Language Integrated STM in C#
Using the Roslyn Compiler

- An Alternative to Locking

Tobias Ugleholdt Hansen
Andreas Pgrtner Karlsen

Kasper Breinholt Laurberg

¢ (iSpungy 3USTDOYJINSUTI,)UOTIdDIXT MAU MOJY3

(03 uUnoddYy ‘wod4 JUNODDY

}

ENE]

{
}

(@ =< junowe - 3dueTeg) 4T

fjunowe =- adueTeg

}

JTwole

}
(3unowe 8uoT)3deJ3igqns pToA dTTgqnd

fjunoue =+ asueTegq

}

JTWwole

}
(3unowe 3uoT)ppy pToA dTITgnd

? (3unowe)ppy 03
¢ (3unowe)3>e43gns " WoJ4

}

JTWwole

}

‘junowe SuoT)AsuopJaisued] PTOA DT3eis dTIgnd

f9oueTeq = adueteq

}
(®d5ueteq 3uor)3iunoddy dTTgqnd

f(ueo7yuapniys ‘AueTes ‘pEOT)AsuopJajsued]
£ (PPPOS-)IUNODDY MU = UBOTIUDPNIS JEA
£(PPOT)3IUN0ddY Mau = AJeTes Jea

}

()utew pToA D>T3e}S

{ f39s ¢3183 } aduereg 3uorl dTwoze >ITgqnd

}

1UN0DJDY SSefd

Department of Computer Science
Selma Lagerlpfs Vej 300
DK-9220 Aalborg @

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Language Integrated STM in C# Us-
ing the Roslyn Compiler - An Alter-
native to Locking.

Project Period:
Spring Semester 2015

Project Group:
dpt109f15

Participants:

Tobias Ugleholdt Hansen
Andreas Pgrtner Karlsen
Kasper Breinholt Laurberg

Supervisor:
Lone Leth Thomsen
Page Numbers: 120 + 4 appendices

Date of Completion:
June 8, 2015

http://www.cs.aau.dk

Abstract:

This master thesis investigates
whether language integrated STM is
a valid alternative to locking in C#
in terms of usability, and provides ad-
ditional benefits compared to library-
based STM. To do so, an extension
of C# called AC# was implemented.
ACH provides integrated support for
STM, including conditional synchro-
nization using the retry and orelse
constructs, and nesting of transac-
tions. AC# was implemented by ex-
tending the open source Roslyn C#
compiler. To power AC# a library-
based STM system, based on the
TLII algorithm, was implemented.
The extended compiler transforms
AC# source code to regular C# code
which utilizes the STM library. For
each concurrency approach: ACH#,
library-based STM and locking in
C#, four different concurrency prob-
lems, representing different aspects
of concurrency, were implemented.
These implementations were ana-
lyzed according to a set of usability
characteristics, facilitating a conclu-
sion upon the usability of language
integrated STM. Our evaluation con-
cludes that AC# is a valid alterna-
tive to locking, and provides better
usability than library-based STM.

http://www.cs.aau.dk

Preface

This report documents the master thesis done by group dpt109f15 at the
Department of Computer Science at Aalborg University. The thesis was
written as part of the Computer Science (IT) study program in the spring of
2015 at the 10th semester.

The first time an acronym is used it will appear in the format: Software
Transactional Memory (STM). Inline quotations and names will appear in
italics. The work presented in this report is based on work or results described
in books, articles, video lectures, and research papers from outside sources.
The full list of acronyms along with the bibliography, appendix, and summary
can be found at the end of the report.

We would like to give a special thanks to our supervisor Lone Leth Thomsen,
from the Department of Computer Science, for her excellent guidance and
immaculate attention to details. She supplied invaluable help throughout
the project with professionalism and black humour. Her feedback has been
indispensable and has significantly raised the quality of the final result. Her
constructive criticism helped us to narrow down the subject and kept us
motivated and enthusiastic about the project.

The report is structured with dependencies between the chapters, and the
following can be used as a reading guide:

e Chapter 1 “Introduction” presents the motivation for choosing the topic,
the related work, the scope, and the hypothesis. Lastly the method of
evaluation is presented.

e Chapter 2 “Background Knowledge” establishes the term “locking”,
and the key concepts of Software Transactional Memory (STM). This
knowledge is required in order to understand the remaining work. If the
reader is familiar with these areas, this chapter can be skipped.

e Chapter 3 “Roslyn” outlines the structure of the Roslyn compiler, which
enables the integration of STM into C#.

e Chapter 4 “Requirements for AC#” analyze the requirements to the
STM system which executes transactions in ACH.

e Chapter 5 “Design and Integration” describes the decisions related to
designing and integrating AC# based on the requirements.

PREFACE ii

e Chapter 6 “STM Implementation” describes the implementation of the
STM system that powers AC#, and is based on the requirements and
design choices.

e Chapter 7 “Roslyn Extension” describes how Roslyn is extended to
encompass language integrated STM, thus being a compiler for AC#.

e Chapter 8 “Evaluation of Characteristics” evaluates AC+#, its associated
STM library and locking in C# according to the evaluation method
described in Section 1.5.

e Based on this evaluation, a conclusion on the hypothesis is made in
Chapter 9 “Conclusion”.

e To reflect on the decisions made throughout the report, Chapter 10
“Reflection” discusses the choices made and their consequences.

e Continuation of the work in the future and its potential is discussed in
Chapter 11 “Future Work”.

PREFACE

Tobias Ugleholdt Hansen
tuhal3@student.aau.dk

Kasper Breinholt Laurberg
klaurb13@student.aau.dk

Andreas Pgrtner Karlsen
akarls13@student.aau.dk

iii

Contents

Preface

1 Introduction

1.1 Motivation e
1.2 Related Work
1.3 Scope
1.4 Problem Statement
1.5 Evaluation Method

2 Background Knowledge

2.1 Lockingin C# e
2.2 STM Key Concepts« o v v v v v i v i i i e
3 Roslyn
3.1 Imtroduction
3.2 Roslyn Architecture,
3.3 Compiler Phases
3.4 Syntax Trees
4 Requirements for AC#
4.1 Tracking Granularity
4.2 Transactions & Variables
4.3 Strong or Weak Atomicityo
4.4 Side-effects
4.5 Conditional Synchronization
4.6 Nesting
4.7 Opacity o o
4.8 Summary of Requirements

5 Design and Integration

5.1 Transactional Blocks & Variables
5.2 Transactional Parameters
5.3 Example of AC#
5.4 Conditional Synchronization
5.5 Nesting
5.6 Summary of Design. oL

6 STM Implementation

6.1 Implementation Criteria
6.2 Selection of Algorithm
6.3 Library Interface oL

v

N = =t

B

10

14
14
15
17
19

26
26
28
29
32
33
34
34
36

37
37
40
43
45
47
48

CONTENTS

6.4 Internal Details
6.5 Testing

Roslyn Extension

7.1 Extension Strategy L.
7.2 Lexing & Parsing Phases
7.3 Syntax Tree Transformations
7.4 Testing
7.5 Design and Integration Revisited

Evaluation of Characteristics

8.1 Implicit or Explicit Concurrency
8.2 Fault Restrictive or Expressive
8.3 Pessimistic or Optimistic.
8.4 Readability & Writability

Conclusion
9.1 Problem Statement Questions Revisited
9.2 Hypothesis Revisited

10 Reflection

10.1 Preliminary Investigation
10.2 Design Lo e
10.3 STM Implementation.
10.4 Roslyn Extension oL
105 CH6.0. . . o oo

11 Future Work

11.1 Performance Test
11.2 Integration into CLR
11.3 Irreversible Actionso

Appendix

A Roslyn Compiler Call Chain

B

Concurrency Problems

B.1 Dining Philosophers
B.2 The Santa Claus Problem
B.3 Concurrent Queue
B.4 Concurrent HashMap

Evaluation Implementations

C.1 Lock-Based
C.2 STM Library e
C3 ACH . . .

60
64

67
67
69
73
84
86

108
109
109

112
112
113
115
115
116

118
118
119
119

121

122

124
124
125
125
125

CONTENTS vi

D Summary 172
List of Acronyms 173

Bibliography 174

1 Introduction

This chapter describes the motivation behind this project in Section 1.1.
Related work is presented in Section 1.2 and the scope of the project is
addressed in Section 1.3. The hypothesis and problem statement questions are
presented in Section 1.4. Finally, the project evaluation method is stated in
Section 1.5.

1.1 Motivation

Today the increase in CPU speed comes in the form of additional cores, as
opposed to faster clock speed[1]. In order to utilize this increase in speed, many
of the popular sequential programming languages, such as C, C++, Java, and
C#, require changes or new additions in order to adapt[2, p. 56]. Our recent
study[3], analyzed the runtime performance and characteristics of three different
approaches to concurrent programming: Threads & Locks (TL), STM, and
the Actor model. The study concluded that STM eliminates many of the risks
related to programming in the context of shared-memory concurrency, notably
deadlocks, leading to simpler reasoning and improved usability. Additionally,
STM fits with the thread model used by sequential languages, and can thereby
be applied to existing implementations, without requiring major rewrites. The
runtime performance of STM is at a competitive level comparable to that of
fine-grained locking[3]. The analysis uncovered one major caveat of STM, it is
not orthogonal with side-effects, such as Input/Output (I0) and exceptions[3].

STM has, as of the time of writing, seen only limited official language integra-
tion, despite of the advantages STM could provide to sequential languages.To
our knowledge STM has only been introduced as an official built-in language
feature in Clojure! and Haskell>. STM has been introduced as a library based
solution in sequential languages. However to supply features such as static anal-
ysis and syntax support require language integration. From the programmers
point of view, a single feature rarely justifies adopting a new programming
language. Especially considering that adopting a new language may require
rewriting existing code. Thus integrating STM into existing languages will
benefit the programmers of these languages.

As of April 2014 and February 2015 Microsoft open sourced the new C+#
compiler[4] codenamed Roslyn and the Core Common Language Runtime
(CLR) [5] respectively. Microsoft thereby facilitates an opportunity to extend
the C# language and compiler as well as its runtime system, thereby opening
up for integrating STM into the language.

"nttp://clojuredocs.org/
https://wiki.haskell.org/Haskell

1

http://clojuredocs.org/
https://wiki.haskell.org/Haskell

CHAPTER 1. INTRODUCTION 2

1.2 Related Work

This section describes related work within the area of STM. In order to learn
from the approaches taken by others as well as achieving a better understanding
of the subject, a number of papers, articles, and other research material of
relevance has been read. The focus of this section has been on identifying
different strategies for language integration of STM as well as different STM
implementation strategies.

1.2.1 Composable Memory Transactions

In [6] Harris et al. describe their work with integrating STM into Haskell.
Haskell is extended with support for an atomic function which takes an STM
action as input and produces an IO action as output[6, p. 51]. Evaluating
the IO action executes the transaction defined by the atomic function. The
Haskell setting allows the authors to divide the world into STM actions and
IO actions[6, p. 51], effectively disallowing IO actions within transactions as
well as only allowing STM actions to be performed inside transactions. The
STM system is implemented as a C library integrated into the Haskell runtime
system. The Haskell constructs utilize this library to execute transactions|6,
p. 56]. Furthermore, the authors provide a description and implementation
of STM constructs for conditional synchronization. The retry statement
allows a transaction to block until some condition is met at which point the
transaction is aborted and re-executed[6, p. 52]. The orElse can be used in
combination with the retry statement to specify transactional alternatives to
be executed in case the previous alternatives encounter a retry[6, p. 52].

1.2.2 STM for Dynamic-sized Data Structures

In [7], Herlihy et al. describe the Dynamic Software Transactional Mem-
ory (DSTM) system. DSTM is a library based STM system aimed at the
C++ and Java programming languages[7][p. 92]. DSTM uses transactional
objects which encapsulate regular objects and provide STM based access and
synchronization[7|[p. 9]. Each transactional object contains a record of its
current value, old value and a reference to the transaction which created
the record[7][p. 95]. A Compare-And-Swap (CAS) operation is employed to
atomically update the state of a transactional object[7][p. 96]. DSTM is an
obstruction-free[8] STM system. Obstruction-freedom guarantees that any
thread which runs long enough without encountering a synchronization conflict
makes progress[8][p. 1]. Unlike stronger progress guarantees such as lock-
freedom and wait-freedom, obstruction-freedom does not prevent livelock[9, p.
47]. As a result DSTM employs a contention manager to ensure progress in
practice[7][p. 93]. An extended version of DSTM called DSTM2 is presented
in [10]. Here the authors focuses on creating a simple and flexible APT for the
STM library.

CHAPTER 1. INTRODUCTION 3

1.2.3 Language Support for Lightweight Transactions

In [11] the authors describe how they integrated STM into the Java program-
ming language by modifying both the compiler[11, p. 4] and virtual machine[11,
p. 9]. The authors design, implement and performance test an obstruction
free STM system. The STM system uses a non-blocking implementation, and
thus guarantees the absence of deadlocks and priority inversion. Addition-
ally, non-conflicting executions are executed concurrently. Per object, it uses
an ownership record to track the object’s version number as well as which
transaction currently owns the object[11, p. 6]. Transaction descriptors are
employed in order to keep track of the read and write operations performed
by a transaction. Transactions are committed using CAS in order to ensure
atomicity[11, p. 7]. The performance tests show how the STM system scales
almost as well or better than locking, when the amount of cores available is
increased[11, p. 12]. The test cases were performed on data structures, e.g. a
ConcurrentHashmap, as opposed to an entire system.

1.2.4 Transactional Locking II

In [12] the TLII STM system designed at Sun Microsystems Laboratories by
Dice et al. is described. While many of the other STM systems described here
adopt an obstruction-free approach to implementing STM, TLII uses commit
time locking[12, p. 199]. A transaction explicitly records its read and write
operations in a read and write set[12, p. 198]. Instead of writing directly to
memory, all writes are written to the write set. When a transaction is about to
commit it acquires the lock on each object in the write set and writes the values
contained in the write set to the actual memory locations before releasing
the locks[12, p. 200]. This corresponds to a two phase locking scheme[13, p.
455]. A global version clock is used to verify that transactions are executed
in isolation[12, p. 201]. As a transaction starts it reads the current value of
the global version clock, storing it locally so it can be used for validation. As
a transaction is about to commit, it validates its read set by comparing the
locally stored read stamp with each object’s associated write stamp[12, p. 200].
If any write stamps are higher than the locally stored read stamp, a conflict
has occurred and the transaction must abort and re-execute.

1.2.5 A (Brief) Retrospective on Transactional Memory

Inside Microsoft, a group of architects and researchers led an incubation
project. Joe Duffy, now director of the Compiler and Language Platform group
at Microsoft, gives a retrospective view on their work in [14]. Their goal was
to provide a language integrated STM system with support in the Just-In-
Time Compilation (JIT) compiler, garbage collector, compiler and debugger.
Their overall strategy was to use a version number for optimistic reads, and a
lock for writes. Initially they chose weak atomicity and update in-place, but

CHAPTER 1. INTRODUCTION 4

realized that this approach suffered from privatization issues, breaking the
isolation. They settled on a write on-commit approach and chose unbounded
transactions to provide a broader appeal. Furthermore they relied on compiler
optimization through static analysis to remove unnecessary barriers as well as
finding violations of the isolation introduced by the programmer. The authors
identified STM as a systemic and platform wide technology shift, just like
generics. Having a platform wide change, requires careful integration with
existing language features, in order to preserve the orthogonality. Several
critical operations, that would cause trouble if permitted inside a transaction
since their actions are non-reversible, were identified. These include allocation
of finalize objects, IO calls, GUI operations, P /Invokes to Win32, library calls
and the use of locks. Ultimately, this led to the realization that not all problems
are transactional. Very little NET code, but computations performed solely
in memory, could actually run inside transactions. This combined with the
privatization issue and several minor but continuous arising problems, caused
Joe Duffy to state that the research area of STM was, as of January 2010, not
mature enough, and thus STM.NET never made it outside of the incubation
project.

1.3 Scope

STM has been an active area of research for almost 20 years[15]. While the
research has come far from the initial proposal of statically sized memory
transactions, the area still has unsolved problems, including issues with side
effects, 10, and exceptions occurring inside transactions[16]. While more
research into solving these known problems as well as the creation of new STM
algorithms with good performance is of interest to the research community,
it is not the focus of this master thesis. Instead the focus is evaluating the
integration of STM in the C# programming language. Specifically C# 5.0,
the most recent version at the time of writing[17].

The Roslyn compiler project contains compilers for both Visual Basic and
C+#[4]. As this master thesis focuses on C# we will restrict any investigation
into the Roslyn compiler to focus on the C# compiler as well as shared
functionality of interest. We realize that the Roslyn compiler contains features
for the unreleased C# 6.0, but as these features are uncompleted and not final,
they will not be accounted for in the integration.

As of February 2015 Microsoft released the source code for an independent
version of its .NET runtime environment Common Language Runtime, called
the Core CLR on Github[5]. While this undoubtedly presents many research
opportunities for the area of STM as well as other computer science areas,
the CLR is considered out of scope for this thesis. The CLR Core is mainly
written in C++[5], a language with which we have only limited experience.

CHAPTER 1. INTRODUCTION)

Furthermore, the Core CLR consists of roughly 2.6 million lines of code[18]
making it a complex and time demanding task to gain an understanding of its
structure.

1.4 Problem Statement

The goal of this master thesis is to investigate the usability of language
integrated support for STM in C#, compared to a library based solution
and existing locking features. To formalize our goal, we have constructed the
following hypothesis:

Hypothesis Language integrated STM provides a valid alternative to locking
in terms of usability, and provides additional benefits compared to library
based STM, when solving concurrency problems in C#.

In order to evaluate the hypothesis, a language integrated STM system for
C#, called AC#, and STM library for the .NET platform, will be designed
and implemented. Using AC# and the STM library a number of representa-
tive concurrent problems will be implemented. These implementations will
be compared to equivalent lock based implementations using the evaluation
method defined in Section 1.5.

1.4.1 Problem Statement Questions

In order to structure our investigation we have identified a number of problem
statement questions. The questions are based on findings from the theory
investigated in our previous study[3], investigation of related work, exploratory
investigations into STM implementations, and the Roslyn compiler.

1. What features should an STM system for C# contain?
2. What problems exist in integrating STM in C#7

3. What different implementation strategies exist for STM?
4. How is the Roslyn compiler structured?

5. How can the Roslyn compiler be utilized to integrate STM into the C#
language?

6. How does the characteristics differ when using locking, library-based
STM and language-based STM in the context of C#.

CHAPTER 1. INTRODUCTION 6

1.5 Evaluation Method

The evaluation is conducted by analyzing characteristics of the different con-
currency approaches in a qualitative manner, based on a number of concurrent
implementations. The characteristics utilized are an extended version of the
characteristics employed in our prior study[3, p. 15-21]. Each of the character-
istics highlight key differences in the usability of the concurrency approaches.
Combined, they form a comprehensive, although not exhaustive, view of the
usability of the concurrency approaches. By evaluating both library-based
STM and language based STM their differences will be highlighted which can
serve to justify language integration of STM.

1.5.1 Selected Problems

Four concurrency problems have been selected for evaluation:

1. The Dining Philosophers (Appendix B.1)
2. The Santa Claus Problem (Appendix B.2)
3. A Concurrent Queue (Appendix B.3)

4. A Concurrent Hashmap (Appendix B.4)

The Dining Philosophers problem represents a well known concurrency problem
which highlights some of the pitfalls associated with synchronization of threads.
The Santa Claus problem encompasses a high degree of modeling and requires
complex synchronization, e.g. allowing only a predefined number of threads
to enter a critical region at a time and waiting on one of multiple conditions.
Employing this problem helps investigate what advantages STM provides
compared to locking in such scenarios. Both the concurrent queue and hashmap
represent real world problems. Concurrent queues are widely used in concurrent
applications[19] and concurrent hashmaps can for example be used in a compiler
to maintain a symbol table[20]. Both data structures also benefit from fine
grained synchronization and is available in a number of languages, including
C#. Together these problems provide a varied perspective by exerting different
aspects of each approach e.g. waiting on one of multiple conditions and fine
grained synchronization.

The source code for each of the implementations can be found in Appendix C,
together with a description of the chosen strategy. Common for all the solutions
are, that they must solve the problem by using the specified concurrency
approach and utilize the strengths of the approach.

CHAPTER 1. INTRODUCTION 7

1.5.2 Evaluation of Characteristics

For each of the selected problems an implementation will be created using
locking, library based STM and AC+#. Based on these implementations each
concurrency approach will be evaluated according to an extended version of the
characteristics defined in our previous work[3, p. 15-21]. These characteristics
are a combination of general characteristics for concurrency models such
as pessimistic or optimistic concurrency, as well as characteristics such as
simplicity and readability which have been used to evaluate the usability of
programming languages[21, p. 7]. The additional characteristics are Data
Types and Syntax Design, which are relevant as the characteristics are now used
to evaluate concrete implementations in a language as opposed to concurrency
models in our previous work|[3].

Each of these characteristics range from one extreme to another, e.g. high
or low readability, however a concurrency approach may not reside at one
of these extremes. Therefore each concurrency approach will be given a
placement on the spectrum of each characteristic, based on the findings of
the evaluation. In order to visualize this placement a scale similar to the one
presented in Figure 1.1 is employed. Here X and Y represent the two extremes
of the spectrum while the indicators represent the placement of each of the
concurrency approaches on the spectrum. As an example X and Y could be
low and high writability, Figure 1.1 then shows that each of the concurrency
approaches resides more towards the high writability end of the spectrum.
As the evaluation of the characteristics is subjective, the placement of each
concurrency approach on a spectrum allows for a more clear comparison of
the findings in the evaluation.

AC#
Locking

| ﬂ Library STM |

Figure 1.1: Example of characteristic evaluation scale

1

2 Background Knowledge

This chapter contains background knowledge required to understand the re-
maining chapters. In Section 2.1 the locking constructs in C# are described,
establishing the term “locking” in respect to our hypothesis. Furthermore,
the key concepts of STM will be explained in Section 2.2, enabling the reader
to understand the details of the design and implementation, discussed in
Chapter 5 and Chapter 6 respectively.

2.1 Locking in C#

Locking in C# can in the simplest cases be done with the lock state-
ment. For more specialized cases the Monitor class can be used. Fur-
thermore, a number of other special case locking constructs can be found in
the System.Threading namespace e.g. [22] Mutex, SemaphoreSlim,
SpinLock and ReaderWriterLockSlim. This is not an exhaustive list,
but encompasses the constructs used to solve the concurrency problems defined
in Section 1.5 as well as some of the more specialized constructs.

2.1.1 Lock Statement

The lock statement[17, p. 102] provides a way to acquire and release a lock on
a resource. In the scope following the lock statement, a lock is automatically
acquired at the beginning and released at the end. The lock provides mutual-
exclusion, resulting in threads trying to acquire an already acquired lock,
blocking until the lock is released. The lock statement ensures that the
programmer does not forget to release the lock. Listing 2.1 exemplifies the
usage of the lock statement.

Listing 2.1: Lock Statement

1 protected object thisLock = new object();
2 public int Get () {
3 lock (thisLock) {

4 if (!_queue.IsEmpty()) {

5 return _queue.Dequeue () ;
6 lelse{

7 return default (int);

8 }

9 }

0}

CHAPTER 2. BACKGROUND KNOWLEDGE 9

2.1.2 Monitor

The lock statement described in Section 2.1.1 is an assisting way of using
the Monitor class[23]. The Monitor cannot be instantiated as an object,
but can be used in any context through its static methods. The methods
Enter and Exit are used to acquire and release a lock on a resource. The
Monitor class also provides functionality such as allowing the programmer
to specify a timeout on the acquisition of a lock. This is done by using the
TryEnter method. The Monitor also facilitates communication between
threads with the Wait, Pulse, and PulseAll methods. A thread can call
the Wait method to release the lock its holding, thus making it possible for
other threads to change the state of the resource. When the other thread is
done, it can use Pulse to notify the next waiting thread of changes, and it
will then try to reacquire the lock. PulseAll notifies all the waiting threads.

2.1.3 Mutex

The Mutex class[24] provides mutual exclusion to a shared resource by allowing
only a single thread to acquire the Mutex at a time. The Mutex ensures
thread identity, guaranteeing that only the thread which acquired the Mutex
can release it. A Mutex can be acquired by the method WaitOne, which
requests ownership of the Mutex and blocks the calling thread until the Mutex
is acquired or a supplied timeout is met. When a thread is done using the
Mutex, it can use ReleaseMutex to release it.

2.1.4 SemaphoreSlim

The SemaphoreSlim class[25] is similar to a Mutex, but allows multiple
threads to enter a shared resource at a time. The amount of threads allowed
to enter the semaphore at a given time is set as a constructor argument.
Contrary to Mutex, the SemaphoreSlim does not assure thread identity
on the WaitOne or Release methods. Additionally, there is no guaranteed
order in which the waiting threads will enter the SemaphoreS1im.

2.1.5 SpinLock

The SpinLock struct[26] is similar to the Monitor class, and has the methods
Enter, TryEnter, and Exit which are called on an instance of the struct. It
is implemented as a struct, easing the pressure on the Garbage Collection (GC)
but requiring the programmer to pass it by ref. The primary purpose is to allow
a thread to spin wait, instead of blocking causing a context switch to occur.
This is useful in scenarios where locks are fine grained and in large numbers,
or when the holding time of the locks is consistently short. SpinLock is
not reentrant, consequently if the same thread tries to take the lock twice, an
exception will be thrown.

CHAPTER 2. BACKGROUND KNOWLEDGE 10

2.1.6 ReaderWriterLockSlim

The class ReaderWriterLockS1im[27] is a lock with multiple states allow-
ing threads to differentiate between reading or writing to a shared resource.
This enables concurrent reads while keeping writes exclusive, and therefore
safe. The methods EnterReadLock, EnterUpgradeableReadLock, and
EnterWriteLock enter reading, upgrade and write mode respectively. The
read mode is only for reading the shared resource, enabling concurrency with
other readers, but mutual exclusion to writers. The upgradeable readlock
enables a common pattern where a value is read, and only updated under cer-
tain conditions. If a thread acquires a ReaderWriterLockSlim in upgrade
mode and determines that an update to the protected resource is required, the
lock can be upgraded to a write lock without releasing the update lock, thus
disallowing other threads from intervening when changing the lock to write
mode. The write lock provides mutual exclusion, ensuring exclusive access to
the shared resource. All of these methods are also available in a version which
allows a timeout to be specified.

2.2 STM Key Concepts

This part contains a modified version of [3, p. 43-48]. The reader can skip this
section if she is familiar with STM.

2.2.1 Software Transactional Memory

STM provides programmers with a software based transactional model through
a library or compiler interface[28]. It seeks to solve the issues introduced by
running multiple processes concurrently in a shared memory space, e.g. race
conditions as discussed in [3, p. 22-26]. To handle these challenges, STM offers
the programmer ways to define transaction scopes over critical regions. The
transactions are executed concurrently and if successful, changes are committed.
If a transaction is not successful it will re-executed. Just by defining critical
regions, STM ensures atomicity and isolation, and as a result the low level
details of synchronization are abstracted away from the programmer[6, p. 48].
Therefore, STM provides a more declarative approach to handle shared-memory
concurrency than by using locks. A number of issues related locking discussed
in [3, p. 26-30], such as deadlocks, do not exist in STM.

2.2.2 Example of using STM

Languages supporting STM must encompass a language construct for specifying
that a section of code should be executed as a transaction and managed by the
STM system. This basic language construct is often referred to as the atomic
block[6, p. 49][11, p. 3]. The atomic block allows programmers to specify a
transaction scope wherein code should be executed atomically and isolated, as

CHAPTER 2. BACKGROUND KNOWLEDGE 11

Listing 2.2: Threadsafe queue

1 public int Get () {

2 atomic |

3 if (!_gqueue.IsEmpty()) {

4 return _queue.Dequeue () ;
5 }else(

6 return default (int);

7 }

8 }

9 1}

exemplified in Listing 2.2. Exactly how a transaction scope is defined varies
between STM implementations. As an example, an STM integrated in the
language could look like Listing 2.2 on line 2, while a library based system
such as JDASTM][29] uses calls to the methods startTransaction and
commitTransaction.

2.2.3 Conflicts

By declaring an atomic block, the programmer delegates the responsibility of
synchronizing concurrent code to the STM system. Avoiding race conditions
and deadlocks, while still allowing for optimistic execution introduces conflicts
between transactions. In the context of STM a conflict is two transactions
perform conflicting operations on the same data, resulting in only one of them
being able to continue[9, p. 20]. A conflict arises if one transaction reads the
data while the other writes to it. Different techniques of conflict resolution are
discussed in [3, p. 45-46 & 52-55]. Despite the different implementation details,
the semantics does not change from the point of view of the programmer.
However, it is important to know that transactions may conflict, since a high
level of contention can negatively affect performance[3, p. 52].

2.2.4 Retry

By enabling the programmer to interact further with the STM system beyond
declaring atomic blocks, busy-waiting can be avoided. A common task in con-
current programming is executing code whenever some event occurs. Consider
a concurrent queue shared between multiple threads in a producer consumer
setup. It is desirable to only have a consumer dequeue an item whenever one
is available. Accomplishing this without the need for busy waiting frees the
computational resources for other tasks.

In [6] Harris et al. introduce the retry statement for assisting in conditional
synchronization within the context of STM. The retry statement is explicitly
placed within an atomic block. If a transaction encounters a retry statement

CHAPTER 2. BACKGROUND KNOWLEDGE 12

during its execution it indicates that the transaction is not yet ready to run
and the transaction should be aborted and retried at some later point[9, p.
73]. The transaction is not retried immediately but instead blocks, waiting to
be awoken when one of the variables read in the transaction is updated by
another transaction[6, p. 51]. By blocking the thread instead of repeatedly
checking the condition, busy waiting is avoided.

A transaction using the retry statement is shown in Listing 2.3. If the queue
is empty the transaction executes the retry statement of line 4, blocking the
transaction until it is retired at a later time.

Listing 2.3: Queue with retry

public int Get () {

atomic {
if (_queue.IsEmpty()) {
retry;

return _queue.Dequeue () ;

1

2

3

4

5 }
6

7 }
8

}

2.2.5 orElse

In addition to the retry statement Harris et al. propose the orElse block.
The orElse block handles the case of waiting on one of many conditions to be
true by combining a number of transaction alternatives. These alternatives are
evaluated in left-to-right order and only one of the alternatives is committed|6,
p. 52]. The orElse block works in conjunction with the retry statement to
determine which alternative to execute. An example of a transaction employing
the orElse block is shown in Listing 2.4. If an alternative executes without
encountering a retry statement it gets to commit and the other alternatives
are never executed[9, p. 74]. However, if an alternative encounters a retry
statement its memory operations are undone and the next alternative in the
chain is executed[9, p. 74]. If the last alternative encounters a ret ry statement,
the transaction as a whole is blocked awaiting a retry at a later time[9, p. 74].

Listing 2.4: Queue with orElse

1

1 public int Get () {

2 atomic {

3 if (_queue.IsEmpty())

4 retry;

5 return _queue.Dequeue () ;
6 } orElse {

7 if (_queue2.IsEmpty())

8 retry;

9 return _queue2.Dequeue () ;
0 } orElse {

CHAPTER 2. BACKGROUND KNOWLEDGE

11 if (_queue3.IsEmpty())

12 retry;

13 return _queue3.Dequeue () ;
14 }

15 }

3 Roslyn

This chapter describes the Microsoft Roslyn project, hereafter referred to as
Roslyn. Little literature on Roslyn exists. The main source is [30], which is
a whitepaper from Microsoft presenting an overview of Roslyn. However the
whitepaper’s main focus is on the API side of Roslyn, described in Section 3.1,
and not the internal details of compilation, which are required in order to
integrate STM into the Roslyn C# compiler. Beyond the whitepaper, blog and
forum posts have been used, but most of these also only describe the API side.
The rest of the knowledge described in this chapter is obtained by inspecting
and debugging the source code.

The purpose of this chapter is to obtain the knowledge required to modify
the C# compiler with STM support, in order to build AC#. As a result this
chapter does not cover the Visual Basic (VB) aspects of Roslyn. The extension
of the Roslyn compiler is described in Chapter 7.

In Section 3.1 an introduction to the Roslyn project is given. In Section 3.2 the
architecture of Roslyn is described. Following this, Section 3.3 describes the
internal details of the compiler phases, information which is valuable in order
to select how and where to extend the compiler with STM support. Finally in
Section 3.4, a detailed description of the syntax trees of the Roslyn compiler is
given.

3.1 Introduction

Project Roslyn is Microsoft’s initiative of completely rewriting the C# and
VB compilers, using their respective managed language. Roslyn was released
as open source at the Microsoft Build Conference 2014[31].

Beyond changing the languages the compilers are written in, Roslyn provides
a new approach to compiler interaction and usage. Traditionally a compiler is
treated as a black box which receives source code as input and produces object
files or assemblies as output[30, p. 3]. During compilation the compiler builds
a deep knowledge of the code, which in traditional compilers is unavailable to
the programmer and discarded once the compilation is done. This is where
Roslyn differs, as it exposes the code analysis of the compiler by providing an
API, which allows the programmer to obtain information about the different
compilation phases[30, p. 3].

The compiler APIs available are illustrated in Figure 3.1 where each API
corresponds to a phase in the compiler pipeline. In the first phase the source
code is turned into tokens and parsed according to the language’s grammar.

14

CHAPTER 3. ROSLYN 15

This phase is exposed through an API as a syntax tree. In the second phase
declarations, i.e. namespaces and types from code and imported metadata,
are analyzed to form named symbols. This phase is exposed as a hierarchical
symbol table. In the third phase identifiers in the code are matched to symbols.
This phase is exposed as a model which contains the result of the semantic
analysis. This model is referred to as a semantic model and exposes methods
that answer semantics questions related to the syntax tree for which it is
created[30]. Through the semantic model programmers can obtain information
such as:

e The type of an expression
e The symbol corresponding to a declaration

e The target of a method invocation

In the last phase, information gathered throughout compilation is used to emit
an assembly. This phase is exposed as an API that can be used to produce
Common Intermediate Language (CIL) bytecode[30, p. 3-4].

Compiler API - Emit API

Cgmpl|er - IL Emitter
P|pe||ne Metadata
Import

Figure 3.1: Compiler pipeline in contrast to compiler APIs[30, p. 4].

Knowledge obtained through the APIs is valuable in order to create tools that
analyze and transform C# or VB code. Furthermore Roslyn allows interactive
use of the languages using a Read-Eval-Print Loop (REPL)[32], and embedding
of C# and VB in a Domain Specific Language (DSL)[30, p. 3].

3.2 Roslyn Architecture

The Roslyn solution available on github!, forked? on the 9th February 2015,
consists of 118 projects which include projects for Visual Studio development,
interactive usage of the languages and more as illustrated on Figure 3.2. The

"nttps://github.com/dotnet/roslyn
2https://github.com/Felorati/roslyn

https://github.com/dotnet/roslyn
https://github.com/Felorati/roslyn

CHAPTER 3. ROSLYN 16

a1 Solution 'Roslyn’ (118 projects)
b .nuget

4+ = Compilers

» = Core

» = CSharp

» © VisualBasic
Diagnostics
EditorFeatures
ExpressionEvaluator
Features
Interactive
Scripting

Tools
VisualStudio
Workspaces

v v v v v v v v v

Figure 3.2: Overview of projects in Roslyn solution.

Compilers folder contains the source code for the C# and VB compiler,
each located in a separate folder. They share common code and functionality
located within the Core folder, including code for controlling the overall
compilation flow. Both compilers use the same patterns for compilation|[33,
09:36-10:36].

4 . CSharp
sE cse
s® csc2
sl CSharpCodeAnalysis (Portable)
s CSharpCodeAnalysis.Desktop

>
>

>

>

» s CSharpCommandLineTest

» s CSharpCompilerEmitTest

» s CSharpCompilerSemanticTest
» s CSharpCompilerSymbolTest

» 5@ CSharpCompilerSyntaxTest

» s CSharpCompilerTestUtilities

Figure 3.3: Overview of CSharp folder.

The projects contained in the CSharp folder are shown on Figure 3.3.
The csc project is the C# command line compiler, which is the starting
point of a C# compilation. The CSharpCodeAnalysis.Portable and
CSharpCodeRAnalysis.Desktop projects contain the C# code analysis,
which is the actual code required for compilation. The rest of the projects
in the CSharp folder mainly involve tests for the C# compiler. The Core
folder has a structure similar to that of the CSharp folder, encompassing a
CodeAnalysis.Portable and CodeAnalysis.Desktop project which
contain the common core analysis code.

For more information about the architecture, an overview of the Roslyn
Compilers call chain can be found in Appendix A.

CHAPTER 3. ROSLYN 17

3.3 Compiler Phases

The C# compiler builds upon concepts from traditional compiler theory,
such as lexing, parsing, declaration processing, semantic analysis and code
generation[21][34]. Throughout the phases of compilation, traditional concepts
such as syntax trees, symbol tables and the visitor pattern[35, p. 366] are also
used. This section elaborates on the compiler phases in the compiler pipeline
shown in Figure 3.1.

4 :@ CSharpCodeAnalysis (Portable)
» +a References

>« Binder

> = BoundTree

> = CodeGen

» = Compilation

> = Compiler

» = Declarations

» = DocumentationComments

» = Emitter

» = Errors

» = FlowAnalysis

» = Lowering

> = obj

> = Parser

» = SymbolDisplay

> = Symbols

> = Syntax

» = UseSiteDiagnosticsCheckEnforcer
3 Utilities

Figure 3.4: Overview of the CSharp.CSharpCodeAnalysis.Portable
project.

3.3.1 Initial Phase

The initial phase of compilation entails initial work, such as parsing the
command line arguments and setting up for compilation, described in further
detail in Appendix A. This phase is executed sequentially[36].

3.3.2 First Phase

The first phase involves parsing the source code, which is done in a traditional
compiler fashion by lexing source code into tokens and parsing them into a
syntax tree, which represents the syntactic structure of the source code. The
lexer is implemented using a switch which identifies the type of token to lex,
given the first character of the token string. The parser is implemented as a
top-down parser using the common recursive descent approach. The parsing
phase will check for syntax errors in source code, but does not have enough
information to check for semantic errors, such as scope or type errors. The
phase is concurrent, as several files may be parsed simultaneously[36]. The

CHAPTER 3. ROSLYN 18

code for this phase is mainly located within the Parser and Symbols folder.
The syntax tree and its contents are described in more detail in Section 3.4.

3.3.3 Second Phase

The second phase involves creating a Compilation type object, specifically a
CSharpCompilation object. A Compilation object contains information
necessary for further compilation e.g. all assembly references, compiler options
and source code. In the creation of a CSharpCompilation object, a declara-
tion table is created which keeps track of type and namespace declarations in
source code[36]. This is done sequentially[36]. Additionally the Compilation
object contains a symbol table, which holds all symbols declared in source
code or imported assemblies. Fach namespace, type, method, property, field,
event, parameter and local variable is represented as a symbol and stored in
the symbol table[30, p. 14]. Each type of symbol has its own symbol class, e.g.
MethodSymbol, which derives from the base Symbo1l class. The symbol table
can be accessed by the GlobalNamespace property, as a tree of symbols,
rooted by the global namespace symbol. Furthermore a range of methods and
properties to obtain symbols also exists. The code for this phase is mainly
located within the Declarations and Symbols folders.

3.3.4 Third Phase

In order to enable semantic analysis, the third phase entails fully binding all
symbols, which determines what each symbol actually refers to, e.g. what
namespace and overloaded method, a particular method refers to. Any problems
with symbol binding, like inheritance loops, will be reported. Binding is done
concurrently, however binding members of a type will force base types to be
bound also. For symbols not related, they can be bound in any order [36].

Additionally, the binding phase also creates a bound tree, which is the Roslyn
compilers internal tree used for flow analysis and emitting. In [37] Anthony D.
Green states that they do not want to expose the bound tree through the API
as:

“It has been a long standing design decision not to expose the
bound tree. The shape of the bound nodes is actually pretty fragile
compared to the shape of the syntax nodes and can be changed
around a lot depending on what scenarios need to be addressed. We
might store something somewhere one day for performance and
remove it the next for compatibility or vice versa”

— Anthony D. Green[37]

CHAPTER 3. ROSLYN 19

Data flow and control flow analysis uses the bound tree to for instance check
if statements are reachable, as the C# specification states that an unreachable
statement should produce a warning[38]. The code for this phase is mainly
located in the Binder, BoundTree, and FlowAnalysis folders.

3.3.5 Final Phase

Finally, in the fourth and final phase all information built up so far is emitted
as an assembly. Method bodies are compiled and emitted as CIL concur-
rently. However methods within the same type are compiled sequentially in
a fixed order, typically lexical. The final emitting to the assembly is done
sequentially[36]. The code for this phase is mainly located in the CodeGen
and Emitter folders.

3.4 Syntax Trees

Syntax trees are the primary structure used throughout compilation. Syntax
trees in the Roslyn compiler have three key attributes[30, p. 6]:

1. A syntax tree is a full fidelity representation of source code, which means
that everything in the source code is represented as a node in the syntax
tree. If programs are invalid, the syntax tree represents these errors in
source code by tokens named skipped or missing in the tree.

2. A syntax tree produced from parsing must be able to be translated back
to the original source code. This is referred to as being roundtripable.

3. Syntax trees are immutable and thread-safe. This enables multiple users
to use the same syntax tree in different threads without concurrency
issues. As syntax trees are immutable, factory methods exist in order to
help create and modify trees. Upon a modification, the factory methods
does not copy the entire tree along with the modification, instead the
underlying nodes are reused. As a result, trees can be modified fast and
with a low memory overhead.

3.4.1 Red And Green Trees

The Roslyn team wanted a primary data structure for compilation with the
following characteristics[39]:

e Immutable.

e Form of a tree.

e Cheap access to parent nodes from child nodes.

CHAPTER 3. ROSLYN 20

e The ability to map from a node in the tree to a character offset in the
source code.

e The ability to reuse most nodes in the original tree when modifying trees.
However fitting all those characteristics into a single data structure is problematic[39]:

e One problem is simply constructing a tree node, because both the child
and parent are immutable and must have a reference to each other, so it
is not possible to create one before the other.

e Another problem is reusing nodes for other parents when modifying the
tree, as nodes are immutable and it is therefore not possible to change
the parent of a node.

e A third problem is inserting a new character into the source code, as
the position in source code of all nodes changes after that point. This
is makes it problematic to adhere to the characteristic of reusing most
nodes when modifying trees, because a modification to source code can
change the character offset of many nodes.

Instead the Roslyn compiler uses two types of trees, green trees and red trees,
in order to fulfill all their required characteristics.

The green tree is immutable, has the ability upon modification to reuse
most unaffected nodes, has no parent references, is built bottom-up, and
does not know the absolute positions of nodes in the source code, only their
widths[39].

For the expression “5*5+5%5”, a typical parse tree is shown in Figure 3.5, and
a potential green tree is shown in Figure 3.6. As the green tree nodes do not
have parent references and positions in source code, sub-trees and nodes can
be reused, which results in a more compact tree. Factory methods are used
to create new nodes in the tree in order to determine if existing nodes can be
reused or new ones must be created. If nodes for a given expression already
exist they are reused, otherwise new nodes are created.

However reuse of existing nodes is not guaranteed, as that requires all nodes
to be cached, which according to Vladimir Sadov from Microsoft in [36] makes
the reuse caches unnecessarily big. The caches are instead a fixed size, where
new nodes will replace older ones when the maximum size is reached. Sadov
states that it works pretty well because recently accessed nodes are likely to
be accessed in the near future. Another trade-off is that they do not reuse
non-terminals with more than 3 children, as it gets more expensive and less
likely to match, the more children a non-terminal has[36].

CHAPTER 3. ROSLYN 21

OOOOOLOO

OO0 O 000
I I I I I I
oJeJo oJeJo

Figure 3.5: Typical parse tree of ex

OOOOOOO

A4
Y

Figure 3.6: Green tree of expression, reusing identical sub-trees. Inspired by

[36).

CHAPTER 3. ROSLYN 22

The red tree is an immutable facade built around the green tree. It has
parent references and knows the absolute positions of nodes in the source code.
However these features prevent nodes from being reused, which means that
making modifications to a red tree is expensive. Therefore another approach
than building a new red tree upon every modification[39] is used.

The red tree is built lazily using a top-down approach, starting from the root of
the tree and descending into children. Once the parent of a node is available, all
information required to construct a red node is available. The internal data for
the node can be obtained from the corresponding green node. Furthermore the
absolute position of the node in source code can be computed, as the position
of the parent is known, along with the source code width of all children that
come before the given node[36].

So when modifications are made to the source code, an entire new red tree is
not computed. Instead the green tree is modified, which is a relatively cheap
operation, because most nodes can be reused. In terms of the red tree, a new
red node is created as root with 0 as position, null as parent and the root
green node as the corresponding green node. The red tree will then only build
itself if a user descends into its children and it might only descend into a small
fraction of all the nodes in the tree[36].

3.4.2 Contents Of Syntax Trees

The elements contained within syntax trees are syntax nodes, tokens and trivia.
In this section these constructs and some of their properties are described.
Additionally the supporting constructs Spans, Kinds and Errors are described.

3.4.2.1 Syntax Nodes

Syntax nodes represent non-terminals of the language grammar, such as dec-
larations, statements and expressions. Each syntax node type is represented
as a separate class that derives from the base SyntaxNode class. As syntax
nodes are non-terminals, they always have children, either in the form of other
syntax nodes or syntax tokens.

In relation to navigating syntax trees, all syntax nodes has[30, p. 7]:

e A parent property to obtain the parent node
e For each child, a child property to obtain the child
e A ChildNodes method to return a list of all child nodes

e Descendant methods i.e. DescendantNodes, DescendantTokens
and DescendantTrivia, to obtain a list of all descendant nodes,
tokens or trivia for a given node.

CHAPTER 3. ROSLYN 23

Additionally, optional children are allowed, which are represented as null if
they are not present. For example an IfStatementSyntax syntax node has
an optional ElseClauseSyntax syntax node[30, p. 7].

3.4.2.2 Syntax Tokens

Syntax tokens represent terminals of the language grammar, such as keywords,
literals and identifiers. As opposed to syntax nodes, which do not have any
children.

Different types of syntax tokens do not have a separate class, instead all syntax
tokens are represented by a single SyntaxToken type. This means that there
is a single structure for all tokens. To get the value of a token, three properties
exist: Text, ValueText and Value. The first returns the raw source text as
a String, including extra characters such as escape characters. The second
returns only the value of the token as a String. The last returns the value
as the actual value type e.g. if the token is an integer literal then the property
returns the actual integer. To allow different return types, the return type of
the last property is Object[30, p. 7-8].

Additionally, for performance reasons the SyntaxToken type is defined as a
struct[30, p. 7].

3.4.2.3 Syntax Trivia

Syntax trivia represent parts of source code that can appear between any
two tokens, such as whitespace and comments. Syntax trivia is not included
as a child node in the tree, but instead associated with a given token. A
syntax token holds all the following trivia on the same line, up to the next
token. Syntax tokens hold trivia in two collections: LeadingTrivia and
TrailingTrivia. The first token holds all leading initial trivia, and the
end-of-file token holds the last trailing trivia in source code[30, p. §].

As trivia are not nodes in the tree, they do not have a Parent property.
Instead the associated token for some trivia, can be accessed with the Token
property. Additionally, like syntax tokens, trivia are also structs and have only
a single SyntaxTrivia type to describe them all.

3.4.2.4 Spans

Every node, token, and trivia knows its position in source code. This is
accomplished by the use of a TextSpan struct type. A TextSpan object
holds the start position of a node, token, or trivia in source code and a count
of characters, both represented as 32-bit integers[30, p. 8].

CHAPTER 3. ROSLYN 24

Every node, token and trivia has two properties to obtain spans: Span and
FullSpan. The Span property includes only the span of the node, token or
trivia and not any trivia, where the FullSpan property includes the normal
span and any leading or trailing trivia.

3.4.2.5 Kinds

Every node, token and trivia has an integer RawKind property, used to identify
the syntax element type. Each language, C# or VB, contains a SyntaxKind
enumeration that contains all the nodes, tokens and trivia in the language. The
RawKind property corresponds to an item in the SyntaxKind enumeration
for the specific language. The CSharpSyntaxKind method gets and auto-
matically cast the bscodeRawKind to an item in the CSharpSyntaxKind
enumeration[40][30, p. 9].

Kinds are especially important for tokens and trivia, as they have only a single
type, SyntaxToken and SyntaxTrivia. Thus, the only way to identify
the particular token or trivia at hand, is by identifying its associated kind.

3.4.2.6 Errors

If programs are invalid as a result of errors in source code, a syntax tree is still
produced. These errors are represented as special tokens in the syntax tree,
which are added using one of the following techniques[30, p. 9].

1. Insert a missing token in the syntax tree when the parser scans for a
particular token but does not find it. The missing token represents the
expected token, but it has an empty span and has a true IsMissing

property.

2. Skip tokens until the parser finds a token from where it can continue
the parse. The skipped tokens are added as a trivia node with the
SkippedTokens kind.

3.4.3 Syntax Tree Generation

The nodes, associated factory methods and visitor pattern for the syntax
trees are generated based on the contents of the Syntax.xml file located in
the CSharpCodeAnalysis (Portable) project. The contents of the file
describes information such as the fields and base class for each node in the
tree. Whenever the compiler is built, a tool which source code resides in the
Tools\CSharpSyntaxGenerator project is run. It generates the classes
for each node defined in Syntax.xml along with relevant factory methods,
properties for getting the value of each field associated with a node, and factory
methods for generating an updated version of the node. The tool also generates

CHAPTER 3. ROSLYN 25

the visitor pattern implementation along with the required accept methods
on each node. Both the red and green tree, described in Section 3.4.1, are

generated during this process.

4 Requirements for AC#

This chapter describes the requirements for the STM system powering ACH.
The requirements are based on known STM constructs and the characteristics,
described in Section 1.5, which the final system must be evaluated upon.
The requirements will be used to design and integrate the STM features into
C+#, described in Chapter 5. Furthermore, the requirements will be used to
implement the STM system, described in Chapter 6.

Tracking granularity is described in Section 4.1 followed by a description of the
relationship between transactions and variables i.e. what and how variables
should be tracked, is addressed in Section 4.2. Section 4.3 describes the choice
between strong and weak atomicity. The different types of side-effects and
how they are handled is discussed in Section 4.4. Conditional synchronization
is described in Section 4.5 and nesting in Section 4.6. Finally Section 4.7
describes opacity before a summary of the requirement is given in Section 4.8.

4.1 Tracking Granularity

A variable tracked by the STM system can be tracked with different granularity:
by tracking assignments to the variable, or tracking changes to the object
referenced by the variable. These different approaches affect the semantics of
the STM system and will be discussed in the subsequent sections.

4.1.1 Tracking of Variables

Tracking changes to the variable directly limits the effect of the STM system
to only variables, and not internal changes inside of the referenced object.
This is the approach used in the STM system in Clojure[41]. It offers a simple
mental model for the programmer, as only changes visible in the transaction
scope will be provided with the transactional guarantees of atomicity and
isolation. Listing 4.1 shows an example, where the field _car is assigned to a
new modified car object on line 11. This assignment is tracked by the STM
system, as opposed to the example in Listing 4.2, where the internals of the
object are not tracked, when a method with a side-effect is called on line 12.
The discussion of side-effects is expanded upon in Section 4.4.

This approach can be used in combination with both user defined code and code
in contained in binaries, but changes to their internals will not be tracked, and
therefore the reusability is limited. Should the programmer want transactional
support for the side-effects, the internals must be written to use the STM
system.

26

CHAPTER 4. REQUIREMENTS FOR AC# 27

Listing 4.1: Tracking Assignment to Variables

1 sealed class Car {

2 private readonly int _kmDriven;

3 public Car (int km) { _kmDriven = km; }
4 public Car Drive (int km) {

5 return new Car (_kmDriven + km);
6 }

7}

8 ...

9 atomic {

10 _car = _car.drive (25);

11 }

4.1.2 Tracking of Objects

Tracking of objects allows the STM system to track the internal changes to the
fields of an object. This allows the STM system to reverse the modification of
an object e.g. when an item is added to a collection inside a transaction and
the transaction is aborted, the collection can be restored to the state present
before the item was added.

Tracking changes to the internals of an object can be done at the level of only a
single object or up to the entire object structure, e.g. the objects referenced by
the object etc. In [7] Herlihy et al. present a library based STM called DSTM.
DSTM uses an approach where the programmer explicitly has to implement an
interface, which allows the STM system to create a shallow copy of an object.
The STM system returns a copy of a variable’s value to which the transaction
can apply its changes. However as the copy is shallow, the internals can
reference objects shared with the original. Side-effects on such an object will
also affect the original, causing a potentially unintentional breach of isolation.
If the programmer want a deeper tracking, she must design the internals using
the STM system. The example in Listing 4.2 demonstrates a side-effect on
the object contained in the _car variable. Because the _kmDriven field
is assigned a new value, the changes are detected by the STM system. The
change to _engine is however not detected as the Car object is not changed
when the Engine is degraded.

In [11], Harris et al. present an STM system which tracks changes throughout
the entire object structure. Changes to objects are buffered in a log and written
to the original if the transaction commits. This deep traceability is enabled
by having a part of the STM system in the runtime system, as the entire
structure is known at that level, even if an object is from a compiled library.
This approach ensures isolation, but requires modifications to the runtime
system. In the example of Listing 4.2, both _kmDriven and _engine will be
tracked by STM system presented in [11].

CHAPTER 4. REQUIREMENTS FOR AC# 28

Listing 4.2: Tracking Changes to Object

1 public class Car {

2 private int _kmDriven;

3 private Engine _engine;

4 public void Drive (int km) {
5 _kmDriven += km;

6 _engine.Degrade (km) ;

7 }
8 }

9 ...

10 atomic {

11 _car.Drive (25);
12 }

4.1.3 Choice of Tracking Granularity

Deep tracking of objects requires changes to the runtime system which is out
of scope for this thesis as described in Section 1.3. This leaves the option of
either tracking changes to individual objects, but not the objects internals, or
only tracking assignments to variables. Providing support for changes to only
individual objects may seem inconsistent from the programmer’s point of view,
due to changes to referenced objects not being tracked. Therefore tracking
of assignments to variables is selected, since it provides a consistent, simple
mental model for the programmer, displaying exactly what is tracked by the
STM system. The consequence of this choice is that the side-effects cannot be
tracked automatically, thus potentially burdening the programmer.

4.2 Transactions & Variables

As described in Section 2.2.2 an STM system must offer some way of defining
a transaction scope. As AC+# is a language integrated STM system, C# must
be extended with syntax for specifying a transaction scope.

An STM system abstracts away many details of how synchronization is achieved.
Simply applying transactions over a number of C# variables provides a high
level of abstraction but also hides the impact of synchronization. Explicitly
marking what variables are to be synchronized can assist the programmer in
gauging the performance of a transaction as well as improving the understanding
of the execution of transactions, both areas which usability studies[42][43] have
found to be problematic for some programmers. C# must be extended with
syntax for marking variables for synchronization inside transactions. A variable
marked for use in transactions is referred to as a transactional variable. A
transactional variable must function similarly to a volatile variable. That
is, the language must treat a transactional variable as any other variable of the

CHAPTER 4. REQUIREMENTS FOR AC# 29

same type when it is utilized. Thus a transactional variable can be passed as
an argument into a method with a parameter that is not tracked. Just like a
volatile variable, a transactional variable must be treated differently than
normal variables by the compiler. In terms of usability, these differences must
however largely be unnoticeable to the programmer.

Applicability is an important aspect when evaluating the usability of AC#, in
comparison to equivalent lock-based and library-based implementations. AC#
must not be overly restrictive as this will limit its applicability. Due to this, the
STM system must allow reads from transactional variables to occur both inside
and outside transactions. For writes to transactional variables a choice exists
between allowing and disallowing writes from outside transactions. Disallowing
writes from outside transactions will ensure that non-transactional access
cannot interfere with transactional access, but it will hamper the usability
of the STM system. Allowing writes from outside transactions increases the
complexity of the implementation, as any conflicts such writes create must
be detected and resolved by the STM system. Since allowing writes from
outside transactions provides the best usability, AC# must provide support for
such writes in addition to writes from inside transactions. This requirement is
closely related to the choice between strong and weak atomicity discussed in
Section 4.3.

4.3 Strong or Weak Atomicity

The atomicity guarantee provided by STM systems varies, depending on the
semantics provided. In [44] Blundell et al. define two levels of atomicity:

Definition 4.1. [...] strong atomicity to be a semantics in which transactions
execute atomically with respect to both other transactions and non-transactional
code.

Definition 4.2. [...] weak atomicity to be a semantics in which transactions
are atomic only with respect to other transactions.

Strong atomicity provides non-interference and isolation between transactional
and non-transactional code, whereas weak atomicity does not. An example of
the differences between strong and weak atomicity is presented in Listing 4.3.
Using the Car class defined in Listing 4.3, having the KmDriven setter called
from one thread, while another thread is calling the Drive method, strong
and weak atomicity yields different results. Under strong atomicity, all changes
made inside the atomic block on line 12 are isolated from non-transactional
code. Additionally, changes made from the setter are isolated from inside the
atomic block. The result is that if the setter is called in the middle of the
Drive method, a conflict will occur which.

CHAPTER 4. REQUIREMENTS FOR AC# 30

If only weak atomicity is guaranteed, given the same scenario, the change made
through the setter would be visible inside the atomic block. Thus accessing
the same variables from transaction and non-transactional code can lead to
race conditions.

Listing 4.3: Level of Atomicity

1 public class Car {

2 private int _kmDriven;
3 public int KmDriven {
4 get {

5 return _kmDriven;
6 }

7 set {

8 _kmDriven = value;
9 }

10 }

11 public void Drive (int km) {
12 atomic {

13 _kmDriven += km;
14 }

15 }

16 }

4.3.1 Issues with Atomicity Levels

In [9, p. 30-35] Harris et al. summarizes a collection of issues related to the
different levels of atomicity. The collection is non-exhaustive, but based on a
wide selection of research. The consequence of race conditions can be either:

e Non-repeatable read - if a transaction cannot repeat reading the value of
a variable due to changes from non-transactional code in between the
readings.

e Intermediate lost update - if a write occurs in the middle of a read-
modify-write series done by a transaction, the non-transactional write
will be lost, as it comes after the transaction has read the value.

e Intermediate dirty read - if eager updating[3, p. 53] is used, a non-
transactional read can see an intermediate value written by a transaction.
This transaction might be aborted, leaving the non-transactional code
with a dirty read.

The second case is exactly the case described in Listing 4.3, where weak
atomicity led to the risk of race conditions between transactional and non-
transactional code.

CHAPTER 4. REQUIREMENTS FOR AC# 31

Another issue with weak atomicity is known as the privatization problem. If
only one thread can access a variable, the need for tracking it through the STM
system ceases, and so does the associated overhead. It is therefore desirable, to
privatize a previously shared variable when doing intensive work that does not
need to be shared across threads. A technique used for privatizing a variable,
x, is to use another variable as a shared marker priv, which indicates whether
or not the x is private. This is demonstrated in Listing 4.4. Intuitively one
would believe, that if Threadl wants to privatize x, it can set priv to true
in a transaction after which Threadl has private access to x. This is however
false, since Thread?2 could read priv and assign to x, after which Threadl
executes, setting the values of priv and x, causing the transaction executed
by Thread2 to abort and rollback. During the rollback the value of x is
restored to the value it had when Thread2 wrote to it, causing Threadl’s
write to x, on line 5, outside of the transaction to be overwritten, and lost.
This example assumes weak atomicity, commit-time conflict detection, and in
place updating[9, p. 34].

Listing 4.4: Privatization Problem

1// Thread 1

2 atomic {

3 priv = true;
4}

5 x = 100;

6 // Thread 2
7 atomic {

8 if (!priv) {
9 x = 200;

0 }

1

4.3.2 Choice of Atomicity Level

All the issues listed above are related to weak atomicity, and are not present
under strong atomicity. Despite of the advantage of strong atomicity, its
shortcomings must be considered before choosing. The overhead of guarantee-
ing atomicity between transactional and non-transactional code can occur a
considerable cost[45]. In [45] Spear et al. propose four contracts, for which
privatization may be guaranteed. Strong atomicity is ranked as the least re-
strictive, but comes with a considerable cost. Although the performance is not
optimal, Hindman and Grossman show in [46] that strong atomicity with good
performance is achievable by source-to-source compiling with optimizations
through static analysis.

As described in Section 1.4, the goal of this project is to validate whether
STM is a valid alternative to locks and provides additional benefits compared
to library-based STM in terms of usability. Therefore strong atomicity in

CHAPTER 4. REQUIREMENTS FOR AC# 32

combination with marked transactional variables is chosen for AC# as it
provides the best usability.

4.4 Side-effects

Side-effects in methods are a common idiom in C#, and come in different
shapes and form. Here side-effects are categorized as in-memory side effects,
exceptions or irreversible actions. This section discusses the requirements for
handling the different types of side-effects in AC#.

4.4.1 In-memory Side-effects

Side-effects in memory is done by modifying state through references to vari-
ables outside of the method scope. An example is Listing 4.2 where the Drive
method updates the field _kmDriven and invokes a method on _engine,
potentially causing another side-effect. As discussed in Section 4.1, AC# only
track assignments to variables, and not changes to the internals of objects.
As a consequence, a side-effect such as the one in Listing 4.2 will persist
through an aborted transaction. To remedy this, classes must be implemented
to track their internals or be immutable. Listing 4.1 shows an immutable
implementation of the Car class. This design avoids side-effects, and changes
to the object will return a new object, which will be tracked if assigned to a
transactional variable.

The immutable approach suits STM well, as it is free of side-effects. Addi-
tionally it is a less error prone and secure design approach, than mutable
objects[47, p. 73]. Microsoft has an official immutable collection package!, and
is therefore giving first class support for immutability. Furthermore Microsoft
recommends the use of immutability for “[...] small classes or structs that just
encapsulate a set of values (data) and have little or no behaviors”2. Guidelines
for designing immutable objects can be found in Bloch’s Effective Java[47, p.
73-80].

4.4.2 Exceptions

Different approaches exists for handling exceptions raised inside a transac-
tion. AC# applies the programmers intuition of how exceptions work in
non-transactional code, to transactional code. Therefore, transactions will
not be used as a recovery mechanism as proposed by Tim Harris et al. in
[16]. Instead the exception will be propagated if, and only if, the transaction
is able to commit at the point where the exception is raised. Otherwise the
transactions will be aborted and re-executed. This way, the programmer will

"https://www.nuget.org/packages/Microsoft.Bcl. Immutable
https://msdn.microsoft.com/en-us/library/bb384054.aspx

https://www.nuget.org/packages/Microsoft.Bcl.Immutable
https://msdn.microsoft.com/en-us/library/bb384054.aspx

CHAPTER 4. REQUIREMENTS FOR AC# 33

only receive exceptions from code that actually takes effect, and will be able
to recover by catching any exceptions, similar to non-transactional code.

4.4.3 Irreversible Actions

Effects such as 1O performed on disk or network, native calls, or GUI operations
are not reversible. This makes them unsuitable for use in transactions, since
their effect cannot be undone, should the transaction be aborted. In [14],
Duffy proposes using a well known strategy from transaction theory[48], having
the programmer supply on-commit and on-rollback actions to perform or
compensate for the irreversible action. In [16], Harris et al. propose that IO
libraries should implement an interface, allowing any IO effects to be buffered
until the transactions commit at which point the 10 library is given a callback.
These solutions either burden the programmer using STM, or the library
designer that must implement a special interface.

While the proposed solutions show potential, solving the issue of irreversible
actions in transactions is out of scope for this thesis as described in Section 1.3.
Due to this, no guarantees are given on the effect of using irreversible actions
in transactions, and it is thus discouraged.

4.5 Conditional Synchronization

To be a valid alternative to locking C#, an STM system must be applicable
to the same use cases as locking. This requires support for conditional syn-
chronization so that STM can be employed in well known scenarios such as
shared buffers and other producer consumer setups[13, p. 128]. Section 2.2
discusses the retry and orElse constructs proposed in [6] for conditional
synchronization and composition of alternatives. Supporting such constructs
in C# will increase the applicability of the STM system.

Our previous work in [3] includes an implementation of the k-means clustering
algorithm[49, p. 451] in the functional programming language Clojure. Clojure
contains a language integrated STM implementation which does not support
constructs such as retry and orElse. As a result the implementation
requires the use of condition variables and busy waiting in scenarios where the
retry construct could have been employed[14]. Supplying retry and orElse
constructs in C# will allow for simpler conditional synchronization without
the need for busy waiting, thereby increasing the simplicity and writability in
such scenarios.

A disadvantage of providing the retry and orE1lse constructs is reduced sim-
plicity. However, as the ret ry and orE1se constructs are optional, the effects
of this disadvantage are reduced. Therefore the conditional synchronization
constructs are included in AC#.

CHAPTER 4. REQUIREMENTS FOR AC# 34

4.6 Nesting

The traditional lock-based approach to concurrency has issues with compos-
ability due to the threat of deadlocks when composing lock based code[2, p.
58]. STM attempts to mitigate these issues by removing the risk of dead-
locks, by allowing transactions to nest. Nesting can occur both lexically and
dynamically[50, p. 1][9, p. 42][28, p. 2081].

An STM system for C# must support nesting of transactions as this will allow
the system to mitigate one of the major caveats associated with lock based
concurrency. A more in depth description of the composability problems of
the lock-based concurrency model and nesting of transactions can be found in
our prior work [3].

Different semantics exist for nesting of transactions. These are: 1. Flat, 2. Open
and 3. Closed[50, p. 1][9, p. 42]. Flat nesting treats any nested transactions as
part of the already executing transaction, meaning that an abort of the nested
transaction also aborts the enclosing transaction. Closed nested semantics
allows nested transactions to abort independently of the enclosing transaction.
Under closed nested semantics, commits by nested transactions only propagate
any changes to the enclosing transaction, as opposed to the entire system. Open
nesting allows nested transactions to commit even if the enclosing transaction
aborts and propagates changes made by nested transactions to the entire
system whenever a nested transaction commits.

Flat nesting is the simplest to implement, but closed and especially open nesting
allows for higher degrees of concurrencyl[9, p. 43]. Considering the simplicity,
readability and level of abstraction provided by the different strategies, as well
as the degree of concurrency offered, closed nesting is selected for AC# . In
order to improve the orthogonality AC# is required to support both lexical
and dynamic nesting.

4.7 Opacity

Opacity is a correctness criteria requiring transactions to only read consistent
data throughout their execution[51, p. 1][9, p. 29]. This means that trans-
actions must not read data which will cause them to abort at a later time.
Consequently opacity requires that the value read is consistent when the read
occurs, but allows the variable to be changed at some later point by another
transaction. Transactions must be aborted when reads cannot be guaranteed
to be consistent.

By providing opacity, programmers do not have to reason about problems
that occur as a result of inconsistent reads[9, p. 28], thereby simplifying the
programming model. As an example, consider Listing 4.5

CHAPTER 4. REQUIREMENTS FOR AC# 35

Listing 4.5: Opacity example

using System.Threading;

public class Opacity

1

2

3

4

5 private atomic static int X = 10;
6 private atomic static int Y = 10;
7

8 public static void Main(string[] args)
9 {

10 var tl = new Thread(() =>

11 {

12 atomic

14 X = 20;
15 Y = 20;

19 var t2 = new Thread(() =>
20 {

21 atomic

22 {

23 var tmpx = X;

24 var tmpy Y;

25 while (tmpx != tmpy)
26 {

27 }

29)i

31 tl.Start();
32 t2.Start ();
33 }

34 }

where the two transactional variables X and Y are defined on lines 5 and 6
as well as the two threads t1 and t2 are defined on lines 10 and 19. t1
simply sets the value of X and Y as a transaction. t2 enters a transaction in
which it reads the values of X and Y entering a loop if the values are not equal.
Consider the interleaving shown in Figure 4.1. The transaction executed by t 2
reads the value 10 associated with the variable X after which t1’s transaction
updates the value of both X and Y to 20. t2 reads the value 20 associated
with Y. In an STM system providing opacity, this would not be allowed since
the transaction would read inconsistent data. If the STM system does not
provide opacity t2 will enter an infinite loop as tmpx and tmpy are not equal.

As opacity bolster the simplicity of using STM, it is required for AC#. This
will positively impact the readability and writability.

CHAPTER 4. REQUIREMENTS FOR AC# 36

t1 t2
tmpx = X
Time X=20
Y =20
tmpy =Y
while(tmpx != tmpy)

v

Figure 4.1: Opacity interleaving example

4.8 Summary of Requirements

In the following section, the requirements will be summarized in order to give
a clear overview of properties AC# must have.

The granularity of tracking AC# will provide, is on the variable level. That
is, the assignments to variables will be tracked, however side-effects to the
referenced object will not. Tracking the internals of an object will require the
fields of the object to be marked as transactional. A transaction scope can
be defined by a syntax extension provided in AC#. Transactions in AC# are
executed under the guarantee of strong atomicity, providing isolation between
transactional and non-transactional code. As the STM system does not track
side-effects, use of immutable objects is promoted. Exceptions occurring inside
a transaction will be propagated out of the transaction if the transaction is
able to commit. Thus transactions will only be used for synchronization, not
recovery of state. All irreversible actions, as mentioned in Section 4.4.3 are
discouraged. AC+# must facilitate conditional synchronization, by supplying
the retry and orElse constructs. Nesting is allowed in AC# under closed
nesting semantics, which strikes a balance between minimizing aborts and
ensuring simple semantics for nested transactions. Lastly, opacity will be
required for AC+#, as this correctness criteria will bolster the simplicity of the
STM system.

5 Design and Integration

This chapter describes the considerations and design decisions of AC#, the
integration with existing language features, as well as AC#’s syntax & se-
mantics. The design adheres to the requirements defined in Chapter 4, while
integrating with existing language features. The decisions made in this chapter
will influence the implementation of the STM library described in Chapter 6,
and the extension of the Roslyn C# compiler described in Chapter 7.

The atomic block and transactional variables are introduced in Section 5.1.
The different kinds of parameters and their integration with transactions is
described in Section 5.2. This is followed by an example of the new syntax,
demonstrated in Section 5.3. The retry and orelse keywords for supporting
conditional synchronization are introduced in Section 5.4. Section 5.5 shows
how AC# supports nesting of transactions. Finally, a summary of the design
requirements described in this chapter is given in Section 5.6.

Throughout this chapter, the proposed syntax extensions is described using
Extended Backus-Naur Form. The notation uses ? for signaling 0 or 1
occurrences and + for signaling 0 or more occurrences. Parentheses are used
for grouping: (iteml, item2). Items formatted as terminal are terminals,
while items formatted as non — term are non-terminals. The syntax extensions
presented are based on the syntax used in C# Precisely[52]. This is chosen due
to its compact and readable format. As the examples serve to illustrate how
the new constructs integrate with the existing language features, some elements
of the syntax will not be explained in depth. A reference to where a detailed
description can be found will be provided for each example. The complete C#
grammar used for parsing can be found at the C# specification[17].

5.1 Transactional Blocks & Variables

As described in Section 4.2 AC# must supply language integrated support for
defining transaction scopes as well as declaration of transactional variables.
For this purpose AC# extends C# with the atomic keyword. The atomic
keyword will serve as both a statement denoting a transaction scope as well as
a modifier applicable to the declaration of variables.

5.1.1 Transactional Blocks

The declaration of a transaction takes the format atomic { S }, where S is
the general class of C# statements. Any assignments to transactional variables
inside an atomic block will be perceived as executed in one atomic step by

37

CHAPTER 5. DESIGN AND INTEGRATION 38

other transactions and non-transactional code. Return statements inside an
atomic block will cause a return from the contained method, just like returns
in if and try blocks.

5.1.2 Transactional Fields

The declaration of a transactional field takes the format:

field-modifiers type name = initializer (, name = initializer)+ ;
field-modifiers type name (, name)+ ;

where field-modifiers includes the new atomic keyword in addition to the
existing modifiers: static, new, and access-modi fiers[52, p. 36]. The field-
modi fiers readonly and const are not included, since their unchangeable
nature makes tracking them in an STM system pointless. volatile is also
left out, as the STM system ensures safety in concurrent contexts.

The type can be any existing or user-defined type including dynamic. The cal-
culation of initializer follows the same rules as standard C+# field initializers[52,
p. 40].

Listing 5.1 presents an example of atomic field declarations.

Listing 5.1: Local Transactional Variable

1 private atomic string s = "abc";
2 public atomic static int x, vy, z;

5.1.3 Transactional Properties

C+# facilitates a language feature which eases the encapsulation of fields
typically used in Object Oriented Programming (OOP). The feature is known
as properties, and can appear in an automatic or a manual form[52, p. 52].
Only the automatic form of properties can be declared as transactional. The
format of a transactional property is:

atomic method-modifiers type name { access-modifier? get;
access-modifier? set; }

method-modifiers include the: static, new, virtual, override,
sealed, and abstract keywords. This is the only change to properties in
C#, and the normal rules of property usage still applies, as defined in [52, p.
52].

The manual property lets the programmer specify a backing field manually,
allowing him to specialize the functionality of the getter and setter. As a

CHAPTER 5. DESIGN AND INTEGRATION 39

consequence, specifying an atomic backing field enables the programmer to
implement a transactional property with a specialized getter and setter. The
automatic properties generate a backing field automatically, but the getter
and setter cannot have specialized functionality.

Atomic automatic properties simplifies the implementation whenever the prop-
erty serves as a simple getter and setter. An example of such a property is
shown in Listing 5.2. If the programmer wishes to supply additional logic
for the get and set operations the manual property can be made atomic by
accessing an atomic backing field as demonstrated in Listing 5.3. Both cases
are frequently used in C#, thus supplying an atomic version makes the
feature usable in transactions in an orthogonal manner.

Listing 5.2: Automatic Transactional Properties

class Car {
public atomic int KmDriven { get; set; }

}

W N =

Listing 5.3: Manual Transactional Property

1 class Car {

2 private atomic int _kmDriven;
3 public int KmDriven {

4 get {

5 return _kmDriven;

6 }

7 set {

8 _kmDriven = value;

9 // Announce value changes
10 }

11 }

12 }

No restrictions are made on transactional properties marked virtual. Conse-
quently the programmer can override a virtual atomic property supplying
a non-atomic implementation. Similarly the programmer is allowed to over-
ride a non-atomic, virtual property with an atomic auto implemented
property of the same type. This approach is flexible when supplying transac-
tional implementations of existing non-transactional base classes and allows
non transactional implementations based on a transactional base class, raising
the orthogonality of AC#.

5.1.4 Transactional Local Variables

The declaration of transactional local variables follows the format:

CHAPTER 5. DESIGN AND INTEGRATION 40

atomic var name = expr;
atomic type name (= expr)? (, name (= expr)?)+ ;

As with transactional fields, type can be any existing or user defined type
including the dynamic keyword. The deceleration of atomic const local
variables are not allowed in AC# as const variables cannot be the target of
assignments. Listing 5.4 depicts the declaration of two atomic local variable
in AC#.

Listing 5.4: Local Transactional Variable

1 atomic var s = "abc";
2 atomic int 1 = 12;

5.2 Transactional Parameters

In C# four different kinds of parameters exist: Value, Reference, Output, and
Parameter Array of which atomic Value, Reference and Output parameters
are available in AC# . This gives the programmer the flexibility to track
parameters without requiring additional ceremonial code. The semantics,
syntax, and integration of the three parameter types in AC# will be discussed
in the following sections. Why atomic parameter arrays are not supported is
discussed in Section 5.2.4. Transactional parameters adhere to the standard
rules in regards to named parameters[17, p. 145]. Just as with the parameter
modifiers ref and out, an overloaded method cannot only differ on the atomic
modifier, as it does not change its type. Thus, it follows the rules defined in
the specification[17, p. 153-157].

5.2.1 Transactional Value Parameters

According to [17, p. 97]: “A parameter declared without a ref or out modifier
is a value parameter.” If the parameter is a value type, call-by-value semantics
is used, thus assignments to the argument have no effect outside the method
scope. If the parameter is a reference type, it is also call-by-value semantics,
however side-effects that change the referenced object, will persist outside the
method scope. Due to the call-by-value semantics, assignments to an argument
of reference type will have no effect outside the method scope[52, p. 76].

In AC#, a value parameter can be marked as atomic, thus becoming a trans-
actional value parameter. Semantically a transactional value parameter is
equivalent to a transactional local variable which is instantiated to the value
of the parameter[52, p. 76]. However, the transactional parameters improve
the usability by providing an orthogonal approach for tracking assignments to
the parameters in transactions.

CHAPTER 5. DESIGN AND INTEGRATION 41

For declaration of transactional parameters the format is as follows:
atomic param-modifier? type name (= value — initializer)

where param-modifier represents C#’s ref and out keywords, and type
can be any existing or user defined type including the dynamic keyword,
as previously stated. The atomic keyword can be combined with optional
parameters. An optional parameter declared atomic follows the standard
rules for optional parameters as defined in[52, p. 46-47].

Listing 5.5 presents an example of an atomic value parameter declaration.

Listing 5.5: Transactional Value Parameter

public void Method(atomic int x, atomic string s)
{

1
2
3 //Work with transactional parameters
4

}

5.2.2 Transactional Reference Parameters

According to [17, p. 97]: “A parameter declared with a ref modifier is a
reference parameter.” As opposed to a value parameter, a reference parameter
uses call-by-reference semantics, therefore it is the actual reference used as
argument, not a copy. Consequently, assignments to the parameter will take
effect outside the method scope, regardless of the parameter being a value or
reference type. Assignments to the parameter take effect immediately, both in
and outside of the method scope[52, p. 42]. Additionally, a reference parameter
is required to be a variable which has been definitely assigned before it is
passed as a reference argument[17, p. 97|. Definitely assigned, meaning that
the variable is sure to have been given a value at the point where it is used|[17,
p. 96], in this case passed as a reference parameter.

In AC#, a reference parameter can be marked as atomic, and become a

Transactional Reference Parameter (TRP). A TRP differs from a reference
parameter by being tracked in transactions. Assignments to a TRP do not
take effect outside of the transaction immediately, but when the transaction
commits. This is a design choice made to enforce atomicity, as immediate
changes to a TRP would enable reading intermediate transaction states. A
noteworthy detail is that changes made to a TRP through side-effects will be
immediate, since side-effects are not tracked by the STM system, as discussed
in Section 4.1.

Listing 5.6 presents an example of a Point class declaring two TRP’s as
parameters for the ChangeMe method.

CHAPTER 5. DESIGN AND INTEGRATION 42

Listing 5.6: Transactional Reference Parameter

1 class Point {

2 public atomic int X { get; set; }

3 public atomic int Y { get; set; }

4 public void CopyMe (atomic ref int x, atomic ref int y) {
5 atomic {

6 x = this.X;

7 y = this.Y;

8 }

9

0

10 }

5.2.3 Transactional Output Parameters

According to [17, p. 97]: “A parameter declared with an out modifier is an
output parameter.” An output parameter behaves as a reference parameter,
except that it does not need to be instantiated before being passed as an
argument. Additionally, an output parameter must be definitely assigned
whenever the method terminates[52, p. 42]. It is not required that a variable
is definitely assigned before being passed as an output parameter, but it is
allowed.

In AC#, an output parameter can be marked as atomic, and it becomes a
Transactional Output Parameter (TOP). Similar to TRP, a TOP is tracked
in transactions, and assignments in transactions take effect outside of the
transaction when the transaction commits. The reason for this is the same as
for TRPs.

Listing 5.7 presents a modified example of the Point class declaring two
TOP’s as parameters for the ChangeMe method.

Listing 5.7: Transactional Output Parameter

1 class Point {

2 public atomic int X { get; set; }

3 public atomic int Y { get; set; }

4 public void CopyMe (atomic out int x, atomic out int y) {
5 atomic {

6 X = this.X;

7 y = this.Y;

8 }

9

0

10 }

5.2.4 Transactional Parameter Array

According to [17, p. 17]: “A parameter array permits a variable number of
arguments to be passed to a method”. A parameter array is declared using the

CHAPTER 5. DESIGN AND INTEGRATION 43

params modifier. Inside the method, the arguments are represented as an array
of length equal to the number of arguments supplied to the params parameter.
Assignments to the parameter array are possible but this possibility is in our
experience rarely used. Additionally, as only assignments to the parameter
array are tracked, adding or removing items from the array, would not be
tracked in transactions. Thus, the estimated value of adding this feature is
close to none. Therefore, a parameter array cannot be marked as atomic in

ACH.

5.2.4.1 Transactional Reference & Output Arguments

Four different cases exist for passing variables to ref and out parameters in
AC#. These are:

. T — atomicT
atomicT — T

atomic T — atomic T

=~ W N =

.T - T

where T is an variable of some type T, atomic T is an atomic parameter
of type T'and T' — atomic T describes passing a variable of type T as
an argument to an atomic parameter of type T'. In the first case, a variable
reference passed to an atomic reference parameter will result in the variable
being tracked inside of the method, and assignments to the parameter taking
effect outside of the method. In the second case, assignments to the parameter
are tracked as if they were assignments to the variable which was passed as
ref or out. In the third case, the variable passed by ref or out will continue
to be tracked inside the method. That is assignments to the parameter are
tracked as if they were assignments to the variable passed by bscoderef or
out. The fourth case follows the standard rules defined in[17, p. 145].

5.3 Example of AC#

Listing 5.8, which is a modified version of the race condition example from our
previous study|[3, p. 23], presents an example of the syntax extensions AC#
brings to C#. On line 6 the transactional field number is defined and assigned
an initial value of 10. The main method defines and starts two threads. t1
checks if the value of number is equal to 10 and assigns number times 3 to the
field if the condition is true. These operations are executed as a transaction
defined by the atomic keyword and associated block on line 11. t2 assigns
20 to number inside a transaction defined on line 17. In this example AC#
removes the race conditions associated with t2 changing the value of number

CHAPTER 5. DESIGN AND INTEGRATION 44

between the read on line 12 and the read and write on line 13. In the case that
such a change occurs, the STM system of AC# will abort and re-execute one
of the implicated transactions in order to resolve the conflict.

Listing 5.8: Transaction Syntax

1 using System;
2 using System.Threading;
3 public class RaceCondition

4

5 public static atomic int number = 10;
6 public static void Main(string[] args)
7 {

8 Thread tl = new Thread (() => {

9 atomic {

10 if (number == 10)

11 number = number * 3;

12 }

13 }) i

14 Thread t2 = new Thread(() => {

15 atomic {

16 number = 20;

17 }

18 1)

19 tl.Start(); t2.Start();

20 tl.Join(); t2.Join();

21 int result;

22 atomic {

23 result = number;

24 }

25 Console.WriteLine ("Result is: " + result);
26 }

27 }

As described in Section 4.2 and Section 4.3 AC# must provide strong atomicity
as well as allowing reads and writes to occur from outside atomic blocks. As a
result, reads and writes occurring from outside transactions will be accounted
for when validating transactions. With that in mind, the previous example
can be slightly simplified to the example in Listing 5.9. The atomic block on
line 17 of Listing 5.8 has been removed, since the atomic block contains only
a single write. The atomic block on line 24 of Listing 5.8 can also be removed
as the read can safely be performed from outside a transaction.

Listing 5.9: Transaction Syntax Simplified

1 using System;

2 using System.Threading;

3 public class RaceConditionSimple

4 {

5 public static atomic int number = 10;
6 public static void Main(string[] args)

CHAPTER 5. DESIGN AND INTEGRATION 45

7 {

8 Thread tl = new Thread (() => {
9 atomic {

10 if (number == 10)

11 number = number * 3;

12 }

13 1)

14 Thread t2 = new Thread(() => {
15 number = 20;

16 1)

17 tl.Start(); t2.Start();

18 tl.Join(); t2.Join();

19 Console.WriteLine ("Result is: " + number);
20 }

21 }

Allowing access to transactional variables from outside transactions dispenses
the need for defining a transaction whenever only a single read or write is to
be performed. The atomic block then serves the purpose of combining multiple
operations to be executed as a single atomic step.

5.4 Conditional Synchronization

As described in Section 4.5 AC# supports conditional synchronization via the
retry and orElse constructs. AC# extends C# with a retry statement
that can only be used inside atomic blocks. A retry statement takes the format:
retry. That is, the keyword is employed as a statement, much like C#’s
break and continue statements[52, p. 102]. Listing 5.10 presents the
Dequeue method from a transactional queue. The queue is defined over a
singly linked list from which items are dequeued from the front and enqueued
in the back. If Dequeue is called on an empty queue the thread is blocked
until the queue is no longer empty. The Dequeue method consists of an
atomic block, defined on line 11, performing the dequeue operation as a single
atomic step. On line 13 the transaction checks if the queue is empty in which
case it executes the retry statement on line 14, blocking the transaction to be
retried when the _size variable changes. If the queue is not empty the head
of the queue is removed and the next item in the linked list becomes the new
head. Finally the size of the queue is decreased and the value associated with
the previous head is returned.

Listing 5.10: Retry Syntax

1 using System;

2 public class Queue<T>

3 {

4 private atomic Node _head = null;
5 private atomic Node _tail = null;
6 private atomic int _size = 0;

CHAPTER 5. DESIGN AND INTEGRATION 46

7

8 public T Dequeue ()

9 {

10 atomic{

11

12 if (_size == 0)

13 retry;

14

15 var oldHead = _head;
16

17 _head = _head.Next;
18 if (_head == null)
19 _tail = null;

20

21 _size——;

22

23 return oldHead.Value;
24 }

25 }

26

27 ...

28 '}

Furthermore AC# supports an orelse keyword allowing zero to many
orElse blocks to be associated with an atomic block, much like catch clauses
are associated with a try statement in many C like languages, including
C#[52, p. 96]. The format of the atomic block is therefore extended to:

atomic { S} (orelse { S})+

where S is the general class of C# statements. As an example of the orelse
construct Listing 5.11 depicts a consumer which extracts an item from one of
two buffers via the ConsumeItem method. On line 10 the ConsumeItem
method defines a transaction. If bufferl is empty the transaction executes
the retry statement on line 12, if not, an item from buffer is returned.
If bufferl is empty and the retry statement is executed, control flows to
the orelse block defined on line 15. The orelse then executes its own
transaction returning an item from buffer2 in case it is not empty. If
buffer?2 is empty the retry statement on line 17 is executed, resulting in
the entire atomic block blocking until one of the previously read transactional
variables change, at which point the transaction is restarted.

Listing 5.11: OrElse Syntax

1 using System;

2 public class Consumer<T>

3 {

4 private Buffer<T> _bufferl;
5 private Buffer<T> _buffer2;
6

CHAPTER 5. DESIGN AND INTEGRATION 47

7 public T Consumeltem/()

8 {

9 atomic {

10 if (_bufferl.Count == 0)
11 retry;

12

13 return _bufferl.Get ();
14 } orelse {

15 if (_buffer2.Count == 0)
16 retry;

17

18 return _buffer2.Get ();
19 }

20 }

21 }

5.5 Nesting

As described in Section 4.6 AC# supports nesting of transactions under closed
nesting semantics. For this purpose AC# allows lexical nesting of atomic
blocks as shown in Listing 5.12, where a small program reads two integers
from the console. The string arguments are parsed to integers on line 12 to
16. The program then defines two transactions, one starting on line 18 and
the other, which is nested inside the first transaction, starting at line 20. The
first transaction initiates a nested transaction which sets the transactional
variables X and Y based on the input. Due to the semantics of closed nesting
these changes only become visible to the outer transaction when the nested
transaction commits. As a result, the outer transaction uses the updated values
when it computes the new value of Z on line 26, but the remaining system
cannot yet see these updated values. When the outer transaction commits, the
assignments to X, Y and Z become visible to the rest of the system as a single
atomic step.

Listing 5.12: Lexical Nesting

1 public class LexicalNesting

2

3 private atomic static int X = 0;
4 private atomic static int Y = 0;
5 private atomic static int Z = 0;
6

7 public void Main(string[] args)
8 {

9 if (args.Length != 2)

10 return;

11

12 int tmpx;

13 int tmpy;

14 if (!int.TryParse(args([0], out tmpx)

CHAPTER 5. DESIGN AND INTEGRATION 48

15 || 'int.TryParse(args([l], out tmpy))
16 return;

17

18 atomic

19 {

20 atomic

21 {

22 X = tmpx;

23 Y tmpy;

24 }
25

26 7
27 }
28 System.Console.WriteLine (Z) ;
29 }

30 }

X x Y;

To increase the usability of AC#, specifically its writability and orthogonality,
dynamic nesting of transactions is allowed. As an example, consider Listing 5.13
where a transaction is defined on line 1. The transaction transfers funds from
accountl to account?2 by using the withdraw and deposit methods,
which are themselves defined using transactions. Because of the semantics of
closed nesting, the transfer is executed as single atomic step.

Listing 5.13: Dynamically nested transactions

1 atomic{

2 var amount = 200;

3 accountl.withdraw (amount) ;
4 account2.deposit (amount) ;
5

}

5.6 Summary of Design

A transactional block can be declared by using the atomic statement, to
denote a scope for a transaction. Within such a transaction, any assignments
to transactional variables, parameters, fields, or properties, will be perceived
as executed in one atomic step, by other transactions and non-transactional
code.

AC# allows the use of common C# features within a transactional context,
including reference and output parameters. To increase the orthogonality of
AC# the atomic keyword can be used for making a variable, field, property,
or parameter as trackable in transactions.

AC# also introduces the keywords retry and orelse, which can be used
for conditional synchronization. retry will block the executing thread
until a transactional variable previously read by the transactions is changed.

CHAPTER 5. DESIGN AND INTEGRATION 49

The orelse keyword associates an orElse block, with an atomic block
containing a retry statement. The orElse block will change the initial
behavior of the retry statement in the atomic block. Instead of blocking
execution when encountering a retry statement, the orElse block will be
executed. If the last orElse block encounters a retry the atomic block as
a whole blocks until one of the previously read values is changed by another
transaction.

Additionally, AC# allows nesting of transactions, both lexically and dynami-
cally. Nesting uses closed-nesting semantics, thus inner transactions commits
into the outer transaction. The inner and outer transactions are not isolated
from each other, thus changes made by the inner transaction are visible to the
outer transaction. They are however isolated from all other transactions and
non-transactional code.

6 STM Implementation

This chapter describes the implementation of the STM system that executes
transactions in AC+#. Various implementation algorithms have been proposed
for STM of which a few were briefly described in Section 1.2 “Related Work”.
This chapter covers the considerations which went into selecting an algorithm
for AC# as well as describing the implemented STM library. Specific attention
is payed to the requirements and design choices made in Chapter 4 and
Chapter 5. Additionally, as the goal of this thesis is to evaluate if language
integrated STM is a valid alternative to locking in terms of usability, and
provides additional benefits compared to library based STM, building on an
existing algorithm is the logical choice, rather than developing a new.

This chapter describes a number of criteria in Section 6.1 that influence the
choice of STM algorithm. The final selection of STM algorithm is presented
in Section 6.2. The library interface and how the programmer interacts with
it is demonstrated in Section 6.3. The internal details of the STM library
implementation is described in Section 6.4. Finally, the testing approach used
to test the STM library is described in Section 6.5

6.1 Implementation Criteria

This section describes a number of criteria which have an influence on the
choice of STM algorithm.

6.1.1 Strong Atomicity

As described in Section 4.3 AC# must support strong atomicity which ensures
isolation between transactional and non-transactional code.

Lazy update inherently supports non-transactional reads as the value associated
with transactional variables is always the most recently committed value[28, p.
2084][9, p. 21]. Thus a non-transactional read can never read a non-committed
value and atomicity is ensured because a single non-transactional read always
reads the most recently committed value of a transactional variable. Ensuring
atomicity for non-transactional reads is also possible using eager updating, but
may incur some overhead in selecting the correct value to read[7].

Although non-transactional writes to transactional variables cannot conflict
with one another, they must be tracked by the STM system in order to ensure
that any transactions with which they conflict are aborted and retried. In [46]
Hindman et al. proposes the concept of mini-transactions. By encapsulating

20

CHAPTER 6. STM IMPLEMENTATION o1

non-transactional access to transactional variables in a transaction, mini-
transactions allow the STM system to track their actions. This enables
reading from and writing to transactional variables from non-transactional code,
while ensuring strong atomicity. Their approach goes even further, supplying
optimized non-transactional access which skips much of the unnecessary logging
required for normal transactions. As AC# will benefit from using the described
approach, the algorithm selected should be capable of supporting it.

6.1.2 Conditional Synchronization

The retry construct described in Section 4.5 requires knowledge of which
transactional variables have been read, up to the point where a retry is
requested[6]. The STM system needs to maintain a set of transactional variables
which has been read, for all active transactions, so that a transaction can
be blocked until one of these variables change. Such a set is often referred
to as a read-set[12][9][53]. STM systems employing lazy conflict detection
commonly use such a set to record reads for validation when the transaction is
about to commit[12][54]. Choosing an algorithm which already maintains a
read-set will limit the overhead of the retry statement as well as simplify
the implementation as the algorithm must not be modified to support the
accumulation of a read-set. Thus selecting an algorithm which inherently
supports a read-set is a priority.

6.1.3 Library Implementation

As described in Section 1.4, both a language integrated STM system for C#,
in the form of AC#, and an STM library for the .NET platform must be build.
Developing a single STM library facilitates reuse as it can be used in both
the evaluation and internally in the AC# compiler. The strategy employed
must therefore not entail details which require changes to the runtime system,
as seen by a number of STM implementations[54][11]. Furthermore the STM
library’s API must be designed with usability in mind, as this is the focus of
the evaluation. However the acSTM library must simultaneously facilitate use
from compiler generated code, allowing the extension to the Roslyn compiler
described in Chapter 7 to generate code which utilizes the library to execute
transactions.

6.1.4 Progress Guarantee

STM algorithms can coarsely be divided into blocking and non-blocking
algorithms[9, p. 47]. Blocking algorithms employ some form of locking in
order to ensure atomicity, while non-blocking do not[53, p. 59]. Non-blocking
algorithms guarantee that the failure of one thread does not keep other threads
from making progress[9, p. 47][55, p. 142][53, p. 59]. This makes it impossible
to employ locking, as the failure of some thread 7', which is holding a lock,

CHAPTER 6. STM IMPLEMENTATION 52

will keep other threads from acquiring the lock, and thereby from progress-
ing. Non-blocking algorithms can further be distinguished by the progress
guarantees they provide:

o Wait-freedom is the strongest of these, and guarantees that any thread
makes progress on its own work if it keeps executing[55, p. 124][53, p.
59].

e Lock-freedom is less strict as it only guarantees that if a thread T keeps
executing then some thread (not necessarily T') makes progress[9, p.
47][53, p. 60].

e The least strict progress guarantee is obstruction-freedom[9, p. 47][8][53,
p. 61]. As mentioned in Section 1.2, obstruction-freedom guarantees
that any thread which runs for long enough without encountering a
synchronization conflict makes progress[8, p. 1].

Any wait-free algorithm is also lock-free and any lock-free algorithm is also
obstruction-free, but not vice versa[53, p. 60]. While all of these progress
guarantees preclude deadlocks, only wait-freedom and lock-freedom preclude
livelocks[9, p. 47]. Obstruction free algorithms have been shown to provide
efficient implementations in practice[53, p. 61], especially when paired with
techniques such as exponential backoff[53, p. 147] and contention managers|9,
p. 51].

Whether STM implementations need to be wait-free, lock-free, obstruction-free
or even provide any of these guarantees at all is an ongoing discussion in the
research community. Arguments have been made for even obstruction-freedom
being too strong a guarantee and that STM can be made faster by employing
controlled locking[56]. Due to the complexities associated with non-blocking
algorithms[57][53, p. 61] and the evidence that blocking STM systems can
perform well in practice[12], the initial focus is on blocking STM algorithms.
The option of moving to a non-blocking algorithm after producing an initial
implementation, as demonstrated by Fernandes et al. in [58] will however
be kept open. Due to the limited applicability of C#’s volatile keyword[17,
p. 302] ensuring that the most recently written value is always read without
resorting to locking can be problematic for the non-supported types. Choosing
a locking implementation mitigates this issue.

6.2 Selection of Algorithm

By investigating a number of different STM implementations, the field on which
the final selection is based, was narrowed down to the following: McRT[59]
developed by Saha et al., TLII[12] developed by Dice et al. and JVSTMI60]

CHAPTER 6. STM IMPLEMENTATION 93

developed by Cachopo. McRT and TLII are frequently referenced in the re-
search community and JVSTM is a newer implementation. All of these systems
employ locking but in different ways. The algorithms vary greatly in other
areas and will provide a broad perspective on possible STM implementations.

6.2.1 McRT

McRT employs encounter time locking and supports two algorithms for
synchronization[59, p. 189]. The first is based on reader-writer locks that
allows multiple readers to hold the lock simultaneously, while a writer must
have exclusive access[59, p. 189]. The second is based on versioned locks where
each lock has an associated version number[9, p. 108]. The focus is only on
the second approach as this has been shown to have the best performance[59,
p. 190].

McRT uses eager updates as this avoids having to check a write-set for a
non-committed version of an item, when a read from that item occurs[9, p.
109]. Locking allows the system to guarantee that no transaction reads a value
which has not yet been committed[9, p. 108]. Eager updates require the system
to maintain an undo list which keeps track of the old values of transactional
variables to which a given transaction has written. The undo list is used to
revert any items, to which a given transaction has written, to their previous
state in case of an abort[59, p. 189]. Eager update makes the commit phase
faster as no writes have to be redone[59, p. 190]. The versioned lock algorithm
of McRT requires maintaining a read-set which must be validated as part of
the commit process. The read-set contains a record of every item read as well
as the version number of the item at the time of reading. During the commit
phase the read-set of a transaction is validated, ensuring that no read item
has a higher version number than the version number present when the item
was read, effectively ensuring that no writes have been made to these items
while the transaction exectued[59, p. 190].

As McRT uses eager updating, conflicts will arise before transactions are
allowed to commit. Therefore McRT detects conflicts only against active
transactions[59, p. 189]. Aborting transactions due to a conflict with an active
transaction can lead to cases where e.g. a transaction t1 is aborted due to a
conflict with a transaction t2, but t2 is aborted before it can commit due
to a conflict with some transaction t3[28, p. 2084]. t1 could then have
been allowed to continue as the transaction with which it conflicted never
committed.

Conflicts between transactions appear as contention on the locks in the system.
If multiple transactions attempt to acquire a lock on the same item a conflict
is about to occur. In such cases McRT prefers letting transactions wait for
the lock over aborting one of the involved transactions, in order to increase
throughput[59, p. 189].

CHAPTER 6. STM IMPLEMENTATION o4

6.2.2 TLII

As briefly described in Section 1.2, TLIT only holds locks during the commit
process[12, p. 199]. This is known as commit time locking. TLII uses lazy
updates where writes are recorded in a write-set and written to the associated
memory when the transaction commits. Additionally, any reads performed
by a transaction are recorded in a read-set used to validate the transaction
before it commits the content of its write-set[12, p. 198]. The accumulation of
a read-set for the retry will therefore incur no additional overhead.

TLII uses a global version clock to ensure atomicity[12, p. 201]. Transactions
record a time-stamp when they start. The time-stamp is used to validate the
contents of the read-set before the transaction commits. Each item tracked
by the STM system has an associated time-stamp which is updated when a
transaction commits a new value. If any item in the read-set has a time-stamp
higher than the transactions time-stamp then the item has been modified while
the transaction was executing. As a result the transaction must abort and
restart.

In order to commit, a transaction must go through the following steps[12, p.
200]:

1. Acquire the lock on each item in the write-set

2. Increment and fetch the version clock
Validate the read-set as described above

Commit values in the write-set along with the new time-stamps

AR ol

Release the lock on each item in the write-set

The transaction has exclusive access to the items in the write set during
the commit phase and detects conflicts lazily against previously committed
transactions.

The version clock can be a source of contention as all transactions must
increment the version clock as part of the commit operation[9, p. 120]. A
number of ways of reducing contention has been proposed [61][62][63].

The base TLII algorithm can lead to false negatives when validating the read-
set. If a transaction t2 executes and commits in between t1 reading the
global clock and reading its first value, t2 will have incremented the version
clock and the time-stamp of t1 will be invalid before it starts executing its
transaction, even though the transaction would be valid in this scenario. In
[64] Riegel et al. proposes attempting to update a transactions time-stamp in
order to eliminates such false negatives.

CHAPTER 6. STM IMPLEMENTATION 95

6.2.3 JVSTM

JVSTM uses Multiversion Concurrency Control (MVCC)[58, p. 1], as known
from databases[65, p. 791]. MVCC requires the STM system to keep a record
of the old values for any item that is tracked[65, p. 791]. Reads that would be
invalid in a system maintaining only the most recent value for each item, can
be redirected to read an older value, allowing the associated transaction to
continue[65, p. 791]. As a result JVSTM guarantees that read only transactions
will always be able to commit[60, p. 97].

To keep track of the values associated with an item, JVSTM uses what the
original designer calls a versioned box[60, p. 63]. A versioned box is an
abstraction for an item to be tracked, such as a variable. Each versioned box
keeps an ordered sequence of values, called the history of the versioned box.
This sequence represents the values that have been committed to the item.
Each transaction and version in the history of a versioned box is assigned a
version number indicating when the transaction started and when the value
was created respectively.

JVSTM uses lazy updates, buffering writes in a transactional local write-
set[60, p. 64]. As with TLII, writes are written to the tracked item when the
transaction commits. Reads from a versioned box first check if the transactions
write-set contains a non-committed value, returning it if that is the case[60,
p. 64]. If no such item exists, the history of the versioned box is searched for
a suitable value. The value associated with the highest number which is less
than or equal to the transactions version number is returned[60, p. 64].

The initial version of JVSTM uses a single global lock to ensure atomicity
between committing transactions[60, p. 70|, forcing the commit phase to be
executed sequentially even though two transactions may not be committing
to the same versioned boxes. A lock-free variation of JVSTM, correcting this
issue, is proposed in [58].

Keeping the old values for each tracked item takes up additional space and the
space consumption increases as new versions are added. Over time some old
values might no longer be needed and can therefore be removed. To handle this
JVSTM implements a data structure tracking for which number transactions
are active and what values where commit for a given transaction number.
When a transaction commits it uses the data structure determine whether
it has caused any values to be unreachable, cleaning them up if that is the
case[60, p. 70][60, p. 88]. This is similar to a garbage collector[34, p. 472].

CHAPTER 6. STM IMPLEMENTATION o6

6.2.4 Final Selection

Based on the criteria presented in Section 6.1, the requirements defined in
Chapter 4 and the intended design presented in Chapter 5 it has been decided
to base the STM implementation on the TLII algorithm.

TLIT uses lazy updating which simplifies the implementation of strong atomicity
as a non-transactional read can access a value directly. Additionally the
algorithm makes use of a read-set which simplifies the implementation of
the retry construct. An extension to TLII presented in [9, p. 107] allows
support for opacity, which fulfills the requirement presented in Section 4.7.
Furthermore the TLII algorithm is well documented from multiple sources,
including a library based implementation[12][53, p. 438][9, p. 106].

McRT was discarded as its eager updating strategy based on locking may
require non-transactional reads to wait. If an active transaction t1 has
written a value to some variable x and a non-transactional read to x occurs,
the non-transactional read would have to wait for t1 to finish in order to
ensure that the value read is not rolled back at a later point. Additionally
conflict detection against active transactions can lead to unnecessary aborts as
described in Section 6.2.1.

JVSTM’s use of the well known MVCC approach to transactions facilitates a
guarantee that read-only transactions will always be able to commit. While
this is an attractive property, MVCC also requires the implementation and
overhead of garbage collection old values that can no longer be read, thereby
complicating the implementation. Additionally, the lock based version of
JVSTM uses commit phases which execute sequentially due to global locking.
As a result the scalability of the JVSTM algorithm is reduced[60, p. 86].

Performance of the STM system is not the primary concern of this thesis, as
described in Section 1.3. However, performance is not neglected completely
when choosing an algorithm, as it is an important factor in the context of
concurrency. Therefore an algorithm which fulfills the requirements with only
minimal performance sacrifices is preferable.

6.3 Library Interface

The STM library is implemented as a C# library, as described in Section 6.1.3.
The library interface has been influenced by the design of other STM libraries
such as Multiverse! and Shielded? as well as the introduction to the implemen-
tation of STM libraries found in [53].

nttps://github.com/pveent jer/Multiverse
2https://github.com/jbakic/Shielded

https://github.com/pveentjer/Multiverse
https://github.com/jbakic/Shielded

CHAPTER 6. STM IMPLEMENTATION o7

6.3.1 Atomic Blocks

Transactions are started by using one of the overloads of the static Atomic
method on the STMSystem class. The static method Atomic is overloaded
with support for transactions with and without return values as well as the
association of zero to many orElse blocks. Listing 6.1 presents an example
of transaction declarations. On lines 5-8 a simple transaction declaration
corresponding to an at omic block is shown. Lines 10-14 depict the declaration
of a transaction with a return value. Finally lines 16-23 depict the declaration
of a transaction with an associated orelse block.

Listing 6.1: Library Transaction Declarations

1 public class TransactionExamples {
2

3 public static void AtomicExample
4 {

5 STMSystem.Atomic (() =>

6 {

7 //Transaction body

3 b i

9

10 var result = STMSystem.Atomic<int>(() =>
11 {

12 //Transaction body

13 return 1;

14 1)

15

16 STMSystem.Atomic (() =>

17 {

18 //Transaction body

19 },

20 () =>

21 {

22 //orelse body

23 }) i

24 }

25 '}

6.3.2 Transactional Variables

Transactional variables are created by declaring instances of the generic TMVar
class. Instances of the TMVar class wrap an object to which transactional
access is provided. The constructor of the TMVar class takes a type parameter
specifying the type which the TMVar instance wraps.

The TMvVar class exposes methods and a Value property for getting and
setting the wrapped object. Any access through the exposed methods and
the Value property are tracked by the STM system, both transactional and
non-transactional. Furthermore the TMVar class uses C#’s implicit conversion

CHAPTER 6. STM IMPLEMENTATION o8

feature to allow a TMVar to implicitly be converted to the wrapped value
whenever the TMVar occurs as an r-value. Special types, deriving from TMVar,
are supplied for the common types int, long, float, double, uint,
and ulong. These types supply transactional support for common operations
such as ++ and —- which are executed on the wrapped object. Listing 6.2
shows the declaration of a number of transactional variables. Lines 5-7 use the
generic TMVar class to wrap objects of various types. Line 8 declares a TMInt
, which is the specialized type for transactional integers. Lines 11-17 declares a
transaction that on line 13 checks if the boolean value wrapped by tmBool is
true and the string value wrapped by tmString is equal to the string "abc™".
tmBool and tmString are implicitly converted to the wrapped value while
preserving transactional access, allowing the transactional variables to be used
as if it was an instances of the wrapped type. Line 15 uses the ++ operator
supported by the TMInt type.

Listing 6.2: Library Transactional Variable

1 public class TransactionExamples {

2

3 public static void TMVarExample ()

4 {

5 TMVar<string> tmString = new TMVar<string> ("abc");

6 TMVar<bool> tmBool = new TMVar<bool>();

7 TMVar<Person> tmPerson = new TMVar<Person> (new Person ("Bo
Hansen", 57));

8 TMInt tmInt = new TMInt (12);

9

10

11 STMSystem.Atomic (() =>

12 {

13 if (tmBool && tmString == "abc")

14 {

15 tmInt++;

16 }

17 1)

18 }

19 }

6.3.3 Retry

The library supports the retry construct via the static Ret ry method on
the STMSystem class. The retry method can be called from both in and
outside transactions but will only have an effect when called inside transactions.
Listing 6.3 presents an example of how the Ret ry method can be used. Lines
5-11 show a transaction dequeuing an item from a shared buffer. On line 8 the
Retry method is used to initiate a retry in case the queue is empty. The call
on line 15 has no effect as it is not enclosed in a transaction.

CHAPTER 6. STM IMPLEMENTATION 99

Listing 6.3: Library Retry

1 public class TransactionExamples {

2

3 public static void RetryExample (Queue<Person> buffer)
4 {

5 Person result = STMSystem.Atomic(() =>

6 {

7 if (buffer.Count == 0)

8 STMSystem.Retry(); //Initiates retry
9

10 return buffer.Dequeue();

11 1)

12

13 //Work with the result

14

15 STMSystem.Retry(); //Has no effect

16 }

17 '}

6.3.4 Nesting

The STM library supports both lexical and dynamic nesting of transactions.
Lexical nesting is achieved by specifying a transaction within the body of
another transaction, while dynamic nesting is achieved by calling a method,
which is defined using transactions, within the body of another transaction.
Nesting is done under the semantics of closed nesting as described in Section 4.6.
An example of nesting using the STM library is shown in Listing 6.4. Line
6-15 show a lexically nested transaction, while line 20-24 show two dynamically
nested transactions as the Enqueue and Dequeue methods are themselves
defined using a transaction.

Listing 6.4: Library Nesting

1 public class TransactionExamples {

2

3 public static void NestingExample ()

4 {

5 TMVar<string> s = new TMVar<string> (string.Empty) ;
6 var result = STMSystem.Atomic (() =>
7 {

8 s.Value = "abc";

9 STMSystem.Atomic (() =>

10 {

11 s.Value = s + "def";

12 1)

13

14 return s.Value;

15 1)

CHAPTER 6. STM IMPLEMENTATION 60

17 Queue<Person> bufferl = new Queue<Person>();
18 Queue<Person> buffer2 = new Queue<Person>();
19

20 STMSystem.Atomic (() =>

21 {

22 var item = bufferl.Dequeue () ;

23 buffer2.Enqueue (item) ;

24 1)

25 }

26 }

6.4 Internal Details

This section highlights the defining aspects of the STM libraries internal
implementation.

6.4.1 Writing a Value

As described in Section 6.2.2 TLII uses a write-set to buffer any writes to be
written to the actual locations when the transaction commits. Therefore any
writes to transactional variables must be redirected to the write-set instead
of the actual location. Listing 6.5 shows how this is accomplished in the
STM library. Line 3 gets the currently executing transaction from threadlocal
storage. That is, each thread gets its own transaction instance when accessing
the LocalTransaction property. Based on the status of the transaction,
different actions are taken. Each thread accesses a transaction that has
the status Committed whenever no transaction is currently executing on
that specific thread. Therefore the case on line 6 covers writing a value
to a transactional variable from outside a transaction scope. How this is
accomplished is explained in Section 6.4.4. The case on line 9 covers writing
a value as part of a transaction. Here the value to be written is put into the
write-set of the transaction performing the write. When the given transaction
commits, the value will be written back to the transactional variable.

6.4.2 Reading a Value

How the value of a transactional variable is read depends on the context in
which the read occurs. Reading the value of a transactional variable from non-
transactional code amounts to reading the value contained within the variable,
as this value is guaranteed to be the most recently committed value. On the
other hand, a read from transactional code has to read an uncommitted value
which was previously written by the same transaction, if such a value exists.
Only if no such value is present should the transaction read the value currently
contained in the transactional variable. Listing 6.6 shows how reading the
value of a transactional variable is implemented in the STM library. The case

CHAPTER 6. STM IMPLEMENTATION 61

Listing 6.5: Writing to a Transactional Variable

1 private void SetValueInternal (T value)

2 {

3 var me = Transaction.LocalTransaction;

4 switch (me.Status)

5 {

6 case Transaction.TransactionStatus.Committed:
7 SetValueNonTransactional (value) ;

8 break;

9 case Transaction.TransactionStatus.Active:
10 me.WriteSet.Put (this, wvalue);

11 break;

12 }

13 }

on line 6 corresponds to a non-transactional read and are forwarded directly to
the base class in order to retrieve the value of the transactional variable. The
case on line 8 corresponds to a transactional read. If the transaction’s write-set
does not contain a value for the current TMVar object, lines 10-11 reads the
value directly. Otherwise line 13 gets the value, which was previously written
by the current transaction, from the current transaction’s write-set. Finally, on
line 15, the transactional variable is added to the active transaction’s read-set,
so that the read can be validated before the transaction commits.

Listing 6.6: Reading a Transactional Variable

1 private T GetValuelInternal ()

2 {

3 var me = Transaction.LocalTransaction;

4 switch (me.Status)

5 {

6 case Transaction.TransactionStatus.Committed:
7 return base.GetValue();

8 case Transaction.TransactionStatus.Active:
9 T value;

10 if (!me.WriteSet.Contains (this))

11 value = base.GetValue();

12 else

13 value = (T)me.WriteSet.Get (this);

14

15 me.ReadSet .Add (this) ;

16 return value;

17 }

18 }

6.4.3 Committing a Transaction

Committing a transaction follows the steps described in Section 6.2.2. List-
ing 6.7 shows the implementations of these steps. The Commit method declared

CHAPTER 6. STM IMPLEMENTATION 62

on line 1 drives the commit process and returns true if the commit succeeds.
If the transaction is not nested within another transaction, the body of the if
statement on line 3 is entered. The call to the Validate method on line 6
acquires the lock on each object in the transaction’s write-set, validates the
read-set and increments the version-clock acquiring a new writestamp. The
Validate method returns true if the read-set could be validated correctly and
returns the new writestamp using an out parameter. All locks are acquired
using a timeout in order to prevent deadlocks and all acquired locks are released
if validation of the read-set fails. If validation succeeds, the HandleCommit
method commits all buffered writes to their respective transactional variables,
after which all acquired locks are released.

If the transaction is nested within another transaction the else case on line 11
is executed. Nested transactions do not need to acquire the lock on items in
their write-set or increment the version clock as they will not be responsible
for committing any written values under closed nested semantics. Therefore,
a validation of the read-set, as seen on line 13, is sufficient. If the validation
succeeds the transaction merges its read and write sets with those of the outer
transaction, in order for the outer transaction to commit any written values
when it reaches its commit stage. On line 17 the outer transaction is restored
as the currently active transaction so that it can be resumed. Finally on line
20 the status of the transaction is changed to committed, before returning on
line 21.

6.4.4 Providing Strong Atomicity

As described in Chapter 4 the STM system must support strong atomicity. In
Section 6.4.1 and Section 6.4.2 it is described how the STM system is able
to detect whether or not read and write operations occur inside or outside a
transaction and take different actions based on this information. In the case
of a non-transactional read the system reads the most recently committed
value as described in Section 6.4.2, ensuring that no uncommitted values can
be read. A non-transactional write is more complicated as the STM system
must ensure atomicty between both non-transactional access and transactional
access. To that extent the approach described by Hindman et al. in [46] of
executing non-transactional access as optimized mini transaction is adopted.
As no value is read during a non-transactional write, a non-transactional write
in the context of the TLII algorithm consist only of (1) Acquiring the lock
on the transactional variable to which the write occurs, (2) Incrementing and
getting the value of the version clock, (3) Committing the new value and
timestamp before, (4) Releasing the acquired lock. Therefore any access to the
read-set can be optimized away. The STM library implements this approach in
the SetvalueNonTransactional method of the TMVar<T> class shown
in Listing 6.8.

CHAPTER 6. STM IMPLEMENTATION 63

Listing 6.7: Committing a Transaction

1 public bool Commit ()

2 {

3 if (!IsNested)

4 {

5 int writeStamp;

6 if (!Validate (out writeStamp))
7 return false;

8

9 HandleCommit (writeStamp) ;

10 }

11 else

12 {

13 if (!ValidateReadset ())

14 return false;

15

16 MergeWithParent () ;

17 Transaction.LocalTransaction = Parent;
18 }

19

20 Status = TransactionStatus.Committed;
21 return true;

22 }

Listing 6.8: Non-transactional Write

1 private void SetValueNonTransactional (T value)
2 {

3 Lock () ;

4 Commit (value, VersionClock.IncrementClock());
5 Unlock () ;

6 }

6.4.5 Providing Opacity

As described in Section 4.7 providing opacity requires ensuring that transactions
do not read invalid data throughout their execution. Therefore a transaction
must validate a read when it occurs, ensuring that the transaction is not
allowed to continue when the read is inconsistent. For this purpose the STM
library uses the approach shown by [9, p. 117] and extends the reading of
values to the implementation depicted in Listing 6.9. As seen on lines 12-16,
reading a value directly from the transactional variable has been extended
with validation that ensures the transaction aborts if the variable has been
changed since the transaction recorded its timestamp. The timestamp of the
transactional variable prior to reading it is stored locally on line 12. After
the variable has been read the locally cached timestamp is compared to the
current timestamp of the transactional variable and the timestamp of the

CHAPTER 6. STM IMPLEMENTATION 64

Listing 6.9: Providing Opacity

1 private T GetValuelInternal ()

2 {

3 var me = Transaction.LocalTransaction;

4 switch (me.Status)

5 {

6 case Transaction.TransactionStatus.Committed:

7 return base.GetValue () ;

8 case Transaction.TransactionStatus.Active:

9 T value;

10 if (!me.WriteSet.Contains (this))

11 {

12 var preStamp = TimeStamp;

13 value = base.GetValue();

14

15 if (preStamp != TimeStamp || me.ReadStamp < preStamp)

16 throw new STMAbortException ("Aborted due to
inconsistent read");

17 }

18 else

19 value = (T)me.WriteSet.Get (this);

20

21 me.ReadSet .Add (this) ;

22 return value;

23 }

24 '}

current transaction. If the timestamp was changed during the read or the
cached timestamp is higher than the timestamp of the current transaction, the
current transaction is aborted by throwing a STMAbortException on line
16.

6.5 Testing

In order to ensure that the STM library executes transactions according to
the requirements defined in Chapter 4, a number of tests have been created.

An improvisational approach for testing is to create some ad hoc throw-away
code[66, Chap. 9] and manually interacting with the program, to ensure that
code works correctly. This approach has the advantage that tests can be created
quickly and errors found quickly. However the approach has the disadvantages
that it is unstructured and the testing can not be rerun automatically, so if a
later change damages a feature which has previously been tested as working
correctly, this may not be discovered.

Another more structured approach is to use unit testing[67], where tests are
structured into unit tests, which only focus on the correctness of a small part of

CHAPTER 6. STM IMPLEMENTATION 65

the program. Furthermore, unit testing is often automated, so they can easily
be rerun to ensure the unit they test still works correctly. A drawback with
this approach is that it is more time consuming to setup than adhoc testing.

As unit testing will allow for automatic testing of new features not breaking
existing functionality, unit testing has been selected for testing the STM library.
The defined tests cover areas such as the execution of transactions, nesting,
retry, orelse, strong atomicity and exceptions in transactions. Additionally, a
number of tests based on a transactional queue and hashmap implementation
has been created. Where the first set of tests cover smaller parts of the STM
library, the second set of tests cover the STM library as a whole, ensuring that
the library can be utilized for real world scenarios.

In addition a number of tests, which attempt to produce a result which can
only occur when a race condition is present, has been created. While such tests
can ultimately not prove that no race conditions are present, they do provide
a degree of certainty that this is the case. Listing 6.10 shows the RaceTest1
method conducting a test for possible race conditions. RaceTestlInternal
is called 10,000 times producing a result for each iteration. Line 7 asserts that
each execution of RaceTestlInternal does not produce a result which can
only occur given that a race condition is present. RaceTestlInternal
executes a read modify write operation on one thread, while another thread
writes to the same variable. The call to Thread.Yield on line 21 signals
the underlying system that t1 can be descheduled in favor of other threads,
allowing t 2 to assign result a new value after t 1 has read the value of result,
but before it has computed and assigned the new value. Thread.Yield
does not cause t1 to be desheduled in all cases, only when the underlying
scheduling determines that it is appropriate.

CHAPTER 6. STM IMPLEMENTATION 66

Listing 6.10: RaceTest1

1 [TestMethod]

2 public void RaceTestl1 ()

3 {

4 for (int 1 = 0; 1 < 10000; i++)
5 {

6 var result = RaceTestlInternal ();
7 Assert.IsTrue (result != 120);
8 }

9 }

10

11 private int RaceTestlInternal ()

12 {

13 var result = new TMVar<int> (10);
14

15 var tl = new Task(() =>

16 {

17 STMSystem.Atomic (() =>

18 {

19 if (result.Value == 10)

20 {

21 Thread.Yield();

22 result.SetValue (result.Value = 10);
23 }

24

25 return result.GetValue();

26 1)

27 1)

28

29 var t2 = new Task(() => STMSystem.Atomic (() =>
30 {

31 result.Value = 12;

32 P)) i

33

34 tl.Start();
35 t2.Start () ;
36 tl.Wait ();
37 t2.Wait ();

39 return result.Value;

7 Roslyn Extension

This chapter describes how the Roslyn C# compiler is extended to support the
constructs of AC# described in Chapter 5. Section 7.1 describes the overall
extension strategy. In Section 7.2 the changes made to the lexer and parser are
described. Following this, Section 7.3 presents examples of the transformations
made on the syntax tree by the extension while Section 7.4 describes the testing
approach employed to test the Roslyn extension. Finally, Section 7.5 describes
areas where the initial prototype implementation, described in this chapter,
conflicts with the intended STM design described in Chapter 5.

7.1 Extension Strategy

The Roslyn C# compiler is extended by modifying the lexing and parsing
phases with support for the language constructs described in Chapter 5. The
extended parsing phase outputs an extended syntax tree containing direct
representations of the language features provided by AC#. The syntax tree
is then analyzed to identify AC# constructs, followed by a transformation
where the language extension of AC# is transformed into equivalent C# code
which utilizes the STM library described in Chapter 6. This syntax tree is then
passed to the remaining C# compiler phases, utilizing the compilers semantic
analysis and code generation implementations. The approach is visualized in
Figure 7.1, which is a modified version of Figure 3.1. The transformation phase
utilizes both the extended syntax tree and symbol information gathered through
the Roslyn API. By doing modifications in the early phases, the amount of
changes required is minimized, as the rest of the phases can be reused without
modifications. Furthermore, modifications are done on the stable syntax tree,
rather than the unstable bound tree, as described in Section 3.3.

Cqmp|ler » IL Emitter
Pipeline Metadata
Import

Figure 7.1: Extension occurs at the syntax tree and symbol level. The parser
is extended to output an extended syntax tree and transformation of this tree
occurs before the binding and IL emission phases.

67

CHAPTER 7. ROSLYN EXTENSION 68

The described approach was selected due to the following reasons:

1. As described in Section 3.3.2 the C# lexer uses a simple switch case
to identify tokens, which chooses the type of token to identify based on
the first character of the token, while the parser uses a recursive descent
technique. Both the lexer and parser are implemented by hand. The
techniques employed have a low degree of complexity, as the first method
uses a simple switch and the latter method corresponds to parsing one
non-terminal at a time. Thus modifying the lexer and parser is simpler
than if more complex techniques had been employed, such as Look Ahead
LR (LALR) parsing[68].

2. The Roslyn compiler generates the nodes composing its syntax trees
along with factory methods and a visitor pattern implementation based
on the content of an Extensible Markup Language (XML) file. Therefore
adding new nodes to represent the extended language constructs, such
as the atomic block and retry statement, simply amounts to adding
definitions for these nodes to the XML, allowing the employed tool to
generate source code for the new nodes.

3. As described in Section 3.4 Roslyn’s syntax trees are designed to be fast
to modify by reusing underlying green nodes instead of creating complete
copies[30, p. 6]. This speaks for conducting transformation on the level
of the syntax tree despite its immutable implementation.

4. The Roslyn project has been designed to allow programmers to utilize
the information gathered during the compilation phases by analyzing
the syntax tree, the information in the symbol table, and the results of
semantics analysis. These parts of the compiler are exposed as a public
APT allowing access to both syntactic and semantic information. Utilizing
this API during the transformation phase allows the transformation to
draw on the existing semantic analysis to answer questions such as,
what method is the target of a method invocation, without the need for
implementing complex analysis.

5. By parsing an extended syntax tree and transforming it into a regu-
lar C# syntax tree, the existing semantic analysis and code emission
implementations can be utilized.

Despite of the many advantages of the selected approach, a number of disad-
vantages also exists. The following disadvantages has been identified:

1. By modifying the syntax tree, the roundtripable property, described in
Section 3.4, is lost, as the syntax tree no longer represents the original

CHAPTER 7. ROSLYN EXTENSION 69

source code. Consequently, any error or warning generated by the
compiler refers to the transformed source code, which the programmer
does not see, as opposed to the original AC# source code. This requires
our own code analysis, to give meaningful errors attached to the original
source code. Alternatively, the transformation could be performed at a
later compilation phase, e.g. modifying the bound tree in the binding
phase or do changes before emitting code in the emit phase. This would
preserve the roundtripable property, but also limit the reuse of the
existing compiler.

2. As atomic local variables are translated into variables of a correspond-
ing STM type, the types of these need to be known. C# allows the
programmer to utilize type inference for local variables using the var
keyword. Consequently the type of a local variable is not required to
be defined in the source code. To remedy this, the extension must infer
the type before translation. Roslyn offers the possibility to evaluate the
type of an expression, which is used to infer the type of atomic local
variables with unknown types. Consequently, the extension must perform
some of the work that the Roslyn compiler does at later stages of the
compilation, reducing the reuse of the later compilation phases.

7.2 Lexing & Parsing Phases

This section describes the changes conducted in order to extend the lexing and
parsing phases of the Roslyn C# compiler to support the constructs described
in Chapter 5.

7.2.1 Lexer Changes

As described in Chapter 5, AC# introduces three new keywords: atomic,
orelse and retry. Consequently the lexer has been extended to identify
these keywords as tokens of the correct kind. The C# lexer initially lexes
keyword tokens as if they are identifiers. If an identifier token corresponds to
a keyword, a keyword token with the correct kind is returned instead.

In order to identify the new keywords, their definition has been added to
the lookup methods of the SyntaxKindFacts class. This class defines
the GetKeywordKind which the lexer uses to identify the keyword kind
of an identifier, if the identifier represents a keyword. Additionally, the
SyntaxKindFacts class defines the Get Text method for determining the
string representation of a keyword based on its kind.

To allow tokens to represent the new keywords, the AtomicKeyword,
OrelseKeyword, and RetryKeyword entries has been added to the
SyntaxKind enumeration. As described in Section 3.4.2.5, the SyntaxKind

CHAPTER 7. ROSLYN EXTENSION 70

enumeration contains an entry for each type of node, token, or trivia in C#.
Whenever the lexer identifies an occurrence of one of the new keywords, a
token with the corresponding kind is returned. For example an occurrence of
the atomic keyword results in a token with the kind AtomicKeyword being
returned.

7.2.2 Syntax Tree Extension

The design described in Chapter 5 adds the atomic, orelse and retry
constructs which the existing syntax tree cannot express. Therefore the syntax
tree must be extended to support these language constructs. As described in
Section 3.4.3 nodes composing the syntax tree, along with factory methods
and the visitor pattern implementation, are generated on the basis of an
XML file. Adding additional nodes to the syntax tree therefore amounts
to defining them in the XML notation, which has been done for the three
previously mentioned constructs. Listing 7.1 shows the XML code defining
the AtomicStatement Syntax node which represents an atomic block in
the syntax tree. Line 1 defines the name and base class of the node while
line 2 defines its kind. The AtomicStatement kind has been added to
the SyntaxKind enumeration as described previously. Line 3 defines a
property on the node which holds the token representing the At omicKeyword
which starts the definition of the atomic block. The property has a constraint
specifying the kind of the token, that can be associated with the property which
is defined on line 4 as well as a comment given on lines 5-9. Line 11 defines a
statement property which holds the block of statements associated with the
defined at omic block. Line 18 defines a property containing a SyntaxList of
orelse blocks associated with the atomic block. This relationship has been
modeled after the relationship between a C# try statement and its catch
clauses, as both have a zero to many association. Finally lines 25-27 defines
a comment for the AtomicStatementSyntax, while line 28-30 defines a
comment for the factory method.

Listing 7.1: AtomicStatement XML definition

1 <Node Name="AtomicStatementSyntax" Base="StatementSyntax">
2 <Kind Name="AtomicStatement"/>

3 <Field Name="AtomicKeyword" Type="SyntaxToken">

4 <Kind Name="AtomicKeyword"/>

5 <PropertyComment>

6 <summary>

7 Gets a SyntaxToken that represents the atomic keyword.
8 </summary>

9 </PropertyComment>

10 </Field>

11 <Field Name="Statement" Type="StatementSyntax">

12 <PropertyComment>

13 <summary>

CHAPTER 7. ROSLYN EXTENSION 71

14 Gets a StatementSyntax that represents the statement to
be executed when the condition is true.

15 </summary>

16 </PropertyComment>

17 </Field>
18 <Field Name="Orelses" Type="SyntaxList<OrelseSyntaxé>">

19 <PropertyComment>

20 <summary>

21 Gets a SyntaxList containing the orelse blocks associated
with the atomic statement.

22 </summary>

23 </PropertyComment>

24 </Field>

25 <TypeComment>

26 <summary>Represents an atomic block.</summary>
27 </TypeComment >

28 <FactoryComment>

29 <summary>Creates an AtomicStatementSyntax node</summary>
30 </FactoryComment>
31 </Node>

Declaration of transactional local variables, fields and parameters does not
require modifications to the syntax tree as the standard nodes for these
constructs allow a collection of modifiers to be associated with the declaration.
Any atomic modifiers are simply added to the collection along with any other
modifiers.

7.2.3 Parser Changes

As described in Section 3.3.2 the C# parser uses a recursive descent strategy
implemented by hand. As customary for recursive descent implementations,
each non-terminal has a method responsible for parsing that particular non-
terminal. For the new atomic, orelse and retry such a method has been
added. Furthermore, the methods for parsing local variables, fields, parameters,
and properties have been modified to allow for an atomic modifier, as well as
generating error messages for any unsupported modifier combinations such as
atomic const and readonly const, as defined in Section 5.1.2. Errors
are associated with the erroneous nodes as is customary for the Roslyn compiler.
A later compilation phase generates error messages and cancels code emission
if any errors are present in the syntax tree.

Listing 7.2 shows the ParseAtomicBlock method responsible for parsing
an atomic block. Line 3 parses an atomic keyword by returning a token
representing the keyword while line 4 parses the block of statements representing
the transaction body. On line 6 to 21 any orelse blocks associated with
the atomic statement are parsed , if any are present. Line 7 allocates a
SyntaxListBuilder. The Allocate method reuses existing space if
possible, in order to limit the overhead of allocation. As seen on line 12 the

CHAPTER 7. ROSLYN EXTENSION 72

parsing of the actual orelse block is delegated to its corresponding method.
On line 20 the space allocated by the call on line 7 is freed. The try finally
construct ensures that the space is freed in case of an exception. Finally on
line 23 the syntax factory is used to create the AtomicStatementSyntax
that is returned.

Listing 7.2: Method for parsing atomic block

1 private StatementSyntax ParseAtomicBlock ()

2

3 var atomicKeyword = this.EatToken (SyntaxKind.AtomicKeyword);
4 var block = this.ParseEmbeddedStatement (false);

5

6 var orelses = SyntaxFactory.List<OrelseSyntax>();

7 var orelseBuilder = _pool.Allocate<OrelseSyntax>();

8 try

9 {

10 while (this.CurrentToken.Kind == SyntaxKind.OrelseKeyword)
11 {

12 var clause = ParseOrelse();

13 orelseBuilder.Add (clause) ;

14 }

15

16 orelses = orelseBuilder.ToList();

17 }

18 finally

19 {
20 _pool.Free(orelseBuilder);
21 }
22
23 return _syntaxFactory.AtomicStatement (atomicKeyword, block,

orelses);

24 }

7.2.4 Symbol Changes

The symbols representing fields, local variables, and parameters have been
modified with a new I sAtomic property of type bool, indicating if the symbol
represent an atomic variation of these constructs. The logic which creates
the symbol table has further been modified to, for each of these constructs,
determine whether the declaration is atomic and set the IsAtomic to the
appropriate value.

For each usage of a field, local variable or parameter, the semantic model
allows for the retrieval of a symbol, representing the corresponding declaration.
Based on the added IsAtomic property this symbol can be used to determine
whether the usage represents the usage of an atomic variable. For cases where
only access to atomic variables are of interest, in relation to the STM system,
the symbol extension allows for easy distinguishing between access to atomic
variables or non-atomic variables.

CHAPTER 7. ROSLYN EXTENSION 73

7.3 Syntax Tree Transformations

This section presents the syntax tree transformations performed during the
compilation process. In order to prevent errors due to ambiguity between type
names, the transformation process uses fully qualified names[17, p. 73| for any
types in the STM library. In the examples presented in this section the simple
names have been used, in order to improve readability.

7.3.1 Atomic Block

In Section 5.1.1 the design for the atomic block is described. Listing 7.3
depicts the syntax of the atomic block before transformation.

The transformation of an atomic block is done using the following four steps:

1. Construct a lambda expression with a body equal to that of the atomic
block.

2. Construct lambda expressions for any orelse blocks associated with
the atomic block, with bodies equal to that of their respective original
definition.

3. Construct a syntax node for the invocation of the STMSystem.Atomic
method, supplied with the created lambda expressions as arguments.

4. Replace the at omic block with the invocation of the STMSystem.Atomic
method.

For syntax shown in Listing 7.3 the transformation produces the output shown
in Listing 7.4.

Listing 7.3: atomic Block Before Transformation

1
2
3
4
5
6
7
8

atomic
{
//Block
}
orelse
{
//Orelse block
}

Listing 7.4: atomic Block After Transformation

1 STMSystem.Atomic (() => {
2 //Block

3

4 () => {

5 //Orelse block

6 }1);

CHAPTER 7. ROSLYN EXTENSION 74

As a consequence of translating an atomic block into a lambda expression,
return statements inside the lambda expression do not return out of the atomic
block as described in Section 5.1.1. In order to ensure the wanted semantics, an
analysis is performed to identify all atomic blocks containing return statements.
In such a case, a return statement is added before the method invocation.
Return statements inside nested transactions must return out of the enclosing
method. To accommodate this, the analysis also identifies nested transactions.

7.3.2 Field Types

In Section 5.1.2 the design of transactional fields are described. Any field
declared at omic must have its type substituted to the corresponding STM type
in order for the STM system to track any changes to the variable. If a specialized
type exist, such as TMInt for int, then that type is used. Otherwise the generic
TMVar is used. As the STM types act as wrapper objects that allows the STM
system to track how the wrapped values are accessed, all atomic fields must be
initialized to an instance of a STM type, as accessing the wrapped value will
otherwise cause a NullReferenceException. If an initializer expression
is given as part of the field declaration, the constructor of the wrapping STM
object is given the expression as an argument, initializing the wrapped value
to the value computed by the initializer expression. If no initializer expression
is given, the wrapped value is initialized to the default value for the wrapped
type by instantiating the STM object using its parameterless constructor. The
transformation of an atomic field declaration follows the steps described below:

1. Determine the type of the wrapping STM object, based on the type of
the field declaration.

2. For each variable declared as part of the field declaration, construct an
object instantiation expression following the approach described above.
This expression serves as the new initializer for the particular variable it
was created for.

3. Construct a new field declaration with the same access modifiers and
variable names as the original declaration, but substituting the type with
the STM object type, and initializer expressions with the created object
instantiation expressions.

4. Replace the original field declaration with the constructed field declara-
tion.

Listing 7.5 presents an example of two atomic field declarations before
transformation while Listing 7.6 shows the result of applying the transformation.
Line 3 of Listing 7.5 is transformed to line 3 of Listing 7.6. The type of the

CHAPTER 7. ROSLYN EXTENSION 75

field is changed to the specialized integer STM type TMInt and the initializer
expression is used to initialize the value of the created TMInt object. Line 4
of Listing 7.5 is transformed to line 4 of Listing 7.6. The type is transformed
to TMVar<string>. For field3, which original definition does not contain
an initializer expression, an initializer expression has been created following
the previously described procedure.

Listing 7.5: atomic Field Before Transformation

ublic class AtomicFieldExample

~ 'O

"Hello world!", field3;

1

2

3 private atomic int fieldl = 1;
4 public atomic string field2 =
5

1

2

3 private TMInt fieldl = new TMInt (1);

4 public TMVar<string> field2 = new TMVar<string>("Hello
world!"), field3 = new TMVar<string>();

7.3.3 Properties

In Section 5.1.3 the design for transactional properties was described. In order
to provide the wanted semantics for the automatic form, the transformation
involves two parts: an atomic backing field, and a manual property. The
transformation takes the following approach for each transactional property
identified in the syntax tree:

1. Construct a get-body with the access-modifier of the original property’s
get. The get-body contains a block that returns the value of the backing
field. The backing field is not yet constructed, but a method is used to
determine its future identifier to ensure a correct reference.

2. Construct a set-body with the access-modifiers of the original property’s
set-body. The set-body contains a block where an assignment of value
is made to the backing field.

3. Construct a manual property with the access modifier of the original
property and the get-body and set-body constructed earlier.

4. Construct a private transactional field of the same type as the original
property, used as backing field.

CHAPTER 7. ROSLYN EXTENSION 76

5. Insert the new property after the original property and replace the
original property with the private transactional field.

Transactional properties are transformed before transactional fields. This
enables the transformation of transactional properties to simply generate
a backing field which is declared atomic and rely on the transformation of
transactional fields to transform the type of the field to the correct STM type.
No transformation has to be done for the manual form, as the transactional
field used for backing the property is processed as described in Section 7.3.2.
The automatic form before transformation is exemplified in Listing 7.7, where
the transformation result is shown in Listing 7.8.

Listing 7.7: atomic Property Before Transformation

1 class Car {
2 public atomic int KmDriven { get; set; }
3

}

Listing 7.8: atomic Property After Transformation

1 class Car {

2 private atomic int _kmDriven;
3 public int KmDriven {

4 get {

5 return _kmDriven;
6 }

7 set {

8 _kmDriven = value;
9

}
10 }
11 }

7.3.4 Local Variables

In Section 5.1.4 the design for transactional local variables is described. Similar
to fields modified with the atomic keyword, atomic local variables must
have its type substituted to a corresponding STM type. Thus, the approach is
similar to the one described in Section 7.3.2, with the exception that a local
variable can be declared without specifying the type by using the var keyword,
relying on compile-time type inference to determine the type. Since the type
has not yet been determined at the point of the transformation, Roslyn’s API
is utilized to infer the type, and replace the var keyword with the type. This
is done by identifying all local declaration statements with the type var and
the atomic modifier.

The transformation is exemplified with a before example on Listing 7.9, where
on line 5 a local variable is declared by using the var keyword. The r-value of

CHAPTER 7. ROSLYN EXTENSION 77

the statement is an expression, which type can be identified using the Roslyn
compiler’s API. In Listing 7.10 on line 5 the result shows that the type was
infered to a string, thus the var is replaced by a TMVar<string>.

Listing 7.9: atomic Local Variables Before Transformation
1
2
3
4
5
6
7
8

Listing 7.10: atomic Local Variables After Transformation

public class AtomicVarExample
{

public void Method()

{
atomic var variablel
atomic int variable2

"Hello World!";
42;

-

public class AtomicVarExample
{

public void Method()

{
TMVar<string> variablel = new TMVar<string>("Hello World!");
TMInt variable2 = new TMInt (42);

0~ Utk W

—

7.3.5 Accessing Transactional Variables

As described in Section 6.3.2 setting the value of a transactional variable is done
through the Value property of the supplied STM types. As the type of any
field, local variable or parameter declared atomic in AC# is changed to the
corresponding STM type, any assignment must go through the Value property.
Additionally, the STM types supply support for implicit conversion to the
wrapped value, when appearing as r-values. The transformation can however
not rely on implicit conversion in all cases as, for example the comparison of
two TMInt objects results in reference comparison instead of the expected
integer comparison. As such, also the r-value appearances of any transactional
field, local variable and parameter must be transformed to access the Value
property, which ensures that the wrapped object is accessed instead of the
STM object. Special handling is given to the ++ and —— operators as the
numeric STM types supply transactional implementations of these operators.
The transformation ensures that these operators can be used on a transactional
variable directly, instead of on its Value property.

The transformation of access to transactional variables is divided into two
parts. The first deals with the usage of a transactional variable occurring
as a single identifier such as someTMVar. The second part handles member
access expressions such as object.tmfieldl.tmfield2. While these two

CHAPTER 7. ROSLYN EXTENSION 78

implementations differ in the syntactic constructs they work on, their overall
approach both follow the steps described below:

1. Identify each usage of a transactional field, local variable, or parameter
including both r- and l-value occurrences.

2. Construct a member access expression that accesses the Value property
of the identified variable.

3. Replace the usage of the variable with the constructed member access
expression.

Listing 7.11 presents an example of accessing both a transactional field, local
variable and parameter. Listing 7.12 shows the result of applying the trans-
formation. The assignment on line 8 of Listing 7.11 is transformed to access
the Value property of both its left and right side, as both of the variables
involved are transactional. The result of the transformation is shown on line
8 of Listing 7.12. The member access expression on line 10 of Listing 7.11 is
likewise transformed to access the Value property of both transactional fields
involved. The resulting code is shown on line 10 of Listing 7.12.

Listing 7.11: Usage of atomic Variables Before Transformation

public class AtomicExample
{

public atomic AtomicExample aField;

1
2
3
4
5 public AtomicExample ExampleMethod(atomic int 1)
6 {

7

8

atomic int k = 0;
k = 1i;
9
10 return aField.aField;
11 }
12 }

Listing 7.12: Usage of atomic Variables After Transformation

1 public class AtomicExample

2 {

3 public TMVar<AtomicExample> aField = new TMVar<AtomicExample> () ;
4

5 public AtomicExample ExampleMethod (TMInt i)
6 {

7 TMInt k = new TMInt (0);

8 k.Value = i.vValue;

9

10 return aField.Value.aField.Value;

11 }

CHAPTER 7. ROSLYN EXTENSION 79

7.3.6 Parameters

As with transactional local variables and transactional fields, the type of a
parameter declared atomic must be changed to the corresponding STM type
in order for the STM system to track assignments to it. Listing 7.13 presents a
method taking two at omic parameters while Listing 7.14 presents the result of
applying the parameter transformation. Each atomic parameter is transformed
individually and any ref or out modifiers are preserved.

Listing 7.13: atomic Parameters Before Transformation

1 public class AtomicParameterExample

2

3 public void TestMethod(atomic int x, bool b, atomic ref string
s)

4 {

5 //Body

6 }

7}

Listing 7.14: atomic Parameters After Transformation

public class AtomicParameterExample
{

1

2

3 public void TestMethod (TMInt x, bool b, ref TMVar<string> s)
4 {

5 //Body

6 }

7}

7.3.6.1 Transactional Output Parameters

Transactional output parameters described in Section 5.2.3 require additional
handling as C# requires every execution path in the method body to assign a
value to the parameter[52, p. 42]. As described in Section 7.3.5, any assignment
to a variable is replaced with an assignment to its Value property. As a
consequence no assignments occur to the transactional parameter itself, which
results in an error in the generated code. To rectify this error, an assignment,
assigning a new STM object with the same type as the parameter, is generated
in the top of the method body for every atomic out parameter of that
particular method. For each atomic out parameter the AC# transformation
contains the following steps:

1. Construct an object initialization expression that creates a new STM
object of the same type as the parameter.

2. Construct an assignment statement that assigns the newly constructed
object initialization expression to the atomic out parameter.

CHAPTER 7. ROSLYN EXTENSION 80

3. Insert the assignment statement as the first statement in the body of the
enclosing method declaration.

Listing 7.15 shows a method with an atomic out parameter while Listing 7.16
shows the result of applying the transformation. Based on the atomic out
parameter declared on line 3 of Listing 7.15 the assignment on line 5 of
Listing 7.16 is generated.

Listing 7.15: atomic out Parameter Before Transformation

1 public class AtomicOutExample

2

3 public static void TestMethodAtomic (atomic out int i, int 3j)
4 {

5 i =12;

6] = 12;

7

8

-

Listing 7.16: atomic out Parameter After Transformation

1 public class AtomicOutExample

2 {

3 public static void TestMethodAtomic (out TMInt i, int 3j)
4 {

5 i = new TMInt ();

6 i.Value = 12;

7 J = 12;

8 }

9 }

While the generated assignment solves the problem of assignments to atomic
out parameters it introduces two new problems. Firstly, C# requires that
every out parameter is assigned a value before a method exits, generating
a compile time error if that is not the case[17, p. 94]. This error message
is lost for transactional output parameters due to the generated assignment.
Secondly, C# requires that an out parameter is assigned to before reading
from it[17, p. 94|, generating a compile time error if a read occurs before an
out parameter is assigned a value. If a read occurs before any assignment in
the original source code, no error is given due to the generated assignment.
In both cases a meaningful error can be generated by applying analysis to a
transactional output parameters Value property by following the rules defined
in[17, p. 95]. No such analysis has however been implemented in the initial
prototype of AC#.

CHAPTER 7. ROSLYN EXTENSION 81

7.3.7 Arguments

As described in Section 5.2.1 AC# support value parameters. Replacing the
type of an atomic parameter with the corresponding STM type, as described
in Section 7.3.6, results in a type mismatch when calling a method with an
atomic parameter of some type T, as the parameter is no longer of type
T, but of T’s corresponding STM type. As a result transformation must be
applied to arguments passed to an atomic parameter, ensuring that the
argument represents an object of the required STM type. The transformation
applied when an argument is passed to an atomic parameter goes through
the following steps:

1. Determine the STM type of the formal parameter to which the argument
corresponds.

2. Construct an object initialization expression, which creates an object of
the previously determined STM type, where the argument expression is
given as argument to the constructor of the object.

3. Replace the argument with the constructed object initialization expres-
sion.

Listing 7.17 presents an example of calling a method with an at omi c parameter,
while Listing 7.18 shows the result of the transformation. Line 3 is transformed
as described in Section 7.3.6. Line 10 in Listing 7.17 is transformed to line
10 in Listing 7.18. The argument to the atomic parameter is replaced with
an object initialization expression that creates a new TMInt object which is
initialized using the original argument.

Listing 7.17: atomic Argument Before Transformation

1 public class AtomicArgumentExample
2 {

3 public static void TestMethod(atomic int x, int vy)
4 {

5 //Body

6 }

7

8 public static void Main ()

9 {

10 TestMethod (1, 2);

11 }

12 }

CHAPTER 7. ROSLYN EXTENSION 82

Listing 7.18: atomic Argument After Transformation

public class AtomicArgumentExample
{

1

2

3 public static void TestMethod (TMInt x, int vy)
4 {

5 //Body
6 }

7

8

public static void Main ()
9 {
10 TestMethod (new TMInt (1), 2);
11 }
12 }

7.3.7.1 Ref/Out Arguments

Supporting atomic ref and out parameters, as described in Section 5.2.4.1,
presents a problem due to the type mismatch as a result of transforming
atomic variables. ref and out parameters require the argument to be an
assignable variable of the same type as the parameter. However as the type of
the parameter is transformed, a variable of type T cannot be passed directly
as ref or out to an atomic parameter of type 7.

Four different cases exist for passing ref and out arguments. These are:

1. T — atomic T
2. atomicT — T

3. atomicT — atomic T

4. T — T

where T is some arbitrary type, atomic T is T’s corresponding STM type
and atomic T — T represents passing an argument of type 7T into a
parameter of the STM type corresponding to T'. The third and fourth cases
are handled by the C# compiler so transformation must only be applied in
the first and second cases. For each argument node in the syntax tree the
transformation goes through the following steps:

1. Determine whether the argument represents one of the two previously
described cases. If so, the remaining transformation steps are applied.

2. Construct a local variable with a type definition equal to that of the
parameter, initialized using the original argument, and insert it just
before the method call.

CHAPTER 7. ROSLYN EXTENSION 83

3. Replace the original argument with an identifier equal to the name of
the previously generated intermediate local variable, passed using the
same modifier as the original argument

4. Construct an assignment syntax node that assigns the value of the
intermediate local variable to the original argument and insert it just
after the method call

Listing 7.19 shows an example containing three method calls, where the first and
third call falls in one of the categories which require transformation. Applying
the transformation to the example presented in Listing 7.19 produces a syntax
tree representing the code shown in Listing 7.20. Line 18 of Listing 7.19 is
transformed to lines 18 to 20 of Listing 7.20. As the parameter is atomic, the
local variable inserted on line 18 is of the parameters corresponding STM type.
The argument to the method call has been replaced as seen on line 19. The
assignment on line 20 assigns the value computed by the called method to the
original argument. Line 19 of Listing 7.19 is not transformed as it represents
the case atomic I’ — atomic 7. Line 20 of Listing 7.19 is transformed
much like 18, except the generated local field is of type int instead of an
STM type, as the parameter is not declared atomic.

C# requires the argument for a ref or out parameter to be a variable. For
the case ' — atomic T and atomic T’ — T, compile time analysis
has been implemented to generate an error if the original argument does not
correspond to a variable, as this is always the case in the generated code.

Listing 7.19: ref Arguments Before Transformation

1 public class AtomicRefExample

2 {

3 public static void TestMethodAtomic (atomic ref int 1)
4 {

5 i =12;

6 }

7

8 public static void TestMethod (ref int 1)
9 {

10 i =12;

11 }

12

13 public static void Main ()

14 {

15 int i = 10;

16 atomic int iAtomic = 10;

17

18 TestMethodAtomic (ref 1i);

19 TestMethodAtomic (ref iAtomic);
20 TestMethod (ref iAtomic);

21 }

CHAPTER 7. ROSLYN EXTENSION 84

Listing 7.20: ref Arguments After Transformation

1 public class AtomicRefExample

2 {

3 public static void TestMethodAtomic (ref TMInt i)
4 {

5 i.value = 12;

6 }

7

8 public static void TestMethod(ref int i)
9 {

10 i =12;

11 }

12

13 public static void Main ()

14 {

15 int 1 = 10;

16 TMInt iAtomic = new TMInt (10);
17

18 TMInt _genl = new TMInt (1);

19 TestMethodAtomic (ref _genl);
20 i = _genl.Value;

21

22 TestMethodAtomic (ref iAtomic);
23

24 int _gen3 = iAtomic.Value;

25 TestMethod (ref _gen3);

26 iAtomic.Value = _gen3;

27 }

28 }

7.3.8 Retry

In Section 5.4 the design of conditional synchronization through the use of
retry is described. As retry is a keyword used as a statement, much like
the break and continue statements in C#, the transformation need to
identify all ret ry keywords and replace them with a method invocation to the
static method STMSystem.Retry defined in the STM library, described in
Section 6.3.3. The library then carries out the effect of the retry statement.
To inform programmers of unintended behavior, analysis generating an error if
the retry statement is used outside of an atomic or orelse block, has been
implemented.

7.4 Testing

Testing is employed to ensure the Roslyn extension fulfills the design decisions
of AC# and the integration with existing language features described in
Chapter 5.

CHAPTER 7. ROSLYN EXTENSION 85

For the reasons described in Section 6.5, unit testing is chosen for testing the
Roslyn extension. Unit testing is valuable in relation to the maintenance and
further development of the Roslyn extension. Furthermore, Roslyn is still
under heavy development, which means radical changes will happen. The
unit test suite is beneficial to test if the extension still works, whenever new
changes are made to Roslyn. The disadvantage of unit testing being more
time consuming than ad hoc testing is outweighed by the many advantages
which is gained. Additionally, each unit test is built using a black-box testing
strategy|[69, p. 87], where the program is viewed as a black box and focus is
only on the input and output. This is done as the focus of the unit tests is
on the functionality of the compiler. That is, the tests focus on what it does,
and not on how it does it. Additionally it fits well with how a compiler is
normally treated, as it is treated as a black-box where the input and output is
only available.

Each STM construct and each integration with an existing language feature is
covered by at least a single unit test. Furthermore, integration with disallowed
existing language features is tested, e.g. there is a unit test that ensures an
error is produced if the programmer tries to use the retry statement outside
of an atomic or orelse block. This results in a rather extensive test suite,
which is valuable in relation to the correctness of the STM constructs and
integration with language features of AC#.

Listing 7.21 shows an example of a unit test for an empty atomic block.
On line 3 the string finalStr to be compiled is generated using the
MakeSkeletonWithMain method, which generates a test namespace, class
and main method, with the supplied string arguments strInClass and
strInMain included. Afterwards the string is written to a test file, which
is used as argument in the method on line 8, which executes csc.exe (C#
command line compiler) and returns a CmdRes object that contains the
command line output. On line 9 it is checked that the command line output
does not contain any warning, error or invalid exitcode. For unit tests that
check error generations, e.g. an illegal existing language feature used with
an STM construct, this step is not present, instead CmdRes can be checked
if it contains the expected error or warning. On line 11 the expected result
of the compilation string expecStr is generated and on line 17 the actual
compilation string compiledStr is fetched. In order to retrieve the actual
compilation string, csc.exe is extended with an additional argument called
stmiout, which writes the source code after STM transformation to the
specified path. This argument is used in the method on line 8. Finally on
line 18 the expected string and the compiled string is checked for equality, if
equal the test passes and otherwise it fails. Before checking for equality, the
AssertEqualStrings method removes formatting from the strings.

CHAPTER 7. ROSLYN EXTENSION 86

Listing 7.21: Empty Atomic Block Unit Test

1 public void AtomicBlockEmpty ()

2

3 string finalStr = MakeSkeletonWithMain (

4 strInClass: "",

5 strInMain: "atomic{\n\t\t\t"+

6 "rm)

7 StringToTestFile (finalStr);

8 CmdRes res = RunCscWithOutAndStmIOut () ;

9 AssertCmdRes (res) ;

10

11 string expecStr = MakeSkeletonWithMain (

12 strInClass: "",

13 strInMain: STM.STMNameSpace + ".STMSystem.Atomic (" +
14 ") =>" +

15 o+

16 ")

17 string compiledStr = TestFileToString(currentCompiledCsFile);
18 AssertEqualStrings (expecStr, compiledStr);

19 1}

7.5 Design and Integration Revisited

This section describes areas in which the initial prototype implementation
described in this chapter, conflicts with the intended design and language
integration described in Chapter 5. Ideally no conflicts would happen, as
the analysis in the design and language integration chapter would foresee
them. However, implementing the design gave an insight and knowledge into
unforeseen areas.

7.5.1 Transactional Local Variables and Fields

As described in Section 7.3.2 and Section 5.1.4 local variables and fields of
type T declared atomic are transformed to declarations with a type equal
to T’s corresponding STM type. As part of this process the local variable or
field is initialized to an STM object of the correct type, using any initializer
expression if present. If not, the value of the variable is initialized to the
default value of type T through the STM object’s parameter less constructor.

For fields this presents no issue as fields are always initialized to the default
value of their type if no initializer expression is present[17, p. 93]. This is
however not the case for local variables. The C# compiler generates an error
if a local variable is accessed before it has been assigned a value[l7, p. 96].
As atomic local variables are always initialized, this error will never occur
for such variables, which can lead to unintended behavior in cases where the
programmer forgets to assign an atomic local variable. In such cases the

CHAPTER 7. ROSLYN EXTENSION 87

default value of the atomic local variables original type will be the value
accessed, potentially leading to some confusion.

In order to provide similar error messages for atomic local variables and
regular C# local variables, the Roslyn flow analysis which detects whether a
given accessed local variable has been definitely assigned, must be extended.
It must be extended to track both initial assignment, as part of the variable
declaration, and assignment to the STM objects Value property, as opposed
to assignments directly to the variable. Such analysis has however not been
included in the initial prototype described in this chapter.

7.5.2 Transactional Optional Parameters

C# requires that the default value given when declaring an optional parameter
is one of the following[17, p. 309]:

1. A constant expression
2. An expression of the form new S () where S is a value type

3. An expression of the form default (S) where S is a value type

As described in Section 7.3.6 the transformation of an atomic parameter
transforms the type of the parameter to one of the STM types. Providing
a default value to an atomic parameter therefore amounts to initializing
a new STM object with the same type as the parameter, supplied with the
defined default value to its constructor. All STM types are however reference
types and the creation of a new STM object can therefore, per the three rules
described above, not be supplied as the replacement default value, as this
would result in a compile time error. As a result default values for transactional
value parameters are not implemented in the initial prototype described in this
chapter. Analysis has been implemented to produce an error if an atomic
value parameter is given a default value. This is done in the parsing phase,
by checking if a parameter is declared with the atomic modifier and has an
optional value.

7.5.3 Transactional Ref/Out Parameters & Arguments

As described in Section 5.2.2 and Section 5.2.3 the intended design was that
assignments to transactional ref/out parameters would take effect when the
transaction in which the assignment takes place commits. This behavior holds
true for the case:

eatomic T — atomic T

CHAPTER 7. ROSLYN EXTENSION 88

That is, the case involving an atomic argument and parameter. For the cases:

o T — atomic T

eatomic T — T

the behavior is however different. Due to the type mismatch between the
argument and parameter, an intermediate local variable is passed as the actual
argument, and the original argument is assigned as the first thing after the
call finishes. This conflicts with traditional C#, where any assignment to a
ref/out parameter takes effect immediately[52, p. 76]. If the parameter is
declared atomic and the method call is wrapped in an atomic block, there
will be no difference in timing as any assignments to atomic variables take
effect when the transaction commits. However, if the call is not wrapped in
an atomic block the difference in timing can have unintended consequences,
especially when considering concurrent execution. Due to this issue a number
of ways for handling atomic ref/out parameters and arguments were
investigated:

1. Warn the programmer if one of the two problematic cases is used.
2. Disallow the two problematic cases described above.

3. Disallow atomic ref/out parameters.

In C#, passing a volatile field as ref/out results in the field being treated
as non-volatile within the method body[70]. If such an operation is detected
the compiler creates a warning informing the programmer of the change in
semantics. The same approach could be taken whenever one of the two
problematic cases described earlier is detected.

Disallowing the ref/out cases where both an atomic and non-atomic
variable/parameter are involved removes the cases where the desired timing
cannot be provided. However, it will, for example, no longer be possible
to pass an atomic integer into an out integer parameter such as that
of Int32.TryParse. Such restrictions limits the flexibility when using
atomic variables, and the programmer needs to circumvent this, by the use
of intermediate variables which clutters the code, and reduces the readability.

Disallowing atomic ref/out parameters, prevents the programmer from
declaring atomic ref/out parameters, which removes the timing issues
present in the cases where an intermediate atomic variable is required.
However, the ability to pass an atomic variable by reference is lost and the
case of passing a variable of type atomic T into a parameter of type T is

CHAPTER 7. ROSLYN EXTENSION 89

still unsolved. Consequently, this would limit the orthogonality of the atomic
construct.

For the initial prototype presented in this chapter the first option of warning
the programmer of the change in semantics has been selected. This ensures
that the change in semantics is not hidden from the programmer thereby
allowing her to adapt the program. This choice follows the approach taken by
C# in the case of a volatile field passed by ref into a method as described
above.

8 Evaluation of
Characteristics

This chapter evaluates AC#, its associated STM library, and locking in C+#
according to the evaluation method described in Section 1.5. The evaluation
facilitates a conclusion on our hypothesis “Language integrated STM provides
a valid alternative to locking in terms of usability, and provides additional
benefits compared to library-based STM, when solving concurrent problems in
C#” defined in Section 1.4. The following sections describes how each of the
three concurrency approaches are evaluated according to the characteristics.
Each of the three concurrency approaches is given a placement on the spectrum
of a given characteristic, as defined in Section 1.5.

8.1 Implicit or Explicit Concurrency

All the selected concurrency approaches rely on starting threads in order to
introduce concurrency as well as manually specifying critical regions using
either locks or the atomic block. This makes all the approaches lean toward
the explicit end of the spectrum. The two STM based approaches are however
more implicit as STM abstracts away synchronization details. Locking in C#
on the other hand requires explicitly stating how synchronization is achieved
and is therefore placed close to the explicit concurrency extreme. AC# and
the STM library reside slightly more towards the implicit concurrency end
of the spectrum. The placement of the three concurrency approaches on the
implicit - explicit concurrency spectrum is depicted in Figure 8.1.

STM Library
Locking

| —| |
| |

Implicit Explicit
Figure 8.1: Concurrency approaches on the implicit - explicit concurrency
spectrum

90

CHAPTER 8. EVALUATION OF CHARACTERISTICS 91

8.2 Fault Restrictive or Expressive

Locking presents the programmer with a set of constructs aimed at solving
concurrency problems, but does little to guarantee correct usage. The locking
constructs in C# are explained in detail in Section 2.1. Locking enables
control of synchronization at a very low level of detail, which is very expressive.
Therefore, locking in C# is placed at the expressive end of the spectrum.

The STM based approaches delegate the details of how synchronization is
achieved to the underlying STM system, allowing STM based concurrency to
avoid some of the errors associated with locking, such as deadlocks. The STM
based approaches however still rely on shared memory for communication and
require programmers to define transaction scopes and introduce concurrency
by starting threads. The abstractions provided by STM limits the possibility of
expressing synchronization at a low level of detail. The STM based approaches
reside towards the expressive end of the spectrum but contain fault restrictive
elements pulling them more towards the fault restrictive extreme than locking.
AC# however implements a number of compile time errors and warnings
keeping the programmer from utilizing undesirable combinations such as
retry statements outside atomic or orelse block, moving it slightly
towards the fault-restrictive end of the spectrum. The placement of the three
concurrency approaches on the fault restrictive - expressive spectrum is depicted
in Figure 8.2.

STM Library Locking
| —)]
Fault Restrictive Expressive

Figure 8.2: Concurrency approaches on the fault restrictive - expressive spec-
trum

8.3 Pessimistic or Optimistic

Locking applies synchronization by enforcing mutual exclusion. This approach
is well suited in scenarios where errors are common which would result in a
high number of aborts if an STM based approach had been used. Locking
is therefore an inherently pessimistic concurrency approach as it prevents
errors from occurring instead of correcting them when they occur. STM on
the other hand allows multiple threads to proceed simultaneously, correcting

CHAPTER 8. EVALUATION OF CHARACTERISTICS 92

any errors that may occur by aborting and re-executing transactions. Hence
STM takes an optimistic approach to concurrency. However, the employed
STM system uses lazy updates as opposed to eager updates, which is a slightly
more pessimistic approach to STM keeping AC# and the STM library from
reaching the optimistic extreme.Therefore AC# and the STM library resides
close to at the optimistic extreme of the pessimistic - optimistic spectrum
while locking resides close to at the pessimistic extreme. The placement of
the three concurrency approaches on the pessimistic - optimistic spectrum is
depicted in Figure 8.3.

AC#
Locking
‘ ﬁ STM Library ‘
Pessimistic Optimistic

Figure 8.3: Concurrency approaches on the pessimistic - optimistic spectrum

8.4 Readability & Writability

The evaluation of readability and writability is based on a number of shared
characteristics: Data Types, Syntax Design, Simplicity, and Orthogonality.
The characteristics Data Types and Syntax Design will not be evaluated on a
spectrum of two extremes, as the choices made are trade-offs affecting other
characteristics, e.g. simplicity and readability. The evaluation of these will
therefore be taken into account when the other characteristics are evaluated.

In addition to the shared characteristics, writability is based on level of
abstraction and expressivity.

8.4.1 Data Types

All three concurrency approaches are either integrated into or build around C#,
which means they have almost the same data types. A difference lies in the STM
approaches where the types of transactional variables are treated differently.
In the STM library, transactional variables are defined using transactional
types, such as TMInt, which means that it is possible to create an array or list
containing these types, e.g. TMInt [] defines an array of TMInt types. AC#
instead preserves the original types of transactional variables, allowing the
programmer to utilize an atomic variable of type T as if it was of type T even

CHAPTER 8. EVALUATION OF CHARACTERISTICS 93

though the compiler transforms the type of the variable to 1T’s corresponding
STM type, as described in Section 7.3.2. As transactional variables are not
special types in AC# it is not possible to define a list or array of transactional
variables directly, instead a wrapper class with an atomic field must be
employed.

The need to define an array of transactional types was experienced during the
development of the hashmap implementations which use an array to represent
the buckets of the hashmap. Listing 8.1 and Listing 8.2 show how the hashmap
buckets are defined in the STM library and AC#, respectively. In the library
STM example on line 3 the buckets are defined directly. The type of the
_buckets field will be explained gradually. The inner Node type, is a simple
class which represents a key value pair, where the value is a transactional
variable, defined in the STM library code on line 8 and in AC# code on line 12.
In case of collisions the Node class allows for chaining of nodes representing
the key/value pairs inserted into the hashmap through its Next property.
Each bucket is represented by a transactional variable which points to the first
element in the collision list, if any such element exists. The Next property
of the Node class is transactional, allowing the system to detect changes to
the internals of the collision list. This, along with the transactional variable
pointing to the first element in the list, allows for changes to the entire collision
list to be tracked. Finally the backing array is also wrapped in a transactional
variable allowing the STM system to track assignments to the entire backing
array in order track when the backing array is resized. In the AC# example on
line 3 it is not possible to define the array of transactional variables directly, so
a wrapper type called Bucket defined on line 7 is used. This is a consequence
of the design of the ACH.

Ultimately prohibiting the programmer to define an array or list of transactional
types directly, lowers the readability and writability of AC#, as it requires the
programmer to write, read and maintain an extra wrapper class. To remedy
this, a library of data structures which provides tracking to internal changes
could be included in the language.

The special types used by the STM library to represent transactional variables
requires the programmer to use the Value property whenever she needs to
make an assignment. Implicit conversion ensures that an object of one of
the STM types, such as TMInt, in most cases can be used as an object of
the type it is wrapping. Listing 8.3 shows an equality comparison of two
transactional variables using the STM library. The comparison on line 5
requires the programmer to access the Value property of the TMVar objects
as implicit conversion will not be used if the TMVar’s are compared directly.
If the value property had not been used the TMVar objects would have been
compared, producing an incorrect result. A similar problem exists when calling

CHAPTER 8. EVALUATION OF CHARACTERISTICS 94

Listing 8.1: HashMap Buckets Array - STM Library

1 public class StmHashMap<K,V> : BaseHashMap<K, V>

2 {

3 private readonly TMVar<TMVar<Node>[]> _buckets =
4 new TMVar<TMVar<Node>[]>();

5

6 //Other code

7

8 private class Node

9 {

10 public K Key { get; private set; }

11 public TMVar<V> Value { get; private set; }
12 public TMVar<Node> Next { get; private set; }
13 public Node (K key, V value)

14 {

15 Key = key;

16 Value = new TMVar<V> (value);

17 Next = new TMVar<Node> () ;

18 }

19 }

20 }

Listing 8.2: HashMap Buckets Array - AC#

1 public class StmHashMap<K,V> : BaseHashMap<K, V>
2 {

3 private atomic Bucket[] _buckets;

4

5 //Other code

6

7 private class Bucket

8 {

9 public atomic Node Value { get; set; }
10 }

11

12 private class Node

13 {

14 public K Key { get; private set; }

15 public atomic V Value { get; set; }
16 public atomic Node Next { get; set; }
17 public Node (K key, V value)

18 {

19 Key = key;

20 Value = value;

21 }

22 }

[\V)
w
-

CHAPTER 8. EVALUATION OF CHARACTERISTICS 95

Listing 8.3: Equality comparison of TMVar<bool>

1 public bool TestMethod/()

2 {

3 TMVar<bool> vl new TMVar<bool> (false);
4 TMVar<bool> v2 = new TMVar<bool> (false);
5
6

return vl.Value == v2.Value;

}

a method on a TMVar object, implicit conversion does not allow methods of
the wrapped type to be called on the TMVar directly.

The two STM based approaches have problems combining with existing data
structures. For example, if a programmer utilizes a List<T> inside a transac-
tion, any operations on the list are not tracked by the STM system as List<T>
is not implemented using transactional variables. Therefore operations on the
list take effect immediately. A transaction may be executed multiple times
due to being aborted and retried, resulting in the operations, such as adding
an element to the list, being executed and taking effect multiple times. Con-
sequently data structures utilized in transactions must be: a) Implemented
using transactional variables, allowing the STM system to track any changes,
or b) Immutable and tracked through assignment to a transactional variable.

8.4.2 Syntax Design

The use of keywords reduce simplicity but increase readability, as the intent
stands out clearly[21, p. 12-13]. Locking in C# employs only a single keyword,
lock. The rest of the functionality is provided by library calls as described
in Section 2.1. The use of libraries for locking constructs makes it blend
in with other library code, even though it has a special purpose related to
synchronization. This decreases the readability, but keeps the simplicity of the
language as it does not introduce keywords for all constructs.

The STM library also uses library calls as described above, thus it has the same
disadvantages and the readability is decreased compared to AC+# which has
keywords for the special constructs. The four keywords introduced in AC# do
however decrease the simplicity of the language. As the atomic keyword has
different meanings depending on the context in AC#, its readability is reduced.
The simplicity is however raised by employing a minimum of keywords.

The STM library requires the programmer to use static method calls, wrap
transactional code in lambdas, wrap transactional variables in TMVars, use the
Value property when getting or setting a value, supply orelse transactions
as arguments to the atomic method call, and write return in front of the static

CHAPTER 8. EVALUATION OF CHARACTERISTICS 96

method call if a method must return the value computed by a transaction. All
of these concerns are abstracted away in AC#.

In C# it is possible to name variables after reserved keywords, by prefixing
the name with @. Due to this, the impact of the additional keywords in AC#
on the naming of variables is reduced and it is distinguishable when atomic
is used as a name or a keyword.

8.4.3 Low or High Simplicity

Locking is based on the idea of mutual exclusion. C# supplies a number of
different constructs for defining synchronization using locking as described in
Section 2.1. Applying locking correctly in complex scenarios is considered to
be hard[2, p. 56], mainly due to the number of errors that can arise, such as
deadlocks.

Locking requires the programmer to explicitly state how synchronization is
to be applied. Both library-based STM and AC# take a more declarative
approach than locking when specifying synchronization, thus it is simpler as
the programmer does not have to worry about low level details. The usability
studies produced by Rossbach et al. in [42] and Pankratius et al. in [43] find
that the surveyed students found STM simpler than fine grained locking but
more complex than coarse grained locking due to issues understanding the
execution of transactions.

In case of conditional synchronization, both forms of STM can leverage the
retry functionality, making a transaction block until the variables previously
read by the transaction are changed. In C# a Monitor allows blocking until
another thread notifies the blocked thread, but contrary to retry this is not
on a declarative level. The retry statement was used in the two STM based
queue implementations to, with only two lines of code, make the calling thread
block until the queue is non-empty in case Dequeue is called on an empty
queue. The same feature in the lock-based implementation would require the
use of a semaphore or the Monitor class’s Wait and Pulse/PulseAll
methods, which both require the programmer to manage low level details.

Listing 8.4 and Listing 8.5 show the Add method for the locking and library-
based STM hashmap implementations respectively. The locking hashmap
implementation divides the backing array into a number of stripes, where each
stripe is protected by its own lock. When accessing a bucket the hashmap must
determine what lock to acquire based on the index of the bucket. This strategy
is further described in Appendix C.1.4. In Listing 8.4 on line 4, a calculation is
made to determine which lock needs to be used, additionally on line 18 another
lock is needed for synchronizing access to the _size variable as the previously
acquired lock only covers part of the buckets, meaning that another thread

CHAPTER 8. EVALUATION OF CHARACTERISTICS 97

could be changing the _size variable. This is avoided in Listing 8.5 where
the method is wrapped in an atomic block, and the STM system detects and
resolves potential conflicts.

Library-based STM does not have support for checking implicit dependency
between static calls at compile time, e.g. a retry outside an atomic call
will not produce a compile time error. Additionally, the STM types provided
must be used to track variables in transactions. These types cause a type
mismatch when used together with standard types, thus making the library
more complex to use. This issue is partly resolved by providing implicit type
conversion on the STM types, but the implicit conversion is not possible in all
cases. In the cases where it is not, the programmer must access the wrapped
value by the Value property available on all STM types.

ACH+ introduces additional language constructs which reduces the simplicity of
the language. It does however increase the simplicity of using the STM part,
e.g. using retry outside of an atomic block will result in a compile time
error. Additionally, atomic can also be used along with fields, local variables,
and parameters, making them traceable in transactions without having to
use specific STM types. This simplifies interaction between code that uses
atomic variables and code that does not.

Listing 8.4: ConcurrentHashMap Add Method - Locking

1 public override void Add(K key, V value)

2 {

3 var hashCode = GetHashCode (key) ;

4 lock (_locks[GetLockIndex (hashCode)])

5 {

6 var bucket = _Dbuckets[GetBucketIndex (hashCode)];

7 var node = FindNode (bucket, key);

8

9 if (node != null)

10 {

11 //If node is not null, key exist in map. Update the
value

12 node.Value = value;

13 }

14 else

15 {

16 //Else insert the node

17 bucket .AddFirst (CreateNode (key, value));

18 lock (_sizeLock)

19 {

20 _size++;

21 }

22 }

23 }

24

25 ResizeIfNeeded();

26}

CHAPTER 8. EVALUATION OF CHARACTERISTICS 98

Listing 8.5: ConcurrentHashMap Add Method - AC#

1 public override void Add (K key, V value)

2 {

3 atomic

4 {

5 var bucketIndex = GetBucketIndex (key);

6 //TMVar wrapping the immutable chain list

7 var bucketVar = _buckets[bucketIndex];

8 var node = FindNode (key, bucketVar.Value);

9

10 if (node != null)

11 {

12 //If node is not null key exist in map. Update the
value

13 node.Value = value;

14 }

15 else

16 {

17 //Else insert the node

18 bucketVar.Value = bucketVar.Value.Add (CreateNode (key,
value));

19 _size++;

20 ResizeIfNeeded () ;

21 }

22 }

23 }

The placement of the three concurrency approaches on the low simplicity -
high simplicity spectrum is depicted in Figure 8.4.

Locking STM Library

Low simplicity High simplicity

Figure 8.4: Concurrency approaches on the low - high simplicity spectrum

8.4.4 Low or High Orthogonality

As described in Section 2.1, locking encompasses a number of basic constructs
aiding in different concurrency scenarios. These constructs can be combined to
handle complex concurrency issues. Some of these combinations are however
erroneous, producing hard to debug problems such as deadlocks. Locking does
not put any restraints on the language features with which it can be combined
and may therefore seem to be highly orthogonal. The risk of deadlocks when

CHAPTER 8. EVALUATION OF CHARACTERISTICS 99

combining lock-based implementations or employing multiple locks limit the
orthogonality, keeping locking from reaching the high orthogonality extreme.
Locking in C# provides no solutions to these issues. As a result locking in C#
is placed between the middle and the high orthogonality extreme.

STM removes the issue of deadlocks and allows STM based code segments to be
combined using transactional nesting. STM combines poorly with irreversible
actions, that is actions which cannot be rolled back in case a transaction aborts
such as IO. Neither the STM library nor AC# offers a solution to this problem
significantly reducing their orthogonality. Furthermore both the STM library
and AC# have problems combining with existing data structures reducing
their orthogonality further.

As described in Section 8.4.1 the programmer cannot rely on implicit conversion
from an STM object to the value it wraps in all cases, reducing the orthogonality
of the STM library. The STM library however benefits from the advantages
provided by STM, but is hampered by the not being able to combine with
irreversible actions and existing data structures. Consequently library-based
STM is placed just above the middle on the low - high orthogonality spectrum.
ACH treats transactional variables as an object of their original type, removing
the type mismatch between the regular types and the corresponding STM types.
As a result, AC# allows transactional variables to be compared directly and
methods can be invoked directly on the transactional variable, without having
to reason about implicit conversion or manually accessing the Value property,
as described in Section 8.4.1. Therefore AC# is placed further towards the
high orthogonality end of the spectrum than library-based STM. AC# however
remain more towards the low orthogonality extreme than locking.

The placement of the three concurrency approaches on the low - high orthogo-
nality spectrum is depicted in Figure 8.5.

AC#
Locking
‘ STM Library ﬁ ‘
Low orthogonality High orthogonality

Figure 8.5: concurrency approaches on the low - high orthogonality spectrum

CHAPTER 8. EVALUATION OF CHARACTERISTICS 100

8.4.5 Low or High Readability

As described in Section 8.4.2, locking in C#, except the lock statement, is
provided by library calls, and library STM is only provided by library calls.
This negatively affect their readability because these calls blends in with
other library code. To avoid this confusion AC# uses special keywords which
positively affects its readability, however it also negatively affects simplicity and
thereby the readability because the programmer has to know these keyword.
Also the atomic keyword has different meanings depending on the context.
This negatively affects the readability, as the programmer must be aware of
these different meanings. Much of the boilerplate code necessary in the STM
library is abstracted away in AC#, e.g. use of the Value property, which
improves its readability as there is less code to reason about.

In Section 8.4.1 the data types characteristic is described. The STM library
treats transactional variables as special types, where AC# treats transactional
variables as regular types with an associated atomic keyword modifier. As a
result it is not possible to define an array or list of transactional types directly
in AC+#, which reduces its readability, because of the extra boilerplate code
that the required wrapper class introduces. Additionally the STM library
allows for implicit conversion when reading a transactional value, thereby
avoiding the specification of the Value property, which positively affects the
readability. Implicit conversion can however produce incorrect results and is
not applicable in all scenarios, so ultimately the readability suffers.

In Section 8.4.3 the simplicity of locking is placed close to the low simplicity
extreme, where the STM library is placed a bit higher than the middle of the
spectrum and AC# even higher. In Section 8.4.4 the orthogonality of locking
resides between the middle and high end of the spectrum, while library-based
STM is placed just above the middle of the spectrum with AC# just above
it. These characteristics directly influence the readability of the concurrency
approaches.

All the concurrency approaches have to explicitly mark critical regions of code
in order to ensure a program is race condition free. This negatively affects
their readability, as by reading the program it is hard to know whether critical
regions are marked correctly everywhere, and it is especially hard in large
programs.

The basic 1ock construct and idea behind locking is simple, if a resource is
locked, only a single thread is allowed access to the resource. This positively
affects the readability of locking and in small code segments it may seem highly
readable. However locking suffers in particular from the concurrency issue of
deadlocks. This negatively affects the readability of locking drastically, as in
order to reason about deadlocks, the programmer has to reason about every

CHAPTER 8. EVALUATION OF CHARACTERISTICS 101

code segment where locking is applied and how these segments interact. As
locking code can be fragmented it can become hard for the programmer to
reason about. Additionally, if a program makes use of other libraries that
uses locking internally, the programmer also have to reason about the locks
contained within those libraries, as locks do not compose. The readability of
locking is therefore placed towards low readability on the spectrum.

The STM approaches remove the issue of deadlocks, which positively affects
the readability, as the programmer does not have to reason about deadlocks.
Additionally, STM also removes the issue of composing synchronized code
segments, as STM allows nested transactions. Similar to locking, STM suffers
from code fragmentation which can make it hard to get an overview of all
the STM synchronization in a program, which affects the readability nega-
tively. Furthermore understanding the concept of memory transactions can,
as described in [42], at first be hard to grasp, as it promotes a new way of
synchronizing programs. This problem is worsened since both the orelse
and retry constructs have been included in the STM library and AC#.
Additionally, AC# is able to produce compile time errors and warnings, e.g.
when a retry keyword is defined outside an at omic scope, which improves its
readability over the STM library, which does not have this capability. Library
STM have a type mismatch between STM types and regular types, which AC#
does not. Therefore AC# has higher readability than the STM library.

Ultimately the STM library is placed close to the middle on the spectrum
and AC# further towards the high readability extreme. The main drawback
for both approaches, is that the programmer has to mark critical regions of
code which can be very fragmented. Additionally understanding the concept
of memory transactions may at first be hard, especially as both the orelse
and retry constructs have been introduced.

The placement of the three concurrency approaches on the low readability -
high readability spectrum is shown in Figure 8.6.

AC#
Locking
‘ ﬁ STM Library ‘
Low readability High readability

Figure 8.6: Concurrency approaches on the low - high readability spectrum

CHAPTER 8. EVALUATION OF CHARACTERISTICS 102

8.4.6 Low or High Level of Abstraction

Locking is tightly coupled with the hardware architecture through hardware
instructions such as Test-and-set and Compare-and-swap[71, p. 1990]. Fur-
thermore the low-level abstraction of threads isused in order to introduce
concurrency. Additionally the programmer has to state exactly how synchro-
nization should be applied using locks. C# offers the 1ock statement which
provides a small abstraction over the release of a lock. The 1ock statement is
however not applicable in all cases. If for example a timeout on the acquisition
of a lock is required or a more advanced form of lock, such as a semaphore, is
required, the 1ock keyword is not applicable. That is the case in the locking
Dining Philosophers implementation, which requires the second lock to be
taken with a timeout. Furthermore the locking Santa Claus implementation
uses semaphores to signal between Santa, the elfs and the reindeer. The lock
keyword does not provide such capabilities. Additionally correct usage of
the Monitor class leads to the use of a try/finally block to ensure that
the acquired lock is released in case of an exception[72], reducing the level
of abstraction. Ultimately locking in C# is placed close to the low level of
abstraction extreme of the spectrum with the small abstractions provided
keeping it from being at the extreme.

The STM approaches also rely on threads, but provide a higher level of
abstraction for synchronization. STM uses transactions, where code segments
are marked and the details of how synchronization is achieved are abstracted
away by the STM system. Both AC# and the STM library facilities strong
atomicity, as described in Section 4.3 and the STM system will therefore
manage both transactional and non-transactional access, thus keeping the
level of abstraction high. Based on the above, the general STM approach lies
between the middle and high end of the spectrum, where the main drawbacks
is that the programmer still has to manage threads and mark regions of code
that should be synchronized.

Some differences in the level of abstraction exist with regards to AC# and
the STM library. As described in Section 8.4.2 the STM library requires the
programmer to use static method calls and lambdas for defining transactions.
AC# substitutes this with language based support for the at omic block. List-
ing 8.6 and Listing 8.7 present an implementation of the SleepUntilAwoken
method from the library and AC# Santa Claus problem implementations,
respectively. The method ensures that Santa sleeps until he is awoken by
either three elfs at his door, or all reindeers back from vacation, ready to fly
his sleigh. The return statement on line 3 of Listing 8.6 is not present in
the AC# implementation as it is abstracted away by AC#. Furthermore the
static method call and creation of lambas to represent transaction bodies on
line 3 is abstracted away by the atomic block and orelse block on lines 3 and
11 of Listing 8.7.

CHAPTER 8. EVALUATION OF CHARACTERISTICS 103

Listing 8.6: SleepUntilAwoken Method - STM Library

1 private WakeState SleepUntilAwoken ()

2 {

3 return STMSystem.Atomic (() =>

4 {

5 if (_rBuffer.Count != SCStats.NR_REINDEER)
6 {

7 STMSystem.Retry () ;

8 }

9 return WakeState.ReindeerBack;

10 s

11 () =>

12 {

13 if (_eBuffer.Count != SCStats.MAX_ ELFS)
14 {

15 STMSystem.Retry () ;

16 }

17 return WakeState.ElfsIncompetent;

18 1)

19 }

1

2

3 atomic

4 {

5 if (_rBuffer.Count != SantaClausProblem.NR_REINDEER)
6 {

7 retry;

8 }

9 return WakeState.ReindeerBack;

10 }

11 orelse

12 {

13 if (_eBuffer.Count != SantaClausProblem.MAX ELFS)
14 {

15 retry;

16 }

17 return WakeState.ElfsIncompetent;

18 }

19 }

The STM library exposes transactional variables as special STM types, where
ACH instead allows variables to be marked as atomic, letting the programmer
preserve the original type. AC# is therefore considered to have a higher level
of abstraction than library STM. As described previously STM however
combines poorly with irreversible actions leaving it up to the programmer
to correctly handle actions such as IO in combination with transactions. As
neither the STM library nor AC# can abstract over these problem, their level

CHAPTER 8. EVALUATION OF CHARACTERISTICS 104

of abstraction is reduced. Therefore library-based STM is placed just above
the middle of the spectrum while AC# resides further towards the high level
of abstraction extreme.

The placement of the three concurrency approaches on the low level of abstrac-
tion - high level of abstraction spectrum is depicted in Figure 8.7.

Locking STM Library AC#
Low level of abstraction High level of abstraction

Figure 8.7: Concurrency approaches on the low - high level of abstraction
spectrum

8.4.7 Low or High Expressivity

The locking constructs in C# present different ways to express exactly how
synchronization should be applied, thereby affecting the expressivity positively.
Since locking is prone to a number of concurrency related issues, the expres-
sivity is severely reduced as the programmers focus is limited by the complex
synchronization form. Locking in C# gives the programmer control over many
low level details concerning how synchronization is applied but at the same
time requires the programmer to specify these details. This along with the
risk of deadlocks and other issues limits how the programmer can express
functionality concisely and conveniently. Locking is therefore placed towards
low expressivity, being drawn a bit towards the middle of the spectrum because
of the many choices in locking constructs C# offers.

STM also builds upon threads which limits its expressivity. Memory trans-
actions however represent a more declarative and expressive approach than
locking, as the programmer only has to specify critical regions, allowing the
STM system to manage the details of how synchronization is applied. This af-
fects the expressivity positively, as it accomplishes a great deal of computation
with little code. Furthermore STM eliminates the issues of deadlocks which
makes it more convenient to express synchronization, as the programmer does
not have to reason about it. However, neither in the STM library nor AC# a
convenient way to express irreversible actions exists, such as exceptions and
10, the programmer is left alone in ensuring these actions work correctly with
transactions, which negativity affects the expressivity. Furthermore, having to
rely solely on transactional or immutable data structures limits the expressivity

CHAPTER 8. EVALUATION OF CHARACTERISTICS 105

of the STM based approaches. Based on the above, the general STM approach
lies between the middle and high end of the spectrum.

Some differences with regards to expressivity between library-based STM and
AC# exist. The expressivity of the approaches is closely related to their
level of abstraction, described in Section 8.4.6. As described in Section 8.4.2,
library STM requires the programmer to put extra effort into expressing the
intended functionality e.g. wrapping transactional code in lambdas, wrapping
transactional variables in TMVar types and using the Value property when
getting or setting a value on a transactional variable. That is abstracted away in
AC+ which makes it more expressive as it provides a more convenient and less
tedious way of specifying computations. However, the abstraction that AC#
provides, disallows the programmer from defining an array of transactional
types directly and instead requires the programmer to use a wrapper class, as
described in Section 8.4.1. Based on the above, AC# is considered to have a
higher expressivity than library STM because of the higher level of abstraction
that it facilitates. The difference is however limited as AC# does not allow for
the definition of an array or list of transactional types as described above.

The placement of the three concurrency approaches on the low expressivity -
high expressivity spectrum is depicted in Figure 8.8.

Locking STM Library

Low expressivity High expressivity

Figure 8.8: Concurrency approaches on the low - high expressivity spectrum

8.4.8 Low or High Writability

As discussed in Section 8.4.6 locking in C# has a low level of abstraction
due to its usage of low level constructs. The lock statement provides an
abstraction over the acquisition and release of a lock, providing increased
writability in cases where it is applicable. The writability of locking in C# is
however reduced as a result of the low level of abstraction. The STM library’s
level of abstraction is placed just above the middle towards the high level of
abstraction end of the spectrum, while AC# has a higher level of abstraction
than the STM library. This positively impacts the writability of the STM
library and ACH.

CHAPTER 8. EVALUATION OF CHARACTERISTICS 106

The locking constructs described in Section 2.1 are prone to common locking
problems, such as deadlocks, resulting in a low simplicity score which negatively
impacts its writability. The expressivity of the STM library resides above the
middle of the spectrum, reduced by the need to wrap transactional code in
lambdas, wrap transactional variables in TMVar types and use the Value
property when getting or setting a value on a transactional variable, hindering
the programmer from concisely expressing the intended behavior, resulting
in reduced writability. AC# removes this burden from the programmer, by
delegating the work to the compiler, resulting in a higher expressivity score
and improved writability.

With respect to simplicity, locking in C# is, as described in Section 8.4.3,
placed close to the low simplicity end of the spectrum mainly due the number of
errors that can arise. This negatively impacts the approach’s writability. The
two STM based approaches benefit from a declarative approach to defining
synchronization. The STM library is placed just above the middle of the
spectrum, while AC+# is placed towards the high simplicity end of the spectrum.
AC# is given a higher simplicity score due to its cleaner syntax and the ability
to use existing types instead of the STM equivalents, resulting in a greater
positive impact on writability.

As described in Section 8.4.4 locking in C# has orthogonal properties but it is
limited due to the risk of errors when combining locking constructs. The STM
based approaches benefit from simplified composition based on transactional
nesting but simultaneously introduces issues with irreversible actions such
as 10 as well as existing data structures. The STM library has problems
combining with existing types in all cases. Furthermore the implicit conversion
feature cannot be relied on in all cases, requiring the programmer to access the
Value property, reducing the orthogonality of the STM library. Ultimately
this results in the STM library being placed just above the middle on the low -
high orthogonality spectrum. AC# addresses many of the issues present in
the STM library by allowing the programmer to use any existing types instead
of the STM types and by delegating much of the work required by the STM
library to the compiler. This results in AC# being placed just above the STM
library on the low - high orthogonality spectrum. Locking is however placed
further towards the high orthogonality extreme due to its ability to correctly
combine with most language constructs, excluding locking itself.

Locking suffers from the risk of a number of serious errors, resulting in it
being hard to use in complex scenarios, limiting its writability. The STM
based approaches solve many of the errors present with locking but introduces
new problems with irreversible actions and data structures. The STM library
has problems with types, accessing the wrapped value, and the syntax of
transaction definitions, which limits its writability. AC# addresses many of
the writability problems present in the STM library by delegating the work

CHAPTER 8. EVALUATION OF CHARACTERISTICS 107

to the compiler. Both STM based approaches however require that data
types, including collections, are constructed using transactional variables or
implemented as immutable in order to interact with the STM system, reducing
their writability. Based on these observations and the evaluations of the
previous characteristics, the three approaches have been placed on the low -
high writability spectrum as depicted in Figure 8.9.

AC#

/L STM Library)
l

Low writability High writability

Figure 8.9: Concurrency approaches on the low - high writability spectrum

9 Conclusion

This thesis tests the hypothesis: “Language integrated STM provides a valid
alternative to locking in terms of usability, and provides additional benefits
compared to library-based STM, when solving concurrent problems in C#”. In
order to do so an extension to C#, called AC# was designed and implemented.
ACH provides language integrated support for STM which allows programmers
to utilize transactions alongside existing C# features. The STM system
powering AC# was implemented as a C# library. To implement AC#, the
Roslyn C# compiler was extended to transform AC+# source code into regular
C# code, which utilizes the aforementioned STM library to execute any defined
transactions. For each of the concurrency approaches: AC#, the STM library
and locking in C#, implementations of the Dining Philosophers problem, the
Santa Claus problem, a concurrent queue, and a concurrent hashmap were
created. These implementations served as the basis for a usability evaluation
according to an extended version of the characteristics defined in our previous
study[3].

In order to develop AC# a set of requirements were defined, detailing how
the underlying STM system should behave in relation to for example tracking
granularity, atomicity level and nesting. Based on the requirements AC#
was designed. The design includes a description of new language constructs
as well as a description of modifications to existing language features. A
number of STM implementations were investigated. Based on this investigation
as well as the requirements and design, an STM library, utilizing the TLII
algorithm, was implemented. The STM library was tested using a number
of unit tests, ensuring that transactions are executed correctly. In order to
perform the actual integration of STM into C+#, the open source Roslyn C+#
compiler was extended. This required a deep knowledge of the Roslyn project
and its structure, which initiated an investigation of Roslyn. Due to the
limited availability of literature with regards to Roslyn, much of the knowledge
obtained in this area was acquired by reading and debugging Roslyn’s source
code. A number of unit tests were defined for the Roslyn extension, in order to
ensure that all STM constructs and the integration with the existing language
features work correctly. Finally AC#, the STM library and locking in C# were
evaluated according to a number of usability related characteristics, facilitating
a conclusion upon the hypothesis.

This chapter addresses the problem statement questions and summarizes the
evaluation of the characteristics in order to conclude on our hypothesis.

108

CHAPTER 9. CONCLUSION 109

9.1 Problem Statement Questions Revisited

The goal of this master thesis was to investigate the usability of language
integrated support for STM in C#, compared to a library-based solution and
existing locking features. This section will address the problem statement
questions used for structuring our investigation.

Selecting features to an STM system for C# was done by analyzing differ-
ent approaches to tracking granularity, transactions & variables, atomicity,
side-effects, conditional synchronization, nesting, and opacity. These features
determined the requirements for the design. The requirements and the existing
language features of C# were taken into account in the design and integra-
tion process of AC#, identifying how to make an integration encompassing:
atomic blocks, transactional variables, parameters & arguments, conditional
synchronization, and nesting. The implementation strategies McRT, TLII, and
JVSTM were analyzed based on the criteria from the requirements. TLII was
selected based on its fit with strong atomicity and retry, as well as being well
documented. To find out how the Roslyn compiler was structured, a review of
whitepapers, blogs, forum posts, and the source code were conducted. This
resulted in a description of Roslyns compiler phases, syntax tree, and API.
This knowledge allowed us to extend Roslyn to encompass the features of
AC#, by modifying its lexer, parser, syntax tree and symbols. Additionally,
the Roslyn compiler was extended with a transformation phase, transforming
ACH’s constructs to ordinary C# code, allowing the remaining compilation
phases to be reused.

9.2 Hypothesis Revisited

With a functioning AC+# language, library-based STM, and locking in C#, we
evaluated the concurrency approaches based on cases representing different
aspects of concurrency. Based on this evaluation, we conclude on the hypothesis
in Section 9.2.1.

STM has a more implicit degree of concurrency than locking, as synchroniza-
tion details are abstracted away. This also makes library-based STM more
fault restrictive than locking as synchronization details are handled correctly by
the underlying STM system, hindering potential errors known from locking e.g.
deadlocks. ACH# is even more fault restrictive, since static analysis identifies a
number of errors. Both locking and STM use shared memory for communi-
cation, and require the programmer to specify the scope of synchronization
reducing their readability and writability.

The optimistic nature of STM relies on conflicts being uncommon, correcting
them if they occur. The correction results in aborting a transaction, and
running it again. Thus all effects occurring in transactions must be able to

CHAPTER 9. CONCLUSION 110

be discarded in case of an abort. This is however not the case for irreversible
actions, decreasing the usability of STM, as the programmer is required to
know which operations cannot be used in transactions.

From the programmer’s point of view AC# does not change the type of trans-
actional variables, which increases its readability. This is a benefit compared
to the library-based STM approach, which requires transactional variables to
be wrapped in TMVar objects. The programmer can for example compare
two transactional variables directly in AC#, where in the STM library she is
required to compare the Value properties of the TMVars instead. Furthermore
AC# and the STM library require data types, including collections, to be
build using transactional variables which lowers the writability of the two STM
based approaches.

AC+# allows the programmer to define transactional variables by supplying
the atomic modifier. As a consequence an array of transactional variables
cannot be defined in AC#. Instead the programmer must either wrap each
element in an object with a transactional field, employ an immutable list, or
use a specialized STM list that tracks elements internally. These workarounds
do however reduce both readability and writability, which negatively affects
the usability of AC#.

ACH# integrates STM at a level similar to that of locking in C#, providing
a number of benefits compared to library-based STM. The STM related
keywords supplied by AC# increases its readability as the intent stands out
clearly. However, simplicity is reduced, as special keywords add complexity to
the language. The syntax of AC+# is improved compared to library-based STM,
as boilerplate syntax is abstracted away. This is a benefit to AC# compared
to library-based STM.

The declarative synchronization approach in STM provides high simplicity, a
high level of abstraction and high expressivity. Locking requires the programmer
to explicitly control synchronization details, which is hard to get right. STM
on the other hand handles synchronization as long as the critical regions are
specified, which improves usability. Additionally AC# provides static analysis,
capable of identifying errors in the code, a feature not present in the STM
library.

The locking constructs provided by C# can be combined to handle different
scenarios which improves the orthogonality. However the risk of deadlocks
when combining locks reduces the orthogonality. STM removes the issue of
deadlocks, and allows transactions to be nested, which is highly orthogonal.
A major caveat is, that STM cannot be combined with irreversible actions,
keeping the orthogonality, level of abstraction and expressivity of the STM
based approaches from reaching their potential, impacting both readability

CHAPTER 9. CONCLUSION 111

and writability. Library-based STM supplies implicit conversion from an STM
object to its wrapped value. However certain cases, e.g. comparisons, require
explicitly accessing the Value property of the STM object. AC# does not
have the type mismatch between regular types and the corresponding STM
types. Due to this, no extra actions must be taken when retrieving the value
of a transactional variable. This provides a benefit to AC# over library-based
STM, as it improves writability.

9.2.1 Final Conclusion

Based on the above findings we conclude that language integrated STM provides
a valid alternative to locking when solving concurrency problems. This is based
on it being evaluated as having more implicit concurrency, being more fault
restrictive, being simpler, having a level of abstraction, expressivity, readability,
and writability. Locking does however have higher orthogonality due to STM’s
problems combining with irreversible actions and existing data structures,
reducing the applicability of AC#.

Furthermore, AC# provides additional benefits over language integrated STM.
This is based on being evaluated as equal in implicit concurrency and op-
timism, while having improved readability and writability based on a less
intrusive syntax design, higher simplicity, orthogonality, level of abstraction,
and expressivity.

10 Reflection

This chapter presents a reflection on the decisions made throughout the report.
Section 10.1 presents a reflection on the findings of the preliminary analysis.
Section 10.2 describes reflections related to transactional local variables and
parameters as well as ref /out arguments and parameters. Reflections related
to the STM library, described in Chapter 7, are presented in Section 10.3.
Finally, the reflections related to the Roslyn extension and C# 6.0 are covered
in Section 10.4 and Section 10.5 respectively.

10.1 Preliminary Investigation

A preliminary investigation was conducted, in order to reduce the risk associated
with the Roslyn compiler and the implementation of an STM system.

A number of papers describing STM system implementations were investigated.
This gave us a deeper understanding of the known approaches for implementing
STM systems. To get some hands on experience, a prototype STM system
based on the two implementations described in [53, p. 424] was developed.
Developing such a prototype system furthered our understanding of the different
implementation strategies.

As the Roslyn compiler was released 10 months prior to the start of the project,
the amount of literature on the subject is limited, consisting of mostly: a white
paper[30], documentation associated with the Roslyn Github repository|[73],
sample implementations and walkthroughs|74], as well as blog posts. Most
of these sources describe the compiler API as opposed to the structure of
the compiler. To further our understanding of the Roslyn compiler we have
investigated these sources. In addition, an exploratory modification of the
compiler was done to investigate its structure. The lexer and parser of the
compiler were modified to handle the syntax of an atomic block. The
exploratory implementation furthered our knowledge of the compilers structure
and API design, and served as an onset into the deeper exploration of the
compiler documented in Chapter 3.

Getting preliminary hands on experience with the required technologies at an
early stage of the project, helped ensure the feasibility for the implementations
and provided the project group with confidence in the feasibility of the project.
Bringing more information to the table at an early stage assisted in deciding
on the implementation strategies for the STM system and for the extension of
the Roslyn compiler.

112

CHAPTER 10. REFLECTION 113

10.2 Design

These sections describes the project group’s reflections over areas related to
the design of AC# described in Chapter 5.

10.2.1 Transactional Local Variables & Parameters

In order to improve the orthogonality and flexibility of AC# the design allows
for the declaration of transactional local variables and parameters. Neither
of these features have however been used in the implementations on which
the evaluation is build, indicating that the features may not be required.
The reason may be that the problems selected in this thesis, described in
Section 1.5.1, does not fit well with the use of transactional local variables and
parameters, where other types of problems and applications may fit better. It
may also be that the way we have implemented the selected problems did not
present a reason to use transactional local variables and parameters, where
other ways may have.

The initial idea behind allowing transactional local variables was that local
variables can be captured in a lambda expression which is executed by multiple
threads, resulting in the need for synchronization. The option to do so
was however not employed in the evaluation implementations. Allowing the
programmer to declare atomic local variables instead of relying solely on
atomic fields makes AC# more orthogonal but also less simple.

A parameter is similar to a local variable which is initialized using its corre-
sponding argument[52, p. 76]. Therefore the idea behind allowing transactional
parameters is similar to that of transactional local variables. If transactional pa-
rameters were not allowed, the programmer would have to declare an atomic
local variable and initialize it to the value of the parameter, if she wished to
utilize the parameter as a variable in a transaction. As with transactional
local variables, transactional parameters improve the orthogonality of AC#
but reduce the simplicity.

C+# does not allow for the declaration of volatile local variables and
parameters, but only volatile fields. Similarly allowing only atomic
fields may be sufficient for AC#. Determining whether these features are
truly required, through further studies e.g. usability studies, could assist in
furthering AC# as well as aid others seeking to supply language integrated
STM.

10.2.2 Transactional Ref/Out Parameters & Arguments

The initial idea behind including transactional ref/out parameters was to
preserve the functionality provided by C# with regards to transactional argu-
ments and parameters, thereby providing an integration with existing language

CHAPTER 10. REFLECTION 114

Listing 10.1: STM library interfaced based on applying functions

1 public class Account

2 {

3 private double _balance;

4

5 public void AtomicTransfer (Account other, double amount)

6 {

7 STMSystem.Atomic (() =>

8 {

9 var newBalance = STMSystem.TMRead(ref _balance)t+amount;
10 STMSystem.TMWrite (ref _balance, newBalance);

11 newBalance = STMSystem.TMRead (ref other._balance)-amount;
12 STMSystem.TMWrite (ref other._balance, newBalance);

13 1)

14 }

15 }

features. As with transactional local variables and parameters, transactional
ref/out parameters were however not used in the implementations for the
evaluation, suggesting that further work is required to determine whether the
feature is required or if it simply complicates AC#, reducing its simplicity.

As described in Section 7.5.3, providing the intended semantics for transactional
ref/out parameters & arguments proved problematic due to the types of
transactional variables being substituted with their corresponding STM types.
As a result the simplicity of AC+# is reduced due to the programmer having to
reason about the changed semantics.

To remove the problem, a library with an interface based on central metadata
and applying functions to variables in order to read/modify could be adopted.
Such an interface will remove the need for transforming the types during
compilation, allowing transactional variables to be passed directly into non-
transactional parameters and vice versa. If a transactional variable is passed
by ref/out into a method, transactional access will however still be lost, as the
body of the method does not treat the variable as transactional. As described
in Section 7.5.3 C# utilizes a similar approach for volatile variables passed
by ref/out.

Listing 10.1 presents an example of how an STM interface based on applying
functions to variables could be designed. The STMSystem.TMRead and
STMSystem.TMWrite are applied to the _balance variables in order to
read and write their associated value.

CHAPTER 10. REFLECTION 115

10.3 STM Implementation

This section describes the project groups reflections related to the implementa-
tion of the STM system described in Chapter 6.

10.3.1 STM Algorithm

The implemented STM system utilizes the TLII algorithm[12]. TLII uses
commit time locking to ensure that any values written by a transaction becomes
visible to the remaining system as a single atomic step. The TLII algorithm
is well documented [12][53, p. 438][9, p. 106], which allowed us to gain deep
insight into the workings of the algorithm, easing the implementation of more
advanced features such as orelse, retry and nesting, which are not described in
the reference materials.

Due to the utilization of locking the TLII algorithm is unable to supply any
of the progress guarantees described in Section 6.1.4. Selecting an algorithm
which could supply one of these progress guarantees would have positively
affected the simplicity of the STM library and of AC#. In case of Wait-freedom
the programmer would know that all transactions would eventually commit
allowing her to utilize this knowledge in the implementation. Alternatively
the inclusion of a contention manager, dictating conflict resolution, into the
existing implementation could be investigated. A contention manager may
allow the existing implementation to provide similar guarantees in the absence
of failures.

10.3.2 STM Library Interface

As described in Section 1.5, locking in C#, library based STM and AC#
is evaluated according to a set of characteristics. As the STM library was
evaluated according to its usability, its interface was required to be designed
to maximize usability, while still satisfying the defined requirements. AC#
however does not impose such a requirement on its backing STM library. The
programmer does not see the transformed code, removing the need for an STM
library with high usability. In fact it may be advantageous for performance
to utilize a backing STM library with a high degree of flexibility, allowing
the compiler to optimize the generated code. As described in Section 10.2.2
adopting a library interface based on central metadata and applying functions
to a variable in order to read and modify, will remove the issues related to the
types of transactional variables and ref/out parameters.

10.4 Roslyn Extension

As described in Section 7.1 the Roslyn compiler was extended at the level
of the syntax tree/symbol information. The lexer, parser, syntax tree, and

CHAPTER 10. REFLECTION 116

symbol table were modified to support the constructs described in Chapter 5,
and transformations were applied to the modified syntax tree, producing a
standard C# syntax tree that represents the execution of transactions as calls
to the STM library. The transformed syntax tree is passed to the remaining
compiler phases, utilizing the existing semantic analysis and code generation
of the Roslyn compiler.

Alternatively the transformation could be applied at the level of what in Roslyn
is referred to as the bound tree. The bound tree is a semantic representation of
the source code in the form of a tree structure. The bound tree is constructed
based on the syntax tree and is the basis for the code generation phase.
During the construction of the bound tree, semantic analysis and source code
transformation is applied. As described in Section 7.1 applying transformations
to the syntax tree causes it to lose its roundtripable property, due to the syntax
tree no longer representing the original AC# source code. The transformations
required for executing transactions could be applied along with the standard
C# transformations, as part of constructing the bound tree. This would
cause the syntax tree to preserve its roundtripable property but will however
require the implementation of the transformation to be mingled with the
existing C# transformation implementations and semantic analysis, making
the implementations more complex. Alternatively the transformations could
be applied after the bound tree has been constructed. However this approach
requires that the logic which constructs the bound tree, as well as the semantic
analysis, is modified to support the STM constructs described in Chapter 5.
The bound tree and the associated transformation and analysis implementations
are not part of the public API provided by the Roslyn compiler due to it often
undergoing significant changes[37]. Furthermore any documentation is limited
to blog/forum post as well as the comments embedded in the source code.
Due to these factors, applying transformations at the level of the bound
tree is significantly more complex than the approach utilized in Section 7.1.
Furthermore, it may require the transformation implementation to be rewritten
if AC# is moved to a newer version of C# and the bound tree has undergone
significant changes since the previously utilized implementation was created.

10.5 C+# 6.0

As described in Section 1.3, the development of AC# is based on C# 5, which
at the time of writing is the most recent version of C#. C# 6.0 is, as of May
2015, however under active development and a number of new features have
been shown to the public. This section presents our reflections upon how the
new features impact the findings of this project. The new features supplied by
C# 6.0 are listed in [75] and described in [76], [77] and [78]. Only new features
relevant to locking in C#, AC# or the STM library are described.

CHAPTER 10. REFLECTION 117

Listing 10.2: STM library with static using statement

1 private WakeState SleepUntilAwoken ()

2 {

3 return Atomic (() =>

4 {

5 if (_rBuffer.Count != SCStats.NR_REINDEER) {
6 Retry () ;

7 }

8 return WakeState.ReindeerBack;

9 b

10 () =>

11 {

12 if (_eBuffer.Count != SCStats.MAX_ELFS) {
13 Retry();

14 }

15 return WakeState.ElfsIncompetent;

16 1)

17 '}

10.5.1 Static Using Statements

Static using statements allows the programmer to import the static methods
of a particular class, giving her the ability to call these methods as if they were
methods of the class in which the call takes place[76][78]. This feature is of
interest to programmers utilizing the STM library as it will allow them to call
the atomic and retry methods of the STMSystem class without having to
specify the class for each call, thereby improving the writability of the library.
Listing 10.2 shows how the SleepUntilAwoken method of the STM library
based Santa Claus problem implementation could look if the static methods of
the STMSystem class were imported through a static using statement.

10.5.2 Auto-Property Initializers

Auto-Property intializers allow the programmer to supply an initializer expres-
sion to the definition of an Auto-Property[76][77][78]. This causes the property
to be initialized using the initializer expression. If the Auto-Property defines
only a getter, the backing field is automatically declared readonly|[76][78].

The Roslyn extension will have to be modified to handle atomic Auto-
properties with an initializer expression. The extension must transform an
initializer expression to an object creation expression which creates a new STM
object of the STM type corresponding to the type of the atomic property,
and initialize it using the defined initializer expression. Instead of initializing
the property directly, the initializer should be applied to the backing field
generated as part of the transformation of atomic auto-properties described
in Section 7.3.3.

11 Future Work

This chapter presents possibilities for extending upon the work done in this
thesis. Section 11.1 suggests a performance test in order to examine how
AC# performs in comparison to locking in C#. Section 11.2 suggests a deep
STM integration in order to achieve better performance. Finally, Section 11.3
suggests to investigate possible ways of combining irreversible actions and
STM in the context ACH.

11.1 Performance Test

The focus of this thesis has been on evaluating the usability of language
integrated STM compared to that of library-based STM and locking. As
described in Section 1.3, the performance of STM has not yet been considered.
However having language integrated STM is not sufficient, as concurrency
usually is introduced to achieve good performance. It is essential to know how
ACH# performs in comparison to locking in C#, since if it performs far worse,
it is not a valid alternative, in its current state. A performance test is therefore
a candidate for future work, and the outcome may result in changes to the
design and underlying algorithm of AC+#, in order to improve its performance.

To investigate performance, an extensive performance suite with a number of
problems or algorithms with great diversity could provide valuable insights into
how the three concurrency approaches perform under varied circumstances. In
this thesis, four concurrency problems have been developed, which advanta-
geously could be included in the test suite, by measuring their performance.
Furthermore a number of concurrent performance suites already exists, which
could be investigated in order to help select additional problems. In [79] a per-
formance suite, specifically for the actor model is proposed. The performance
suite contains 28 test cases that “range from popular microbenchmarks to
classical concurrency problems to applications that demonstrate various styles
of parallelism” which are “diversive, realistic and compute intensive”. The
dining philosophers and concurrent hashmap' are also included in this perfor-
mance suite. Another benchmark specifically designed for STM is proposed
in [80], which uses “a set of workloads that correspond to realistic, complex,
object-oriented applications which benefit from multi-threading” to compare
the performance between STM implementations. Comparing AC# to other
STM implementations, could give valuable insights to evaluate the relation
between STM design decisions and performance.

!Refered to as Concurrent Dictionary in the article

118

CHAPTER 11. FUTURE WORK 119

11.2 Integration into CLR

Chapter 7 describes how STM is integrated into C# by modifying the Roslyn
compiler to transform the source code containing STM language constructs to
standard C# code which utilizes the STM library. As a result no modifications
are required to the CLR as it receives byte code in the standard CIL format
produced by the Roslyn C# compiler’s code generator.

As an alternative, a deeper integration, similar to that of [11] and [14], could
be utilized. One approach is to extend the CLR and its associated byte code
format CIL with support for respectively, the execution and definition of
transactions. Extending CIL with support for the definition of transactions
allow the JIT compiler to apply further optimization to the execution of
transactions. Additionally, if the executing hardware supports it, the CLR
could delegate smaller transactions to the hardware providing a performance
boost.

If CIL is extended with support for the definition of transactions, the Roslyn
compiler will have to be extended as well, as the compiler must generate code
utilizing the new CIL instructions. As a result the lexing, parsing, semantic
analysis and code generation of the Roslyn compiler must be extended to
support the STM constructs. However, the lexing and parsing implemented in
this project can be reused for such an extension.

11.3 Irreversible Actions

As described in Section 1.3, solving the integration problems between transac-
tions and irreversible actions, has not been an area of focus for this thesis. As
irreversible actions in the context of STM still contains a number of issues, the
area could benefit from an increased research effort. AC# offers no support of
or warning against irreversible actions in transactions, which hurts its usability,
as it leaves it up to the programmer to manually handle it correctly.

The integration between transactions and irreversible actions is therefore a
candidate for future work, both in terms of how to manage it in AC#, but also
in terms of STM in general. A number of possible integration approaches exist,
we briefly scratched the surface in our prior study[3, p. 51-52]. One approach,
presented in [11, p. 4], disallows the use of native calls inside transactions, by
raising a runtime exception. A similar approach is, to enable the developer
to mark a function, so the STM system is aware of its side effect. In Clojure
this is possible with the #io macro. If a function is marked, and used in a
transaction, a runtime exception will be raised. In [16] Harris et al. proposes
another approach where IO libraries should implement an interface, allowing
the STM system to initiate a callback when the transaction is committed,
allowing the effect to be buffered until then. In [14] Duffy proposes using a

CHAPTER 11. FUTURE WORK 120

well known strategy from the transaction theory[48], having the programmer
supply on-commit and on-rollback actions to perform or compensate for the
irreversible action. All of these approaches however either impose additional
effort unto the programmer or completely disallow irreversible actions. A more
elegant solution will benefit the area of STM in general and may instigate the
adaptation of STM as a language feature.

Appendix

121

A Roslyn Compiler Call
Chain

In Figure A.1 an overview of the compilation call chain is shown. A compi-
lation starts with csc’s main method being invoked, which calls the static
Run method on the Csc class. This method creates a new compiler
object of type Csc. Csc is a subtype of CSharpCompiler, located
in the CSharp.CSharpCodeAnalysis.Desktop project, which again is
a subtype of CommonCompiler, located in Core.CodeAnalysis. This
means that the creation of the compiler object, calls the constructors of Csc,
CSharpCompiler and CommonCompiler. Afterwards the Run method is in-
voked on the compiler object, which further invokes its parent’s Run method,
which again invokes its parent’s Run method. Finally the RunCore method in
CommonCompiler is invoked, which contains the general code that controls
the overall flow of the compiler pipeline, illustrated in Figure 3.1. The RunCore
method will, for each phase, call the language specific implementation of the
phase, located in either C# in CSharp.CSharpCodeAnalysis.Portable
or VB in VisualBasic.BasicCodeAnalysis.Portable, through dy-
namic dispatch.

122

123

APPENDIX A. ROSLYN COMPILER CALL CHAIN

‘uorye[idurod #0) © Jo UIRyD [[€d 97} JO MOIAIOAO UR SUIMOYS UIRIFRIP 90UoNDbog 1y 9InsIq

)

‘yojedsip olweukp
ybnouy; ‘08foud ,81qeuod
‘sisAleuyapondieysd
"dieyso, ayp ut 2160
Ja)1ldwod [enjoe se)oAu|

()asopuny _Il

(uny

Ouny

250.19|1dWo0d mau

19[IdWOHUOWWO)) SISA[EUYSP0)) 910 :0SegjOSSEq

Jo|ldwo)dieys) sishjeuyspo)dieys)-dieysd:aseq

(uny

O)OAU|

580 '050°dIBUSD

weiboig0so dieysy

B Concurrency Problems
B.1 Dining Philosophers

The Dining Philosophers problem is defined as follows:

“Five philosophers spend their lives thinking and eating. The
philosophers share a common dining room where there is a circular
table surrounded by five chairs, each belonging to one philosopher.
In the center of the table there is a large bowl of spaghetti, and the
table is laid with five forks (see Figure B.1). On feeling hungry, a
philosopher enters the dining room, sits in his own chair, and picks
up the fork on the left of his place. Unfortunately, the spaghetti is
so tangled that he needs to pick up and use the fork on his right as
well. When he has finished, he puts down both forks, and leaves the
room. The room should keep a count of the number of philosophers
wn it.”

— Edgar Dijkstra[81, p. 675]

Figure B.1: The Dining Philosophers

124

APPENDIX B. CONCURRENCY PROBLEMS 125

B.2 The Santa Claus Problem

The Santa Claus problem is defined as follows:

“Santa Claus sleeps in his shop up at the North Pole, and can
only be wakened by either all nine reindeer being back from their
year long vacation on the beaches of some tropical island in the
South Pacific, or by some elves who are having some difficulties
making the toys. One elf’s problem is never serious enough to wake
up Santa (otherwise, he may never get any sleep), so, the elves
visit Santa in a group of three. When three elves are having their
problems solved, any other elves wishing to visit Santa must wait
for those elves to return. If Santa wakes up to find three elves
waiting at his shop’s door, along with the last reindeer having come
back from the tropics, Santa has decided that the elves can wait
until after Christmas, because it is more important to get his sleigh
ready as soon as possible. (It is assumed that the reindeer don’t
want to leave the tropics, and therefore they stay there until the
last possible moment. They might not even come back, but since
Santa is footing the bill for their year in paradise ... This could
also explain the quickness in their delivering of presents, since the
reindeer can’t wait to get back to where it is warm.) The penalty
for the last reindeer to arrive is that it must get Santa while the
others wait in a warming hut before being harnessed to the sleigh.”

— John A. Trono[82]

B.3 Concurrent Queue

A queue is a First In First Out (FIFO) data structure, operating like the queue
at a cash register[20, p. 234]. A queue supports the operations Enqueue and
Dequeue. Enqueue inserts an item at the back of the queue while Dequeue
gets and removes the item at the front of the queue, per the FIFO principle.
A queue is commonly implemented using a linked list of nodes[20, p. 234]. To
be able to enqueue and dequeue, the queue holds a reference to the first and
last node in the list, referred to as the head and tail of the queue.

B.4 Concurrent HashMap

A HashMap is a data structure which allows looking up values based on their
associated key and provides the operations Add, Get, and Remove. It benefits
from the Get operation having an average time complexity of O(1) under
reasonable assumptions[20, p. 256]. Implementation details of a HashMap

APPENDIX B. CONCURRENCY PROBLEMS 126

may vary, but traditionally they follow the concept described in[20, p. 256].
Internally it uses an array for storing a list of key/value pairs. When inserting
a value into the HashMap, the array index is commonly calculated as:

Hash(key) mod arraylength (B.1)

That is, a hash function applied to the key, modulo the size of the backing
array. If another key is already stored in the array index calculated, it is said
to be a collision. To handle this, the value is not stored directly in the array
index, but in a list referred to as a bucket. This bucket is implemented as a
linked list as this ensures fast insertions[20, p. 257]. Index based lookup and
removal is not needed as the index of a particular key is not known. Therefore
it is always required to iterate through the bucket list when searching for a
particular key. The calculation of the bucket index must distribute the values
evenly to lessen the collisions. When a certain percentage of the buckets are
filled, the internal array must be resized to keep the risk of collisions low. This
internal operation is expensive in terms of both time and space, as a new
internal array of an increased size must be allocated, and the key/value pairs
must be inserted into the new array.

C Evaluation
Implementations

This appendix presents the implementations of the selected problems, described
in Section 1.5, on which the evaluation presented in Chapter 8 is based. Along
with each implementation follows a brief description.

C.1 Lock-Based

This sections presents the lock based implementations of the selected problems.

C.1.1 Dining Philosophers Problem

The lock based implementation of the dining philosophers problem requires the
use of the Monitor class to acquire the second lock with a time out on line
35. Asaresult a try/finally block is used, on lines 33 to 48, to ensured
that the acquired lock is released in case an error occurs while the lock is held.

Listing C.1: Lock Based Dining Philosophers Implementation

1 public class LockingDiningPhilosophers

2 {

3 public static void Start()

4 {

5 var forkl = new object();

6 var fork2 = new object();

7 var fork3 = new object();

8 var fork4 = new object();

9 var fork5 = new object();

10

11 var tl = StartPhilosopher (forkl, fork2);
12 var t2 = StartPhilosopher (fork2, fork3);
13 var t3 = StartPhilosopher (fork3, fork4);
14 var t4 = StartPhilosopher (forkd4, fork5);
15 var t5 = StartPhilosopher (fork5, forkl);
16

17 tl.Join();

18 t2.Join();

19 t3.Join();

20 td4.Join();

21 t5.Join();

22 }

23

24 private static Thread StartPhilosopher (object left, object
right)
25 {

127

APPENDIX C. EVALUATION IMPLEMENTATIONS 128

26 var tl = new Thread(() =>

27 {

28 while (true)

29 {

30 lock (left)

31 {

32 var lockTaken = false;

33 try

34 {

35 Monitor.TryEnter (right, 100, ref lockTaken);

36 if (lockTaken)

37 {

38 Console.WriteLine ("Thread: " +
Thread.CurrentThread.ManagedThreadId + "
eating.");

39 Thread.Sleep (100);

40 }

41 }

42 finally

43 {

44 if (lockTaken)

45 {

46 Monitor.Exit (right) ;

47 }

48 }

49 }

50 Thread.Sleep (100);

51 }

52 1)

53

54 tl.Start();

55 return tl;

56 }

57 }

C.1.2 Santa Claus Problem

As seen on line 62, the lock Based Santa Claus problem implementation uses a
semaphore to allow the elfs and reindeer to wake Santa, given their respective
conditions are true. When Santa is awoken he must check whether he was
awoken by the elfs or by the reindeer, as shown on lines 66 to 72. As the
reindeer must take priority, as defined in Appendix B.2, their condition is
checked in order to determine the action which Santa takes. Similarly, as
shown on line 143, the elfs utilize a semaphore to ensure that only three elfs
go to santa at a time. As shown on line 145 to 152 as well as 204 to 211, both
the elfs and the reindeer enqueue themselves and check their condition while
holding a lock on their respective queues, ensuring that only a single thread
observes the condition as true and notifies Santa.

Listing C.2: Lock Based Santa Claus Implementation

APPENDIX C. EVALUATION IMPLEMENTATIONS 129

1 public class LockingSantaClausProblem

2 {

3 public static void Start ()

4 {

5 var santaHandle = new SemaphoreSlim (0, 2);

6 var sleigh = new SemaphoreSlim (0, SCStats.NR_REINDEER);

7 var warmingHut = new SemaphoreSlim (0, SCStats.NR_REINDEER) ;

8 var reindeerDone = new SemaphoreSlim(0, SCStats.NR_REINDEER) ;

9 var elfWaiting = new SemaphoreSlim(0, SCStats.MAX_ELFS);

10 var elfDone = new SemaphoreSlim(0, SCStats.MAX_ELFS) ;

11 var maxElfs = new SemaphoreSlim(SCStats.MAX_ELFS,
SCStats.MAX_ELFS) ;

12 var rBuffer = new Queue<LockingReindeer>();

13 var eBuffer = new Queue<LockingElf>();

14 var santa = new LockingSanta (rBuffer, eBuffer, santaHandle,
sleigh, warmingHut, reindeerDone, elfWaiting, elfDone);

15 santa.Start () ;

16

17 for (var i = 0; 1 < SCStats.NR_REINDEER; i++)

18 {

19 var reindeer = new LockingReindeer (i, rBuffer, santaHandle,

sleigh, warmingHut, reindeerDone);

20 reindeer.Start () ;

21 }

22

23 for (var 1 = 0; 1 < SCStats.NR_ELFS; i++)

24 {

25 var elf = new LockingElf (i, eBuffer, santaHandle, maxElfs,

elfWaiting, elfDone);

26 elf.Start ();

27 }

28 }

29 }

30

31 public class LockingSanta : IStartable

32 {

33 private readonly Queue<LockingReindeer> _rBuffer;

34 private readonly Queue<LockingElf> _eBuffer;

35 private readonly SemaphoreSlim _santaHandle;

36 private readonly SemaphoreSlim _sleigh;

37 private readonly SemaphoreSlim _warmingHut;

38 private readonly SemaphoreSlim _reindeerDone;

39 private readonly SemaphoreSlim _elfsWaiting;

40 private readonly SemaphoreSlim _elfsDone;

41

42 public LockingSanta (Queue<LockingReindeer> rBuffer,

Queue<LockingElf> eBuffer, SemaphoreSlim santaHandle,

43 SemaphoreSlim sleigh, SemaphoreSlim warmingHut,
SemaphoreSlim reindeerDone, SemaphoreSlim
elfsWaiting, SemaphoreSlim elfsDone)

44 {
45 _rBuffer = rBuffer;
46 _eBuffer = eBuffer;

47 _santaHandle = santaHandle;

APPENDIX C. EVALUATION IMPLEMENTATIONS

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

_sleigh = sleigh;

_warmingHut = warmingHut;
_reindeerDone = reindeerDone;
_elfsWaiting = elfsWaiting;
_elfsDone = elfsDone;

public Task Start()

{

return Task.Run(() =>
{
while (true)
{
//Santa is resting
_santaHandle.Wait ();

var wakeState = WakeState.ElfsIncompetent;

lock (_rBuffer)
{

if (_rBuffer.Count == SCStats.NR_REINDEER)

{
wakeState = WakeState.ReindeerBack;

switch (wakeState)
{

case WakeState.ReindeerBack:

Console.WriteLine ("All reindeers are back!");

//Release reindeers from warming hut

_warmingHut .Release (SCStats.NR_REINDEER) ;

//Setup the sleigh
_sleigh.Release (SCStats.NR_REINDEER) ;

//Deliver presents

Console.WritelLine ("Santa delivering presents");

Thread.Sleep (100) ;

//Release reindeer
_rBuffer.Clear();

_reindeerDone.Release (SCStats.NR_REINDEER) ;
Console.WriteLine ("Reindeer released");

break;
case WakeState.ElfsIncompetent:

Console.WriteLine ("3 elfs at the door!");

_elfsWaiting.Release (SCStats.MAX_ELFS) ;

//Answer questions
Thread.Sleep (100);

130

APPENDIX C. EVALUATION IMPLEMENTATIONS

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

//Back to work incompetent elfs!
_eBuffer.Clear();
_elfsDone.Release (SCStats.MAX_ELFS) ;

Console.WriteLine ("Elfs helped");
break;

public class LockingElf : IStartable

{

private readonly Random _randomGen = new
Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }
readonly Queue<LockingElf> _buffer;
readonly SemaphoreSlim _maxElfs;
readonly SemaphoreSlim _santaHandle;
readonly SemaphoreSlim _waitingToAsk;
readonly SemaphoreSlim _doneAsking;

private
private
private
private
private

public LockingElf (int id, Queue<LockingElf> buffer,
SemaphoreSlim santaHandle,
SemaphoreSlim waitingToAsk,

_buffer = buffer;

ID = id;

_maxElfs = maxElfs;
_santaHandle = santaHandle;

_waitingToAsk = waitingToAsk;
_doneAsking = doneWaiting;

public Task Start()

{

return Task.Run (() =>

{

while

{

(true)

Thread.Sleep (100 % _randomGen.Next (21));

//0Only a fixed amount of elfs can go to santa at a time

_maxElfs.Wait ();

lock (_buffer)

{

_buffer.Enqueue (this);
if (_buffer.Count == SCStats.MAX_ELFS)

{

_santaHandle.Release();

SemaphoreSlim maxElfs,
SemaphoreSlim doneWaiting)

131

APPENDIX C. EVALUATION IMPLEMENTATIONS 132

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202

Console.WriteLine ("E1f {0} at the door", 1ID);

//Wait for santa to be ready
_waitingToAsk.Wait ();

//Asking questions
_doneAsking.Wait ();

//Allow a new elf to visit santa
_maxElfs.Release();

)i

public void AskQuestion ()
{

_waitingToAsk.Release();

public class LockingReindeer : IStartable

private readonly Random _randomGen = new
Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }

private readonly Queue<LockingReindeer> _reindeerBuffer;
private readonly SemaphoreSlim _santaHandle;

private readonly SemaphoreSlim _sleigh;

private readonly SemaphoreSlim _doneDelivering;

private readonly SemaphoreSlim _warmingHut;

public LockingReindeer (int id, Queue<LockingReindeer> buffer,
SemaphoreSlim santaHandle, SemaphoreSlim sleigh,
SemaphoreSlim warmingHut, SemaphoreSlim doneDelivering)

ID = id;

_reindeerBuffer = buffer;
_santaHandle = santaHandle;
_sleigh = sleigh;

_warmingHut = warmingHut;
_doneDelivering = doneDelivering;

public Task Start()
{
return Task.Run(() =>
{
while (true)
{
//Tan on the beaches in the Pacific until Chistmas is
close
Thread.Sleep (100 % _randomGen.Next (10));

APPENDIX C. EVALUATION IMPLEMENTATIONS 133

203

204 lock (_reindeerBuffer)

205 {

206 _reindeerBuffer.Enqueue (this);
207 if (_reindeerBuffer.Count == SCStats.NR_REINDEER)
208 {

209 _santaHandle.Release () ;

210 }

211 }

212

213 //Console.WriteLine ("Reindeer {0} is back",ID);
214

215 //Block early arrivals

216 _warmingHut .Wait ();

217

218 //Wait for santa to be ready

219 _sleigh.Wait ();

220

221 //Delivering presents

222

223 //Wait for delivery to be done
224 _doneDelivering.Wait ();

225 //Head back to Pacific islands
226 }

227)i

228 }

229 1}

C.1.3 Concurrent Queue

The lock based queue implementation is based on Michael L Scott’s lock-based
queue algorithm described in [19]. The implementation uses two locks, as seen
on line 17 and 26, to protect the tail and head of the queue respectively. The
first node in the queue is a dummy node which allows the enqueue and dequeue
operations to only operate on the tail and head respectively, thereby allowing
enqueuing and dequeuing to occur concurrently. Only a single enqueue or
dequeue operation can however execute at a time, due to the use of locking.
The dummy node is created by the queue’s constructor on line 10.

Listing C.3: Lock Based Concurrent Queue Implementation

1 public class Queue<T> : IQueue<T>

2 {

3 protected readonly object HeadLock = new object();
4 protected readonly object TailLock = new object();
5 private Node _head;

6 private Node _tail;

7

8 public Queue ()

9 {

10 _head = new Node (default (T));

APPENDIX C. EVALUATION IMPLEMENTATIONS

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 }

_tail = _head;
}

public void Enqueue (T item)
{
var node = new Node (item) ;
lock (Taillock)
{
_tail.Next = node;
_tail = node;
}
}

public bool Dequeue (out T item)
{
lock (HeadLock)
{
var newHead = _head.Next;
if (newHead == null)
{
item = default (T);
return false;

_head = newHead;

item = newHead.Value;
return true;

}

private class Node

{
public Node Next { get; set; }
public T Value { get; private set; }

public Node (T value)
{

Value = value;

}

C.1.4 Concurrent Hashmap

134

The lock-based concurrent hashmap implementation is based on the concept
of lock striping. Lock striping allows L locks to protect B buckets where
B > L and B mod L = 0 so that each lock [protects each bucket b where
indexof(b) = indexof(l) mod L[53, p. 304]. When the number of buckets is
doubled as a result of resizing the hashmap the same lock protects a particular
bucket before and after the resize completes. The buckets protected by a
particular lock are referred to as a stripe and multiple stripes can be accessed
concurrently.

APPENDIX C. EVALUATION IMPLEMENTATIONS 135

Along with the backing array of buckets defined on line 49 an array of objects
representing the locks is defined on line 48. Before a thread access a bucket
it must acquire the lock on the stripe containing the bucket in question. As
an example, the Add method defined on line 195 calculates the index of
the lock to acquire on line 198 before adding the item to the bucket. The
ResizeIfNeeded method defined on line 287 acquires the lock on all stripes
on line 291 ensuring that no other threads are accessing the backing array
while being resized. The condition for resizing is checked before all locks are
acquired on line 289 and again after all locks have been acquired on line 294,
ensuring that only a single thread resizes the backing array for every instance
where a resize is required. The object defined on line 47 protect the _size
variable defined on line 50. This is required as multiple threads can add or
remove items to different stripes simultaneously requiring their access to the
_size variable to be synchronized.

Listing C.4: Lock Based Concurrent Hashmap Implementation

public abstract class BaseHashMap<K,V> : IMap<K,V>
{

protected const int DefaultNrBuckets = 16;
protected const double LoadFactor = 0.75D;

public abstract bool ContainsKey (K key);

public abstract V Get (K key);

public abstract void Add(K key, V value);

9 public abstract bool AddIfAbsent (K key, V value);
10 public abstract bool Remove (K k);

11 public abstract V this[K key] { get; set; }

12 public virtual int Count { get; protected set; }
13

14 protected int CalculateThreshold(int nrBuckets)
15 {

16 return (int) (nrBuckets = LoadFactor);

17 }

18

19 protected int GetHashCode (K key)

20 {

21 var hashCode = key.GetHashCode () ;

22 return hashCode < 0 ? 0 - hashCode : hashCode;
23 }

24

25 protected int GetBucketIndex (int length, K key)
26 {

27 return GetBucketIndex (length, GetHashCode (key));
28 }

29

30 protected int GetBucketIndex (int length, int hashCode)
31 {

32 return hashCode % length;

33 }

APPENDIX C. EVALUATION IMPLEMENTATIONS 136

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

public abstract IEnumerator<KeyValuePair<K, V>> GetEnumerator();

IEnumerator IEnumerable.GetEnumerator ()

{

return GetEnumerator ();

public class LockingHashMap<K,V> : BaseHashMap<K, V>

{

private const int DefaultNrLocks = DefaultNrBuckets;
private readonly object _sizeLock = new object();
private readonly object[] _locks;

private Node[] _buckets;

private int _size;
private int _threshold;

public LockingHashMap () : this(DefaultNrBuckets) {}
public LockingHashMap (int size) : this(size, DefaultNrLocks) {}

private LockingHashMap (int size, int nrLocks)

{

o

if (size % nrLocks != 0)
{
throw new Exception("The intital size % nrlocks must be
equal to zero");
}
_buckets = MakeBuckets (size);
_locks = MakeLocks (nrLocks) ;
_threshold = CalculateThreshold(size);

private Node[] MakeBuckets (int nrBuckets)
{

return new Node[nrBuckets]; ;

private object[] MakeLocks (int nrLocks)

{

var temp = new object[nrLocks];
for (var i = 0; 1 < nrLocks; i++)
{

temp[i] = new object ();

return temp;

#region Utility

private int GetLockIndex (int hashCode)

APPENDIX C. EVALUATION IMPLEMENTATIONS

88 {

89 return hashCode % _locks.Length;

90 }

91

92 private Node CreateNode (K key, V value)

93 {

94 return new Node (key, value);

95 }

96

97 private int GetBucketIndex (int hashCode)

98 {

99 return GetBucketIndex (_buckets.Length, hashCode);

100 }

101

102 private Node FindNode (Node node, K key)

103 {

104 while (node != null && !'key.Equals (node.Key))

105 node = node.Next;

106 return node;

107 }

108

109 private void LockAll ()

110 {

111 foreach (var lo in _locks)

112 {

113 Monitor.Enter (1lo);

114 }

115 }

116

117 private void UnlockAll ()

118 {

119 foreach (var lo in _locks)

120 {

121 Monitor.Exit (lo);

122 }

123 }

124

125 private void InsertInBucket (Node[] buckets, Node node, int
index)

126 {

127 InsertInBucket (buckets, node, buckets[index], index);

128 }

129

130 private void InsertInBucket (Node node, int index)
131 {

137

132 InsertInBucket (node, _buckets[index], index);

133 }

134

135 private void InsertInBucket (Node node, Node curNode, int index)
136 {

137 InsertInBucket (_buckets, node, curNode, index);

138 }

139

140 private void InsertInBucket (Node[] buckets, Node node, Node

curNode, int index)

APPENDIX C. EVALUATION IMPLEMENTATIONS

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193

if (curNode != null)
{
node.Next = curNode;
}
buckets[index] = node;

}
#endregion Utility

public override int Count {
get {
lock (_sizeLock)
{
return _size;
}
}

protected set {
lock (_sizeLock)
{
_size = value;

}
}

public override bool ContainsKey (K key)
{
var hashCode = GetHashCode (key) ;
lock (_locks[GetLockIndex (hashCode)])
{

var bucket = _buckets[GetBucketIndex (hashCode)];

return FindNode (bucket, key) !'= null;

}

public override V Get (K key)

{
var hashCode = GetHashCode (key);
lock (_locks[GetLockIndex (hashCode)])
{

var bucket = _buckets[GetBucketIndex (hashCode)];

var node = FindNode (bucket, key);

if (node == null)
{

//If node is null, key is not in map

throw new KeyNotFoundException ("Key not found.

"+key) ;
}

return node.Value;

Key:

138

APPENDIX C. EVALUATION IMPLEMENTATIONS

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

public override void Add (K key, V value)
{
var hashCode = GetHashCode (key);
lock (_locks[GetLockIndex (hashCode)])
{
var index = GetBucketIndex (hashCode) ;
var bucket = _buckets[index];
var node = FindNode (bucket, key);

if (node !'= null)
{

139

//If node is not null, key exist in map. Update the value

node.Value = value;

}

else

{
//Else insert the node

InsertInBucket (CreateNode (key, value),bucket, index);

lock (_sizeLock)

{

_size++;

ResizelIfNeeded () ;

public override bool AddIfAbsent (K key, V value)

{
var hashCode = GetHashCode (key) ;
lock (_locks[GetLockIndex (hashCode)])
{
var index = GetBucketIndex (hashCode) ;
var bucket = _buckets[index];
var node = FindNode (bucket, key);

if (node != null) return false;

//If node is not in map insert new node

InsertInBucket (CreateNode (key, value),
lock (_sizeLock)
{
_size++;
}
ResizeIfNeeded () ;
return true;

public override bool Remove (K key)
{
var hashCode = GetHashCode (key);
lock (_locks[GetLockIndex (hashCode)])

bucket,

index) ;

APPENDIX C. EVALUATION IMPLEMENTATIONS

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

}

private bool

{

}

var index = GetBucketIndex (hashCode) ;
var bucket = _buckets[index];
return RemoveNode (key, bucket, index);

if (node == null)
{

return false;

}

RemoveNode (K key, Node node, int index)

if (node.Key.Equals (key))

{
lock (_sizeLock)
{
_size—-—;
}
buckets[index] =
return true;

while (node.Next != null &&

node = node.Next;

node.Next;

//node.Next == null || node.Next.Key == key
if (node.Next == null) return false;
lock (_sizeLock)
{
_size——;
}
node.Next = node.Next.Next;

return true;

private void ResizeIfNeeded()

{

if
{

(ResizeCondtion())
LockAll () ;
try

{

if (!ResizeCondtion())

{

return;

}

//Construct new backing array

var newBucketSize

var newBuckets

= _buckets.Length » 2;
MakeBuckets (newBucketSize) ;

'key.Equals (node.Next .Key))

140

APPENDIX C. EVALUATION IMPLEMENTATIONS 141

302 //For each key in the map rehash

303 for (var 1 = 0; 1 < _buckets.Length; i++)

304 {

305 var node = _buckets[i];

306 while (node != null)

307 {

308 var bucketIndex = GetBucketIndex (newBucketSize,
node.Key) ;

309 InsertInBucket (newBuckets, CreateNode (node.Key,node.Value),bucketIndex) ;

310 node = node.Next;

311 }

312 }

313

314 //Calculate new resize threshold and assign the

rehashed backing array

315 threshold = CalculateThreshold (newBucketSize);

316 _buckets = newBuckets;

317 }

318 finally

319 {

320 UnlockAll () ;

321 }

322 }

323 }

324

325 private bool ResizeCondtion ()

326 {

327 lock (_sizeLock)

328 {

329 return _size >= _threshold;

330 }

331 }

332

333 public override V this[K key]

334 {

335 get { return Get (key); }

336 set { Add(key,value); }

337 }

338

339 public override IEnumerator<KeyValuePair<K, V>> GetEnumerator ()
340 {

341 LockAll();

342 try

343 {

344 var list = new List<KeyValuePair<K,V>>(_size);
345 for (var i = 0; i < _buckets.Length; i++)

346 {

347 var node = _buckets[i];

348 while (node != null)

349 {

350 list.Add (new KeyValuePair<K, V> (node.Key, node.Value));
351 node = node.Next;

352 }

353 }

APPENDIX C. EVALUATION IMPLEMENTATIONS 142

354

355 return list.GetEnumerator();

356 }

357 finally

358 {

359 UnlockAll () ;

360 }

361 }

362

363 private class Node

364 {

365 public K Key { get; private set; }
366 public V Value { get; internal set; }
367 public Node Next { get; internal set; }
368

369 public Node (K key, V value)

370 {

371 Key = key;

372 Value = value;

373 }

374 }

375 }

C.2 STM Library

This section presents the library-based STM implementations used for the
evaluation.

C.2.1 Dining Philosophers Problem

The library based STM uses five STM objects of type TMVar<bool>, de-
fined on lines 8 to 12, to represent each of the forks on the table. The
StartPhilosopher method on line 27 is called for each philosopher in order
to start a thread with access to the correct forks. The transaction defined
on line 33 attempts to acquired both forks in order to begin eating. Implicit
conversion is employed on line 35 to read the state of the forks without having
to access the Value property. The call to STMSystem.Retry on line 37
blocks the calling thread until the state of the forks change, if atleast one of
the forks is unavailable. The transaction on line 48 simply makes both forks
available, after the philosopher has finished eating on lines 44 to 46.

Listing C.5: STM Library Based Dining Philosophers Implementation

public class DiningPhilosophers
{
private const int MAX_EAT_COUNT = 1000;

public static void Start ()
{

ST W N~

APPENDIX C. EVALUATION IMPLEMENTATIONS

7 var eatCounter = new TMInt (0);

8 var forkl = new TMVar<bool> (true);

9 var fork2 = new TMVar<bool> (true);

10 var fork3 = new TMVar<bool> (true);

11 var forkd4d = new TMVar<bool> (true);

12 var fork5 = new TMVar<bool> (true);

13

14 var tl = StartPhilosopher (eatCounter, forkl,
15 var t2 = StartPhilosopher (eatCounter, fork2,
16 var t3 = StartPhilosopher (eatCounter, fork3,
17 var t4 = StartPhilosopher (eatCounter, fork4,
18 var t5 = StartPhilosopher (eatCounter, fork5,
19

20 tl.Join();

21 t2.Join();

22 t3.Join();

23 t4.Join();

24 t5.Join () ;

25 }

26

fork2)

fork3);

fork4);
) .
)

r

fork5
forkl

’

27 private static Thread StartPhilosopher (TMInt eatCounter,

TMVar<bool> left, TMVar<bool> right)

28 {

29 var tl = new Thread(() =>

30 {

31 while (eatCounter < MAX_EAT_COUNT)

32 {

33 STMSystem.Atomic (() =>

34 {

35 if (!left || !'right)

36 {

37 STMSystem.Retry () ;

38 }

39

40 left.Value = false;

41 right.vValue = false;

42 });

43

44 Console.WriteLine ("Thread: " +
Thread.CurrentThread.ManagedThreadId + " eating.");

45 Thread.Sleep (100);

46 Console.WritelLine ("Eat count: " + ++eatCounter);

47

48 STMSystem.Atomic (() =>

49 {

50 left.Value = true;

51 right.Value = true;

52 1) i

53

54 Thread.Sleep (100);

55 }

56 1)

57

58 tl.Start();

143

APPENDIX C. EVALUATION IMPLEMENTATIONS 144

59

60 return tl;
61 }

62 }

C.2.2 Santa Claus Problem

As shown on line 124, the library-based Santa Claus problem implementation
uses a transaction with an associated orelse clause to wake Santa given either
the reindeer or elf condition is true true. The calls to STMSystem.Retry
on lines 128 and 137 causes Santa to block if the transaction is executed
and non of the conditions are true. If one of the read variable change Santa
automatically tests the conditions again. As a result the elfs and reindeer
does not have to take an explicit action in order to wake Santa. In fact they
need not to even know that Santa exists. A call to STMSystem.Retry is
used on line 171 to ensure that only three elfs can go to Santa at the same
time. Generally, transactions containing calls to STMSystem.Retry are used
ensure that the elfs and reindeer do not progress to the next state before the
required conditions e.g. having delivered the presents, are true. The queue
utilized is a transactional queue implementation available through the STM
library.

Listing C.6: STM Library Based Santa Claus Implementation

1 public class SantaClausProblem

2 {

3 public static void Start ()

4 {

5 var rBuffer = new Queue<Reindeer>();

6 var eBuffer = new Queue<Elf>();

7 var santa = new Santa (rBuffer,eBuffer);

8 santa.Start () ;

9

10 for (int 1 = 0; 1 < SCStats.NR_REINDEER ; 1i++)
11 {

12 var reindeer = new Reindeer (i, rBuffer);
13 reindeer.Start () ;

14 }

15

16 for (int 1 = 0; 1 < SCStats.NR_ELFS; i++)
17 {

18 var elf = new E1f (i, eBuffer);

19 elf.Start ();

20 }

21 }

22 }
23
24 public class Santa : IStartable
25 {
26 private readonly Queue<Reindeer> _rBuffer;

APPENDIX C. EVALUATION IMPLEMENTATIONS

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

private readonly Queue<Elf> _eBuffer;

public Santa (Queue<Reindeer> rBuffer,

{

_rBuffer
_eBuffer

rBuffer;
eBuffer;

public Task Start()

{

return Task.Run(() =>
{
while (true)

{

var wakestate = SleepUntilAwoken();

switch (wakestate)
{
case WakeState.ReindeerBack:
HandleReindeer () ;
break;
case WakeState.ElfsIncompetent:
HandleElfs () ;
break;

)i

private void HandleElfs()

{

Queue<Elf>

Console.WriteLine ("3 elfs at the door!");

STMSystem.Atomic (() =>
{
foreach (var elf in _eBuffer)
{
elf.AskQuestion();
}
b

//Answer questions
Thread.Sleep(100);

//Back to work incompetent elfs!
STMSystem.Atomic (() =>
{
for (int i = 0; 1 < SCStats.MAX_ELFS;
{
var elf = _eBuffer.Dequeue();
elf.BackToWork () ;
}
1)

Console.WritelLine ("Elfs helped");

i++)

eBuffer)

145

APPENDIX C. EVALUATION IMPLEMENTATIONS

81 }

82

83 private void HandleReindeer ()

84 {

85 Console.WriteLine ("All reindeer are back!");
86

87 //Call reindeer from the warming hut
88 STMSystem.Atomic (() =>

89 {

90 foreach (var reindeer in _rBuffer)
91 {

92 reindeer.CallToSleigh () ;

93 }

94 1)

95

96 //Setup the sleigh

97 STMSystem.Atomic (() =>

98 {

99 foreach (var reindeer in _rBuffer)
100 {

101 reindeer.HelpDeliverPresents () ;
102 }

103)i

104

105 //Deliver presents

106 Console.WriteLine ("Santa delivering presents");
107 Thread.Sleep (100);

108

109 //Release reindeer

110 STMSystem.Atomic (() =>

111 {

112 while (_rBuffer.Count != 0)

113 {

114 var reindeer = _rBuffer.Dequeue () ;
115 reindeer.ReleaseReindeer () ;

116 }

117 1)

118

119 Console.WriteLine ("Reindeer released");
120 }

121

122 private WakeState SleepUntilAwoken ()
123 {

124 return STMSystem.Atomic (() =>

125 {

126 if (_rBuffer.Count != SCStats.NR_REINDEER)
127 {

128 STMSystem.Retry () ;

129 }

130

131 return WakeState.ReindeerBack;

132 },

133 () =>

134 {

146

APPENDIX C. EVALUATION IMPLEMENTATIONS

135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150

151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

if (_eBuffer.Count != SCStats.MAX_ ELFS)

{
STMSystem.Retry () ;

return WakeState.ElfsIncompetent;
1)

public class E1f : IStartable
{
private readonly Random _randomGen = new
Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }
private readonly Queue<Elf> _buffer;
private readonly TMVar<bool> _waitingToAsk = new
TMVar<bool> (false);
private readonly TMVar<bool> _questionAsked = new
TMVar<bool> (false);

public E1f (int id, Queue<Elf> buffer)

{
_buffer = buffer;
ID = id;

public Task Start ()
{

return Task.Run(() =>
{
while (true)

{
Thread.Sleep (100 x _randomGen.Next (21));

STMSystem.Atomic (() =>
{
if (_buffer.Count == SCStats.MAX_ ELFS)

{
STMSystem.Retry () ;

_buffer.Enqueue (this);
_waitingToAsk.Value = true;
1) i

Console.WriteLine ("E1f {0} at the door",ID);
//Waiting on santa
STMSystem.Atomic (() =>
{
if (_waitingToAsk)
{
STMSystem.Retry () ;

147

APPENDIX C. EVALUATION IMPLEMENTATIONS

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222

223

224

225
226
227
228
229
230
231
232
233
234
235

1) i
//Asking question

//Done asking
STMSystem.Atomic (() =>

{
if (!_questionAsked)

{
STMSystem.Retry () ;

_questionAsked.Value = false;

1)

public void AskQuestion ()
{

_waitingToAsk.Value = false;

}

public void BackToWork ()
{

_questionAsked.Value = true;

}
public class Reindeer : IStartable
private readonly Random _randomGen = new

Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }

private readonly Queue<Reindeer> _reindeerBuffer;

private readonly TMVar<bool> _workingForSanta =
TMVar<bool> (false);

private readonly TMVar<bool> _waitingAtSleigh =
TMVar<bool> (false);

private readonly TMVar<bool> _waitingInHut = new

TMVar<bool> (false);

public Reindeer (int id, Queue<Reindeer> buffer)
{

ID = id;

_reindeerBuffer = buffer;

public Task Start()
{

return Task.Run (() =>

{

148

APPENDIX C. EVALUATION IMPLEMENTATIONS

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

while (true)

{

}
)i

{

Thread.Sleep (100 % _randomGen.Next (10));

STMSystem.Atomic (() =>

{
_reindeerBuffer.Enqueue (this);
_waitingInHut.Value = true;

1) i

Console.WritelLine ("Reindeer {0} is back",ID);

//Waiting in the warming hut
STMSystem.Atomic (() =>
{

if (_waitingInHut)

{

STMSystem.Retry () ;

}

1) i

//Wait for santa to be ready
STMSystem.Atomic (() =>
{

if (_waitingAtSleigh)

{

STMSystem.Retry () ;

}

1) i

//Delivering presents

//Wait to be released by santa
STMSystem.Atomic (() =>
{

if (_workingForSanta)

{

STMSystem.Retry () ;

}

1) i

public void CallToSleigh(()

STMSystem.Atomic (() =>

_waitingInHut.Value = false;
_waitingAtSleigh.Value = true;

1)

public void HelpDeliverPresents ()

149

APPENDIX C. EVALUATION IMPLEMENTATIONS 150

290 {

291 STMSystem.Atomic (() =>
292 {

293 _waitingAtSleigh.Value
294 _workingForSanta.Value
295)

296 }

297

298 public void ReleaseReindeer ()

299 {

300 _workingForSanta.Value = false;
301 }

302 }

false;
true;

C.2.3 Concurrent Queue

The STM concurrent queue implementation is implemented as a linked list
of nodes. As with the lock-based concurrent queue implementation, the
library-based STM concurrent queue implementation uses a dummy node,
allowing the enqueue and dequeue operations to operate only on the tail and
head respectively. The _head and _tail, defined on lines 3 and 4, are of
type TMVar<Node> allowing the STM system to track assignments to the
encapsulated variables. Similarly the Next field of the Node class defined on
line 40 is of type TMVar<Node>. The Dequeue method defined in line 24,
skips over the dummy item when reading the node to remove from the queue
on line 28. The call to STMSystem.Retry on line 32 causes a thread calling
Dequeue on an empty queue to block until the queue is no longer empty. The
assignment on line 32 sets the node representing the item to dequeue as the
new dummy node, as it is no longer needed and already points to the next
item in the queue.

Listing C.7: STM Library Based Concurrent Queue Implementation

1 public class Queue<T>

2 {

3 private readonly TMVar<Node> _head = new TMVar<Node> (null);
4 private readonly TMVar<Node> _tail = new TMVar<Node> (null);
5

6 public Queue ()

7 {

8 var node = new Node (default(T));

9 _head.Value = node;

10 _tail.Value = node;

11 }

12

13 public void Enqueue (T value)

14 {

15 STMSystem.Atomic (() =>

16 {

17 var node = new Node (value) ;

APPENDIX C. EVALUATION IMPLEMENTATIONS 151

18 var curTail = _tail.Value;
19 curTail.Next.Value = node;
20 _tail.Value = node;

21 1)

22 }

23

24 public T Dequeue ()

25 {

26 return STMSystem.Atomic (() =>
27 {

28 var node = _head.Value.Next.Value;
29

30 if (node == null)

31 {

32 STMSystem.Retry () ;

33 }

34

35 _head.Value = node;

36 return node.Value;

37 1)

38 }

39

40 private class Node

41 {

42 public readonly TMVar<Node> Next = new TMVar<Node> (null);
43 public readonly T Value;

44

45 public Node (T value)

46 {

47 Value = value;

48 }

49 }

50 }

C.2.4 Concurrent Hashmap

The library-based STM hashmap defines the collision list as a linked list of
instances of the Node class defined on line 243. The backing array, defined on
line 4, of type TMVar<TMVar<Node> []>, that is a transactional variable to
an array of transactional variables to instances of the node Node class. This
allows the STM system to track the assignment of a new backing array as a
result of resizing the hashmap as well as track the assignment of the first node
in each bucket trough the TMVars in the backing array. As the Next property
of the Node class, defined on line 247, is type TMVar<Node> the STM system
is able to track changes to the collision list. As the Add method defined on
line 97 updates the value of a node if the key to add is already present in the
hashmap, the Value property of the Node class is of type TMVar<v> where
V is the type parameter, defining the type of the values added to the hashmap.
The _size variable is of type TMInt and is increment and decremented using
the supplied ++ and —- overloads defined in the STM library.

APPENDIX C. EVALUATION IMPLEMENTATIONS

Listing C.8: STM Library Based Concurrent Hashmap Implementation

~ O

ublic class STMHashMap<K,V> : BaseHashMap<K, V>

//TMVar to (array of TMVars to Node)
private readonly TMVar<TMVar<Node>[]> _buckets =
TMVar<TMVar<Node>[]1> () ;
private readonly TMInt _threshold = new TMInt();
private TMInt _size = new TMInt();

public STMHashMap () : this(DefaultNrBuckets)
{

public STMHashMap (int nrBuckets)
{

_buckets.Value = MakeBuckets (nrBuckets);

new

_threshold.Value = CalculateThreshold (nrBuckets);

/// <summary>
/// Creates and initializes the backing array
/// </summary>
/// <param name="nrBuckets"></param>
/// <returns></returns>
private TMVar<Node>[] MakeBuckets (int nrBuckets)
{

var temp = new TMVar<Node>|[nrBuckets];

for (var i = 0; 1 < nrBuckets; i++)

{

temp[i] = new TMVar<Node> () ;

return temp;

#region Utility

private Node CreateNode (K key, V value)
{

return new Node (key,value);

private int GetBucketIndex (K key)
{

return GetBucketIndex (_buckets.Value.Length, key);

private Node FindNode (K key)

{
return FindNode (key, GetBucketIndex (key));

APPENDIX C. EVALUATION IMPLEMENTATIONS 153

52

53 private Node FindNode (K key, int bucketIndex)

54 {

55 return FindNode (key, _buckets.Value[bucketIndex].Value);

56 }

57

58 private Node FindNode (K key, Node node)

59 {

60 while (node != null && 'key.Equals (node.Key))

61 node = node.Next.Value;

62 return node;

63 }

64

65 private void InsertInBucket (TMVar<Node> bucketVar, Node node)

66 {

67 var curNode = bucketVar.Value;

68 if (curNode != null)

69 {

70 node.Next.Value = curNode;

71 }

72 bucketVar.Value = node;

73 }

74

75 #endregion Utility

76

77 public override bool ContainsKey (K key)

78 {

79 return STMSystem.Atomic (() => FindNode (key) != null);

80 }

81

82 public override V Get (K key)

83 {

84 return STMSystem.Atomic (() =>

85 {

86 var node = FindNode (key) ;

87 if (node == null)

88 {

89 //If node == null key is not present in dictionary

90 throw new KeyNotFoundException ("Key not found. Key: " +
key);

91 }

92

93 return node.Value.Value;

94 1)

95 }

96

97 public override void Add(K key, V value)

98 {

99 STMSystem.Atomic (() =>

100 {

101 var bucketIndex = GetBucketIndex (key);

102 //TMVar wrapping the immutable chain list

103 var bucketVar = _buckets.Value[bucketIndex];

104 var node = FindNode (key, bucketVar.Value);

APPENDIX C. EVALUATION IMPLEMENTATIONS 154

105

106 if (node != null)

107 {

108 //If node is not null key exist in map. Update the value
109 node.Value.Value = value;

110 }

111 else

112 {

113 //Else insert the node

114 InsertInBucket (bucketVar, CreateNode (key,value));
115 _size++;

116 ResizeIfNeeded();

117 }

118)i

119 }

120

121 public override bool AddIfAbsent (K key, V value)

122 {

123 return STMSystem.Atomic (() =>

124 {

125 var bucketIndex = GetBucketIndex (key);

126 //TMVar wrapping the immutable chain list
127 var bucketVar = _buckets.Value[bucketIndex];
128 var node = FindNode (key, bucketVar.Value);
129

130 if (node == null)

131 {

132 //If node is not found key does not exist so insert
133 InsertInBucket (bucketVar, CreateNode (key,value));
134 _size++;

135 ResizeIfNeeded();

136 return true;

137 }

138

139 return false;

140 1)

141 }

142

143 private void ResizeIfNeeded()

144 {

145 if (_size.Value >= _threshold.Value)

146 {

147 Resize();

148 }

149 }

150

151 private void Resize ()

152 {

153 //Construct new backing array

154 var newBucketSize = _buckets.Value.Length » 2;
155 var newBuckets = MakeBuckets (newBucketSize);
156

157 //For each key in the map rehash

158 for (var i = 0; 1 < _buckets.Value.Length; i++)

APPENDIX C. EVALUATION IMPLEMENTATIONS 155

159
160
161
162
163
164
165

166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

var bucket = _buckets.Valuel[i];
var node = bucket.Value;
while (node != null)

{

var bucketIndex = GetBucketIndex (newBucketSize, node.Key);
InsertInBucket (newBuckets [bucketIndex],

CreateNode (node.Key,

node = node.Next.Value;

node.Value)) ;

//Calculate new resize threshold and assign the rehashed
backing array

_threshold.Value
_buckets.Value =

= CalculateThreshold (newBucketSize);

newBuckets;

public override bool Remove (K key)

{

return STMSystem.Atomic (() =>

{

var bucketInde

X

= GetBucketIndex (key);

//TMVar wrapping the immutable chain list
= _buckets.Value[bucketIndex];

var bucketVar
var firstNode

bucketVar.Value;

return RemoveNode (key, firstNode, bucketVar);

)i

private bool RemoveNode (K key, Node node,

{

if (node == null
{

return false;

)

if (node.Key.Equals (key))

{
_size-—;
bucketVar.Valu
return true;

while (node.Next

//node.Next == null |

if (node.Next ==

_size-—;

node.Next .Value
return true;

e

= node.Next;

TMVar<Node> bucketVar)

'= null && !key.Equals(node.Next.Value.Key))
node = node.Next.Value;

| node.Next.Key ==
null) return false;

node.Next .Value.Next;

key

APPENDIX C. EVALUATION IMPLEMENTATIONS 156
211 }
212
213 public override IEnumerator<KeyValuePair<K, V>> GetEnumerator ()
214 {
215 return STMSystem.Atomic (() =>
216 {
217 var list = new List<KeyValuePair<K, V>>(_size.Value);
218 for (var i1 = 0; 1 < _buckets.Value.Length; i++)
219 {
220 var bucket = _buckets.Valuel[il];
221 var node = bucket.Value;
222 while (node != null)
223 {
224 list.Add (new KeyValuePair<K, V> (node.Key, node.Value));
225 node = node.Next.Value;
226 }
227 }
228 return list.GetEnumerator();
229 1)
230 }
231
232 public override V this[K key]
233 {
234 get { return Get (key); }
235 set { Add(key, value); }
236 }
237
238 public override int Count
239 {
240 get { return _size.Value; }
241 }
242
243 private class Node
244 {
245 public K Key { get; private set; }
246 public TMVar<V> Value { get; private set; }
247 public TMVar<Node> Next { get; private set; }
248
249 public Node (K key, V value)
250 {
251 Key = key;
252 Value = new TMVar<V> (value);
253 Next = new TMVar<Node> () ;
254 }
255 }
256 }

C.3 AC#

This section presents the AC# implementations used for the evaluation. As the
strategies employed for the AC# implementations are similar to those of the
library-based STM implementations the descriptions focus on the differences

APPENDIX C. EVALUATION IMPLEMENTATIONS 157

between the implementations as well as how the abstractions provided by AC#
are utilized.

C.3.1 Dining Philosophers Problem

The AC# dining philosophers implementation represents the forks as instances
of the Fork class defined on line 58. Five forks are created on lines 8 to 12 and
passed to the StartPhilosopher method on lines 14 to 18. The transaction
defined in line 33 acquires both forks by calling the forks Attempt ToPickUp
which is itself defined using a transaction. If a fork is unavailable the calling
thread will block until the state changes as a result of the retry statement on
line 74. The transaction defined on line 43 puts down both forks after eating
on lines 39 to 41 has finished.

Listing C.9: AC+# Based Dining Philosophers Implementation

1 public class DiningPhilosopher

2 {

3 private static readonly int MAX_EAT_COUNT = 1000;
4 private static atomic int eatCounter = 0;
5

6 public void Start ()

7 {

8 var forkl = new Fork();

9 var fork2 = new Fork();

10 var fork3 = new Fork();

11 var fork4 = new Fork();

12 var fork5 = new Fork();

13

14 var tl = StartPhilosopher (forkl, fork2);
15 var t2 = StartPhilosopher (fork2, fork3);
16 var t3 = StartPhilosopher (fork3, fork4);
17 var t4 = StartPhilosopher (fork4, fork5);
18 var t5 = StartPhilosopher (fork5, forkl);
19

20 tl.Join();

21 t2.Join () ;

22 t3.Join();

23 t4.Join();

24 t5.Join () ;

25 }

26

27 private Thread StartPhilosopher (Fork left, Fork right)
28 {

29 var tl = new Thread(() =>

30 {

31 while (eatCounter < MAX_EAT_COUNT)

32 {

33 atomic

34 {

35 left.AttemptToPickUp () ;

36 right .AttemptToPickUp () ;

APPENDIX C. EVALUATION IMPLEMENTATIONS

37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

}

}

}

Console.WriteLine ("Thread: " +
Thread.CurrentThread.ManagedThreadId + " eating.");

Thread.Sleep(100);

Console.WritelLine ("Eat count: " + ++eatCounter);

atomic

{
left.PutDown () ;
right.PutDown () ;
}

Thread.Sleep (100);
}
)i

tl.Start ();

return tl;

public class Fork

{

private atomic
private bool State { get; set; }

public Fork()
{

State = true;

}

public void AttemptToPickUp ()
{

atomic

{
if (!State)
{

retry;

}

State = false;

}

public void PutDown ()
{

atomic

{

State = true;

}

158

APPENDIX C. EVALUATION IMPLEMENTATIONS 159

C.3.2 Santa Claus Problem

As with the library-based Santa Claus implementation AC# uses an atomic
block with an associated orelse block, defined on line 65, to wake Santa
when either the reindeer or elf condition are true. On line 178 the retry
statement is used to ensure that no more than three elfs can go to Santa at any
given point. Similarly, transactions utilizing retry statement are us ensure
that the elfs and reindeer do not proceeded to next state before the required
condition is true throughout the implementation.

Listing C.10: AC# Based Santa Claus Implementation

1 public class SantaClausProblem

2 {

3 public const int NR_REINDEER = 9;
4 public const int NR_ELFS = 6;

5 public const int MAX_ELFS = 3;
6
7
8

public static void Main ()

9 var rBuffer = new Queue<Reindeer> () ;

10 var eBuffer = new Queue<Elf>();

11 var santa = new Santa (rBuffer, eBuffer);

12 santa.Start () ;

13

14 for (int i1 = 0; 1 < SantaClausProblem.NR_REINDEER; i++)
15 {

16 var reindeer = new Reindeer (i, rBuffer);

17 reindeer.Start () ;

18 }

19

20 for (int 1 = 0; 1 < SantaClausProblem.NR_ELFS; i++)
21 {

22 var elf = new E1f (i, eBuffer);

23 elf.Start ();

24 }

25

26 System.Console.WriteLine ("Press any key to terminate...");
27 System.Console.ReadKey () ;

28 }

29 }

30

31 public class Santa

32 {

33 private readonly Queue<Reindeer> _rBuffer;
34 private readonly Queue<Elf> _eBuffer;

36 public Santa (Queue<Reindeer> rBuffer, Queue<Elf> eBuffer)
37 {

38 _rBuffer = rBuffer;
39 _eBuffer = eBuffer;
40 }

APPENDIX C. EVALUATION IMPLEMENTATIONS

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

public Task Start()

return Task.Run(() =>
{
while (true)

{

var wakestate = SleepUntilAwoken();

switch (wakestate)
{
case WakeState.ReindeerBack:
HandleReindeer () ;
break;
case WakeState.ElfsIncompetent:
HandleElfs () ;
break;

)i

private WakeState SleepUntilAwoken ()
{

atomic

{

if (_rBuffer.Count != SantaClausProblem.NR_REINDEER)

{

retry;

return WakeState.ReindeerBack;

}

orelse

{

if (_eBuffer.Count != SantaClausProblem.MAX_ ELFS)

{

retry;

return WakeState.ElfsIncompetent;

private void HandleReindeer ()

{

Console.WriteLine ("All reindeer are back!");

//Call reindeer from the warming hut
atomic
{
foreach (var reindeer in _rBuffer)

{
reindeer.CallToSleigh () ;

160

APPENDIX C. EVALUATION IMPLEMENTATIONS

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

}

//Setup the sleigh
atomic

{

foreach (var reindeer in _rBuffer)

{

reindeer.HelpDeliverPresents();

}
//Deliver presents
Console.WritelLine ("Santa delivering presents");

Thread.Sleep(100);

//Release reindeer

atomic
{
while (_rBuffer.Count != 0)
{
var reindeer = _rBuffer.Dequeue();

reindeer.ReleaseReindeer () ;

Console.WritelLine ("Reindeer released");

private void HandleElfs ()

{

Console.WriteLine ("3 elfs at the door!");
atomic

{

foreach (var elf in _eBuffer)

{
elf.AskQuestion();

}

//Answer questions
Thread.Sleep(100);

//Back to work incompetent elfs!
atomic
{
for (int i = 0; 1 < SantaClausProblem.MAX_ELFS;
{
var elf = _eBuffer.Dequeue();
elf.BackToWork () ;

Console.WritelLine ("Elfs helped");

i++)

161

APPENDIX C. EVALUATION IMPLEMENTATIONS

150 }
151

152 public class E1f

153 {
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

private Random randomGen = new

Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }
private Queue<Elf> _buffer;
private atomic bool _waitingToAsk = false;
private atomic bool _questionAsked = false;

public E1f (int id, Queue<Elf> buffer)
{

_buffer = buffer;

ID = id;
}

public Task Start()
{

return Task.Run(() =>

{

while (true)

{
Thread.Sleep (100 * randomGen.Next (21));

atomic

{

if (_buffer.Count == SantaClausProblem.MAX ELFS)

{

retry;

}

_buffer.Enqueue (this);
_waitingToAsk = true;

}
Console.WriteLine ("E1f {0} at the door",

//Waiting on santa
atomic
{
if (_waitingToAsk)
{
retry;
}
}

//Asking question

//Done asking

atomic

{
if (!_gquestionAsked)
{

162

APPENDIX C. EVALUATION IMPLEMENTATIONS

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

}

)i

retry;

_questionAsked = false;

public void AskQuestion ()

{

_waitingToAsk = false;

}

public void BackToWork ()

{

_questionAsked = true;

}

public class Reindeer

{

private

readonly Random randomGen = new

Random (Guid.NewGuid () .GetHashCode ()) ;
public int ID { get; private set; }

private
private
private
private

public Reindeer (int id, Queue<Reindeer> buffer)

{
ID =

Queue<Reindeer> reindeerBuffer;
atomic bool _workingForSanta = false;
atomic bool _waitingAtSleigh = false;
atomic bool _waitingInHut = false;

id;

reindeerBuffer = buffer;

public Task Start ()

{

return Task.Run(() =>

{

while (true)

{

Thread.Sleep (100 * randomGen.Next (10));

atomic

{

}

Console.WritelLine ("Reindeer {0} is back",ID);

reindeerBuffer.Enqueue (this);
_waitingInHut = true;

//Waiting in the warming hut

163

APPENDIX C. EVALUATION IMPLEMENTATIONS

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

atomic
{
if (_waitingInHut)
{
retry;
}
}

//Wait for santa to be ready
atomic
{

if (_waitingAtSleigh)

{

retry;

}

}

//Delivering presents

//Wait to be released by santa
atomic
{
if (_workingForSanta)
{
retry;

}

public void CallToSleigh ()
atomic

_waitingInHut = false;
_waitingAtSleigh = true;

public void HelpDeliverPresents ()
atomic

_waitingAtSleigh = false;
_workingForSanta = true;

public void ReleaseReindeer ()

_workingForSanta = false;

164

APPENDIX C. EVALUATION IMPLEMENTATIONS 165

310 }

311

312 public enum WakeState
313 {

314 ReindeerBack,

315 ElfsIncompetent

316 }

C.3.3 Concurrent Queue

As with the lock and library-based implementations the AC# implementation
is implemented as a linked list of nodes and uses a dummy node. The head
and tail nodes, defined on lines 3 and 4, are declared atomic along with the
Next property of the Node class defined on 40. The retry on line 32 is used
to block a thread calling Dequeue on an empty queue.

Listing C.11: AC+# Based Concurrent Queue Implementation

1 public class Queue<T>

2 {

3 private atomic Node _head;
4 private atomic Node _tail;
5

6 public Queue ()

7 {

8 var node = new Node (default (T));
9 _head = node;

10 _tail = node;

11 }

12

13 public void Enqueue (T value)
14 {

15 atomic

16 {

17 var node = new Node (value);
18 _tail.Next = node;

19 _tail = node;

20 }

21 }

22

23

24 public T Dequeue ()

25 {

26 atomic

27 {

28 var node = _head.Next;
29

30 if (node == null)

31 {

32 retry;

33 }

34

APPENDIX C. EVALUATION IMPLEMENTATIONS 166

35 _head = node;

36 return node.Value;

37 }

38 }

39

40 private class Node

41 {

42 public atomic Node Next { get; set; }
43 public readonly T Value;
44

45 public Node (T value)

46 {

47 Value = value;

48 }

49 }

50 }

C.3.4 Concurrent Hashmap

As with the other concurrent hashmap implementations, the AC# concurrent
hashmap implementation utilizes a linked list of nodes for the collision lists.
The Node class is defined on line 239. As seen on line 243 its next property
is declared with the atomic modifier, allowing the STM system to detect
changes to the list. Similarly the Node class’s Value property is declared with
the atomic modifier, as a call to the Add method with a key already present
in the hashmap causes the value of the node representing the key/value pair
to be updated. The backing array, seen on line 3, is of type Bucket [] and
is declared with the atomic modifier. The atomic modifier allows the STM
system to track the assignment of a new backing array as a result of resizing
the hashmap. The Bucket class is defined on line 234 and has an atomic
Value property to which the first node in the buckets linked list is assigned, if
such an item exists. Together with the atomic Next property of the Node
class, this allows the STM system to detect any changes to the collision list.

Listing C.12: AC+# Based Concurrent Hashmap Implementation

1 public class StmHashMap<K,V> : BaseHashMap<K, V>
2 {

3 private atomic Bucket[] _buckets;

4 private atomic int _threshold;

5 private atomic int _size;

6

7 public StmHashMap () : this(DefaultNrBuckets)
8 {

9

10 }

11

12 public StmHashMap (int nrBuckets)

13 {

14 _buckets = MakeBuckets (nrBuckets) ;

APPENDIX C. EVALUATION IMPLEMENTATIONS

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

_threshold = CalculateThreshold (nrBuckets) ;

private Bucket[] MakeBuckets (int nrBuckets)
{
var temp = new Bucket [nrBuckets];
for (int i = 0; 1 < nrBuckets; i++)
{
temp[i] = new Bucket();

}

return temp;

#region Utility

private Node CreateNode (K key, V value)
{

return new Node (key, value);

private int GetBucketIndex (K key)

{
return GetBucketIndex (_buckets.Length, key);

private Node FindNode (K key)

{
return FindNode (key, GetBucketIndex (key));

private Node FindNode (K key, int bucketIndex)
{

return FindNode (key, _buckets[bucketIndex].Value);

private Node FindNode (K key, Node node)
{
while (node != null && 'key.Equals (node.Key))
node = node.Next;
return node;

private void InsertInBucket (Bucket bucketVar, Node node)

{
var curNode = bucketVar.Value;
if (curNode != null)
{

node.Next = curNode;

}

bucketVar.Value = node;

#endregion Utility

167

APPENDIX C. EVALUATION IMPLEMENTATIONS

69
70
71
72
73
74
75
76
7
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

public override bool ContainsKey (K key)

{

return FindNode (key)

public override V Get (K key)

{

public override

{

atomic
{
var node = FindNode (key);
if (node == null)
{
//If node == null key is not present in dictionary

}

re

throw new KeyNotFoundException ("Key not

key);

turn node.Value;

atomic

{

va

va
va

if
{

}
el

{

'= null;

void Add(K key, V value)

r bucketIndex = GetBucketIndex (key);
//TMVar wrapping the immutable chain list
r bucketVar = _buckets[bucketIndex];

r node = FindNode (key,

(node !'= null)

bucketVar.Value) ;

found. Key:

n

+

168

//If node is not null key exist in map. Update the value

node.Value = value;

se

//Else insert the node

InsertInBucket (bucketVar, CreateNode (key,

_size++;

ResizeIfNeeded();

public override bool AddIfAbsent (K key, V value)

{

atomic

{
var bucketIndex = GetBucketIndex (key);
//TMVar wrapping the immutable chain list
var bucketVar = _buckets]|

va

if

r node = FindNode (key,

(node == null)

bucketIndex];
bucketVar.Value);

value));

APPENDIX C. EVALUATION IMPLEMENTATIONS

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173

}

169

//If node is not found key does not exist so insert
InsertInBucket (bucketVar, CreateNode (key, value));

_size++;

ResizeIfNeeded () ;

return true

return false;

’

private void ResizeIfNeeded()

{

if
{

(_size >= _threshold)

Resize () ;

private void Resize ()

{

//Construct new backing array
var newBucketSize

va

r newBuckets

= _buckets.Length x 2;
MakeBuckets (newBucketSize) ;

//For each key in the map rehash

fo
{

r (var 1 = 0;

var bucket =

i

_b

< _buckets.Length; i++)

uckets[i];

var node = bucket.Value;
while (node != null)

{

var bucketIndex = GetBucketIndex (newBucketSize,

InsertInBucket (newBuckets [bucketIndex],
CreateNode (node.Key, node.Value));

node = node.Next;

node.Key) ;

//Calculate new resize threshold and assign the rehashed

backing array
hreshold = CalculateThreshold (newBucketSize);
uckets = newBuckets;

_t
_b

public override bool Remove (K key)

{

at
{

omic

var bucketIndex
//TMVar wrapping the immutable chain list
= _buckets[bucketIndex];

var bucketVar
var firstNode

= GetBucketIndex (key);

bucketVar.Value;

APPENDIX C. EVALUATION IMPLEMENTATIONS 170

174 return RemoveNode (key, firstNode, bucketVar);

175 }

176 }

177

178 private bool RemoveNode (K key, Node node, Bucket bucketVar)

179 {

180 if (node == null)

181 {

182 return false;

183 }

184

185 if (node.Key.Equals (key))

186 {

187 _size——;

188 bucketVar.Value = node.Next;

189 return true;

190 }

191

192 while (node.Next != null && !key.Equals (node.Next.Key))

193 node = node.Next;

194

195 //node.Next == null || node.Next.Key == key

196 if (node.Next == null) return false;

197

198 _size-—;

199 node.Next = node.Next.Next;

200 return true;

201 }

202

203 public override IEnumerator<KeyValuePair<K, V>> GetEnumerator ()

204 {

205 atomic

206 {

207 var list = new List<KeyValuePair<K, V>>(_size);

208 for (var 1 = 0; 1 < _buckets.Length; i++)

209 {

210 var bucket = _buckets[i];

211 var node = bucket.Value;

212 while (node != null)

213 {

214 var keyValuePair = new KeyValuePair<K, V> (node.Key,
node.Value) ;

215 list.Add (keyValuePair);

216 node = node.Next;

217 }

218 }

219 return list.GetEnumerator();

220 }

221 }

222

223 public override V this[K key]

224 {

225 get { return Get (key); }

226 set { Add(key, value); }

APPENDIX C. EVALUATION IMPLEMENTATIONS

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251 }

}

public override int Count
{
get { return _size; }

}

private class Bucket
{

public atomic Node Value { get; set; }
}

private class Node

{
public K Key { get; private set; }
public atomic V Value { get; set; }
public atomic Node Next { get; set; }

public Node (K key, V value)
{

Key = key;

Value = value;

171

D Summary

This master thesis investigates whether language integrated STM is a valid
alternative to locking in terms of usability, and provides additional benefits
compared to library-based STM. To do so, an extension of C# called AC# was
implemented. AC# provides integrated support for STM, including conditional
synchronization using the retry and orelse constructs as well as nesting of
transactions.

In order to develop AC# a set of requirements were defined, detailing how
the underlying STM system should behave in relation to for example tracking
granularity, atomicity level and nesting. Based on the requirements AC# was
designed. The design includes a description of new language constructs as well
as a description of modifications to existing language features. A number of
STM implementations were investigated. Based on this investigation as well
as the requirements and design, an STM library, utilizing the TLII algorithm,
was implemented. The STM library was tested using a number of unit tests,
ensuring that transactions are executed correctly. In order to perform the
actual integration of STM into C#, the open source Roslyn C# compiler
was extended. This required a deep knowledge of the Roslyn project and
its structure, which initiated an investigation of Roslyn. Due to the limited
availability of literature with regards to Roslyn, much of the knowledge obtained
in this area was acquired by reading and debugging Roslyn’s source code. A
number of unit tests were defined for the Roslyn extension, in order to ensure
that all STM constructs and the integration with the existing language features
work correctly.

For each of the concurrency approaches: AC+#, the STM library and locking
in C#, implementations of the Dining Philosophers problem, the Santa Claus
problem, a concurrent queue, and a concurrent hashmap were created. These
implementations were analyzed according to a set of usability characteristics
facilitating a conclusion upon the usability of language integrated STM. Our
evaluation concludes that AC# is a valid alternative to locking, and provides
better usability than library-based STM.

172

List of Acronyms

CPU Central Processing Unit

STM Software Transactional Memory
DSTM Dynamic Software Transactional Memory
TL Threads & Locks

CLR Common Language Runtime

CiL Common Intermediate Language
FIFO First In First Out

OOP Object Oriented Programming

10 Input/Output

CAS Compare-And-Swap

API Application Programming Interface
JIT Just-In-Time Compilation

GC Garbage Collection

VB Visual Basic

DSL Domain Specific Language

REPL Read-Eval-Print Loop

MVCC Multiversion Concurrency Control
TRP Transactional Reference Parameter
TOP Transactional Output Parameter
XML Extensible Markup Language
LALR Look Ahead LR

173

Bibliography

1]

2]

[11]

H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobb’s journal, vol. 30, no. 3, pp. 202210, 2005.

H. Sutter and J. Larus, “Software and the concurrency revolution,” Queue,
vol. 3, no. 7, pp. 54-62, 2005.

T. Ugleholdt Hansen, A. Pgrtner Karlsen, and K. Breinholt Laurberg,
Investigation of trending concurrency models by comparison of performance
and characteristics: Software Transactional Memory, Actor Model, and
Threads € Locks. Aalborg University. Department of Computer Science,
2015.

Microsoft. (2015, 2) Roslyn wiki. [Online]. Available: https:
//github.com/dotnet /roslyn

—— (2015, 2) Core clr repository. [Online]. Available: https:
//github.com/dotnet /coreclr

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming. ACM, 2005,
pp. 48-60.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proceed-
ings of the twenty-second annual symposium on Principles of distributed
computing. ACM, 2003, pp. 92-101.

M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization:
Double-ended queues as an example,” in Distributed Computing Systems,
2003. Proceedings. 23rd International Conference. ITEEE, 2003, pp. 522—
529.

T. Harris, J. Larus, and R. Rajwar, “Transactional memory,” Synthesis
Lectures on Computer Architecture, vol. 5, no. 1, pp. 1-263, 2010.

M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for im-
plementing software transactional memory,” in ACM SIGPLAN Notices,
vol. 41, no. 10. ACM, 2006, pp. 253-262.

T. Harris and K. Fraser, “Language support for lightweight transactions,”
in ACM SIGPLAN Notices, vol. 38, no. 11. ACM, 2003, pp. 388-402.

174

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr

BIBLIOGRAPHY 175

[12] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Distributed
Computing. Springer, 2006, pp. 194-208.

[13] A. S. Tanenbaum, Modern operating systems. Prentice Hall Press, 2008.

[14] J. Duffy, “A (brief) retrospective on transactional memory,” 2010,
Located February 2015. [Online]. Available: http://joeduffyblog.com/
2010/01/03/a-brief-retrospective-on-transactional-memory /

[15] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, vol. 10, no. 2, pp. 99-116, 1997.

[16] T. Harris, “Exceptions and side-effects in atomic blocks,” Science of
Computer Programming, vol. 58, no. 3, pp. 325-343, 2005.

[17] M. Corporation, “C# language specification version 5.0,” 2013, Located
March 2015. [Online]. Available: https://www.microsoft.com/en-us/
download/details.aspx?id=7029

[18] Microsoft. (2015, 2) Core clr blog. [Online]. Available: http://blogs.msdn.
com/b/dotnet/archive/2015/02/03/coreclr-is-now-open-source.aspx

[19] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms,” in Proceedings of the fifteenth

annual ACM symposium on Principles of distributed computing. ACM,
1996, pp. 267-275.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[21] R. W. Sebesta, Concepts of Programming Languages, 10th Edition. Pear-
son, 2012, ISBN: 978-0-13-139531-2.

[22] Microsoft, “Overview of synchronization primitives,” Located May
2015. [Online|. Available: https://msdn.microsoft.com/en-us/library/
ms228964%28v=vs.110%29.aspx

[23] ——. (2015, May) Monitor class. [Online]. Available: https:
//msdn.microsoft.com/en-us/library /System. Threading. Monitor.aspx

[24] ——. (2015, May) Monitor class. [Online]. Available: https:
//msdn.microsoft.com/en-us/library/System. Threading. Mutex.aspx

[25] ——. (2015, May) Monitor class. [Online|. Available: https://msdn.
microsoft.com/en-us/library /System. Threading.SemaphoreSlim.aspx

[26] ——. (2015, May) Monitor class. [Online]. Available: https:
//msdn.microsoft.com/en-us/library /System.Threading.SpinLock.aspx

http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
http://joeduffyblog.com/2010/01/03/a-brief-retrospective-on-transactional-memory/
https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://www.microsoft.com/en-us/download/details.aspx?id=7029
http://blogs.msdn.com/b/dotnet/archive/2015/02/03/coreclr-is-now-open-source.aspx
http://blogs.msdn.com/b/dotnet/archive/2015/02/03/coreclr-is-now-open-source.aspx
https://msdn.microsoft.com/en-us/library/ms228964%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms228964%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.Monitor.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.Monitor.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.Mutex.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.Mutex.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.SemaphoreSlim.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.SemaphoreSlim.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.SpinLock.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.SpinLock.aspx

BIBLIOGRAPHY 176

[27]

28]

[29]

[30]

[34]

[35]

[36]

[37]

[38]

——. (2015, May) Monitor class. [Online]. Available: https://msdn.
microsoft.com/en-us/library /System. Threading. Reader WriterLock.aspx

M. Herlihy, “Transactional memory,” in Encyclopedia of Parallel Comput-
ing. Springer, 2011, pp. 2079-2086.

H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel, “Committing con-
flicting transactions in an stm,” in ACM Sigplan Notices, vol. 44, no. 4.
ACM, 2009, pp. 163-172.

K. Ng, M. Warren, P. Golde, and A. Hejlsberg, “The roslyn project,
exposing the c# and vb compiler’s code analysis,” White paper, Microsoft
(Oct. 2011), 2012.

M. T. Dustin Campbell, “The future of c¢#,” 2014, build 2014. [Online].
Available: http://channel9.msdn.com/Events/Build/2014/2-577

C. Team, “Roslyn ctp introduces interactive code for c#,” 2012, Located
March 2015. [Online]. Available: http://blogs.msdn.com/b/csharpfaq/
archive/2012/01/30/roslyn-ctp-introduces-interactive-code-for-c.aspx

D. Campbell, “Going deeper with project roslyn: Exposing the
c# and vb compiler’s code analysis,” 2012, lang.NEXT 2012.
[Online]. Available: https://channel9.msdn.com/Events/Lang-NEXT/
Lang-NEXT-2012/Roslyn

C. N. Fischer, R. K. Cytron, and R. J. LeBlanc, Crafting a compiler.
Addison-Wesley Publishing Company, 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

V. Sadov(VSadov), “Roslyn’s performance,” 2014, Located March 2015.
[Online]. Available: https://roslyn.codeplex.com/discussions/541953

A. D. G. (ADGreen). (2014, 4) Provide access to the binder. [Online].
Available: https://roslyn.codeplex.com/discussions/541303

N. Galfter, “Flow analysis in the roslyn «c¢# com-
piler,” 2011, Located March 2015. [Online]. Avail-
able: https://github.com/dotnet/roslyn/blob/master/src/Compilers/
CSharp/Portable/FlowAnalysis/Flow%20Analysis%20Design.docx

E. Lippert, “Persistence, facades and roslyn’s red-
green trees,” 2012, Located ~ March 2015. [Online].
Available: http://blogs.msdn.com/b/ericlippert/archive/2012/06/08/
persistence-facades-and-roslyn-s-red-green-trees.aspx

https://msdn.microsoft.com/en-us/library/System.Threading.ReaderWriterLock.aspx
https://msdn.microsoft.com/en-us/library/System.Threading.ReaderWriterLock.aspx
http://channel9.msdn.com/Events/Build/2014/2-577
http://blogs.msdn.com/b/csharpfaq/archive/2012/01/30/roslyn-ctp-introduces-interactive-code-for-c.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2012/01/30/roslyn-ctp-introduces-interactive-code-for-c.aspx
https://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Roslyn
https://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2012/Roslyn
https://roslyn.codeplex.com/discussions/541953
https://roslyn.codeplex.com/discussions/541303
https://github.com/dotnet/roslyn/blob/master/src/Compilers/CSharp/Portable/FlowAnalysis/Flow%20Analysis%20Design.docx
https://github.com/dotnet/roslyn/blob/master/src/Compilers/CSharp/Portable/FlowAnalysis/Flow%20Analysis%20Design.docx
http://blogs.msdn.com/b/ericlippert/archive/2012/06/08/persistence-facades-and-roslyn-s-red-green-trees.aspx
http://blogs.msdn.com/b/ericlippert/archive/2012/06/08/persistence-facades-and-roslyn-s-red-green-trees.aspx

BIBLIOGRAPHY 177

[40]

[41]

[42]

[43]

[44]

[45]

Microsoft. (2015, 1) .net compiler platform ("roslyn”) overview. [Online].
Available: https://github.com/dotnet/roslyn/wiki/Roslyn%200verview

R. Hickey. (2015, March) Concurrent programming. [Online]. Available:
http://clojure.org/concurrent_programming

C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional pro-
gramming actually easier?” ACM Sigplan Notices, vol. 45, no. 5, pp.
47-56, 2010.

V. Pankratius, A.-R. Adl-Tabatabai, and F. Otto, Does transactional
memory keep its promises?: results from an empirical study. Univ., Fak.
fir Informatik, 2009.

C. Blundell, E. C. Lewis, and M. M. Martin, “Subtleties of transactional
memory atomicity semantics,” Computer Architecture Letters, vol. 5, no. 2,
2006.

M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott, “Priva-
tization techniques for software transactional memory,” in Proceedings

of the twenty-sixzth annual ACM symposium on Principles of distributed
computing. ACM, 2007, pp. 338-3309.

B. Hindman and D. Grossman, “Atomicity via source-to-source transla-
tion,” in Proceedings of the 2006 workshop on Memory system performance
and correctness. ACM, 2006, pp. 82-91.

J. Bloch, “Effective java (the java series),” 2008.

G. J. Reuter and J. Gray, “Transaction processing: Concepts and tech-
niques,” MorganKaufmann, San Mateo, CA, 1993.

J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

R. Kumar and K. Vidyasankar, “Hparstm: A hierarchy-based stm protocol
for supporting nested parallelism,” in the 6th ACM SIGPLAN Workshop
on Transactional Computing (TRANSACT’11), 2011.

R. Guerraoui and M. Kapalka, “Opacity: A correctness condition for
transactional memory,” Tech. Rep., 2007.

P. Sestoft and H. I. Hansen, C# precisely. MIT Press, 2011.

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Revised
Reprint. Elsevier, 2012.

M. Mohamedin, B. Ravindran, and R. Palmieri, “Bytestm: Virtual
machine-level java software transactional memory,” in Coordination Mod-
els and Languages. Springer, 2013, pp. 166-180.

https://github.com/dotnet/roslyn/wiki/Roslyn%20Overview
http://clojure.org/concurrent_programming

BIBLIOGRAPHY 178

[55]

[56]

[57]

[58]

[59]

[62]

[63]

[65]
[66]

[67]

M. Herlihy, “Wait-free synchronization,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124-149,
1991.

R. Ennals, “Software transactional memory should not be obstruction-
free,” Technical Report IRC-TR-06-052, Intel Research Cambridge Tech
Report, Tech. Rep., 2006.

S. Al Bahra, “Nonblocking algorithms and scalable multicore program-
ming,” Queue, vol. 11, no. 5, p. 40, 2013.

S. M. Fernandes and J. Cachopo, “Lock-free and scalable multi-version
software transactional memory,” in ACM SIGPLAN Notices, vol. 46, no. 8.
ACM, 2011, pp. 179-188.

B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime,” in Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming. ACM, 2006, pp. 187-197.

J. M. P. Cachopo, “Development of rich domain models with atomic
actions,” Ph.D. dissertation, Universidade Técnica de Lisboa, 2007.

R. Zhang, Z. Budimli¢, and W. N. Scherer III, “Commit phase in
timestamp-based stm,” in Proceedings of the twentieth annual sympo-
sium on Parallelism in algorithms and architectures. ACM, 2008, pp.
326-335.

Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Ol-
szewski, “Anatomy of a scalable software transactional memory,” in Proc.
4th ACM SIGPLAN Workshop on Transactional Computing, 2009.

H. Avni and N. Shavit, “Maintaining consistent transactional states
without a global clock,” in Structural Information and Communication
Complexity. Springer, 2008, pp. 131-140.

T. Riegel, C. Fetzer, and P. Felber, “Time-based transactional memory
with scalable time bases,” in Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures. ACM, 2007, pp.
221-228.

R. Elmasri, Fundamentals of database systems. Addison-Wesley, 2011.

R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2008.

M. Fowler. (2015, May) Unit testing. [Online]. Available: http:
//martinfowler.com /bliki/Unit Test.html

http://martinfowler.com/bliki/UnitTest.html
http://martinfowler.com/bliki/UnitTest.html

BIBLIOGRAPHY 179

[68]

[69]

[70]

[79]

[80]

[81]

[82]

A. Nunes-Harwitt, “Cps recursive ascent parsing,” in Proc. of Internat.
LISP Conf, 2003.

D. Graham, E. Van Veenendaal, I. Evans, and R. Black, Foundations
of software testing: ISTQB certification. Course Technology Cengage
Learning, 2008.

Microsoft. (2015, April) Compiler warning (level 1) ¢s0420. [Online].
Available: https://msdn.microsoft.com/en-us/library /4bwbewxy(VS.80)
.aspx

M. L. Scott, “Synchronization,” in Encyclopedia of Parallel Computing.
Springer, 2011, pp. 1989-1996.

Microsoft. (2015, May) Monitor class. [Online]. Available: https:
//msdn.microsoft.com/en-us/library /de0542zz.aspx

——. (2015, 2) Roslyn wiki. [Online]. Available: https://github.com/
dotnet /roslyn/wiki

——. (2015, 2) Roslyn samples and walktroughs. [Online|. Available:
https://github.com/dotnet/roslyn/wiki/Samples-and- Walkthroughs

M. Torgersen. (2015, April) Languages features in c¢# 6 and vb 14. [Online].
Available: https://www.codeplex.com/Download?ProjectName=roslyn&
Downloadld=930852

M. Michaelis, “A c# 6.0 language preview,” MSDN Magazine, vol. May,
pp- 1623, 2014.

——, “The new and improved c# 6.0,” MSDN Magazine, vol. Oktober,
pp. 18-24, 2014.

M. Torgersen. (2015, April) Upcoming features in c#. [Online].
Available: https://www.codeplex.com/Download?ProjectName=roslyn&
DownloadId=930852

S. Imam and V. Sarkar, “Savina-an actor benchmark suite,” in 4th In-
ternational Workshop on Programming based on Actors, Agents, and
Decentralized Control, AGERFE, 2014.

R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: a benchmark for
software transactional memory,” Tech. Rep., 2006.

C. A. R. Hoare, “Communicating sequential processes,” Communications
of the ACM, vol. 21, no. 8, pp. 666677, 1978.

J. A. Trono, “A new exercise in concurrency,” ACM SIGCSE Bulletin,
vol. 26, no. 3, pp. 8-10, 1994.

https://msdn.microsoft.com/en-us/library/4bw5ewxy(VS.80).aspx
https://msdn.microsoft.com/en-us/library/4bw5ewxy(VS.80).aspx
https://msdn.microsoft.com/en-us/library/de0542zz.aspx
https://msdn.microsoft.com/en-us/library/de0542zz.aspx
https://github.com/dotnet/roslyn/wiki
https://github.com/dotnet/roslyn/wiki
https://github.com/dotnet/roslyn/wiki/Samples-and-Walkthroughs
https://www.codeplex.com/Download?ProjectName=roslyn&DownloadId=930852
https://www.codeplex.com/Download?ProjectName=roslyn&DownloadId=930852
https://www.codeplex.com/Download?ProjectName=roslyn&DownloadId=930852
https://www.codeplex.com/Download?ProjectName=roslyn&DownloadId=930852

	Preface
	Introduction
	Motivation
	Related Work
	Scope
	Problem Statement
	Evaluation Method

	Background Knowledge
	Locking in C#
	STM Key Concepts

	Roslyn
	Introduction
	Roslyn Architecture
	Compiler Phases
	Syntax Trees

	Requirements for AC#
	Tracking Granularity
	Transactions & Variables
	Strong or Weak Atomicity
	Side-effects
	Conditional Synchronization
	Nesting
	Opacity
	Summary of Requirements

	Design and Integration
	Transactional Blocks & Variables
	Transactional Parameters
	Example of AC#
	Conditional Synchronization
	Nesting
	Summary of Design

	STM Implementation
	Implementation Criteria
	Selection of Algorithm
	Library Interface
	Internal Details
	Testing

	Roslyn Extension
	Extension Strategy
	Lexing & Parsing Phases
	Syntax Tree Transformations
	Testing
	Design and Integration Revisited

	Evaluation of Characteristics
	Implicit or Explicit Concurrency
	Fault Restrictive or Expressive
	Pessimistic or Optimistic
	Readability & Writability

	Conclusion
	Problem Statement Questions Revisited
	Hypothesis Revisited

	Reflection
	Preliminary Investigation
	Design
	STM Implementation
	Roslyn Extension
	C# 6.0

	Future Work
	Performance Test
	Integration into CLR
	Irreversible Actions

	Appendix
	Roslyn Compiler Call Chain
	Concurrency Problems
	Dining Philosophers
	The Santa Claus Problem
	Concurrent Queue
	Concurrent HashMap

	Evaluation Implementations
	Lock-Based
	STM Library
	AC#

	Summary
	List of Acronyms
	Bibliography

