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ABSTRACT
Research into heterogeneous database systems and altern-
ative database models has become more and more relevant
as the amount of stored data continues to increase. Spe-
cialized database models are created to perform efficiently
when performing a certain workload. Graph databases are
well suited for traversal queries, such as finding the shortest
path. The typical information queried for in graph data-
bases is meta data, such as finding how nodes are related
to each other trying to find a pattern in the graph struc-
ture. Relational databases are more powerful when it comes
to querying for data about specific entities, since over the
years a lot research has been put into optimizing indexing
in relational databases. But when it comes to finding as-
sociations between entities joining of tables is required, and
joining complex associations can be slow, and that is where
graph databases outperform relational databases since they
do not have to join.
Bridge-DB is a fault tolerant middleware system that con-
nects multiple different database models and enables users to
read and write to externally connected heterogeneous data-
bases while ensuring eventual consistency and availability.
Bridge-DB is tested with an external Neo4J and Postgr-
eSQL database using full redundancy, but is designed to be
a general framework for working with multiple heterogen-
eous databases. The tests illustrate the need for Bridge-DB
by showing how different query types are executed faster
and slower depending on the selected database model. Our
experiments further document, that Bridge-DB upholds the
BASE properties while supporting all create, read, update
and delete operations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.5
[Database Management]: Heterogeneous Databases

General Terms
Data Management, Distribution, Experimentation, Design

Keywords
Middleware, Database Consistency, Heterogeneous Data-
base, Concurrency Control, Distributed Query Manage-
ment, BASE Properties, CAP Theorem

1. INTRODUCTION
The recent high demand for support of big data has led to an
increase in research into alternative database models. Data-
bases are essential to almost all applications we use today,
and researchers are trying to find efficient ways to both ac-
cess and process the stored data [17, 13, 1]. In terms of
research into database models we see a divide between the
relational model and the NoSQL movement. Many data-
base models exist and they are all different in minor or ma-
jor ways. These differences are seen in the structure of the
data, how the data is queried, and how it is stored on disk
etc. Some databases such as graph databases are better at
running traversal queries whereas other databases, like re-
lational databases, are better at read queries. However, we
do not believe that the solution is a single database model
that incorporates all features from existing databases. This
solution could lead to a very complex database model with
a large amount of features, that would not necessarily have
high performance. Instead we are convinced that a middle-
ware layer system, which connects different database models
and adds a level of abstraction for the users to interact with
multiple heterogeneous databases, is the proper solution to
the problem at hand.

In Bridge-DB v.1.01 [10] it was shown that the middleware
solution only added a small amount of overhead to queries
compared to running the test queries directly on Postgr-
eSQL or Neo4J. It also contains a heuristic optimizer that
automatically chooses where to send read queries. Full rep-
lication between the databases was ensured, however, insert,
update, and delete queries were not supported in Bridge-DB
v.1.0.

This project focuses on developing Bridge-DB v.2.0 to sup-
port insert, update, and delete queries alongside weak con-
sistency between the database models connected to Bridge-
DB. When implementing the CRUD operations in a distrib-
uted system using full replication of data on all connected
external databases a major topic to consider is data con-
sistency. Therefore, how consistency is done in Bridge-DB
is extensively elaborated on in this project. Managing fault
tolerance is another topic which is relevant to investigate.
Since if an external database is disconnected from Bridge-

1Throughout the article the first version of Bridge-DB is re-
ferred to as ”Bridge-DB v.1.0”and the new version is referred
to as ”Bridge-DB v.2.0”.

1



DB, consistency still has to be ensured when the connection
to the external database is reestablished. Another problem
that has to be considered when a database is disconnected
is the availability of other data sources.

Bridge-DB should support the BASE properties, because
that enables users to query the system even when it is not
fully consistent and still get reliable results. An analysis of
the ACID and BASE properties is presented in Section 2 as
the background for our implementation, as well as a discus-
sion of the CAP theorem, as presented by Eric Brewer [5].
In Section 3 related work done on heterogeneous databases,
distributed databases, and optimized systems are elaborated
on. In that section we also talk about what makes our sys-
tem unique compared to other similar systems. The Bridge-
DB v.2.0 architecture and important design considerations
are presented in Section 4. The changes that are made to
the architecture to get from Bridge-DB v.1.0 to Bridge-DB
v.2.0 are also illustrated in this section. Important parts
of Bridge-DB which have been implemented are shown in
Section 5. Section 6 presents our test results, how the ex-
periments were conducted, and a discussion of the findings
is given. Lastly the project is concluded in Section 7 and
possible future work is presented.

2. BACKGROUND
2.1 ACID, BASE and the CAP Theorem
According to the CAP (Consistency, Availability, Parti-
tion Tolerance) theorem first introduced in 2000 by Eric
Brewer [5] and later proven to be true by Seth Gilbert and
Nancy Lynch in 2002 [7], it is only possible to have two of the
three properties in a system. The CAP theorem specifically
addresses network partition tolerance, which is necessary in
the case where large amounts of data are stored on different
server sites. If one server is malfunctioning, the users should
still have access to the data on other servers. The choice then
becomes a choice between consistency or availability. That
said it is a bit misleading, because a system can have all
three properties, if it is designed to change between focus-
ing on consistency and availability in certain situations [4].
Before we continue, note, that we define a database transac-
tion to be either a read or write transaction consisting of one
or multiple queries. These queries may perform any CRUD
operation. The only restriction enforced is that a read query
cannot be in the same transaction as a write query.

The three properties in CAP are as follow [4]:

Consistency means that one copy of the data is up to date.

Availability means that when issuing a request it will
eventually return a result.

Partition Tolerance means that if the network is parti-
tioned such that communication between the involved
servers cannot happen then messages get lost, but the
system should keep running.

Consistency in CAP is often misunderstood because people
tend to associate it with the ”C” in the ACID (Atomicity,
Consistency, Isolation, and Durability) properties, which is
a model for ensuring consistency between databases [9, 8].

Atomicity ensures that all queries in a transaction either
succeed or fail. If one query fails the whole transaction fails
which causes a rollback. Otherwise, if all queries succeed the
transaction commits. Consistency ensures that no transac-
tion will bring a database into an invalid state based on pre-
defined rules of the database. These rules include, but are
not limited to, constraints, data types, cascading deletes,
and foreign keys. Isolation ensures that all transactions
happen independently, meaning that one transactions does
not interfere with another. This is relevant when considering
concurrent evaluation of queries. If two transactions evalu-
ate concurrently the resulting database state must be the
same as if the two transactions were evaluated sequentially.
Durability guarantees that results completed and commit-
ted under the restriction of the previous three properties are
not lost in the case of failure. This involves storing data in
non-volatile memory.

Based on the CAP Theorem and the fact that the need to
store large amounts of data will only increase, alternative
consistency models to the ACID properties were introduced.
These models are also called weak consistency models, and
one of the most well known weak consistency model is the
BASE (Basically Available, Soft state, and Eventual con-
sistency) properties [16].

The BASE properties were defined by Eric Brewer and his
team in the late 1990s. One among other reasons for creating
BASE was to give designers of computer systems a new way
to think about achieving high availability [4]. However, in-
stead of clearly defining the properties Brewer and his team
provided an overview of the differences between the ACID
and BASE properties [5].

The BASE properties focus on ensuring availability
(Basically Available) and that all changes to one data-
base will eventually propagate to all replications of that
data (Eventual consistency). Soft State is not a clearly
defined property, and it is debated what it actually means.
It often refers to the fact that the database will do some-
thing without receiving input from the user. One interpreta-
tion is that since all databases in the system will eventually
become consistent, the state of the databases will change
without user input. However, this interpretation makes the
soft state property a redundant property of the BASE prop-
erties, since eventual consistency is already a property of
BASE. Another interpretation refers to the fact that data
can expire if the user does not maintain the data. This
would be a valid interpretation if all databases acted this
way, however, not all do. Eric Brewer admits that the ac-
ronym BASE is a bit contrived, and that the same thing was
true with the ACID properties, which he discussed with Jim
Gray [6].

2.1.1 Implementing BASE
There exist various different ways of implementing BASE
consistency into a system, but the main differences consist
of where the initial update is performed (predefined mas-
ter node or arbitrary location), where users get data (from
master node or arbitrary location), and whether updates
are performed synchronously or asynchronously. Improved
consistency can be gained by performing updates on a pre-
defined master node and letting users always read from the
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Figure 1: Relational Model: 3 tables where a person
can be a crew member on multiple different movies

master node, however, this will significantly increase latency.
Always updating on a predefined master node and propagate
the update to all replications and allowing users to access ar-
bitrary databases could result in users reading inconsistent
data, but improve on latency issues [4].

2.1.2 Extending the CAP Theorem
Although the CAP Theorem is a common way of looking
at consistency, Daniel J. Abadi from Yale University intro-
duced a possible extension to the theorem in 2012 called
PACELC (pronounced ’pass-elk’) [2]. In the article, Daniel
J. Abadi introduces the tradeoff between consistency and
latency and argues that choosing a weaker consistency model
is often not only a result of wanting increased availability,
but also an interest in ensuring low latency. Latency is an
issue in terms of user experience. Studies show that even
an increased latency of as small as 100 ms has an effect on
whether customers will return to a web site in the future [2].

2.2 PostgreSQL and Neo4J
The relational model and the graph model capture the same
information about data, but in very different ways.

2.2.1 Relational-Graph Conversion
In order to support both models, we need a way to convert
the relational model into a graph model. We have not de-
veloped an automated tool for this task, but such a tools
would be interesting for future research. Currently, the con-
version from relational to graph model is based on consid-
erations in terms of foreign keys as well as id mapping. The
problem of id mapping is described in detail in Section 4.3.
We use an example based on the IMDb data set described
in Section 6.1.

As illustrated in Figure 1, data in PostgreSQL is stored in
tables with attributes. Entries into a relational table are
referred to as either rows or tuples. In Neo4J attributes are
called properties and are stored in nodes or edges between
nodes. These nodes and edges correspond to tuples in Post-
greSQL. PostgreSQL identifies tables using table names.
Neo4J identifies tables by either the node label or the edge
type. Edges between nodes in Neo4J are called relation-
ships and is Neo4J’s way of representing foreign key relations
between tuples in a relational database without creating a
separate node. This can be seen in Figure 2 where one per-
son has been a crew member on three different movie titles.
Here the Crew table is illustrated as an edge instead of a

Figure 2: Neo4J version of Figure 1

Figure 3: Structure of Nodes in Neo4J

node. This works fine in this example, since the Crew table
only has two foreign keys. However, since it is not possible
to create an edge between more than two nodes in Neo4J,
and tables in relational databases may contain more than
two foreign keys. So in order to support more than two
foreign keys we changed how we present tables with foreign
keys from as illustrated in Figure 2 to Figure 3. All tuples
in PostgreSQL are represented as nodes in Neo4J with the
same properties/attributes as the tables in the PostgreSQL
database.

Neo4J is a directed graph, so we define a standard way of
representing foreign key references in a directed graph. We
use Figure 3 as an example. In this project we impose the
logic, that an edge between two nodes always points from
the node that references the other node, and that the label
of that edge is the same as the label of the node from which
the edge points from. On Figure 3 the Crew node references
both the Person and Title nodes, as indicated by the foreign
keys p_id and t_id on the Crew node. This means that the
edges must start from the Crew node and point to both the
Person and Title node, and that the edge type must be
Crew.

2.2.2 Internal Database Schema
In order for Bridge-DB to get information about the schema
of the connected database, we need an internal represent-
ation of the database schema. This must be stored locally
on Bridge-DB, and changes to the external database schema
must be reflected in the internal representation to maintain
consistency.

The internal database schema (IDS) is our way of represent-
ing the database schema of the externally connected data-
bases. It is used by the translators for translating the
Bridge-DB Query Language into either Cypher or SQL and
assumes unique table names. It is designed as a JSON file
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and based on the relational model. It contains information
about constraints and a list of all attributes. Listing 1 illus-
trate the basic structure of the IDS using the Crew table as
an example. Information about datatypes are not included
in this version of the IDS, since we are only working with two
datatypes, numbers and strings, and Neo4J does not make
a distinction between other datatypes otherwise supported
by PostgreSQL e.g. date and JSON.

Listing 1: Basic Structure of Internal DB schema
1 {
2 "Crew" :
3 {
4 "primary_keys" : [ ’id’ ],
5 "foreign_keys" :
6 {
7 "person_id" : "Person.id",
8 "movie_id" : "Title.id"
9 },

10 "not_null" : [ ’id’ ],
11 "unique" : [ ’id’ ],
12 "default_value" :
13 {
14 "note" : "default_value"
15 },
16 "standard_attr" : [ ’id’, ’person_id ’,

... ]
17 "counter" : max(’id’)
18 },
19 "Title" : { ... }
20 }

The primary_key can be any numeric datatype as long as it
is unique. The foreign_key is a key-value pair, where the
key is the foreign key attribute and the value describes the
table and attribute that the foreign key references. Addi-
tionally we have added the constraints not_null, unique,
and default_value. The primary key includes in both
not null and unique. The default value is also a key-value
pair consisting of the name of the attribute as the key and
the default value as the value. Lastly, all attributes are
also stored in standard_attr and the maximum primary
key value is stored in the counter which is for insert quer-
ies. The primary focus of Bridge-DB v.2.0 is to support
all CRUD operations as well as the BASE properties. This
means that composite keys and string primary keys are not
supported in version 2.0.

3. RELATED WORK
MOCHA [13] is a middleware system which allows user
defined types and operations. It is a self-extensible system,
which means, that when a user adds new functionality to
the system, e.g. some new data type or operation,then it is
automatically distributed to all connected server sites if the
new functionality is required for the execution of a query.
In MOCHA they increase the performance of the system by
shipping either the query, the data, or a hybrid version of
these methods. When shipping the data, the data is moved
from the site containing it to the site requesting the data.
When a query is shipped, the operators of that query are ex-
ecuted on the data sites where the data resides. MOCHAs
first optimization factor is the network, since it is a shared
resource and moving the data in large-scale environments
typically impose a major performance bottleneck. The ap-
proach they use for improving network performance is push-

ing data-reducing operators to be evaluated on the remote
data sites and data-inflating operators to be evaluated on
the client site [13]. The data-reducing operators are operat-
ors that reduce the size or amount of tuples returned in the
result. Whereas the data-inflating operators are the oper-
ators which inflate the data value or present them in many
forms, projections, levels of detail etc. [13]. MOCHA tries
to improve performance by shipping the query or the data,
and it chooses the best data source for the query. But one of
the problems they do not solve is ensuring the BASE prop-
erties, as done by Bridge-DB. They also do not look at what
kind of problem has to be solved, e.g. if it is a reachabil-
ity problem, MOCHA does not take that into account when
choosing the data source. The MOCHA prototype supports
object-relational databases such as Oracle and Informix [12]
as well as XML repositories and file systems [13]. Bridge-DB
implements a heuristic optimizer that automatically chooses
the most compatible database based on the query type and
available databases.

Another type of systems related to Bridge-DB are feder-
ated database systems which consist of multiple independent
autonomous component databases which appear to function
as one entity. These component databases are self-sustained,
which makes them independent of other systems to function
properly [11]. A federated system may support both het-
erogeneous and homogeneous databases. For the latter case
the federated system is used to distribute the load of very
large databases. A federated system works by enabling the
components interact and share information in a reasonable
degree. This is done by each component defining what in-
formation to share with other components and with which
other components [11]. The difference between federated
systems and Bridge-DB is that in Bridge-DB the user has
full control of the system, whereas in a federated system the
user does not have full control. Therefore a federated system
does not solve the problem that we face, since we want the
user to have full access to the external databases. Hence a
closer relative to Bridge-DB is Distributed Database Man-
agement Systems (DDBMS).

These systems have a central unit which controls all the
connected databases to the network, and each database is
accessed through the central unit. In DDBMSs the user
has full control but the problem with these systems is, if
they control heterogeneous databases then all the connected
databases usually use different query languages. The user
is then required to learn several languages to be able to use
the system, if an additional overlay is not provided. There-
fore DDBMSs do not solve the problem of easing the use of
heterogeneous database system which is one of the goals of
Bridge-DB.

GRAPHITE [14] is a newly proposed graph traversal frame-
work that adds traversal operators to an RDBMS. The sys-
tem chooses the best traversal operator based on a graph
topology and traversal query. To handle graph queries effi-
ciently a property graph model and a common storage in-
frastructure that holds the property graph is included in the
system. The authors show that a single database engine can
efficiently handle both relational and graph operations. But
still this does not solve the problem which we face. With
their framework they solve the problem of relational data-
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bases not being able to efficiently run traversal queries. The
problem that we want to solve is to ease the use of a multi
heterogeneous database system. This is partly solved by
providing a single language for all connected external data-
bases. Additionally Bridge-DB should support all CRUD
operations as well as the BASE properties to ensure even-
tual consistency and high availability. None of the above
mentioned systems solve the problems solved by Bridge-DB.

4. DESIGN
4.1 Architecture
The Bridge-DB v.2.0 architecture has changed compared to
Bridge-DB v.1.0 [10]. We will first quickly explain the ar-
chitecture of Bridge-DB v.1.0 to provide an easy overview
of the changes. Then the new architecture will be presen-
ted as well as any additional design considerations such as
id mapping, and the improvements made to the Bridge-DB
Query Language (BQL).

4.1.1 Bridge-DB v.1.0
Bridge-DB is based on a three layer architecture consisting
of the interaction interface, Bridge-DB, and external data-
bases as illustrated in Figure 4. The architecture is designed
to enable easy integration of new database systems using a
modular approach, where users can add and remove their
own modules. Bridge-DB works as an extra abstraction layer
between the user and the external databases. Queries are
sent to the external heterogeneous databases for execution
based on a heuristic optimizer and only read queries are sup-
ported. The heuristic optimizer was created based on the ex-
periments performed in our previous work [10]. The results
showed that graph traversal and reachability queries were
faster to execute on Neo4J, while regular ’SELECT-FROM-
WHERE’ read queries performs best on PostgreSQL.

The user writes a query in the Bridge-DB Query Language
(BQL), which is then sent to Bridge-DB in JSON format.
Bridge-DB transforms the JSON object into our own Query
object and based on the optimizer sends the query to the
most compatible connector. The connector then translates
the Query object into either SQL or Cypher, connects to
the external database, sends the query string, and receives
a result. This result is finally returned back to the user.
MongoDB was initially part of the Bridge-DB architecture.
It was meant to handle id mapping but was never imple-
mented. The configuration file stores information about the
registered databases, but was also never used during testing.

4.2 Bridge-DB v.2.0
Bridge-DB v.2.0 adds a lot of improvements to Bridge-DB
v.1.0, while maintaining the original module based approach,
meaning Bridge-DB is still designed for easy integration of
new databases using user customized modules. Figure 5
illustrates the new architecture. Bridge-DB v.2.0 focuses on
efficient handling of database transactions sent by multiple
users while maintaining availability and eventual consistency
between the external databases by supporting the BASE
properties.

Queries are written by users and all queries sent simultan-
eously by one user are grouped as one transaction. Cur-
rently this is done in PHP using BQL. To access BQL the

Figure 4: Bridge-DB v.1.0 Three Layer Architecture

Figure 5: Bridge-DB v.2.0 Architecture

user must include the QueryBuilder class and the REST Cli-
ent. It should be noted, that read and write queries are not
allowed in the same database transaction in BQL, but mul-
tiple write queries in the same transaction is allowed. Write
queries can be used to either insert, update, or delete

data in the external databases or to alter the underlying
database schema. The BASE properties ensures, that all
writes queries performed on one database will eventually be
executed on the remaining databases, thereby guaranteeing
eventual consistency.

This project defines a database transaction in BQL as a
single instance of the QueryBuilder class. A database trans-
action consists of one or more queries, which the user inserts
by calling BQL functions. The user is free to insert queries
into a transaction until it is closed. A transaction is defined
to be closed when the user calls the send() BQL function.
A closed transaction can not receive anymore queries from
the user. Note, that the queries will be executed in the ad-
ded order. The user is therefore responsible for adding the
queries in the desired execution order. Listing 2 shows an
example of how a user could create a transaction. A new in-
stance of the QueryBuilder class is created on Line 1, adds
an insert query on Line 2 followed by an update query
on Line 3. The transaction is closed on Line 4. Assuming
that the transaction does not fail, the insert query will be
executed before the update, because of the order the quer-
ies were added to the transaction. If the transaction fails,
Bridge-DB is designed to be fault tolerant. Fault tolerance
is discussed in Section 4.2.1.
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Listing 2: Example of user creating a new database
transaction

1 $dbTransaction = new QueryBuilder($bridgeDbIP);
2 $dbTransaction ->insert("Person", "id, name , age

, gender", "2, Jens , 25, male");
3 $dbTransaction ->update("Person", "age", "26", "

Person.name = ’Jens’ AND Person.age = 25");
4 $dbTransaction ->send();

After closing the transaction, the query is sent to the Bridge-
DB TranslationController as a JSON object, where it is
converted into our own Query class object. Bridge-DB v.1.0
only supports read queries, which means that the Query ob-
ject is passed to both the Neo4J and PostgreSQL connector,
where the query is evaluated by the heuristic optimizer for
compatibility with the connected database. In Bridge-DB
v.2.0 the Query object contains a queue of queries in the
order the user adds them. The connectors are replaced with
translators that receive the query queue and translates the
queue into either SQL for PostgreSQL or Cypher for Neo4J.
The heuristic optimizer of Bridge-DB v.1.0 is build into the
translator, but nothing new has been added other than sup-
porting the basically available property. For example, if a
connection to PostgreSQL can not be established, the op-
timizer makes sure, that read queries are executed on Neo4J
instead, even though Neo4J would execute the query slower
than PostgreSQL. Otherwise, the query will only be trans-
lated to the most compatible database. Most compatible
in this project means the database, that would execute the
transaction the fastest based on the results found in our pre-
vious work [10]. The translators return an array of SQL and
Cypher queries.

Both arrays are first logged in a log file, that stores inform-
ation about committed and failed transactions as seen in
Listing 3. In this example we try to insert five new per-
sons into the database. The Neo4J transaction commit-
ted, however, the PostgreSQL failed. After the transac-
tions has been logged, the arrays are passed directly to the
TransactionController.

This is different from Bridge-DB v.1.0. In the previous
version the connectors were responsible for both translat-
ing the Query object into Cypher and SQL, and sending
the query to the external database. However, since we are
working with a queue of queries that needs to be evalu-
ated simultaneously, we added the TransactionController.
This controller receives the Neo4J and PostgreSQL query
arrays simultaneously as a JSON object. The SQL and
Cypher queries are evaluated on their respective external
databases and if all queries succeeded the transaction com-
mits on the external databases. Otherwise the transaction
failed and rolls back all changes resulting from the quer-
ies. The implementation is described in Section 5.2. The
result is returned back through the previous steps until
it reaches the user. Note, that the TransactionController
stores failed transactions in database specific files, mean-
ing that failed PostgreSQL transactions are stored in the
file failed_postgresql.json and failed Neo4J transactions
are stored in failed_neo4j.json. If a write transaction
fails, the database is locked by creating a lock file. A

Listing 3: Example of log file storing committed
failed and pending transactions

1 {
2 "pending": [],
3 "committed": [
4 [
5 " MERGE (n:Person { id : 1, name : ’Sara

’, age : 23, avg : 8.9, sex : ’female
’});",

6 " MERGE (n:Person { id : 2, name : ’Jens
’, age : 25, avg : 10.3, sex : ’male
’});",

7 " MERGE (n:Person { id : 3, name : ’
Andreas ’, age : 24, avg : 6.7, sex :
’male ’});",

8 " MERGE (n:Person { id : 4, name : ’
Flemming ’, age : 24, avg : 7, sex : ’
male ’});",

9 " MERGE (n:Person { id : 5, name : ’
Louise ’, age : 24, avg : 8.3, sex : ’
female ’});"

10 ]
11 ],
12 "failed": [
13 [
14 "INSERT INTO Person(id, name , age , avg ,

sex) VALUES(1, ’Sara ’, 23, 8.9, ’
female ’);",

15 "INSERT INTO Person(id, name , age , avg ,
sex) VALUES(2, ’Jens ’, 25, 10.3, ’
male ’);",

16 "INSERT INTO Person(id, name , age , avg ,
sex) VALUES(3, ’Andreas ’, 24, 6.7, ’
male ’);",

17 "INSERT INTO Person(id, name , age , avg ,
sex) VALUES(4, ’Flemming ’, 24, 7, ’
male ’);",

18 "INSERT INTO Person(id, name , age , avg ,
sex) VALUES(5, ’Louise ’, 24, 8.3, ’
female ’);"

19 ]
20 ]
21 }

CRON job is responsible for constantly getting the next
failed transaction and trying to execute the query on the
correct database using the FailedTransactionController.
This controller is very similar to the regular Transaction-
Controller, but ignores lock files. If the transaction is com-
mitted it is removed from the failed transaction file, how-
ever, if it did not commit, the CRON job will try again.
The lock file will only be deleted when no more transac-
tion exist in the failed transaction file. The CRON job
and FailedTransactionController ensures eventual con-
sistency by executing the failed transactions in the correct
order and makes sure to unlock any locked external data-
base, that no longer has any failed transactions by deleting
the lock file.

4.2.1 Fault Tolerance
Failures is unavoidable when working with any kind of com-
puter system that has some level of complexity and data-
bases systems are no exception. It is therefore important
that Bridge-DB is able to handle transaction failures cor-
rectly depending on the failure. In this project we consider
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the following failures:

• One or more queries of a database transaction fail

• Connection to one database is lost before transaction
can be committed

• Connection to one database can not be established

Transaction Failure. This can for example occur if the
user tries to insert a new tuple and provides a primary key
that already exists. A failure of one query in a transaction
is handled as a failure of the entire transaction. Nothing is
committed to the external databases and the error is repor-
ted back to the user.

Connection Loss. This is a mid process error which occurs
because the connection to an external database is lost while
evaluating queries in a transaction. This means, that the
transaction is unable to both execute the next query and
commit even if none of the queries in the transaction would
result in a failure. Bridge-DB then locks the external data-
base where the connection was lost. This restricts future
write transactions by creating a database specific lock file,
i.e. postgresql.lock or neo4j.lock. It is still possible to
perform read transactions on locked databases.

Bridge-DB stores the failed transaction in the separate
failed transaction files (FTF) failed_postgresql.json and
failed_neo4j.json. A CRON job would then periodically
check the FTF and try to execute all failed transactions in
the FTF in the correct order. This approach allows us to
report the failure back to the user. Although the connection
may be lost to one of the external databases, the transac-
tion can still be executed on all other connected databases.
When the connection is reestablished the transactions from
the FTF can be executed on the reconnected database. This
solution ensures eventual consistency and the updated heur-
istics optimizer ensures the remaining connected databases
are still available and that read queries are executed nor-
mally.

Missing Connection. This failure is similar to the previ-
ous, but occurs in the TransactionController before the quer-
ies of the transaction are executed. If a connection to one
or more databases can not be established, the transaction
will fail. Note, that a connection may still be established to
another database, so a write transaction may still be com-
mitted on Neo4J even though the connection to PostgreSQL
could not be established.

This failure is handled as if the connection was lost between
query executing. The external database is locked using a
database specific lock file, and the failed transaction is stored
in a database specific FTF. The error is reported back to the
user. The CRON job recovers the failed transaction when
connection is reestablished.

4.3 ID Mapping
In Bridge-DB v.1.0, id mapping between Neo4J and Post-
greSQL was intended to be handled by MongoDB, but was
never implemented.

Since all nodes in Neo4J are automatically assigned a unique
id (accessed by using id(n) where n is a node), and primary
keys in PostgreSQL are only unique for each table, id map-
ping between the two databases is needed in order to enable
querying for specific ids. This is done by adding the primary
key and foreign keys of PostgreSQL tables as properties on
nodes as seen on Figure 3 on page 3. Here the Crew node has
the properties id, which is the primary key of the Postgr-
eSQL Crew table, p_id, which is a foreign key to the Person

table, t_id which is a foreign key to the Title table, and a
role property describing the role the person had on a given
title.

Because id mapping is implemented by adding additional
properties to the Neo4J nodes, insertion of new nodes/tuples
into both Neo4J and PostgreSQL needs to be considered.
Inserting a new tuple into PostgreSQL does not always re-
quire the user to input the primary key if PostgreSLQ auto-
increments the primary key. Note, that not all tables have
auto incremented primary keys, however, we leave it to the
user to provide a unique primary key if auto-incremented
primary keys are not implemented. This does not work
for Neo4J, since the PostgreSQL primary key property of
Neo4J is depended on PostgreSQL. A solution to this prob-
lem would be to handle all insertion queries on PostgreSQL
first, get the new primary key from PostgreSQL and use that
primary key as input to Neo4J. This would possible lead to a
slower execution time and concurrent processing is also not
available if using this approach.

Another more elegant solution is to store the highest primary
key on each table in the internal database schema (IDS)
and use that as input for both Neo4J and PostgreSQL, if
the user does not manually provide a primary key. This
approach was implemented as it allows us to perform queries
on the external databases concurrently. However, there are
more considerations when adding more features to BQL. The
following section will go into detail about the added features
and the consequences of implementing them.

4.4 Improving BQL
BQL is developed to be similar to SQL while supporting
special functions for graph databases, such as graph tra-
versal and reachability. Improvements to BQL extend bey-
ond adding additional functionality, since introducing write
queries creates a new set of challenges. To make this pa-
per more standalone a list of the previous BQL functions is
available in Appendix A, but can also be found in our pre-
vious work [10]. Table 1 lists the added functions in BQL
v.2.0.

4.4.1 Insert, Update, and Delete
insert() takes as parameter the table we want to insert a
new tuple into, an array of columns, and an array of values.
The QueryBuilder will display an error message to the user
if they try to insert into more than one table or the number
of columns and values does not match. The user can insert
a tuple into a table that either does or does not have a
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Name Input Return
rename table @param:

table:string,
newTable:string

@return self

rename attr @param:
table:string,
oldAttr:array,
newAttr:array

@return self

remove attr @param:
table:string,
attrs:array

@return self

insert attr @param:
table:string,
attr:string,
datatype:string,
constraints:array,
defaultValue:mixed

@return self

update @param:
table:string,
columns:array,
values:array,
condition:string

@return self

insert @param:
table:string,
columns:array,
values:array

@return self

delete @param:
table:string,
condition:string

@return self

send @return json:object

Table 1: Added functions to BQL in Bridge-DB
v.2.0

Listing 4: Two different ways of inserting
1 $dbTransaction = new QueryBuilder($bridgeDbIP);
2 $dbTransaction ->insert(’Person ’, [’id’, ’name’,

’age’], [1, ’Jens’, 25]);
3 $dbTransaction ->insert(’Person ’, [’name’, ’age’

], [’Jens’, 25]);

foreign key constraint. This context does not matter in the
translation to SQL, but if a table contains a foreign key
in Neo4J, an edge between two nodes needs to be created.
The internal database schema (IDS) described in Section
2.2.2 helps the translators with the translation by detecting
foreign keys in queries.

An additional challenge is that we need to include the Post-
greSQL primary key into Neo4J as well to handle id map-
ping as discussed in the previous section. Listing 4 illus-
trates two different ways the user can insert a new person
named ’Jens’ into the database. The difference consists of
whether the user provides the primary key, which in this case
is id, or does not. The current maximum counter for the
primary key is stored in the IDS. We impose the logic, that
if the user provides a manual primary key as done on Line
2, it must not be smaller than the current counter value,
since auto-increment solutions only increment the primary
key and never fill in eventual primary key holes created by

deleting tuples. If the user manually inserted a valid primary
key, the translation proceeds and the new counter value is
updated in the IDS. However, this would allow the users to
manually insert primary key values, that are much larger
than the current counter value, thereby skipping a lot of
values. We therefore restrict how much larger the manual
inserted primary key can be compared to the current counter
value. The restriction is currently set to 10, but can easily
be changed if necessary. Note, that if the user inserts as
done on Line 3, the counter plus one will be used as the
primary key, and updated at the same time.

Listing 5: Example of delete in BQL
1 $dbTransaction ->delete(’Person ’, ’name = Jens

AND age = 25’);

The delete() function takes a table and a condition as para-
meters. The transaction in Listing 5 deletes all tuples from
the Person table that fulfill the condition. Processing the
condition is a complicated task, which requires two addi-
tional function calls in the QueryBuilder in order to format
the condition in the right way. One challenge that the delete
function imposes is cascading deletes. BQL supports both
cascading and non-cascading deletes, but must be setup be-
fore hand. Note, that in Neo4J it is not possible to delete a
node that still has edges to other nodes, so all edges from a
deleted node must also be deleted.

Listing 6: Example of update in BQL
1 $dbTransaction ->update(’Crew’, ’p_id’, ’4’, ’

Crew.id = 1’);

The update() function is one of, if not, the most complicated
new function introduced in BQL v.2.0. It might seem similar
to the rename, remove, and insert attribute functions, but
we distinguish between update function that change data,
like update(), and functions that change the database struc-
ture, like rename_table(). update() takes a table, an array
of columns, and an array of values, and lastly a condition
as parameters. Only one table can be updated at a time,
and the number of columns and values must match. The
processing of the condition is the same as in delete(). One
of the challenges imposed by the update function is handling
updating of foreign keys.

In Listing 6 we are updating the foreign key p_id for the
crew tuple/node with id=1. In PostgreSQL this is a simple
update, but in Neo4J we need to delete and create new edges
between nodes. In Neo4J, if a Crew node A has one foreign
key to a Person node B and the user updates the foreign key
to point to the new Person node C instead of B, then the
edge from A to B must first be deleted, C must be found, an
edge from A to C must be created, and the foreign key prop-
erty of A must be updated to be the same as the primary key
property of C. This involves a lot of look up in the IDS for
the Neo4J translator and can possibly take a large amount
of time depending on the size of the data set, because C
needs to be found before the edge can be created. We must
also ensure that if the user updates an attribute having the
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unique constraint, that the new value is indeed unique. It is
expensive in Neo4J to check for uniqueness, since it would
involve traversing the entire graph. This means, that in
these unique update cases, it would be more efficient to send
the query to PostgreSQL for validation before Neo4J, since
PostgreSQL would immediately fail if an existing value was
provided.

4.4.2 Updating the Database Schema
Besides the traditional insert, update, delete functions,
BQL v.2.0 provides functions that can change the database
schema. The users can rename both table and attribute
names as well as add and remove attributes. The changes
to the database schema must be committed on all external
databases before the IDS is updated. Only the function
insert_attr() is none trivial to implement.

Listing 7: Example of inserting either new not null
or unique attribute in BQL

1 $dbTransaction ->insert_attr("Person", "height",
"int", ["NOT NULL"], 150);

2 $dbTransaction ->insert_attr("Person", "cpr", "
int", ["UNIQUE"]);

The purpose of this function is to add a new column to
an existing table, that already contains data. The function
takes the table name, attribute name, datatype, an array
of constraints, and an optional default value as parameters.
The QueryBuilder must do a lot of checks before the query
is validated. Only one table, attribute, and datatype can
be included, and the constraints must be expressed as an
array, e.g. ["NOT NULL", "FOREIGN_KEY:Person.id"]. In
this example, the foreign key references the id attribute on
the Person table. Additional checks must be made. If the
attribute is not allowed to be null, a default value is required,
otherwise the new column would automatically be populated
with null values in PostgreSQL. If the attribute must be
unique, a default value is not allowed, since a default value
contradicts the notion of uniqueness. This leads us to the
conclusion that we can not insert a new attribute into a
table with both the not null and unique constraints assuming
the table already contains data. Two different examples of
inserting a new attribute into a table is shown in Listing 7.
Line 1 insert the attribute height into the Person table as
an int with the NOT NULL constraint and a default value of
150. Line 2 does the same with the attribute cpr using the
UNIQUE constraint and omitting a default value. Note, that
the primary key is always both NOT NULL and UNIQUE, but
this was defined before data was added to the table. The
QueryBuilder does not check for valid datatypes and does
not compare the default value with the provided datatype.
The default value will be interpreted as provided by the user,
e.g. the value ”0” is a string and the value 0 is an integer.

These added functions are currently available for everyone
using the system. Ideally the users would log into Bridge-
DB through a user interface and have different access per-
missions. Only the database administrator should be able
to update the database schema. If any user could update
the schema in a database transaction, all subsequent trans-
actions that try to access the updated table would fail, and

the user might be confused why the transaction failed. The
database administrator must lock the system, update the
database schema from his own log in interface, and unlock
Bridge-DB again to allow users to send queries.

5. IMPLEMENTATION
5.1 Translation Process
As mentioned in Section 4.2, the translation from BQL to
Cypher or SQL happens after the TranslationController has
translated the JSON object into our own Query object. The
Query object is then sent to each translator to be translated
to their respective language. The translators loop through
each query in the queue and look at the type of the queries.
Depending on the type of query the translators call the cor-
responding generate() function. For example, if the query
type is insert, the translators call generateInsert(). Each
translator has its own generateInsert() function specific to
that translators language. The translated queries are then
added to a running query array inside the translators. All
queries in the received Query object are translated before
returning the query array to the TranslationController.

The translation implementation of different query types is
very similar to each other. First all relevant information
is extracted from the query object, e.g. the table name,
column names and values. The queries are then generated
based on the rules of the external query languages.

Listing 8: Example of translation from Query object
to Cypher

1 public function generateRenameTable($query) {
2 $table = $query[’table’];
3 $new = $query[’new’];
4
5 $cypherQuery = "MATCH(n:".$table.") REMOVE n:

".$table." SET n:".$new.";";
6
7 return $cypherQuery;
8 }

Listing 8 shows the Cypher translation of a query for re-
naming a table. As can be seen on Line 2 and 3, the old
and new table name is extracted from the query. Line 5
shows how the Cypher query is created. Lastly on Line 7
the Cypher query is returned, which is then added to the
query array. This translation is very basic. Other transla-
tions involve significantly more complicated language con-
structs because of for example primary keys, foreign keys,
and unique values.A more complicated translation example
is shown in Listing 14, which can be found in Appendix B.
This example actively uses the IDS to get information about
the table, such as the primary key, foreign keys, and counter,
and modifies the translation process depending on which in-
formation is provided. For example, if the user does not
provide a primary key in the insert query, then the trans-
lator uses the counter value as primary key. The existance
of foreign keys also effect the translation processes, since in
Neo4J we must find and connect nodes depending on the
provided foreign keys.
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5.2 Transaction Control
The TransactionController has replaced many of the main
functions of the connectors in Bridge-DB v.1.0. The Trans-
actionController connects to the external databases, and
handles the commit and rollback of a transaction depending
on the returned results from each database. The external
databases are responsible for validating the queries send to
them. If a query fails in one of the external databases then
the TransactionController receives an error and responds by
performing a rollback on the database that failed.

The TransactionController has three main parts. First a
connection is established using the addDatabase() function
in Listing 9. This connection is stored in the clients[] ar-
ray using the database name as the key on Line 10. So if
we want to get the Neo4J connection, it is done by calling
clients[’neo4j’]. The same is true for all other databases.
Also note, that the query array is stored in the same way in
the queues[] array on Line 11. The failed[] array tells if
the transaction failed or committed. The message variable
stores the message returned to the user. If the transac-
tion was committed, the TransactionController will return a
’Transaction Committed’ message. Otherwise an error mes-
sage is returned.

Fault tolerance is implemented in order to support the even-
tual consistency property. Additionally the basically avail-
able property is supported through the implementation of
both the heuristic optimizer and the TransactionController,
since Bridge-DB v.2.0 allows the users to read from data-
bases even if they are locked as long as a connection is estab-
lished. Whether a database is locked or unlocked is indicated
by the existence of a lock file as illustrated on Line 5. The
TransactionController checks on Line 9 whether the connec-
tion is established, the database is locked, and whether the
query is a select query. If this is the case the Transaction-
Controller proceeds as it normally would. If the connection
to the database can not be established or if the database is
locked, then the transaction is pushed to a failed transac-
tion file on disk, and the database will be locked by creating
a lock file if one did not already exist. This is handled by
the push_and_lock function seen in Listing 12. The CRON
job is responsible for unlocking the database again. This is
described in Section 5.3.

After the established connections and query arrays have
been stored in the clients[] and queues[] arrays re-
spectively, the transaction start to execute its quer-
ies on the external databases. This is done by the
prepareTransaction() function seen in Listing 10. On Line
5 a transaction is started for PostgreSQL using the pg_query
function with the PostgreSQL connection and BEGIN; as in-
put. pg_query sends the provided string to be executed on
the provided connection. On Line 7-23 we try to execute all
SQL queries of the transaction. First we get the status of
the PostgreSQL connection. If the connection was lost, the
transaction is handled by the push_and_lock function. If
the connection is OK Line 11, then the query is executed
on PostgreSQL and the result is stored in queryResult.
PostgreSQL returns false if it was unable to execute the
query. If the query failed, then failed[’postgresql’] is
set to true on Line 15 and the loop breaks on Line 16.
Note, this transaction will not be stored in a database spe-

Listing 9: addDatabase function
1 private function addDatabase($db , $json) {
2 $data = json_decode($json);
3 switch ($db) {
4 case ’postgresql ’:
5 $isLocked = file_exists("lib/locks/".$db.

".lock");
6 $conn = pg_connect(" host=".$data ->host."

dbname=".$data ->name." user=".$data
->user." password=".$data ->password."
") or die(’Connection Failed ’);

7 // FAULT TOLERANCE - MISSING CONNECTION
8 // IF CONNECTION IS ESTABLISHED , BUT THE

DATABASE IS LOCKED AND THE QUERY IS A READ
QUERY THEN PROCEED ANYWAY

9 if($conn !== false && $isLocked && $this
->isSelect($data ->queue [0])) {

10 $this ->clients[$db] = $conn;
11 $this ->queues[$db] = $data ->queue;
12 $this ->failed[$db] = false;
13 }
14 // IF DATABASE IS LOCKED OR CONNECTION COULD

NOT BE ESTABLISHED THEN PUSH FAILED
TRANSACTION

15 else if($isLocked || $conn === false) {
16 $this ->message = $conn;
17 $this ->push_and_lock($db , $data ->queue)

;
18 $this ->failed[$db] = true;
19 }
20 else {
21 $this ->clients[$db] = $conn;
22 $this ->queues[$db] = $data ->queue;
23 $this ->failed[$db] = false;
24 }
25 break;
26 [...] // Similar for Neo4J
27 default:
28 break;
29 }
30 }

cific FTF. The same is true if an unexpected exception was
thrown on Line 31-36. At this point PostgreSQL has only
tried to execute each query in the transaction, but nothing
has been committed yet. This is handled by the function
commit_or_rollback() shown in Listing 11. The prepare-
Transaction function is the same for Neo4J.

If no failure occurred, the transaction is committed on Line
3 and 15 in Listing 11. Otherwise the transaction is rolled
back on Line 8 and 18. Normally the Neo4J transaction will
automatically rollback if an error occurred while executing
Cypher queries in the transaction, but just in case it did
not, we do it manually on Line 6-8. If the transaction was
successful, the result is returned to the user. The next sec-
tion will discuss what happens in case of failure. This will
also explain how the CRON job unlocks a database.

5.3 Implementing Fault Tolerance and BASE
We wanted to implement a weak consistency model, that
would allow one database to be available even if a connec-
tion to the other could not be established. We looked at
three failures that our model should take into account. This
section shows how we have implemented fault tolerance into
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Listing 10: prepareTransactions function
1 private function prepareTransactions () {
2 foreach ($this ->queues as $db => $queue) {
3 switch ($db) {
4 case ’postgresql ’:
5 pg_query($this ->clients[$db], "BEGIN; "

);
6 foreach ($queue as $sql) {
7 try {
8 $stat = pg_connection_status($this

->clients[$db]);
9 // FAULT TOLERANCE - CONNECTION LOST WHILE

ADDING QUERY TO TRANSACTION
10 // IF CONNECTION IS OK THEN TRY TO ADD THE NEXT

SQL QUERY TO THE TRANSACTION
11 if($stat === PGSQL_CONNECTION_OK) {
12 $queryResult = pg_query($this ->

clients[$db], $sql);
13 if($queryResult === FALSE) {
14 $this ->message [] =

pg_last_error($this ->
clients[$db]);

15 $this ->failed[$db] = true;
16 break;
17 }
18 else {
19 while($row = pg_fetch_row(

$queryResult)) {
20 $this ->result[$db][] = $row;
21 }
22 }
23 }
24 // IF CONNECTION IS NOT OK THEN PUSH FAILED

TRANSACTION AND LOCK DATABASE
25 else {
26 $this ->message = "Error: ...";
27 $this ->push_and_lock($db , $queue)

;
28 break;
29 }
30 }
31 catch(Exception $e) {
32 // FAULT TOLERANCE - ADDING SQL QUERY FAILED
33 $this ->message = pg_last_error(

$this ->clients[$db]);
34 $this ->failed[$db] = true;
35 break;
36 }
37 }
38 break;
39 [...] // Similar for Neo4J
40 default:
41 break;
42 }
43 }
44 }

Bridge-DB, and thereby implemented a weak consistency
model that upholds the BASE properties.

The code that handles the fault tolerance is mainly imple-
mented in the TransactionController. The implementation
is illustrated in Listing 9 and Listing 10. The function
push_and_lock in Listing 12 handles the locking of the data-
base on Line 6 by trying to open the lock file. If the lock file
does not exist it is created. Line 7 closes the file. On Line 5
_push_failed_transaction() pushes the failed transaction
to a FTF.

Listing 11: Commit or rollback function
1 private function commit_or_rollback () {
2 if($this ->clients[’neo4j’] && $this ->failed[’

neo4j’] === false) {
3 $this ->transactions[’neo4j’]->commit ();
4 }
5 else {
6 if($this ->clients[’neo4j’]){
7 if(!$this ->transactions[’neo4j’]->

isClosed ()) {
8 $this ->transactions[’neo4j’]->rollback

();
9 // Make sure transaction is closed if not

already closed
10 }
11 }
12 }
13
14 if($this ->clients[’postgresql ’] && $this ->

failed[’postgresql ’] === false) {
15 pg_query($this ->clients[’postgresql ’], "

COMMIT;");
16 }
17 else {
18 pg_query($this ->clients[’postgresql ’], "

ROLLBACK;");
19 }
20
21 pg_close($this ->clients[’postgresql ’]);
22 }

Listing 12: Push and lock function
1 private function push_and_lock($db ,

$transaction) {
2 $queryString = $transaction [0];
3
4 if(strpos($queryString , "SELECT") === FALSE

&& strpos($queryString , " RETURN ") ===
FALSE){

5 _push_failed_transaction($db , $transaction)
; // Store failed transaction

6 $handle = fopen("lib/locks/".$db.".lock", ’
w’); // Create lock file or open if it
already exists

7 fclose($handle); // Close file
8 return "Failed transaction pushed to queue"

;
9 }

10 else{
11 return "Error: The Select Query did not go

through. Please try again in 5 minutes
or contact the database administrator
for assitance";

12 }
13 }

Note, that only transactions that fail because of either a
missing connection or a lost connection are stored in a FTF.
Failed transactions are stored in a database specific file,
meaning a failed PostgreSQL transaction is stored in the
file failed_postgresql and vice versa for Neo4J.

Listing 13 on the following page shows the implementa-
tion of the CRON job, which is responsible for getting the
next failed transaction from the FTF (Line 9) and passing
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it to the FailedTranactionController (Line 25-30). If the
FailedTransactionController informs the CRON job, that
the transaction committed, then it is removed from the FTF
on Line 37. If the transaction failed, then the CRON job
will try again. Note, that if the transaction failed because
for example PostgreSQL was unable to execute a query in
the transaction because of an error in the query, then the
transaction is also remove from the FTF. This is done to
avoid endlessly trying to execute a transaction that can not
be executed on a database.

On Line 9 where the CRON job gets the next failed trans-
action, if no failed transaction exist in the FTF, then the
database is unlocked by deleting the lock file on Line 12.
The regular TransactionController is then free to send new
transactions to the unlocked database.

6. EXPERIMENTS
In this project we analyze the response time, the Transac-
tionController performance, and fault tolerance.

The response time analysis shows the strengths and weak-
nesses of the external heterogeneous databases. This data
can be used to improve the heuristic optimizer further.

We investigate whether the performance of the Transaction-
Controller depends on the queried external database. We
do this by examining the difference between evaluating a
query on PostgreSQL and Neo4J. The query will return a
result set containing over 1 million strings and we will limit
the amount of results displayed to the user. We will examine
how the two databases perform in relation to each other and
in relation to the amount of results returned to the user.

We must ensure that the BASE properties are supported by
Bridge-DB v.2.0. Our fault tolerance test will go through
the three failure cases described in Section 4.2.1 to show
that Bridge-DB will recover correctly from any failure and
all external databases eventually will become consistent. At
the same time we will test that at least one external database
is always available, thereby fulfilling the basically available
property.

In this project we will not document, that the heuristic op-
timizer chooses the best external database, since we have
only made changes that affect the availability property,
which is tested during the fault tolerance test. We there-
fore refer to our previous work for experimental evidence,
that the optimizer works [10].

6.1 Data set
We use the IMDB data set used in our previous work [10].
However, we are modified the Neo4J database to store the
Crew table as nodes instead of edges. This was done in order
to allow tables with more than two foreign keys as described
in Section subsection 2.2.

The data set consists of three tables; Person, Crew, and
Title.

For each tuple/node in the Crew table, Neo4J also contains
two edges, one to a Person node and another to a Title

node. This is done to illustrate the foreign key relation of

Listing 13: CRON job
1 function run($db_list){
2 $clients = array();
3 foreach ($db_list as $db => $values) {
4 if(file_exists("lib/locks/".$db.".lock")) {
5 switch ($db) {
6 case ’postgresql ’:
7 $conn = pg_connect(" host=".$values[’

host’]." dbname=".$values[’name’
]." user=".$values[’user’]."
password=".$values[’password ’]);

8 if($conn !== FALSE) {
9 $sql_transaction =

_next_failed_transaction($db);
10 if($sql_transaction[’transaction ’]

=== false) {
11 // Unlock PostgreSQL if no more failed

transactions exist
12 unlink("lib/locks/postgresql.lock

");
13 }
14 else {
15 $clients[$db] = json_encode(array

(’queue’=>$sql_transaction[’
transaction ’], ’host’=>
$values[’host’], ’name’=>
$values[’name’], ’user’=>
$values[’user’], ’password ’=>
$values[’password ’]));

16 }
17 }
18 break;
19 [...] // Similar for Neo4J
20 default:
21 break;
22 }
23 }
24 }
25 $api = new RestClient(array(
26 ’base_url ’ => "http ://127.0.0.1/ trans/

failed/",
27 ’format ’ => ’json’,
28 ));
29 // SEND TRANSACTION TO FAILED TRANSACTION

CONTROLLER
30 $result = $api ->post("/", $clients);
31 foreach ($clients as $db => $key) {
32 if($res[’failed ’][$db] === 1) {
33 // TRANSACTION FAILED AGAIN
34 }
35 else if($res[’failed ’][$db] === 0) {
36 // IF TRANSACTION WAS SUCCESSFULL THEN

REMOVE FROM FAILED TRANSACTION QUEUE
37 _pop_failed_transaction($db);
38 }
39 }
40
41 return $res;
42 }

Table Size
Person 1,135,538
Crew 5,063,372
Title 351,429

Table 2: Dataset Size

the PostgreSQL database. The size of the Neo4J database
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is 5.36 GB and 607 MB on PostgreSQL. We counted the
amount of tuples and nodes in PostgreSQL and Neo4J after
measuring the database size, and all tables contain the same
amount data. However, PostgreSQL compresses the stored
data and is therefore able to store the same amount of in-
formation on much less disk space [15].

6.2 Setup
The tests are performed on a single Windows 8.1 Lenovo
laptop with an Intel Core i7-4710HQ CPU @ 2.50GHz and 8
GB RAM. The tests are run through XAMPP’s (open source
cross-platform web server solution stack package) Apache
HTTP Server and executed on the Chrome browser version
43.0.2357.81.

6.2.1 Test Queries
The test queries can be found in Appendix C in their BQL,
SQL, and Cypher format. Table 3 provides a short descrip-
tion of the 10 queries used in the Response time test as well
as the result size. Note, that results can be returned in dif-
ferent formats. The ones used in our tests include strings,
integers, and rows. A row in PostgreSQL corresponds to a
node in Neo4J.

Query Description Result Size
1 Find all person names 1,135,538 strings
2 Count all crew tuples/nodes 1 string
3 Find Kevin Bacon 1 row/node
4 Find all movie titles staring

Will Smith
71 strings

5 Find all distinct movie title
of Will Smith’s co-actors

19,811 strings

6 Find all distinct co-actors of
Will Smith

3,137 rows/nodes

7 Find all movie titles 351,429 strings
8 Find all movie titles pro-

duced before 2013
200,967 strings

9 Find all movie titles after
2013

150,462 strings

10 Find the amount of titles
separating Will Smith and
Kevin Bacon

1 integer

Table 3: Query Set

6.3 Response Time Test
In the first test we run the 10 queries in Table 3 on Post-
greSQL and Neo4J. Query 1-10 will be executed on Post-
greSQL on a warm cache. Afterwards the experiment is
repeated on Neo4J. We repeat each query 10 times and find
the average executing time by taking the sum of all results,
removing the highest and lowest result, and dividing by 8.
We manually control which database the query should be
executed on. This means, that the heuristic optimizer is
temporarily disabled in the translators. To see a compar-
ison between cold and warm cache performance we refer to
our previous work [10]. During the test we measured times
on three different places; pre-processing, evaluation, and
post-processing. Pre-processing includes converting JSON
to the Query object and translating the Query object to
both SQL and Cypher. Evaluation time is the time used
by either PostgreSQL or Neo4J to evaluated the query, and

post-processing includes processing 1000 of the results to
be displayed and the communication between the Transla-
tionController and the TransactionController. It should be
noted that PostgreSQL and Neo4J return the same amount
of results for each query, but we decide how many of these
results are displayed to the user. The browser interface of
Neo4J has a limit of 1000 displayed nodes, which is why we
have set the display limit to 1000. When taking the total re-
sponse time and subtracting the pre-processing, evaluation,
and post-processing times, we get a rest time. This rest
includes the communication time between the user and the
TranslationController and is also included in the results.

6.3.1 Results
Table 4 and Figure 6 show the average response time for
both PostgreSQL and Neo4J for query 1-10. The complete
result set can be found in Appendix E.
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Figure 6: Query response time comparison (Postgr-
eSQL/Neo4J)

The pre-processing time did not change significantly from
each query. We therefore calculated the average pre-
processing time using the same method as before, e.i. re-
moving the highest and lowest test results and taking the
average of the remaining results, and found that Bridge-DB
v.2.0 uses 6.4 milliseconds in the pre-processing phase.

Post-processing varied a little and was slightly different
between PostgreSQL and Neo4J. Bridge-DB used a min-
imum of 78.4 milliseconds and a maximum of 119 milli-
seconds for to process PostgreSQL results, while Neo4J res-
ults are processed in between 89.8 and 517.3 milliseconds.
The highest processing time used for Neo4J was in query
1, where the number of returned results exceeds 1 million
strings. Bridge-DB processed the same amount of Postgr-
eSQL results in 95.1 milliseconds. Processing Neo4J results
are clearly more dependent on the amount of results to pro-
cess than PostgreSQL. PHP includes specialized functions
to process PostgreSQL results, which might explain the in-
creased processing performance, since Neo4J results are pro-
cessed using the Neo4J library ’Everyman’ [3].
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PostgreSQL Neo4J
Query Response Pre Evaluation Post Rest Response Pre Evaluation Post Rest

1 0.586503 0.005827 0.447168 0.095073 0.032874 6.204515 0.007010 5.633367 0.517285 0.035397
2 0.922511 0.007399 0.792883 0.083348 0.039304 5.013502 0.006902 4.871068 0.100673 0.033245
3 0.252922 0.005922 0.133931 0.078419 0.033014 0.141530 0.006630 0.007250 0.091183 0.035835
4 0.853740 0.005361 0.730760 0.082626 0.034786 0.140595 0.006679 0.007183 0.091629 0.037010
5 2.603812 0.005530 2.464579 0.094696 0.034541 1.654690 0.006992 1.477047 0.124712 0.040660
6 1.560230 0.005916 1.396845 0.118954 0.038502 0.222248 0.006875 0.065982 0.112240 0.033615
7 0.284467 0.006730 0.147722 0.090885 0.035837 2.021189 0.008411 1.747961 0.230280 0.033902
8 0.254271 0.005832 0.114373 0.089137 0.042594 1.410634 0.006387 1.199953 0.172674 0.030962
9 0.233845 0.006348 0.098002 0.089503 0.038730 1.184996 0.006642 0.990444 0.158594 0.033256
10 17.643363 0.005719 17.518356 0.082096 0.039378 0.140083 0.006272 0.017549 0.089819 0.027227

Table 4: Average results measured in seconds for each phase.

The remaining time used to transport results back to the
user from the TranslationController was consistent for both
PostgreSQL and Neo4J. We calculated the average commu-
nication time to be 3.5 milliseconds.

6.3.2 Discussion
From Figure 6 we can see that query 1, 2, and 7-9 execute
faster on PostgreSQL than Neo4J. Especially query 1, which
finds all the names in the database. This query returns over
1 million string results, but is significantly faster on Postgr-
eSQL since it only needs to look up the names in the Person

table. Neo4J must go through all nodes in the database, find
the nodes labeled Person and return the name. The same is
true for query 7, 8, and 9, where we find all movie titles, how-
ever, the amount of tuples/nodes is much smaller (351,429
strings) in the Title table. Query 8 and 9 also finds all
movie titles but limits the result by production year, before
or after 2013 respectively.

Query 4-6 perform better on Neo4J than PostgreSQL by
between 0.7 and 1.3 seconds. These queries all involve more
than 1 join operation on PostgreSQL. Query 4 finds all the
movie titles staring Will Smith. This query involves 2 join
operations, one between the Person and Crew tables, and one
between the Crew and Title tables. Query 5 finds all the
movie titles starting a co-actor of Will Smith. This query
involves 6 join operations, 4 to find all co-actors of Will
Smith (as done in Query 6) and 2 additional to find the
movie titles staring these co-actors. Note, that co-actors is
a broad term in this database. This also involves all the
people involved in a movie, such as writers, directors, and
producers. From these results it is becoming clear, that if a
query involve more than 2 join operations on a significantly
large enough dataset, then Neo4J outperforms PostgreSQL.

The most noticeable difference is in query 10, where we test
the special reachability graph query. Neo4J is much faster
in these situations. The PostgreSQL query 10 is a recurs-
ive query, which involves a large amount fo join operations.
Reachability is a common known graph problem and efficient
algorithms have been designed to solve the problem. Neo4J
utilize these algorithms to prove the same result as Postgr-
eSQL much faster, since Neo4J avoids the large amount of
join operations necessary in PostgreSQL.

6.4 TransactionController Performance Test
We run this test to examine whether Bridge-DB processes
PostgreSQL results differently than Neo4J results as well as

analyze how much time was used on transporting the results
back from the TransactionController to the TranslationCon-
troller. This was done by changing the display limit. This
test was conducted because of the response time test results,
which indicates that Neo4J results are processed slower than
PostgreSQL results.

The display limit of 1000 was set based on the limit set by the
Neo4J browser interface. However, we wanted to analyze the
effect on the post-processing time, if the amount of displayed
results was increased. In this test we set the display limit
at 10, 100, 1 thousand, 10 thousand, 100 thousand, and 1
million. We executed query 1 on each database 10 times as
in the response time test and calculated the average using
the same formula. Query 1 is used, since it returns 1,135,538
strings as a result.

In our analysis, we do not want the evaluation time of the
external databases to affect the result, since we only want
to see the effect on the post-processing time. We therefore
subtract the evaluation time from the post-processing time.

We measure three times during this test. The Transaction-
Controller response time, i.e. the time from the moment the
TranslationController sends the query array to the Trans-
actionController until the TransactionController returns a
result. The TransactionController processing time, i.e. the
time spend in the TransactionController minus the evalu-
ation time used by the external database. We calculate the
transport time, i.e. the time it takes to get data between
the TransactionController and the TranslationController by
subtracting the TransactionController processing time from
the TransactionController response time.

6.4.1 Results
Table 5 and Table 6 display the average processing analysis
results for PostgreSQL and Neo4J respectively. The results
are split into the three measured times as described above;
response time, transport time, and processing time. The
time results are shown in seconds. Figure 7 and Figure 8
help to illustrate the difference between PostgreSQL and
Neo4J, and how they react to an increased amount of results
to process. Note, that both figures use the logarithmic scale
for both the x and y axis. It is also important to mention
that both PostgreSQL and Neo4J return the same amount
of results. We only limit the amount of results returned back
to the user. The total result set can be found in Appendix F.
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Figure 7: PostgreSQL Processing Analysis Chart

Display limit Response Transport Processing
10 0.0866757 0.0217925 0.0643718

100 0.0886086 0.0229726 0.0638434
1,000 0.0928630 0.0284130 0.0641874

10,000 0.1877267 0.1206022 0.0672238
100,000 1.2146479 1.0774697 0.1366803

1,000,000 14.7836617 14.0070932 0.7723322

Table 5: PostgreSQL Processing Analysis Results

6.4.2 Discussion
Our experiment returned some interesting results, since, as
seen in Figure 7 and Figure 8, PostgreSQL and Neo4J results
are processed very differently.

Until the display limit reaches over 10 thousand, Postgr-
eSQL results are processed in under 100 milliseconds and
even 1 million displayed results are processed in under 1
second. The transportation time is increased from close to
20 milliseconds to a little over 14 seconds, which is very
similar to the transportation results for Neo4J.

However, Neo4J results are processed significantly slower.
Processing time is never below 100 milliseconds. We see
from Table 6 that it makes no difference whether Bridge-DB
processes 10 or 1000 results. Even though the average results
shows that 1000 results are processed faster than 10, the
difference is so small that it lies within the margin of error.
10 thousand results are processed in just about 1 second, and
in 6 seconds for 100 thousand results. The most surprising
result is that it takes Bridge-DB more than 126 seconds
to process 1 million Neo4J results in comparison to only
770 milliseconds for PostgreSQL. We suspect that the Neo4J
library used to process the result might be a bottleneck.We
can conclude that the processing time is a big factor for
especially Neo4J. This means that in some cases a query
that would evaluate faster on Neo4J would be processed slow
enough, that PostgreSQL would still be the best database
to use. A good future cost model would need to take this
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Figure 8: Neo4J Processing Analysis Chart

Display limit Response Transport Processing
10 0.502750 0.050425 0.451193

100 0.509014 0.075984 0.431441
1,000 0.530100 0.117238 0.412069

10,000 1.244197 0.215093 1.030081
100,000 8.160219 1.181496 6.981745

1,000,000 142.233858 15.643400 126.612218

Table 6: Neo4J Processing Analysis Results

extra processing time into consideration.

6.5 Fault Tolerance
Our implementation of fault tolerance into Bridge-DB en-
sures that the BASE properties are upheld. It ensures that
one database is available even if another is locked, and that
the all other databases will eventually be consistent. The
purpose of this test is to prove this claim. The transactions
used in this test can be found in Appendix D.

We test the three failure cases discussed in Section 4.2.1,
namely missing connection, connection loss, and error in a
transaction. All three tests consist of the same three main
transactions. The first transaction inserts a new movie into
the database, the second updates the title, and lastly the
third deletes the movie. Before each test is performed we
make sure that both external databases do not already con-
tain the new movie. Between each transaction we perform
a select on both external databases to make sure that the
transaction committed. Note, that we also take this oppor-
tunity to make sure, that our heuristic optimizer selects the
available external database even if the query would normally
be executed faster on the unavailable database. We use time
marks to indicate when a transaction or event occurs. T1 is
the first time mark followed by T2 etc.
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Figure 9: Missing Connection Chart - disconnect
PostgreSQL

6.5.1 Missing Connection
The following list shows the steps of the missing connection
test:

T1 Insert new movie named ’Avengers: Civil War’ into all
databases

T2 Disconnect PostgreSQL

T3 Update title of movie from ’Avengers: Civil War’ to
’Captain America: Civil War’

T4 Execute Query 7

T5 Delete new movie using ’Captain America: Civil War’
as the WHERE-condition

T6 Reconnect PostgreSQL and start CRON job

T7 CRON job executes update transaction

T8 CRON job executes delete transaction

T9 CRON job stops and unlocks PostgreSQL

T10 Execute Query 7

We measure the evaluation time of the external databases
and use these times to show, that they either executed a
transaction or did not. Note, that at T4 when we execute
query 7, the heuristic optimizer would regularly perform this
query on PostgreSQL. However, since PostgreSQL is discon-
nected, the optimizer should choose to execute the query on
Neo4J. The optimizer should choose to execute query 7 on
PostgreSQL at T10 after PostgreSQL is unlocked at T9.

The test is repeated where we cut the connection to Neo4J
instead of PostgreSQL. We also use query 10 at T4 and
T10 instead of query 7, since query 10 would normally be
executed on Neo4J instead of PostgreSQL, since it involves
graph reachability.
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Figure 10: Missing Connection Chart - disconnect
Neo4J

Results and Discussion
Figure 9 and Figure 10 shows the evaluation time of the ex-
ternal databases at different time marks. At T1 both data-
bases are active and insert the new movie as expected. We
then disconnect PostgreSQL or Neo4J at T2. Depending
on which database is disconnected we see, that the update
transaction is only performed on one database. Figure 9
shows that at T4 the heuristic optimizer chooses to execute
query 7 on Neo4J since PostgreSQL is disconnected. After
PostgreSQL is unlocked at T9, we see at T10 that query 7
is executed on PostgreSQL and that the evaluation time is
much faster than the evaluation time on Neo4J. The same
results can be seen in Figure 10 where PostgreSQL executes
query 10 at T4, but Neo4J takes over at T10 after being
unlocked at T9.

Another result is that the CRON job executes the update
and delete transactions in the correct order at T7 and T8.

6.5.2 Connection Loss
The previous test is repeated, however, the separate update
and delete transactions are combined into one transaction.
This allows us to disconnect PostgreSQL between the update
and delete query, thereby simulating a connection loss.

The following list shows the steps of the lost connection test:

T1 Insert new movie named ’Avengers: Civil War’ into all
database

T2 Execute update and delete as one transaction, but cut
connection to PostgreSQL after the update to simulate
connection loss

T3 PostgreSQL is locked

T4 Execute Query 7

T5 Reconnect PostgreSQL and start CRON job
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Figure 11: Lost Connection Chart - lose PostgreSQL
connection after update query

T6 CRON job execute the update and delete transaction

T7 CRON job stops and unlocks PostgreSQL

T8 Execute Query 7

The test is repeated where we disconnect Neo4J instead of
PostgreSQL and use query 10 at T4 and T8 instead of query
7.

Results and Discussion
The connection loss tests illustrated in Figure 11 and Fig-
ure 12 shows the same results as the missing connection test.
The heuristic optimizer chooses to execute query 7 or 10 at
T4 on the only available database. The CRON job commits
the combined update and delete transaction at T6 in a single
step and unlocks the locked database such that either query
7 or 10 can be executed on the most compatible database.

6.5.3 Transaction Failure
A transaction can fail because of for example syntax errors
or invalid queries that try to insert using an existing primary
key. Whether it is a syntax error or invalid query, the trans-
action failure is the same. In order to test the case where a
transaction fails, we manually force an error to occur in the
update transaction by editing the generateUpdate() func-
tion such that it will case a syntax error.

The following list shows the steps of the transaction failure
test:

T1 Insert new movie named ’Avengers: Civil War’ into all
database

T2 Perform failed update transaction and get error mes-
sage

T3 Execute Query 7
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Figure 12: Lost Connection Chart - lose Neo4j con-
nection after update query

T4 Execute Query 10

T5 Delete movie using ’Captain America: Civil War’ title
as WHERE-condition

Note, that the new movie will not be deleted from the data-
base, since the update function failed on both databases.
PostgreSQL is not locked at T3, so Query 7 should be ex-
ecuted on PostgreSQL. Neo4J should similarly execute query
10 at T4.

6.5.4 Results and Discussion
Figure 13 shows that Bridge-DB is not affected by failed
transactions. Only PostgreSQL use a small amount of time
to process the failed update transaction at T2. The results
also show that the heuristic optimizer works, since it evalu-
ates query 7 on PostgreSQL at T3 and query 10 on Neo4J
at T4. At T5 we try to delete a movie named ’Captain
America: Civil War’, but since the update failed, it is not
deleted. Neo4J is faster at rejecting the delete transaction at
T5, however, both PostgreSQL and Neo4J execute in under
100 milliseconds, which we find to be a good result.

6.5.5 Summary
The results confirm that Bridge-DB v.2.0 upholds the BASE
properties. In the first two tests at T4 Bridge-DB proves to
be basically available by executing a query on a less compat-
ible but available database. Likewise, the eventual consist-
ency property is upheld at T7 and T8 by the CRON job in
the first test. The same is true at T6 for the connection loss
test. Lastly, the soft state property can be said to be upheld,
since the CRON job would normally not be started manually
but would automatically run to recover failed transactions.
This can be seen as action without input, which is one of
the ways of interpreting the soft state property of BASE.
The last test shows that failed transactions do not effect
the external databases, if the cause of the failure is a syn-
tax error. This ensures, that eventual translation errors will
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Figure 13: Failed Transaction Chart - update failed
to execute on both Neo4J and PostgreSQL

not result in locked databases, which would affect all users.
The error is instead reported back to the user, who can then
report the translation problem to a Bridge-DB responsible
administrator. This error reporting could in the future be
automated to ensure an up-to-date translator.

7. CONCLUSIONS
In this project the goal was to extend a middleware layer
system to support both the CRUD operations as well as
the BASE properties. We have developed Bridge-DB v.2.0
based on our previous work. The tests performed in this
project show that Bridge-DB v.2.0 upholds the BASE prop-
erties by using a combination of new features in Bridge-
DB v.2.0, such as the failed transaction file, the CRON job,
an improved heuristic optimizer and the new Transaction-
Controller. The translation has improved significantly from
Bridge-DB v.1.0 and users are able to add more functions
to BQL, since Bridge-DB still is designed with a modular
approach.

In our processing performance test we showed, that future
work on developing a cost model for Bridge-DB should con-
sider the time it takes to process results, since PostgreSQL
and Neo4J results are currently processed differently. This is
relevant in cases where Neo4J would normally execute faster,
but the processing time is high enough, that the total re-
sponse time of running the transaction through PostgreSQL
would still be smaller. In the first test we show that Neo4J
is better at working with specialized graph traversal queries,
but also handle select queries containing join operations at
the same speed or faster than PostgreSQL.

We have shown that our middleware layer solution is a re-
liable solution when working with multiple heterogeneous
databases and that it is possible to implement a consistent
and reliable weak consistency model into such a middleware
layer.

8. FUTURE WORK
8.0.6 Distributed Bridge-DB

Bridge-DB v.2.0 is a centralized middleware system, mean-
ing all users must go through the same Bridge-DB server.
Bridge-DB is run on one server while the connected external
databases can be distributed throughout the network on
other servers. Making Bridge-DB distributed, would mean
that users could access any available Bridge-DB server. This
would increase the availability of Bridge-DB, such that if
one Bridge-DB server disconnects from the network users
connected to that server could be reconnected to another
Bridge-DB server and resume work. Another scenario is
that a Bridge-DB server loses connection to one or more ex-
ternal databases. Other Bridge-DB servers could still have
connection to the database and all queries could be redirec-
ted through one of these servers. Note, that this is different
than our current implementation of the BASE properties,
because Bridge-DB remains centralized in Bridge-DB v.2.0.

8.0.7 Cost model
The current version of Bridge-DB uses a heuristic optimizer.
A more performable solution would be to build a cost func-
tion that analyses the query, and based on the analysis the
query is send to the most suitable database. Some of the
parameters on which to analyze would be network strength,
CPU time, memory usage, join operations and a lot other
operations. When analyzed on these parameters an optimal
execution plan for the queries is constructed.

8.0.8 Graphical User Interface
A graphical user interface where queries can be written and
results shown is required to ease the use of the system. This
would need to include log-in functionality to restrict access
to some BQL functions that change the underlying structure
of the database. The design could be inspired by phpMy-
Admin.net.

9. REFERENCES
[1] J. A. L. A. P. Sheth. Federated database systems for

managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys, 22(3), 1990.

[2] D. J. Abadi. Consistency Tradeoffs in Modern
Distributed Database System Design: CAP is Only
Part of the Story. Computer, 45(2):37–42, 2012.

[3] J. Adell. Web site. https://github.com/jadell/
neo4jphp/tree/master/lib/Everyman/Neo4j.

[4] E. Brewer. CAP Twelve Years Later: How the ”Rules”
Have Changed. IEEE Computer Society, 2012.

[5] E. A. Brewer. Towards Robust Distributed Systems
(Invited Talk). In Principles of Distributed
Computing, 2000.

[6] J. Browne. Brewer’s CAP Theorem. Web site, 2009.
http://www.julianbrowne.com/article/viewer/

brewers-cap-theorem.

[7] S. Gilbert and N. Lynch. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-tolerant
Web Services. SIGACT News, 33(2):51–59, 2002.

[8] J. Gray. The Transaction Concept: Virtues and
Limitations (Invited Paper). In Proceedings of the
Seventh International Conference on Very Large Data
Bases - Volume 7, pages 144–154, 1981.

18

https://github.com/jadell/neo4jphp/tree/master/lib/Everyman/Neo4j
https://github.com/jadell/neo4jphp/tree/master/lib/Everyman/Neo4j
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem


[9] T. Haerder and A. Reuter. Readings in Database
Systems. The MIT Press, 1988.

[10] C. K. Hansen, L. Nielsen, N. Cokljat, and R. S.
Ettrup. Bridge-DB: A Middleware Layer for
Distributed Multi-Database Systems. AAU Student
Report, 2014.

[11] D. Heimbigner and D. McLeod. A Federated
Architecture for Information Management. ACM
Transactions on Office Information System,
3(3):253–278, 1985.

[12] I. Informix. Web site.
http://www-01.ibm.com/software/data/informix/.
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APPENDIX
A. BQL V.1.0 AVAILABLE FUNCTIONS
Name Input Return
select @param: string ||

empty =>*
@return self

distinct @param: bool @return self
from @param: string @return self
join @param:

table:string, con-
dition:string

@return self

where @param: key:string,
values:mixed

@return self

or where @param: key:string,
values:mixed

@return self

where in @param: key:string,
values:array

@return self

or where in @param: key:string,
values:array

@return self

limit @param: value:int,
offset:int

@return self

offset @param: offset:int @return self
count @param: id:string @return self
traverse @param:

elm1:string,
elm2:string

@return self

reachable @param:
elm1:string,
elm2:string

@return self

send @return json:object

Table 7: List of supported functions in BQL v.1.0

B. CYPHER TRANSLATION EXAMPLE
Listing 14: Advanced Translation into Cypher Insert
Query

1 public function generateInsert($query){
2 $table = $query ->table;
3 $columns = $query ->columns;
4 $values = $query ->values;
5
6 $f_keys = _get_f_keys($table); //GET F KEYS

FROM IDS
7 $p_key = _get_p_keys($table); //GET P KEYS

FROM IDS
8 $counter = _get_counter($table , ’neo4j’); //

GET COUNTER FROM IDS
9

10 $p_index = array_search($p_key , $columns);
11
12 if($p_index !== FALSE && ($values[$p_index] <

$counter || $values[$p_index] > $counter
+10)){

13 return ’Primary key must be larger than ’.
$counter;

14 }
15
16 $cypherQuery = "";
17
18 // IF TABLE HAS F_KEYS FIND NODES WITH

CORRECT ID
19 if($f_keys){
20 $cypherQuery .= "MATCH ";
21 for($i=0;$i<count($f_keys);$i++){
22 $cypherQuery .= "(a".$i.":".

_get_f_key_table($table , $f_keys[$i])
.")";

19
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23 $cypherQuery .= ($i<count($f_keys) -1) ? "
, " : " WHERE ";

24 }
25 for($i=0, $j=0;$i<count($f_keys);$j++){
26 if(strcmp($columns[$j], $f_keys[$i])==0){
27 $cypherQuery .= "a".$i.".id=".$values[

$j];
28 $cypherQuery .= ($i<count($f_keys) -1) ?

" AND " : "";
29 $i++;
30 }
31 }
32 }
33
34 //MERGE: Avoids inserting identical nodes
35 $cypherQuery .= " MERGE (n:".$table." { ";
36 if($p_index === FALSE){ // IF USER DID NOT

PROVIDE P_KEY THEN USE IDS COUNTER + 1
37 $cypherQuery .= $p_key." : ".++ $counter.",

";
38 _set_counter($table , ’neo4j’, $counter);
39 }
40 else{
41 _set_counter($table , ’neo4j’, $values[

$p_index ]);
42 }
43 for($i=0;$i<count($columns);$i++){
44 $cypherQuery .= $columns[$i]." : ";
45 $cypherQuery .= (is_numeric($values[$i])) ?

$values[$i] : "’".trim($values[$i],"
’|\"| ")."’";

46 $cypherQuery .= ($i<count($columns) -1) ?
", " : "})";

47 }
48 if($f_keys){ // IF TABLE HAS F_KEYS THEN

INSERT EDGES
49 for($i=0;$i<count($f_keys);$i++){
50 $cypherQuery .= " MERGE (a".$i.")<-[r".$i

.":".$table."]-(n) ";
51 }
52 }
53 $cypherQuery .= ";";
54
55 return $cypherQuery;
56 }

C. RESPONSE TEST QUERIES
Listing 15: Query 1

1 // BQL:
2 $transaction ->select("name")->from("Person")
3 ->send();
4 // Generated SQL:
5 SELECT name FROM Person;
6 // Generated Cypher:
7 MATCH (z:Person) RETURN z.name;

Listing 16: Query 2
1 // BQL:
2 $transaction ->select("Crew.*")
3 ->from("Crew")->count(true)->send();
4 // SQL:
5 SELECT count(Crew .*) FROM Crew;
6 // Cypher:
7 MATCH (z:Crew) RETURN count(z);

Listing 17: Query 3
1 // BQL:
2 $transaction ->select("*")->from("Person")
3 ->where(’Person.name’, "Bacon , Kevin")->send();
4 // SQL:
5 SELECT * FROM Person
6 WHERE Person.name= ’Bacon , Kevin’;
7 // Cypher:
8 MATCH (z:Person)
9 WHERE z.name=’Bacon , Kevin’

10 RETURN z;

Listing 18: Query 4
1 // BQL:
2 $transaction ->select("Title.title")
3 ->from(’Person ’)
4 ->join(’Crew’, ’Crew.person_id=Person.id’)
5 ->join(’Title’, ’Crew.movie_id=Title.id’)
6 ->where(’Person.name =’, ’Smith , Will’)->send()

;
7 // SQL:
8 SELECT Title.title FROM Person
9 JOIN Crew ON (Crew.person_id=Person.id)

10 JOIN Title ON (Crew.movie_id=Title.id)
11 WHERE Person.name = ’Smith , Will’;
12 // Cypher
13 MATCH (z:Person) --(y:Crew)--(x:Title)
14 WHERE z.name =’Smith , Will’
15 RETURN x.title;

Listing 19: Query 5
1 // BQL:
2 $transaction ->select("t3.title")
3 ->distinct(true)->from(’Person as p1’)
4 ->join(’Crew as c1’, ’c1.person_id=p1.id’)
5 ->join(’Title as t1’, ’c1.movie_id=t1.id’)
6 ->join(’Crew as c2’, ’t1.id=c2.movie_id ’)
7 ->join(’Person as p2’, ’p2.id=c2.person_id ’)
8 ->join(’Crew as c3’, ’c3.person_id=p2.id’)
9 ->join(’Title as t3’, ’t3.id=c3.movie_id ’)

10 ->where(’p1.name =’, ’Smith , Will’)->send();
11 // SQL:
12 SELECT DISTINCT t3.title FROM Person as p1
13 JOIN Crew as c1 ON (c1.person_id=p1.id)
14 JOIN Title as t1 ON (c1.movie_id=t1.id)
15 JOIN Crew as c2 ON (t1.id=c2.movie_id)
16 JOIN Person as p2 ON (p2.id=c2.person_id)
17 JOIN Crew as c3 ON (c3.person_id=p2.id)
18 JOIN Title as t3 ON (t3.id=c3.movie_id)
19 WHERE p1.name = ’Smith , Will’;
20 // Cypher:
21 MATCH (z:Person) --(:Crew) --(:Title) --(:Crew)

--(:Person) --(:Crew)--(t:Title)
22 WHERE z.name =’Smith , Will’
23 RETURN DISTINCT t.title;

20



Listing 20: Query 6
1 // BQL:
2 $transaction ->select("p2")->distinct(true)
3 ->from(’Person as p1’)->join(’Crew as c1’, ’c1.

person_id=p1.id’)
4 ->join(’Title as t1’, ’c1.movie_id=t1.id’)
5 ->join(’Crew as c2’, ’t1.id=c2.movie_id ’)
6 ->join(’Person as p2’, ’p2.id=c2.person_id ’)
7 ->where(’p1.name =’, ’Smith , Will’)->send();
8 // SQL:
9 SELECT DISTINCT p2 FROM Person as p1

10 JOIN Crew as c1 ON (c1.person_id=p1.id)
11 JOIN Title as t1 ON (c1.movie_id=t1.id)
12 JOIN Crew as c2 ON (t1.id=c2.movie_id)
13 JOIN Person as p2 ON (p2.id=c2.person_id)
14 WHERE p1.name = ’Smith , Will’;
15 // Cypher:
16 MATCH (z:Person) --(:Crew) --(:Title) --(:Crew)--(

v:Person)
17 WHERE z.name =’Smith , Will’
18 RETURN DISTINCT v.name;

Listing 21: Query 7
1 // BQL:
2 $transaction ->select("title")->from("Title")
3 ->send();
4 // SQL:
5 SELECT title FROM Title;
6 // Cypher:
7 MATCH (z:Title) RETURN z.title;

Listing 22: Query 8
1 // BQL:
2 $transaction ->select("title")->from("Title")
3 ->where(’production_year <=’, ’2013’)->send();
4 // SQL:
5 SELECT title FROM Title
6 WHERE production_year <= 2013;
7 // Cypher:
8 MATCH (z:Title)
9 WHERE z.production_year <=2013

10 RETURN z.title;

Listing 23: Query 9
1 // BQL:
2 $transaction ->select("title")->from("Title")
3 ->where(’production_year >’, ’2013’)->send();
4 // SQL:
5 SELECT title FROM Title
6 WHERE production_year > 2013;
7 // Cypher:
8 MATCH (z:Title)
9 WHERE z.production_year > 2013 RETURN z.title;

Listing 24: Query 10
1 // BQL:
2 $transaction ->reachable(’Person AS n’,’Person

AS m’)->where(’n.id’, ’1721442 ’)->where(’m.
id’, ’92150’)->send();

3 // SQL:
4 WITH RECURSIVE linkBetweenActors(idActor1 ,

idActor2 , degree)
5 AS (SELECT 92150, 92150, 0 UNION DISTINCT SELET

DISTINCT link.idActor1 , ai2.person_id ,
link.degree +1 FROM linkBetweenActors link

6 JOIN crew ai ON link.idActor2 = ai.person_id
7 JOIN crew ai2 ON ai.movie_id = ai2.movie_id
8 WHERE link.degree <3)
9 SELECT degree

10 FROM linkBetweenActors
11 WHERE idActor1 =92150 AND idActor2 =395709
12 LIMIT 1;
13 // Cypher:
14 MATCH ( n : Person ), ( m : Person ), p =

shortestPath (( n ) -[*..15] - ( m )) WHERE
n.id =1721442 AND m.id =92150 RETURN length
([m in nodes(p) WHERE m:Title]) AS

BaconNumber;

D. FAULT TOLERANCE TEST TRANSAC-
TIONS

Listing 25: Insert Transaction
1 // BQL:
2 $transaction ->insert("Title", ["title", "

production_year"], ["Avengers: Civil War",
2016]) ->send();

3 // SQL:
4 INSERT INTO Title(id, title , production_year)
5 VALUES (3083395 , ’Avengers: Civil War’, 2016);
6 // Cypher:
7 MERGE (n:Title { id : 3083395 , title : ’

Avengers: Civil War’, production_year :
2016});

Listing 26: Update Transaction
1 // BQL:
2 $transaction ->update("Title", [’title’], [’

Captain America: Civil War’], "title =
Avengers: Civil War AND production_year =
2016")->send();

3 // SQL:
4 UPDATE Title
5 SET title = ’Captain America: Civil War’
6 WHERE title=’Avengers: Civil War’ AND

production_year =2016;
7 // Cypher:
8 MATCH (n:Title)
9 WHERE n.title=’Avengers: Civil War’ AND n.

production_year =2016
10 SET n.title=’Captain America: Civil War’;

Listing 27: Delete Transaction
1 // BQL:
2 $transaction ->delete("Title", "title = Captain

America: Civil War AND production_year =
2016")->send();

3 // SQL:
4 DELETE FROM Title
5 WHERE title=’Captain America: Civil War’ AND

production_year =2016;
6 // Cypher:
7 MATCH (n:Title)
8 WHERE n.title=’Captain America: Civil War’ AND

n.production_year =2016
9 OPTIONAL MATCH (n)<-[a]-(m)-[b]->()

10 WHERE str(type(a))=str(type(b))=str(head(labels
(m)))

11 DELETE n, m, a, b;

21



Run Response Pre Evaluation Post Rest

1 0.57808 0.00458 0.44771 0.08853 0.03727

2 0.60685 0.00622 0.44923 0.09600 0.05541

3 0.63552 0.00340 0.51916 0.09312 0.01984

4 0.57546 0.00489 0.43641 0.09831 0.03585

5 0.57015 0.00480 0.43556 0.10915 0.02064

6 0.59656 0.00552 0.47011 0.09418 0.02675

7 0.57175 0.00940 0.44321 0.08520 0.03395

8 0.61286 0.00647 0.44519 0.12218 0.03902

9 0.57552 0.00631 0.44791 0.08868 0.03263

10 0.57494 0.00784 0.43758 0.09262 0.03690

0.58650 0.00583 0.44717 0.09507 0.03287

Run Response Pre Evaluation Post Rest

1 0.93235 0.00971 0.78338 0.10299 0.03627

2 0.90412 0.00647 0.78952 0.07421 0.03392

3 0.92875 0.01003 0.81267 0.06975 0.03629

4 1.02430 0.00860 0.80662 0.15855 0.05054

5 0.94253 0.00656 0.79592 0.08483 0.05522

6 0.89924 0.00687 0.78197 0.07406 0.03634

7 0.92407 0.00703 0.78787 0.09068 0.03849

8 0.91200 0.00736 0.80380 0.07508 0.02577

9 0.90334 0.00620 0.78540 0.07412 0.03762

10 0.93292 0.00659 0.79055 0.09081 0.04497

0.92251 0.00740 0.79288 0.08335 0.03930

Run Response Pre Evaluation Post Rest

1 0.24588 0.00551 0.12996 0.07256 0.03786

2 0.23584 0.00562 0.13342 0.06849 0.02831

3 0.25087 0.00714 0.13781 0.08271 0.02321

4 0.24386 0.00759 0.13084 0.07100 0.03444

5 0.22824 0.00507 0.13791 0.06293 0.02233

6 0.25600 0.00485 0.13390 0.08399 0.03325

7 0.27860 0.00592 0.13481 0.08691 0.05096

8 0.25537 0.00499 0.13263 0.08143 0.03631

9 0.26048 0.00554 0.13784 0.08027 0.03683

10 0.27508 0.00796 0.13020 0.10303 0.03390

0.25292 0.00592 0.13393 0.07842 0.03301

PostgreSQL
Query 1

Query 2

Query 3

E. POSTGRESQL AND NEO4J RESULT SET: QUERY 1-10
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Run Response Pre Evaluation Post Rest

1 0.83627 0.00492 0.72063 0.07433 0.03639

2 0.84896 0.00851 0.73211 0.07493 0.03342

3 0.84894 0.00453 0.73932 0.06958 0.03551

4 0.89552 0.00546 0.75353 0.08822 0.04831

5 0.88567 0.00555 0.73820 0.08996 0.05196

6 0.86484 0.00565 0.74531 0.07664 0.03724

7 0.84310 0.00423 0.71725 0.09988 0.02174

8 0.85542 0.00403 0.72621 0.10819 0.01699

9 0.82702 0.00625 0.72596 0.06375 0.03107

10 0.84671 0.00630 0.71833 0.08748 0.03460

0.85374 0.00536 0.73076 0.08263 0.03479

Run Response Pre Evaluation Post Rest

1 2.56517 0.00352 2.45863 0.08094 0.02207

2 2.55839 0.00487 2.41743 0.10067 0.03541

3 2.75381 0.00895 2.60422 0.10357 0.03707

4 2.58150 0.00867 2.42664 0.09237 0.05383

5 2.61348 0.00350 2.49454 0.08898 0.02646

6 2.58046 0.00452 2.44528 0.09257 0.03809

7 2.79564 0.00412 2.67578 0.09026 0.02548

8 2.59960 0.00565 2.43841 0.10216 0.05338

9 2.57808 0.00393 2.43148 0.11727 0.02540

10 2.53139 0.00959 2.39977 0.08698 0.03503

2.60381 0.00553 2.46458 0.09470 0.03454

Run Response Pre Evaluation Post Rest

1 1.54675 0.00425 1.37796 0.11950 0.04504

2 1.55338 0.00561 1.40073 0.10961 0.03743

3 1.58067 0.00514 1.42295 0.11427 0.03831

4 1.63276 0.00872 1.40689 0.17678 0.04037

5 1.53443 0.00374 1.39043 0.10647 0.03378

6 1.57151 0.00774 1.41202 0.11063 0.04112

7 1.56920 0.00548 1.38581 0.12898 0.04893

8 1.56326 0.00761 1.40157 0.11357 0.04050

9 1.53675 0.00608 1.38357 0.11563 0.03147

10 1.56031 0.00541 1.39374 0.13943 0.02174

1.56023 0.00592 1.39685 0.11895 0.03850

PostgreSQL
Query 4

Query 5

Query 6



Run Response Pre Evaluation Post Rest

1 0.30302 0.00843 0.14713 0.11233 0.03514

2 0.29402 0.01006 0.15268 0.09038 0.04089

3 0.27796 0.00350 0.14603 0.09241 0.03602

4 0.29143 0.00546 0.14557 0.08895 0.05145

5 0.30262 0.00821 0.14836 0.11570 0.03035

6 0.26618 0.00559 0.14555 0.08858 0.02646

7 0.29421 0.00869 0.14968 0.09005 0.04580

8 0.28091 0.00899 0.14678 0.08210 0.04304

9 0.25088 0.00497 0.14453 0.07874 0.02264

10 0.26841 0.00351 0.15362 0.08228 0.02900

0.28447 0.00673 0.14772 0.09089 0.03584

Run Response Pre Evaluation Post Rest

1 0.26936 0.00668 0.11486 0.11463 0.03319

2 0.25325 0.00557 0.11571 0.08230 0.04968

3 0.23601 0.00346 0.11410 0.08253 0.03591

4 0.22069 0.00347 0.11344 0.07460 0.02917

5 0.25119 0.00446 0.11737 0.09225 0.03712

6 0.27127 0.00555 0.11421 0.09951 0.05198

7 0.24169 0.00931 0.11317 0.07505 0.04416

8 0.27539 0.00692 0.11475 0.10039 0.05333

9 0.26417 0.00655 0.11473 0.08923 0.05366

10 0.24722 0.00746 0.11254 0.09184 0.03539

0.25427 0.00583 0.11437 0.08914 0.04259

Run Response Pre Evaluation Post Rest

1 0.25499 0.00654 0.10629 0.10185 0.04032

2 0.21863 0.00565 0.09676 0.08598 0.03024

3 0.26027 0.00625 0.09909 0.09936 0.05557

4 0.24285 0.00632 0.09855 0.09321 0.04478

5 0.21004 0.00575 0.09699 0.07350 0.03381

6 0.22793 0.00613 0.09687 0.08770 0.03724

7 0.20496 0.00815 0.09695 0.07234 0.02752

8 0.18958 0.00331 0.09871 0.07495 0.01260

9 0.26230 0.00705 0.09929 0.09947 0.05649

10 0.25108 0.00710 0.09757 0.10604 0.04037

0.23385 0.00635 0.09800 0.08950 0.03873

PostgreSQL
Query 7

Query 8

Query 9



Run Response Pre Evaluation Post Rest

1 17.45132 0.00592 17.30427 0.09023 0.05090

2 17.16897 0.00811 17.03563 0.09559 0.02965

3 16.96083 0.00617 16.81868 0.09157 0.04442

4 17.51030 0.00551 17.38810 0.08371 0.03299

5 18.19105 0.00404 18.08939 0.07500 0.02262

6 20.45773 0.00740 20.33683 0.07553 0.03797

7 17.98668 0.00595 17.88063 0.06489 0.03521

8 17.08209 0.00453 16.94645 0.08443 0.04668

9 17.99562 0.00472 17.88863 0.06432 0.03796

10 17.76087 0.00556 17.61375 0.09141 0.05015

17.64336 0.00572 17.51836 0.08210 0.03938

PostgreSQL
Query 10



Run Response Pre Evaluation Post Rest

1 6.22870 0.00532 5.64472 0.53210 0.04655

2 6.20025 0.00980 5.64987 0.50950 0.03108

3 6.29305 0.00751 5.72733 0.52436 0.03385

4 6.30937 0.00655 5.76002 0.51421 0.02859

5 6.44997 0.00679 5.61814 0.78894 0.03609

6 6.13331 0.00517 5.61193 0.48319 0.03302

7 6.10146 0.00537 5.52215 0.52012 0.05382

8 6.10503 0.00658 5.56254 0.50075 0.03516

9 6.09878 0.01098 5.53299 0.53867 0.01613

10 6.26495 0.00815 5.71940 0.49857 0.03882

6.20452 0.00701 5.63337 0.51729 0.03540

Run Response Pre Evaluation Post Rest

1 4.76962 0.00792 4.56656 0.14271 0.05242

2 4.55876 0.00781 4.40641 0.10918 0.03536

3 5.32421 0.00689 5.20476 0.08946 0.02310

4 5.23145 0.00732 5.09545 0.09648 0.03219

5 4.82951 0.00459 4.70263 0.09366 0.02862

6 5.10365 0.00554 4.96893 0.09713 0.03205

7 5.29354 0.00702 5.16852 0.08430 0.03369

8 4.99728 0.00812 4.85528 0.09719 0.03669

9 5.48760 0.00939 5.31468 0.12355 0.03997

10 4.44350 0.00421 4.31318 0.09873 0.02738

5.01350 0.00690 4.87107 0.10067 0.03325

Run Response Pre Evaluation Post Rest

1 0.13021 0.00621 0.00774 0.08742 0.02884

2 0.15086 0.00949 0.00832 0.09924 0.03381

3 0.13996 0.00645 0.00370 0.08128 0.04852

4 0.12159 0.00435 0.00703 0.07952 0.03069

5 0.12519 0.00605 0.00335 0.08117 0.03461

6 0.13306 0.00339 0.00923 0.09781 0.02264

7 0.15868 0.00884 0.00709 0.10022 0.04253

8 0.21518 0.00816 0.00698 0.16568 0.03436

9 0.14616 0.00572 0.00899 0.09568 0.03577

10 0.14813 0.00727 0.00815 0.08664 0.04607

0.14153 0.00663 0.00725 0.09118 0.03584

Neo4J
Query 1

Query 2

Query 3



Run Response Pre Evaluation Post Rest

1 0.18669 0.00642 0.01864 0.11004 0.05159

2 0.12536 0.00432 0.00422 0.08209 0.03473

3 0.13326 0.00468 0.00381 0.09347 0.03129

4 0.12835 0.00867 0.00812 0.07407 0.03749

5 0.12815 0.00654 0.00365 0.08512 0.03283

6 0.16921 0.01018 0.01016 0.09857 0.05029

7 0.13979 0.00506 0.00771 0.09384 0.03317

8 0.13416 0.00998 0.00376 0.07496 0.04546

9 0.14765 0.00365 0.01051 0.10851 0.02498

10 0.14419 0.00774 0.00917 0.09647 0.03081

0.14060 0.00668 0.00718 0.09163 0.03701

Run Response Pre Evaluation Post Rest

1 1.84835 0.00465 1.70140 0.11043 0.03187

2 1.63533 0.00870 1.46772 0.12331 0.03561

3 1.61646 0.00398 1.49214 0.09463 0.02571

4 1.66003 0.00705 1.46912 0.16273 0.02112

5 1.70522 0.00992 1.48901 0.15675 0.04953

6 1.68035 0.00791 1.47846 0.14284 0.05113

7 1.66475 0.00509 1.51152 0.10595 0.04219

8 1.66185 0.01125 1.46062 0.13281 0.05716

9 1.61354 0.00651 1.44778 0.10671 0.05254

10 1.59861 0.00610 1.43692 0.11889 0.03670

1.65469 0.00699 1.47705 0.12471 0.04066

Run Response Pre Evaluation Post Rest

1 0.21809 0.01038 0.06270 0.10851 0.03651

2 0.21818 0.00712 0.06514 0.10883 0.03709

3 0.18700 0.00400 0.06100 0.10000 0.02200

4 0.25800 0.00700 0.08100 0.11600 0.05400

5 0.22884 0.00607 0.06775 0.11291 0.04210

6 0.23879 0.00589 0.06672 0.13861 0.02757

7 0.21956 0.00905 0.08303 0.09794 0.02953

8 0.21966 0.00409 0.06267 0.11511 0.03779

9 0.24787 0.00704 0.05954 0.15032 0.03097

10 0.18669 0.00874 0.06089 0.08970 0.02736

0.22225 0.00688 0.06598 0.11224 0.03361

Neo4J
Query 4

Query 5

Query 6



Run Response Pre Evaluation Post Rest

1 2.08373 0.00804 1.79260 0.24874 0.03435

2 2.04086 0.01097 1.72558 0.27258 0.03173

3 1.94767 0.00482 1.70316 0.22295 0.01674

4 2.01779 0.00864 1.76185 0.22472 0.02258

5 2.00567 0.00946 1.75821 0.21295 0.02504

6 2.11482 0.00424 1.84420 0.23385 0.03253

7 2.08967 0.00832 1.79190 0.23562 0.05383

8 2.00907 0.00845 1.73943 0.22275 0.03843

9 1.97505 0.01125 1.71094 0.21810 0.03476

10 1.92252 0.00858 1.62664 0.23552 0.05179

2.02119 0.00841 1.74796 0.23028 0.03390

Run Response Pre Evaluation Post Rest

1 1.39875 0.00696 1.17326 0.17828 0.04025

2 1.39554 0.00422 1.19883 0.16239 0.03010

3 1.38515 0.00638 1.19134 0.16261 0.02483

4 1.44792 0.00910 1.21556 0.17956 0.04369

5 1.41229 0.00788 1.18788 0.17577 0.04076

6 1.40611 0.00468 1.19841 0.17942 0.02360

7 1.36094 0.00426 1.17007 0.16463 0.02198

8 1.50046 0.00804 1.27273 0.17873 0.04096

9 1.40052 0.00867 1.20946 0.15716 0.02522

10 1.43879 0.00423 1.22487 0.19706 0.01263

1.41063 0.00639 1.19995 0.17267 0.03096

Run Response Pre Evaluation Post Rest

1 1.16608 0.00653 0.96595 0.16046 0.03315

2 1.19694 0.00643 0.99411 0.15767 0.03873

3 1.16485 0.00484 0.98756 0.15928 0.01316

4 1.18176 0.00526 0.98156 0.16476 0.03017

5 1.19065 0.01008 0.99701 0.15582 0.02773

6 1.17334 0.01008 0.99129 0.14078 0.03119

7 1.16143 0.00673 0.97167 0.14876 0.03427

8 1.24251 0.00491 1.02139 0.17007 0.04613

9 1.18991 0.00643 0.98885 0.15323 0.04142

10 1.21644 0.00677 1.01151 0.16877 0.02939

1.18500 0.00664 0.99044 0.15859 0.03326

Neo4J
Query 7

Query 8

Query 9



Run Response Pre Evaluation Post Rest

1 0.11712 0.00392 0.03003 0.07200 0.01117

2 0.14166 0.00936 0.01928 0.08402 0.02899

3 0.14894 0.00400 0.02105 0.08627 0.03762

4 0.14114 0.00778 0.01789 0.07958 0.03588

5 0.15504 0.00558 0.01444 0.10115 0.03386

6 0.19590 0.00981 0.01860 0.11902 0.04846

7 0.15564 0.00871 0.01953 0.09370 0.03369

8 0.13176 0.00579 0.01285 0.09428 0.01884

9 0.12381 0.00396 0.01234 0.09535 0.01217

10 0.12268 0.00498 0.01673 0.08420 0.01676

0.14008 0.00627 0.01755 0.08982 0.02723

Neo4J
Query 10



Total Transport Processing Total Transport Processing Total Transport Processing
1 0.07337 0.01328 0.06009 0.09739 0.02963 0.06776 0.09839 0.03731 0.06107

2 0.09045 0.02579 0.06466 0.09739 0.02963 0.06776 0.09505 0.02500 0.07005

3 0.09064 0.02221 0.06843 0.07231 0.01387 0.05844 0.08857 0.02854 0.06003

4 0.08830 0.02765 0.06065 0.07623 0.01415 0.06208 0.08667 0.02162 0.06505

5 0.07006 0.01195 0.05811 0.08068 0.02141 0.05927 0.09090 0.03200 0.05889

6 0.07924 0.02258 0.05666 0.08584 0.02675 0.05909 0.11499 0.03048 0.08451

7 0.09017 0.02461 0.06556 0.09668 0.02350 0.07318 0.09339 0.03190 0.06149

8 0.11028 0.02211 0.08817 0.07695 0.01347 0.06348 0.08525 0.02549 0.05976

9 0.08360 0.02201 0.06159 0.09771 0.02484 0.07287 0.09266 0.03217 0.06049

10 0.09764 0.02175 0.07589 0.10389 0.04638 0.05751 0.09729 0.02172 0.07556

AVG 0.08668 0.02179 0.06437 0.08861 0.02297 0.06384 0.09286 0.02841 0.06419

Total Transport Processing Total Transport Processing Total Transport Processing
1 0.510245 0.05065 0.459597 0.514206 0.07910 0.435107 0.612584 0.12501 0.487579

2 0.482300 0.04869 0.433608 0.500257 0.07477 0.425484 0.571104 0.14037 0.430732

3 0.514964 0.05233 0.462633 0.517307 0.06245 0.454854 0.541836 0.11141 0.430429

4 0.501505 0.05159 0.449911 0.494854 0.07404 0.420818 0.527835 0.11437 0.413467

5 0.503664 0.05186 0.451807 0.505878 0.08207 0.423808 0.506604 0.11756 0.389043

6 0.491737 0.04865 0.443088 0.508790 0.07935 0.429437 0.534342 0.11721 0.417135

7 0.509845 0.05863 0.451215 0.488204 0.07333 0.414872 0.509264 0.10952 0.399748

8 0.581887 0.04929 0.532601 0.534891 0.09693 0.437964 0.510833 0.12104 0.389791

9 0.497222 0.05034 0.446877 0.497328 0.07327 0.424059 0.538981 0.11277 0.426208

10 0.492819 0.04840 0.444418 0.533490 0.07194 0.461553 0.503429 0.11854 0.384891

AVG 0.502750 0.050425 0.451193 0.509014 0.075984 0.431441 0.530100 0.117238 0.412069

PostgreSQL
10 100 1000

Neo4J
10 100 1000
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Total Transport Processing Total Transport Processing Total Transport Processing
1 0.190327 0.12571 0.064619 1.24883 1.10136 0.14747 14.80917 14.03603 0.77315

2 0.174112 0.10964 0.064472 1.20110 1.07075 0.13035 14.81569 14.04282 0.77288

3 0.186707 0.12031 0.066400 1.19891 1.06290 0.13601 14.72911 13.91083 0.81828

4 0.178054 0.11102 0.067031 1.23240 1.09655 0.13585 16.20633 15.45660 0.74973

5 0.186015 0.11881 0.067204 1.24032 1.08363 0.15669 14.97345 14.17002 0.80344

6 0.187445 0.12383 0.063618 1.20626 1.07355 0.13271 14.76686 13.98018 0.78668

7 0.194036 0.12818 0.065855 1.20231 1.06560 0.13671 14.70908 13.95835 0.75072

8 0.219680 0.12812 0.091559 1.20150 1.06933 0.13217 14.68367 13.95190 0.73177

9 0.188713 0.11897 0.069742 1.23439 1.09221 0.14217 14.57182 13.80538 0.76644

10 0.190516 0.11805 0.072467 1.19234 1.06814 0.12419 14.78225 14.00662 0.77562

AVG 0.187727 0.120602 0.067224 1.21465 1.07747 0.13668 14.78366 14.00709 0.77233

Total Transport Processing Total Transport Processing Total Transport Processing
1 1.208666 0.21652 0.992146 7.911882 1.17400 6.737877 141.4869978 14.12654 127.3604591

2 1.197533 0.19757 0.999963 8.326111 1.16073 7.165383 145.6299000 17.09198 128.5379181

3 1.202968 0.20816 0.994810 8.289004 1.20106 7.087946 142.2470973 16.14020 126.1068931

4 1.298661 0.22249 1.076174 8.131615 1.17656 6.955058 140.2964461 14.56172 125.7347271

5 1.258582 0.21559 1.042991 8.379109 1.18990 7.189213 140.4074080 14.32599 126.0814149

6 1.372147 0.22978 1.142365 8.617907 1.19033 7.427580 140.3249726 14.32485 126.0001228

7 1.228695 0.21141 1.017281 7.851578 1.19563 6.655944 142.1037471 14.91777 127.1859729

8 1.237235 0.22099 1.016246 8.221832 1.18218 7.039655 143.6705220 17.35308 126.3174431

9 1.248965 0.20285 1.046117 8.020385 1.17813 6.842250 143.3043470 17.34290 125.9614439

10 1.269807 0.22274 1.047068 8.001816 1.16524 6.836580 144.3257718 16.44178 127.8839960

AVG 1.244197 0.215093 1.030081 8.160219 1.181496 6.981745 142.233858 15.643400 126.612218

PostgreSQL
10000 100000 1000000

Neo4J
10000 100000 1000000



PostgreSQL Neo4J PostgreSQL Neo4J
T1 0.004139 0.060743 T1 0.001429 0.024027
T2 T2
T3 0.00 0.010286 T3 0.111817 0.00
T4 0.00 10.52725 T4 22.705601 0.00
T5 0.00 0.008336 T5 0.057913 0.00
T6 T6
T7 0.084530 0.00 T7 0.00 0.022038
T8 0.045114 0.00 T8 0.00 0.010094
T9 T9
T10 0.195722 0.00 T10 0.00 2.760941

PostgreSQL Neo4J PostgreSQL Neo4J
T1 0.000947 0.020123 T1 0.001355 0.025314
T2 0.080691 0.005577 T2 0.045180 0.022883
T3 T3
T4 0.000000 1.863033 T4 21.860407 0.000000
T5 T5
T6 0.041675 0.000000 T6 0.000000 0.082107
T7 T7
T8 0.156403 0.000000 T8 0.000000 0.028500

PostgreSQL Neo4J
T1 0.001079 0.019157
T2 0.001396 0.005303
T3 0.275398 0.000000
T4 0.000000 0.017561
T5 0.068518 0.004775

Missing Connection Missing Connection

Connection Loss Connection Loss

Transaction Failure
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