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Abstract

Computer security researchers are often placed in a difficult situation - their
tools need to be perfect, in terms of possible exploits, in order to not raise suspi-
cions in analysed malware. It is in the interest of malicious code to shut down if
an analyst’s presence is detected as the longer it runs, the more revenue can be
generated. While malware only needs to find one weakness in the analysis tool,
the tool needs to cover all possible angles of attack, which is often impractical. It
is not possible to analyse every discoverd malware sample by hand, because of
large numbers, and automation is required. Malicious code that employs anti-
tampering techniques can often mimic as a non-threatening application to slip
past the automatic analyser. Such samples require more fine-grained approach,
which is also more costly. A system that can detect these samples can improve
the overall performance of the malware analysis process.

Differential analysis converts the weakness of an analyst’s tool into a strength
and can yield better performance than analysing every sample in a fine-grained
manner. This runs a malware sample in two machines and records it’s actions.
One of the machines is clean while the other contains traces of an analysis tool,
such as debugger. Malware is declared as evasive if a difference is spotted in it’s
behavior. This workflow was implemented in an automatic dynamic malware
analysis environment - Cuckoo Sandbox.
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Chapter 1

Introduction

According to the experiment performed in [6], 40% of malware samples exhibit
less malicious behavior when executed with an attached debugger. This is a se-
rious problem because debuggers are often employed by security researchers
to understand the behavior of malware so that counter-measures can be devel-
oped.

Malware and security solutions are in a state of continuous arms race. Every
new exploit is often soon countered with a patch which is then countered by a
newer exploit. There exist several ways in which malware can be analysed, but
these are often separated into static and dynamic techniques. Static approach
analyses malware without executing it, e.g. disassembling the binary files. This
is countered by different obfuscation techniques, that make static analysis and
extraction of assembly code very difficult [26].

Dynamic analysis techiques counter this by letting the malware run while
observing its behavior that can be expressed in a form of e.g. manual debug-
ging, Application Programming Interface (API)-calls trace, a memory or network
dump analysis, changes to registry and file structure. Malware responds to this
by detecting the tools and techniques that are used to capture this data and ap-
pearing harmless if that is the case. Such samples require a more thorough but
also a more costly analysis technique. It is not possible to manually analyse all
the malware samples because of sheer volume and much of this task is auto-
mated. Automatically detecting whether an executable is truly harmless or only
appears to be so can be difficult. Automation can be done by employing sand-
box analysis systems such as described in [9].

The presented work is a continuation of [15], a project which evaluted pop-
ularity of Virtual Machine (VM) detection techniques. This was done by iden-
tifying popular methods and querying a database containing analysis reports
of 80000 malware samples obtained in the wild. The reports were generated
using Cuckoo Sandbox (Cuckoo)[13], an open source customizable automatic
dynamic malware analysis system that is still being actively developed. It was
discovered that some approaches, e.g. [39] which do not use APIs but inline as-
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sembly techniques, could not be viewed in the Cuckoo reports as the required
data was lacking. Approaches that use inline assembly techniques to detect de-
buggers also exist [10]. This problem is not local to Cuckoo and many sandboxes
suffer from same issues, but Cuckoo was developed from the start to be expand-
able through some customizable modules which could be a source of solution.

1.1 Initiating Question

How to improve Cuckoo to detect malware samples that use advanced anti-
debugging methods that rely on techniques such as inline assembly checks?
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Chapter 2

Malware analysis

Malware that uses inline assembly to test for debuggers can be detected in sev-
eral ways. In an ideal world, researchers would have access to the malware
source code but this is not the case and only raw machine code binary files are
available. One possible solution is to obtain the assembly code of the sample
and look for specific patterns, signatures. This can be done statically by apply-
ing tools such as disassemblers. A disassembler generates assembly code from
binary files which contain raw machine code. This can fail if the code is “ar-
mored” - malware creator used e.g. obfuscation techniques or packer software.
A dynamic approach would let the malware run and record all the assembly level
instructions as they are executed by hardware - an instruction trace. An instruc-
tion trace can be obtained by using some debugging functionality encoded di-
rectly in hardware.

An alternative approach that does not rely on instruction tracing is differen-
tial analysis. This is a dynamic approach that requires execution of the sample
in different environments - with and without a debugger. Behavior across both
environments is then compared and a sample is declared as evasive if deviations
are found.

2.1 Debuggers

A debugger is a piece of software that utilizes Central Processing Unit (CPU) fa-
cilities that were specifically designed for the purpose. A debugger provides an
insight into how a program performs its tasks, allows the user to control the ex-
ecution, and provides access to the debugged program’s environment. It is pos-
sible, using a debugger, to manually step over every instruction executed by the
analysed binary and observe the changes done to memory and registers. An
instruction trace can be generated by automating this process. This project fo-
cuses on Windows Operating Systems (OSs) using Intel CPUs.

Windows OS supports debuggers in the form of specific events, APIs and
structures [23]. A debugger either starts a new process or attaches to a running
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one and then enters an event handling loop. To manually step over every in-
struction, a specific CPU functionality is used - single-stepping mode. A CPU
generates exceptions and waits for user response after execution of every in-
struction when it runs in single-stepping mode. These exceptions are delivered
to the debugging software by the OS in form of events. Every exception has an
EXCEPTION_RECORD structure associated with it. This structure is used to de-
scribe events to the handlers. Exceptions generated by a CPU running in single-
step mode are described by EXCEPTION_SINGLE_STEP value of ExceptionCode
field of EXCEPTION_RECORD structure. The GetThreadContext function re-
turns the CONTEXT structure describing the state of the CPU at the moment
of the exception.

A solution that either uses an existing debugger or Windows API for the pur-
pose of instruction tracing is going to face the issue of privileges and detection.
Windows OS separates running code in several rings or privilege levels. Code
running in ring 0 is closest to hardware, has the highest privilege and is called
kernel mode code while code running at ring 3 has less privileges and is called
user mode code. The concept of privilege rings is illustrated in Figure 2.1. A pro-
gram for Windows OS runs in either of two modes - user or kernel. Code that
runs at the higher privilege has more control and can hide better. If an anal-
yser component, such as a debugger, runs at the same privilege level as mal-
ware, there is a possibility of information leakage that can be used by malware
to detect the debugger. The first requirement of transparency, according to [8],
states that an analyser component (a debugger) must run above the highest priv-
ilege level malware can attain. This requirement is satisfied if debugger runs in
kernel mode, while malware runs in user mode. Malware that runs in kernel
mode, such as ZeroAccess rootkit [37], does exist and it can potentially discover
an analyser that runs in kernel mode as well.

Debugging kernel code is a difficult task even when code under analysis is
not malicious. It requires two machines - one to run the debugger while the
kernel of the other is halted. It is possible to perform kernel debugging locally,
but even then, it is a very delicate procedure and some of the usual debugger
functionality, such as breakpoint and trace, is not available [24]. Using raw de-
bugging functionality of existing solutions or Windows API with no additional
enhancements is not optimal as it can be detected by malware running in ker-
nel mode and is difficult to perform. A CPU’s debugging support can be used
with other solutions that modify the privilege levels structure.

2.1.1 Hardware debugging support

A single-core CPU executes processes one at a time but the execution can be
diverted to another place in memory if an exception or an interrupt occurs. A
process that generates an interrupt or an exception is suspended and the corre-
sponding handler is executed. Every exception is identified by a unique number
which is used as a lookup in Interrupt Descriptor Table (IDT) that links excep-
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Figure 2.1: OS privilege levels[2]

tions and their handlers together. The suspended process is resumed after the
handler is executed. The interrupt and exception handling mechanism plays a
major part in how a debugger controls a program [19, Ch. 6].

Interrupt 1 - debug exception and Interrupt 3 - breakpoint exception are
directly related to debugging and are supported by the Intel processors. The
former exception can be raised as a result of several conditions, active single-
stepping mode being one of them. Debug Status Register (DR6) is used to store
the conditions that were sampled at the time the exception was generated, one
of the conditions being the BS bit which tells whether the processor is in the
single-stepping mode. This makes it possible to distinguish between the causes
of the debug exception. When a processor runs in single-stepping mode, a de-
bug exception is generated after execution of every instruction. The Trap flag
(TF) of the EFLAGS register (EFLAGS) must be set in order to enter this mode.
When a debug exception is raised, the content of the Extended Instruction Pointer
(EIP) register is saved. The EIP register contains the address of the next instruc-
tion to be executed. The information stored in the EIP and DR6 makes it possible
to produce a complete instruction trace [19, Ch. 17].
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2.2 Virtualization

Using physical machines for the purpose of malware analysis is possible, but it
involves some risks and VMs are often used instead [36, Ch. 2]. VMs simplify
containment and the process of restoring the machine to a clean state after the
analysis. It is possible to use virtualization to move an analyser component, such
as debugger, out of malware’s reach by either introducing new privilege levels or
de-privileging the OSs.

A VM is an environment created by Virtual Machine Monitor (VMM), also
known as a hypervisor. The main purpose of a VMM is to keep the VMs isolated
from each other so that every single virtualized OS remains under illusion that it
has full control of underlying hardware. The x86 architecture was not designed
to handle several OSs running on a single processor and the VMM must emulate
results of OS kernel mode code that would otherwise conflict. This was previ-
ously done by a technique called trap-and-emulate [28]. A VMM would run in
ring 0 while de-privileging its VMs to ring 3. Every time a VM tried to execute
its kernel mode code, the underlying hardware would generate an exception be-
cause virtualized OS would lack privileges as it was running in user mode at ring
3. This exception would then be handled by the VMM which runs in ring 0 and
is authorized to do so. It would emulate results of exception-causing instruction
and return it to the VM to maintain the illusion. This concept is illustrated by
system 2 in Figure 2.2.

It is not possible to virtualize the x86 architecture using the classical trap-
and-emulate technique because there exists a number of instructions executable
from ring 3 that can expose the underlying VMM [34]. A number of approaches
that successfuly achieve this task do exist and are described in [15]. Every one of
these techniques - paravirtualization, binary translation and Hardware-assisted
virtualization (HVM), either modify the privilige of the guest (virtualized) ma-
chine in relation to host (the machine on which the VM runs) or introduce new
privilege levels to hardware, as it is the case with HVM. Figure 2.2 illustrates
how different privilege levels are used in different x86 virtualization techniques.
System 1 represents a normal machine with a single OS, system 2 is a classical
trap-and-emulate machine, and system 3 is a machine virtualized with HVM.
Even though classical trap-and-emulate is not possible on x86, both paravirtu-
alization and binary translation use the same concept of de-privileging. Paravir-
tualization modifies the kernel code of the guest to not trap while binary trans-
lation involves translating the instruction that would trap into a non-trapping
sequences before the actual code is run on the hardware. System 3 uses HVM
that introduces a new privilege level in which the VMM runs - ring -1. The new
privilege level allows the VMM to maintain control over VMs at all times and it
also enables guest software, including OS, to run in privilege levels it was de-
signed for.

An analyser component residing at ring -1, would satisfy the transparency
requirement of [8]. A solution that either relies on paravirtualization or binary
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Figure 2.2: De-privileging in virtualization

translation is not optimal because it would lack the new powerful hardware fea-
tures introduced by HVM. Paravirtualization also requires modification of OS
code. Using a VM provides malware with additional detection possibilities com-
pared to if a bare-metal system was used. However, it would be the VM that is
detected, not the analyser.

2.2.1 Hardware assisted virtualization

The x86 architecture is made virtualizable by introducing two processor oper-
ation modes - VMX root and non-root, which are meant respectively for VMM
and guest. New instructions are available to processors running in VMX root
mode, compared to normal ring 0 operation mode. Figure 2.3 illustrates a VMM
that runs two guests machines. The processor enters the VMX root mode with
VMXON instruction and allows the guests to run with VM-enter. When a guest
finishes execution or an event that stops a guest occurs, control is transfered
back to the VMM by a VM-exit instruction.

A special data structure, Virtual Machine Control Structure (VMCS), is asso-
ciated with every guest. This structure is used to control VM entries and exits as
well as define processor behavior when it runs in VMX root or non-root mode.
The data stored in the VMCS is divided into following groups:

• Guest-state area

• Host-state area

• VM-execution control fields

• VM-exit control fields
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Figure 2.3: VMM running two guests with HVM

• VM-exit information fields

One way of procuring an instruction trace is by leveraging the processor de-
bugging facilities described in Section 2.1.1 as well as VMCS. The guest-state
area of the VMCS stores both register and non-register state of the guest VM.
Register state has the registers of the CPU used by guest and non-register state
has information such as whether the CPU is active, halted or can be interrupted
e.g. VMM can set the TF of EFLAGS and call VM-enter which would result in the
guest machine running in single-step mode. In order to cause VM-exits on In-
terrupt 1 - debug exceptions, the VMM also has to modify the exception bitmap,
located in VM-execution control fields of the VMCS. The exception bitmap is a
32 bit field, each bit corresponding to one of 32 pre-defined Intel interrupts. If
a bit is set to 0, an interrupt is delivered normally through guest IDT, but if the
bit is set to 1, the interrupt causes VM-exit and return of control to the VMM. It
is then possible to examine VM-exit information fields to determine the cause
of VM-exit, which in the case of single-stepping would be a debug exception,
and to examine the guest register state saved in VMCS to extract the instruction
information.

An instruction trace can also be produced by using one of new functionali-
ties of HVM - Monitor Trap Flag (MTF). This mode can be activated by setting
the 28th bit in the VM-execution control fields. MTF causes VM-exits after exe-
cution of every instruction.

The two methods differ in visibility from the guest system and the verbosity
of the results. A TF explicitly states that CPU is running in a single-step mode.
A debug exception caused by single-stepping is not handled immediately. The
state of the program is changed before the exception is raised, meaining that an
instruction has to be executed in order for the single-step debug exception to be
generated. In the context of a VM-entry, this means that the single-step debug-
ging exception does not happen immediately and another exception, regardless
of its priority, can be pending. If exception bitmap for this pending exception is
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0, it will be handled by guest IDT, meaning that no VM-exits will be generated.
Contents of CPU registers, EFLAGS amongst others, is saved to the stack right
before the exception or interrupt handler code is run. The TF is also set to 0, so
as to not trap on every instruction of handler code. If malware gains access to
the running handler, it can see the state of TF on the stack and determine that
it is being traced and it would not be possible to see as the handler code is not
traced if TF is used.

The MTF approach is transparent to the guest as it is controlled through the
VMCS. It causes VM-exit after execution of every instruction, unless an event of
higher priority, such as system-management interrupt, occurs before CPU had
a chance to execute an instruction. This means that interrupt handler code with
lower priority will be traced.

Both of the described approaches to produce an instruction trace can be au-
tomated, but they suffer from performance issues. This happens because every
instruction executed by guest means a VM-exit which involves:

• Record the cause of VM-exit

• Record the state of guest processor

• Load the state of host processor

The cost of VM-entry is similar as host state has to be saved and guest state has
to be loaded. Optimizations are possible as demonstrated by [1] who note that
performance of VM-entries between P4 and “Core” Intel architectures improved
from 2409 to 937 cycles.

2.3 Differential analysis

This is an alternative approach to detect debugger aware malware. At least two
environments are created - reference and comparison. Reference environment
is used as a baseline while comparison environment is “tainted” by the presence
of a debugger. A malware sample is executed in both environments and behav-
ioral logs are generated for each. Behavior of the sample is compared across the
environments and it is declared evasive if the difference is significant.

Reference machine needs to be convincing enough for malware to show its
true malicious behavior. One option is to use bare-metal machines both as ref-
erence and as comparison. This approach is more transparent than if VMs were
used but it is also more costly as restoring bare-metal machines to a clean state
is more difficult than doing so with a VM, as snapshotting is a core feature that is
readily available out of the box for many VM products. Using VMs introduces
another problem - malware that detects virtualization and shuts down. This
makes it difficult to decide whether a sample behaves equally in both reference
and comparison environments because anti-debugger techniques are abscent
or because it detects virtualization before anti-debugger checks are performed
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and stops executing. It is possible to hide some signs of virtualization. The VM-
Cloak project [5], for example, does this by harvesting real world hardware infor-
mation from registry and applying it to the generated VMs. While it is possible to
maintain transparency against some approaches, methods like local [31] or re-
mote timing analysis [21] are difficult to defend against and achieving complete
VM transparency is not yet possible [11].

Whether a bare-metal or VM approach is chosen, the machine itself needs
to be convicing. Signs of a real world user activity, such as presence of cook-
ies, popular applications, documents and some modifications to default settings
can improve the illusion of a real machine. Making the illusion completely trans-
parent is difficult as at least one component of the analysis system - the initiator
that starts the malware, must be present. The signs of this component can be
hidden by automatically uninstalling it after every run, such as the case with
[20].

One telltale sign of an analysis environment is the absence of internet ac-
cess. Internet is used by malware for propagation and as a Command and Con-
trol (C&C) channel - which is the case with botnets. A bot would not be able to
function properly without internet to receive commands from the master. The
propagation technique is also difficult to observe without at least a local net-
work. Giving malware full network access is dangerous and unethical but sev-
eral solutions exist. One way to deal with this problem is to only grant partial
network access to malware so that messages which are perceived as malicious
are blocked. For example, a single Domain Name Service (DNS) lookup and
a connection to the resolved Internet Protocol (IP)-address is probably an at-
tempt to connect to a C&C server and should be allowed. Repeated attempts to
establish and drop a Transmission Control Protocol (TCP) connection is a sign
of an ongoing Distributed Denial of Service (DDoS) and should be blocked. This
approach is used by Honeywall, a 2nd generation honeypot [29] and GQ [22].
Automating policy generation is difficult and most work has to be done by hand.
Another approach to the network problem is to try and fool the malware by em-
ulating populare network services such as Hypertext Transfer Protocol (HTTP),
DNS and Internet Relay Chat (IRC). Tools like fakeNet [35] and INetSim [17] try
to perform intelligent emulation of these services by satisfying the malware’s re-
quests. For example, if malware requests a .jpg file from an emulated HTTP ser-
vice, the response would include a stock image or one located at user-configured
path. It is possible to defeat such approaches and sophisticated malware will not
be fooled. For example, a botherder can generate a list of email addresses, in-
cluding some of his own to test if everything is working properly, to send spam
to.

An important part of the environment for this project is the debugger it-
self. Popular methods of debugger detection are known and while it is possi-
ble to emulate the signs of debugger presence, like setting the BeingDebugged
flag of a process to true, it is also cumbersome as debuggers can be detected
in numerous ways [10]. Another disadvantage of such approach is that previ-
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ously unknown methods will not be detected. This can be solved by using ac-
tual debugging software. Merely installing it is often not enough and a debug-
ger must take an active role by running the malware samples. It is possible to
automate this process to a degree as some debuggers, such as GNU Project de-
bugger (GDB), have a Command Line Interface (CLI) that allows to simply run a
selected sample. Making the debugger perform more advanced actions, such as
setting breakpoints or passing exceptions to the sample, is difficult. This would
require a standalone emulation component using a dedicated debugger’s API or
using some debugging functions provided by the OS, such as Windows debug-
ging API [23].

It is also necessary to gather enough information so as to generate an accu-
rate behavioral profile for later comparison. Presence of analyser components
in the machine reduce authenticity but increase information yield. The most
stealthy approach to generate a malware’s behavioral profile is to base it only on
persisten system changes as this does not require an in-guest analyser compo-
nent, reducing risk of detection. A change is persistent if it is still present after
a system shutdown, e.g. changes to Windows registry or filesystem, such as cre-
ated, edited or deleted files. It is not possible to detect memory-only malware
using this approach. Network activity can also help in generating a malware be-
havioral profile. If the traffic is captured from outside the analysis environment,
e.g. at the gateway, filtering is necessary to generate traffic produced specifically
by the sample. It is possible to obtain more information from a malware run by
using in-guest components. For example, a list of all API-calls and parameters
performed by malware can be obtained by hooking the APIs.

The comparison of malware behavioral data can take several forms. A cheap
solution is to compare the raw data in a bruteforce manner - each API call from
one environment is directly compared to an API call from a second environment
e.g. The sample is labeled as evasive if there is a slightest mismatch. This is a very
rigid approach and a slightest difference, that might have been completely un-
related, can set it off. For example, a fast-flux network [32] could have been used
by malware author. In this case, the IP-address associated with the hostname
can change very often, meaning that if malware analysis was not performed si-
multaneously at both reference and comparison machines, the extracted net-
work logs would show different IP-addresses. This difference is superficial and
does not have any semantic meaning, but it would be detected by the brute-
force comparison nonetheless. This can be solved by abstracting from the raw
behavioral data, as suggested by [4].

2.4 Cuckoo sandbox

Cuckoo [13] is an open source customizable automated malware analysis sys-
tem. It dynamically analyses a sample by running it in a controlled VM. A
Cuckoo analysis yeilds reports such as API-calls trace, network and memory
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Figure 2.4: Overview of Cuckoo architecture

dumps, changed files and extracted ASCII strings. It is possible to extend the
stock functionality with user-written plugins.

Figure 2.4 illustrates a general overview of Cuckoo architecture. The sys-
tem is separated in two parts - core (host) and guest. Communication happens
through a network, which can be virtual if both components run on the same
physical machine. The host controls the analysis guest machines, manages sub-
missions and processes the results submitted by the guests. Every guest envi-
ronment has an analyser component which is responsible for the malware sam-
ples it receives from the host. The analyser injects the received samples with
a .dll that contains inline function hooks of normal and native Windows APIs,
executes malware according to its type and sends the gathered data back to the
host. The data is sent over a TCP connection as events happen and not at the
end of analysis, making the analysis process more resilient to crashes.

Functionality of both core and analyser components of Cuckoo can be ex-
tended through user-written modules. The following list of modules describes
the extensions possible to the core component:

• Machinery - layer between Cuckoo and VMM of the guest machine

• Auxiliary - run on host machine concurrently to each analysis, e.g. captur-
ing network traffic

• Processing - process the raw results received from Analyser, e.g. memory
dump and API-calls analysis

• Signatures - capture events specified by the signature at the end of analy-
sis, e.g. to identify a certain type of malware based on characteristics of its
behavior

• Reporting - translate results of an analysis into different formats, e.g.
Javascript Object Notation (JSON), HyperText Markup Language (HTML)
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or MongoDB.

Machinery modules are a way for Cuckoo to connect to the VMM of choice in
order to leverage its functionality for the purpose of analysis VMs management,
e.g. to reboot the VMs and restore them to a clean snapshot. Machinery mod-
ules allow Cuckoo to connect to desired VMM directly or by using LibVirt [16]
library. LibVirt is an open source API the goal of which is to provide common
and stable layer for accessing different VMMs through a single library. In order
to generate an instruction trace of a malware sample, the code of VMM itself
needs to support this functionality. If the VMM support is present, a machinery
module can be used in order to start the tracing and an auxiliary module can
receive the reports generated by the VMM through the network. A processing
module for analysing the high volume of assembly instructions would also be
required.

Extending the analyser component through the following user modules is
also possible:

• Analysis packages - define how to run malware in guest, e.g. how to open
a .pdf or .exe files.

• Auxiliary - run concurrently with analysis in guest, e.g. emulating human
presence by moving mouse and clicking on “Accept” or “OK” windows

An analysis package component is responsible for starting the actual malware
process. It is possible to modify the process environment to make it look like
it is being debugged or to attach an actual debugger to the process. A differen-
tial analysis workflow is made of executing a sample in different environments,
comparing results and producing a report. A Cuckoo workflow works only with
a sample running in one environment per analysis. Automating the process of
differential analysis only with Cuckoo modules might be difficult because of the
difference in workflows. The customizable modules allow some change in how
each individual analysis step is performed, but it is not possible to add new
steps or completely redefine old ones. It is possible to add some comparison
and automation functionality to a core reporting module, as processed malware
execution results are first available at reporting stage and also because every re-
porting module is run by Cuckoo every analysis. A standalone component that
uses Cuckoo only to produce malware analysis reports and then performs the
comparison and reporting tasks on its own is also a possible solution.

2.5 Discussion

Instruction tracing, a feature present in many debuggers, produces a trace of
assembly instructions performed by a sample. It is possible to automate the
task of obtaining instruction traces by leveraging a CPU’s support for debugging
and the new hardware features introduced by HVM. An instruction trace can be
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useful in different cases of malware analysis, but it does not in itself tell an an-
alyst whether a sample employs anti-debugging techniques or not and further
analysis is required. This approach produces a lot of data and is also compu-
tationally expensive as each instruction executed by malware results in several
context switches in the CPU with VM-exits and VM-enters. It requires support
from a VMM which makes the complete solution possibly dependent on one
VM vendor. An instruction trace also only covers a branch of execution. If mal-
ware stops its execution before it tests for debuggers, e.g. it spots virtualization,
anti-debugging behavior would not be visible.

Differential analysis relies on comparison of execution of a malware sample
in several environments. This approach does not require support from low-level
components, such as VMM. Detection of samples that perform 0-day exploits is
also possible for further, possibly manual, analysis. Whereas instruction tracing
can be of benefit for any malware researcher, the results of differential analy-
sis are only of interest for researchers interested in anti-debugging techniques.
Both approaches require an environment that appears as trustworthy to mal-
ware as possible. This raises several ethical and technological difficulties, mainly
associated with internet access and VM transparency.

A solution using the differential analysis approach is the focus of this project.
While it also requires more computation than a normal analysis, it can spot mal-
ware that tries any of detection techniques, including the 0-day exploits. It can
be viewed as a filtering step that separates trivial malware from armored sam-
ples. These anti-tampering samples can then be sent for a more costly but also
more informative analysis.
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Chapter 3

Related work

3.1 Debugging malware

Debuggers are useful tools that allow analysis of code at low level. One of the
most important functionality of a debugger is breakpoint. When a breakpoint
is hit, execution of program is stopped and control is given to the debugger, al-
lowing analysis of the environment at the time. This could be very helpful when
analysing malware, as it would be possible to see how it tries to detect tamper-
ing and to skip the garbage instructions inserted on purpose. Breakpoints can
be of two types - software and hardware. Hardware breakpoints use CPU’s debug
registers to store a memory address value, which can for example be of code or
data type, on which to trigger. The disadvantage of hardware breakpoints is the
low number of debug registers - 4. Software breakpoints can be implemented
in two ways - either by inserting debugging instructions at compile-time or by
modifying binary at run-time. The former is often not possible when analysing
malware, as this requires access to source code. The latter involves saving the in-
struction at the desired address and overwriting it with a special instruction that
would generate an exception if executed - int3 on x86 architecture. When this
happens, the control is given to the debugger program and the original instruc-
tion is restored to be executed. Number of software breakpoints is not limited as
their hardware counterpart. Both types of breakpoints can be detected by mal-
ware. Hardware breakpoints can be counteracted by malware that fills the debug
registers with some of its own values e.g. Sofware breakpoints can be detected
by checksum approaches, as they modify program’s code.

VAMPiRE is one of the subsystems of dynamic malware analysis framework
developed by [38]. The main purpose of this subsystem is to implement “stealth
breakpoints” - unlimited breakpoint functionality that is not detectable by com-
mon malware approaches. This is done by leveraging virtual memory system ab-
straction of modern computers. One of the purposes of an OS is to keep running
processes separated from each other. This involves managing their memory, so
that processes do not write over other processes memory. This is managed by a
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virtual memory system - a mapping between a virtual and physicall addresses.
A process sees the virtual address space as continuous piece of memory while
OS uses special hardware such as Memory Management Unit (MMU) to trans-
late virtual addresses to real ones, which can be fragmented. The smallest unit
on which virtual memory system can operate is a page, which has several at-
tributes available to it. One of the attributes is present or non-present which
means whether a page is actually present in the physical memory or if it was
swapped and is stored on disk. A page fault is generated if it is the latter and
control is handled to the page fault exception handler.

Manipulation of page attributes to cause invocation of a page fault handler
is the main mechanism behind breakpoints implemented by the VAMPiRE sys-
tem. A user specifies the memory location on which to set the breakpoint. This
location is added to a breakpoint table and the page associated with the address
is set to be non-present. The default page fault handler redirects execution to the
code implemented by VAMPiRE. This is done in binary at run-time so as to cover
it up from malware. If the address of the page that generates a page fault excep-
tion and any of the addresses stored in the breakpoint table match, a breakpoint
is reached and the target instruction is executed in single-step mode.

VAMPiRE modifies the page table and can be detected by malware that at-
tains kernel level privilege. It must also run its handler on every page fault, which
can incur a performance overhead. The transparency requirements of Ether [8]
are not satisfied either, as the system runs in guest.

A similar approach, but using HVM, is presented in SPIDER [7]. The main
concept of SPIDER is illustrated in Figure 3.1. A guest physical page is translated
into two host physical pages - code and data. The host physical pages have mu-
tually exclusive attributes. The host page 1, the code page, is executable but not
readable. The host page 2, the data page, is readable but not executable. None
of the pages are writeable. These page attributes ensure that if guest tries to e.g.
read the code, a page fault exception will be generated. In contrast to VAMPiRE
where page fault handler code was placed in guest, the SPIDER’s page fault han-
dler is placed in the hypervisor, transparent to malware. The SPIDER hypervisor
will then return appropriate page, hiding the int3 instruction which is used to
generate software breakpoints.

Transparent breakpoints implemented by VAMPiRE or SPIDER are useful in
manual analysis. Automating the analysis is difficult, because the anti-instrumentation
code needs to be detected first. Another approach is to generate an instruction
trace of malware and analyse the results afterwards. An instruction trace is a log
of commands executed by a CPU. It can be a useful resource in malware anal-
ysis as it provides the lowest abstraction level expression of a program behavior
and it is more complicated for malware to hide its behavior. Instruction tracing
is a fine-grained analysis technique that also comes at the cost of performance.
Every executed instruction results in several actions that handle e.g. collecting
the required log information and allowing for execution to continue.

Ether [8] is a dynamic malware analysis system capabale of producing an in-
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Figure 3.1: Main concept of SPIDER [7]

struction trace for research purposes. It is built upon Intel Virtualization Tech-
nology (Intel VT) [18] and Xen hypervisor [40]. Intel VT is a HVM that allows for
virtualization of x86 architecture using trap-and-emulate technique described
in [28]. This is achieved by creating a new privilege level for VMM to run at and
by implementing explicit customizable trapping controls at hardware level. A
more in-depth description can be found in Section 2.2. Ether is built upon Xen
version 3.0 which added support for HVM.

Figure 3.2 provides an overview of Xen and Ether architectures. Xen’s ter-
minology is different from other VM vendors and guest systems are called un-
privileged domains - DomUs. DomUs do not have privileges to access hardware
directly and are completely isolated from each other and Dom0. Dom0 is the
control domain, a host system the main purpose of which is to expose Xen VMM
control interface. The Xen’s architecture is expanded by Ether - two new compo-
nents are added. Events such as instruction tracing, system calls and memory
writes are detected by the Ether VMM component. The handlers for these events
are located in Ether userspace component.

Instruction tracing is implemented by setting the TF of EFLAGS register in
the VMCS of the guest machine. When TF is set, interrupt 1 - debug exception
is generated by the CPU after execution of every instruction. This exception is
forwarded to the Ether VMM component which also has the task of filtering in-
structions that are not generated by the malware process itself. This is done by
checking the value of Control Register (CR)3 which contains the physical adress
of page directory. Page directory is the base of the paging structure hierarchy
and its value is unique for every process [19, Sec. 2.5]. If the CR3 value matches
the one observed during execution of malware process, the event information is
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Figure 3.2: Ether and Xen architecture [8]

forwarded to the Ether userspace component which collects and logs the data.
It has to translate the opcode of the instruction into a readable format, e.g. 88
to MOV, and collect the information stored at registers at the time of the event.
When this is completed, the Ether component allows the execution of DomU
analysis machine to continue until next debug exception.

Memory writes and system calls are monitored in a similar way. Ether VMM
creates shadow page tables that guests use for address translation. The shadow
page entries lack write permissions and an exception is generated every time a
guest tries to write. System calls monitoring is a more coarse-grained analysis
than monitoring memory writes and tracing instructions and is less expensive.
It is done by overwriting memory pointed to by SYSENTER_EIP_MSR which is a
model specific register holding a memory address for SYSENTER command. SY-
SENTER is used from user level to request a system call, it changes privilege level
to kernel and jumps to the specified kernel memory address which performs the
required system call. This value is overwritten to generate a page fault which is
then handled by Ether.

One of the main Ether features is the lack of any in-guest analyser com-
ponent. Monitoring happens outside of guest environment - a technique also
known as VM introspection. Ether presents 5 transparency requirements that it
attempts to satisfy:

• Higher privilege - it should not be possible for malware to achieve priv-
ilege level of the analyser component. This requirement is satisfied be-
cause VMM implemented with HVM support is located at privilege level
-1 and this is enforced by hardware.

• No non-privileged side effects - the side effects possibly induced by the
analyser component should only be accessible through privileged han-
dlers. This requirement is satisfied because analysers memory is isolated
by shadow page tables mechanism. Sensitive CPU instructions also gen-
erate exceptions that are only handled by the VMM.
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• Identical basic instruction execution semantics - the instructions executed
by guest should have the exact same semantics as if guest machine was
not virtualized. This requirement is satisfied because guest OS with HVM
runs in privilege level 0, just as a normal non-virtualized machine would.
The exceptions generated by the CPU are transparent to the guest because
they are handled by the VMM at privilege level -1.

• Transparent exception handling - the guest exception handling should not
be affected in any way - no existing handlers should be modified and no
new handlers should be added by the analyser component. This require-
ment is satisfied because exception handling happens at VMM which has
access to the VMCS structure. This makes it possible for VMM to distin-
guish between “true” exceptions generated by guest, which are delivered,
and exceptions that are specific to the Ether, which are handled transpar-
ently.

• Identical measurements of time - timing information available to guest
should be the same with and without analyser component. Ether analyser
componet incurs timing penalties as it needs time to run its code. This
requirement can be satisfied for local timing sources as these instructions
are privileged and generate exceptions when executed from guest. The
VMM would have to to calculate the performance hit incurred by excep-
tion handling and modify the timing information available to guest ac-
cordingly. It is not possible to modify remote or external timing sources
and this can lead to detection.

Authors note that Ether could be detected because of side effects incurred by
the first generation Intel Intel VT that have to do with memory and Transaction
lookaside buffer (TLB), which is flushed on every VM-exit. This issue has been
fixed in later HVM implementations [12]. Instruction tracing in Ether is also
limited by poor performance and authors have stated that it not meant as a real-
time analysis tool.

VAMPiRE, SPIDER and Ether are all vulnerable to timing analysis, one of de-
tection methods that is most difficult to defend against. An analysis component,
located inside the guest or in hypervisor, needs time to run if it is to be of any
use. This incurs a timing penalty which can be detected by malware. The tools
presented here hide their presence by modifying the local time stamp counter
register to appear as if they never ran. While this makes it possible to avoid mal-
ware that only relies on local timing sources, it is not possible to avoid malware
that uses remote timing.

3.2 Differential analysis

A different way to detect anti-debugging capabilities, without suffering from
large performance overhead induced by fine-granularity analysis, is by compar-
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ing the behavior of malware in a clean reference and in an instrumented analysis
environments. Any deviations in behavior imply that the modified analysis en-
vironment is detected. This method does not show exactly how a debugger is
detected. The exploit can be deduced from analysing the malware behavioral
log that was used for comparison, but if the granularity of information in the
log is not fine enough, the exploit might slip through. This method was used
in [6] to determine popularity of anti-tampering techniques in malware. 6900
distinct malware samples were run in a clean, debugged and virtualized envi-
ronments while having their behavior recorded. The results showed that 40% of
samples executed fewer malicious actions in debugged and virtualized environ-
ments compared to the referenced one. A malicious event is defined by authors
as an event that causes persistent changes to the system. A one-to-one compar-
ison was done on the produced behavior logs.

Comparing behavior of malware in this fashion might not yield reliable re-
sults, as stated by [3], who implement a “record and replay” system in their work.
They state that Windows OS is very complex and it is possible for the same mal-
ware sample to exhibit slightly different behavior when executed in the same
environment. This could happen if, for example, the execution of malware re-
lies on external sources, such as internet, some parameters change, such as CPU
load. The authors define the behavior of malware to be a sequence of system
calls with their arguments. System calls provide means for malware to commu-
nicate with its environment and to cause persistent changes. The authors record
the system calls with arguments and output values in the reference system and
then “replay” this information on the analysis system.

The main part of architecture of the [3] is a kernel driver installed on both
reference and analysis systems. The driver hooks the System Service Descriptor
Table (SSDT), which is a structure that is used as an entry point to every system
call. On the reference system, this makes it possible to record the system calls
performed by malware with the according arguments and outputs. When mal-
ware sample is run in the analysis system, the driver detects the identical system
calls, but it replaces the results of these calls with values from the reference sys-
tem, instead of passing them to the OS. Small timing differences can cause tem-
poral deviations in behavior, e.g. asynchronous function calls. The system call
matching algorithm is implemented in a flexible way because of that. It uses two
queue structures and has “lookahead” functionality. One of the queues holds
the system calls that appeared on the analysis system but not on the reference
one, while the other queue holds the opposite - system calls that appear on the
reference system but not in the analysis. Some system calls have side effects and
can’t be replayed - memory allocation e.g. These have to be forwarded to the OS

“Replaying” malware actions is a more complex task than simply observing
its behavior, as it is necessary to handle all the possible side effects. The system
also completely relies on in-guest components, which could be detected. This
could be solved by employing HVM, but that could also decrease performance.

[30] is a differential analysis system built on top of Cuckoo. It is argued that
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organizations employ different environments in their infrastructure, e.g. Linux
servers and Windows hosts. The main goal of the system is to automatically exe-
cute a malware sample in different environments in order to assess the damage.
A more hollistic view of malware behavior can be gained by executing it in differ-
ent environments. The main difference from the work done in this project is the
fact that the environments employed by authors are static, meaning that mal-
ware is allowed to run loose in VMs prepared on beforehand. The environment
used in this project is more dynamic in a sense that a debugger must actually
run and execute the malware. This project is also more focused on detecting
anti-debugging capabilities in malware, while [30] is more focused on gaining a
complete picture of a malware’s sample behavior.
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Chapter 4

Solution

4.1 Obtaining samples

In order to evaluate if the solution is working, a ground truth set of malware
samples is needed. This set contains samples that certainly do have observable
anti-debugging behavior. It can then be used as an input to the created solution
to see if it can identify the samples as evasive. Two possibilities were explored
for creation of this set.

It is possible to create a non-malicious sample with anti-debugging capabili-
ties in the lab environment. This allows much more control than if a sample was
found in the wild and it is possible to focus only on anti-debugging. The down-
side is that the methods used in the benchmark sample are the ones that have
been already discovered and studied and newer methods might be missed. An-
other approach is to obtain samples from the wild, as infrastructure for doing so
already exists in the form of malware research repositories, such as VirusShare
[33]. The samples obtained in this way would also need to be studied in order to
confirm the presence of anti-debugging methods.

4.1.1 Benchmark sample

A sample that performs a debugger check using an inline assembly function and
simulates malicious activity by checking a registry key and creating a file was
written in C++. The being_debugged function, shown in Listing 4.1, is used for
debugger detection. This type of detection method was chosen because it is one
of the simplest methods an attacker can use to detect if his malware is being de-
bugged yet it is also stealthy enough to not use any APIs, rendering API - hooking
instrumentation methods, such as ones used in Cuckoo and other sandboxes,
blind to this attack. The goal of this method is to check whether BeingDebugged
flag of Process Environment Block (PEB) structure [25] is set. The FS register
is used by Windows OSs to store the Thread Environment Block (TEB), a data
structure that describes currently running thread. The address of PEB is stored
at offset 0x30h. The square brackets used with mov command mean that instead
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of copying the address itself, the content stored at that address is copied into the
EAX register. The BeingDebugged flag is stored at offset 0x02h and this value is
moved into EAX. The last bit denotes whether the flag is set and so a bitwise and
operation is used and the answer, either 0 or 1, is stored in the result variable.

Listing 4.1: Debugger detection function

1 bool being_debugged(){
2
3 int result = 0;
4 //Bitwise and operation is used to get the least significant bit(being debugged)
5 _asm{
6 mov eax, FS:[0x30]
7 mov eax, [eax + 0x02]
8 mov ebx, 01
9 and ebx, eax

10 mov [result], ebx
11 };
12
13 if (result == 1){
14 return true;
15 }
16
17 return false;
18 }

The main function of the sample can be seen in Listing 4.2. The sample first
checks if it is being debugged by calling being_debugged function and stops
execution if that is true. If the sample is not being debugged, it will call the
vbox_reg_check function and create a new text file to simulate malicious activity.
The vbox_reg_check function uses RegOpenKeyEx and RegQueryValueEx, which
are Windows API functions used for working with register. When this sample is
run by Cuckoo, it becomes obvious if a debugger was detected by looking at API
call trace, accessed registry keys and modified files lists of the analysis report,
because the registry checks and file creation attempts will be absent.

Listing 4.2: The branching of behavior in the benchmarking sample

1 int _tmain(int argc, _TCHAR* argv[])
2 {
3 if (being_debugged()){
4 return 0;
5 }
6 else{
7 bool result = vbox_reg_check();
8 std::ofstream myfile;
9 myfile.open("log.txt");

10 myfile << "Malicious activity\n";
11 myfile.close();
12 }
13 return 0;
14 }
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4.1.2 Real world samples

The SW9 project [15] researched VM detection methods that could be used by
malware to avoid being analysed. Malware samples were run in Cuckoo which
generated behavior reports that were uploaded to MongoDB. The database con-
tains analysis reports of 80000 malware samples. This resource is reused in this
project in order to generate a ground truth of samples. The data stored in Cuckoo
reports is not enough to detect malware that uses inline assembly methods for
debugger detection, such as the benchmarking sample, but it is possible to find
samples that check for debuggers in other ways. The reasoning is that if a sam-
ple checks for a debugger in a way that is detectable with Cuckoo data, it might
also perform other checks that remained undetected so far.

Cuckoo reports contain a very rich API trace and debug detection methods
that use Windows API were queried for first. The interesting API functions are Is-
DebuggerPresent and FindWindow, because these are the easiest for an attacker
to use - one API call reveals whether a debugger is present or not. The former
function checks the PEB structure and returns the value of BeingDebugged byte
which is set by the debugger when it starts or attaches to a process. The latter
function can be used to find open windows in the desktop. If supplied with ar-
guments such as “OllyDbg”, it will return a handle to the window with that name.
Lastly, MongoDB was queried for samples that check HKEY_LOCAL_MACHINE
(HKLM) \SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry
key. This key is associated with automatic postmortem debugger in Windows -
a debugger that starts automatically if an application crashes. These 3 queries
yielded 17 unique results from a total of 80000 samples.

The actual samples were obtained by searching VirusShare repository for
matching md5-checksums present in corresponding Cuckoo reports. A Win-
dows 7 VirtualBox VM with OllyDbg was created and samples were analysed by
hand looking specifically for assembly code that checked BeingDebugged flag
of PEB, as this is one of the easies checks for a malware writer to perform. The
attempt was unsuccessful and no traces of inline assembly checks were found
during manual analysis. Some of the analysed samples also made system unsta-
ble and crash. This can probably be attributed to other malware defense mech-
anisms, such as packing.

4.2 Differential analysis

Two environments are needed in order to perform differential analysis - one for
reference and one for analysis. Both environments use VirtualBox for virtual-
ization and Windows 7 32 bit edition with network simulated by INetSim with
default configuration and no real access to the internet. The only difference be-
tween the two environments is the presence of GDB on the analysis machine,
which was installed as a part of Minimalist GNU for Windows (MinGW) [27].
GDB was chosen for this project because of authors basic familiarity with it and
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knowledge that it is possible to automate the process of running an application
under it.

Just having GDB installed on one of the system would not be useful for the
purpose of anti-debugger malware detection. A Cuckoo analysis package was
created in order to automatically start the malware sample under the debug-
ger and allow it to run. A Cuckoo analysis package tells the in-guest agent how
to process certain types of malware, e.g. .pdf samples are opened with Adobe
Reader. The .exe package was taken as a base for this project. It starts a mal-
ware process in a suspended state and injects it with the instrumentation dll to
hook the API functions in default reference environment. The modified pack-
age, which is used in the analysis environment, attaches the GDB after the pro-
cess is created but before it is resumed. GDB knows which process to attach to
because it is supplied with a path to the process as well as the process identi-
fier in the form of arguments. To automatically continue running the process,
the debugger is supplied with “-ex cont” command. “-ex” executes one GDB
specific instruction which in this case is “cont”. When “cont” instruction is exe-
cuted without parameters, the process is allowed to execute until a breakpoint,
error or termination is encountered.

To generate the reports, a malware sample is run once in the reference and
once in the analysis environments. The work performed in [3] states that a com-
parison based on only two executions is not reliable, and it is possible for the
analysis results to be different even if the environment and the sample remained
the same. This can be caused by e.g. a sample relying on external conditions,
such as time or different command from the botmaster or internal conditions,
such as CPU or memory load. The authors of [3] avoid this problem by using
“record and replay” functionality of their system, as described in Section 3.2.
This approach is very complex as not all system calls can be replayed, as some
have important side effects, such as memory allocation. This is not possible to
implement by only using Cuckoo modules and the source code would have to
be modified or completely rewritten. Cuckoo injects a dll into malware process,
CuckooMonitor, in order to hook APIs. This is the part that could have been
modified to implement the “replay” functionality. It would have to be modi-
fied heavily as it would need access to the analysis report generated in the refer-
ence environment. An alternative solution would be to implement the “record
and replay” by using HVM. It is impractical with the current Cuckoo architec-
ture, which relies on an in-guest agent and a TCP connection to the host ma-
chine for communication. The strongest point of HVM, in the context of mal-
ware analysis, is the possibility of an agentless (no in-guest components) anal-
ysis system. As Cuckoo relies on an agent component, using HVM would mean
redefining and reimplementing a big part of the system in addition to a nec-
essary VMM component. The authors of Cuckoo have expressed an interest in
the VM-introspection technique - analysing the malware with no in-guest com-
ponents [14]. Implementing VM-introspection without support from VMM in
general and hvm! (hvm!) specifically can be very difficult and it is possible that
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Cuckoo will support this feature in the future. As of now, the “record and replay”
functionality is out of scope for this project.

Listing 4.3: API call 34 in reference
environment

1 {
2 "category": "registry",
3 "status": true,
4 "return": "0x00000000",
5 "timestamp": "2015−05−05

03:51:13,251",
6 "thread_id": "916",
7 "repeated": 0,
8 "api": "RegOpenKeyExW",
9 "arguments": [

10 {
11 "name": "Handle",
12 "value": "0x0000007c"
13 },
14 {
15 "name": "Registry",
16 "value": "0x80000002"
17 },
18 {
19 "name": "SubKey",
20 "value": "Hardware\\

Description\\System"
21 }
22 ],
23 "id": 34
24 },

Listing 4.4: API call 34 in analysis
environment

1 {
2 "category": "system",
3 "status": false,
4 "return": "0xc0000135",
5 "timestamp": "2015−05−05

03:52:17,496",
6 "thread_id": "2412",
7 "repeated": 1,
8 "api": "LdrGetDllHandle",
9 "arguments": [

10 {
11 "name": "ModuleHandle",
12 "value": "0x02100210"
13 },
14 {
15 "name": "FileName",
16 "value": "mscoree.dll"
17 }
18 ],
19 "id": 34
20 },

The comparison of two reports is implemented as a standalone utility in the
form of a python script. Implementing comparison functionality in Cuckoo re-
porting stage was refrained from. As discussed in Section 2.4, this does not fit the
Cuckoo workflow of analysing one malware sample at the time. The comparison
utility takes two arguments - the IDs of the runs that are to be compared. These
IDs denote the folder names where the analysis results are stored. The utility
loads both reports and compares the API call trace, the modified files and reg-
istry keys. The results are stored as a text document that contains the differences
between the reference and analysis runs. The current comparison mechanism
goes through API calls line by line without considering the arguments. If a dif-
ference is spotted, both API calls are written down in the log. The registry keys
and modified files are compared using the set-intersection operation, meaning
that the order in which these were stored in the analysis file does not matter,
compared to the API call comparison. Figure 4.3 and Figure 4.4 are two API calls
of the benchmarking sample that was run in the reference and analysis envi-
ronments respectively. The line by line API comparison mechanism spots a dif-
ference here, because the behavior of the sample branches at this point in the
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execution and it calls two different APIs. This branching is clearly visible at line 6
of the source code demonstrated in Figure 4.2. The branching happens because
the analysis environment runs the sample with a debugger attached and this is
spotted by the being_debugged function. Listing 4.5 is the result of the com-
parison utility executed on benchmarking sample reports. The “-” means that a
file or a registry key was present in the reference run but not in the analysis run,
while a “+” means the opposite.

Listing 4.5: Comparison result of benchmarking sample that was run in refer-
ence and analysis

1 ========== API call names comparison ==========
2 Comparing process: 0
3 call number: 34 RegOpenKeyExW > LdrGetDllHandle
4 call number: 35 RegQueryValueExW > ExitProcess
5 ========== Files comparison ==========
6 − C:\Users\John\AppData\Local\Temp\log.txt
7 ========== Registry keys comparison ==========
8 − HKEY_LOCAL_MACHINE\Hardware\Description\System

4.2.1 Improvements

The comparison utility is a proof of concept and it suffers from some limitations.
One of the possible improvements that could enhance the tool a lot is modifi-
cation of the mechanism used for API comparison. There are two things that
can be improved - the reliance on line-by-line comparison and arguments. The
arguments of API calls are not considered in the current version and this can af-
fect the detection rates. API functions such as LoadLibrary or GetProcAddress
will be considered equal even if they are loading completely different modules.
The comparison mechanism can also be improved by implementing a margin
for error in form of buffers and lookahead functionality, as suggested in [3]. It is
curently implemented in a very strict way - it compares API calls by their place-
ment, meaning that API call number 1 of run 1 is compared only to API call num-
ber 1 of run 2. If the API call trace is identical for both runs, except that one of the
runs has one less or one more call, the sample will be flagged as evasive, which
is likely not the case.

Another weakness of the comparison mechanism, in case of files, is its re-
liance on names expressed in a string format. It is dangerous because malware
can create files in analysis environment with the same name as in reference en-
vironment, but with completely different content. This can be avoided by using
checksum techniques.

Because the sample is run by a real debugger in the analysis environment,
all the exceptions generated by malware will be presented to the debugger first.
This part is currently not automated, even though an exception generated by
malware means that it has likely crashed and has to be restarted. A similar attack
vector using int 3 instructions can be used by malware. Int 3 is an instruction
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used by debuggers to generate software breakpoints. Malware can insert these
instructions on purpose to slow down and confuse researchers doing manual
analysis, but it will also stop the current system because skipping the breakpoint
instructions is not yet automated.
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Chapter 5

Conclusion

Arms race is the current state of computer security field and more malware are
becomming “armored” with anti-tampering techniques, such as debugger de-
tection. The goal of this project was to improve Cuckoo, one of the current open
source sandbox analysis environments in active development, to be able to de-
tect samples employing anti-debugging techniques. Two possible approaches
to this problem were researched - instruction tracing and differential analysis.

Instruction tracing is based on CPU’s debug facilities to log all the instruc-
tions executed by malware. This is a very fine grained analysis at low abstraction
level. If this technique is implemented in a more stealthy fashion, using HVM, it
becomes very expensive as every instruction executed by malware results in sev-
eral context switches in CPU. It also requires a new analysis component which
is capable of detecting whether the executed code was evasive or not. This solu-
tion is very complex as it would require modification of VMM code as well as the
source code of Cuckoo. Differential analysis was chosen as an alternative. It re-
quires execution of malware in two environments - reference and analysis. The
analysis environment is modified to include traces of a debugger. After malware
has been executed in both environments, the analysis reports are compared and
a sample is declared evasive if there is a difference. This approach is cheaper
than instruction tracing. It requires a comparison component in order to de-
termine if the sample is evasive. This approach also captures all the detection
methods, even 0-day exploits, but it is not possible to examine them in full detail
like it could have been if an instruction trace was present.

An implementation that relies on Cuckoo customizable structure was cre-
ated. An analysis package is used to attach a real debugger to the malware .exe
file in the analysis environment. A utility tool that compares the results of two
runs, one in reference and one in analysis environments, is implemented in
python. The comparison mechanism is basic as it only considers API names,
registry keys and files. The comparison of API calls can be further improved if
arguments are considered and if the comparison is done in a more flexible way
with lookahead functionality.
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