IFMapReduce

Interactive analysis of Big Data

Aalborg University

Department of Computer Science
Student report

Selma Lagerlofs Vej 300

Telefon 99 40 99 40

Fax 99 40 97 98
http://www.cs.aau.dk

Title: [FMapReduce - Interactive
analysis of Big Data

Theme: Functional Programming
and Big Data

Project period:
SW10, 2/2/2015 - 8/6/2015

Project group:
dpt103f15

Participants:
Christian Mgller Jensen
Lars Harald Larsen

Supervisor:
Bent Thomsen

Copies: 4
Pages: 47
No. of appendix pages: 14

Finished: 5/6/2015

Synopsis:

This report investigates the opportuni-
ties for interactive analysis of Big Data
on the .NET platform through F+# In-
teractive. This investigation includes
the design of a programming frame-
work called IFMapReduce which uses
F# Code Quotations to facilitate code
shipping in cluster computing.

A prototype of IFMapReduce have
been implemented and
through benchmarks

evaluated
using Pager-
ank and Wordcount algorithms. In
addition the report present several
suggestions to improve IFMapReduce
and its prototype.

SUMMARY

This report investigates the opportunities for interactive analysis of Big Data on the
NET platform through the F# Interactive Read Eval Print Loop. The hypothesis is
that F# Interactive can be used to ship closures in the form of F# Code Quotations
to facilitate interactive Big Data analysis. F# Code Quotations represents F# code
as an Abstract Syntax Tree which provides opportunities for manipulating the code
programatically.

The report briefly presents some of the tools used to analyze big data such
as Hadoop, Spark and Dryad. Furthermore programming languages focused on
distributed computation are described.

To investigate the use Code Quotations as a facility for Big Data analysis, the re-
port documents the design and implementation of a programming framework proto-
type called IFMapReduce that uses Code Quotations to distribute code in a cluster.
The IFMapReduce prototype is based on the foundations of the FMapReduce frame-
work and uses a master/slave architecture. IFMapReduce uses Hadoop Distributed
File System to handle data storage.

[FMapReduce makes use of a data abstraction called IFDataset to facilitate
computations over data, these IFDatasets can be used in F# interactive to specify
distributed jobs. IFDatasets uses Code Quotations to manipulate data through a
predefined API.

The IFMapReduce prototype is compared to the Spark and FMapReduce frame-
works by performing benchmarks of Pagerank and Wordcount algorithms. These
benchmarks are performed to compare the running time and work distribution of
the frameworks in order to evaluate the use of F# Code Quotations as a code dis-
tribution facility.

The report discusses ideas on how to improve the IFMapReduce framework,
these ideas are based on the benchmark results and the opportunities enabled by
utilizing F# Code Quotations.

PREFACE

This report investigates F# Code Quotations as a distribution facility for interactive
analysis of Big Data on the .NET platform. This is done by designing a distributed
Big Data analysis framework called IFMapReduce, which through a data abstraction
called [FDataset can build distributed jobs in the F# Interactive shell.

A prototype implementation of IFMapReduce is compared to the Spark and
FMapReduce frameworks using benchmarks, to determine if Code Quotations are
fast enough to facilitate analysis of big data.

Chapter 1 describes the motivation behind this project and gives a short intro-
duction to MapReduce and F# Code Quotations. Work related to this project is
presented in chapter 2, while chapter 3 presents the problem definition the project
is based upon.

The architecture of IFMapReduce is presented in Chapter 4 along with a de-
scription of the IFDataset abstraction. Chapter 5 documents the benchmarks used
to evaluate the prototype of IFMapReduce while chapter 6 discusses ideas on how
to improve [FMapReduce and its prototype. The report is concluded in chapter 7.

The appended CD contains the source code for the IFMapReduce frameworks
and the IFMapReduce scripts used in the benchmarks.

Vil

Introduction

1.1 Motivation
1.2 MapReduce
1.3 Code Quotations

Related work

2.1 Apache Hadoop
2.2 MarsHadoop
2.3 Spark
24 Disco
2.5 FMapReduce
26 MBrace
27 Dryado
2.8 Cloud Haskell
2.9 JoCaml

Problem statement

IFMapReduce

4.1 Architecture

4.2 IFDataset
4.3 Broadcast Functions

Experiments

5.1 Clustersetup
5.2 Pagerank. 0L
5.3 Wordcount

CONTENTS

5.4 General observations

6 Discussion
6.1 Comparison metricso
6.2 Future work

7 Conclusion
Bibliography
A Wiki-XML parser

B Pagerank algorithms
B.1 IFMapReduce
B.2 Spark

C Wordcount algorithms
C.1 IFMapReduce
C.2 FMapReduce
C.3 Spark

D Runtime Estimation

36
36
37

42

44

48

52
52
o4

57
57
o8
29

60

CHAPTER 1

INTRODUCTION

1.1 Motivation

Big Data is a term used for datasets that have grown to sizes where traditional anal-
ysis methods have become inadequate. Big Data sets are becoming more common
as the industry and research community become more adept at gathering and uti-
lizing Big Data. In April 2014, facebook estimated that the amount of data stored
in their Hive cluster was almost 300 PB and growing at a rate of 600 TB every
day[24]. The European Organization for Nuclear Research(CERN) estimates that
their data cluster, consisting of 11.000 servers, process roughly 1PB of data each
day, this includes about 6000 database changes per second[1], most of CERNs data
is gathered from various measurement equipment such as the Large Hadron Collider
which measures the collision of approximately 600 million particles per second.

The general approach to analyzing Big Data is to make use of cluster computing,
however writing distributed parallel applications is generally considered hard[4, 16].
To alleviate some of the challenges in regards to distributed parallel programming,
several methods to analyze Big Data have been proposed, each with their own field
of specialization.

A popular approach to Big Data analysis is the MapReduce programming model
which imitates the functional programming concepts of map and reduce. The model
was first presented by Google[5] and then made widely available by the Apache
Hadoop project[9]. Several extensions to the MapReduce model have been proposed,
resulting in a multitude of frameworks with MapReduce as the core such as PIG[23]
and Hive[29]. Other approaches to Big Data analysis includes Parallel DBMS, graph
databases, distributed file systems and Extract Transform Load.

Typically most cluster computing methods have focused on batch jobs which

analyse large amounts of data at a time, these jobs can run for hours or days at a time
before results are available. While PIG and HIVE gives the illusion of adhoc queries,
each query is translated to a batch of MapReduce jobs, which introduces some
overhead as each of these jobs are treated as separate entities that each reads from
consistent data storage. To eliminate this overhead some programming frameworks
such as Spark[33] focus on interactive analysis where programmers can load and
persist a dataset in memory to perform multiple queries on this dataset.

The approaches to analyzing Big Data are diverse and differences in specializa-
tion means that choosing the right tools is important for providing the optimal solu-
tions. In recognition of this, several programming frameworks are made to cooperate
with each other, such that multiple frameworks can run on the same cluster simul-
taneously. An example of this is Hadoop’s second generation platform YARN[30],
which is a resource negotiator that can allocate compute nodes in a request based
manner, allowing multiple frameworks to allocate workers on the same cluster.

A correlated problem to analyzing big data is how to store the data itself. When
the amount of data increases, so does the pressure on the underlying storage facilities,
meaning that storage facilities should be able to grow with the data. However, some
of the Big Data analysis methods are dependent on specific storage facilities and/or
data structures. Most approaches to storing Big Data is to partition the data across
a cluster of nodes, however this introduces a need to ensure data integrity in case
of node failure.

Distributed storage introduces some issues with data locality, where transferring
data between nodes can result in significant overhead in an already slow process.
To account for the locality of data most distributed frameworks attempt to move
the computations to the nodes storing the data. Some solutions such as the Hadoop
Framework ships compiled applications to the relevant nodes, while other solutions
such as Spark ships code closures in the form of Java Objects.

This report investigates the possibilities of allowing interactive analysis of big
data through the F# Interactive Read Eval Print Loop. The hypothesis is that
F# Interactive can be used to interactively ship closures in the form of F# Code
Quotations to a distributed framework, which distributes these closures for execu-
tion on a cluster, allowing for interactive analysis on the .NET platform. To test
this theory, this report documents the design of a programming framework called

[FMapReduce.

1.2 MapReduce

The MapReduce programming model is designed to run across a a cluster of com-
modity nodes, it was presented by Google[4] and has since been widely adapted
with the availability of the Apache Hadoop project. MapReduce is based on the

functional programming concepts of map and reduce functions.

In MapReduce the user specifies a map and a reduce function. The map function
takes a key value pair as arguments and produces a list of key value pairs. The output
from the map function is then partitioned based on the key and forwarded to the
reduce functions. The reduce function takes a key and a list of values associated
with that key as input and aggregates the values to produce a potentially smaller
set.

Figure 1.1 illustrates the work flow of a MapReduce job, as can be seen in the
figure MapReduce requires the input to be split, such that each mapper and each
reducer works on its own unique dataset.

Data
(k1, v1)
Split 0
Mapper k6, v6 Reducer
spit1 ({2 v2) R -

(K5, v7)
list(v10)

Split3 f (k6, v8)

(k4, v4)

Figure 1.1: The execution flow of a MapReduce job

1.3 Code Quotations

Code Quotations is a feature in F# that generates an Abstract Syntax Tree(AST)
based on F# code[20]. Having code in the form of an AST provides opportunities
for working with the code programatically, including compiling the AST back into
F# Code or other languages.

Code Quotations can be specified using the <@ and @> delimiters for typed quo-
tations and <@@ and @@> for untyped quotations. Figure 1.1 illustrates some basic
code quotations, where line 1 is a quotations of a lambda expression to square an
integer, while line 3 is an expression that adds two and three.

1 |let square : Expr<int> = <@ fun x : int -> x * x 0>

3 |let five : Expr = <@@ 3 + 2 Q0>

Listing 1.1: Code Quotation examples

The splicing operator % can be used to combine code quotations, meaning that it
is possible to include Code Quotations within a Code Quotation. Listing 1.2 shows
how the splicing operator can be used to combine two expressions.

1 |let five = <@ 3 + 2 ©>
2
3 |let squarefive = <@ Y%five x %five @>

Listing 1.2: Code Quotation splicing example

Listing 1.3 shows the AST gained by priting squarefive from listing 1.2.

1 [Call (None, op_Multiply,
2 [Call (None, op_Addition, [Value (3), Value (2)]),
3 Call (None, op_Addition, [Value (3), Value (2)1)1)

Listing 1.3: AST generated from listing 1.2

Unlike other .NET Code Quotations, the F# Code Quotations are serializable,
meaning that it is possible to ship these across nodes, allowing these to be used
to facilitate distribution of F# code.

CHAPTER 2

RELATED WORK

This chapter describes work related to distributed computing, this includes pro-
gramming frameworks and languages focused on writing distributed applications.
Code examples are supplied to give a quick introduction on how the frameworks can
be used.

2.1 Apache Hadoop

Apache Hadoop[9] is an open source project for cluster computing containing several
sub projects: Hadoop Common which is a collection of common utilities to support
the other Hadoop modules, the Hadoop Distributed File System (HDFS) which
specializes in high-throughput access to application data, Hadoop YARN for job
scheduling and cluster resource management and Hadoop MapReduce which is a
MapReduce framework built upon the other subprojects.

2.1.1 YARN

YARNI[30] (Yet Another Resource Negotiator) is part of the second generation of
the Hadoop framework. The intention of Yarn is to separate resource management
from the programming platform to allow multiple frameworks to be used on a single
cluster. As illustrated in figure 2.1 YARN uses a dedicated Resource Manager to
keep track of the global state of the cluster and allocate resources based of this state.
Each node in a cluster runs a local Node Manager which monitors local resources
and status.

YARN applications are facilitated by a user defined driver process called an Ap-
plication Master, which is in charge of handling the job related tasks such as starting

Resource manager

l [Scheduler]
L=
. J
r
l N

Container

=]-| Container
MR
AM L

~b| Container

Node Manager Node Manager
(

Figure 2.1: The YARN architecture

Dryad
AM

Container

Node Manager

and monitoring workers. YARN separate resources into bundles called containers,
where Application Masters can lease Containers to start worker processes.

2.1.2 Hadoop Distributed File System

The Hadoop Distributed file system(HDFS)[27] was implemented to be used as
storage facility for Hadoop’s MapReduce engine. In HDFS files are separated into
blocks, these blocks are distributed throughout the cluster meaning that a single
file is stored across multiple nodes, file consistency is ensured by replicating blocks
across several nodes.

HDFS uses a dedicated NameNode server which handles file metadata such as
block placement, while the actual data is stored on servers called DataNodes.

2.1.3 Hadoop MapReduce

Hadoop MapReduce v2 is implmented as a YARN Application Manager[9] which
facilitates the execution of MapReduce jobs. This Application Manager provides
status updates on the execution of MapReduce jobs through a web interface. By
default Hadoop MapReduce jobs are specified as Java classes, but the Application
manager allows for execution of binary files through streaming.

Listing 2.1 illustrates how a Wordcount job can be specified in Hadoop.

1 |public static class TokenizerMapper extends Mapper<0Object, Text,
Text, IntWritable>{

2 private final static IntWritable one = new IntWritable (1);

3 private Text word = new Text () ;

4

5 public void map(Object key, Text value, Context context) throws
I0Exception, InterruptedException {

6 StringTokenizer itr = new StringTokenizer (value.toString());

7 while (itr.hasMoreTokens ()) {

8 word.set (itr.nextToken ()) ;

9 context.write (word, one);

10 }

11 }

12 |}

13
14 | public static class IntSumReducer extends Reducer<Text,IntWritable,
Text ,IntWritable> {

15 private IntWritable result = new IntWritable();

16 public void reduce (Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {

17 int sum = O0;

18 for (IntWritable val : values) {
19 sum += val.get ();

20 }

21 result.set (sum) ;

22 context.write (key, result);

23 }

24 | }

Listing 2.1: Wordcount in Hadoop[10]

2.2 MarsHadoop

MarsHadoop[8] is a MapReduce framework built to utilize GPU’s on a distributed
cluster. MarsHadoop hides the complexity of GPU architectures and API’s behind
a MapReduce interface.

MarsHadoop is an extension of the Mars MapReduce framework, which is a
single node MapReduce framework that can utilize GPUs for computation. Mars
utilizing GPUs can be up to an order of magnitude faster than Mars using CPU[15].
MarsHadoop uses the core of the Hadoop framework to distribute computations.

GPU arrays cannot be of dynamic size, and must be allocated before data can
be stored, therefore Mars makes use of secondary functions to compute the size of
intermediate and final datasets. These secondary functions are user defined and
executed on the CPU before the data is moved to the GPU.

2.3 Spark

Apache Spark([33] is an open source cluster computing framework that offers a pro-
gramming model with an execution engine optimized for iterative algorithms that
supports in-memory computing. Spark allows interactive analysis from both Scala
and Python shells through a modified version of the Scala interpreter allowing for
faster prototyping on Big Data sets.

Sparks uses an abstraction of distributed memory called Resilient Distributed
Datasets(RDDs)[32] that allows programmers to perform in-memory computations
on clusters in a fault tolerant manner. RDDs are read-only, partitioned collections
of records which can be generated from operations on other RDDs or data extracted
from a stable storage. Spark saves information about how RDDs were created and
can use this information to recover lost RDD partitions.

Spark jobs are written as a driver program that can manipulate RRDs by using
two types of operations. Transformations are an operation which create a new
dataset from an already existing RDD, and Actions which return a value to the
driver program after performing computations on the dataset. All transformations
in Spark are lazy, they are only computed when an action requires the result to be
returned to the driver program.

Spark introduces two types of shared variables. Broadcast variables which
are read only variables that are broadcasted to all workers, broadcast variables
allow the programmer to keep a variable cached on each node rather than shipping a
copy of it with tasks. The other type of variable is Accumulators which are variables
that workers can append to. The data in an Accumulator can only be retrieved by
the driver program.

Listing 2.2 shows an example of a Wordcount job in Spark. The listing shows
the RDD counts being generated by using flatMap() to split the input file into
words, then these words are mapped to KeyValue pairs and then aggregated using
reduceByKey (). The counts RDD is then saved as a text file to the distributed file
system.

val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey (_ + _)

5 | counts.saveAsTextFile("hdfs://...")

[R

Listing 2.2: Wordcount in Spark[11]

2.4 Disco

Disco[21] is a MapReduce framework built using the Erlang language to take ad-
vantage of Erlang’s concurrency and distribution features. As shown in figure 2.2
Disco’s architecture uses a dedicated master to handle resource management and
task scheduling while the other nodes in the cluster runs a slave host responsible for
starting workers to perform map or reduce tasks as instructed by the master.

In Disco jobs are started by sending job-packets containing metadata about the
jobs such as which data to use and a zipped worker directory containing binary
executables needed to execute the jobs. To allow multiple workers to use the same
binary file, each task have their own directory to store temporary data and result
data.

Listing 2.3 shows how a Wordcount job can be specified in Disco using Python.

def map(line, params):
for word in line.split():
yield word, 1

def reduce(iter, params):
from disco.util import kvgroup
for word, counts in kvgroup(sorted(iter)):
yield word, sum(counts)

w N O o ks W N =

Listing 2.3: Wordcount in Disco|3]

2.4.1 Disco Distributed File System

Disco makes use of the Disco Distributed File System(DDFS)[21] to store data.
DDFS is designed for storing and retrieving large immutable files and files pushed
to DDF'S are separated into chunks. Rather than using file names DDFS uses a tag
system to identify and group its data, where sets of data objects are tagged with
arbitrary names, and can be retrieved using these tags. Tags can contain chunks,
URL links to external data and even other tags. Fault tolerance in DDF'S is handled
by replication of both data and metadata. By default DDFS compresses chunks to
limit the storage space needed.

2.5 FMapReduce

FMapReduce[18] is a MapReduce framework built in F#, it consists of three main
components as illustrated in figure 2.3, a dedicated master, a client and a number
of workers. FMapReduce is built on top of DDFS, where it schedules tasks based
on the file metadata.

[Client]—p[Mafter]

Node 1 [Node n]
-] 1 . - , v
Slave Slave
CPU1) [CPUn] [CPU1] [CPUn
Worker Worker Worker Worker

— = —
Local disk 1)ﬁ ' Local disk
A A
httpd httpd

Figure 2.2: The architecture of Disco

The worker nodes runs a daemon that spawns threads to execute tasks as instructed
by the master. when this daemon is started it announces its presence to the master
and starts heartbeating its status to the master node. The master uses these heart-
beats to monitor the status of the cluster, and task instructions are sent as replies
to these heartbeats.

In the FMapReduce framework jobs are written as .NET classes which inherit
from the FMapReduce Class. Listing 2.4 shows how map and reduce tasks are spec-
ified, by overriding the distributedMap and distributedReduce methods. The
yieldKV method is used to generate the output by adding the key and value to an
output list. The specified MapReduce jobs are compiled to .d11l assemblies which
can be dynamically loaded by the workers at runtime to get the job specifications.
To lessen the burden on the master, the workers retrieve the compiled assemblies
directly from the client.

10

Client Master

Scheduler
DFS client DFS Master

MR Code Heartbeat Annaunce self
Worker 1 Worker 2] Worker n

Map/reduce M men Map/reduce

DFS

DF DFS

Figure 2.3: The FMapReduce architecture

type fmapreducetester () =
inherit FMapReduce ()
override this.distributedMap (key : string) (value : string) =
for word in key.Split([[" "; "\n"|], StringSplitOptions.
RemoveEmptyEntries) do
5 this.yieldKV word (string 1)

e ow =

7 override this.distributedReduce (key : string) (value : string
array) =

8 this.yieldKV key (string (value |> Array.map int |> Array.sum
))

Listing 2.4: Wordcount job in FMapReduce

2.6 MBrace

MBrace[6] is a programming model and execution runtime for distributed computing
on the .NET platform. MBrace makes use of an abstraction called Cloud Workflows,
which makes us of monads through F#’s Computation Expressions to specify dis-
tributed computation. MBrace imitates the programming style of F# Asynchronous

11

[N S w [-

workflows.

The MBrace runtime uses a master/slave architecture where Cloud Workflows
are submitted to a scheduler which interprets the structure of the workflow to assign
work to slave nodes.

MBrace does not handle data storage, but relies on underlying storage facilities
such as FileSystems, SQL and/or Azure storage providers.

Listing 2.5 illustrates how MBrace can be used to describe a distributed work-
flow. The example defines two Cloud Workflows called jobl and job2, and uses
Cloud.Prallel to execute the workflows in parallel.

cloud {
let jobl = cloud { return 1 }
let job2 = cloud { return 2 }
let! [| resultl ; result2 |] = Cloud.Parallel [| jobl ; job2 |]
return resultl + result2

}

Listing 2.5: Cloud Workflow in MBracel6]

The MBrace runtime allows for interactive analysis and deployment through F#
interactive.

2.7 Dryad

Dryad[16] is a distributed execution engine, that allows execution of parallel appli-
cations in a cluster. In Dryad applications are modeled as directed acyclic graphs
(DAG). Where vertices defines operations performed on data and edges define chan-
nels where the data run through. When executing jobs the vertices in the DAG are
executed on available nodes in the cluster.

As illustrated in figure 2.4 the architecture of Dryad contains a Job Manager (JM)
that maintains the current DAG and schedules work across the available nodes
in the cluster. The Name Server (NS) maintains a list of available resources and
makes these resources available to the Job Manager. Each worker node in a dryad
cluster runs a Daemon (D) where the Job Manager can starts processes. Dryad uses
a distributed file system to distribute the data throughout the system.

The first time a vertex is executed, the binary is sent by the Job Manager to the
Daemon which then keeps it in memory. Dryad’s DAG based architecture allows
vertices to have an arbitrary number of inputs and outputs, as opposed to the
MapReduce model where only single input single output is allowed.

To make the development process for dryad jobs simpler DryadLINQ[17] was
introduced because it allows programmers to use LINQ when specifying DAGs.
DryadLINQ provides additional LINQ operators to accommodate distributed com-

12

puting, such as operations for partitioning datasets and iterating over partitioned
datasets.

Listing 2.6 shows an example of a Wordcount job specified in DryadLINQ.
DryadLing.GetTable loads data from a distributed file system into a table docs.
The table is then manipulated as though the data was locally available. .ToDryadTable ()
saves the results to the distributed file system.

var docs = DryadlLing.GetTable<Doc>("file://docs.txt");

var words = docs.SelectMany(doc => doc.words);

var groups words . GroupBy (word => word) ;

var counts groups.Select (g => new WordCount(g.Key, g.Count()));

[L L Ve

counts.ToDryadTable ("counts.txt");

Listing 2.6: Wordcount in Dryad LINQ|[31]

Data plane
Files, FIFO, Network |

Job schedule
QRAAA

NS (D | D] D]
. I I

Control plane

Figure 2.4: The architecture of Dryad[16]

2.8 Cloud Haskell

Cloud Haskell[7] is an extension to the Haskell Language, it is a domain-specific
language targeted at distributed computing environments, that is inspired by the
Erlang language to makes use of Message passing between Processes as the main
communication method.

Where Erlang only provides untyped messages, Could Haskell supports two types
of messages: untyped messages similar to messages in Erlang and typed messages
which take advantage of Haskell’s strong type system, both types of messages are
asynchronous, reliable and buffered. To transmit data in Cloud Haskell the data

13

must implemented the Serializable class, ensuring that the type can be converted
to and from binary.

To serialize closures Cloud Haskell introduces the MkClosure function which
takes a static function and an environment as arguments, where the environment can
be used to capture the free variables needed by the function. To solve the problem of
deserialization Cloud Haskell proposes that serialization and deserialization happens
at closure-construction time rather than closure-serialization time.

Fault tolerance in Cloud Haskell is based on ideas from Erlang, where a process
terminates instead of attempting recovery. To makes this possible processes can
monitor other processes, if a process terminates the monitoring process is notified.
Recovery of failed processes is left to a higher level framework or application.

2.9 JoCaml

JoCaml[12] is an extension of Objective Caml and is designed for Concurrent Dis-
tributed and Mobile Programming in a functional setting based on the join calculus.
It is disigned to provide a simple and well defined model for distributed applications.
Programs written in JoCaml can be executed on a single machine or in a distributed
manner on several machines.

JoCaml relies on asynchronous message passing and provides two ways of passing
message content which are by copying or by referencing.

JoCaml allows functions to be sent to remote machines by sending a copy of the
functions code and the values for its local variables, any call of that function will
then be executed on the remote machine. JoCaml can invoke functions defined on
another machine by providing function name and routing information.

14

CHAPTER 3

PROBLEM STATEMENT

This report investigates the hypothesis that F# Code Quotations can be used to
distribute code for interactive analysis of Big Data using the F# Interactive shell
on the .NET platform. This investigation includes:

e Designing a programming framework to facilitate distribution and execution
of Code Quotations on a cluster.

e Implementing a prototype of the designed framework.

e Evaluating the prototype with other big data analysis frameworks through
benchmarking.

15

CHAPTER 4

[FMAPREDUCE

This chapter documents the design of a programming framework called IFMapRe-
duce. Section 4.1 elaborates on the architecture of IFMapReduce while section 4.2
elaborates on the data abstraction used to specify jobs in IFMapReduce.

4.1 Architecture

This section describes the architecture of IFMapReduce shown in figure 4.1 and
elaborates on the responsibilities of the major components. IFMapReduce is built
upon the foundations of the FMapReduce framework[18] described in section 2.5.
The IFMapReduce prototype is built on top of HDFS, which is used to handle
both input and output, furthermore the metadata provided by HDF'S is used by the
master when scheduling tasks. IFMapReduce refers to HDFS blocks as chunks.

IFMapReduce uses a Master /slave architecture, where a dedicated master sched-
ules tasks for the workers. The workers send heartbeat messages to the master which
is used to track worker status, and the master sends task instructions as replies to
these heartbeat messages.

I[FMapReduce jobs are specified using IFDatasets (see section 4.2), which are
abstractions over data and operations needed to generate the dataset. These IFDatasets
can initiate jobs by forwarding metadata describing the input along with the list
of operations. The master uses the supplied metadata to schedule tasks which it
forwards to the workers with the list of operations.

16

Client

FSharp
Interactive
IFDataset
Distributed File
System Master
Scheduler
Heartbeat Announce self

Worker 1

Thread
Chunk 1
Thread
ldle

Worker 2

Thread
Chunk 2
Thread
Chunk 3

Worker n

Thread
Chunk n-1
Thread
Chunk n

Figure 4.1: The architecture of IFMapReduce

17

4.1.1 Master

The master is responsible for scheduling jobs and tasks to the workers. The mas-
ter monitors the status of the cluster through heartbeats from the workers, task
instructions are sent as replies to these heartbeat messages.

The master assumes the role of NameNode in the HDFS cluster and tasks are
scheduled based on the file metadata provided by HDFS. HDFS partitions files into
a number of chunks and the IFMapReduce master schedules a task for each file
chunk. Furthermore the master also uses the file metadata to account for locality
when scheduling tasks.

As HDFS does not allow simultaneous writes to a file, IFMapReduce uses a
leasing system, where a worker must lease a file from the master before it is allowed
to write to that file. This ensures consistency at the cost of overhead.

4.1.2 Worker

When a worker starts up, it announces its presence to the master, this announcement
includes a description of the resources available for computation. Following this
announcement the worker begins to heartbeat its status to the master.

The workers are responsible for executing the tasks assigned by the master.
When a worker receives task instructions from the master it spawns a thread to
handle that task, instead of binding threads to a specific processor IFMapReduce
assumes that the underlying operating system is fair when handling thread execu-
tion.

If input is locally available, the worker reads the chunk directly from HDD,
however if the input is not locally available it establishes an ssh connection to a
worker with the chunk available and read the chunk through this connection, this
requires that the cluster is setup to support passwordless ssh between slaves.

4.1.3 Client

[FMapReduce provides a library containing the IFDataset type which is used to
specify jobs in the F# Interactive Read Evaluate Print Loop.

Using IFDatasets the client builds a list of operations that must be applied to
the dataset, the client can use the IFDataset to initiate requests by sending the file
metadata and the list of operations to the master.

4.2 IFDataset

To specify manipulation of data, [FMapReduce makes use of a data abstraction
called IFDataset, these can be generated from HDFS files or other IFDatasets.

18

© 0 N9 O O ks W N

T e e =
ok W N = O

An IFDataset consists of a reference to a file and a set of operations needed to
generate that IFDataset.

IFDatasets provides a set of predefined operations that describes how quoted ex-
pressions should be applied to the data. The operations supported by the [FMapRe-
duce prototype are described in section 4.2.2, some of these operations are handled
in a lazy manner where computation is only initiated when necessary.

Listings 4.1 shows an examples of how to specify a Wordcount job in IFMapRe-
duce.

let iDataset = new FInteractiveClient.Dataset("/user/slave/bigfile.
txt", "Words", "localhost", "7040")
let mappedValues =
iDataset.Map <@ fun (x : string) -> (x, 1) @>
"StringInt"

let reducelntegers =
<@ fun (x : string) (y : int 1list) -> (x, List.sum y) @>

let combinedValues =
mappedValues .Combine reducelntegers
"StringInt"
let reducedValues =
combinedValues .Reduce reducelntegers
"StringInt"
"/user/slave/testoutput.txt"
1

Listing 4.1: TFMapReduce Wordcount using Map operation

The IFMapReduce prototype makes use of a union type to handle the input and
output data for the operations, as a consequence of this, the IFMapReduce prototype
only support intermediate and result data of the types string, string+*string,
string*int, int and int*int lists, where String*Int is a Tuple containing a
string as the first value and an integer as the second value.

4.2.1 Quoted expressions

The IFDataset operations are specified using F#’s quoted expressions, which allows
programmers to use the F# syntax to write the operations. However the prototype
of IFMapReduce imposes some limitations on how these expression can be formed.
All of the expressions must be formed as lambda expressions taking an input suitable
for the operation.

IFMapReduce uses FsPickler[22] to serialize expressions, to correctly deserialize the
expressions IFMapReduce requires that the data type of the output is specified,
as illustrated in listing 4.1 this is done by supplying a string describing the out-

19

put type as the secondary parameter to the operation. Besides the output types,
[FMapReduce requires that the quoted expressions themselves have their input type
specified.

The IFMapReduce prototype does not support the use of the Quotation splic-
ing operator which can be used to nest a quoted expression within another quoted
expression, it does however support nested functions as long as these are speci-
fied within the expression. Furthermore, all values used in the expression must be
specified within the expression, meaning that external values cannot be used.

4.2.2 Operations

This section provides an overview of the operations supported by the IFDatasets.
When the operation states that it is applied lazily this means that the operation is
applied locally without any awareness of the state of the other chunks. If multiple
consecutive operations are lazy, these operations are chained to reduce 10.

All operations (with the exception of Store) returns an new IFDataset corre-
sponding to the data with the specified changes.

Factory methods

An IFDataset is in its basis form a file, therefore the IFDatasets provides a list of
factory methods used to specify how to parse the file. The IFMapReduce prototype
supports three factory methods: ReadAll which reads the entire chunk as a single
string, Lines which splits the chunk into one item per line and Words which splits
the chunk into words.

All of the methods returns a list of strings which must be manipulated through
IFDataset operations to change the datatype.

Besides the factory methods it is possible to use the standard constructor, how-
ever this requires that the splitting method is provided as a string to correctly split
the file as shown in listing 4.1.

Apply

The Apply operation is applied lazily, it takes the entire local dataset as input in
the form of a list, and produces a new list. This allows the programmers to take a
more imperative approach than the Map and Reduce operations.

Listing 4.2 shows an example of how to use the Apply operation to filter a list.

20

D Ut R W N =

ook W N =

let filteredData =
ifDataset.Apply

<@ fun (x : (string * int) list) ->

x |> List.filter (fun y -> (fst y).Contains("a"))
@>
"StringInt"

Listing 4.2: Apply operation to filter list

Map

The Map operation applies the given expression to each element in the chunk and is
applied lazily. The map operation will always produce the same number of output
elements as the number of input elements.

Listing 4.3 shows an example of how to apply a Map operation.

let mappedData =
ifDataset .Map
<@ fun (x : (string * int)) -> (fst x, ((snd x) % 7))
e>
"StringInt"

Listing 4.3: Map operation to manipulate values

Reduce

Unlike the other operations the Reduce operation is not applied lazily, but instead
requires that the all chunks have been through the prior operations. This is because
the results of the previous operations must be partitioned and merged by key before
the reduce operation can commence.

Before the Reduce operation is applied, the IFMapReduce worker separates val-
ues to be reduced by key, where key refers to the first entry of a tuple and value is
the second entry. Listing 4.4 illustrates a reduce operation that reduces integers by
calculating their sum.

The Reduce operation saves its output to HDFS, therefore the operation must
be supplied with a file path specifying where to place the output. One of the reasons
to save the output to HDF'S is for the output to be repartitioned into new chunks, to
ensure a reasonable data size. Besides a file path the user also needs to specify the
amount of reducers, such that the intermediate data can be partitioned accordingly.

Reduce operations return a new IFDataset with an empty operation list, this is
because the new dataset is based on the file generated by the reduce operation.

21

D Ut R W N =

L

let reducedValues =
mappedValues .Reduce
<@ fun(x : string, y : int list) -> (x, (List.sum y)) @>
"StringInt"
"/output/file/path.postfix"
1

Listing 4.4: Reduce operation to add integers

Combine

While the Reduce operations is applied to the entire dataset, the Combine operation
is a reduce operation that is applied lazily on the local chunk, meaning that it can
be chained with the other local operations. Like the Reduce operation the worker
separates values by key such that the expression should only focus on reducing
values.

Performing a combine operation before the actual reduce operation can improve
runtime by reducing the IO needed to prepare data for the reduce operation[18].
Unlike the Reduce operation Combine does not output its results to HDFS.

let combinedValues =
mappedValues.Combine
<@ fun(x : string) (y : string list) ->
let combinedString = y

|> List.reduce(fun (a : string) (b : string) -> a + " " + b
)
(x, combinedString) @>
"StringString"

Listing 4.5: combine operation to concatenate strings

Cache

The Cache operation instructs the worker to store the current local chunk in memory
such that it can be accessed without having to read the data from HDFS. To allow
this, the master keeps track of which workers cache what data, as cached data is
not replicated throughout the cluster.

Like the Reduce operation the Cache operation initiates computation and returns
a dataset with an empty operations list.

Store

The Store operation is used to specify that the current dataset should be saved to
permanent storage. It is the only operation that does not return a new IFDataset,

22

© 0 N9 O s W N =

=
o

but instead initiates computation and saves the results to HDFS.
The operation does not facilitate merging or sorting data, meaning that data is
appended to the specified file directly from each task in arbitrary order.

4.3 Broadcast Functions

[FMapReduce allows users to broadcast lambda functions to all workers in the
cluster, these functions are kept in a global session that is independent of the
IFDatasets.

Listing 4.6 shows how to add and apply a broadcast function, any IFMapReduce
operation can make use of a Broadcast function once added to the session.

To correctly deserialize Broadcast functions, these impose the same datatype lim-
itations as the IFDataset operations. Furthermore, the function must be applied
using the get method corresponding to the input and output type of the function. In
the listing the getIntToIntExpression method is used because the square func-
tion is of the type int -> int.

let squarelntegers = <@ fun (x : int) -> x * x 0>
BExpression.addFunction squarelntegers "square" "localhost" 7040
let reducedValues =
mappedValues . Map
<@ fun (x : string) (y : int) ->
(x, ((BExpression.getIntToIntExpression "square") y))
e>
"StringInt"
"/user/slave/BroadcastOutput.txt"
1

Listing 4.6: example of using a broadcast function

Making use of Broadcast functions breaks some of the principles of parallel com-
puting, as each task can no longer be considered a single entity, but is dependent
on the broadcast function. Furthermore, broadcast functions may be replaced at
runtime, meaning that that it is possible for the behavior of the application to be
changed at runtime. Currently it is possible for broadcast expression to be overwrit-
ten from within an IFDataset operation, meaning that the broadcast expressions
can be replaced from the worker side.

Broadcast functions are subject to race conditions, as the IFMapReduce proto-
type does not provide any facilities to detect or handle these race condition.

Broadcast functions can be used to upload standard functions onto the cluster,
this could be a check to determine if strings have a specific structure, if multiple anal-
ysis jobs have to perform such check, this only needs to be specified once, meaning
that changes to the check can be done in a centralized manner.

23

CHAPTER b

EXPERIMENTS

This chapter documents how benchmarks have been used to compare the Spark,
[FMapReduce and FMapReduce frameworks. Section 5.1 describes the cluster setup
used in the benchmarks. Section 5.2 compares [FMapReduce and Spark using a
Pagerank algorithm, while section 5.3 compares Spark, [FMapReduce and FMapRe-
duce using Wordcount algorithms. General observations gained during the bench-
marks are summarized in section 5.4.

5.1 Cluster setup

The benchmarks were performed on a cluster containing three nodes, one acting as a
dedicated master while the remaining two as dedicated worker nodes. The OS used
on the machines in the cluster were Ubuntu 14.10 64-bit with Mono Jit compiler
version 4.0.1. Table 5.1 provides a summary of the resources available to the nodes
in the cluster.

WorkNode 1 WorkNode2 Master
CPU Intel core i7 950, | Intel core i7-2670QM, | Intel Core 15-3340M,
3.07 GHz 2.2 GHz 2.7 GHz
RAM 12.212 MB 12.212 MB 3.826 MB
Cores | 4 (8 HyperThreads) | 4 (8 HyperThreads) | 2 (4 HyperThreads)

Table 5.1: Cluster specifications

24

© 0 N9 3 s W N =

=
v o= O

5.2 Pagerank

A Pagerank algorithm is used to compare Spark and [IFMapReduce because it is an
iterative algorithm. Both IFMapReduce and Spark uses HDFS as the underlying
storage facility.

Spark is optimized for iterative algorithms, as the RDD abstraction keeps inter-
mediate results in memory for faster access. Furthermore Spark supports in-memory
shuffle, which means that it does not rely on the underlying file system when redis-
tributing data, whereas IFMapReduce is reliant on HDFS when shuffling data.

5.2.1 Pagerank setup

The Pagerank algorithms were implemented in similar fashion for both frameworks
to minimize the implementations effect on the benchmark results. Listings 5.1(Spark)
and 5.2(IFMapReduce) shows parts of the Pagerank algorithms used during the
benchmarks, for the full algorithms see appendix B. The applications were run from
the F# interactive shell and the Spark interactive Scala shell.

The frameworks are compared by running an iterative Pagerank algorithm with
ten iterations. To gain stable results, each job was executed five times and the best
and the worst performing benchmarks were discarded.

The dataset consists of four dumps of Wikipedia pages' appended to each other
to form a 7.3gb file. The IFMapReduce job from appendix A was used to extract
page titles and outgoing links for each Wikipedia page contained in the file. This
collection of titles and links form a 470MB file which was used for both the IFMapRe-
duce and Spark Benchmarks. HDFS was set to use a block size of 64MB resulting
in HDF'S splitting the 470MB data file into seven chunks.

val rawFile = sc.textFile(inputFile)
var linksAndRanks = rawFile.map(line => {
if (line.length > 0) {
val splitValues = line.split("\t")
if (splitValues.length > 1) {

(splitValues (0), splitValues (1) .replaceAll(",", ";;"))}
else {
(line, "1.0")
}
}
else {
("None", "1.0")
Lurl: https://dumps.wikimedia.org/enwiki/20150304/ filel: enwiki-20150504-
pages-meta-current10.oml-p000925001p001325000.bz2 file2: enwiki-20150304-pages-
meta-current13.aml-p002425001p003124998.bz2 file3: enwiki-20150304-pages-meta-

current13.aml-p002425001p003124998.bz2 filed: enwiki-20150304-pages-meta-currentl5.aml-
p003925001p004825000.b22

25

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49

[

}
D)

for (i <- 1 to iterations) A
val linksMapped = linksAndRanks.flatMap (
keyValues => {
val rankAndLinks = (keyValues._2).split(" ")
var results = List[(String, String)]l ()

if (rankAndLinks.length > 1) {
val rank : String = rankAndLinks (0)

val links = rankAndLinks (1) .split(";;")
val length : String = " " + (links.length).toString
links.foreach{link => {results = (link : String, rank +
length) :: results}}
results = (keyValues._1, rankAndLinks (1)) :: results
}
results

linksAndRanks = linksMapped.groupByKey ()
.map (tuple => {
val links = tuple._2

val outLinks = links.filter (entry => entry.contains(";;"))

var oLinks : String = ""

outLinks.foreach{outlink : String => oLinks = olLinks +
outlink}

val inLinks = links.filter (entry => entry.contains(" "))

val combinedPages = inLinks.map(linkValues => {

val splitLink = linkValues.split(" ")
(splitLink (0) . toDouble / splitLink (1) .toDouble) }

) .sum
val newRank = combinedPages * dampening + (1.0 - dampening)
(tuple._1, newRank.toString + " " + oLinks)

linksAndRanks.saveAsTextFile (" /usr/bench/sparkOutput")

Listing 5.1: Pagerank in Spark

let dataSet = FInteractiveClient.Dataset.Lines("/usr/bench/
parsedData", masterIp, (string masterPort))

let mutable dataTuple =
dataSet .Map
<@ fun (x : string) ->
let splitString = x.Split ([I"\t"|], System.

26

10
11
12
13
14
15
16
17
18
19

20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48

StringSplitOptions.None)
if splitString.Length > 1 then
(splitString.[0], splitString.[1])

else
(x, "1.0")
Q>
"StringString"
let pageMap =
<@ fun (x : (string * string) list) ->
let mutable results : (string * string) list = []

for kvPair in x do
if (snd kvPair) .Length > 4 then
let rankAndLinks = ((snd kvPair).Split([I" "I],
System.StringSplitOptions.RemoveEmptyEntries))
if rankAndLinks.Length > 1 then
let rank = rankAndLinks.[0]
let links : string array = ((rankAndLinks.[1]).
Split ([I","|1], System.StringSplitOptions.
RemoveEmptyEntries))
let length = (float links.Length)

for link : string in links do
results <-
(
(link.Replace("_", " ")),
(rank + " " + string length + ".0")
) :: results
results <- ((fst kvPair), (rankAndLinks.[1]))
results
results
Q>

let pageReduce =
<@ fun (key : string, values : string list) ->
let dampening = 0.85
let noOfLinks = values.Length
let mutable combinedPages : float = 0.0
let mutable outLinks = ""
for value : string in values do
let splitValues = value.Split([|" "|], System.
StringSplitOptions.RemoveEmptyEntries)
if splitValues.Length > 1 then
combinedPages <- (((float splitValues.[0]) / (float
splitValues.[1])) + combinedPages)
else
outLinks <- value
combinedPages <- combinedPages + 0.0
let rank = (1.0 - dampening) + dampening * combinedPages
(key, ((string rank) + " " + outLinks))

27

49
50
51
52
53
54
55
56
57
58
59
60
61

Q>

for i = 0 to iterations do
let maplteration =
dataTuple. Apply
pageMap
"StringString"
dataTuple <-
mapIteration.Reduce
pageReduce
"StringString"
("/usr/bench/testOutput" + (string i))
8

Listing 5.2: Pagerank in IFMapReduce

5.2.2 Pagerank Results

The results of the Pagerank benchmarks shows that spark is roughly six times faster
than IFMapReduce, as summarized in table 5.2.

IFMapReduce | Spark
Avg. Running time 3572s 542s
Avg. Iteration time 357s 50s

Table 5.2: Overview of Pagerank benchmark results

One of the reasons for this difference in execution time is because Spark is optimized
for iterative algorithms like the Pagerank algorithm, and is built to avoid 1O oper-
ations where possible. In contrast IFMapReduce is reliant on HDFS when shuffling
data, resulting in an 1O overhead.

To better understand where [FMapReduce can be optimized, it logs how it uses
its time during each iteration. Each iteration can be viewed as having a map stage
and a reduce stage and figure 5.1 and figure 5.2 illustrates the workload for these
stages respectively.

As the figures illustrate, the map and reduce stages spend more than half their
time interacting with HDF'S, introducing significant overhead compared to Spark’s
in-memory shuffle.

Besides overhead when interacting with HDFS, IFMapReduce has some schedul-
ing overhead. As the cluster was able to execute all tasks in parallel the average
iteration time of 357s can be compared with the average task execution times of
123s for map and 121s for reduce, showing that IFMapReduce uses 113s on job
preparation and other scheduling tasks.

28

Seconds

seconds

160

140

120

100

8 5 8 8

=]

140

120

100

8B & &8 8

=]

Average map workload

runtime fetch computation

Bworkerl mworker2

Figure 5.1: workload during map stage

Average reduce workload

runtime fetch computation

W workerl mworker2

Figure 5.2: workload during reduce stage

29

emit

emit

The largest scheduling overhead observed was the time taken to initiate a request,
where the master must interact with HDFS to gather file metadata before it can
generate the tasks for the request.

Compared to spark who schedules all the tasks for the iterations at the beginning
of the job, IFMapReduce start a job each time the Reduce operation is applied.
This means that instead of scheduling one job, IFMapReduce schedules one job per
iteration, resulting in IFMapReduce repeating the scheduling overhead ten times.

Figure 5.3 illustrates the workload distribution for the average iteration in per-
centages. This chart shows that IFMapReduce only spent 30% of each iteration
actually computing the pagerank.

Iteration work distribution

® Scheduling

B Map 1O
Reduce 10

B Computing

Figure 5.3: Iteration workloads (percentages)

The general observations gained from performing these benchmarks are that opti-
mizations must be made to the IFMapReduce prototype, to lower the amount of 10
operations and lessening the scheduling overhead.

5.3 Wordcount

This section uses benchmarks of Wordcount jobs to compare the FMapReduce,
Spark and IFMapReduce frameworks. As opposed to the Pagerank algorithm, the
Wordcount algorithm is a single pass algorithm.

30

© 0 9 O kA W N

-
o

11

© 0 N 3 s W N

= o= e
N o= O

These benchmarks are mainly performed to compare IFMapReduce with its pre-
decessor FMapReduce, to see how the changes have affected the work distribution
and running time.

5.3.1 Wordcount Setup

Four benchmarks were performed, one for Spark using the algorithm shown in listing
5.3, one for FMapReduce using the algorithm in listing 5.4 and two in IFMapRe-
duce. To better compare the performance of the IFMapReduce framework with the
FMapReduce framework, two benchmarks were performed using the algorithm in
listing 5.5, one with the combine operation and one without.

val file = sc.textFile ("/usr/bench/datal")

val counts = file.flatMap(line => line.split(" ")) .map(word => (
word ,1)).reduceByKey(_ + _)

counts.saveAsTextFile (" /usr/bench/sparkWCOut")

Listing 5.3: Wordcount in Spark

type fmapreducetester () =
inherit FMapReduce ()
override this.distributedMap (key : string) (value : string) =
for line in key.Split(’\n’) do
if line.Length > O then
for word in line.Split(’ ’) do
if word.Length > O then
this.yieldKV word (string 1)

override this.distributedReduce (key : string) (value : string
array) =
this.yieldKV key ((value.Length).ToString())

Listing 5.4: Wordcount in FMapReduce

let iDataset = FInteractiveClient.Dataset.Words("/usr/bench/datal",
"192.168.2.4", "7040")
let mappedValues = iDataset.Map
<@ fun (x : string) -> (x, 1) ©>
"StringInt"
let reduceFunc = <@ fun (x : string, y : int list) ->
(x, (List.sum y))
e>
let combinedValues = mappedValues.Combine reduceFunc "StringInt'
let wordReduce = combinedValues.Reduce
reduceFunc
"StringlInt"
"/usr/bench/WordcountOut"

31

13

16

Listing 5.5: Wordcount in [FMapReduce with combine operation

The benchmarks were performed on a 1GB file containing Wikipedia pages®. For

the implementations using HDFS(Spark and IFMapReduce) the block size was set
to 64MB resulting in 15 chunks. For DDFS the chunk size was set to 32MB re-
sulting in 12 chunks because of the way DDFS compresses data, meaning that the
uncompressed chunks were averagely 25% bigger for DDF'S.

5.3.2 Wordcount results

This section presents and discuss the results of the Wordcount benchmarks.

The average runtime of the Wordcount jobs are presented in table 5.3 and illus-
trated in figure 5.4. The figures show that Spark had the shortest runtime completing
the Wordcount job in 44 seconds. The results also show that use of the combine op-
eration almost halved the running time of IFMapReduce. Comparing IFMapReduce
with its predecessor FMapReduce a slight increase in running time was observed,
but the options to add combine stages makes the IFMapReduce framework superior.

IFMapReduce | IFMapReduce + Combine | FMapReduce | Spark
722s 368s 499s 44s

Table 5.3: Average runtime in seconds

Runtime
800
600
400
: H
0 —
IFMapReduce IFMapReduce + Combine FmapReduce Spark

Figure 5.4: Average runtime

2url: https://dumps.wikimedia.org/enwiki/20150304/ file: enwiki-20150304-pages-meta-
current9.xml-p000665001p000925000.b22

32

Figure 5.5 illustrates the difference in time spent during the map and reduce stages
for the IFMapReduce and FMapReduce frameworks. As the figure shows, IFMapRe-
duce with the combine operation improved the running time of the reduce stage to be
several times faster than both FMapReduce and IFMapReduce without the combine
operation.

Stage completion time

450

350

250

150
100

Map stage Reduce stage
B IFMApReduce m IFMapReduce + Combine © FmapReduce

Figure 5.5: Stage completion time

To better understand the observed difference, the IFMapReduce and FMapReduce
framework measured the work distribution of each stage. Figure 5.6 illustrates the
work distribution of the map (and combine) stage. The figure shows that IFMapRe-
duce used more time interacting with HDF'S than FMapReduce did when interacting
with DDFS, this difference was even bigger considering that the average chunk size
was bigger.
Before outputting data to the underlying file systems, both IFMapReduce and
FMapReduce converts the data to strings. FMapReduce does this conversion dur-
ing the map stage while IFMapReduce does it in a separate stage, showing that the
[FMapReduce prototype has introduced some overhead during this stage compared
to its predecessor. However, the IFMapReduce framework makes up for this by
being faster when partitioning the data.

Figure 5.7 illustrates the work distribution for the reduce stage, this figure can
be misleading as each of the distributions illustrated made use of different amounts

33

Map work distribution
100

40

30

1.-
0

Fetch data Combine Convert Data Partition Data Emit Data

S

3838

5 B

B IFMapReduce ® IFMapReduce + Combine = FmapReduce

Figure 5.6: Work distribution of the map (and combine) stage

of reduce tasks. IFMapReduce without the combiner used 16 reduce tasks, while
IFMapReduce with the combiner used eight and FMapReduce used 12 reduce tasks.

This discrepancy of reduce tasks meant that the running time for IFMapReduce
without the combine should be doubled when comparing it to IFMapReduce with
the combine operation as the cluster can only perform eight tasks simultaneously.

Like the map stage the results show that FMapReduce were the faster option
when interacting with the underlying file system, when considering that IFMapRe-
duce with the combiner operated on less input data.

Considering both figures 5.6 and 5.7 FMapReduce proved to be faster when
performing reduce operations. While IFMapReduce with the combiner had the
shortest reduce step, the time spent during the combine step was slower than the
reduce step of FMapReduce, however the reduction in 10 more than made up for this
delay. Changes to the way IFMapReduce aggregates values by key is suspected to
be the main cause for the differences in running time, as an example IFMapReduce
sorts the data as part of the reduce action, whereas FMapReduce sorts the data
during the Fetch data action.

34

Reduce work distribution

70

10

Fetch data Reduce Emit Data
B IFMapReduce ™ IFMapReduce + Combine =~ FmapReduce

Figure 5.7: Work distribution of the reduce stage

5.4 General observations

This section discusses the results gained from performing the experiments. During
the Pagerank experiments we observed a large scheduling overhead, this lead to
several optimizations before performing the Wordcount experiments. These opti-
mizations resulted in an average reduction in scheduling time of 87.2 seconds.

As the ITFMapReduce Pagerank algorithm schedules as ten separate jobs, this
reduction in overhead would be equal to 872 seconds, or nearly 15 minutes overall
runtime reduction, which is roughly a fourth of the measured running time.

The benchmark results show that using Code Quotations is a viable option for
distributed computing. Observing the map time illustrated in figure 5.6, it shows
that the time taken to map using Code Quotations is comparable to mapping using
a loaded precompiled assembly.

Based on these observations, it is the [FMapReduce frameworks itself that causes
it to be slower than the FMapReduce framework, and not because IFMapReduce
makes use of Code Quotations.

35

CHAPTER 6

DISCUSSION

This chapter discuss how to compare distributed programming frameworks in section
6.1, while section 6.2 presents ideas on how to improve upon IFMapReduce and its
prototype.

6.1 Comparison metrics

The diversity of methods used to perform Big Data analysis makes it difficult to
compare these methods objectively, many tools have specific use cases where they
excel but fall short on other use cases. Some solutions focus on optimizing running
time, while other focus on usability and making it easier to specify distributed jobs.

While runtime is a measurable metric, the diversity of methods makes it hard
to find a fair way to compare these using running time. Some methods may prove
to have shorter running times when doing iterative computations while others may
be faster for scanning jobs. This diversity means that care must be taken when
deciding how and which methods to compare using running time.

The task of writing distributed applications are generally considered hard[4, 16]
and usability is one of the focus points when creating tools to help programmers
write distributed applications. Amongst these solutions are programming languages
focused on distributed computing, extensions to existing languages, programming
frameworks, etc. Usability is however a subjective metric as it depends on the past
experience of the programmer. Some tools try to make the approach to distributed
computation more declarative, while other tools try to mimic existing paradigms to
draw on the programmers experience.

The MapReduce approach attempts to facilitate distributed computations by
providing the programmers with a well defined API. While this may limit the flexi-

36

bility of the approach, it provides usability by introducing a “correct” way of spec-
ifying distributed applications.

IFMapReduce attempts to perform Big Data analysis using the F# syntax while
providing a well defined API for distributed programming.

6.2 Future work

This section describes ideas that could improve the usability and performance of the
IFMapReduce framework.

6.2.1 Improved type handling

The IFMapReduce prototype imposes several limitations on the data types that
expressions can interact with and data types must be explicitly declared for both
input and output.

Having to specify data types can prove to be a distraction for the user, espe-
cially as F# determines data types implicitly. Having IFMapReduce handle types
implicitly would make it easier to write applications for use with IFMapReduce, as
operations could be specified by only providing the expression as parameter.

The problems with explicit typing is most clear when using broadcast functions,
where the function must be retrieved using a specific get method. The IFMapReduce
prototypes uses a list of union types to store broadcast functions, this approach
imposes limitations on how the expressions can be retrieved. Instead of using a union
type IFMapReduce should use a wrapper class and make use of a class hierarchy to
make retrieval of the expressions uniform.

Besides making [FMapReduce able to use data types implicitly, the utility of the
framework should be increased by allowing clients to send type metadata, such that
custom data types can be supported.

6.2.2 Shipping expressions

To ship expressions the IFMapReduce prototype makes use of FsPickler[22], this is
because the standard F# libraries does not supply sufficient support for shipping
quoted expressions.

One of the main issues related to shipping expressions is to correctly deserialize
the expression. F# provides a wildcard pattern that tries to match any input,
while FsPickler can use the wildcard pattern when deserializing simple expression
types such as Int -> Int expressions, this option does not allow more complex
datatypes such as Tuples. Meaning that using the wildcard pattern in conjunction
with FsPickler is insufficient for most use cases of IFMapReduce.

37

One of the reasons that the IFMapReduce prototype only supports a limited
amount of expression types is that .NET types are not serializable, thus the expres-
sion type cannot be shipped with the expression. IFMapReduce would benefit from
a method to ship the quoted expressions with associated type metadata, not only
because this could allow for greater freedom when writing IFMapReduce applica-
tions. but also because several type checks and conversions can be avoided by the
[FMapReduce worker.

In general, the base support in F# for shipping expressions and type meta-
data is found lacking, and IFMapReduce would need some extended abstraction for
quoted expressions like the MBrace CloudWorkflows described in section 2.6. This
abstraction should be able to contain the metadata needed to simplify the shipping
of expressions.

6.2.3 Fault tolerance

Fault tolerance is an important aspect of distributed applications as there are more
points of failure compared to single node applications. The IFMapReduce prototype
does not provide any fault tolerance, meaning that if a single tasks fails at any
worker, the master will wait for that task to finish and not reschedule said task.

While the master is able to detect failed workers and have the metadata required
to restart tasks, it does not make use of this information. Besides not handling
failures, IFMapReduce does not inform the client about failures, meaning that the
user will not be able to determine the cause of a failure.

6.2.4 Better debugging facilities

While users of [FMapReduce can make use of the debugging facilities available in
F+# editors, this only ensures a correct syntax. Currently IFMapReduce provides no
facilities for forwarding errors from expressions executed on a worker to the client,
meaning that the client is never informed if errors happen. Furthermore, while some
code quotations may be run locally, FsPickler may not be able to deserialize the code
because it imposes stricter semantics.

One way for IFMapReduce to help programmers could be to introduce .NET At-
tributes like the ReflectedDefinition attribute. This would allow IFMapReduce
to produce warnings or errors when the programmer attempts break the conventions
specified in the attribute.

6.2.5 In-memory shuffle

The IFMapReduce prototype is heavily Dependant on HDF'S to handle intermediate
data, however as the results of the benchmarks (sections 5.2 and 5.3) show, this

38

introduces overhead to the point where more time is spent interacting with the file
system than doing computation.

To avoid this overhead, IFMapReduce should be able to move data directly be-
tween workers, meaning that the master must predetermine where to place data
before initiating the requests. This process includes determining the workload and
size of each data partition, and should also account for locality to minimize commu-
nication in the cluster.

Becoming less dependent on HDFS would allow the Reduce operation to be lazy,
meaning that it could be chained with the other operations. This would allow the
Pagerank algorithm described in section 5.2.1 to be scheduled as a single job rather
than ten, removing the overhead associated with scheduling multiple jobs.

6.2.6 GPU utilization

The processing power of GPUs have been increasing drastically over the last few
years and even the less expensive GPUs have become powerful highly parallel pro-
cessing units. The benefit of GPUs over CPU are that the GPUs have access to
magnitudes more cores compared to the standard CPU’s and as Big Data analysis
focus on parallel computation, these jobs should fit well with GPU architectures.

MarsHadoop[8] has proven how utilizing GPUs can be used to increase the per-
formance of MapReduce jobs, and while IFMapReduce is not targeted at batch
jobs, some operations might still benefit from utilizing GPUs to improve runtime
performance.

F+# provides several libraries for GPU programing, amongst these are
Alea.CUDA[25], FSCL[2] and Brahma.FSharp[14] who all makes use of F#’s Quoted
Expressions to generate GPU code. As IFMapReduce is based on shipping Quoted
Expressions, these libraries provides ample examples that [FMapReduce could be
extended to utilize GPUs. However, the libraries requires that the Quoted expres-
sions is formed to fit specific APIs, meaning that expressions written for the GPU
cannot be executed on the CPU.

Both Alea.CUDA and FSCL requires that the quotations are marked with the
[<ReflectedDefinition>] attribute, which means that the quotation cannot con-
tain the splicing operator, thus preventing merging general purpose expressions into
predefined GPU expressions. While Brahma.FSharp supports the splicing operator
it sets several limitations to the supported data types, most notable in the context
of IFMapReduce Brahma.FSharp does not support Tuples.

6.2.7 Runtime Estimation

Rather than relying on HDFS and the user to determine the amount of tasks to
schedule, IFMapReduce should be able to choose an optimal amount of tasks based

39

© 0 9 O s W N

.
o

on workload estimation. Choosing the number of workers based on workload would
complement the idea of in-memory shuffle described in section 6.2.5, as this would
further remove the reliance on the underlying file system.

Besides choosing how many workers to use, runtime estimation could also com-
pliment the GPU utilization idea described in section 6.2.6. While GPUs are
faster at certain tasks, some overhead is introduced when moving the data to
GPU Memory|[28]. Therefore SPRAT[28] (Stream programming with runtime auto-
tuning) proposes a solution that chooses which processing unit to use based on the
estimated workloads.

SPRAT uses the linear model shown in equation 6.1 to estimate kernel execution
time. In the equation p refers to the processor and k; refers to a kernel i where a
kernel is a processor running a specified kernel function. The equation states that
the execution time is equal to the startup time required by the processor to launch
the kernel plus the number of output elements divided by the throughput.

Dy, 0

i(Output stream elements)

Tp,ki(Execution time) — B + 5, ki (Startup time) (61)
p,ki(Ef fective throughput)

While SPRAT gives a model for when to move computations between processors, it
does not provide information on how to estimate the runtime parameters needed in
the equation.

There are several methods and tools to perform runtime analysis, most ap-
proaches includes modeling the application and using said model to determine the
running time. One of the more simple methods is the Implicit Path Enumeration
Technique(IPET)[19] that models code as Control Flow Graphs as illustrated in
figure 6.1

k = 13 k=13
i=20
while i < k do

do_something ()
else

<ii o_oilias ¢ [(whiei<kdo bo{ i }a{ dootmer |
i++ ¢ ‘\\ ¢
print_result () [print_result()] l i+ H it]

Figure 6.1: Example of Control Flow

While the IPET method is relatively simple, it is also imprecise, and depending
on the use case more precise estimation is needed.

40

Some methods attempt to gain precise runtime estimations by attempting to
model the runtime environment, one such tool is TetaJ(Tool for Execution Time
Analysis of Java bytecode)[13]. TetaJ not only models the application, but also the
JVM and the Hardware of the runtime environment. The hardware model simulates
how JVM instructions are executed on the hardware, while the JVM model simulates
how the JVM handles bytecode instructions. The application is modeled as a control
flow model where each location corresponds to a bytecode instruction. Tetal uses
the UPPAAL model checker to simulate the execution of the program and calculate
the execution time.

Looking at the context for IFMapReduce or cluster computing in general, then
the clusters may be heterogeneous, making approaches like TetaJ hard to apply, as
multiple Hardware models would be required. Besides being heterogeneous, cluster
components may fail resulting in unpredictable delays.

[FMapReduce jobs are written in F# which is higher-order language, meaning
that functional arguments must be augmented to account for the cost of their appli-
cation. Furthermore F# provides features that can make evaluation lazy, meaning
that not only must functions be augmented with application cost, but also with a
description of the context as to determine if lazy expressions will be evaluated.[26].

In the context of determining how many tasks to start or whether to move com-
putations to a GPU determining the amount of computations should be sufficient,
therefore an IPET approach could be suitable.

In F# a Code Quotations is at its core an Abstract Syntax Tree(AST), this
means that generating a Control flow graph from a code quotation is relatively
simple and estimation can be made by creating a parser for the AST. F# provides
the Quotations.Patterns module which can be used to build a parser for the AST
by using pattern matching.

A prototype of a runtime estimation using Quotations.Patterns can be found
in appendix D, this prototype is unfinished in that it only recognizes a subset of the
AST nodes likely to appear, but it can be used for simple expressions.

Runtime estimation of the IFMapReduce operations should be performed client
side, such that each expression is only evaluated once and to avoid having the master
deserialize the expressions.

41

CHAPTER [/

CONCLURSION

This report has investigated the use of F# Code Quotations as the mechanism for
shipping code from the F# Interactive shell to perform interactive analysis of Big
Data on the .NET platform.

To evaluate the viability of using Code Quotations as distribution mechanism
we have:

e Implemented a prototype of a programming framework called IFMapReduce
which facilitates the distribution and execution of Code Quotations in a clus-
ter.

e Used benchmarks to compare the [FMapReduce prototype with the Spark and
FMapReduce frameworks.

There are several methods for analyzing Big Data, each with their own focus and
specialization to fit certain use cases. Historically frameworks such as MapReduce
frameworks have focused on batch jobs, while recently frameworks such as Spark
has made it possible to perform interactive analysis for a more flexible approach to
Big Data analysis.

[FMapReduce is a programming framework that facilitates interactive analysis
of Big Data through the F# Interactive Shell. IFMapReduce is an extension of
FMapReduce, and inherits its Master/Slave architecture.

IFMapReduce jobs are specified using IFDatasets and F# Code Quotations
through the interactive shell. An IFDataset is an abstraction over a file and a list of
operations that should be applied to that file. [FDataset operations are evaluated
lazily when possible, meaning that computation is not initiated until required, thus
most [FDataset operations return a new IFDataset allowing the lazy operations to
be chained together. IFDatasets initiate jobs by forwarding a request to the master

42

containing the list of operations specified in the IFDataset and metadata describing
the input. Based on the supplied metadata the master schedules a series of tasks,
which are distributed to the workers for execution.

The IFMapReduce prototype has been compared to the Spark framework and
the FMapReduce prototype using Pagerank and Wordcount benchmarks. The re-
sults show that the IFMapReduce prototype has a running time comparable to that
of the FMapReduce prototype, but that the [FMapReduce prototype is slower than
Spark. By measuring the work distribution of the IFMapReduce prototype we have
determined that 1O is the main time consumer, this means that IFMapReduce would
benefit from moving data directly between nodes without interacting with the un-
derlying storage facilities, in a similar fashion to Sparks in-memory shuffle. The
Benchmarks also show that the use of Code Quotations are viable as a facility for
code distribution as these had little effect on the running time.

The report finds that F# Code Quotations are viable for interactive analysis of
big data, and proposes ideas to utilize the Code Quotations in regards to Runtime
estimation and GPU utilization.

43

BIBLIOGRAPHY

[1]

[7]

8]

CERN. Computing. http://home.web.cern.ch/about/computing. Visisted:
27/5/2015.

Gabriele Cocco. Fscl.compiler. http://fscl.github.io/FSCL.Compiler/. vi-
sisted: 24/5/2015.

Nokia Corporation. Tutorial. http://disco.readthedocs.org/en/latest/
start/tutorial.html. visisted: 8/1/2014.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Communications of the ACM, 53(1):72-77, 2010.

Jan Dzik, Nick Palladinos, Konstantinos Rontogiannis, Eirik Tsarpalis, and
Nikolaos Vathis. Mbrace: cloud computing with monads. In Proceedings of the
Seventh Workshop on Programming Languages and Operating Systems, page 7.
ACM, 2013.

Jeff Epstein, Andrew P Black, and Simon Peyton-Jones. Towards haskell in
the cloud. In ACM SIGPLAN Notices, volume 46, pages 118-129. ACM, 2011.

Wenbin Fang, Bingsheng He, Qiong Luo, and Naga K Govindaraju. Mars: Ac-
celerating mapreduce with graphics processors. Parallel and Distributed Sys-
tems, IEEE Transactions on, 22(4):608-620, 2011.

The Apache Software Foundation. Hadoop. http://hadoop.apache.org/. vis-
ited: 20/5/2015.

44

http://home.web.cern.ch/about/computing
http://fscl.github.io/FSCL.Compiler/
http://disco.readthedocs.org/en/latest/start/tutorial.html
http://disco.readthedocs.org/en/latest/start/tutorial.html
http://hadoop.apache.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

The Apache Software Foundation. Mapreduce tutorial. http:
//hadoop.apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:
_WordCount_v1.0. visisted: 21/5/2015.

The Apache Software Foundation. Spark examples. https://
spark.apache.org/examples.html. visisted: 8/1/2014.

Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml:
A language for concurrent distributed and mobile programming. In Advanced
Functional Programming, pages 129-158. Springer, 2003.

Christian Frost, Casper Svenning Jensen, Kasper Sge Luckow, and Bent Thom-
sen. Wecet analysis of java bytecode featuring common execution environments.
In Proceedings of the 9th International Workshop on Java Technologies for Real-
Time and Embedded Systems, pages 30-39. ACM, 2011.

Semyon Grigorev. Brahma.fsharp. https://sites.google.com/site/
semathsrprojects/home/brahma-fsharp/. visisted: 24/5/2015.

Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and Tuyong
Wang. Mars: a mapreduce framework on graphics processors. In Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques, pages 260-269. ACM, 2008.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS Operating Systems Review, volume 41, pages 59-72. ACM, 2007.

Michael Isard and Yuan Yu. Distributed data-parallel computing using a high-
level programming language. In Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data, pages 987-994. ACM, 2009.

Christian M Jensen and Lars H Larsen. Fmapreduce: A survey of big data
analysis methods, 2015.

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-
ware using implicit path enumeration. In ACM SIGPLAN Notices, volume 30,
pages 88-98. ACM, 1995.

Microsoft. Code quotations (f#). https://msdn.microsoft.com/en-us/
library/dd233212.aspx. Visited: 2/6/2015.

45

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0
https://spark.apache.org/examples.html
https://spark.apache.org/examples.html
https://sites.google.com/site/semathsrprojects/home/brahma-fsharp/
https://sites.google.com/site/semathsrprojects/home/brahma-fsharp/
https://msdn.microsoft.com/en-us/library/dd233212.aspx
https://msdn.microsoft.com/en-us/library/dd233212.aspx

[21]

[22]

[23]

[28]

[29]

[30]

[31]

Prashanth Mundkur, Ville Tuulos, and Jared Flatow. Disco: a computing plat-
form for large-scale data analytics. In Proceedings of the 10th ACM SIGPLAN
workshop on Erlang, pages 84-89. ACM, 2011.

Nessos. Fspickler : A fast .net object serializer. http://nessos.github.io/
FsPickler/index.html. visisted: 17/5/2015.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. Pig latin: a not-so-foreign language for data processing. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1099-1110. ACM, 2008.

Kevin Wilfong Pamela Vagata. Scaling the facebook data warehouse to
300 pb. https://code.facebook.com/posts/229861827208629/scaling-
the-facebook-data-warehouse-to-300-pb/. Visited: 25/11/2014.

QuantAlea. Alea gpu. http://quantalea.com/. visisted: 24/5/2015.

David Sands. Complexity analysis for a lazy higher-order language. In Func-
tional Programming, pages 56-79. Springer, 1990.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1-10. IEEE, 2010.

Hiroyuki Takizawa, Katsuto Sato, and Hiroaki Kobayashi. Sprat: Runtime
processor selection for energy-aware computing. In Cluster Computing, 2008
IEEE International Conference on, pages 386-393. IEEE, 2008.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626-1629, 2009.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, et al. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM,
2013.

Dennis Fetterly Mihai Budiu Ulfar Erlingsson Pradeep Kumar Gunda Jon Cur-
rey Yuan Yu, Michael Isard. Dryadling a system for general-purpose distri-
bution data-parallel computing. research.microsoft.com/en-us/projects/
dryadling/dryadling-osdi.pptx. visisted: 8/1/2014.

46

http://nessos.github.io/FsPickler/index.html
http://nessos.github.io/FsPickler/index.html
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
http://quantalea.com/
research.microsoft.com/en-us/projects/dryadlinq/dryadlinq-osdi.pptx
research.microsoft.com/en-us/projects/dryadlinq/dryadlinq-osdi.pptx

[32] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2—2. USENIX Association, 2012.

[33] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pages 10-10, 2010.

47

© 0w 9 O U

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24

APPENDIX A

WIKI-XML PARSER

#I "/home/chr/Documents/git/mapdeduce/FInteractiveTest/
FInteractiveTest/bin/Debug/"

#I "/home/chr/Documents/git/mapdeduce/FInteractivelLib/
FInteractivelLib/bin/Release"

#I "/home/chr/Documents/git/mapdeduce/Expulsion/Expulsion/bin/Debug
/ll

#r "System"

#r "System.Net"

#r "FsPickler.dll"

#r "FExpression.dll"

#r "FInteractiveLib.d1l1l"

#r "Expulsion.dll"

open System

open System.IO

open Nessos.FsPickler

open FlInteractive.client
open Microsoft.FSharp.Quotations
open System.Net.Sockets
open FInteractive.Broadcast

let masterIp = "192.168.2.4"
let masterPort = 7040

let fileWriter : StreamWriter = File.CreateText("/home/chr/Desktop/
RealBenchl.csv")

fileWriter.WritelLine ("Start bench," + DateTime.Now.ToLongTimeString
O)
let rawFile = FInteractiveClient.Dataset.Lines("/usr/bench/

bigdatafil", masterIp, (string masterPort))

48

25
26
27
28
29
30

31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

let iterations = 9

let extractTitle =
<@ fun (x : string) ->

let startIndex = (x.IndexO0f("<title>") + "<title>".Length)

x.Substring (startIndex, (abs (x.Index0f("</title>") -
startIndex)))
e>
BExpression.addFunction extractTitle "extractTitle" masterIp
masterPort

let isNotLink =
<@ fun (x : string) ->
let start = if x.StartsWith("[[") then 2 else 1
let length = x.Length

if length < start + 2 || length > 100 then
1
else
if x.Contains(":") then
1
else
if x.Contains(",") then
1
else
if x.Contains("&") then
1
else
let firstChar = char (x.Substring(start,
)
match firstChar with
| #> -> 1
| 2, -> 1
| 2.7 -> 1
| &> -> 1
[°\\? -> 1
| -7 => 1
| { > 1
| _ -> 0
Q>

BExpression.addFunction isNotLink "isNotLink" masterIp masterPort

let extractLinks =
<@ fun (x : string) ->
if x.Contains("[") && x.Contains("]") then
let mutable links : string list = []
let mutable startIndex = O
let mutable index = O
let mutable stage = 0
let charArray = x.ToCharArray()

49

1)

71
72
73
74

76
7

78
79
80

81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105

107
108
109

110
111
112

for character in charArray do
if character = ’[’ && stage = 0 then
startIndex <- index
stage <- 1
if stage = 2 then

if character = ’]’ then
let link : string = (new System.String(
charArray.[startIndex .. index]))
links <- 1link :: links
eilisie
let link : string = (new System.String/(
charArray.[startIndex .. (index - 1)]))
links <- link :: links
stage <- 0
if character = ’]’ && stage = 1 then

stage <- 2
index <- index + 1
let mutable extractedLinks = []
for link in links do
if ((BExpression.getStringToIntExpression "
isNotLink") link) = O then
let start = if link.StartsWith("[[") then 2
else 1
let mutable endPos = link.Index0f("]")
let pipePos = link.Index0f("|")
if pipePos > 0 then endPos <- pipePos
let part = link.IndexOf ("#")
if part > O then endPos <- part
extractedLinks <-
(link
.Substring(start, endPos - start)
.Replace(" ", "_")
.Replace("\t", "_")
.Replace(",", "")
.Replace("&", "&"))
extractedLinks
match extractedLinks.Length with
| 0 -> v
| 1 -> extractedLinks.Head
| _ -> extractedLinks |> List.reduce(fun x y -> x +
n s "o y)
ehlisie
nn
e>
BExpression.addFunction extractlLinks "extractLinks" masterIp
masterPort

let titleAndText =
rawFile.Apply

20

113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140

141
142

143

<@ fun (x : string list) ->
let mutable resultList : (string * string) list = []
let mutable currentlLine = 0
let mutable title : string = ""
let mutable text : string = ""
let mutable append : bool = false
for line in x do
if line.Contains("<title>") then
title <- ((BExpression.
getStringToStringExpression "extractTitle")
line) .Replace("\t", " ")
if line.Contains("<text>") || line.Contains("<text
xml:space=\"preserve\">") then
append <- true
if append then
if line.Contains("[") then
text <- (text + line)
if line.Contains("</text>") then
append <- false
resultlList <- (title, text) :: resultlist
title <- ""
text <- ""
currentlLine <- currentlLine + 1
resultlist
e>
"StringString"

let mutable titleAndLinks =
titleAndText .Map
<@ fun (x : (string * string)) ->
(fst x, "1.0 " + ((BExpression.
getStringToStringExpression "extractLinks") (snd x)))
e>
"StringString"

let res = titleAndLinks.Store "/usr/bench/parsedData"

Listing A.1: IFMapReduce script used to extract links from wikipedia XML

51

© 0w N O O s

11
12
13
14
15
16
17
18
19
20
21
22

23

APPENDIX B

PAGERANK ALGORITHMS

B.1 IFMapReduce

#I "/home/chr/Documents/git/mapdeduce/FInteractiveTest/
FInteractiveTest/bin/Debug/"

#I "/home/chr/Documents/git/mapdeduce/FInteractivelLib/
FInteractivelLib/bin/Release"

#I "/home/chr/Documents/git/mapdeduce/Expulsion/Expulsion/bin/Debug
/ll

#r "System"

#r "System.Net"

#r "FsPickler.dll"

#r "FExpression.dll"

#r "FInteractiveLib.d1l1l"

#r "Expulsion.dll"

open System

open System.IO

open Nessos.FsPickler

open FlInteractive.client
open Microsoft.FSharp.Quotations
open System.Net.Sockets
open FInteractive.Broadcast

let masterIp = "192.168.2.4"
let masterPort = 7040

let fileWriter : StreamWriter = File.CreateText("/home/chr/Desktop/
FSBenchl.csv")
fileWriter.WritelLine ("Start bench," + DateTime.Now.ToLongTimeString

O)

52

24
25
26

27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46

47
48
49

51
52
53
54

55
56
57
58
59
60
61
62
63
64

let iterations = 9

let dataSet = FInteractiveClient.Dataset.Lines("/usr/bench/
parsedData", masterIp, (string masterPort))
let mutable dataTuple =
dataSet .Map
<@ fun (x : string) ->
let splitString = x.Split ([I"\t"|], System.
StringSplitOptions.None)
if splitString.Length > 1 then
(splitString.[0], splitString.[1])

else
(x, "1.0")
@>
"StringString"
let pageMap =
<@ fun (x : (string * string) list) ->
let mutable results : (string * string) list = []

for kvPair in x do
if (snd kvPair).Length > 4 then
let rankAndLinks = ((snd kvPair).Split([|" "|],
System.StringSplitOptions.RemoveEmptyEntries))
if rankAndLinks.Length > 1 then
let rank = rankAndLinks.[0]
let links : string array = ((rankAndLinks.[1]).
Split ([I","1], System.StringSplitOptions.
RemoveEmptyEntries))
let length = (float links.Length)

for link : string in links do
results <-
(
(link.Replace("_", " ")),
(rank + " " + string length + ".0")
) :: results
results <- ((fst kvPair), (rankAndLinks.[1]))
results
results
Q>

let pageReduce =
<@ fun (key : string, values : string list) ->
let dampening = 0.85
let noOfLinks values.Length
let mutable combinedPages : float = 0.0
let mutable outLinks = ""
for value : string in values do
let splitValues = value.Split([|" "|], System.
StringSplitOptions.RemoveEmptyEntries)

23

66
67

68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85
86
87
88

89

90

91

92

0o N O g s WoN

if splitValues.Length > 1 then
combinedPages <- (((float splitValues.[0]) / (float
splitValues.[1])) + combinedPages)
else
outLinks <- value
combinedPages <- combinedPages + 0.0

let rank = (1.0 - dampening) + dampening * combinedPages
(key, ((string rank) + " " + outLinks))
e>
for i = 0 to iterations do
fileWriter.WriteLine("Iter" + i.ToString() + " start," +

DateTime.Now.ToLongTimeString ())
let maplteration =
dataTuple. Apply
pageMap
"StringString"
Console.WriteLine("iteration: " + string i)
dataTuple <-
mapIteration.Reduce

pageReduce
"StringString"
("/usr/bench/testOutput" + (string i))
8
fileWriter .WriteLine("Iter" + i.ToString() + " done reducing,"

+ DateTime.Now.ToLongTimeString())

fileWriter .WriteLine("finish all ," + DateTime.Now.ToLongTimeString

OD)
fileWriter.Close ()

Listing B.1: [FMapReduce Pagerank algorithm

B.2 Spark

import java.io.{InputStream, OutputStream, DatalnputStream,
DataOutputStream}
import java.nio.ByteBuffer

import scala.collection.mutable.ArrayBuffer
import scala.xml.{XML, NodeSeq}

import org.apache.spark._

import org.apache.spark.serializer.{DeserializationStreanm,
SerializationStream, SerializerInstancel}

import org.apache.spark.SparkContext._

o4

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53

import org.apache.spark.rdd.RDD
import scala.reflect.ClassTag
val inputFile = "/usr/bench/parsedData"

val iterations = 10
val dampening 0.85

val startTime System.currentTimeMillis
val rawFile = sc.textFile(inputFile)
var linksAndRanks = rawFile.map(line => {
if (line.length > 0) {
val splitValues = line.split("\t")
if (splitValues.length > 1) {

(splitValues (0), splitValues (1) .replaceAll (",", ";;"))
} else {
(line, "1.0"™)
}
} else {
("None", "1.0")
}
}
)
for (i <- 1 to iterations) {
System.out.println("start iter: "+ i + " " + System.
currentTimeMillis + ":")

val linksMapped = linksAndRanks.flatMap(keyValues => {
val rankAndLinks = (keyValues._2).split(" ") //Not O indexed?
var results = List[(String, String)] ()
if (rankAndLinks.length > 1) {
val rank : String = rankAndLinks (0)

val links = rankAndLinks (1) .split(";;")
val length : String = " " + (links.length).toString
links.foreach{link => {results = (link : String, rank +
length) :: results}}
results = (keyValues._1, rankAndLinks (1)) :: results
}
results
X
)

linksAndRanks = linksMapped.groupByKey ()
.map (tuple => {
val links = tuple._2

val outLinks = links.filter (entry
=> entry.contains(";;"))
var olLinks : String = ""

95

55

56

57

58

59

60
61

62

63
64
65

66
67
68
69
70

71

}

outLinks.foreach{outlink : String
=> olLinks = oLinks + outlink}
val inLinks = links.filter (entry =>

entry.contains (" "))

val combinedPages = inLinks.map(

linkValues => {

val splitLink = linkValues.

split (" ")
(splitLink (0) .toDouble /
splitLink (1) . toDouble) }
) . sum
val newRank = combinedPages x*

dampening + (1.0 - dampening)

(tuple._1, newRank.toString +
oLinks)

)

System.out.println("end iter: " + i + " " + System.

currentTimeMillis)

3

linksAndRanks.saveAsTextFile (" /usr/bench/sparkOutput")
val time = (System.currentTimeMillis - startTime) / 1000.0

println("Completed %d iterations in %f seconds: %f seconds per

iteration"
.format (iterations,

time, time / iterations))

n n +

Listing B.2: Spark Pagerank algorithm

26

© 0w 9 O U

10
11
12
13
14
15
16
17
18
19

20

APPENDIX C

WORDCOUNT ALGORITHMS

C.1 IFMapReduce

To remove the combiner line 31 can be commented and line 32 changed to use
mappedValues instead of combinedValues.

#I "/home/chr/Documents/git/mapdeduce/FInteractiveTest/
FInteractiveTest/bin/Debug/"

#I "/home/chr/Documents/git/mapdeduce/FInteractivelLib/
FInteractivelLib/bin/Release"

#I "/home/chr/Documents/git/mapdeduce/Expulsion/Expulsion/bin/Debug
/ll

#r "System"

#r "System.Net"

#r "FsPickler.dll"

#r "FExpression.dll"

#r "FInteractiveLib.dl1l"

#r "Expulsion.dll"

open Nessos.FsPickler

open FlInteractive.client
open Microsoft.FSharp.Quotations
open System.Net.Sockets
open FlInteractive.Broadcast
open System.IO

open System

let fileWriter : StreamWriter = File.CreateText("/home/chr/Desktop/
FSBenchl.csv")
fileWriter.WriteLine("Start bench," + DateTime.Now.ToLongTimeString

O)

o7

21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

-

N O o s W N

oo

10
11
12
13
14

15

let iDataset = FInteractiveClient.Dataset.Words("/usr/bench/datal",
"192.168.2.4", "7040")
let mappedValues = iDataset.Map
<@ fun (x : string) -> (x, 1) ©>

"StringInt"
let reduceFunc = <@ fun (x : string, y : int list) ->
(x, (List.sum y))
e>
let combinedValues = mappedValues.Combine reduceFunc "StringInt"
let wordReduce = combinedValues.Reduce
reduceFunc
"StringInt"
"/usr/bench/WordcountOut"
16
fileWriter.WriteLine("finish all ," + DateTime.Now.ToLongTimeString

OD)
fileWriter.Close ()

Listing C.1: IFMapReduce Wordcount algorithm

C.2 FMapReduce

namespace mapreducetest
open FMapReduce.FMR
open System

type fmapreducetester () =
inherit FMapReduce ()
override this.distributedMap (key : string) (value : string
) =
for line in key.Split(’\n’) do
if line.Length > O then
for word in line.Split(’ ’) do
if word.Length > 0 then
this.yieldKV word (string 1)

override this.distributedReduce (key : string) (value
string array) =
this.yieldKV key ((value.Length).ToString())

Listing C.2: FMapReduce Wordcount algorithm

o8

o N O O ks W N

10
11
12
13
14
15
16
17

18
19
20
21

C.3 Spark

import java.io.{InputStream, OutputStream, DatalnputStream,
DataOutputStream}
import java.nio.ByteBuffer

import scala.collection.mutable.ArrayBuffer
import scala.xml.{XML, NodeSeq}

import org.apache.spark._

import org.apache.spark.serializer.{DeserializationStreanm,
SerializationStream, SerializerInstancel}

import org.apache.spark.SparkContext._

import org.apache.spark.rdd.RDD

import scala.reflect.ClassTag

val startTime = System.currentTimeMillis

val file = sc.textFile ("/usr/bench/datal")

val counts = file.flatMap(line => line.split(" ")) .map(word =
word ,1)).reduceByKey(_ + _)

counts.saveAsTextFile (" /usr/bench/sparkWCOut")

val time = (System.currentTimeMillis - startTime) / 1000.0
println("Completed in %f seconds".format(time))

>

(

Listing C.3: Spark Wordcount algorithm

29

© 0 N9 O O W N =

=
- O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

APPENDIX D

RUNTIME ESTIMATION

module runtimeEstimation

open
open
open
open
open
open

Microsoft.
Microsoft.
Microsoft.
Microsoft.
System

System. IO

FSharp
FSharp
FSharp
FSharp

.Quotations
.Quotations
.Quotations
.Quotations

type operationValues() =

.Patterns
.DerivedPatterns
.ExprShape

let addition = 1

let subtraction = 1

let multiplication = 2

let division = 2

let stringConversion = 10

member this.StringConversion = stringConversion
member this.Addition = addition

member this.Subtraction = subtraction

member this.Multiplication = multiplication
member this.Division = division

type runtimeEstimation ()
let estimatedRuntime

ref O

member this.incrementRuntime value =

estimatedRuntime.Value <-

member this.getRuntime

let operations =
let max x y =
if x >y

estimatedRuntime.Value + value
= estimatedRuntime.Value

new operationValues ()

60

31
32
33
34

36
37
38
39
40
41
42
43
44

46
47
48
49

51
52
53
54
55
56
57
58
59

60
61
62
63
64

66
67
68
69
70
71
72

then x
else y

let rec calcRuntime quotation =
let runtime = new runtimeEstimation ()
let rec traverse quotation =
match quotation with
| Application(exprl, expr2) ->
// Function application.
runtime.incrementRuntime 1
traverse exprl
traverse expr2
| IfThenElse(_, expr2, expr3) ->
runtime.incrementRuntime (max (calcRuntime expr2) (
calcRuntime expr3))

| SpecificCall <@ (+) @> (_, _, exprs) ->
runtime.incrementRuntime operations.Addition
List.map traverse exprs |> ignore

| SpecificCall <@ (-) @> (_, _, exprs) ->

runtime.incrementRuntime operations.Subtraction
List.map traverse exprs |> ignore

| SpecificCall <@ (*) @> (_, _, exprs) ->
runtime.incrementRuntime operations.Multiplication
List.map traverse exprs |> ignore

| SpecificCall <@ (/) @> (_, _, exprs) ->
runtime.incrementRuntime operations.Division
List.map traverse exprs |> ignore

| Lambda(param, expr) ->
// Lambda expression.
if expr.ToString().Contains("ToString") then runtime.

incrementRuntime operations.StringConversion

Console.WriteLine (expr)
traverse expr

| WhileLoop(param, body) ->
runtime.incrementRuntime ((calcRuntime body) * 10)

| ShapeVar v ->
Console.Write("")

| Shapelambda (v,expr) ->
Console.WriteLine (expr)
traverse expr

| ShapeCombination (o, exprs) ->
List.map traverse exprs |> ignore

traverse quotation
runtime . getRuntime

Listing D.1: Rough runtime estimation

61

	Introduction
	Motivation
	MapReduce
	Code Quotations

	Related work
	Apache Hadoop
	MarsHadoop
	Spark
	Disco
	FMapReduce
	MBrace
	Dryad
	Cloud Haskell
	JoCaml

	Problem statement
	IFMapReduce
	Architecture
	IFDataset
	Broadcast Functions

	Experiments
	Cluster setup
	Pagerank
	Wordcount
	General observations

	Discussion
	Comparison metrics
	Future work

	Conclusion
	Bibliography
	Wiki-XML parser
	Pagerank algorithms
	IFMapReduce
	Spark

	Wordcount algorithms
	IFMapReduce
	FMapReduce
	Spark

	Runtime Estimation

