can find it if you look for it.

• It is difficulty to explain what types is.

• Types cover basic types such as integers, strings enumerations. Types also
cover the things that you create yourself. The classes that you build on
top (of other things).

• Is not aware of what types is used for. It is a bit like asking the road
worker what he uses his shovel for.

• Types are used in the dialogue between man and machine.

• Types can be used to adjust expectations. Instances vary in their be-
haviour depending on their type.

• It is characteristic of a type that it behaves in a certain way.

• It is a classification according to behaviour.

• Does not think in types. Thinks more in terms of relations.

• At some point developers stopped worrying too much about resources (e.g.
machine memory). Then developers moved up a level of abstraction from
individual instances by using collections and LINQ.

• “My method is old-school. I think with my hands: If we have many of
those (objects) then it is probably a collection. These (objects) use those
(objects)? Then a relation probably exists.”

• (Distinguishes between “design phase” and “development phase” when
asked about his mental model.)

61

• Has an “aesthetic evaluator” (in mind). When you look at a solution it
should reflect the model of the problem. Is it a simple solution? Can see
that the solution is simple when it has been written. The road to that
solution requires me to “beat it with a shovel until it looks that way”.

• If you look at a solution and are unable to comprehend it, then it probably
needs some more iterations.

• Writing code is a dialogue with the machine and “I keep in mind that
others will have to take over the code”.

• Code should be easy to read. Perhaps it contains some funny comments.
Some comments that reflect the context. Some comments that perhaps
reflect the road that (the developer) took to get there.

• “Bad programmers write code for the machine. The good programmers
write code for other people.”

• When trying to understand code you need as many leads as possible.
Types can be as good a lead as anything else.

• Types can be used to confirm expectations.

• An Animation contains an AnimationFrame. If everything had been
(typed) var, then I would have to spend more time to confirm that things
are like that.

• It could be confirmed from the names. Or by looking in the code, which
probably would have added some time.

• This is an API. It is your (the authors) job to make it easy to use.

• The tasks were well-prepared.

• I was afraid I had to debug your (the authors) code (the Shapes library),
but that was not necessary.

• (The shapes) API is simple and works. It does exactly what you need to
solve that tasks. It is not slobbered in unnecessary in unrelated things.

• (The participant has not used similar libraries before. He has not tried
making animations before.)

• Java libraries are often structured like the shapes API.

• In other languages (than Java) you often handle more stuff in the con-
structor.

• Here (in the shapes API) things are picked more apart. For instance, you
create an empty container and then you add to it.

• You add your content bit by bit. It reminds me of the Java programs that
I am used to looking at.

• Would have made some fancier constructors (if he had made the API)

62

• Fancy constructors might have made it easy to use.

• The constructor design depends on who you are writing code for.

• It depends on what you know beforehand.

• “I often write code for myself.”

• So if the target audience is Java programmers, then this is as close to their
expectations as you get.

• “There is no silver bullet”. If you can get close to the expected (by others)
then you ease the work.

• (When asked about whether this aesthetic evaluation depends on the type
of programmer, he refers to “Zen and The Art of Motorcycle Mainte-
nance”.)

• The book is an inquiry into “What is quality?” and the book arrives at
the point that “quality is what people like”. If you make something that
other people like and expect, then you will receive praise ... and perhaps
it might even work.

• “Deliver what is wished for”.

• It is not very nice (to use a string type for the color parameter).

• If I had made it, then it would have been an enumeration.

• I have to guess. And then I see that it says "black" all lowercase (in the
code), so I probably have to write "red" all uppercase (probably meant
lowercase).

• Now that I think about it, you might be using strings either because
it is pedagogical. But perhaps because you communicate with an API
underneath, which takes it (color) as a string.

• It is a virtue to keep your own code as thin as possible.

• Some people have a pattern called “not invented here” and then it must
be changed promptly.

• It is like it is and sometimes you just have to accept it and make something
which is thinner.

• (When asked if he prefers either static or dynamic typing) I am too prag-
matic to prefer anything.

• When I write Python, which is typeless, then I think that I can meet an
upper limit where I would actually like to have the nanny, which is called
types.

• If something has been running for ten minutes and then crash due to some-
thing that could have been caught with type checks, then it is annoying.

• On larger solutions I prefer something with type support. Then you can
avoid that in the long run.

63

• Dynamic languages are beneficial on smaller projects.

• In LINQ you juggle many types and it can explode very fast.

• It can obscure meaning, when you have to specify types fully. Then you
can use var and give it a name, that describes which kind it is. That
gives you more readable code.

• (The interviewer summarises the points as if it is about writing types) I
am thinking more about reading types.

• For instance, half of what you read is IEnumerable over a Dictionary of
string and int. It is not something that you can stand looking it. Then it
is better to call it var.

• If nobody is going to read the type (annotations), that are that long, then
it is better to call it var.

• And if you do not communicate the type with the (variable) name, then
you can make a little comment.

• Readability is the most important (compared to writing the code, writabil-
ity).

• When your solution reaches a certain complexity, then types can help
other people understand what is going on.

• The names animation and animationFrame tell you that they belong
together. The types tell you the same thing. It says so in two places so
you are very sure that is the way that it is.

• If I had to pick between sensible names and sensible typing, then I would
pick sensible naming and say that it is the most important.

• If I use an editor without IntelliSense (auto complete), then I feel more
comfortable with an untyped language.

• It can be difficult to remember type names and spell them correctly.
IEnumberable, for instance. An IDE hands it to you for free. It is difficult
to get types right without an IDE.

• Has fascistic (comedic hyperbole) co-workers that think var should be
banned and that types must be fully specified.

• Recalls working with some Microsoft naming convention. ’pzs’: Pointer to
String Zero-terminated. The convention requires that you can determine
the type of the variable from its name.

• You can find such things everywhere.

• Some co-workers use a tool that checks code conventions. Wrong casing
in variable names is equated with compiler errors.

• I am more relaxed.

64

• (When asked why he think there is such a difference) I think they believe
it makes their existence easier. It is the same people that advocate more
police in the streets (lighthearted comment). Perhaps their aesthetics is
more founded in a sense of being in control. Whether or not control is
practical, is the question, but they must believe in it.

C.8 Participant Ten
• DartPad has the basic things that you need. It is fine for smaller projects.

• Dart is a bit funny. The parts of it that I used remind me of JavaScript
with a bit of object orientation. I had a JavaScript approach to writing
Dart. I tend to use classes and strong typing but these small things
encourage the use of var which is not strongly typed.

• A type defines how data behaves. If it is an integer or something more
complex. It is a definition of how data is translated. How it is read and
written so that it can be reused.

• I use types to make sure that what I do is correct. With many different
functions it is a bit easier to know what you thought back then. It is a
bit easier to know what you use the method for when you can see that
it is actually a string that goes into that and not a number. There is
probably a reason for that. With types you secure (something) against
getting input that the type does not allow.

• (With types) you lessen the burden of securing against everything.

• (Do you think in types?) Yes, I do. It is a natural part of me. What is it
that I need? It is this type. How do I manipulate it to get the result that
I need. I also think in types in JavaScript.

• (So when you were solving these tasks you were thinking in types?) Yes,
I was thinking in Rectangle and Diamond and not in var, var.

• (When you imagine a model of the problem and the solution, do you
include types in those models?) I get an overview of the thing that I have
to solve. If it is a large problem I draw and scribble a bit. Initially I do
not think much about types but more general that I need a rectangle and
a frames for this task. When I have figured out the large parts I look into
rectangles and find out that it consists of two numbers–integers. So I go
down into more and more specific things.

• So I am presented with the problem of moving a rectangle. I do some
analysis and conclude that I need to use frames.

• (Any comments about the tasks?) They are pretty simple which is fine
when you are learning. I could probably have used a bit of variation in
the figures used. I think there was only one task where you used different
figures. The animations could have been spiced up with some different
figures interacting with each other. The hard part was figuring out what
the API consist of. You could have had a nice little document with the
functions but you have to see the entire source code.

65

• (So instead of presenting the entire source code you would have preferred a
different presentation?) I would have preferred an overview of the classes
and methods with a description of what they do. It is nice to have the
source code but I think the other thing (an overview) is enough for these
tasks. But it is always nice to have access to the source code so that you
can double check that it does as it says. It is a lot of code to look through
to find out relatively little.

• It is probably more a question of documentation that the code itself.

• (Do you have any comments about the API?) It is fine for these minor
things. But if you have many files it gets unmanageable. DartPad needs
better division of source code (e.g. into tabs) to be useful on larger things.
But it is hard in a web-based solution. It could use a directory structure
so you can split presentation from the model, for instance.

• (So you see some possible improvements with regard to code navigation?)
Yes. But, again, for these minor things it is fine.

• (Have you worked with APIs that are similar to this?) It reminds me of
university assignments. Make a square and make a dice roll. It is the
classics. What you do, does not matter much, as long as it is the same
amount and the task is described fairly well.

• (Have you done univeristy assignments where you draw things?) Yes. We
drew some squares on our bachelor project when we learned to program.
But that was in Java. It was quite different.

• (What do you think about color being a string?) I would have preferred
an enumerator (probably means enumeration). I do not know i Dart has
enumerators. But it is fine for internal usage. But if a user had to enter
this from a user interface he could enter in red with three Fs and I do not
know what it defaults to.

• It needs to be secured in a production environment. Whether you use
enumerators or you write the manual code is a matter of taste.

• (Generally speaking, do you prefer static or dynamic programming lan-
guages?) Static. No doubt. Again, I know what I am working with. I do
not accidentally–like void* in C where you suddenly change a string to
a number because you can. It gives me more security and I do not have
to think so hard about if I am doing something correctly. The compiler
whacks you over the head if you use it in a wrong way.

• (So you get quick feedback on certain errors?) Yes, and some stupid error
of that type is not hiding which you only discover three months later.when
the entire system goes down.

• I have often tried in JavaScript that I did not think of it and then, suddenly
nothing works.

• (Can you tell us about such an episode?) Once, when I used numbers
that came from some other place, for some reason it did not translate
it correctly so I always got “not a number” back. And I got it from five

66

different places so it took a long time to finally figure out what the problem
was. It was before I figured out how to debug JavaScript which made it
even funnier (sarcasm).

• (You mentioned that with static typing the compiler punishes you if you
make an error. Can you see other benefits with static typing?) You might
lose some performance because of the extra security–that it is the correct
data that it receives. That is of course a bad think but it usually does not
matter much.

• Code is easier to read, if it is in larger quantities, when it says which type
it is.

• When you call a method on the result of a method and then call a method
on that result. It can be bad in JavaScript. It can be hard to tell what it
is working with.

• I definitely prefer static (languages) when I am working on things that are
used in the real world. With the additional protections.

• Dynamic is practical when you are prototyping and you just want to get
things to work. You do not have to think so hard about things. Calling
something wrong does not break everything. For instance, if you use a
string and then find out that it should actually be a number then you
would have to change it everywhere. If you just want to try something
out, then dynamic is better.

• When you work with data that is saved in a backend static types secure
the quality of the data. That a date looks valid everywhere. For instance,
in a dynamic language where a date is entered as a string and they turn
the date upside down it can become a mess.

• (How about projects where you share the code with others? Like open
source projects?) It depends on who you share the code with. A small
prototype thing is fine to do in dynamic. But on larger things I would
prefer the static. It is easier to read. It is easier for your colleagues to see
what you have been doing.

• (So you can put some of the things, that you think while writing the
code, into the code using types?) Yes. You can do the same in dynamic
languages but then you have to write more comments. And you do not
want to do that when you are working by yourself.

• (Can you see any advantages and disadvantages when writing and reading
code related to types? Do they get in the way? Are they a help?) When
you write code and you are not sure where you are going with it then
types can get in the way because you have to think about that as well.
But if you know where you are going then types are a help. If I read code I
prefer to have types so that I can recognise classes that they have defined
themselves.

• (Can you think of other aspects? Such as editor and IDE feedback?) We
can imagine a static system that takes five minutes to compile compared

67

to a dynamic system that fails after ten minutes. You want the feedback
quickly.

• I am used to Visual Studio where you can mouse-over methods and see
that this method returns a string. You can see what you get out of it.

• (Do you write JavaScript in Visual Studio?) Yes. And you do not get the
same help. It is not so good at it. It does syntax highlighting and you can
“go to definition” so it offers some help.

• I know somebody. I am not sure if he is more into dynamic than static
but some people are. But that is mostly university people where it is a
lot of prototyping and in production with customers. They know how to
use it so they do not feel the disadvantages that much and they feel the
advantages. They are the only ones working on it.

• (Is it colleagues of yours?) No, it is people here at university.

• They have more experience with dynamic types. I do not have much
experience with it. They have tried more things than me and have some
extra experience. I have talked to one of them and he can see the benefit in
having types when you communicate with people who do not know what
they are doing with computers. It is a matter of how you use them.

• (So experience plays a role. Would experts be more prone to pick static/-
dynamic? What would you recommend to a novice developer?) I would
recommend static typing. You get much more help from most IDEs. With
an expert it probably does not make much different whether it is static/-
dynamic. If they know dynamic typing well they know how to avoid type
issues. They can use whatever they prefer. If I were to work with them I
would of course argue static typing.

• (Some friction might arise in a team then.) If they have some good ar-
guments for dynamic typing I would go along with it. It is not like that.
There is just more work in it.

• (Have you worked on a project with such frictions? Can you think of
something that might arise in such a situation when using Dart which has
optional types?) I have never had problems with it. We mostly use C#
at work and it allows you to write var which is still strongly typed but
I prefer writing the type. I am actually one of the only ones who prefer
that, on the projects that I have worked on. Some write one some write
the other no one gets angry.

• I have not encountered a discussion on what language to use in a com-
mercial project. And at university the language choice was obvious most
of the time.

• (So the choice of language does not take up much time and attention? Do
you think about switching language later in the project?) We have a hard
analysis part where we look at advantages and disadvantages. We are tied
to the .Net platform so the choice is often C#. But on the frontend we can
discuss whether to use JavaScript or perhaps Dart, Grunt and whatever
frameworks that exist. Do we have people that know this?

68

• (Is it the same people working on the frontend and backend?) It differs.
We have specialists in backend and frontend. But often we work on both.

D Shapes Tasks

D.1 Task 1

Reproduce the image below:

D.2 Task 2

Reproduce the image below:

D.3 Task 3

Reproduce the image below:

69

D.4 Task 4

Reproduce the below animation (it contains three frames):

D.4.1 Frame 1

D.4.2 Frame 2

70

D.4.3 Frame 3

D.5 Task 5
Reproduce the below animation (it contains four frames):

D.5.1 Frame 1

D.5.2 Frame 2

71

D.5.3 Frame 3

D.5.4 Frame 4

E Shapes Library Source Code
This appendix contains the source for the shapes library, however to conserve
paper the two versions (static and dynamic) have been combined into one listing
(Listing 1) in which static type annotations are in blue boxes and dynamic
keywords are in red boxes .

1 // Copyright (c) 2015, <your name>. All rights reserved. Use of this
source code

2 // is governed by a BSD-style license that can be found in the LICENSE
file.

3
4 /**
5 * A surface on which to draw shapes.
6 *
7 * Use [addShape] and [addShapes] to add [Shape] objects to the surface

and then use [draw] to draw the added shapes.
8 */
9 class Surface {
10 darthtml.CanvasElement var _canvas;
11
12 num var width;

72

13 num var height;
14
15 List<Shape> var _shapes;
16
17 Surface() {
18 _canvas = darthtml.querySelector("#area");
19 clearShapes();
20 }
21
22 void clearShapes() {
23 _shapes = new List<Shape>(); List();
24 }
25
26 /// Adds a shape on to the surface.
27 void addShape(Shape var shape) {
28 _shapes.add(shape);
29 }
30
31 /// Adds shapes on to the surface.
32 void addShapes(List<Shape> var shapes) {
33 _shapes.addAll(shapes);
34 }
35
36 /// Returns all shapes on the surface.
37 List<Shape> dynamic allShapes() {
38 return _shapes.toList();
39 }
40
41 /// Draws all added shapes on the surface.
42 void draw() {
43 var rect = _canvas.parent.client;
44 width = rect.width;
45 height = rect.height;
46
47 _requestRedraw();
48 }
49
50 void _requestRedraw() {
51 darthtml.window.requestAnimationFrame(_drawToContext);
52 }
53
54 void _drawToContext([_]) {
55 var context = _canvas.context2D;
56 _drawBackground(context);
57 _drawShapes(context);
58 }
59
60 void _drawBackground(darthtml.CanvasRenderingContext2D var context) {
61 context.save();
62
63 context.clearRect(0, 0, width, height);
64
65 context..fillStyle = "white"
66 ..fillRect(0, 0, width, height)
67 ..strokeStyle = "black"
68 ..setLineDash([2,2]);
69
70 for (int var i = 0; i <= width; i = i + 50) {
71 context..beginPath()

73

72 ..moveTo(i, 0)
73 ..lineTo(i, height)
74 ..stroke()
75 ..closePath();
76 }
77 for (int var i = 0; i <= height; i = i + 50) {
78 context..beginPath()
79 ..moveTo(0, i)
80 ..lineTo(width, i)
81 ..stroke()
82 ..closePath();
83 }
84
85 context.restore();
86 }
87
88 void _drawShapes(darthtml.CanvasRenderingContext2D var context) {
89 _shapes.forEach((s) {
90 context.save();
91 s.draw(context);
92 context.restore();
93 });
94 }
95 }
96
97 abstract class Shape {
98 num var x;
99 num var y;
100
101 /// [x] and [y] refer to the (x,y) coordinates of the center of the

shape
102 Shape(this.x, this.y);
103
104 /// Draws this shape on a canvas.
105 void draw(darthtml.CanvasRenderingContext2D var context);
106
107 void _drawCenterMark(darthtml.CanvasRenderingContext2D var context) {
108 context.save();
109
110 context..beginPath()
111 ..fillStyle = "black"
112 ..arc(x, y, 4, 0, dartmath.PI * 2, false)
113 ..fill()
114 ..closePath();
115
116 context.restore();
117 }
118 }
119
120 class Diamond extends Shape {
121 num var width;
122 num var height;
123 String var color;
124
125 /**
126 * [x] and [y] refer to the (x,y) coordinates of the center of the

shape.
127 * The size of the shape is specified using [width] and [height].
128 * [color] can be a string like "green", "red", "blue" etc.

74

129 */
130 Diamond(num var x, num var y, this.width, this.height, [string var

color]) : super(x, y) {
131 if (color == null || color == "")
132 this.color = "black";
133 else
134 this.color = color;
135 }
136
137 @override
138 void draw(darthtml.CanvasRenderingContext2D var context) {
139 context..lineWidth = 0.5
140 ..fillStyle = this.color
141 ..strokeStyle = this.color
142 ..beginPath()
143 ..moveTo(x-(width/2), y)
144 ..lineTo(x, y-(height/2))
145 ..lineTo(x+(width/2), y)
146 ..lineTo(x, y+(height/2))
147 ..fill()
148 ..closePath();
149 _drawCenterMark(context);
150 }
151 }
152
153 class Circle extends Shape {
154 num var radius;
155 String var color;
156
157 /**
158 * [x] and [y] refer to the (x,y) coordinates of the center of the

shape.
159 * Size of the circle is specified using [radius].
160 * [color] can be a string like "green", "red", "blue" etc.
161 */
162 Circle(num var x, num var y, this.radius, [string var color]) :

super(x, y) {
163 if (color == null || color == "")
164 this.color = "black";
165 else
166 this.color = color;
167 }
168
169 @override
170 void draw(darthtml.CanvasRenderingContext2D var context) {
171 context..lineWidth = 0.5
172 ..fillStyle = this.color
173 ..strokeStyle = this.color
174 ..beginPath()
175 ..arc(x, y, radius, 0, dartmath.PI * 2, false)
176 ..fill()
177 ..closePath();
178 _drawCenterMark(context);
179 }
180 }
181
182 class Rectangle extends Shape {
183 num var height;
184 num var width;

75

185 String var color;
186
187 /**
188 * [x] and [y] refer to the (x,y) coordinates of the center of the

shape.
189 * The size of the shape is specified using [width] and [height].
190 * [color] can be a string like "green", "red", "blue" etc.
191 */
192 Rectangle(num var x, num var y, this.width, this.height, [

string var color]) : super(x, y) {
193 if (color == null || color == "")
194 this.color = "black";
195 else
196 this.color = color;
197 }
198
199 @override
200 void draw(darthtml.CanvasRenderingContext2D var context) {
201 context..lineWidth = 0.5
202 ..fillStyle = this.color
203 ..strokeStyle = this.color
204 ..beginPath()
205 ..moveTo(x-(width/2), y-(height/2))
206 ..lineTo(x+(width/2), y-(height/2))
207 ..lineTo(x+(width/2), y+(height/2))
208 ..lineTo(x-(width/2), y+(height/2))
209 ..fill()
210 ..closePath();
211 _drawCenterMark(context);
212 }
213 }
214
215 /**
216 * An [Animation] consits of zero or more [AnimationFrame]s. Each frame

consists of a number of [Shape]s.
217 *
218 * - Use [animate] to draw each [AnimationFrame] on [surface] in

succession.
219 * - Use [animateForever] to animate indefinitely.
220 */
221 class Animation {
222 List<AnimationFrame> var animationFrames;
223 Surface var surface;
224
225 /// [surface] is the [Surface] which the animation is drawn on.
226 Animation(this.surface) {
227 animationFrames = new List<AnimationFrame>(); List();
228 }
229
230 /// Adds an [AnimationFrame] to the the animation.
231 void addAnimationFrame(AnimationFrame var animationFrame) {
232 animationFrames.add(animationFrame);
233 }
234
235 /// Draws each [AnimationFrame]s on [surface] in succession.
236 void animate() {
237 Iterator<AnimationFrame> var frameIterator = animationFrames.

iterator;
238

76

239 void drawNextFrame() {
240 if (frameIterator.moveNext()) {
241 AnimationFrame var frame = frameIterator.current;
242 surface.clearShapes();
243 surface.addShapes(frame.shapesInFrame);
244 surface.draw();
245 new dartasync.Timer(new Duration(seconds: 1), drawNextFrame);
246 }
247 }
248 drawNextFrame();
249 }
250
251 /// Animate indefinitely.
252 void animateForever() {
253 Iterator<AnimationFrame> var frameIterator = animationFrames.

iterator;
254
255 void drawNextFrame() {
256 if (frameIterator.moveNext()) {
257 AnimationFrame var frame = frameIterator.current;
258 surface.clearShapes();
259 surface.addShapes(frame.shapesInFrame);
260 surface.draw();
261 new dartasync.Timer(new Duration(seconds: 1), drawNextFrame);
262 } else {
263 frameIterator = animationFrames.iterator;
264 drawNextFrame();
265 }
266 }
267 drawNextFrame();
268 }
269 }
270
271 /**
272 * Each frame consists of a number of [Shape]s.
273 */
274 class AnimationFrame {
275 List<Shape> var shapesInFrame;
276
277 AnimationFrame() {
278 shapesInFrame = new List<Shape>(); List();
279 }
280
281 void addShape(Shape var shape) {
282 shapesInFrame.add(shape);
283 }
284
285 void addShapes(List<Shape> var shapes) {
286 shapesInFrame.addAll(shapes);
287 }
288 }

Listing 1: Full dynamic/static shapes Dart source code.

77

	Introduction
	Type Systems
	Genesis of Types
	Static Typing versus Dynamic Typing

	Programming Language Evaluation Methods
	Performance Benchmarks
	Formalisation
	Case Studies and User Studies
	Usability Frameworks
	Controlled Empirical Experiments

	Summary and Demarcation
	Our contributions

	Experiment Design
	Epistemological Considerations
	Deductive and Inductive Process
	Empiricism
	Constructionism
	Quantitative and Qualitative Research

	Methods and Techniques Used
	Controlled Empirical Experiments
	Statistical Analysis
	Interview
	Survey

	Experimental Procedure
	Survey
	Solving Tasks Using an API
	Interview Procedure

	Task Design and API Design
	Data Gathering
	Participant Sampling

	Tools Used
	Dart
	Why Dart?

	DartPad
	Modifications

	Experiment Experiences
	Initial Pilot Test
	Observations

	Subsequent Interviews
	Subsequent Experiments

	Experiment Data Analysis
	Collected Data
	The Data
	Null Hypothesis
	t-test
	Visual Presentations
	Summary

	Interview Findings
	Summary of Interviews
	Types (or Lack of Types) Went Unnoticed
	Types Discourages Certain Behaviour
	Type Annotations Have a Documenting Effect
	Variable Names
	Color Parameter
	API Improvements

	Notes for Language Designers

	Threats to Validity
	Participants
	Approach
	Software Used

	Conclusion
	Future Work
	Scale Up Controlled Empirical Experiment
	Perform a Proper Survey
	Extend Experiment to a Social Setting
	Source Code Analysis

	References
	Dart Introduction Source
	Experiment Plan
	Checklist
	Welcome “Message”
	Outline Pre-experiment
	Interview Guideline
	Interview Questions

	Interview Notes
	Participant Three
	Participant Four
	Participant Five
	Participant Six
	Participant Seven
	Participant Eight
	Participant Nine
	Participant Ten

	Shapes Tasks
	Task 1
	Task 2
	Task 3
	Task 4
	Frame 1
	Frame 2
	Frame 3

	Task 5
	Frame 1
	Frame 2
	Frame 3
	Frame 4

	Shapes Library Source Code

