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Synopsis:

This master thesis describes the design and
development of position and attitude determi-
nation and control of a rocket. The project
is motivated by the general need of cheaper
launch opportunities for an ever growing mi-
cro satellite market. The goal is to achieve a
cheap and efficient solution in the form of the
self-foraging rocket concept, inspired by the
work of Yemets et al. at Dniepropetrovsk Na-
tional University.
The overall design of the rocket is done from
scratch starting with the initial mechanical
concept of the rocket, followed by the sen-
sors and actuators it will employ, and consec-
utively the mechanical dimensioning of each
thruster to be utilized. Additionally a general
ascent trajectory is calculated to launch the
rocket into orbit, to be tested in a complete
simulation environment designed in Simulink.
Furthermore an extended Kalman filter is de-
signed to estimate the states of the rocket,
while both waypoint and sliding mode is de-
signed for the control of the rocket.
The EKF was shown to be able to sufficiently
estimate the states of the system in three dis-
tinct nominal tests.
A waypoint tracking controller, for following
an optimal ascent trajectory, and a sliding
mode controller is implemented as position
control systems for launching the rocket into
orbit. Despite for showing good performance
for controlling the rocket, none of the con-
trollers are able to inject the rocket into orbit
with satisfactory results.

The contents of this report are freely available, but publication (with specification of source) may
only take place after arrangement with the authors.





Preface

Reading Guide

Sources given in the beginning of a section apply to all subsections. Additional sources may
be given in subsections. Citations are given in square brackets indicating the author (first) and
the year of publication (last two ciphers), i.e. Robust Model-Based Fault Diagnosis for Dynamic
Systems from 1999 by J. Chen & R. J. Patton is given as [Chen 99]. Figures, equations and tables
are numbered according to chapter and location, e.g. third figure in chapter five is numbered 5.3.
Units are given in square brackets in symbolic equations and without brackets otherwise.
Symbols, acronyms, general notation and reference frames used in this report are presented in
the nomenclature after this preface. Appendices are placed after the main report, referred to by
capital letters, followed by the Bibliography.
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Notation

Vectors and Matrices
A vector, v, is noted

v =

v1
v2
v3

 , v =

vxvy
vz

 or v =
[
v1 v2 v3

]> (1)

A vector, v, that has the subscript, k, is noted

vk =

vk,1vk,2
vk,3

 or vk =

vk,xvk,y
vk,z

 (2)

A vector, v, that has the subscript, k, and an index number, i, is noted

vk,i =

vk,i,1vk,i,2
vk,i,3

 for i = 1, 2, ..., p vk =


vk,1,1vk,1,2
vk,1,3

 ,
vk,2,1vk,2,2
vk,2,3

 , ... ,
vk,p,1vk,p,2
vk,p,3

 (3)

A matrix, M, is noted

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (4)

A matrix, M, that has the subscript, k, is noted

Mk =

Mk,11 Mk,12 Mk,13
Mk,21 Mk,22 Mk,23
Mk,31 Mk,32 Mk,33

 (5)

A matrix, M, that has the subscript, k, and an index number, i, is noted

Mk,i =

Mk,i,11 Mk,i,12 Mk,i,13
Mk,i,21 Mk,i,22 Mk,i,23
Mk,i,31 Mk,i,32 Mk,i,33

 for i = 1, 2, ..., p (6)

Mk =


Mk,1,11 Mk,1,12 Mk,1,13
Mk,1,21 Mk,1,22 Mk,1,23
Mk,1,31 Mk,1,32 Mk,1,33

 , ... ,
Mk,p,11 Mk,p,12 Mk,p,13
Mk,p,21 Mk,p,22 Mk,p,23
Mk,p,31 Mk,p,32 Mk,p,33

 (7)

If a part, of more than one value, of a vector, v, or a matrix, M, is wanted for use in another
equation, the following notation is used

v2:3 =
[
v2
v3

]
v1;3 =

[
v1
v3

]
(8)

M1:2;1:3 =
[
M11 M12 M13
M21 M22 M23

]
M1,2;1,3 =

[
M11 M13
M21 M23

]
(9)

The entry-wise multiplication of two vectors or matrices of the same dimension are noted as
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Ma ~ Mb =


Ma,11Mb,11 Ma,12Mb,12 · · · Ma,1nMb,1n
Ma,21Mb,21 Ma,22Mb,22 · · · Ma,23Mb,23

...
...

. . .
...

Ma,m1Mb,m1 Ma,m2Mb,m2 · · · Ma,mnMb,mn

 (10)

Reference Frames and Versors
A vector, v, given in ECI is noted by

iv =

iv1
iv2
iv3

 or iv =

ivx
ivy
ivz

 (11)

A quaternion q given by

q = q4 + iq1 + jq2 + kq3 is noted q =


q1
q2
q3
q4

 (12)

Given two quaternions

q =


q1
q2
q3
q4

 and p =


p1
p2
p3
p4

 (13)

The quaternion multiplication of these is given by

q ⊗ p = [q]⊗p =


q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4



p1
p2
p3
p4

 (14)

A versor, q, rotating a vector from ECI to CRF, and its complex conjugate, rotating a vector
from CRF to ECI, are noted

c
iq =


c
iq1
c
iq2
c
iq3
c
iq4

 and c
iq∗ =


−c

iq1
−c

iq2
−c

iq3
c
iq4

 = i
cq =


i
cq1
i
cq2
i
cq3
i
cq4

 (15)

The quaternion representation of a vector, iv, is given by

q(iv) =
[iv

0

]
(16)
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Symbols

Symbol Description Unit
A Cross sectional area of object perpendicular to ||v|| [m2]
Ae Nozzle exit area [m2]
Af Cross sectional area of fuel shell [m2]
A∗ Throat area [m2]
rAcc Accelerometer measurement [m/s2]
a Semimajor axis [m]
ra Dynamical acceleration of rocket [m/s2]
b Semiminor axis [m]
Cd Aerodynamic drag coefficient [·]
c Center of ellipsis [m]
rdIMU Position of IMU in RBRF [m]
rdk Position vector of kth vernier thruster in RBRF [m]
e Eccentricity [·]
fext Sum of external forces [N ]
g0 Gravitational acceleration of Earth at sea-level [m/s2]
rg Gravitational acceleration seen in RBRF [m/s2]
h Height above sea level [m]
he Height of the engine [m]
hf Height of fuel shell [m]
hp Height of the payload [m]
ih Angular momentum [Nms]
Isp Specific impulse [s]
i Inclination [◦]
J2 Oblateness [·]
rJ Moment of inertia [kg·m2]
L Angular momentum [Nms]
m0 Initial mass of the rocket [kg]
me Mass of the engine part of AAURocket [kg]
mf Final mass of the rocket [kg]
mo Mass of the oxidizer cylinder of AAURocket [kg]
mPL Mass of payload [kg]
mP Propellant mass [kg]
mS Structural mass [kg]
ṁ Mass flow [kg/s]
ṁf Fuel mass flow [kg/s]
M Molecular weight [g/mol]
Ma Molecular weight of air [g/mol]
pe Exhaust pressure [Pa]
pa Ambient pressure [Pa]
pc Chamber pressure [Pa]
RE Radius of Earth [m]
R Universal gas constant [ J

mol·K ]
ra Distance from center of orbit to apoapsis [m]
ir General position vector [m]
re Radius of the engine part of AAURocket [m]
rf Width of the hollow fuel shell of AAURocket [m]
ro Radius of the oxidizer cylinder of AAURocket [m]
||iro|| Orbit height [m]
rp Distance from center of orbit to periapsis [m]
Ta Air temperature [K]
Tc Chamber temperature [K]
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rTk Thrust of kth vernier thrust in RBRF [N]
Tmax Max thrust [N]
T Thrust [N]
iur Unit vector along ir [·]
iu⊥ Unit vector along iur along direction of travel [·]
ue True exhaust velocity [m/s]
v True anomaly [◦]
ve Effective exhaust velocity [m/s]
||ive|| Velocity of mass expelled [m/s]
||ivo|| Orbit speed [m/s]
||ivr|| Speed component of object along iur [m/s]
||iv⊥|| Speed component of object along iu⊥ [m/s]
∆v Change in velocity [m/s]
α Angle between noon line and the ascending node [◦]
α General rocket angular acceleration vector [rad/s2]
γ Reference vector [·]
γ Isentropic expansion factor [·]
ε Structural ratio [·]
ηn Nozzle efficiency [·]
ηr Reaction efficiency [·]
ηt Total engine efficiency [·]
θ General rocket angle vector [rad]
θa Angle between the apse line at periapsis [◦]
λ Payload ratio [·]
µ Standard gravitational parameter [m3/s2]
µE Standard gravitational parameter for Earth [m3/s2]
πPL Payload fraction [·]
ρf Density of the fuel (HDPE) for AAURocket [kg/m3]
ρo Density of the oxidizer (H2O2) for AAURocket [kg/m3]
ρa Density of ambient air [kg/m3]
τe External torques [Nm]
τt Thrust torque [Nm]
τv Vernier thruster torque [Nm]
Ω Longtitude of ascending node [◦]
||Ω|| Magnitude of change rate [rad/s]
ω Argument of periapsis [◦]
rω Angular velocity of rocket [rad/s]
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Terminology

apoapsis The point in the path of an orbiting body at which it is farthest to the
body that it orbits

Burn-out Main rocket engine shut down
burn-time The time period where the primary thruster is performing forward

thrust
Coasting A period of the launch (or spaceflight) where no control and/or actuator

action is performed.
Cryogenic Rocket
Engine

A rocket engine utilizing fuel and/or oxidizer that are cooled to very low
temperatures in order to remain in liquid state. A common fuel-oxidizer
combination for a cryogenic engine is H2 and O2.

Dry weight Dry weight is the weight of a vehicles/vessel excluding any consumables,
passengers and cargo.

Endoatmospheric Inside the inner atmosphere of earth. The inner atmosphere extends up
to approximately 100 km above the surface of earth.

Exoatmospheric Outside the inner atmosphere of earth. The inner atmosphere extends
up to approximately 100 km above the surface of earth.

Fairing An external metal or plastic structure added to increase streamlining
on a high-performance vehicle

Periapsis The point in the path of an orbiting body at which it is nearest to the
body that it orbits.

Vernier Thruster Small thruster mounted at an angle of the main thrust vector. By
enabling the vernier thruster the vehicle in question will rotate

Versor Quaternion with l2-norm of 1. In this thesis, these are used for describ-
ing rotation between reference frames.
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Chapter 1

Purpose and Mission of AAURocket

1.1 Introduction

The idea of rockets being used as launch vehicles to travel to space goes back more than a hundred
years. However, it was not until russian inventor Konstantin Tsiolkovsky coined the idea of multi-
stage rockets in 1929 in his book “The space rocket trains” [Encyclopedia 04] that the theory of
chemical rockets reaching space actually seemed plausible. In 1957 this multi-stage concept was
successfully utilized with the Sputnik Launch Vehicle when it made the first successful launch of
a satellite to space with Sputnik 1 [Zak 13]. This marked the start of the space age, and with it, a
rocket industry was born which is infamous for its astronomical costs and virtually zero reusabil-
ity of its hardware. While launch vehicles like the NASA Space Shuttle has used designs that
can reuse jettisoned hardware, the most common scenario is, that anything that is ejected during
launch is discarded after use. Through the decades this norm has been a satisfactory solution to
the needs of the space industry.
However, during the past 15 years the demand for launches for microsatellites (1kg-100kg) has
seen a large growth [Bradford 13], and the tendency in demand is still on the rise. By the year
2020 there is a projected demand of up to 188 launches. A large part of the small satellite market
is dominated by the nanosatellites (1kg-10kg) which includes the popular CubeSats. Due to the
often limited budget of a CubeSat, the most common way of launching these satellites is to use
the way of “piggyback launch” [JAXA 03]. These kind of launch opportunities usually suffer from
orbital restrictions set by the main payload, leading to suboptimal orbital parameters for the
microsatellite itself.
These microsatellite launch clients all have a common interest in being able to dictate their own
orbital parameters while still obtaining a cheap launch opportunity. This will only be possible by
creating a cheap and inherently efficient launch system.
This master thesis will attempt to create the basis for such a launch system, utilizing design ideas
from the Dnipropetrovs’k National University (DNU). In particular the concept of a self-foraging
rocket. This launch vehicle will throughout the report be referred to as AAURocket.

While the focus of the master thesis is to develop estimation and control algorithms, the project
is also considered as an initial study to lay the basic groundwork for a possible larger umbrella of
projects revolving around the subject of space and rocket theory, for other students interested in
these matters. This inherently means that a lot of theoretical and practical assumptions are made
throughout the report, sometimes with recommendations to examine certain problems closer if
anyone were ever to proceed where this thesis ends.
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CHAPTER 1. PURPOSE AND MISSION OF AAUROCKET

1.2 Mission

The mission of AAURocket is the core objective which it must achieve in order to be reviewed as
a success. The following section will outline the different choices and limitations that has been
considered in order to obtain the final mission statement.

1.2.1 Payload
One of the primary factors that defines the mission of a launch vehicle is obviously the payload
which it carries. The intended payloads of AAURocket will primarily be CubeSats and/or other
microsatellites. The choice of payload stems from the needs of cheap launch vehicles for such
satellites as expressed in 1.1.
A restriction all satellites has to comply with is the 2002 UN Inter-Agency Space Debris Mitiga-
tion Coordination Committees guideline, of allowing satellites to have a maximum lifetime of 25
years, in the low earth orbit region [Committee 02].
Combined with the fact that a common feature of CubeSats is a lack translational actuation capa-
bilities. This in turn imposes a maximum average orbital injection periapsis of 640km [Leveque 11].

1.2.2 Orbital Parameters
While an upper bound has been established for the orbital periapsis, there are no restrictions for
other orbital parameters. These parameters is ideally chosen by the client of AAURocket.
For this master thesis several assumptions are made as to have a general use-case for all of the
orbital calculations.
The launch center of AAURocket is chosen to be at Aalborg University, while the target orbit is
chosen to be a circular orbit with an altitude of 500km.
Furthermore the orbit is also chosen to be sun-synchronous, as this type of orbit provides suffi-
cient communication capabilities for Danish space missions, with mission control centers located
in Denmark.

1.2.3 Mission Statement
Following is the mission statement of AAURocket:

“The mission of AAURocket is to launch a payload 1 of maximum 50kg into a 500km altitude sun
synchronous circular orbit.”

1.3 Thesis Outline

Following is a short description of what each of the chapters containts.

Chapter 2 - Orbit General reference frames used for respective object orientations are pre-
sented, followed by the versors used to calculate the rotations between each reference frame.
The general Keplerian orbit elements are also presented in order to describe the target orbit of the
AAURocket. The orbital parameters guarding this orbit is successively calculated using orbital
mechanics. These orbital parameters include orbit velocity, period, inclination, and angle of the
ascending node.

1In this case the payload is referred to as the entire nose of the rocket. That is, including both satellite, fairing,
and other structural components launched in to orbit.
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1.3. THESIS OUTLINE

Chapter 3 - System Requirements This chapter outlines the general system requirements
set for the overall mission of AAURocket, by examining other launch vehicles and their require-
ments. These mission requirements ultimately lead to specific subsystem requirements for both
the position and attitude determination system and the control system.

Chapter 4 - Mechanical Design The basic concept of launch vehicle based on the chemical
rocket design is presented in this chapter. Additionally Tsiolkovsky’s Rocket Equation is presented
in order to evaluate different rocket setup efficiencies, of which the single stage, the multi stage
and the infinite stage rockets are compared.
Finally the concept of a self-foraging rocket is presented as imagined by Yemets et al. from
Dniepropetrovsk National University. In order to achieve a cheap high efficiency design the con-
cept of self-foraging rockets are adopted as the design strategy for AAURocket.

Chapter 5 - Guidance-Hardware Design In this chapter both general sensors and actua-
tors are presented in order to make qualified choices on what types of hardware to consider for
AAURocket. Several different sensor types are chosen embedded on a single inertial measurement
unit, while the general actuator choice falls on the vernier thruster method.
Additionally different general thrust profile strategies are presented in order to determine over-
all constraints for the AAURocket thrust and ascent profile. From these constraints the general
engine block is designed. Furthermore, each thruster type used for AAURocket is consecutively
dimensioned from the thermodynamic chemical rocket equations presented.

Chapter 6 - Rocket and Disturbance Modeling The general equations of motion and rota-
tion considered in this thesis is presented in this chapter, as well as the common major disturbance
forces. Furthermore, analytical expressions for the changing moment of inertia are presented, fol-
lowed by the thermal model of the gasification process used to gasify and consume the body of
the self-foraging rocket.

Chapter 7 - Simulink Simulation Environment In this chapter the simulation environment
created in Simulink is presented. The overall structure is outlined and each Simulink subsystem
block guarding dynamical equations, versor rotations, rocket parameters, environmental distur-
bances, sensors, and actuators are described.

Chapter 8 - Ascent Trajectory This chapter presents different ascent profile types, of which
one is chosen to design the overall optimization problem to calculate the actual ascent trajectory
to orbit. Two optimization calculations are performed: a "minimum propellant to orbit" and a
"spare propellant to orbit". Each of these trajectories are compared and the latter is chosen to be
the primary optimal ascent trajectory for AAURocket.

Chapter 9 - Position and Attitude Determination This chapter presents the linear and
extended Kalman filter, of which an overall design is made of an extended Kalman filter to serve
as the primary position and attitude determination algorithm on AAURocket. The extended
Kalman filter is tested with three nominal test setups, and is successively evaluated with respect
to the system requirements.
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Chapter 10 - Position and Attitude Control In this chapter a general waypoint controller
is presented, which will control the LV along a predefined trajectory for the early phase of the
ascent to orbit. Furthermore a sliding mode controller is presented which will control the rocket
in the later phase of the ascent trajectory.

Chapter 11 - Closure This chapter includes the conclusion of this master thesis as well as a
section about further development.
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Chapter 2

Orbit

This chapter will outline the different general reference frames and elements of orbital mechanics
used for this project. Using these definitions the general orbital parameters for the mission of
AAURocket will be calculated.

2.1 Reference Frames

Throughout this thesis several reference frames will be utilized. These frames are used to describe
the orientation of the rocket during its launch and mission. Furthermore these frames are a
convenient way to interpret sensor data relative to the rocket.

2.1.1 Earth Centered Inertial reference frame (ECI)
The Earth Centered Inertial reference frame is the primary inertial reference frame of this thesis.
A frame that is inertial implies that its motion is constrained to only be rectilinear. This in turn
means that the frame is clean of any fictitious forces.
The Earth Centered Inertial reference frame (ECI) is defined as having its origin in the centre of
mass (CoM) of the Earth. The z-axis of the ECI is pointing towards the geometric North Pole and
the x-axis is pointing towards the Sun at the vernal equinox which happens around March 20th.
The y-axis is the right-hand cross product between the z- and x-axis, making it extend through
the equator somewhere in the Indian ocean
This frame in essence does not move rectilinearly, since the Earth rotates around the sun. How-
ever, since an orbit around the sun takes a year, the change in direction of the Earth’s movement is
minuscule. In turn, the movement of this frame is assumed rectilinear due to the short timeframe
of the launch and mission of the AAURocket.
Vectors specified in the ECI frame will be denoted as: iv.

2.1.2 Earth Centred Earth Fixed reference frame (ECEF)
The Earth Centred Earth Fixed reference frame (ECEF) also has its origin placed at the centre
of mass of the Earth. It shares the same orientation for its z-axis as the ECI, however, the x-axis
is crossing the point where the Greenwich meridian and the equator meets. The y-axis is the
right-hand cross product of the z- and x-axis. Due to these features the ECEF is exactly equal to
the ECI reference frame at vernal equinox.
The ECEF frame is used to describe the position of objects with fixed orientation to the surface
of the Earth, e.g. the rocket launch pad.
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Figure 2.1: ECI and ECEF superimposed on the Earth. The ECI frame is marked in
red, and the ECEF frame is marked in blue, with a shared black z-axis.

Vectors specified in the ECEF frame will be denoted as: ev.

2.1.3 Rocket Body Reference Frame (RBRF)
The Rocket Body Reference Frame (RBRF) is a rocket body fixed reference frame used to de-
scribe the orientation and position of different elements within the rocket. The RBRF axes for
AAURocket has been aligned parallel with the rocket frame. The origin of the RBRF is placed in
the CoM of the rocket with the x-axis pointing in the direction of the nose. The y- and z-axis are
placed with respect to thruster actuators presented in section 5.4 since these are the only defining
factors of the rocket around the x-axis.
Vectors specified in the RBR frame will be denoted as: rv.

2.1.4 Control Reference Frame
The Control Reference Frame (CRF) is a reference frame placed with its origin in the CoM of the
rocket, like the RBRF.
The relation or rotation between RBRF and CRF is stationary, and is determined by the eigen-
vectors of the inertia matrix given in RBRF The z-axis of the CRF is pointing in the direction
of the major axis of the rocket, i.e. the axis with the largest inertia eigenvalue, and the x-axis is
pointing in the direction of the minor axis of inertia. The y-axis is the right-hand cross product
of the z- and x-axis, and is oriented along the intermediate axis of inertia.
With the three axes pointing in the same direction as the inertial axes, the CRF is body fixed
as the inertia of the satellite is fixed. However, had the satellite been able to change shape (i.e.
deploy solar panels), then the CRF would change.
Vectors specified in the RBR frame will be denoted as: cv.

2.2 Rotation between frames

Sources: [Wertz 78]
In order to represent vectors from one frame in another, reference frame rotations are needed.
These are mathematical operations which can be applied to a vector in a specific frame and pro-
duce a new set of coordinates representing said vector in a new frame.
There are several different ways to perform rotations including direct cosine matrices, Euler an-
gles, euler eigenaxis rotation, and more. For this project the primary construct used for rotations
are quaternions, or more specific; versors.
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2.2. ROTATION BETWEEN FRAMES

The primary reason for using versors is their inherent lack of singularities unlike their mathemat-
ical rotational counterparts.

2.2.1 Quaternions
A quaternion is a hyper-complex number consisting of a real and an imaginary part, the complex
part being a three-dimensional vector of imaginary units i, j, and k. The general quaternion
definition can be seen in equation 2.1.

q = iq1 + jq2 + kq3 + q4 ⇔ q∗ = −iq1 − jq2 − kq3 + q4 (2.1)

Seeing as i, j, and k are imaginary, these have non-commutative behaviour when being multiplied.
The relation of multiplication between the complex part can be seen in equation 2.2

i2 = j2 = k2 = ijk = −1 ij = −ji jk = −kj ki = −ik (2.2)

2.2.2 Versors
The versor is a subset of the quaternion construct. Basically a versor is a quaternion which is
constrained to always have its norm equal to one. An inherent property of this constraint is that
q−1 = q∗. Geometrically the unit length constraint means, that quaternions can be interpreted
as a four-dimensional sphere, the rotation describing a trajectory on the surface of this sphere.

q =
[
ê sin θ

2
cos θ2

]
(2.3)

In essence the versor components are closely related to the euler eigen-axis rotation. This can be
seen in equation 2.3 where the initial three components are comprised of a vector (euler vector e)
multiplied by a factor of rotation around said vector. The rotation around the euler vector can
always be readily derived from the fourth component.

Versor multiplication is defined as:

q ⊗ p = q4p4 − q1:3 · p1:3︸ ︷︷ ︸
scalar part

+ q4p1:3 + p4q1:3 + q1:3 × p1:3︸ ︷︷ ︸
vector part

= [q]⊗ p (2.4)

with

[q]⊗ =


q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4


Successive rotations can be combined as: i

cq = i
rq ⊗ r

cq ⇔ i
rq = i

cq ⊗ r
cq∗.

Rotating vectors by versors is written by transforming a vector into a versor with zero real part.
The angular velocity of a reference frame r as seen from an inertial reference frame i, denoted iωs,
can be found in the reference frame e by rotating the vector from i to e as:

[
eωr

0

]
= e

iq ⊗
[

iωr

0

]
⊗ e

iq∗ (2.5)
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Consecutive rotations described by quaternions give a non-singular, bi-linear method to go from
one reference frame to another through successive rotations. Rotating from i to r to c is imple-
mented as: [

cωr

0

]
= c

rq ⊗ r
iq ⊗

[
iωr

0

]
⊗ c

rq∗ ⊗ r
iq∗ (2.6)

For ease of notation the vector rotation by versor will throughout this report be written as:

eωr = e
iq ⊗ iωr (2.7)

The versor q and the versor −q represent the same rotation about ê in SO(3): the former of an
angle θ, and the latter of an angle 2π + θ.
Given a versor, i

rq, describing the rotation between the RBRF and the ECI frame, and knowing
that rocket is rotating within the ECI frame, it is also known that the quaternion, i

rq, changes
with time. Knowing the angular velocity, rω , of the rocket within its own frame, it is possible to
determine the time derivative of the quaternion as:

i
rq̇ = 1

2Ωi
rq = 1

2


0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3
−ω1 −ω2 −ω3 0

 i
rq (2.8)

2.3 Orbital Parameters in Terms of Keplerian Orbit Elements

An orbit described by Keplerian elements is an ideal (reference) orbit defined by two gravitationally
interacting spherically symmetric objects, where their relative velocity and position define the
orbit plane. The shape of the orbit must be an ellipsis for permanently associated objects. The
ellipsis is defined by two focus points, one being the position of the larger of the two objects (when
mlarge � msmall; in this case the Earth), and the ellipsis boundary being the trajectory of the
satellite.

××
a

c
b

empty 
focus

focus 
(Earth)

semimajor axis

semiminor 
axis

periapsisapoapsis

Figure 2.2: Geometric description of an ellipsis, defined by its semimajor and
semiminor axes, a and b. The primary (the Earth) is situated in one
of the foci of the satellite trajectory ellipsis.

The shape of the orbit ellipsis is uniquely defined by the eccentricity parameter, e, described in
terms of the semimajor axis, a, defining the size of the ellipsis; and the distance from the focus
point to the centre of the ellipsis, c; see Figure 2.2. The magnitude of the eccentricity will be
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0 < e < 1 for an ellipsis, and the smaller the value, the more circular the orbit. The eccentricity
of an orbit can be calculated by equation 2.9

e = c

a
=
√
a2 − b2

a
= ra − rp
ra + rp

(2.9)

where:

ra is the distance from the center of the orbit to the apoapsis [m]
rp is the distance from the center of the orbit to the periapsis [m]

The orientation of the orbit plane in space is defined by the inclination parameter, i, and the
east-west orientation Ω. The inclination is the angle from the equatorial plane to the orbit plane.
The intersection line between the two planes, called the line of nodes or nodeline, intersects the
orbit trajectory in two points: the ascending node, where the satellite crosses the equatorial plane
going from south to north; and the descending node, where it crosses the plane going from north to
south. The east-west orientation is defined by the right ascension of the ascending node (RAAN),
which is the angle measured in the equatorial plane eastward from the ECI x-axis (equal to the
ECEF x-axis at vernal equinox) to the ascending node, see Figure 2.3.
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Figure 2.3: Contorted sketch of a satellite orbit, describing the Keplerian orbital
elements. The centre of the Earth is in one of the two foci of the orbit
ellipse. The two angles Ω (RAAN) and ω (argument of perigee) are
measured in the equatorial and the orbital plane, respectively.

The terms periapsis and apoapsis describes the lowest and highest altitudes, respectively, during
an orbit of the satellite, measured from the surface of the Earth. The rotation of the orbit ellipsis
within the orbital plane is defined by the argument of periapsis, ω. This is the angle measured in
the orbital plane in the direction of motion of the satellite from the ascending node to periapsis.
The largest disturbance causing deviations from the ideal Keplerian orbit for low altitude orbits,
are the predominant atmospheric drag, which tend to decrease the semimajor axis of the orbit.

2.4 Orbital Parameters for the target orbit of AAURocket

This section will outline the characteristic parameters of the target orbit of AAURocket.
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2.4.1 Target Orbit Velocity and Period
Source: [Curtis 05]

In order for an object (e.g. a satellite) to stay in orbit around a larger object (e.g. the Earth), an
equilibrium between altitude, eccentricity and velocity has to be obtained. The closer the satellite
is to the planet which it orbits, the faster it needs to travel, and conversely, the further away it is
the slower it has to travel.
In order to determine the orbital speed of a satellite, the orbital equation is needed. Equation
2.10, known as the orbital equation, defines an orbiting objects path around a planet.

||ir|| =
||ih||2
µ

1 + e cos(θa) (2.10)

where

ir is the position vector ir of the element in orbit.
ih is the angular momentum vector of the object in orbit.
µ is the standard gravitational parameter of the planet which is orbited.
e is the eccentricity of the orbit.
θa is the angle between the apse line at the periapsis of the orbital ellipse

and the vector ir.
As described in section 1.2 the target orbit is required to be circular, or in other words, the ec-
centricity is required to be 0. By setting e = 0 equation 2.11 is obtained from the orbital equation.

||ir|| = ||
ih||2

µ
(2.11)

With ir as the position vector of the orbiting object, then it also follows that iṙ is the velocity
vector of said object. This velocity vector can be split up in to two components, as seen in equa-
tion 2.12.

iṙ = ||ivr||iur + ||iv⊥||iu⊥ (2.12)
where

||ivr|| is the speed component of the object in orbit along the same direction as iur
iur is the unit vector placed at center of orbit, sharing the direction of ir
||iv⊥|| is the speed component of the object in orbit along the same direction as iu⊥

iu⊥ is the the unit vector perpendicular (in the direction of travel) to iur
Furthermore the magnitude of the angular momentum is defined in equation 2.13.

||ih|| = ||ir||||iv⊥|| (2.13)

Seeing that || ir|| is constant (due to the circularity of the orbit), then || iṙ||=0. This leads to
||iv|| = ||iv⊥|| which means that the magnitude of the angular momentum for a circular orbit can
be written as seen in equation 2.14.

||ih|| = ||ir||||iv|| (2.14)
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Figure 2.4: Essentials of sun synchronous orbit.

Substituting equation 2.14 into equation 2.11 produces equation 2.15.

||ir|| = ||
ir||2||iv||2

µ
⇔

||ivcircular|| =
√

µ

||ir|| (2.15)

Using equation 2.15 it is now possible to calculate any required orbital speed for any given height
for circular orbits (see figure 2.5).
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Figure 2.5: Graph showing the relation between orbital speed, || iv||, and height
above sea-level for circular orbits.

The orbital speed for a satellite orbiting the Earth is then:

||ivo|| =
√

µE

RE + ||iro||
= 7621.6 [m/s] (2.16)

where

||ivo|| is the orbital speed for the object in orbit [m]
µE is the standard gravitational parameter of the Earth [[m3/s2]]
RE is the radius of the Earth [m]
||iro|| is the height above sea level of the orbit [m]
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Furthermore the period of the target circular orbit of 500km altitude can be calculated as:

Torbit = 2π||ir||
||ivo||

= 5668.1 [s] (2.17)

2.4.2 Orbit Inclination
Source: [Curtis 05]

For an orbit to be Sun synchronous the change of the longitude of the ascending node, Ω, must
equal that of the change of Earths position around the Sun. In this way the orbital plane will
always have the same orientation with respect to the Sun, and therefore be Sun synchronous.
However, the law of conservation of angular momentum states that when no external torque is
applied to a system, no change in angular momentum can occur. This is also true for an object in
orbit around a planet. Hence, an object in orbit around the Earth will have a static orbital plane
with respect to the ECI frame, ie. a static Ω.
Due to rotation the Earth is not a perfect spheroid, but rather oblate instead. This results in an
uneven gravitational pull from the Earth on an orbiting object depending on its position. This
oblateness can in turn be used to exert a torque on an orbiting object by choosing an inclination
which is different from 0◦ or 90◦.
Equation 2.18 describes the inclination angle of an orbit needed to obtain a certain change rate
in Ω.

i = cos−1

 Ω̇[
3
2

√
µJ2R2

E

(1−e2)2a
7
2

]
 (2.18)

where

||Ω̇|| is the magnitude of the change rate of Ω [rad/s]
J2 is the oblateness of the Earth [·]

As mentioned the change rate in the longitude of the ascending node, Ω, is required to equal that
of the Earths orbital period for the satellite orbit to be sun synchronous. This Ω change rate is
calculated in equation 2.19.

||Ω̇|| = 2π
365 · 24 · 60 · 60 = 0.19924 · 10−6 (2.19)

Furthermore, the oblateness of the Earth, J2 can be found as seen in equation 2.20.

J2 = equatorial radius− polar radius
equatorial radius = 0.00108263 [·] (2.20)

The orbital parameters for a 500 km sun synchronous circular orbit can then be substituted in to
2.18 which results in:

inclination = 1.6996[rad] = 97.38 [deg] (2.21)
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Figure 2.6: Essentials of a sun synchronous orbit, where γ is the keplerian reference
line (in this case it could be the ECI x-axis at vernial equinox), α is
the angle between the noon-line and the ascending node, Ω is the angle
between the reference line and the ascending node, and Ω̇ is the change
change rate of Ω

2.4.3 Initial Angle of the Ascending Node
It is clear from the previous section, that the only constraint that applies for an orbit to be sun
synchronous is the specific change rate of Ω. The initial angle of the ascending node is in essence
a free variable to be determined depending on the mission. There is only one factor influencing
what the initial angle of the right ascending node should be, and that is the amount of exposure
the orbit gets to the sun.

 Ω
Ω

EarthEarth

Figure 2.7: Two different sun synchronous orbits with 90◦ and 0◦ angle of the right
ascending node. The particular time instance pictured is with the sun
placed in the direction of the reference vector γ.

On figure 2.4.3 the two extremum cases of sun synchronous orbits are shown. In this case the
initial angle to the right ascending node has been pictured in such a fashion that the initial angle
of 90◦ has the orbit plane perpendicular to the sun position vector (which is aligned with the
reference vector γ). This results in this particular orbit to always be fully exposed to sunlight.
For space missions with high power demands this can be an orbit of interest due to the higher
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power input from the sun (via solar cells).
In the other case where the angle of the ascending node is 0◦ the orbit plane is parallel to the
position vector of the sun. Such an orbit can be of interest for space missions that needs to be
shielded from the sun, e.g. star observation.

In this project it is assumed that the launch time will be at either dawn or dusk such that the
final orbit will be fully exposed to the sun.

2.5 Subconclusion

In this chapter the primary reference frames, the versors to describe the rotation between each
frame, and Keplarian orbital elements has been outlined. Furthermore, all the critical parameters
for the AAURocket mission has been calculated and chosen. Following is a table showing the
combined results from this section:

Parameter Value Unit
||ivo|| 7621.7 [m/s]
To 5658.4 [s]
i 97.38 [deg]

||Ω̇|| 0.19924·10−6 [rad/s]
Table 2.1: Orbital parameters essential for the target orbit of the AAURocket.
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Chapter 3

System Requirements

In this chapter the general requirements for the AAURocket missions will be outlined, followed by
the requirements set for each subsystem in order to ensure these mission requirements are fulfilled.

3.1 Mission Requirements

The mission statement states that AAURocket has to obtain a circular sun synchronous orbit
with altitude of 500 km. The orbital parameters for such a target can be seen in 3.1

Orbital Parameter Value Unit
Altitude 500 [km]
Inclination 97.38 [deg]
Eccentricity 0 [·]
Table 3.1: Target orbital parameters.

As AAURocket is supposed to be able to compete with professional launch service providers like
Arianespace and SpaceX, the requirements for orbital insertion should be similar to those of their
product line e.g. Ariane 5 or Falcon 9.
According to the user manual for Ariane 5 [Arianespace 11a], Arianespace offers a typical standard
deviation in orbit eccentricity of 0.35 ·10−3 for a circular orbit while SpaceX expects their Falcon 9
to ensure an eccentricity of 1.45 · 10−3 [SpaceX 09]. Furthermore, Ariane 5 ensures perturbations
below 0.02◦, while the expected maximum is 0.1◦ for the Falcon 9.
With regards to altitude, the Ariane 5s typical standard deviation is 2.5 km, while SpaceX expects
a maximum deviation of ±10 km.

Thereby performance for AAURocket, with regards to altitude, is deemed satisfactory if the target
parameters for apoapsis and periapsis are obtained within ±10 km.

Taking into account that Arianespace has far more experience than SpaceX, it is deemed satis-
factory that AAURocket should comply with the expected maximum deviation of the Falcon 9.
Thus the allowed perturbation for each orbital parameter for AAURocket can be seen in table 3.2.

The requirements listed in table 3.2 are the chosen requirement perturbations for the orbital
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Requirement Orbital Parameter Value Maximum Perturbation Unit
M.R1 Eccentricity 0 + 1.45 · 10−3 [·]
M.R2 Altitude 500 ± 10.0 [km]
M.R3 Inclination 97.38 ± 0.100 [deg]

Table 3.2: Positional mission requirements.

parameters. Each of the orbital parameters are affected by both the position and velocity at the
time of insertion. When determining if the requirement for eccentricity is fulfilled, equation 2.9
can be used by finding the apoapsis and periapsis of the obtained orbit and using these to calculate
the eccentricity. Table 3.3 can be used as a guideline for determining if the system complies with
the requirements. The table shows orbital insertions in the range of altitudes at ± 10 km at speed
errors in the range of ± 10 m/s, where the entries containing a 1, are the orbital insertions that
comply with the requirements for altitude and eccentricity.

Speed error [m/s]
-10 -8 -6 -4 -2 -1 0 1 2 4 6 8 10

A
lti
tu
de

er
ro
r
[k
m
]

-10 0 0 0 0 0 0 0 0 0 0 0 0 0
-8 0 0 0 0 0 0 0 0 0 1 1 1 0
-6 0 0 0 0 0 0 0 0 0 1 1 0 0
-4 0 0 0 0 0 0 0 1 1 1 1 0 0
-3 0 0 0 0 0 0 1 1 1 1 0 0 0
-2 0 0 0 0 0 1 1 1 1 1 0 0 0
-1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0
2 0 0 0 1 1 1 1 1 0 0 0 0 0
3 0 0 0 1 1 1 1 0 0 0 0 0 0
4 0 0 1 1 1 1 0 0 0 0 0 0 0
6 0 0 1 1 0 0 0 0 0 0 0 0 0
8 0 1 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.3: Orbital insertions with altitude errors in the range of ± 10 km and speed
errors in the range of ± 10 m/s. Each entry contains a logical value
that indicates if the insertion properties comply with the requirements
for altitude and eccentricity.

By the data shown in table 3.3 it is seen that the orbital insertion have to be done with an
accuracy in altitude of ± 2 km and an accuracy in speed of ± 1 m/s. It is also seen that if the
altitude is off by 8 km it is still possible to get into acceptable orbit if the error of the speed is
- 8 m/s. Even though there is a risk of getting into an orbit that does not comply entirely with
the mission requirements, it chosen that the maximum allowed deviation altitude is 2 km and the
maximum deviation in speed is 6 m/s.
While different satellite missions have different attitude and spin requirements, a goal of AAU-
Rocket will be to ensure a “limited spin” orbital insertion. It is then up to each satellite to utilize
their own attitude and control system to obtain their desired spin (if any). There will be no
specific requirements for AAURocket with regards to the spin at the time of deployment of the
payload. However the spin should be kept to a minimum to ensure the best possible deployment
of the payload.
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3.2 Subsystem Requirements

In general AAURocket can be split in to two primary subsystems. A position and attitude
determination subsystem, and a control subsystem. The requirements for each of these subsystems
are determined with respect to the primary mission requirements set forth in 3.1.

Position and Attitude Determination system requirements

The Position and Attitude Determination systems task is, as the name implies, to determine the
position and attitude of AAURocket. It has been chosen that the Position and Attitude Deter-
mination system can be responsible for a maximum of 35% of the total deviation with respect to
the mission requirements for position and velocity.

Requirement Parameter Value Unit
SS1.R1 Position determination accuracy <0.7 [km]
SS1.R2 Velocity determination accuracy <2.1 [m/s]

Table 3.4: Subsystem 1 requirements.

Control system requirements

It has been chosen that the control system for AAURocket can be responsible for a maximum of
65% of the total deviation with respect to the mission requirements for position and velocity.

Requirement Parameter Value Unit
SS2.R1 Position control accuracy <1.3 [km]
SS2.R2 Velocity control accuracy <3.9 [m/s]

Table 3.5: Subsystem 2 requirements.
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Chapter 4

Mechanical Design

4.1 Basic elements of a rocket

Source: [Turner 01]

In this section the basic elements of rockets used for space launches will be outlined.

Typically a rocket launch vehicle (LV) is a complex construction consisting of a lot of different
mechanical elements and subsystems. However, the rocket can in general be divided into several
major components as follows:

• Payload

• Propellant

• Engine

• Structure

Payload The payload is a general term used for the dead-weight that is to be transported from
point a to point b. In military ballistic rockets this is usually an explosive warhead, whereas for
space rockets it is commonly satellites or probes.
This part is commonly placed at/in the top/nose of the rocket.

Propellant The propellant of a rocket is the matter that is to be expulsed from the engine in
order to gain velocity. In chemical rocket LVs the propellant consists of two primary components:
fuel and oxidizer. The main reason for bringing oxidizer is the obvious lack of air (oxygen) as the
rocket gains altitude.
This part is commonly placed within the main body of the rocket.

Engine The engine of the rocket is the machine which converts the potential energy of the
propellant into kinetic energy. This part is commonly placed at the bottom of the rocket.
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Structure The structure of the rocket is the entire mechanical skeleton of rocket. Furthermore,
the structure also includes the propellant container tanks inside the shell of the rocket.
The component grouping both the structure and engine is referred to as the dry weight of the
rocket. Depending on the author the engine is sometimes made to include the structure of the
rocket.

4.1.1 Staging
A core meta concept of the rocket LV design is staging. The idea of staging, as mentioned in section
1.1, is a concept of combining several rockets into a bigger rocket, either in a serial connection
(train-cart like setup as coined by Tsiolkovsky), or in parallel.

Serial The most classic of the two configurations is the serial connection which utilizes a larger
bottom stage (stage 1) as an initial thrust rocket, which accelerates the remaining stages to some
velocity. When this first stage has consumed all its propellant it is ejected, and after a short
coasting period the next stage (stage 2) is ignited. This procedure can be repeated for as many
stages as the rocket is designed for.

Parallel The more modern approach is the parallel staging (most famous is the NASA Space
Shuttle) where a primary rocket utilizes two or more parallel attached boosters for the initial flight
of the ascent. Normally parallel staged rockets never exceeds two stages. That is; an initial burn
phase with the main rocket and boosters ignited, until booster ejection after (or just preceding)
booster burnout. The rest of the ascent will be performed solely by the main rocket.

4.2 Comparison of Rocket Stage Setups

In this section the characteristics of single-, mutli-, and a infinite-staged rockets will be outlined
and compared. Furthermore advantages and disadvantages of each setup will be considered. Fi-
nally these considerations will be used to determine the setup for AAURocket.

Efficiency is a broad term that can be applied to a wide variety of different elements of a system.
In this section the efficiency that is studied is the ability of a rocket to obtain a certain velocity.
Engine and/or aerodynamic efficiency parameters are not considered in this section.

4.2.1 Tsiolkovsky’s Rocket Equation
In order to study a rockets ability to obtain a certain velocity, it is first needed to study the
equations that guard rocket velocity.
At the heart of all rocket theory is the classical Newtonian laws of motion, where the third law is
of particular importance. Newtons third law specifically states:

When one body exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction on the first body.

This is the principle that all existing rockets utilize to obtain velocity. For chemical rockets that
means combusting fuel and oxidizer thereby expelling an exhaust stream in one direction and
obtaining a reactionary velocity in the opposite direction of expulsion. By combining this princi-
ple with Newtons second law, the thrust equation is obtained, which can be seen in equation 4.1
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[Turner 01].

T = ṁve (4.1)

where

T is the thrust force applied on the system [N]
ṁ is the rate of which mass is expelled (mass flow) [kg/s]
ve is the velocity of the mass being expelled [m/s]

From this equation it is clear that a proportionality exists between the mass flow and the velocity
at which the mass is expelled. This means that a given thrust can be obtained either by expelling
a lot of mass at a relative slow speed, or expelling very little mass at a much greater speed.

By using the thrust equation (directly relatable to Newtons second and third law), Konstantin
Tsiolkovsky was in 1903 able to derive the rocket equation, which has since been dubbed Tsi-
olkovsky’s rocket equation (see equation 4.2) [Turner 01].

∆v = veln
(
m0

mf

)
(4.2)

with

m0 = mS +mP +mPL (4.3)
mf = mS +mPL (4.4)

where

∆v is the change in velocity [m/s]
ve is the effective exhaust velocity of the propellant [m/s]
m0 is the initial total mass of the rocket [kg]
mf is the final total mass of the rocket [kg]
mS is the structural mass of the rocket [kg]
mP is the mass of the propellant [kg]
mPL is the mass of the payload [kg]

The general principle of the rocket is illustrated in the free body diagram shown on figure 4.2.1,
where an initial mass m is moving with velocity v at time t. The mass is then accelerated by
ejecting a mass ∆m with velocity ve in opposite direction and the remaining mass m − ∆m is
accelerated to the velocity v + ∆v at time t+ ∆t.

m

v

t

m-Δm

v+Δv

t+Δt

ve
Δm

Figure 4.1: Free body diagram of the principle behind the rocket equation
[Turner 01].

It is clear that from the rocket equation it is possible to calculate velocity increments in field
free space by knowing the effective exhaust velocity of the rocket and the amount of mass being
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expelled (difference of m0 and mf ). Obviously it is also possible to calculate the amount of pro-
pellant mass needed to be expelled at some ve to obtain a certain ∆v .
The effective exhaust velocity is an efficiency measure of the individual rocket engine. It is closely
related to the velocity component from the thrust equation (4.1), that is the velocity which the
propellant is expelled from the engine.

Note that the rocket equation is limited to theoretical impulsive maneuvers and as such whenever
the equation is applied for practical use, deviations will arise (seeing as no maneuver can ever be
instantaneous).

In order to evaluate the performance of different rocket staging configurations it is convenient to
rewrite the rocket equation to:

∆v = ve ln
(

1 + λ

ε+ λ

)
(4.5)

with

λ = mPL

m0 −mPL
(4.6)

ε = mS

m0 −mPL
(4.7)

where

λ is the payload ratio [·]
ε is the structural ratio [·]

The structural mass of the rocket (mS) includes both the rocket structure as well as the engine and
other "empty" masses. The payload mass only encompasses the payload, however, as mentioned
in 1.2.3 the payload mass for this project also includes the structure and fearing for the nose of
the rocket.

Specific Impulse and Effective Exhaust Velocity

For convenience the efficiency of a rocket is also described in specific impulse. The relation be-
tween effective exhaust velocity and specific impulse can be seen in equation 4.8.

ve = Ispg0 (4.8)
where

Isp is the specific impulse [s]
g0 is the gravitational acceleration of the Earth at sea-level [m/s2]

Specific impulse is merely a reformulation of the effective exhaust velocity but has garnered pop-
ularity as the space industry has expanded to countries outside of the United States/NASA. The
specific impulse thus removes the worry of efficiency measures being defined in units of [feet/s] or
[m/s].
An intuitive understanding of the specific impulse is to think of it as the time the different rock-
ets are able to hover above the surface of the Earth at sea level with the same amount of propellant.

4.2.2 Single Stage Rockets
By using Tsiolkovsky’s rocket equation it is possible to evaluate the maximum velocity increment
a given single staged rocket can obtain. This evaluation will serve as a performance benchmark
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to which multi- and infinite staged rockets will be compared. As such some standard parameters
will be defined in the following.
The effective exhaust velocity’s typical range for chemical rockets is between 2450 to 4400 [Curtis 05],
so for this preliminary single stage analysis, a value of ve = 3000 [m/s] is chosen. Furthermore,
the structural ratio ε is chosen to be 0.1 (which is the current lower limit with todays mechanical
technology [Curtis 05]), with a payload ratio λ of 0.05.
Using these values, a theoretical single stage rocket will then (in field free space) be able to obtain
a velocity increment of:

∆v = 3000 ln
(

1− 0.05
0.1 + 0.05

)
= 5538 [m/s] (4.9)

From figure 2.5 it is seen that the required orbital speed at the surface of the Earth (in field free
space) is 7910 [m/s]. This means that the above single stage rocket is not able to make a successful
orbital injection. In fact for this single stage rocket to be capable of reaching the required orbital
speed, the effective exhaust velocity has to be improved to:

ve = 7910
ln
(

1−0.05
0.1+0.05

) = 4285 [m/s] (4.10)

As mentioned the current most efficient chemical rocket engines are only able to obtain a max-
imum effective exhaust velocity of 4400 [m/s], which means that it is theoretically possible to
launch a single stage rocket to orbit, however, such a project has never been undertaken. This
is mostly due to practicality and economic cost, since it is easier to use less efficient engines and
combine them in a multi stage setup [Curtis 05].

4.2.3 Multi Staged Rockets
For multi stage rockets each stage will successively perform some velocity increment ∆vk, up to
a final velocity of

∑N
k=1 ∆vk, where each ∆vk is calculated using the rocket equation. It is clear

the first stage of such a rocket will have to propel the entire mass of all successive stages to some
velocity, at which point the next stage will take over. This sequence will be repeated N times
until all the stages has been spent and the payload has reached the final velocity.

mS2mPL mP2 mP1mS1

m0,1

mf,1

m0,2

mf,2

Payload Stage 2 Stage 1

Figure 4.2: Mass distribution and sections of a multi, in this particular case two,
staged rocket.

On figure 4.2 a theoretical two stage rocket is pictured. In order to make a performance evaluation
on such a rocket the masses has to be organized correctly for each stage.
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In principle the top most part of this rocket (Stage 2 + Payload) can be studied as the previous
single stage rocket, since it comprises the same basic mass elements: mPL, mS2, and mP2 (see
figure 4.2.
The first stage of this multi stage rocket can also roughly be considered in the same way. However,
the payload of this stage is instead the entire second stage. This means that if the rocket equation
is to be applied to this stage, then mPL of Stage 1 is now equal to m0,2 = mPL +mS2 +mP2.
This mass organization is repeated for each additional stage that is utilized for the multi stage
rocket.
It is clear that the velocity calculations for a multi stage rocket will become tedious if each stage
utilizes different values for λ, ε, and ve. However, if each stage is assumed to be identical (in
ratio) then it is possible to reformulate the rocket equation as follows [Curtis 05]:

∆vN = ve ln
(

1
π

1
N

PL(1− ε) + ε

)
(4.11)

with
πPL = mPL

m0
(4.12)

where

πPL is the payload fraction [·]

The benchmark values for λ, ε, and ve defined in subsection 4.2.2 will be used for each stage
of the multi stage rocket in order to construct a benchmark performance graph of a multi stage
rocket setup. The values λ = 0.05 and ε = 0.1 will in turn result in πPL = 0.0476. The graph
on figure 4.3 was constructed by applying these parameters to equation 4.11 and using a vector
space of N={1,2,3,...,10}.
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Figure 4.3: Velocity increments for each stage in a multi- and infinite stage rockets.

It is clear that a lot of extra performance is gained by using a multi stage setup, however, each
additional stage suffers greatly from diminishing returns. As such, when combined with practi-
cality and complexness of construction, rockets rarely utilize more than three stages [Curtis 05].

4.2.4 Infinite Staged Rockets
The infinite staged rocket is in principle a specific case of a multi staged rocket. For a classical
chemical rocket it is a theoretical case of attaching an infinite amount of stages on top of each
other and then calculating the maximum velocity increment this LV is able to obtain. The equa-
tion related to this calculation is derived from equation 4.11 by letting the amount of stages tend
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to infinity, which will result in [Curtis 05]:

∆vN = ve (1− ε) ln 1
πPL

(4.13)

Applying the same values of ε = 0.1 and πPL = 0.0476 a maximum ∆v can be found for the infite
staged version of the multi staged rocket of subsection 4.2.3:

∆vN = 3000 (1− 0.1) ln 1
0.0476 = 8220[m/s] (4.14)

This result is also shown on the graph on figure 4.3.
As mentioned the infinite staged rocket is mostly a theoretical case, however, there are concepts
being developed which allow for a rocket to be considered infinitely staged. One such concept is
the Dniepropetrovsk National University (DNU) self-foraging rocket which is described in further
detail in section 4.3

4.3 Proposed Concept of the Self-Foraging rocket

In this section the concept of a self-foraging rocket will be outlined. Furthermore, the initial work
done at DNU and their ideas will be outlined.

4.3.1 The DNU Self-Foraging rocket
This section is based on information obtained from DNU and the papers [Yemets 08a] [Yemets 08b].

Yemets et al. at DNU has proposed a new concept for LVs in an effort to realize a smaller and
cheaper alternative to the several hundred million dollar LVs that exists today. The concept is
that of a self-foraging rocket which consists of three primary elements:

• Payload

• Propellant

• Engine

A basic schematic of the concept can be seen on figure 4.4. When compared to the basic rocket
elements in section 4.1, it is clear that the major difference between the classical and the self-
foraging rocket is the lack of the structure element. While structure is of course still present on
the self-foraging rocket, it is vastly reduced. This is a result of utilizing a solid fuel source which
doubles as the main structure of the rocket body and functions as an oxidizer container.

During flight the rocket will consume the shell by heating and gasifying the material and mixing it
with the oxidizer in the combustion process thereby expelling the propellant and gaining forward
thrust.
It is clear that for this process to work the engine of the rocket has to move its way up towards the
payload to consume the shell and oxidizer. In the original concept from DNU it is proposed that
this is done passively by exposing the rocket to a constant acceleration throughout the ascent,
which in turn will apply an opposite force on the body driving it into the engine.
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Payload Stage 2 Stage 1

Shell (Fuel) Fluid 
(Oxidizer)

Payload Engine

Figure 4.4: The self-foraging rocket concept as proposed by Yemets et al. at DNU.
The middle section (shell and fluid) is the part of the rocket that is
gradually consumed during flight. In the case where 100% of the propel-
lant is consumed, only the Payload attached to the Engine will remain
[Yemets 08b].

Fuel and Oxidizer mix

Source: [Yemets 08a] [Yemets 08b]

One of the most vital aspects of the self-foraging rocket is the fuel, seeing as this material has
to be strong enough to serve as the main body and structure of the rocket, while also have the
ability to be consumed and mixed with a suitable oxidizer to produce a chemical reaction and
provide thrust.
For this purpose Yemets et al. suggests using High Density PolyEthylene (HDPE) which is a
general purpose thermoplastic. They estimate that the strength of HDPE should be sufficient as
shell material for a self-foraging rocket.
Furthermore, during their initial combustion tests of their self-foraging rocket engine, Hydrogen
Peroxide (HPO) was used as suitable oxidizer.

4.4 Subconclusion

In this chapter the basic elements of standard chemical rockets has been outlined. Furthermore
three different performance evaluations were made on the different type of staging setups: single-,
multi-, and infinite staged.
Finally the self-foraging rocket concept (an infinite stage rocket) from DNU was presented, along
with their design ideas and choices.

Mechanical Setup of AAURocket

From the performance evaluations of rocket staging it is clear that the single stage solution present
significant challenges in designing a state of the art rocket engine with regards to efficiency. As
such this is not considered a feasible staging setup for AAURocket.
While the multi stage setup is the classical and most well tested approach to rocket design, the
focus of this project will instead be on utilizing some of the conceptual ideas from DNU and at-
tempt to design a self-foraging rocket (which in turn will be considered infinitely staged), thereby
creating a cheap and efficient alternative to modern LVs.
In particular the AAURocket will be designed to use HDPE as the fuel with HPO as suitable ox-
idizer. Furthermore, the HDPE will be used to construct the shell that will contain the oxidizer,
and act as the main body of the rocket.
However, AAURocket will not be foraging itself by the passive pressure applied from the accel-
eration during the ascent to orbit. Instead an active method is desired which can control the
shortening rate (and in turn the fuel consumption) of the rocket.
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Chapter 5

Guidance-Hardware Design

In this chapter common sensor and actuator types will be presented, and a choice made in each
category on what types will be utilized for AAURocket. Additionally the general mechanical
design will be of the AAURocket engine block will be outlined, along with the constraints it im-
poses. Furthermore, different acceleration profiles are presented to outline the advantages and
disadvantages of different thrust strategies.
Finally all the thrusters utilized on AAURocket will be mechanically dimensioned.

5.1 Position and Attitude Determination System

Sources: [Email correspondence with Copenhagen Suborbitals, Appendix A]
When a rocket is launched one of the most important issues is to have accurate knowledge of the
position, velocity, attitude, and angular rate. Knowledge of the attitude is the only thing that
ensures that actuation of the rocket happens in the wanted direction. The most common sensor
system used when estimating rocket attitude and velocity are so-called Inertial Measurement Units
(IMUs). An IMU is a sensor system consisting of accelerometers and gyroscopes, and in some
cases also magnetometers. This section aims to analyze which sensors would be advantageous in
order to estimate the states of AAURocket.

5.1.1 Sensor considerations
There exist several sensors which can be used in the matter of determining attitude, velocity, and
position of a rocket. In general these sensors can be split in to two primary categories: reference
sensors and inertial sensors.
Reference sensors utilizes external reference points in order to give valid measurements. In the
case of a horizon sensor the reference point is the horizon itself and the measurement (in some
cases) is a vector pointing towards the center of the Earth. The inherent drawback of reference
sensors arises once the external reference is not observable, e.g. the horizon is no longer visible
for the horizon sensor.
Inertial sensors measure changes in physical states of the system with respect to an inertial refer-
ence frame. An example is the gyroscope which measures the angular acceleration of the system
it measures. Due to the inertial property of the sensor, it will never rely on external conditions in
order to function and give a measurement. Position and/or attitude change can be obtained from
these sensors via integration, but an initial conditions or known fix points has to be determined
in order to obtain actual position and/or attitude.
While it is in theory possible to launch a rocket into an orbit using only inertial sensors, it is
more reliable to combine these sensors with reference sensors to obtain a better estimation system
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overall. Common candidate sensors for rocket position and attitude determination systems are as
follows (where [R] denotes reference sensor and [I] denotes inertial sensor):

[R] Global Positioning System (GPS)

[R] Magnetometer

[R] Pressure sensor

[R] Horizon sensor

[R] Earth sensor

[R] Sun sensor

[R] Star Tracker

[R] Ground based observation

[I] Accelerometer

[I] Gyroscope

Several of the above sensors can be combined into a single IMU. The usual sensors used to com-
prise an IMU are accelerometers and Gyroscopes, however, depending on application more sensors
can be included.
These IMUs can either be constructed by combining several individual bought sensors, or bought
as pre-combined package. The IMU is not constrained to use any particular production method,
and as such any IMU can be made using Micro-Electronic-Mechanical-System (MEMS)-, mechanical-
, optical-, and/or purely electrical-components. Advantages of MEMS IMUs are reduced price
compared to their mechanical or optical counterparts, however, this inherently means lower per-
formance (including accuracy) as well.
Due to pricing concerns it is expected that the primary IMU type of interest is the MEMS type.
Only in the case of unacceptable performance will sensors of higher precision (and price) be con-
sidered.

5.1.2 Sensor configurations on other rockets
To determine what kind and how many sensors to use for the AAURocket, two existing sensor
configurations on operational rockets are considered. The specifications for these rockets have
been obtained via correspondence with Copenhagen Sub-orbitals (CS).
CS launched their first Sapphire rocket on June 23 2013. The data from this launch, sampled
from their chosen IMU (ADIS16367) has been provided by CS. Table 5.1 shows the two sensor
configurations for their Sapphire and NEXØ rockets.
[Maestro 13]
From table 5.1 it can be deducted that the CS Sapphire rocket purely utilizes inertial sensors to
determine its position and attitude. CS also notes that no sensor fusion was used between the
accelerometer and gyroscope during their first flight, which was sufficient seeing as the burn-time
on this rocket only lasted 11 seconds. CS are, however, concerned about accuracy during longer
flights since the precision of the gyroscope decreases over time due to drift.
The CS NEXØ rocket is the successor of the CS Sapphire, which is also reflected in the increased
burn time of 82 seconds. Due to the aforementioned concerns of gyroscopic drift the IMU for this
rocket has been changed along with development of a sensor fusion method that they intend to
use for this flight.
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Rocket IMU Model Sensors
CS Sapphire ADIS16367 Accelerometer

Gyroscope
CS NEXØ ADIS16448 Accelerometer

Gyroscope
Magnetometer
Pressure sensor

Table 5.1: Sensor configuration for the CS Sapphire and CS NEXØ rockets. Listed
is the type of sensor along with the serial number of each component.

5.2 AAURocket Sensor Choice and Characteristics

Since the mission of AAURocket is to reach a sustainable orbit, the requirements for the sensors
are in turn higher. The ADIS16448 is chosen to be utilized on the AAURocket position and
attitude determination system due to the following considerations:

• Availability of flight data for the ADIS16xxx series (provided by CS)

• Higher precision than the ADIS16367

• Combined reference and inertial sensors (inclusion of magnetometer in particular)

In table 5.2 the measurement type of each of the sensors included in ADIS16446 is listed. As can
be seen all the reference sensors are not able to fully determine either position nor attitude on
their own. Furthermore, in the case of the pressure sensor its effectiveness only lasts as long as
the atmosphere is still sufficiently dense, which reduces the effectiveness of this sensor the closer
the rocket gets to its destination. In fact for most of the ascent to orbit this sensor will not be
able to measure anything useful with respect to state estimation. However, it is a useful sensor
in the case of estimating the thrust of the LV based on input signals.

Sensor Position [R] Position [I] Attitude [R] Attitude [I]

Pressure sensor ×[1]

Accelerometer × ×[3]

Magnetometer ×[2]

Gyroscope ×
Table 5.2: The correlation between the sensors of the ADIS16446 and the respective

measurement types. [1]: Reduced position. Only height above sea-level is
measured. [2]: Reduced attitude. Can only determine 2 out of 3 degrees
of freedom. [3]: Only possible when the sensor is displaced from the
center of mass.

From these features there is a concern that the position determination can drift over time, seeing
as the only reliable sensor functioning for the full duration of the ascent to orbit is the accelerom-
eter.
As such in the case where the performance of the position and attitude determination algorithm
is not sufficient, an additional sensor can be considered.
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GPS Considerations

A sensor of particular interest would be a GPS, which is a reference sensor able to determine
the exact position of the rocket. However, strict constraints are applied to GPS units by the
manufacture. This is part of the Coordinating Committee for Multilateral Export Controls (Co-
Com) by the United States of America foreign policy that limits all exportable GPS products to a
maximum measurable altitude and velocity of 18km and 514.4 m/s [Ravtrack 15]. These policies
primary function is to ensure that exported GPS units are not used for foreign military purposes
(in particular for ballistic missile use).
It is possible though, to get special permission to buy GPS units which has these limitations
bypassed if significant evidence can be provided for peaceful use of the unit. Such permission
falls under the rules of the United States’ International Traffic in Arms Regulations (ITAR)
[of State 15].
Due to these limitations the initial sensor setup will include a token GPS unit, since it is assumed
that such an unlocked GPS can be acquired.

Inertial Measurement Unit: ADIS16448

Table 5.3 shows the general characteristics of each sensor included in the ADIS16448.

ADIS16448
Sensor Property
Gyroscope Type Triaxial digital angular rate gyroscope

Range ±1000 ◦/s
Sensitivity 0.04 ◦/s
Output noise 0.27 ◦/s RMS
Linear acceleration effect on bias 0.015 ◦/s/g

Accelerometer Type Triaxial digital accelerometer
Range ±18 g
Sensitivity 0.833 mg
Output noise 5.1 mg RMS

Magnetometer Type Triaxial digital magnetometer
Range ±1.9 G
Sensitivity 142.9 µG
Output noise 2400 µG RMS

Barometer Type Digital barometer
Range 1-120 kPa
Sensitivity 2 Pa
Output noise 8 Pa RMS
Maximum Refresh Rate 1100 Hz

Table 5.3: The characteristic values of each sensor included in the ADIS16448
[Devices 14].

The general sensor parameters of the token GPS can be seen in table 5.4.

Sensor Frequency Resolution Variance Range (Height)
GPS 1100 Hz 0.005 m 10 m 1000 km

Table 5.4: Token GPS sensor parameters.
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Thrust Vectoring Vernier ThrustersThrust VanesMovable Fins

Figure 5.1: Different examples of rocket directional actuators.

5.3 Actuators

Source: [Sutton 10] [NASA 14]

For classical rockets the matter of actuation is generally two-fold. Primarily a main propulsion
engine to drive the translational motion of the rocket, and secondly a smaller system to guide the
direction of flight.
Seeing as the method of primary propulsion has already been established to be a chemical rocket
engine (as seen in chapter 4), the following section focus on the secondary directional actuators.

5.3.1 Directional Actuators
A set of general common directional actuators for classical chemical rockets, that include: Mov-
able Fins, Gimbaled Thrust, Thrust Vanes, and Vernier Thrusters, can be seen in figure 5.1, and
will be discussed in the following.

Movable Fins The movable fins are the simplest of the aforementioned actuation methods. It
utilizes the atmosphere to actuate the rocket by changing the drag-profile of the system when
moving its fins. The movable fins are one of the simplest and easiest methods to implement on
a rocket, seeing as it is merely consisting of a number of aerodynamic control surfaces of which
a part of them can be tilted in either direction. Of the different methods pictured on figure 5.1
they are also the only actuators to passively provide an amount of stability for the rocket during
flight.
One of the major drawbacks of this actuator is its inherent dependability of an atmosphere. It is
obvious that while this method can be a good solution for a military ballistic missile, its use on a
LV is of limited use. Furthermore, though the movable fins can provide passive stability it comes
at the price of overall increased aerodynamic drag.

Gimbaled Thrust The most mechanically advanced of the listed actuation methods is the
gimbaled thrust. In principle the entire main chemical engine has been mounted on a movable
gimbal system, thus enabling the rocket to change flight direction by changing the thrust vector
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via gimbaling. This is also the reason for this system being listed as the most advanced. The
entire mechanism of the primary propulsion engine being mounted on a gimbaling system can be
a mechanically very complex task. The advantage of this setup, however, is that the magnitude
of the thrust vector always remains the same, regardless of control action.
The primary drawback of gimabled thrusting is it only works when the main chemical engine
is turned on. As soon as the primary engine is shut down, all controllability is lost from this
method. Furthermore, it is the only technology of the listed methods that does not have the
ability to actuate in the roll axis of the rocket. This can only be achieved if several main engines
are used in parallel.

Thrust Vanes The thrust vanes attempt to manipulate the primary exhaust stream giving
similar thrust vectoring results as the gimbaled thrust. However, the way of manipulation is
different in the sense that the engine is locked, but instead has movable vanes inside the exhaust
stream. These flaps can then deflect the exhaust stream in the desired direction by a combination
of different vane tilt positions.
The main drawback of the thrust vanes approach lies in their inherent positioning. The tem-
perature of rocket exhaust streams are upwards of several thousand degrees celsius. This means
that the vanes usually have very limited life times since they rapidly degrade during the ascent.
Furthermore, the thrust vanes also acts as a retarding force on the primary thrust of the rocket,
since they are placed within the exhaust stream. Mechanically the vanes are easy to implement
as they can be implemented externally on the main rocket engine.

Vernier Thrusters The vernier thrusters are like the movable fins completely decoupled from
the main chemical rocket engine. In principle they are small propulsion engines displaced from
the center of mass and at an angle on the rocket. By turning a combination of them on, the total
thrust vector of the rocket is in turn affected.
While the vernier thrusters are mechanically easy to implement, they pose greater impact on
the control scheme. This is due to the fact that whenever the vernier thrusters are active they
provide both translational and rotational force to the rocket. The impact of the translational
force can often be neglected since the main rocket engine provides forces of magnitudes many
times greater than the vernier thrusters. However, if the main engine is significantly small (in the
case of throttling or later staging) then the vernier thrusters will in turn have a bigger impact
whenever control action is needed.

Choice of Directional Actuator

The choice of directional actuator for AAURocket has fallen on the vernier thrusters. The vernier
thrusters are slightly more complex to implement compared to the movable fins, but on the
contrary they offer the possibility to control the orientation when the rocket leaves the inner
atmosphere of earth. The reason for choosing the vernier thrusters over the thrust vanes and the
gimbaled thrust is the possibility to control the rotation about the roll axis of the rocket. This
has advantages, both in the sense of being able to choose to spin stabilize the rocket, and also in
the case that it is necessary to limit or stop the rotation about the roll axis.
Furthermore, it is deemed advantageous to be able to perform control when the main chemical
engine is turned off.

5.4 Engine Design

In this section different general thrust profile approaches will be outlined. In turn these general
thrust profiles will be used to determine the best possible thrust profile option for AAURocket,
through some general constraints.
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Additionally the primary mechanical structure of the AAURocket engine block will be designed
on the basis of the general throttle and actuation needs of the ascent profile of AAURocket.
Furthermore the general thermodynamic equations of chemical rocket engine will be presented
and finally used to dimension all of the thruster of AAURocket.

5.4.1 Thrust Profile
In order to dimension a rocket engine the first and primary factor to determine is how much thrust
it should be able to produce. To do this a general thrust strategy for the ascent to orbit has to
be chosen. The entire thrust scheme used during the ascent to orbit is referred to as the thrust
profile of the rocket.
A thrust profile for a given LV is generally tailored very specifically to said LV, and can employ
varying levels of throttle and/or coasting periods. These different thrust profiles can in theory be
bounded between two extremities:

• Constant Thrust

• Constant Acceleration

Using static thrust

If an engine is designed with constant thrust in mind, the result will be an LV which will undergo
faster and faster acceleration. This is caused by the fact that the more fuel the rocket spends, the
lighter it gets, and the more acceleration the rocket will experience from the constant thrust.
This can pose a danger to a rocket launched from the surface of the earth into orbit using a single
engine, since the mass expulsion needed for this manoeuvre is significant, thus requiring a high
thrust at sea level. In turn this scenario could result in the rocket experiencing a couple of g’s
acceleration at take-off, while just before burnout the g-force could easily be upwards of 20 times
as high. With g-forces at those levels there is a high risk that the rocket will be destroyed by the
thrust it imposes on itself.
Usually this thrust profile scenario is overcome by rockets utilizing staging, and in turn different
rocket engines for each stage. This means that for low altitudes a large thrust engine can be used
(i.e. while the rocket is heavy) which can then be discarded when a certain velocity increment
has been obtained, and afterwards a new and smaller thrust engine will be utilized.
An example of a (mostly) static thrust multi stage rocket is the Ariane 5 rocket [Arianespace 11b].
It has three stages during its flight to orbit: two solid rocket boosters, a main cryogenic stage and
an upper stage. In figure 5.2 the staging of the Ariane 5 rocket can be seen during its flight to orbit.

A corresponding g-profile of the Ariane 5 rocket can be seen in figure 5.3. As can be seen from
the graph the acceleration of the Ariane 5 rocket grows exponentially as the fuel gets spent and
the mass of the rocket reduces.

Constant thrust in a chemical rocket engine will, however, remove the need for the ability to
throttle the engine. This in turn can lead to simpler design of the engine [Turner 01].

Using static acceleration

In order to have an LV that can employ constant acceleration, the engine will need to have the
ability to throttle. This throttle is utilized to gradually decrease the level of thrust of the LV
to match the weight loss of the system, which in turn results in a constant acceleration. While
constant acceleration is a plausible thrust profile, it is seldomly used single handedly throughout
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Main cryogenic stage engine ignition (H0+1s)
SRB ignition and lift-off

SRB flame-out (H1) and separation

Fairing jettisoning (FJ)

Engine shutdown (H2)
and separation

Upper
stage
ignition

Upper
stage
shutdown
(H3)

Figure 5.2: The staging sequence of the Ariane 5 rocket during flight to orbit
[Arianespace 11b].
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Figure 5.3: The g profile of the Ariane 5 rocket. Each of the peaks represents a
staging in the rocket. At the first peak the two solid booster rockets are
ejected. At the second peak the primary rocket engine is ejected and
only the orbiter remains [Arianespace 11b].
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the ascent. The usual application is to limit the maximum g-load the the LV experiences to an
upper bound, which can occur after a longer period of constant thrust.

Throttle While the concept of throttle is simple, the execution of throttle in a chemical rocket
engine has inherent disadvantages due to some of its static parameters, eg. combustion chamber
volume. As such chemical rocket engines rarely employ full throttle schemes of 0-100%. An ex-
ample is the space shuttles main engine which had a throttle range of 65-109% of the nominal
range [Lethbridge 98].
Currently the RL-10 engine (which can be considered state of the art) is able to employ throttling
capabilities of 8-100% [NASA 09].

Thrust Profile Engine Constraints of AAURocket

Due to the nature of the self-foraging rocket design of AAURocket several characteristic con-
straints are posed for the thrust profile.
Firstly, it is deemed necessary for the LV to be able to throttle its engines during its ascent phase
as the mass will undergo significant changes from launch to orbital injection.
Secondly, during the ascent phase the thrust is constrained to never equal zero, as this will imply
the engine has been turned off. Seeing as the gasification process of the fuel shell relies on heat,
it is expected that there is a significant start up process related to turning the engine on, due to
a needed build up in thermal momentum.

These engine constraints are used in section 8.2 to calculate the thrust profile used for the ascent
to orbit of AAURocket.

5.4.2 Structure of the Engine Block
It is, at best, optimistic to consider throttle capabilities as good as the RL-10 rocket engine, how-
ever, a reduced throttle profile may indeed be possible. Hence a throttle capability of [50%;100%]
is assumed feasible for any single independent engine designed for AAURocket.
This limitation combined with the throttle range needed of [2.5%;11.5%]

⋃
[28%;100%] (as seen

in section 8.3.2), means that AAURocket will not be able to utilize a single main chemical engine
setup. Instead by using five independent chemical engines in conjunction a wider thrust profile
can be employed. On figure 5.4 the physical design of such a setup is shown.

In this design four larger engines (which will be referred to as boosters) are symmetrically placed
around a smaller engine (which will be referred to as the orbital thruster) in the middle. Each
thruster is able to utilize a throttle range of [50%;100%]. Furthermore, in this setup it is possible
to turn off some of the engines completely while the rest remains on through the remainder of the
ascent.
The setup has the orbital thruster performing in the range of [2.5%;5%] of the maximum thrust,
Tmax, and each of the four larger boosters will be performing in the range of [11.875;23.75%] of
Tmax.
As such, when all five engines are turned on the thrust will result in full Tmax. Conversely, with
five engines turned on, but each at 50% throttle, a total thrust of 0.5Tmax will be produced.
If less thrust is required two oppositely positioned boosters can be turned off completely. The
remaining two boosters combined with the orbit engine now has a thrust range of 0.2625Tmax to
0.525Tmax.
Finally all four boosters can be turned off which results in the orbital thruster being able to
perform 0.025Tmax to 0.05Tmax.
This means that AAURocket will have an effective throttle range of [2.5%;5%]

⋃
[26.25%;100%].

An illustration of these ranges can be seen on figure 5.5
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Side View Bottom View

Figure 5.4: Physical structural design of the engine block of AAURocket. The
engine consists of five primary thrusters with no gimbal capabilities.
Each larger thruster (referred to as "booster") will perform in the range
[11.875;23.75%] of Tmax and the smaller center thruster (referred to as
"orbital" thruster) will perform in the range [2.5%;5%] of Tmax. The
indents observed in the top of the "Side View" and on the outer circle
on the "Bottom View" are vernier thruster nozzles.

It is clear that this does not fully meet the throttle profile calculated in section 8.3.2. However,
seeing as the range of [2.5%;11.5%] is only needed at the point of orbital injection, it is expected
that this manoeuvre can be overcome by a longer burn at 5%, hence, the presented engine setup
is deemed satisfactory.

1 Thruster Range

3 Thruster Range

5 Thruster Range

Combined Range

Percentage of Tmax

0% 25% 50% 75% 100%

Figure 5.5: Ranges of the engine block in each of the three different configurations;
with five thrusters turned on, three thrusters turned on, and one thruster
turned on. Furthermore, the fully combined range of the three different
configurations are shown at the bottom.

Vernier Thruster Setup

The vernier thrusters of AAURocket will be placed perpendicular to the LV body x-axis. Each
vernier thruster will point in a ±45◦ and 180◦ ± 45◦ direction with respect to the y-axis of the
LV body frame. The placement of each vernier thruster will be slightly displaced in the y/z-plane
with angles of ±35◦ and 180◦ ± 35◦. An illustration of this setup can be seen on figure 5.6.
The small asymmetrical placement of each vernier thruster extends the attitude control domain
from the r1Y and r1Z to also include the r1X (i.e. roll manoeuvres).
With this setup the control of rotation of each primary body axis is done by turning on two corre-
sponding vernier thrusters. An example would be to turn on the two vernier thruster represented
by the vectors Tv,1 and Tv,4, on figure 5.6. This action will result in a positive rotation about the
r1Z vector (pitch), seeing as the vernier thrusters are displaced in the -r1X direction (location of
the engine block).
Another example would be turning on the vernier thrusters represented by Tv,1 and Tv,3. This
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action will result in a negative rotation about the r1X vector (roll).

35o

45o

r1Y

r1Z

r1X

d1

Tv,1

Tv,4Tv,3

Tv,2

d2

d3 d4

Figure 5.6: A diagram showing the AAURocket body frame vectors, with r1X point-
ing outward (top view). All of the vectors displayed are displaced in the
-r1X direction, as the vernier thrusters are located on the engine block.
Each vernier placement vector d is angled at ±35◦ and 180◦ ± 35◦ with
respect to the y-axis. Each thrust vector T of each vernier engine is
angled at ±45◦ and 180◦ ± 45◦ with respect to the y-axis.

Shell Consumption Actuators

Additionally, within the engine block there are placed several DC-motors mounted with cogs.
These mesh into teeth on the fuel shell to function as a rack and pinion. This enables the hard-
ware on board AAURocket to actively control the consumption rate of the fuel shell.

Finally, the diameter of the main engine block is set to 1 m with a total weight of 100 kg.

5.5 The Chemical Rocket Engine

Source: [Turner 01]

As mentioned in section 4.1 the basic objective of a rocket engine is to convert potential energy of
a propellant into kinetic energy. For a chemical rocket engine this process can basically be divided
into three consecutive steps: mixture, combustion, expansion.

Fuel
Oxidizer

m

pc
Tc

A* A
e

pa

ue

pe

Figure 5.7: A diagram of the chemical rocket engine, with fuel and oxidizer injected
into the combustion chamber at pressure pc and temperature Tc, followed
by the narrow throat area, A∗, and finally the nozzle to the right. The
pressure of the ambient environment is denoted pa, the pressure of the
exhaust stream is denoted pe, and the area of the nozzle is denoted Ae.
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The process of these three steps starts with the mixture of the fuel and oxidizer (in bipropellant
engines) in the combustion chamber of the chemical rocket engine. Both fuel and oxidizer is then
ignited in the combustion chamber at high temperature and pressure. The resulting propellant
of the chemical reaction will then convert its heat and pressure energy into kinetic energy as it
passes through the throat of the engine and down the nozzle. The propellant will expand down
through the nozzle, and the expansion acting on the walls of the nozzle will result in the rocket
being propelled forward. In figure 5.7 a diagram of an arbitrary chemical rocket engine can be seen.

The thrust of the chemical rocket engine can be described by the equation:

T = ṁue + (pe − pa)Ae (5.1)

where

ue is the true exhaust velocity [m/s]
pe is the pressure of the exhaust pressure at the exit of the nozzle [Pa]
pa is the pressure of the ambient environment [Pa]
Ae is the nozzle exit area [m2]

While equation 5.1 is similar to the thrust equation (4.1) there are two differences; namely the
addition of the true exhaust velocity and a pressure force, called the pressure thrust.
The true- and effective exhaust velocities are closely related, however, their distinction originates
from the pressure thrust. The pressure thrust originates from the ambient pressures effect on the
ability of the engine to harvest the energy of the propellants expansion. In general three primary
scenarios arise from this last term: when pa > pe, when pa < pe, and when pa = pe.

321

Figure 5.8: Three different scenarios of the chemical rocket engines exhaust pres-
sures. When the exhaust gas is over expanded (pa > pe)(1), when the
gas is under expanded (pa < pe)(2), and when the gas is optimally ex-
panded (pa = pe)(3).

These effects are illustrated on figure 5.8. The first scenario (pa > pe) has the ambient pressure
apply more pressure to the front of the rocket than to the back (the nozzle exit) which in turn
has a negative contribution to the thrust. The second scenario (pa < pe) will in principle have a
positive contribution to the amount of thrust, however, the gas being under expanded means that
the rocket nozzle has not utilized all of the energy for forward thrust (not all of the expansion
energy has been utilized). The third and final scenario (pa = pe) is the optimal design seeing as
the two pressures cancels each other out, thereby leading to ue = ve, and the chemical engine
thrust equation in 5.1 is reduced to the same as the original thrust equation 4.1.
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5.5.1 True- and Effective Exhaust Velocity
Source: [Turner 01] By substitution of equation (5.1) into (4.1), it is possible to show the relation
between ve and ue as seen in (5.2).

ve = ue +
(

(pe − pa)Ae
ṁ

)
(5.2)

From this relation it is seen that the effective exhaust velocity includes both the true exhaust
velocity and the pressure thrust caused by the exterior environment in which the chemical engine
operates. As such the effective exhaust velocity is a performance measure of the chemical engine
in some ambient environment.
The true exhaust velocity on the other hand is in fact a performance measure of the engine itself.
That is, the theoretical speed at which the engine is able to expel its propellant. As such it is
the chemical conditions and the mechanical design of the chemical rocket engine that defines its
magnitude. The true exhaust velocity is defined as seen in equation 5.3.

ue =

√√√√ 2γ
γ − 1

RTc
M

[
1−

(
pe
pc

) γ−1
γ

]
(5.3)

where

R is the universal gas constant [J/(molK)]
M is the molecular weight of the exhaust gas [g/mol]
Tc is the combustion chamber temperature [K]
pc is the combustion chamber pressure [Pa]
γ is the isentropic expansion factor [·]

It is clear that the true exhaust velocity is determined by both the chemical properties of the
propellant (M, Tc, and γ) as well as the pressures (pe and pc) under which the engine is operated.
While it is possible to manipulate the pressures by design, it is seen from the equation that they
merely act as a retarding force. So even if the best possible pressure parameters were obtained
(pe = 0 for instance), the exhaust velocity will end up being entirely governed by the chemical
process of the fuel and oxidizer, and the temperature at which they are combusted.

5.5.2 Nozzle Throat Area
Source: [Turner 01]
The throat of the chemical rocket is an important parameter in chemical rocket design. The throat
area is directly proportional to both mass flow and chamber pressure, seeing as the area has to
contain the propellant inside the combustion chamber long enough for the chemical reaction to
take place, before ejection. The throat area of the chemical rocket engine is governed by the
equation:

A∗ = ṁ

pc

√
γ
(

2
γ+1

) γ+1
γ−1 M

RTc

(5.4)

where

A∗ is the throat area of the chemical rocket engine [m2]

The throat areas dependency on both pc and ṁ is the primary issue behind chemical engine
throttling. Since the thrust of a rocket is dependant on the mass flow, the only way to throttle
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is to reduce the mass flow. From equation 5.4 it is clear that a decrease in ṁ will either mean
a decrease in chamber pressure or a decrease in throat area. Since the chemical rocket engine is
usually built of metal, the throat area will always be a static parameter. Hence, the only option
is for the chamber pressure to decrease. By purely considering equation 5.4 this effect does not
impact the performance, however, equation 5.3 states that a drop in chamber pressure will reduce
the true exhaust velocity. If the pressures are changed to extreme relative levels (pc » pe) this can
result in the propellant being only partially combusted inside the engine before ejection, which
leads to unstable performance. Furthermore, if the pressure becomes to low the thermal-energy-
to-droplet-evaporation ratio becomes too low, in turn resulting in insufficient combustion.

5.5.3 Nozzle Exit Area
Source: [Turner 01]
The nozzle exit area is the interface between the nozzle and the environment in which the engine is
functioning. The primary function of the area is to ensure that the propellant has reached sufficient
expansion inside the nozzle in order to perform translational work on the rocket. As such the
nozzle exit area is determined primarily by the optimum expansion factor of the propellant in
combination with the size of the throat area. The equation governing the nozzle exit area is as
follows:

Ae = A∗

√√√√√√
(
γ−1

2
) ( 2

γ+1

) γ+1
γ−1

pe
pc

2
γ

(
1− pe

pc

γ−1
γ

) (5.5)

As seen the primary parameters dictating the nozzle exit area is A∗ and pe
pc
. With A∗ and pc

pertaining to the combustion process, the only parameter left to vary is pe. The choice of pe is
thus completely up to the designer and how the desired performance of the engine should be in
at given ambient conditions.
From the equation it is also obvious that the chemical rocket engine can not function if pe > pc
as this will introduce imaginary solutions to equation 5.5. Furthermore, pc can never be 0 either,
as this will make the equation unsolvable. Intuitively this makes sense as rocket engines with pe
> pc or pc = 0, will result in negative expansion in the nozzle, and/or no expansion to harvest.

5.5.4 Engine Efficiency
While the effective exhaust velocity is an efficiency parameter, it has up until this point been
calculated from theoretical optimum values. Several practical factors will in reality reduce the
effective exhaust velocity further than what the equations show. As such, an additional efficiency
parameter is defined to be applied on the effective exhaust velocity:

ve = ηt ve,theoretical (5.6)

with

ηt = ηrηn (5.7)

where

ηt is the total efficiency of the chemical engine [·]
ηr is the reaction efficiency of the chemical engine [·]
ηn is the nozzle efficiency of the chemical engine [·]
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Reaction efficiency is the engines effective ability to utilize the chemical potential energy of the
propellant. This parameter is not necessarily constant and can, among others, vary with respect
to mass flow, chamber pressure, and/or throttle level.
Nozzle efficiency is the ability of the nozzle to effectively harvest the expansion energy of the
propellant and converting it to kinetic energy. This is primarily a mechanical efficiency parameter
which is defined by the shape of the nozzle, the roughness of the inner surface of the nozzle, as
well as precision of the construction process of the nozzle.

As both ηr and ηn can be quite difficult to accurately calculate pre-emptively, they will be as-
sumed as two constant efficiency parameters in this project. All efficiency parameters will be
conservatively assumed to be:

ηt = ηrηn = 0.9385 (5.8)
ηr = ηn = 0.9688 (5.9)

5.6 Thruster Dimensioning

In this section the three different types of thrusters used on AAURocket will be dimensioned.
These include: the four identical booster thrusters, the orbital thruster, and the four identical
attitude control vernier thrusters.

5.6.1 Booster Thruster Dimensioning

All engine parameters connected to the booster thrusters will be subscripted with a b.
The booster thrusters are designed as bipropellant engines utilizing both the fuel and oxidizer
carried by AAURocket. Furthermore, the boosters are designed to give optimal thrust at sea
level, seeing as they will function from this height and out to space. This will result in optimum
expansion at sea-level with some under-expansion occurring in vacuum. This design goal implies
that pe,b = 101.325 [kPa] (1 atmosphere).
In order to dimension the thrusters, the properties of the propellant has to be determined.

Bipropellant

Sources: [Yemets 08a] [Ponomarenko 15]

All bipropellant parameters connected to the HDPE and HPO fuel/oxidizer mixture will be sub-
scripted with f |o.
In order to obtain chemical parameters of the bipropellant, a program called "Rocket Propulsion
Analysis (RPA)" is used. This program takes fuel, oxidizer, ingredient temperature, chamber-,
and exhaust pressure as input and in turn outputs a large variety of theoretical parameters, in-
cluding: combustion temperature, molecular weight, and isentropic expansion factor.
As inputs, HDPE and HPO(98%) was used as ingredients with a mixing ratio of 1:6.66 at an in-
gredient temperature of 750 K [Yemets 08a], at a chamber pressure of 6.08 MPa (60 atmospheres).
These values have given the following chemical parameters:
The chamber pressure of 60 atmospheres has been chosen in order to ensure the performance of
the chemical engine stays within a feasible performance range. Using a chamber pressure this
high will, however, require the engine to utilize a turbo pump of sufficient size.
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Bipropellant chemical parameters
Molecular weight M f|o 21.9 [g/mol]
Isentropic expansion factor γ f|o 1.1319 [·]
Combustion chamber temperature Tc, f|o 2943 [K]

Table 5.5: Chemical parameters for the bipropellant comprising the ingredients of
polyethylene and hydrogen peroxide (98%).

From the values in table 5.5 it is possible to calculate the true exhaust velocity by using equation
5.3:

ue,b =

√√√√√ 2γf|o

γf|o − 1
RTc, f|o

M f|o

1−
(
pe,b
pc,b

) γf|o−1
γf|o

 = 2697 [m/s] (5.10)

Booster Maximum Thrust and Resulting Mass Flow

In section 8.2.2 the total maximum needed thrust of AAURocket was calculated to be Tmax =
101.231 kN. Using the characteristic velocity of the optimization problem at sea level it is possible
to calculate the needed nominal maximum mass flow: 1

ṁmax = Tmax
ve(sea) = 39.99 [kg/s] (5.11)

where

ve(sea) is the effective exhaust velocity of the engine at sea-level [m/s]

In turn the maximum needed thrust and mass flow for a single booster thruster can be calculated
by using the level from section 5.4.2:

Tmax,b = 0.2375Tmax = 24.04 [kN] (5.12)
ṁmax,b = 0.2375 ṁmax = 9.498 [kg/s] (5.13)

With a maximum total mass flow of 40 kg/s it is strongly advised to do a physical verification
test of whether this exceeds the gasification rate limit of the polyethylene.

Booster Throat and Nozzle Area

The design goal of optimum expansion at sea level, combined with the properties of the bipropel-
lant, and the conditions under which it will be combusted, makes the dimensioning of the throat
area possible. The throat area of each booster is calculated to:

A∗b = ṁmax,b

pc,b

√
γ f|o

(
2

γ f|o+1

) γ f|o+1
γ f|o−1 M f|o

RTc, f|o

= 26 [cm2] (5.14)

1Note that the values of effective exhaust velocity at sea level and vacuum, along with the maximum thrust
needed was calculated simultaneously in an iterative process between the thruster dimensioning and the trajectory
optimization.
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Furhtermore, this throat area results in a nozzle exit area of:

Ae,b = A∗b

√√√√√√√√
(
γ f|o−1

2

)(
2

γ f|o+1

) γ f|o+1
γ f|o−1

pe,b
pc,b

2
γ f|o

(
1− pe,b

pc,b

γ f|o−1
γ f|o

) = 241 [cm2] (5.15)

Booster Effective Exhaust Velocities

The nominal effective exhaust velocity can now be calculated at both optimum expansion as well
as in vacuum while applying the efficiency parameters of section 5.5.4:

ve,b(sea) = ηt

[
ue,b +

(
(pe,b − pa,sea)Ae,b

ṁmax,b

)]
= 2531 [m/s] (5.16)

ve,b(vac) = ηt

[
ue,b +

(
pe,bAe,b
ṁmax,b

)]
= 2773 [m/s] (5.17)

Note that the nominal effective velocity in vacuum is how the thruster will perform at maximum
mass flow and matching chamber pressure in vacuum. Hence ve,b(vac) will be different in prac-
tice, however, the nominal effective exhaust velocity will be used as an approximate value for later
calculations.

5.6.2 Orbital Thruster Dimensioning
All engine parameters connected to the orbital thruster will be subscripted with an o.
The orbital thruster is designed to utilize the same bipropellant as the booster thrusters. Fur-
thermore, it is also designed to have optimum thrust performance at sea level, which implies that
pe,o = 101.325 [Pa] (1 atmosphere). These design parameters cause the true exhaust velocity of
the orbital thruster to equal that of the booster thrusters:

ue,o = ue,b = 2697 [m/s] (5.18)

Orbital Thruster Maximum Thrust and Resulting Mass Flow

By using the orbital thruster range from section 5.4.2, the maximum thrust and mass flow for the
orbital engine is calculated to be:

Tmax,o = 0.05Tmax = 5.062 [kN] (5.19)
ṁmax,o = 0.05 ṁmax = 1.9995 [kg/s] (5.20)

Orbital Thruster Throat and Nozzle Area

The throat area of the orbital thruster is calculated as:

A∗o = ṁmax,o

pc,o

√
γ f|o

(
2

γ f|o+1

) γ f|o+1
γ f|o−1 M f|o

RTc, f|o

= 5.475 [cm2] (5.21)
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Furthermore, this throat area results in a nozzle exit area of:

Ae,o = A∗o

√√√√√√√√
(
γ f|o−1

2

)(
2

γ f|o+1

) γ f|o+1
γ f|o−1

pe,o
pc,o

2
γ f|o

(
1− pe,o

pc,o

γ f|o−1
γ f|o

) = 51 [cm2] (5.22)

Orbital Thruster Effective Exhaust Velocities

The nominal effective exhaust velocity can now be calculated at both optimum expansion as well
as in vacuum while applying the efficiency parameters of section 5.5.4:

ve,o(sea) = ηt

[
ue,o +

(
(pe,o − pa,sea)Ae,o

ṁmax,o

)]
= 2531 [m/s] (5.23)

ve,o(vac) = ηt

[
ue,o +

(
pe,oAe,o
ṁmax,o

)]
= 2773 [m/s] (5.24)

Note that the effective exhaust velocities of the orbital thruster equals that of the booster thrusters.
This is an inherent effect of utilizing the same bipropellant and pressures as the boosters, as well
as a proportional down scaling of Ae and ṁmax.

5.6.3 Vernier Thruster Dimensioning

[Turner 01]

All engine parameters connected to the vernier thrusters will be subscripted with a v.
The task of the vernier thrusters differs from that of the main thrusters, in the sense that they
are used for attitude corrections throughout the ascent. As such, there is a need for the vernier
thrusters to be able to turn on and off. To overcome this problem the vernier thrusters is designed
as monopropellant rocket engines. Monopropellant rocket engines use propellants that are either
able to react with itself or react through a catalyst. The oxidizer HPO is able to be used as a
monopropellant through the use of a proper catalyst. This reaction will cause the HPO to become
hot and produce steam and oxygen. With HPO going from a liquid state to steam and oxygen
means there is chemical expansion that can be harvested for kinetic energy.
Seeing as the HPO will need to pass through a catalyst, the chamber pressure of the vernier
thruster is reduced to 1.013 MPa (10 atmospheres). This is done to ensure that the catalyst is
not being destroyed by the HPO as it passes through the catalyst.

Monopropellant

Sources: [Ponomarenko 15]

All monopropellant parameters connected to the HPO will be subscripted with an h.
The theoretical parameters for the vernier thruster is passed to the program RPA to obtain the
accompanying chemical parameters for the monopropellant. As inputs HPO(98%) was used as
monopropellant, at a chamber pressure of 1.013 MPa. These values has resulted in the following
chemical parameters:
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Bipropellant chemical parameters
Molecular weight M h 22.56 [g/mol]
Isentropic expansion factor γ h 1.2511 [·]
Combustion chamber temperature Tc, h 1223 [K]

Table 5.6: Chemical parameters for the monopropellant of hydrogen peroxide (98%).

From the values in table 5.5 it is possible to calculate the true exhaust velocity for the vernier
thruster by using equation 5.3:

ue,v =

√√√√√ 2γh

γh − 1
RTc, h
M h

1−
(
pe,v
pc,v

) γh−1
γh

 = 1290 [m/s] (5.25)

Vernier Thruster Maximum Thrust and Resulting Mass Flow

In order to determine a plausible thrust level of the vernier thrusters, the input sequence from the
ascent trajectory calculated in section 8.3.2. Specifically the change rate of the input parameters θ
and φ which are the two spherical components used to represent the orientation of the LV during
the ascent. By taking the double derivative of each angle a maximum needed acceleration at
each time instant of the ascent can be found. The combined magnitude of these accelerations are
calculated as:

αθ(t) = d2θ(t)
dt2 (5.26)

αφ(t) = d2φ(t)
dt2 (5.27)

αmax(t) =
√
αθ(t)2 + αφ(t)2 (5.28)

The magnitude of the combined acceleration from 5.28 can then be multiplied with the moment
of inertia of the LVs body x-axis to get the maximum needed torque at each time instant:

τmax = αmax(t)rIy|z(t) (5.29)

Due to the placement of the vernier thrusters on the engine block, it is apparent that their torque
capability will be reduced over time, as the engine block approaches the CoM of the LV. Equation
5.30 shows the relation between the four vernier thrusters and the resulting torque vector they
produce.

τ v(t) = rd1(t)× rTv,1 + rd2(t)× rTv,2 + rd3(t)× rTv,3 + rd4(t)× rTv,4 (5.30)

where

rτ v(t) is the torque produced by the vernier thrusters [Nm]
rdk(t) is the placement of the kth vernier thruster [m]
rTk(t) is the thrust of the kth vernier thruster [N]

From the vernier thruster alignment shown in section 5.4.2 it is clear that only two vernier thrusters
are needed to rotate the LV about either r1Y or r1Z . Furthermore, since all vernier thrusters are
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placed symmetrically around the LV, it is only necessary to study a single torque case, in order
to determine the maximum vernier thrust force needed.
Equation 5.31 shows the decomposed vector components of equation 5.30. Note that the time
indices of the placement and torque vectors has been omitted.

τv,xτv,y
τv,z

 = 1√
2

−d1,yTv,1 − d2,yTv,2 − d3,yTv,3 + d4,yT4 + d1,zTv,1 − d2,zTv,2 + d3,zTv,3 − d4,zTv,4
−d1,xTv,1 − d2,xTv,2 + d3,xTv,3 + d1,xTv,4
d1,xTv,1 − d2,xTv,2 − d3,xTv,3 + d4,xTv,4


(5.31)

with

d1,x = d2,x = d3,x = d4,x

d1,y = d2,y = d3,y = d4,y

d1,z = d2,z = d3,z = d4,z

Tv,1 = Tv,2 = Tv,3 = Tv,4

By using a simple case of only turning on vernier thruster three and four (which equals Tv,3 and
Tv,4), it is possible to find an expression for the maximum thrust force needed, as seen in equation
5.32.

τv,xτv,y
τv,z

 = 1√
2

 0
d3,xTv,3 + d4,xTv,4

0

 (5.32)

Since d3,x = d4,x and Tv,3 = Tv,4 = Tmax,v the expression can be reduced to:

τv,y =
√

2dxTmax,v ⇔

Tmax,v = τv,y√
2dx

(5.33)

Finally τv,y in equation 5.33 can be substituted with τmax from equation 5.29 which in turn gives:

Tmax,v(t) = τmax(t)√
2dx(t)

(5.34)

The result of equation 5.34 applied on the solution of the optimization problem calculated in
section 8.3.2 can be seen on figure 5.9.
It is clear that a lower bound of 110 N for each vernier thruster will fulfill the requirement set
by the optimal ascent trajectory. However, the maximum thrust for each vernier thruster will be
designed significantly higher in order to ensure that they can overcome any unforeseen disturbance
factors, or other sudden needs of attitude change. Therefore, the maximum thrust and resulting
mass flow for each vernier thruster is designed to be:

Tmax,v = 500 [N] (5.35)
ṁmax,v = ṁmax = 0.3878 [kg/s] (5.36)
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Figure 5.9: The maximum required vernier thrust force needed throughout the tra-
jectory calculated in section 8.3.2.

Vernier Thruster Throat and Nozzle Area

The throat area of the vernier thruster is calculated as:

A∗v = ṁmax,v

pc,v

√
γ h

(
2

γ h+1

) γ h+1
γ h−1 M h

RTc, h

= 3.904 [cm2] (5.37)

Furthermore, this throat area results in a nozzle exit area of:

Ae,v = A∗v

√√√√√√√
(
γ h−1

2
) ( 2

γ h+1

) γ h+1
γ h−1

pe,v
pc,v

2
γ h

(
1− pe,v

pc,v

γ h−1
γ h

) = 8.429 [cm2] (5.38)

Vernier Thruster Effective Exhaust Velocities

The effective exhaust velocity can now be calculated at both optimum expansion as well as in
vacuum while applying the efficiency parameters of section 5.5.4:

ve,v(sea) = ηt

[
ue,v +

(
(pe,v − pa,sea)Ae,v

ṁmax,v

)]
= 1210.1 [m/s] (5.39)

ve,v(vac) = ηt

[
ue,v +

(
pe,vAe,v
ṁmax,v

)]
= 1416.8 [m/s] (5.40)

Note that the vernier thrusters are expected to always apply full thrust, and only vary in time
period of each actuation sequence. As such the vernier thrusters will indeed have an effectivity of
ve,v(vac) in vacuum.

5.7 Subconclusion

In this chapter several different kinds of inertial and reference sensors were presented. A study
into existing sensor setups on some of the CS rockets were performed and based on their experi-
ence the IMU ADIS16448 was chosen to be the primary sensor platform of AAURocket.
Additionally, this chapter introduced different common types of attitude actuators for rocket LVs,
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among which, the vernier thrusters were chosen to be used as the attitude actuators for AAU-
Rocket.
Furthermore, the general thrust profile characteristics for ascent trajectories was presented, fol-
lowed by the constraints imposed on the ascent trajectory of AAURocket. These constraints
included the need for the ability to throttle the thrusters as well as the necessity for the main
thrust to never be turned off during the ascent.

Parameter Booster Orbital Vernier Unit
T 24.04 5.062 0.5 [kN]
ṁ 9.498 1.9995 0.3878 [kg/s]
pc 6.08 6.08 1.013 [MPa]
pe 0.1013 0.1013 0.1013 [MPa]
ue 2697 2697 1290 [m/s]
A∗ 26 5.475 3.904 [cm2]
Ae 241 51 8.429 [cm2]
Ae/A

∗ 9.265 9.265 2.159 [·]
ve(sea) 2531 2531 1210 [m/s]
ve(vac) 2773 2773 1417 [m/s]
Throttle Range [50%;100%] [50%;100%] 100% [·]

Table 5.7: Design parameters for for each of the three types of chemical rocket en-
gines on board AAURocket, including: booster thrusters, orbital thruster,
and vernier thruster.

The general mechanical structure for the engine block was also presented, where a five thruster
setup was chosen to overcome the limitations of a wide throttle range coupled with the attainable
low single thruster throttle range of [50%;100%].
Finally the thermodynamic design equations for chemical rocket engines was presented follow by
the dimensioning of each of the three types of thrusters to be utilized on AAURocket. These in-
cluded the four booster thrusters, the orbital thruster, and the four vernier thrusters. The design
parameters for each of these thruster types can be found in table 5.7.
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Chapter 6

Rocket and Disturbance Modeling

The previous chapters have described the mechanical design of the rocket together with the
dimensioning and design of the main thrusters and vernier thrusters used for guiding AAURocket
into space. This chapter will present the modelling of the translational and rotational dynamics
of the rocket including modelling of control inputs and disturbances.

6.1 Modeling of Translational Dynamics

The translational dynamics of the rocket are affected by thrust, gravity, and aerodynamic friction.
In the following section each of these forces will be described and modelled.
In general, a complete force equation describing the full system can be written as shown in equation
6.1

fa = ṁve + fext (6.1)

where fext is the sum of all the external disturbance forces described in this section.

6.1.1 Thrust

The only controllable input force to the system is the thrust applied by the main thrusters and
the vernier thrusters of the rocket. The main thrusters produce the main thrust in the x-axis
of the RBRF. The four vernier thrusters produce minor positive and negative thrusts in the y-
and z-axis of the RBRF. In general the thrust force produced by the main thrusters, Tb,o, can be
described as a thrust vector as shown in equation 6.2

rT =

rTx
rTy
rTz

 =

Tb,o0
0

 (6.2)

As described in section 5.4, the vernier thrusters are placed in an angle such that the thrust
produced by the vernier thrusters are as given in equation 6.3

rTv =

rTv,x
rTv,y
rTv,z

 = 1√
2

 0 0 0 0
−1 1 1 −1
−1 −1 1 1



Tv,1
Tv,2
Tv,3
Tv,4

 (6.3)
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where:

rTv is the thrust force produced by the vernier thrusters [N]
Tv,k is the thrust force produced by vernier thruster k [N]

6.1.2 Disturbances

Gravity

In general the gravitational acceleration of an object towards the center of Earth can be described
as a function of the position of the object, with respect to the center of earth, as shown in equation
6.4

ig(ir) = µE

||ir||3
ir (6.4)

where:

g(ir) is the gravitational acceleration at position (ir) [m/s2]

And then the gravitational force, fg, imposed on the rocket can be determined by equation 6.5

fg = mig(ir) (6.5)

Friction due to motion

When an object is moving inside the atmosphere it is subjected to friction with the air. The
friction drag is a disturbance force mainly dependent on the speed of the object, v, and it can be
determined by equation 6.6.

fD = 1
2CDρav|v|A (6.6)

where:

CD is the drag coefficient of the object [·]
ρa is the density of the ambient air [kg/m3]
v is the speed of the object [m/s]
A is the cross sectional area of the object perpendicular to v [m2]

To determine the drag in all directions, the drag coefficient for each face of the object is needed.
Each drag coefficient can then be used to determine the effect of the friction in each direction.
Thereby the drag force vector, rfD, for the rocket can be determined as shown in equation 6.7

rfD =

rfD,x
rfD,y
rfD,z

 = 1
2ρa

CD,xAxCD,yAy
CD,zAz

~

rvx
rvy
rvz

~

|rvx||rvy|
|rvz|

 (6.7)

The drag coefficient of an object is normally determined through testing in a laboratory. As
AAURocket has not yet been constructed, it is not possible to determine the exact drag coefficients.
Various sources describes different drag coefficients for each type of shape. In general it has been
chosen that AAURocket, seen from the side, is a cylinder, and seen from the top, is a cone.
Conservatively the drag coefficients has been chosen as following:
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CD,x = 0.295 (6.8)
CD,y = 1.17 (6.9)
CD,z = 1.17 (6.10)

6.2 Modelling of Rotational Dynamics

The rotational dynamics of the rocket are affected by the same forces as for the translational
dynamics. The rotational dynamics are described within this chapter.

6.2.1 Rotating reference frames
When an object, in this case the rocket, rotates within an inertial reference frame, so does the
frame of the object. To help describe this rotation Euler’s second law of motion is used. Euler’s
second law of motion states that the time derivative of the angular momentum, L around a fixed
point in an inertial reference frame is equal to the sum of external torques, τ ext, about this point.
This can be described as shown in equation 6.11 FiXme Note: Der

skal tilføjes en
kilde!

iL̇ = iτ ext (6.11)

To describe the angular momentum of the rocket in the RBRF, it is necessary to apply rotation
as shown in equation 6.12

rL = r
iR iL (6.12)

where:
r
iR is the rotation matrix describing the rotation from ECI to RBRF [·]

Then by differentiating the angular momentum given in the RBRF, the time derivative of the
angular momentum, in the RBRF, is obtained as shown in equation 6.13

rL̇ = r
iṘ iL + r

iR iL̇ (6.13)

The derivative of the rotation between the RBRF and the inertial frame can be determined by
equation 6.14

r
iṘ = −[rω ]×r

iR (6.14)

Thereby by substituting equation 6.11 and 6.14 into equation 6.13 the expression for the rate of
change of the angular momentum in the RBRF is obtained as shown in equation 6.15

rL̇ = −[rω ]×r
iR iL + r

iR iτ ext = −[rω ]×rL + rτ ext (6.15)

Furthermore it is also known that the angular momentum of a rigid body can be determined by
equation 6.16.

rL = rJrω (6.16)

where:
rJ is the moment of inertia of the rigid body in the RBRF [kgm2]

As the final result, equation 6.15 and the derivative of equation 6.16 can be combined into equation
6.17, describing the full rotational dynamics of the rocket given in the RBRF.

rJrω̇ = rτ ext − [rω ]×rL = rτ ext − [rω ]×rJrω (6.17)
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6.2.2 Thrust
When applying a thrust force, rT, to a point on a rocket located at a distance, rd, away from the
center of mass of the rocket, it results in a torque, rτ v, given by equation 6.18.

rτ v = [rd]×rT (6.18)

When neglecting the possibility of disturbances in the force produced by the boosters, only the
vernier thrusters will be able to produce a torque. Furthermore each vernier thruster produces
a torque in two axes. The torque produced by the vernier thrusters, rτ vt, can be determined by
equation 6.19.

rτ v =
4∑
i=1

[rdi]×rTv,i (6.19)

As seen in figure 5.8 in section 5.4, the vernier thrusters are placed on the engine part of the rocket.
Thereby the distance from the rocket CoM towards the vernier thrusters changes along with the
rocket becoming shorter as it uses the fuel. This also means that the displacement vectors, rdi,
are determined as a function of the height of fuel shell.

6.3 Dynamic equations

m(t)rv̇(t) =rT(t)− rfg(t)− rfD(t) (6.20)

=rT(t)− r
iq(t)⊗ µE

||ir(t)||3
ir(t)− 1

2ρa
rA(t) ~ rCD(t) ~ rv(t) ~ |rv(t)| (6.21)

rJ(t)rω̇(t) =
4∑
k=1

[rdk(t)]×rTv,k(t)− rω(t)× rJ(t)rω(t) (6.22)

6.4 Moment of Inertia

The inertia matrix for AAURocket is modeled as a diagonal matrix with the diagonal entries being
as shown in the equations below. The derivations for the equations are shown in appendix B.
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6.5 Thermal Modeling of the Gasification Process

Sources: [Yemets 08a]
This section will present some of the challenges introduced by the need for gasification of the
HDPE. It is not fair to assume that the thrust of the rocket can be changed instantly and thereby
it is necessary to take the PE gasification process into account. On the contrary, the focus of
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this thesis is not to control the thermal process, but to control attitude, position and velocity of
the rocket during a launch to an altitude of 500 km. Hence the thermal modelling is kept to a
minimum, but some simplified thermal dynamics are assumed to make sure that the dynamics of
the gasification process is taken into account.

DNU has made some experimental estimations of the possible gasification rate of a HDPE rod.
According to [Yemets 08a] the work at DNU, with PE as rocket fuel, has shown a Gasification
Chamber (GC) with the possibility of consuming up to 0.01 m/s of a HDPE rod. With this
knowledge, it is possible to calculate a theoretical fuel mass flow by using equation 6.26.

ṁf = −ḣfAfρf (6.26)

where:

ṁf is the fuel mass flow [kg/s]
hf is the height of the fuel shell [m]
Af is the cross-sectional area of the fuel shell [m2]

When the HDPE has been gasified in the GC, it will be led into the combustion chamber (CC)
together with the oxidizer. The excess heat from the combustion is led to the GC walls to gasify
the HDPE. As mentioned, it is not the focus of this thesis to describe a precise thermal model,
hence a simple dynamic model, will be assumed. The gasification process will be modeled as a
first order system with time constant, τga. It is assumed that when the engine has been ignited,
the CC always produces enough heat for the GC to be able gasify the fuel at a sufficient rate.
The block diagram in figure 6.1 shows how the gasification process is modeled.

1/τga
s+1/τga

0.01

0.0001

hf

.

Af ρf

mf
.

Figure 6.1: Shows the model assumed for the gasification process

As seen in figure 6.1, the input to the system is given as the shortening rate, ḣf , of the fuel shell.
This has been bounded by by a maximum value of 0.01 m/s, to stay within the maximum rate
determined by DNU. Furthermore it has also been bounded by an arbitrarily chosen minimum
value of 0.0001 m/s to ensure that there is always some flow. This is done due to the assumption
that the CC always produces enough heat to keep gasifying the fuel. This would not be the case
if the the flow of fuel to the CC stays zero for a period of time. However, this is not expected
to be of significance due to the fuel mass flow being highest in the beginning of the launch, and
thereby the only risk of the engine turning off happens when it is close to burnout.
As well as it is the case for the gasification process, the combustion of the fuel does not happen
instantly. This process is also simplified by assuming a first order model with a time constant,
τco. Figure 6.2 shows the model assumed for the combustion inside the CC. With the help of a
catalyst, the H2O2 is converted to O2 and H2O and enters the CC together with the gasified PE.
After the combustion the total mass, ṁ, is exhausted through the expansion nozzle.

1/τco
s+1/τco

m.
mf
.

mo
. Σ

Figure 6.2: Shows the model assumed for the combustion process

As it is not entirely known how fast it is possible change the gasification- and combustion rate,
the exact values of τga and τco have not been determined. It is assumed that none of the time

63



CHAPTER 6. ROCKET AND DISTURBANCE MODELING

constants will be above 1 second, and thereby this value is chosen for both for the evaluation of
the of the model. The model is evaluated with a step function on ḣf , to see to see how it performs
for a sudden change, and with a falling ramp, to see how it performs as the fuel need is slowly
decreasing during a launch. The result of the evaluation can be seen in figure 6.3.
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Figure 6.3: Shows the evaluation of the mass flows given by a step response and a
decreasing ramp response.

On the step it is seen that the fuel mass flow takes about 4 seconds to settle. As the system is
evaluated at maximum ḣf , a controller would not be able to make the system settle faster. For the
total mass flow the settling time is about 6 seconds, and the same applies here for the controller.
As the thrust, and thereby the mass flow, is expected to be highest in the start of the launch, a
possibility to overcome this problem would be to increase the thrust before releasing the rocket
for launch.
When looking at the responses of the decreasing ramp, it is seen that the system has a hard time
following its reference. It is not expected to be necessary to design a controller to control the fuel-
and total mass flow, since the controller designed for controlling the thrust will take care of this.

6.6 Subconclusion

In this chapter the general dynamic equations and disturbance forces for translational and rota-
tional motion was presented. The full set of dynamical equations was derived to be:
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m(t)rv̇(t) =rT(t)− rfg(t)− rfD(t)

=rT(t)− r
iq(t)⊗ µE

||ir(t)||3
ir(t)− 1

2ρa
rA(t) ~ rCD(t) ~ rv(t) ~ |rv(t)|

rJ(t)rω̇(t) =
4∑
k=1

[rdk(t)]×rTv,k(t)− rω(t)× rJ(t)rω(t)

Furthermore, the analytical expressions describing the evolving moment of inertia was introduced:
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Finally a general approximation for the gasification process was modeled as:

ṁf = −ḣfAfρf
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Chapter 7

Simulink Simulation Environment

In order to test the estimation and control methods and algorithms for AAURocket, a general
simulation environment has been created. This environment has been implemented in Simulink.
This is done primarily for ease of use, and to provide other people quick and easy access to different
sub-systems within the simulation if they so desire.
While a lot of different dynamical components and environmental disturbances can be modeled
and simulated in order to obtain the best possible truth model, the actual implementation has
been limited to the dynamical equations and disturbances discussed in chapter 6.
In this chapter each major part of the simulation environment implemented in Simulink will be
outlined. First the general dynamics, physical properties, environment, and quaternions will be
presented, followed by the implementation of the sensor and actuator models.
Additionally a block containing the algorithms run on the AAURockets onboard computer is
present, but not discussed in this section, as all the algorithms and calculations this block contains
are presented in chapter 9 and 10.

7.1 AAURocket Dynamics and Environment

Figure 7.1 shows the general blocks concerning the dynamics and environment implemented in
Simulink. The block named "AAURocket Dynamics" contains the dynamical equations of AAU-
Rocket as presented in section 6, and as such will not be discussed further in this section. The
block named "Quaternions" calculates each of the different reference frame orientations with re-
spect to each other. This subsystem block will not be discussed further in this section neither. The
block named "AAURocket Mass, Moment of Inertia, and Height" calculates, as the name implies
the mass, moment of inertia, and height of AAURocket. Finally, the block named "Environment"
calculates each of the environmental parameters considered at the position of AAURocket.

7.1.1 AAURocket Mass, Moment of Inertia, and Height

This block uses oxidizer and fuel change rates as inputs in order to calculate the change in initial
mass, and resulting change in height of the AAURocket. This is done by using "limited inte-
grators" which has the initial masses as upper limits, and zero as the lower limit. In turn the
integrated change rates are outputted as the total-, oxidizer-, and fuel mass of the rocket.
Additionally the developing moment of inertia is calculated throughout the simulation. The cal-
culations involving the moment of inertia can be found in section 6.4.
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Figure 7.1: AAURocket dynamics and environment Simulink blocks. Each label is
colored as identification. Red is positional states, green is rotational
states, yellow is other physical non-state parameters regarding AAU-
Rocket, magenta is inputs and/or control signals, and orange is environ-
mental parameters.

7.1.2 Environment
The "Environment" block contains the three primary environmental factors that is considered in
this project: The gravitational acceleration of the Earth, the Earths magnetic field (calculated for
the sake of the magnetometer), and the atmosphere of the Earth.

Gravitational Acceleration

The gravitational acceleration of the Earth has been implemented by the simple analytical model
as given in chapter 6:

ig = µE

||ir||3
ir

Magnetic Field Model

Source: [NOAA 15]
In general the Earths magnetic field can be considered as a giant dipole magnet within the center
of the Earth, which is oriented with its magnetic south pole close to the Earths geographical
north pole, and the magnetic north pole close to the Earths geographical south pole. However,
the reality has the magnetic field strength varying across the entire surface of the Earth, as well
as out into space. An example of the intensity of the Earths magnetic field at sea level can be
seen on figure 7.2.
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Figure 7.2: Geomagnetic field intensity based on an IGRF model [Ahem 09].

The magnetic field has been modeled using the International Geomagnetic Reference Field (IGRF),
which is a mathematical description of the Earths magnetic field at a given spherical position.
Due to the fact that the Earths magnetic field is changing over time, the IGRF model is only
valid in five year periods. As such the current valid IGRF model is of the 11th generation and is
inherently called IGRF11. This version is considered valid in the period 2010-2015.
Though the IGRF model accurately calculates the magnetic field strength at any position on and
above the Earth, there are some magnetic disturbances it does not take into account as these
are short time period events. One such disturbance is the currents in the ionosphere (60-600km)
caused by solar winds which may induce variations in the magnetic field as high as 10%. However,
these extra uncertainties are not considered within the scope of this project.

7.1.3 The Atmosphere of the Earth
Source: [NASA 76]
The atmospheric model of the Earth consists of two parts; a model for the atmospheric density
and a model of the atmospheric pressure.

Atmospheric Density

The implemented atmospheric density model is split into two parts. For altitudes between 0 km
and 50 km a continuous analytical model is utilized. This analytical expression is as follows:

1.277e−0.1194h (7.1)
where

h is the height above sea-level [m]

This continuous model is a fitted exponential function that have been determined based on data
samples from [NASA 76]. For altitudes above 50 km, the atmospheric density is determined by
looking up values in a table. Between 50 km and 100 km the table has data points with a resolution
of 1 km. From 100 km to 200 km the table has data points with a resolution of 5 km. Finally
from 200 km and higher the table has a resolution of 20 km. Table 7.1 below shows how the
atmospheric density is determined at various heights.
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Height (km) Calculation Density (kg/m3)
4.8 1.277e−0.1194·4.8 0.71993
63.7 ρt(63) 0.210 · 10−3

148.3 ρt(145) 2.70 · 10−9

431.9 ρt(420) 2.00 · 10−12

Table 7.1: A few examples of how the atmospheric density is determined at various
heights, where the function ρt is a lookup table.

Atmospheric pressure

The atmospheric pressure model is implemented as an analytical model by using the ideal gas law
which states:

pa = ρa
R

Ma
Ta (7.2)

where

Ma is the molecular weight of air [g/mol]
Ta is the temperature of the air [K]

Additionally the temperature of the air can be calculated with respect to height by the following
equation:

Ta = T0 − Lh (7.3)

where

T0 is initial temperature of the air at sea-level [K]
L is the temperature lapse rate [K/km]

By substituting equation 7.3 into 7.2 a general expression for the pressure of the atmosphere is
obtained:

pa = ρa
R

Ma
(T0 − Lh) (7.4)

7.2 Sensor and Actuator Models

The sensor and actuator Simulink blocks are the interfaces between the onboard computer and
the simulated truth model of the dynamics and environment of AAURocket. Figure 7.3 shows the
sensor and actuator blocks as implemented in Simulink.

7.2.1 Sensors
The sensors are all modeled from their datasheet values presented in section 5.2, and as such all
noise characteristics are assumed white Gaussian. It is a possibility that actual sensors would
have other color variants than white, but in order to determine the actual color, noise estimation
tests are needed.
In total there are four actual datasheet sensors which are simulated which include: a magnetome-
ter, an accelerometer, a gyroscope, and a barometer. Two token sensors are also simulated which
include: a GPS and a tachometer. Finally all mass flows into each combustion chamber of each
engine are assumed measured as well, however, these flow sensors are not modelled with stochastic

70



7.2. SENSOR AND ACTUATOR MODELS

Figure 7.3: AAURocket sensors and actuator Simulink blocks. The new color code
of cyan represents measurements and/or estimates.

uncertainty.

Magnetometer, Gyroscope, Barometer, and GPS

The general Simulink model for the magnetometer can be seen on figure 7.4.

Figure 7.4: Structure of the modeled magnetometer sensor.

The magnetometer utilizes two primary inputs from the truth model: the magnetic field as cal-
culated by the IGRF in the ECEF frame, and the quaternion r

eq. The magnetic field vector
calculated in the ECEF frame is rotated into the RBRF and converted through a gain block
to µG (which is the output unit of the sensor). The magnetic field vector is then added to a
bias value set by the user, after which white Gaussian noise, in the magnitude specified by the
datasheet, is added to each vector component. At this point the vector is either passed through,
or bypasses the internal filter present on the ADIS16446. Whether or not the filter is used, is
specified by the user, and throughout this project none of the internal filters have been utilized.
The vector is finally passed through a "quantizer", a "zero-order hold", and a "saturation" block
in order to represent the magnetometers resolution, discrete sampling, and absolute measurement
range respectively.
In turn the true magnetic field and orientation of the LV enters the block, and an observed biased,
noisy, and discrete measurement vector is returned.

The gyroscope,barometer, and GPS are all modelled in a similar fashion as the magnetometer.
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Accelerometer

The general Simulink model for the magnetometer can be seen on figure 7.5.

Figure 7.5: Structure of the modeled accelerometer sensor.

While the general structure of the accelerometer is similar to that of the magnetometer, it utilizes
several additional inputs. As the name implies the accelerometer measures accelerations. As such,
it not only experiences accelerations caused by translational accelerations, but also from rotations.
The accelerations caused by rotation is only true for accelerometers not placed in the CoM of the
system it measures. However, seeing as the CoM is almost always within the fuel canister, these
accelerations has to be modeled. As such the nominal noiseless acceleration experienced by the
accelerometer is modeled as:

rAcc = ra + rg + rω × (rω × rdIMU ) (7.5)

where

rAcc is the accelerometer measurement [m/s2]
ra is the dynamical acceleration of AAURocket [m/s2]
rg is the gravitational acceleration imposed on AAURocket [m/s2]
rω is the angular velocity of AAURocket [rad/s]
rdIMU is the position of the IMU in the RBRF [m]

The rω × (rω × rdIMU ) term includes the acceleration experienced by the accelerometer due to
displaced rotation. It is clear that the experienced acceleration is proportional to both angular
velocity as well as displacement. As such, the magnitude of this effect will reduce as rdIMU

reduces during the ascent.
Furthermore, the reason for the addition of the gravitational acceleration, is that the gravity is
already present as a negative contribution in ra. Without this addition the accelerometer would
experience acceleration towards the center of earth when it is in free fall, where normal perfor-
mance will have it measuring zero.

The rest of the accelerometer model is identical to that of the magnetometer.

Tachometer

As mentioned in section 5.4.2 DC motors are mounted inside the engine block to control the
rate of consumption of the fuel shell. It is assumed that these DC motors are equipped with
tachometers in order to determine the amount of fuel shell that has been consumed. By knowing
the amount of fuel shell consumed, it is in turn possible to calculate the remaining height of the
rocket. As such the tachometer takes the height of the truth model as an input and outputs a
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height measurement. The truth height is "quantized" inside the tachometer Simulink block to
make the signal a discrete stair signal. Following is an "edge detector" which detects each falling
edge of the stair signal within the resolution of the tachometer. Finally these edges are passed to
a "counter" block which has a range of 255 counts. As such tachometer outputs a value between
1-255 depending on how much of the shell has been consumed. Note that the range of 255 in this
case means that the counter will wrap around to 1 after 255 has been reached. Hence, it is up to
the onboard computer to keep track of the actual remaining height of AAURocket.

7.2.2 Actuators
The actuators considered in the simulation environment are all contained within the "AAURocket
Thrusters" block, and the general contents of this block can be seen on figure 7.6.

Figure 7.6: Structure of the modeled actuators on AAURocket.

The block takes six total inputs: a throttle level, four vernier thruster enable signals, and finally
the pressure of the surrounding atmosphere. The primary signal flow of the actuator block is to
first calculate the mass flow going into each combustion chamber, followed by the calculation of
the thrust produced by each thruster.
As mentioned in section 5.6.3 it is assumed that all vernier thrusters have no throttle capability.
As such they all function as either fully on or fully off, hence the relatively simple calculation
with respect to mass flow, where the logical enable operator is simply multiplied with the vernier
thruster nominal mass flow.
A more complex mass flow scheme is implemented for the remaining four boosters and one orbital
thruster, inside the "Main Thruster Mass Flows" block. An illustration of the contents of this
block can be seen on figure 7.7
The primary function of the block is to utilize the correct thrusters for a given throttle level as
per the diagram on figure 5.5. This is done by analyzing the throttle level input and determine
what range the current value lies within (i.e. five thrusters, three thrusters, or one thruster). If
the throttle is above 0.5 the top section of the Simulink environment shown on figure 7.7 is active.
Between 0.2625 and 0.5 and the middle section is the active one. Finally when the throttle is
below 0.2625 the bottom section is active.
The two top most sections are identical in structure and the only real difference is whether five or
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Figure 7.7: Structure of the primary mass flows calculator block.

three boosters are active. The mass flow is passed through a first order filter in the end in order
to simulate the thermal delay from change in throttle input to actual change in shell consumption
in the gasification process as per 6.5.
The bottom most section only has the orbital engine enabled. The section becomes active as soon
as the throttle level goes below 0.2625, however, the mass flow output is limited to equal that of
throttle level range 0.025 to 0.05. This means that when the throttle lies in the range between
0.05 and 0.2625, the actual thrust production of the thruster system will only equal 0.05. This is
in accordance with the dead zone observed on figure 5.5.
Finally the two top most range sections are permanently shut off as soon as a new section is
utilized. This means that if the throttle goes from the five thruster setup range into the three
thruster setup range, it is no longer possible to turn on the two killed thrusters. This is also in
accordance with the thruster setup presented in section 5.4.1 where it is delimited that no primary
thruster is able to restart.
Finally the block outputs the mass flow of each individual thruster (booster 1 to 4 and the orbital
thruster). Furthermore, a summarized mass flow is also outputted of the block.
It is possible for the user to enable/disable the thermal delay as well as the permanent kill option
of the thrusters, if it is desired.

Each mass flow for each thruster is passed to the next block calculating the actual thrust output of
each thruster. This is a two step process consisting of first calculating the chamber pressure with
respect to the given mass flow, and then calculating the thrust based on this chamber pressure in
conjunction with the ambient pressure.
The chamber pressure is calculated as [Turner 01]:

pc = ṁ

A∗

√
γ
(

2
γ+1

) γ+1
γ−1 M

RTc

(7.6)

The actual thrust force produced by a single thruster is then calculated as [Turner 01]:
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From equation 7.7 there is a requirement for pe
pc

to never exceed the maximum value of one as
this would introduce a negative sign under the squareroot and in turn result in an imaginary
thrust. To ensure this pc must never be smaller than pe. Furthermore pc must never equal 0 as
this will return "NaN". As such additional logic operations has been implemented to ensure that
whenever pc < pe or pc = 0 then a thrust of 0 will be passed instead of the imaginary/NaN results.
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Chapter 8

Ascent Trajectory

In this chapter the target ascent trajectory of AAURocket will be calculated.
Firstly different general ascent profiles are presented, of which one is chosen as the ascent guideline
for AAURocket. Additionally two optimization problem statements will be presented: a "mini-
mum propellant to orbit" and a "spare propellant to orbit". The first of which is described in detail
throughout the chapter ("minimum propellant to orbit"), and the second of which is almost identi-
cal, and as such the differences are only outlined in the result section of "spare propellant to orbit".

8.1 Ascent Profiles

Sources: [Curtis 05] [Cornelisse 79]

When determining the ascent trajectory of a rocket the first thing to determine is what kind of
ascent profile is to be utilized. While all ascent trajectories are different they can generally be
identified and grouped in two different categories: The Direct Ascent (DA) and The Hohmann
Transfer Ascent (HTA).
In the following section the two different ascent profiles will be presented. Furthermore, a special
ascent strategy called the gravity turn will also be presented. The choice of ascent profile for the
AAURocket will be outlined at the end of this section.

8.1.1 Direct Ascent
The direct ascent profile is the most intuitive of the two different profiles. The purpose of the
profile is to launch a rocket from an initial point and through actuation and control be injected
directly into the required orbit. As such it is the most direct route from launch pad to orbit,
which is also apparent from the name.
An apparent advantage of the DA-profile is possible line-of-sight (LOS) from launch pad to LV
throughout parts or the entire ascent phase. This LOS capability means that the launch operation
can be carried out from a single ground station.
Furthermore, with a faster ascent profile also comes a shorter ground track. This means if a launch
is aborted during the ascent, the possible crash area is limited in to a triangular area downrange
of the launch pad. Obviously this triangular area is time dependant, as the further into the ascent
the launch is aborted, the greater the possible crash area.
An inherent disadvantage of the DA-profile is its lower propellant efficiency when compared to
the HTA-profile. This reduced efficiency is an effect of how quick the rocket is injected into the
orbit from time of launch. If the ascent has to be very quick, then a lot of vertical moment has
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to be built up in the rocket, which in turns leads to greater gravity losses.

Direct Ascent Hohmann Transfer Ascent

EarthEarth

Figure 8.1: The two different ascent profiles.

8.1.2 Hohmann Transfer Ascent
The Hohmann transfer ascent profile is less intuitive than the DA-profile (see figure 8.1). As the
name implies this ascent profile utilizes the general method of a Hohmann transfer to achieve
orbital injection.
In short the Hohmann transfer is the most propellant efficient transfer maneuver an impulsive
action spacecraft can make in order to go from one orbit to another. This transfer maneuver
consists of two primary engine burns. As an example consider a spacecraft transfering from a
lower orbit into a higher orbit. The first burn is then made at the periapsis of the initial orbit
to raise the apoapsis to intersect the destination orbit, and the second burn is made at the new
apoapsis to raise the periapsis to intersect that of the destination orbit. The trajectory between
the two burns (connecting the two orbits) is called the Hohmann transfer trajectory.
The HTA profile consists of three primary action periods as well as one or two coasting periods.
The first action period is an ascent from the surface of the Earth to an initial "parking" orbit of
about 200 km (this initial ascent is in essence a DA). Depending on the destination orbit, a coast-
ing period can take place from parking orbit injection until the Hohmann transfer burn, which
is the second action. This burn will increase the apoapsis of the parking orbit to intersect that
of the destination orbit. From here the LV will coast while travelling on the Hohmann transfer
trajectory, and finally make the second burn to raise the periapsis of the parking orbit to intersect
the destination orbit.
The advantage of the HTA profile is, the optimum propellant consumption is always guaranteed
for chemical rockets on destination orbits higher than 300 km [Cornelisse 79]. However, the HTA
profile requires the LV to be able to turn its primary engine completely off during the coasting
periods. While this is not necessarily a disadvantage for every LV, it is considered a disadvantage
for a LV in the format considered in this project, due to the melting of the propellant shell which
requires thermodynamic momentum to be built up. Another aspect of the HTA profile is its in-
herently long downrange ground track. If radio link is required during the ascent, several ground
stations are needed in order to maintain constant LOS.

8.1.3 The Gravity Turn
The gravity turn is an ascent (or descent) strategy which can be applied to any trajectory be-
longing to the DA category. The core concept of the gravity turn is to utilize the gravity of the
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celestial body that a spacecraft is ascending from (or descending to) to minimize the amount of
attitude control action throughout the trajectory.
As an example consider an LV with initial position on the surface of the Earth with initial attitude
normal to its surface. The LV will start its ascent with a short period (seconds) of completely
vertical ascent, followed by a control action turning the LV into an initial tipped angle (angle
different from vertical). From here no further attitude control action should be needed, as the
gravity will assist the LV in making a passive turn into orbit injection. As such the LV will retain
zero (or close to zero) angle of attack throughout the ascent.
Two inherent advantages arise from using the gravity turn strategy: low aerodynamic stress, as a
result of zero angle of attack and minimum propellant expenditure on attitude control actions.
However, a trade off evaluation has to be made of when to do the initial pitch over maneuver,
in order to reduce the combined gravity and aerodynamic drag losses. Gravity losses are time
dependant in the sense that the quicker the LV gets to orbit, and as such a fast downrange ascent
is desired to reduce gravity losses. Conversely aerodynamic drag is only present at low altitudes
and is velocity dependent, and therefore a slower vertical ascent is desired to reduce aerodynamic
drag losses.

8.1.4 Choice of Ascent Profile
The ascent profile chosen for AAURocket is the DA approach. The primary reason for choosing
DA over HTA is that the primary engine of AAURocket is not able to restart. Furthermore, it
is deemed advantageous that only a single ground station is needed during the ascent for the DA
profile.
The gravity turn strategy is not actively chased in the calculation of the ascent trajectory, how-
ever, it is expected that the optimized trajectory will resemble the gravity turn, at least during
the exo-atmospheric stage of the ascent.

8.2 Optimum Propellant Consumption Ascent Trajectory

This section will outline the general problem formulation for "minimum propellant to orbit". The
"spare propellant to orbit" formulation can be found in section 8.3.2, however, only the differences
between the two problems will be listed.

8.2.1 Division of the problem
When constructing the optimization problem formulation for a LV ascent trajectory, it is possible
to divide the ascent in to different phases and solve each phase separately. Such a division is
advantageous in case of multistaged LVs where each stage will have different dynamics, and the
changes to these dynamic changes are instantaneous. As such, a problem statement can be posed
for each individual stage of the rocket.
An example of phase division is to divide the ascent with respect to the primary disturbance
forces. First an endo-atmospheric phase where two primary disturbances are present in the dy-
namic equations, namely aerodynamic drag and gravity. This phase ends when the aerodynamic
drag disturbance diminishes to relative marginal magnitude in compared to the gravity distur-
bance, at which point the exo-atmospheric phase begins. This phase lasts the remainder of the
ascent.

While the endo/exo-atmospheric division could be used, there is no decisive target for states and
inputs at the transition between the two phases.
Seeing as the AAURocket will utilize a continuous burn in an infinite stage setup, the stage phase
division will not be utilized either. Instead the optimization problem will be posed as a single
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phase from t0 at launch pad to some free tf at orbital injection.

8.2.2 Problem Formulation
The goal of the optimization problem is to calculate the optimal trajectory to orbit for the LV
based on a primary objective function, while also calculating the accompanying optimal maximum
thrust and thrust profile.

The primary objective is to determine the least amount of propellant needed to get into orbit. As
such, the objective function is formulated as:.

minimize m(t0) (8.1)
Or in other words, the objective is to minimize the initial mass of the entire system, which in turn
will result in the lightest possible LV that can obtain the required orbit, which inherently is the
LV with the optimal propellant consumption.
The objective function is subject to several different constraints, which is grouped as follows:
dynamics of the LV, path constraints, and boundary constraints. Each of these constraint groups
will be discussed in the following sections.

8.2.3 Dynamics
The dynamical equations of the optimization problem is given in the ECI frame, and include
the two primary disturbances considered in the trajectory calculations (gravity and aerodynamic
drag). The dynamical equations are formulated as follows:

ṙ = v (8.2)

v̇ = η Tmax
m

1A − g(r)− DA(||r||,vr)
m

1A −
DN (||r||,vr)

m
1N

ṁ = − η Tmax
g0Isp(||r||)

with

vr = v − ωE × r
Tmax = m(t0)g0p

where

r = ir(t) is the position vector of the LV [m]
v = iv(t) is the velocity vector of the LV [m/s]
m = m(t) is the mass of the LV [kg]
1A = i1A(t) is the LV axial unit vector (control vector) [·]
1N = i1N(t) is the LV normal unit vector [·]
η = η(t) is the throttle of the LV [·]
vr is the air relative velocity vector of the LV [m/s]
Tmax is the maximum thrust that the LV is able to produce [kgm/s2]
p is the ratio between initial weight of the LV and acceleration in g [·]
g(r) is the gravity loss [m/s2]
DA(||r||,vr) is the axial aerodynamic drag loss component [kgm/s2]
DN(||r||,vr) is the normal aerodynamic drag loss component [kgm/s2]
Isp(||r||) is the specific impulse of the primary thrusters with respect to height [s]
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Of these variables r, v, and m are states, θ,φ (which inherently means 1A), and η are inputs to
be optimized, and p is a constant parameter to be optimized. Furthermore, the final time tf is a
free variable.
In the following sections each of the different constraint functions and variables will be presented,
starting with input vectors, followed by disturbance forces, path constraints, and finally boundary
constraints.

LV orientation vectors

The LV in the optimization problem is represented by two unit vectors: 1A and 1N, which are
the axial and normal unit vectors for the LV respectively.
The axial unit vector is calculated as (see figure 8.2:



Φ

1A

iX

iY

iZ

Figure 8.2: The input variables θ and φ shown in the ECI frame, defining the 1A

vector.

1A =

sin θ(t) cosφ(t)
sin θ(t) sinφ(t)

cos θ(t)

 (8.3)

where

θ is the angle between the ECI z-axis and 1A [rad]
φ is the angle between the ECI x-axis and 1A [rad]

So while 1A is the control vector of the problem, it is θ and φ that are in reality the inputs to be
optimized.

The LV normal unit vector is in turn calculated as:

1N = 1A × (1A × 1vr ) (8.4)

Figure 8.3 shows the relation between the two body vectors,1A and 1N, and the relative velocity
1vr .
From equation 8.4 and figure 8.3 it is clear that 1N will always lies in the plane spanned by 1A
and 1vr

.

Gravity

One of the two primary disturbance forces considered in the trajectory calculation is the gravity.
Of the two disturbances, gravity is the only one present throughout the entirety of the trajectory.
The gravity formulation used is as follows:

g(r) = µE

||r||3 r (8.5)
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1Vr

1A

1N

Figure 8.3: The body vectors of the LV (1A and 1N), with respect to the relative
velocity of the LV 1vr . The angle α between 1A and 1vr is the angle of
attack of the LV.

The energy loss that the gravity imposes is proportional with the time spent getting into orbit.
As such, the gravity by itself dictates that the LV needs to perform its ascent trajectory in the
shortest possible time frame. Furthermore, to reduce gravity losses it is also preferable to start
downrange acceleration as soon as possible after t0.

Aerodynamic Drag

The second primary disturbance is the aerodynamic drag force. This disturbance is derived from
the standard aerodynamic drag formula introduced in section 6.1.2, and restated in equation 8.6.

D(||r||,v) = CDA||v2||ρair(||r||)
2 (8.6)

As mentioned in section 6.1.2 the term CDA only holds true when the object described is a
symmetrically shaped object described in an orthogonal basis. Since the LV is not symmetrical,
it is needed to expand the term CDA in order to accurately describe the aerodynamic drag
experienced by the LV.
The expansion of the term will result in two components since the LV is symmetrical about
one axis, and so two of the three aerodynamic drag coefficients are equal. Consequently the
aerodynamic drag is modelled as an axial and normal drag component. The expanded aerodynamic
axial and normal drag equations can be seen in equation 8.7 and 8.8 respectively.

DA(||r||,vr) = CDAAA

2 ||vr||2ρair(||r||)(1A · 1vr ) (8.7)

DN(||r||,vr) = CDNANm

2 ||vr||2ρair(||r||)(1N · 1vr ) (8.8)

where

CDA is the axial aerodynamic drag coefficient (cone) of the rocket [·]
CDN is the normal aerodynamic drag coefficient (cylinder) of the rocket [·]
AA is the axial area of the rocket [m2]
AN is the normal area-to-kg factor of the rocket [m2/kg]

It is clear from equation 8.7 and 8.8 that if the LV is travelling with an angle of attack of 0 radians
then the term 1N ·1vr becomes 0 and the axial component is the only term present in the equation
(which includes the head on collision of air onto a cone shaped nose). And conversely the same
is true for the normal component when the angle of attack is equal to π

2 radians (which includes
the head on collision of air onto a cylindrical body).
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Note that the normal drag term is dependant on the mass, which reduces the normal drag as the
LVs shell is consumed.

The energy loss that the aerodynamic drag imposes is proportional to both the time spent in the
atmosphere as well as the squared velocity travelled through it. Due to the limited height of the
atmosphere, the aerodynamic drag by itself dictates that the LV needs to fly relatively slow in
a completely vertical ascent, until the atmosphere is negligible. So even though the drag loss is
time dependant, the squared velocity dependability results in slower ascent times.

8.2.4 Path Constraints
Path constraints are expressions that must not be violated at any point during the calculations
of the ascent trajectory. These path constraints include the state and input bounds as well as
mathematical expressions ensuring the structural stability of the LV.

The state constraints are as follows:

RE ≤||r|| (8.9)
150 ≤m (8.10)

Equation 8.9 eliminates all solutions where the LV uses the gravity to boost itself through the
center of the Earth and out the other side, and equation 8.10 ensures that no mass is ejected from
the payload and engine masses (i.e. only propellant is expelled from the system).

The input constraints are stated as follows:

0 ≤ θ ≤ π (8.11)
0 ≤ φ < 2π (8.12)

0.025 ≤ η ≤ 1 (8.13)

Equation 8.11 and 8.12 ensures that there is only one unique representation of the 1A vector.
Furthermore equation 8.13 is merely a definition of the throttle, seeing as this is a percentage of
the maximum thrust. The lower bound of 2.5% is in accordance with the design goal of the main
engine never shutting off (see section 5.4.1).

There are two major mathematical path constraints which are posed in order to ensure structural
survival of the LV during the ascent. These are: maximum allowable acceleration of the LV, and
maximum allowable dynamic pressure of the LV.

Maximum Allowable Acceleration

The maximum allowable acceleration constraint is necessary in order to ensure that the thrust
force does not rip the LV apart during ascent. This is a particularly important aspect when
considering the self foraging setup where the thrusters stay the same throughout the ascent,
compared to staged LVs where the thrusters are changed (and down scaled) for each successive
stage.
By using the Ariane 5 rocket as a case reference, an initial upper bound can be set on the maximum
allowable g-force on the rocket (see figure 5.3). As seen at no point does the Ariane 5 exceed a
total g-force of 5 g, which will be the guideline maximum allowable g-force set for the AAURocket.
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The maximum allowable acceleration constraint is calculated as:

a = η Tmax
m

≤ amax = 5 [g0] (8.14)

Maximum Allowable Dynamic Pressure

The dynamic pressure is the pressure that the atmosphere exerts on the LV during its flight
through the atmosphere. The dynamic pressure constraint is calculated as:

q = 1
2v2ρair(||r||) ≤ qmax = 33 [kPa] (8.15)

The value of qmax has been chosen to match the values of both the Ariane 5 rocket and the Space
Shuttle, which has qmax values of 35 kPa and 33 kPa respectively [Blau 14] [Jackson 01].
By simple analysis of equation 8.15 it is clear that at t0 the dynamic pressure q is 0, seeing as
the velocity is 0. Furthermore, at atmospheric exit the density of the air becomes 0, and in turn
the dynamic pressure q will once again become 0. As such, a maximum point exists in the ascent
through the atmosphere where the velocity and the density will result in the highest q value, called
qmax. This is a critical point of every LV and is often considered a milestone in the ascent. For
some LVs active measure is taken to overcome the point of qmax by reducing the thrust level while
passing through this critical phase. This will also be the case for AAURocket of the optimization
hits the upper bound set by this constraint, as this will force the thrust level to be reduced.

8.2.5 Boundary Constraints
The boundary constraints of the optimization will ensure that the ascent trajectory starts at the
initial point of the launch pads, and ends with the correct orbital injection. While the initial
conditions of the problem are well known (with the exception of the initial mass), the terminal
conditions are not and are instead governed by equations ensuring that orbital injection has been
obtained.
The initial conditions for the problem are given as:

r(t0) = rAAU

v(t0) = 1rAAU
+ vcoriolis

1A(t0) = 1rAAU

m(t0) = m(t0)

These conditions state that the LV is positioned at AAU, has an initial vertical velocity of 1 m/s
combined with a sideways velocity matching the coriolis velocity at AAU, and is facing straight
up. The last parameter of m(t0) is the state to be optimized and is consequently free.

The final conditions ensuring orbital injection at tf are stated as:

(Mass) m(tf ) = 150 (8.16)
(Orbit Height) ||r(tf )|| = RE + ||ro|| (8.17)

(Orbit Velocity) ||v(tf )|| = ||vo|| (8.18)
(Eccentricity) r(tf ) · v(tf ) = 0 (8.19)
(Inclination) 1iZ · h(tf ) = (RE + ||ro||) ||vo|| cos(i) (8.20)

(Ascent Direction) rx(tf ) ≤ rx(t0) (8.21)

with tf as a free variable.
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Equation 8.16, 8.17, and 8.18 are state magnitude constraints ensuring fixed final mass, correct
orbital height, and correct orbital speed.
Equation 8.19 ensures circularity of the orbit by utilizing the dot product to maintain that the
position and velocity vector are perpendicular at the time tf , which is the case for circular orbits
as mentioned in section 2.4.1.
Equation 8.20 is also a utilization of the dot product. Here the angle between the ECIs Z axis
vector and the angular momentum of the orbit is calculated and constrained to match that of
the target orbits inclination angle. However, this equation coupled with the initial start point
of the launch results in two possible trajectories. Both starting at AAU but one travelling in a
North-Eastern direction and the other in a South-Eastern direction. To ensure that each succes-
sive solution of the problem has the same unique boundary equation 8.21 is posed.

8.2.6 Method
Source: [Falugi 10]
The optimization problem has been implemented into the Imperial College London Optimal Con-
trol Software (ICLOCS) which is a Matlab interface that has been set to utilize the COIN-OR
Interior Point Optimizer (IPOPT), the Suite of Nonlinear and Differential/Algebraic equation
Solvers (SUNDIALS) CVODES-solver, and the Harwell Subroutine Library (HSL) ma57 linear
solver; to solve complex non-linear control problems.

The ICLOCS Matlab code allows for user specified optimal control problem formulations on the
following form [Falugi 10]:

min
∫ tf

t0

L(x(t), u(t), p, t)dt+ E(x0, xf , u0, uf , p, tf ) (8.22)

subject to
ẋ = f(x(t), u(t), p, t), x(t0) = x0 ∀t ∈ [t0, tf ] (8.23)
gL ≤ g(x(t), u(t), p, t) ≤ gU ∀t ∈ [t0, tf ] (8.24)
bL ≤ b(x0, xf , u0, uf , p, tf ) ≤ bU ∀t ∈ [t0, tf ] (8.25)
xL ≤ x(t) ≤ xU ∀t ∈ [t0, tf ] (8.26)
uL ≤ u(t) ≤ uU ∀t ∈ [t0, tf ] (8.27)
pL ≤ p ≤ pU (8.28)

where

Equation 8.22 is the objective function stated as a Bolza problem
Equation 8.23 is the dynamical equation constraints
Equation 8.24 is the path constraints
Equation 8.26 is the state constraints
Equation 8.27 is the input constraints
Equation 8.28 is the parameter constraints

It is clear that the optimization problem utilizes almost the full range of the capabilities of
ICLOCS. While the equations specify an objective function on Bolza form, it is possible to also
pass an object function on Lagrangian or Mayer Form. Seeing as the objective function of equation
8.1 is only dependent on the initial mass state, the problem is passed as a Mayer problem to
ICLOCS.
Apart from the objective function, all other ICLOCS constraint functions are utilized to solve the
optimization problem.
For complete code implementation of the optimization problem into ICLOCS, see appendix C.
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The implementation of the posed problem has been modified by several different approximations,
substitutions, and normalizations in order to ease the load of calculation on the computer. The
most major of the modifications are mentioned in the following sections.

Normalizers

The optimization includes states and control vectors which are several orders of magnitudes in
difference when compared to each other. As an example the position vector exists in the magnitude
range of 6.3-6.8 million while the magnitude of the throttle input is in the range 0-1. In order
to reduce the conditioning of the problem a nondimensionalization is performed, and all physical
states are normalized around the values of RE and g0. The normalizers for each physical unit are
as follows:

tn =
√

RE

g0

rn = RE

vn =
√
REg0

an = g0

mn = 1000

where

tn is the time normalizer [s]
rn is the position normalizer [m]
vn is the velocity normalizer [m/s]
an is the acceleration normalizer [m/s2]
mn is the mass normalizer [kg]

After each solution the states are again redimensionalized with the same normalizers.

Exclusion of Native Matlab functions

Several native matlab functions has been excluded from the implementation, some because they
were simply not able to work inside the optimization loop, and others because their inherent
structure made the problem unsolvable in the different searches for a minimum.

A function that proved to slow the calculations significantly as well as causing irregular "infeasibil-
ity" solution returns is the sqrt() function. This function is excluded by utilizing the equivalent
mathematical operation of taking the power to a half (x 1

2 ).

An example of a function that is excluded is the norm() function, which is only able to calculate
the norm of a vector/matrix at a single time instance. Seeing as the optimal control problem is
posed over the entire time series the norm of each vector is always calculated as (x2

1 + x2
2 + x2

3) 1
2 .

Approximations

One approximation used is the spherical Earth. In reality the Earth is not a perfect sphere but
an oblate spheroid. However, in these calculations the Earth has been approximated to a sphere
with radius of 6375.750 km (which is the radius of the real Earth at AAU).
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8.3 Results

Two primary optimization calculation runs has been made: one where the objective is to minimize
the initial mass (minimum propellant to orbit), and one where the objective is to maximize the
final mass (excess propellant to orbit). The "minimum propellant to orbit" problem formulation
and equations are the ones stated earlier in the previous section (section 8.2.2).
The problem formulation and accompanying equations of the "spare propellant to orbit" problem
are almost identical and any deviations of the original formulation are outlined in section 8.3.2.

8.3.1 Minimum Propellant to Orbit
Objective Function Result

The objective function of the minimum propellant to orbit optimization was calculated to be 4710.6
kg which in turn means that the minimum amount of propellant needed for orbital injection is
4560.6 kg. By using the rocket equation it is possible to calculate an approximate matching
velocity increment, ∆v, for such a mass expulsion. However, since the optimization uses a height
dependent specific impulse, a lower and an upper bound can be calculated for the final ∆v:

∆vlower = g0Isp(sea) ln
(

4710.6
150

)
= 8.726 [km/s] (8.29)

∆vupper = g0Isp(vac) ln
(

4710.6
150

)
= 9.560 [km/s] (8.30)

Using these these results it is possible to calculate the total disturbance loss in the form of lost
∆v for both the lower and upper bound case:

∆vlower,loss = ∆vlower − (||v(tf )|| − ||v(t0)||) = 1.243 [km/s] (8.31)
∆vupper,loss = ∆vupper − (||v(tf )|| − ||v(t0)||) = 2.077 [km/s] (8.32)

These losses are primarily attributed to the gravity and drag disturbances, as well as the con-
straints of dynamic pressure, maximum acceleration, and lower bounded throttle level of 2.5%.
The lower bounded throttle level will force the LV into a scenario where it will not be able to
coast at any point in the ascent, and hence some of the energy put into the climb to orbit will
have to be taken out by performing a "breaking" manoeuvre in the end. That is; reducing the
vertical climb velocity to 0 at the time tf .

Height and Speed Development

On figure 8.4 and 8.5 the height and speed development of the LV during the ascent to orbit is
shown.

It is clear from the speed development that several characterisitic phases are present within the
ascent to orbit. These phases will be discussed in the following sections.

Dynamic Pressure and Acceleration Developments

On figure 8.6 the dynamic pressure of the LV during the ascent is shown. As seen from the plot
the dynamic pressure increases rapidly in the beginning of the ascent and hits the upper bound
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Figure 8.4: Height of the LV above the surface of the Earth with respect to time
during the ascent.
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Figure 8.5: Speed of the LV with respect to time during the ascent.

at 20 seconds, which corresponds to approximately 2.5 km. Incidently the velocity of the LV at
this point is just below mach 1, so the inherent reduction in acceleration is considered preferable
in further reducing mechanical stress as the sound barrier is passed.
The LV proceeds to travel at the qmax bound for 52 seconds at which point the density of the
atmosphere has reduced significantly. The dynamic pressure proceeds to decline as the LV exits
the atmosphere.
The amount of time spent at qmax can give some rise to concern as the point of qmax is usually a
critical point in an ascent trajectory and is often considered a milestone along the different ascent
objectives.
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Figure 8.6: Dynamic pressure of the LV with respect to time during the ascent.

88



8.3. RESULTS

Figure 8.7 shows the acceleration development of the LV during the ascent. The development
clearly shows the reduction in acceleration experienced by the LV when maximum dynamic pres-
sure is reached at the 20 second mark. During the period of maximum dynamic pressure the
acceleration of the LV is, however, still increasing do to the loss of mass. Maximum acceleration
load is reached at 86 seconds, and the LV spends approximately 73 seconds at maximum acceler-
ation.
After this phase the LV enters a longer dormant phase where minimum thrust is applied. This
is the point where the LV would prefer to coast. Finally at tf the LV performs a last impulsive
thrust manoeuvre to ensure orbital injection.
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Figure 8.7: Acceleration of the LV with respect to time during the ascent.

Maximum Thrust and Throttle Profile

One of the secondary objectives of the optimization problem was to determine the maximum
thrust needed at sea level. The maximum thrust needed was found to be:

Tmax = m(t0)g0p = 101.231 [kN] (8.33)

Another secondary objective was to calculate the accompanying optimum throttle profile. This
profile can be seen on figure 8.8. As seen two primary regions has been marked as blue and red
respectively. These regions are the phases of the ascent where the LV is constrained by its path
constraints.
As such the first region, the blue, is the phase of the ascent where the LV has reached the maxi-
mum allowable dynamic pressure, qmax, which inherently results in a reduction in throttle level.
This reduction in throttle slowly ramps up to 100% again as the vehicle gains altitude and the
atmosphere becomes less dense.
The second region, the red, is the phase of the ascent where the LV has reached the maximum
allowable acceleration load. This regions decline in throttle level is characterised by the accom-
panying reduction in mass.
From the red region forward the minimum thrust level is applied in order for the LV to attempt
coasting, followed be the final impulsive thrust manoeuvre to orbital injection.

8.3.2 Spare Propellant to Orbit
In the "spare propellant to orbit" scenario the optimization will calculate how much excess pro-
pellant is carried into orbit if a givenm(t0) is chosen. As such the objective function is changed to:

maximize m(tf ) = minimize −m(tf ) (8.34)
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Figure 8.8: LV throttle profile during the ascent. The blue region is the phase where
the LV has reached qmax, and the region marked with red is the phase
where the LV has reached gmax.

with boundary conditions

m(t0) = 8000 [kg] (8.35)
m(tf ) = m(tf ) (8.36)

Here the initial mass has been set to 8000 kg, compared to the optimal 4710.6 kg from the pre-
vious calculations. This gives an overhead of over 3000 kg to be used for disturbance regulation
and attitude control action (seeing as attitude control action is free in these problem formulations).

Another change in this problem formulation is that the maximum thrust Tmax is set to be equal
to the previously calculated Tmax of 101.231 [kN]. This will cause the LV to have slower initial
acceleration, and will in turn mean more propellant expenditure. However, this will also cause
the point of qmax to be delayed and the duration of time spent at qmax to be reduced. As such
the propellant loss accompanied with reduced thrust is deemed necessary to ensure a better safety
margin with respect to dynamic pressure.

Objective Function Result

The objective function of the "spare propellant to orbit" optimization was calculated to be 243.3
kg which in turn means that the amount of spare propellant carried into orbit is 93.3 kg. It
should be noted that this number is the amount of propellant carried all the way into orbit, if
the optimum path was followed, while attitude control action is free. Furthermore, while 93.3 kg
is the excess propellant at tf available for control action, the amount of propellant available for
attitude control action throughout the ascent will be higher as the final "payload" mass will in
turn be lighter.
The resulting trajectory from the solution of the problem can be seen on figure 8.9.

Using the rocket equation it is again possible to calculate approximate matching upper and lower
bound ∆v’s for such a mass expulsion:

∆vlower = g0Isp(sea) ln
(

8000
243.3

)
= 8.842 [km/s] (8.37)

∆vupper = g0Isp(vac) ln
(

8000
243.3

)
= 9.687 [km/s] (8.38)
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Figure 8.9: LV trajectory in the ECI frame, where the red line is the trajectory and
the black line is the ground track.

Using these these results it is possible to calculate the total disturbance loss in the form of lost
∆v for both the lower and upper bound case:

∆vlower,loss = ∆vlower − (||v(tf )|| − ||v(t0)||) = 1.357 [km/s] (8.39)
∆vupper,loss = ∆vupper − (||v(tf )|| − ||v(t0)||) = 2.203 [km/s] (8.40)

Comparing these losses to the ones calculated in "minimum propellant to orbit" in section 8.3.1
it is seen that the "spare propellant to orbit" run only has an increased loss of between 0.1142 to
0.1254 km/s more. This increased loss is primarily attributed to the previously mentioned static
Tmax, increased aerodynamic normal surface area (seeing as the vehicle is heavier which means it
is also higher), and increased gravity loss due to increased ascent time (from a previous tf of 610
seconds to a new tf of 712 seconds).

Height and Speed Development

On figure 8.10 and 8.11 the respective height and speed developments for the "spare propellant to
orbit" calculations can be seen.

By comparing the speed development of the "minimum propellant to orbit" run on figure 8.11
with that of the "spare propellant to orbit" on figure 8.11, it is seen that the latter has a more
smooth speed development in the earlier phase of the ascent, which is attributed to the reduced
Tmax capability of the LV in the latter run.
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Figure 8.10: Height of the LV above the surface of the Earth with respect to time
during the ascent.
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Figure 8.11: Speed of the LV with respect to time during the ascent.

Dynamic Pressure and Acceleration Developments

On figure 8.12 the dynamic pressure of the LV during the ascent is shown. As seen the from the
plot the dynamic pressure has a slower ramp up compared to that of the "minimum propellant
to orbit" run. In this iteration the time where qmax is reached is at approximately 68 seconds.
Furthermore, the time spent at qmax is also significantly reduced (to a duration of 16 seconds)
which is deemed preferable in compared to the other result.
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Figure 8.12: Dynamic pressure of the LV with respect to time during the ascent.

Figure 8.7 shows the acceleration development of the LV during the ascent. Compared to the
"minimum propellant to orbit" acceleration profile on figure 8.7 the overall development has not
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changed significantly, other than a reduced dent at the maximum dynamic pressure phase. Only
a reduced time spent at gmax can be seen. A period which lasts approximately 50 seconds.
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Figure 8.13: Acceleration of the LV with respect to time during the ascent.

Throttle Profile

The accompanying throttle profile for the "spare propellant to orbit" calculations can be seen on
figure 8.8. Due to the changed dynamic pressure and acceleration load developments, the throttle
profile has inherently changed. However, the overall behaviour remains roughly equal to that of
figure 8.8, with a reduced period of decreased throttle at the phase of maximum dynamic pressure.
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Figure 8.14: LV throttle profile during the ascent.

While the throttle profile in theory utilizes the entire span of 2.5% to 100%, there is in fact an
almost instantaneous drop from 28% to 2.5% at the 218 second mark. Including the final control
move at 710 second this results in two effective throttle ranges of [2.5%;11.5%]

⋃
[28%;100%].

8.4 Subconclusion

In this chapter two different ascent profiles were presented; the Direct Ascent profile and the
Hohmann Transfer Ascent profile. Of these two ascent profiles the DA approach was deemed the
most suitable for the mission of AAURocket.
Furthermore, two optimization problem formulations was presented.
The "Minimum propellant to orbit":
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min m(t0)
subject to

ṙ = v

v̇ = ηTmax
m

1A − g(r)− DA(||r||,vr)
m

1A −
DN (||r||,vr)

m
1N

ṁ = − η Tmax
g0Isp(||r||)

(path:)
RE ≤ ||r||
150 ≤ m
0 ≤ θ ≤ π
0 ≤ φ < 2π
0.025 ≤ η ≤ 1

a = η Tmax
m

≤ amax = 5 [g0]

q = 1
2v2ρair(||r||) ≤ qmax = 33 [kPa]

(boundary:)
r(t0) = rAAU

v(t0) = 1rAAU
+ vcoriolis

1A(t0) = 1rAAU

m(t0) = m(t0)
m(tf ) = 150
||r(tf )|| = RE + ||rorbit||
||v(tf )|| = ||vorbit||
r(tf ) · v(tf ) = 0
1iZ · h(tf ) = (RE + ||rorbit||) ||vorbit|| cos(i)
rx(tf ) ≤ rx(t0)

And the "Spare propellant to orbit" (with only the differences listed):

max m(tf ) = min −m(tf )
subject to

m(t0) = 8000 [kg]
m(tf ) = m(tf )

One to estimate the optimal trajectory of an LV of the nature of AAURocket using a minimum
amount of propellant to reach orbital injection, and another to estimate the optimal trajectory of
the same LV bringing excess propellant into orbit.
Table 8.1 presents a quick overview of several key data points of each calculated solution.
Of the two ascent trajectories the latter, "spare propellant to orbit", will be the primary ascent
profile considered for use on AAURocket.
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Parameter Minimum Propellant to Orbit Spare Propellant to Orbit Unit
Ascent Time 611 712 [s]
m(t0) 4710.7 8000 [kg]
m(tf ) 150 243.3 [kg]
Tmax 101.231 101.231 [kN]
∆v [8.726 ; 9.560] [8.850 ; 9.687] [km/s]
∆vloss [1.243 ; 2.077] [1.357 ; 2.203] [km/s]
qmax start 20 68 [s]
Time at qmax 52 16 [s]
gmax start 86 159 [s]
Time at gmax 73 50 [s]

Table 8.1: Key data points comparison of the two optimization runs; "Minimum
Propellant to Orbit" and "Spare Propellant to Orbit".
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Chapter 9

Position and Attitude Determination

In this chapter the general linear Kalman filter will be presented, followed by the closely related
extended Kalman filter. Additionally an extended Kalman filter will be developed and tuned, and
finally nominally tested in three distinct tests. Finally the PAD will be evaluated with respect to
the system requirements.

9.1 Position and Attitude Determination Algorithm

The purpose of the Position and Attitude Determination (PAD) system is to determine the system
states of the LV. The primary states considered for estimation are:

x =
[irT ivT i

cqT cωT
]T (9.1)

Furthermore, several physical parameters are estimated alongside the states which include: mass
of the oxidizer, mass of the fuel, height of the LV, moment of inertia, and thrust magnitude of
each thruster.
In order to achieve accurate estimates the sensors chosen in section 5.2 are utilized in conjunction
with a Kalman filter which in turn will reduce noise magnitude and increase sensor accuracy
through sensor fusion.

9.1.1 Kalman Filter
Source: [Grewal 01]
The Kalman filter is a stochastic recursive filter which utilizes known system dynamics and sensor
measurements to calculate a better estimate of the states of the system than any sensor could on
its own. These calculations can be split into a two step process:

Predict step In the predict step the previous a posteriori state estimate x̂+
k−1 is propagated

through the dynamical equations of the Kalman filter to estimate the current system a priori
states x̂−k .

Update step The update step calculates the current a posteriori state estimate x̂+
k by correct-

ing the calculated x̂−k with a weighted correction factor of the measurements.
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Figure 9.1: A diagram showing the general flow of a kalman filter.

This two step process is also illustrated on figure 9.1, where first the previous a posteriori x̂+
k−1 is

propagated through a system model, where a known input uk−1, and an unknown process noise
wk−1 is affecting the system. This propagation results in the current a priori states x̂−k . These
a priori states are used to calculate the current sensor estimate ẑk which is then subtracted from
the actual measurements zk which are affected by measurement noise. The difference between
the two measurements are finally used to calculate the a posteriori states x̂+

k−1 by correcting the
a priori states x̂−k through the Kalman gain.

For the propagation of the states and measurements, the Kalman filter uses linear system ma-
trices. Since the dynamic system equations for AAURocket are non-linear, the closely related
extended version of the Kalman filter is utilized instead.

9.1.2 Extended Kalman Filter
The Extended Kalman Filter (EKF) is, as the name implies, an extension of the original linear
Kalman filter. The extension of the filter is in essence the utilization of first order linearization
through Jacobians of the system and measurement matrices. The extended Kalman filter considers
the non-linear dynamical system equations as:

xk = f(xk−1,uk−1) + wk−1 (9.2)
zk = h(xk) + vk (9.3)

(9.4)

where

x is the state vector
u is the input vector
w is the process noise vector
z is the measurement vector
v is the measurement noise vector

Both noise vectors wk−1 and vk are assumed white Gaussian independent processes, with Q
k−1

and Rk as the respective process and measurement covariance matrices.

Predict Step

The initial propagation in the EKF is performed by using the non-linear system equation on the
previous a posteriori state vector:

x̂−k = f(x+
k−1,uk−1) (9.5)
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Following the state propagation is the linearization of the system equations at the current point
of the a priori state estimate:

Φk = ∂f(x,u)
∂x̂−k

(9.6)

where

P−k is the a priori error covariance matrix
P+
k−1 is the previous a posteriori error covariance matrix

It is clear that if the system is very non-linear then this linearization may not be sufficient, and
a larger error will be observed through the prediction iterations.
An a priori error covariance matrix is calculated from the linearized system matrix, the a posteriori
error covariance matrix, and the process covariance matrix:

P−k = ΦkP
+
k−1Φ

T
k + Q

k−1 (9.7)

where

Φk is the linearized system matrix at the point x̂−k

Update Step

In the update step a sensor estimate is calculated by propagating the a priori state estimate
through the non-linear measurement relations of the system:

ẑk = h(x−k ) (9.8)

Following the measurement estimation is the linearization of the measurement relations:

Hk = ∂h(x)
∂x̂−k

(9.9)

where

Hk is the linearized measurement relation matrix at the point x̂−k
As with the linearization of the system equations, there is a possibility that the linearization is
insufficient if the measurement relations are too non-linear.
Following the linearization, the Kalman gain is calculated using the a priori error covariance
matrix, the linearized measurement relation matrix, and the measurement covariance matrix:

Kk = P−k HT
k (HkP

−
k HT

k )−1 (9.10)

where

Kk is the Kalman gain matrix

The Kalman gain is then used to correct the a priori state estimate based on the measurement
prediction error, as follows:

x̂+
k = x̂−k + Kk(zk − ẑk) (9.11)
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Finally the a posteriori error covariance matrix is calculated based on the current Kalman gain
matrix, the linearized measurement relations matrix, and the a priori error covariance matrix:

P+
k = (I −KkHk)P−k (9.12)

From the equations it is clear that the matrices Q and R are tuning matrices. They are generally
diagonalized unless there are sensor or state cross couplings, and the initial diagonal values for
R is normally taken to be each sensors noise variance. While both matrices are denoted as time
dependent they can also be set to static values used across the entire sampling period.

9.2 Implementation of the Position and Attitude Determination System

The PAD system has been implemented into the Simulink simulation environment in the onboard
computer block. The structure of the PAD system is divided into two primary subsystems: an
miscellaneous estimation block and an EKF block.

9.2.1 Miscellaneous Estimation Block
The purpose of the miscellaneous estimation block is to isolate and estimate parameters outside of
the extended Kalman filter algorithm. While a lot of these parameters could be estimated inside
the EKF block, they have been isolated in order to reduce the overall complexity of the EKF
algorithm.
As mentioned in section 9.1 the external estimates include: height measurement conversion, GPS
measurement rotation, magnetic field estimation, oxidizer mass estimation, fuel mass estimation,
moment of inertia estimation, and thrust vectors estimation.

Height Measurement

The height measurement algorithm functions as a simple unbounded counter which keeps track of
the tachometer counts and converts the number of counts into a height measurement in meters.
Currently the height measurement is only a single counter, however, in reality where several DC
motors are probably utilized this algorithm could utilize several tachometer counts and average
the values to get a more precise estimate, in case of missed tachometer counts.

GPS measurement rotation

The GPS measurement block outputs the position of the LV in the ECEF frame. Seeing as the
position state to be estimated is given in the ECI frame, the GPS measurement is rotated from
ECEF to the ECI frame with the estimated quaternion e

iq. This quaternion is estimated by using
the current time in the Julian Date format and calculating the time since vernial equinox. As such
the number of days (full Earth rotations) since the last alignment of ECI and ECEF is known, and
the current misalignment can be calculated. The GPS measurement rotation is then calculated
as:

ixmeas = e
iq∗ ⊗ exmeas = i

eq ⊗ exmeas (9.13)

Magnetic Field Estimation

The estimation of the magnetic field is calculated in the same way as the truth model calculates
the magnetic field strength at a given position. However, the estimation of the magnetic field
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utilizes the position estimate from the EKF ix, and the previously estimated quaternion i
eq. As

such the estimated magnetic field will be dependent on the accuracy of the EKF algorithm in
order to minimize estimation error.

Oxidizer and Fuel Mass Estimation

The oxidizer and fuel mass estimations are calculated in the same way as the truth model, as
described in section 7.1.1. This means two limited integrators takes the mass flow inputs and
returns the amount of remaining fuel and oxidizer.

Moment of Inertia Estimation

The moment of inertia estimation is calculated as described in section 6.4.

Thrust Vectors Estimation

The overall calculation method of the thrust vectors are identical to those of actual actuator
block described in section 7.2.2. However, this block takes the known inputs and the atmospheric
pressure measurement as inputs. As such the resulting magnitude of each thrust vector will be
dependent on the accuracy of the barometer.

9.2.2 Extended Kalman Filter Block
The EKF block utilizes inputs both sensors as well as the previous estimation block. In total 14
inputs are used in the EKF which include:

• GPS measurement

• Accelerometer measurement

• Magnetometer measurement

• Gyroscope measurement

• Magnetic field estimate

• LV height estimate

• Moment of inertia estimate

• Oxidizer mass estimate

• Fuel mass estimate

• Forward thrust input vector

• 4 vernier thrust input vectors

Though the EKF is implemented in Simulink, it is mostly a collection of Matlab m files that are
interfaced to the environment through a "matlab-fcn" block.
When the EKF is started for the first time, an initial run procedure is executed. This procedure
sets various persistent constants to be used inside the estimation algorithm. Furthermore, the
initial states of AAURocket are passed to the x+

k−1 vector. There are no mathematical procedure
to estimate the initial states of the system, as such it is assumed that all initial state parameters

101



CHAPTER 9. POSITION AND ATTITUDE DETERMINATION

for a given launch is known.
In this report an initial state vector used for a launch is as follows:

x0 =
[
rTAAU vTcoriolis

i
rqT0 03×1

]
(9.14)

After the initial run the algorithm will enter the recursive loop of the EKF.

Predict Step

From the dynamical system presented in chapter 6 the following system equations has been utilized
in the predict step of the EKF:

iṙk = ivk−1 (9.15)

iv̇k = i
cqk−1 ⊗

[
cTk−1
mk−1

−
( 1

2CD ~ Ak−1 ~ |cvk−1|~ cvk−1ρair(||irk−1||)
mk−1

]
− µE
||irk−1||3

irk−1

i
cq̇k = 1

2[cωk−1]⊗i
cqk−1

cω̇k = cJ−1
k−1

(cωk−1 × cJk−1
cωk−1

)
with

cvk−1 = i
cq∗k−1 ⊗ ivk−1 = c

iqk−1 ⊗ ivk−1 (9.16)

A 4th order Runge-Kutta numerical integration midpoint method is used when propagating the
previous a posteriori states through the non-linear system equations, in order to obtain better
accuracy than in compared to the forward Euler numerical integration method. The 4th order
Runge-Kutta method utilized is calculated as follows:

for n = 1 : 4 (9.17)
k1 = f(x+

k−1,uk−1)

k2 = f(x+
k−1 + Ts

8 k1,uk−1)

k3 = f(x+
k−1 + Ts

8 k2,uk−1)

k4 = f(x+
k−1 + Ts

4 k3,uk−1)

x+
k−1 = x+

k−1 + Ts
24(k1 + k2 + k3 + k4)

It should be noted that for each increment of n, the quaternion state is renormalized, as the
numerical precision of Matlab is deteriorating the quaternion magnitude.

From the non-linear system equations, an analytical Jacobian matrix Φk can be calculated as:

Φk = 113×13 + Ts


03×3 13×3 03×4 03×3
∂ ivk
∂ ir

∂ ivk
∂ iv 03×4 03×3

04×3 04×3
∂ i

cqk
∂ i

cq
∂ i

cqk
∂ iω

03×3 03×3 03×4
∂ cωk
∂ cω

 (9.18)
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Note that even though the quaternion state is present in the ivk equation, the derivative ∂ ivk
∂ i

cq
is deliberately set to 0. This is due to the quaternion estimation not having any influence on
the velocity equations, and are only used to rotate the dynamical equations. If the derivative is
included, the quaternion is no longer able to be estimated correctly.

Update Step

As mentioned the following sensors are employed for use in the EKF algorithm: GPS, accelerom-
eter, magnetometer, and gyroscope. The measurement relations for each of these sensors are as
follows:

ẑk =


iGPSest
cAccest
cMagest
cGyroest

 =


ir−k

cT−
k

mk
− ( 1

2 CD~Ak~|
cv−
k
|~cv−

k
ρair(||ir−

k
||)

mk
+ cω−k × (cω−k × dimu,k)

i
cq−∗k ⊗ iBest,k

cω−k

 (9.19)

where

cω−k × (cω−k × dimu,k) is the accelerometer displacement acceleration caused by rotations [m/s2]
iBest,k is the estimated magnetic field vector [T]

The GPS relation is a direct state sensor, and as such does not include any extra terms to its
relation.
The accelerometer is modelled as the general system acceleration equation with an extra acceler-
ation term in the form of rotational contribution in conjunction with displacement. Furthermore,
the gravity term is removed.
The magnetometer is used to determine the orientation of the LV through the measurement re-
lation involving the quaternion i

cq. By using the estimated magnetic field in the ECI frame and
rotating that into the CRF, it is possible to match that to the actual measured magnetic field.
Any discrepancy between the two vectors is then corrected through the quaternion, and as such
the attitude of the LV is estimated. It should be noted that this attitude estimation is of reduced
order, as a single vector can only determine two out of the three attitude degrees of freedom. The
rotation about the axis of the vector itself is free, and normally an extra attitude sensor is utilized
to obtain full observability. For this EKF the gyroscope is instead used to handle the last degree
of freedom. Using a perfectly ideal gyroscope this will in theory be sufficient to estimate the
attitude at any point. However, most gyroscopes do not perform well at lower angular velocities,
and as such a drift is expected to occur as time progresses forward away from t0. Even with this
concern in mind, due to the small time horizon of the ascent it is deemed plausible to fly with
only a single attitude reference sensor and a gyroscope.
Finally the gyroscope sensor relation is a direct state sensor and therefore no extra terms are
included in its relation.

In turn the Jacobian of the measurement relations are calculated as:

Hk =


13×3 03×3 03×4 03×3

∂ cMagest
∂ cr

∂ cMagest
∂ cv 03×4 03×3

04×3 03×4
∂ cGyroest

∂ i
cq 03×3

03×3 03×3 03×4 13×3

 (9.20)

The measurement relation derivatives ∂ cMagest
∂ i

cq and ∂ cMagest
∂ cω are both set equal to zero, since

both these derivatives will corrupt the estimation of both the attitude states.

103



CHAPTER 9. POSITION AND ATTITUDE DETERMINATION

Tuning of the EKF

The tuning of the EKF refers to the initial values set for the covariance matrices Q,R, and
P. While both the state and sensor covariance matrices can be time dependent, they are kept
constant.
Each matrix has been tuned through iterative testing and the resulting values are (where diag()
is the matrix with the vector components as its diagonal):

Q = diag([(1 1 1)10−5 (1 1 1)10−5 (1 1 1 1)10−12 (1 1 1)10−8]) (9.21)
R = diag([(1 1 1)10−1 (2.6 2.6 2.6)10−3 (5.8 5.8 5.8)10−3 (1.97 1.97 1.97)10−5]) (9.22)
P0 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0]) (9.23)

During the tuning the value for R is held constant at the variances of the sensors as presented in
section 5.2, after which Q is varied until the most satisfactory result is obtained.
The initial value for P is set to zero as it is assumed that all initial states are known, and as such
the estimates at the first time instance are completely correct.

9.3 Verification Test of the Position and Attitude Determination System

In order to verify the PAD system three different case studies are considered: an orbit test, an
atmospheric re-entry and crash test, and a launch test from the surface of the Earth.
The purpose of the orbit test is to test performance of the PAD void of atmospheric disturbances,
which are considered the most severe and non-linear of the system equations.
The purpose of the re-entry test is to stress test the PAD systems ability to properly estimate
states during a sudden rise in disturbance forces, caused by the increasing density of the atmo-
sphere as the LV approaches the surface of the Earth.
Finally, the purpose of the ascent test is to assess the PAD systems performance during nominal
operations.
All tests are performed with a time horizon of 800 seconds, which is longer than the estimated
710 seconds ascent time calculated in section 8.3.2.

All tests are subject to the estimation subsystem requirements from section 3. The final accep-
tance evaluation of the PAD system will be made in section 9.3.4.

9.3.1 Estimation in Orbit
The orbit verification test will be performed by initiating the LV with the following initial condi-
tions:

ir = [||iro|| 0 0]T (9.24)
iv = [0 ||ivo|| 0]T (9.25)
i
rq = [0 0 0 1]T (9.26)
rω = [0 0 0]T (9.27)

With these initial conditions the LV is in a 500 km circular orbit above the equator of the Earth.
The angular velocity has been set equal to 0 in order to test the drift of the quaternion state. As
no rotation is affecting the gyroscope this is considered the worst case scenario for correct attitude
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Figure 9.2: Positional estimation error magnitude (||ir−ir̂||) for the orbit estimation
test.

estimation.

Figure 9.2 shows the magnitude of the positional error (|| ir − ir̂||) during the orbit test. The
largest peak in the position error signal was calculated to be 1.458 m.
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Figure 9.3: Velocity estimation error magnitude (||iv− iv̂||) for the orbit estimation
test.

Figure 9.3 shows the magnitude of the velocity error during the orbit test. The largest peak in
the velocity error signal was calculated to be 0.7415 m/s.
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Figure 9.4: Angular estimation error magnitude for the orbit estimation test.
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Figure 9.4 shows the angular error during the orbit test. The largest peak in the error signal was
calculated to be 0.128◦.
Note that one component of the quaternion was estimated to much greater precision than the rest.
This is expected to be the magnetometer that enables the EKF to estimate one axis correctly
while the two other perpendicular axes, have higher errors as these are only supported by the
derivative measurement of the gyroscope.

9.3.2 Estimation during Re-entry
The re-entry verification test will be performed by initiating the LV with the following initial
conditions:

ir = [RE + 50 0 0]T (9.28)
iv = [0 ||ivo|| 0]T (9.29)
i
rq = [0 0 0 1]T (9.30)
rω = [0 0 0]T (9.31)

These initial condition has the LV only 50 km above the Earth, with a relatively high velocity.
While this velocity is enough to have the LV burn up in reality, this will not be the case in the
simulation, and the result will instead be an rapidly increasing retarding force induced by the
atmospheric drag force.
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Figure 9.5: Positional estimation error magnitude (||ir − ir̂||) for the re-entry esti-
mation test..

Figure 9.5 shows the magnitude of the positional error (|| ir − ir̂||) during the orbit test. The
largest peak in the position error signal was calculated to be 1.256 m.
While the initial simulation time was set to 800 seconds, it did in fact only take 116 seconds for
the LV to crash into the Earth.

Figure 9.6 shows the magnitude of the velocity error (||iv− iv̂||) during the orbit test. The largest
peak in the velocity error signal was calculated to be 0.924 m/s.

Figure 9.7 shows the angular error during the orbit test. The largest peak in the error signal was
calculated to be 0.0013 ◦.
Again it is noted that one component of the quaternion was estimated to much greater precision
than the rest.
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Figure 9.6: Velocity estimation error magnitude (||iv− iv̂||) for the re-entry estima-
tion test.
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Figure 9.7: Angular estimation error magnitude for the re-entry estimation test.

9.3.3 Estimation during Ascent
The ascent verification test will be performed by initiating the LV with the following initial
conditions:

ir = irTAAU (9.32)
iv = [0 0 0]T (9.33)
i
rq = [−0.876 − 0.0767 − 0.474 − 0.0415]T (9.34)
rω = [0 0 0]T (9.35)

These initial condition has the LV starting at AAU, pointing straight up and at rest. The throttle
input to the thrusters was set as a function decreasing in proportion to the mass of the rocket.
As such the LV reached a maximum altitude of 1600 km and a velocity of 5 km/s.

Figure 9.8 shows the magnitude of the positional error (||ir − ir̂||) during the ascent test. The
largest peak in the position error signal was calculated to be 1.074 m.

Figure 9.9 shows the magnitude of the velocity error (|| iv − iv̂||) during the ascent test. The
largest peak in the velocity error signal was calculated to be 0.222 m/s.

Figure 9.10 shows the angular error during the orbit test. The largest peak in the error signal
was calculated to be 0.0013 ◦.
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Figure 9.8: Positional estimation error magnitude (||ir−ir̂||) for the ascent estimation
test..
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Figure 9.9: Velocity estimation error magnitude (||iv−iv̂||) for the ascent estimation
test.
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Figure 9.10: Angular estimation error magnitude for the ascent estimation test.
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9.4. SUBCONCLUSION

Of the three nominal estimation tests only the ascent test had a thrust input enabled.

9.3.4 Acceptance Verification
The PAD system is one of the primary subsystems designed for the onboard computer as part
of the guidance system that shall ensure that AAURocket reaches a sustainable orbit as per the
mission requirements in chapter 3.
Furthermore, specific requirements were put forth for the PAD system to achieve. These require-
ments, as specified in section 3.2, are restated in table 9.1.

Requirement Parameter Value Unit
SS1.R1 Position determination accuracy <0.7 [km]
SS1.R2 Velocity determination accuracy <2.1 [m/s]

Table 9.1: PAD Subsystem requirements.

Conversely the worst case errors for each nominal test are listed in table 9.2.

Parameter Orbit Test Re-entry Test Ascent Test
Position Error 1.458 1.256 1.074 [m]
Velocity Error 0.7415 0.924 0.222 [m/s]
Angular Error 0.128 0.0013 0.0013 [deg]

Table 9.2: The worst state error observed in each nominal test setup.

It is clear that the PAD subsystem is fulfilling both requirement SS1.R1 and SS1.R2, with a signif-
icant margin in both cases. However, it is noted that this is the nominal PAD system performance
tested in three distinct cases. As such the nominal performance of the PAD system is deemed
satisfactory.
A goal for further development is to subject the PAD system to rigorous perturbation testing
through Monte-Carlo simulations in order to fully verify the PAD system of AAURocket.

9.4 Subconclusion

In this chapter the general linear Kalman filter and the extended Kalman filter was presented. Of
these two algorithms the EKF was chosen as the estimation algorithm of choice for AAURocket.
The general design equations and parameters utilized for the PAD EKF was calculated and de-
signed as follows:

iṙk = ivk−1

iv̇k = i
cqk−1 ⊗

[
cTk−1
mk−1

−
( 1

2CD ~ Ak−1 ~ |cvk−1|~ cvk−1ρair(||irk−1||)
mk−1

]
− µE
||irk−1||3

irk−1

i
cq̇k = 1

2[cωk−1]⊗i
cqk−1

cω̇k = cJ−1
k−1

(cωk−1 × cJk−1
cωk−1

)
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Φk = 113×13 + Ts


03×3 13×3 03×4 03×3
∂ ivk
∂ ir

∂ ivk
∂ iv 03×4 03×3

04×3 04×3
∂ i

cqk
∂ i

cq
∂ i

cqk
∂ iω

03×3 03×3 03×4
∂ cωk
∂ cω



ẑk =


iGPSest
cAccest
cMagest
cGyroest

 =


ir−k

cT−
k

mk
− ( 1

2 CD~Ak~|
cv−
k
|~cv−

k
ρair(||ir−

k
||)

mk
+ cω−k × (cω−k × dimu,k)

i
cq−∗k ⊗ iBest,k

cω−k



Hk =


13×3 03×3 03×4 03×3

∂ cMagest
∂ cr

∂ cMagest
∂ cv 03×4 03×3

04×3 03×4
∂ cGyroest

∂ i
cq 03×3

03×3 03×3 03×4 13×3


with the tuning matrices Q,R, and P:

Q = diag([(1 1 1)10−5 (1 1 1)10−5 (1 1 1 1)10−12 (1 1 1)10−8])
R = diag([(1 1 1)10−1 (2.6 2.6 2.6)10−3 (5.8 5.8 5.8)10−3 (1.97 1.97 1.97)10−5])
P0 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0])

Finally the nominal PAD system performance was deemed satisfactory according to the system
requirements, while it is recommended that the PAD EKF be further tested, with Monte-Carlo
simulations.
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Chapter 10

Position and Attitude Control

10.1 Control Strategy

The overall control of AAURocket will be divided into two main phases: an endo-atmospheric
phase and an exo-atmospheric phase. The endo-atmospheric phase will stretch from 0 to a height
of 100 km after which the exo-atmospheric phase starts, as seen on figure 10.1.
The reason for the division of the trajectory is that the atmosphere and accompanying disturbance
can be really heavy for advanced controllers to handle "online". As such it can be advantageous
to attempt to follow a predetermined path or control sequence during the atmospheric phase of
the ascent. Furthermore, a more general (and possibly computationally lighter) control algorithm
can be utilized in the exo-atmospheric phase.

Endo-Atmospheric Exo-Atmospheric

H
ei

gh
t 

Figure 10.1: The two major phases considered for the control of AAURocket, the
endo-atmospheric phase and the exo-atmospheric phase shown on a
height plot.

10.2 Waypoint tracking

The waypoint tracking algorithm is designed in an attempt to follow a predetermined trajectory
for the endo-atmospheric phase of the ascent. In order to maintain optimum fuel consumption
the trajectory calculated in section 8.3.2 is used as the target trajectory to track. This section
will present a method for following a 3-dimensional trajectory through waypoint tracking.
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10.2.1 Guidance

There exists several methods for waypoint tracking. The simplest idea is by designing a controller
that guides the rocket to each waypoint, wp1, and then switching the reference to the next
waypoint, wp2, whenever the rocket gets within a certain acceptance region of the waypoint wp1.
Another method is called Line of Sight (LoS) guidance. The main idea of using LoS guidance
is that, instead of guiding the rocket directly towards the next waypoint, it guides the rocket
towards the path between two waypoints. The principle of the LoS guidance is illustrated in
figure 10.2. The principle of LoS guidance is solely used to calculate a reference for the direction
of movement. In practice this means that the LoS guidance law calculates the direction in which
rocket is supposed to travel.

Pi

Pi+1

D(t)

e(t)

ψ(t)
ψ(t+n)

ψ(t+2n)

ψe(t)

ψh(t)

Figure 10.2: Shows the principle of LoS guidance. The rocket aims to change its
position, ψ(t), such that it follows the path going from Pi to Pi+1. The
desired travelling direction of the rocket is towards the point ψh(t).

In figure 10.2 there are presented different variables used for calculating the desired movement
direction. The variable e(t) is called the cross-track error and is defined as the vector going from
the position of the rocket, ψ(t), and being perpendicular to the line going from Pi to Pi+1. The
lookahead distance, D(t), is a tuning variable that defines how far ahead on the path it is desired
to aim. As the cross track error goes towards zero, the direction of movement of the rocket
becomes parallel to line between the points Pi and Pi+1.
In the case of AAURocket a slightly modified version of the LoS guidance law will be implemented.
The incentive for doing this, is that the waypoints for the optimal trajectory does not only contain
positions, but also information about the velocities needed for a given point along the trajectory.
The waypoint tracking controller for AAURocket will be implemented in such a way that one part
of the controller acts to decrease the cross-track error, while the other part of the controller acts to
control the velocity to comply with the reference given by the waypoints. Figure 10.3 illustrates
how the two different part of the control signals are going to act on the rocket to control the
velocity and to decrease the cross-track error.

10.2.2 Waypoint Switching

The switching between waypoints is important for the performance of the waypoint tracking
controller. Getting too close to a waypoint before switching to next might cause the cross-error to
increase immediately after the switching, resulting in the controller trying to decrease the velocity
to remove the error. Furthermore, the region of acceptance for switching waypoint should be
designed such that if the rocket misses a waypoint, it will not try to turn around to get within the
region of acceptance. Thereby it is chosen to design the waypoint switching such that it switches
when the point ψe(t) (seen in both figure 10.3 and 10.2) enters the region of acceptance.

10.2.3 The Waypoint Tracking Controller

As mentioned, the waypoint tracking controller is split into two; controlling the velocity and the
cross-track. Both controllers have been chosen as linear controllers; a proportional controller for
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Pi

Pi+1e(t)

F1,ct

F1,v

F1,res

F2,res = F2,v

ψ1(t)

ψ2(t)
ψe(t)

Figure 10.3: Shows the principle for guidance and waypoint tracking for AAURocket.
Fk,ct is a force input determined by a control law for making the cross-
track error converge towards zero. Fk,v is a force input determined
by a control law for making the velocity error converge towards zero.
Adding the two force inputs results in a force, Fk,res, that is designed
to make the rocket follow the specified waypoints and velocities.

the cross-track and proportional-integral controller for the velocity. The block diagram in figure
10.4 shows how the waypoint tracking controller is designed.

Plant

Cross track
position 
reference

Velocity 
Reference

K1

K2
1
s

K3

Measured velocity

Measured Position

Figure 10.4: Shows the design of the waypoint tracking controller. The cross-track
error and the velocity error is calculated and the proportional gains K1
and K2 are multiplied on to the errors to calculate the control input.
These are added, together with a integration and gain of the

10.2.4 Test of Waypoint Tracking Controller

While the nominal performance range of the waypoint tracking controller is from height 0 to 100
km, the following test will attempt a full launch profile from 0 to 500 km in order to evaluate the
controller more thoroughly.
The test of the waypoint tracking controller is performed with state feedback. The test is per-
formed without controlling the attitude of the rocket, and thereby only taking the translational
motion into account. The values of K1, K2 and K3 have all been tuned for a rocket with a
constant mass of 8000 kg. A dynamic proportional downscaling on the control gains is performed
to match the decreasing mass, to ensure the same general performance for the controller. This
is done by dividing the control input with the start mass of 8000 kg and multiplying it with the
current mass. The control values, K1, K2 and K3, have been tuned as shown in table 10.1. The
waypoints have been tuned according to the trajectory calculated in section 8.3.2.

The system used for the test is implemented in a way such that even if the rocket runs out of
propellant, it is still able to perform control action, but without going below a mass of 150 kg.
This is done to be able to demonstrate the performance of the controller, even though the rocket
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Parameter Value
Initial position [3434202.222 605537.877 5337580.635]>
Initial velocity [−23.5466 136.6901 0.8372]>
K1 90
K2 900
K3 0.9

Table 10.1: Initial states and control gains chosen for the evaluation of the waypoint
tracking controller.

should consume all the propellant. Figure 10.5 shows a plot of the altitude of the rocket during
the ascent to orbit. After 720 seconds the rocket reaches the target altitude of 500 km.
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Figure 10.5: Shows the altitude above the surface of earth for the rocket during the
ascent. The red dotted line shows the target altitude.

In figure 10.6 a plot of the speed during the ascent is shown. After 740 seconds the rocket obtains
the target speed of 7.621 km/s. It should be noticed that the target speed is reached later than
the target altitude is reached, which means that some fuel might be wasted on having to increase
the orbit speed after the target altitude is obtained.
Figure 10.7 shows the remaining mass of the rocket during the ascent. Here it should be noticed
that the mass of the rocket reaches 150 kg after 690 seconds. Looking at the plots of the altitude
and the speed, it is seen that after 690 seconds the rocket have obtained an altitude of 495 km at
a speed of 7.07 km/s.

10.2.5 Acceptance verification
For the waypoint tracking subsystem to be verified, it has to comply with the requirements given
in section 3. These requirements are presented in table 10.2. The test of the waypoint tracking
controller shows that with a starting mass of 8000 kg it is not possible to get into the desired orbit.
When the rocket runs out of fuel, the rocket is still 5 km from reaching its target altitude and
more than 500 m/s away from reaching its target speed. It would be possible to try and increase
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Figure 10.6: Shows the absolute value of the velocity during the ascent. The red
dotted shows the target speed.
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Figure 10.7: Shows the mass of the rocket during the ascent. As seen, the rocket
runs out of fuel after 690 seconds.

Requirement Parameter Value Unit
SS2.R1 Position control accuracy <1.3 [km]
SS2.R2 Velocity control accuracy <3.9 [m/s]

Table 10.2: Position and velocity control requirements
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the initial amount of fuel on the rocket, but according to the solution of the optimization problem
for the ascent trajectory, the initial mass of 8000 kg should result in having approximately 90 kg
of propellant after getting into orbit. However, if the controller had the desired propellant, the
results of the test of the waypoint tracking controller shows that after 740 seconds, the rocket
would have reached an altitude of 499.4 km at a speed of 7.615 km/s.
This discrepancy can be caused by a number of factors. One possibility is that the differences
between the optimization algorithm and the Simulink environment are greater than the margin set
by the 8000 kg initial mass calculation. Another possibility is that the controller is too aggressive
and may spend too much excess propellant on control manoeuvres involving "breaking" (thrusting
in the opposite direction).

10.3 Sliding Mode Control

10.3.1 Design of sliding mode controller for AAURocket
Sources: [Khalil 02]
The sliding mode controller is meant to control AAURocket such that it gets correctly into a
specified circular orbit. The primary region of operation intended for the sliding mode controller
is in the exo-atmospheric phase, i.e. from an altitude of 100 km and upward.
The dynamic equations are derived as shown in chapter 6, and to refresh, the model derived
translational model is restated in equation 10.1

ma = T + Tv − fg − fD (10.1)

For the sliding mode controller, only the translational model is considered. It is proposed to
have another controller taking care of controlling the orientation, such that the thrust vector T
is oriented in the right direction of thrust. The mass of the rocket, m, decreases as the fuel of the
rocket is used. Hence it is chosen to design the sliding mode controller with the input being the
acceleration, T

m , created by the thrust. The PAD system described in section 9.1.2 estimates the
mass of the rocket with such precision that it is possible to determine the precise thrust needed
to create the acceleration input for the controller. Thereby it is possible to write the translational
dynamic equation as shown in equation 10.2

f(x) = ẋ =

˙
x1
x2
x3
x4
x5
x6

 =



x4
x5
x6

u1 − µe x1
||x1:3||3 −

1
2

1
mρaCD,xAxx4|x4|

u2 − µe x2
||x1:3||3 −

1
2

1
mρaCD,yAyx5|x5|

u3 − µe x3
||x1:3||3 −

1
2

1
mρaCD,zAzx6|x6|

 (10.2)

where

x1:3 is the position of the rocket given in the ECI frame
x4:6 is the velocity of the rocket
u1:3 is the input to the system, i.e. the acceleration created by the thrusters

As the sliding mode controller is meant to control the rocket in the ECI frame, the actual value
of CD,x:z and Ax:z may vary significantly during the ascent, depending on the angle of attack
of the drag on the rocket. The value of CD,x:z is expected to vary in the interval [0.295; 1.17]
while the value of Ax:z is roughly expected to vary in the interval [0.79; 12]. The possibility of
experiencing maximum values is very unlikely since this would be caused by an angle of attack of
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90◦. To design a sliding mode controller, it is necessary to put the system into regular form, i.e.
a system on the form as shown in equation 10.3

η̇ = fa(η, ξ) (10.3)
ξ̇ = f b(η, ξ) + G(x)E(x)u + δ(t,x,u)

As it is seen from equation 10.2, the system is already in regular form, and for convenience it can
be rewritten into terms of η and ξ in equation 10.4

η̇ = ξ (10.4)
ξ̇ = u− a1η − a2ξ ~ |ξ|

where

a1 = µe
||x1:3||3

1 0 0
0 1 0
0 0 1

 (10.5)

a2 = 1
2

1
m
ρa

CD,xAx 0 0
0 CD,yAy 0
0 0 CD,zAz

 (10.6)

(10.7)

To be able to take the parameter variations into account, the system can be split into a nominal
system and a system with perturbations, which will be included in the δ term. Equation 10.8
how the system can be split up, with nominal parameters a1,h and a2,h.

η̇ = ξ︸︷︷︸
fa(η,ξ)

(10.8)

ξ̇ = u−a1,hη − a2,hξ ~ |ξ|︸ ︷︷ ︸
fb(η,ξ)

−(a1 − a1,h)η − (a2 − a2,h)ξ ~ |ξ|︸ ︷︷ ︸
δ(t,η,ξ)

With the system described in regular form it is desired to design a control law that restricts the
movement of the rocket to a certain surface s = ξ − φ(η) = 0. It is desired to design the sliding
surface in such a way, that when the system enters the sliding surface, it is not likely to leave
it again. In this case the sliding surface is chosen to be an orbit of 500 km altitude above the
surface of earth, because when the rocket is properly injected into the orbit plane, it will not leave
it again.

s = 0 ⇒ ξ = φ(η) (10.9)

ṡ = ξ̇ − ∂φ(η)
∂η

η̇ = u− a1,hη − a2,hξ ~ |ξ| −
∂φ(η)
∂η

ξ + δ(t,η, ξ) (10.10)

The value of u can be chosen such that it cancels the nominal dynamics of the system. Thereby
the control input can be designed as shown in equation 10.11.
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u = a1,hη + a2,hξ ~ |ξ|+
∂φ(η)
∂η

ξ + v (10.11)

This results in the control law shown in equation 10.12

ṡ = v + δ(t,η, ξ) (10.12)

By choosing a continuous function, ρ(x) ≥ 0, for which the inequality 10.13 holds

|δ(t,η, ξ)| ≤ ρ(x) + κ0||v||∞ (10.13)

where κ0 ε [0; 1). Then v can be designed to make s go towards the sliding surface by choosing it
as shown in equation 10.14

v , −β(x)sat
(s
ε

)
(10.14)

where

β(x) ≥ ρ(x)
1− κ0

+ β0 , β0 > 0 (10.15)

The value of φ(η) is chosen to be a rotation and scaling matrix, k, that when multiplied to η
gives a velocity vector corresponding to the needed target vector for a circular orbit.

ξ = kη (10.16)

For simplicity, but without losing generality, an orbit with movement in only two axes is chosen
as sliding surface for this evaluation. The surface between the two vectors o1 and o2, seen below,
is chosen as the orbit plane. The height of the orbit, ho, is chosen to be 500 km, to comply with
the orbit given in the requirements in section 3.

o1 =

1
0
0

 , o2 =

0
0
1

 (10.17)

With the above chosen orbit plane, k can be determined as shown in equation 10.18

k =

√
µe
ho

ho

 0 0 1
0 0 0
−1 0 0

 (10.18)

This value of k ensures that when s = 0, the velocity vector, ξ, is perpendicular to the position
vector, η, and that the magnitude of the velocity vector is equal to the speed required for a
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circular orbit at an altitude of ho, as given in equation 2.15. The challenge with choosing φ(η) as
such, is that even though the velocity converges towards the right value, it will inevitably happen
in an altitude different from ho and in a plane different from the orbit plane. This means that it
is necessary to design s to take care of the altitude error and cross-track error. By projecting the
position vector η onto the two vectors, o1 and o2, it is possible to determine the projection of the
position vector onto the surface, ηS as shown in equation 10.19

ηS = (η>o1)o1 + (η>o2)o2 (10.19)

By using this projection it is possible to determine the cross track error, ηct, i.e. the distance to
the surface, and the height error, ηh, see figure 10.8 and equation 10.20 and 10.21. When adding
the cross track error and height error the total position error can be determined.

ηct 

ηh 
ηe 

ηS 

η 

Figure 10.8: Shows how the cross track error and height error is given in relation to
the orbit plane. The object is placed in the point η.

ηct = η − ηS (10.20)

ηh = ηS
||ηS ||

ho (10.21)

ηe = ηct + ηh (10.22)

So by choosing φ(η) to contain both kηe as shown in equation 10.18 and adding k0ηe, s will be
as shown in equation 10.23. The value of k0 should be chosen with care. Choosing it such that
k0ηe becomes much greater than kηe, will result in a low rise time, when looking at altitude, but
at the same time it might also cause an overshoot. Choosing k0 very small might cause a very
high rise time in altitude, because k0ηe becomes insignificant compared to kηe. The value of k0
should be chosen somewhere in the interval [0.5 · 10−3;10 · 10−3] for the nominal values of k0ηe to
fit the nominal values kηe.

s = kη + k0ηe (10.23)

Then the input, u, for the control law can be chosen as shown in equation 10.24.
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u = a1,hη + a2,hξ ~ |ξ|+ kξ + v (10.24)

ṡ = v + k0
∂ηe
∂η

ξ + δ(t,η, ξ)︸ ︷︷ ︸
δ1(t,η,ξ)

(10.25)

where

δ1(t,η, ξ) is a perturbation term

Then the final step is to design β(x) to comply with equation 10.13 to 10.15. The simplest choice
of ρ(x) is a constant which will result in β(x) being a constant as well.

10.3.2 Test of the Sliding Mode Controller
In the previous section, the general design of the sliding mode controller for AAURocket was
shown. This section seeks to evaluate the performance of the designed controller with regards to
injection time, eccentricity, control input etc. The control law to be tested is as given in equation
10.26

u = a1,hη + a2,hξ ~ |ξ|+ kξ − β(x)sat
(s
ε

)
(10.26)

As mentioned, the value of β(x) has been chosen to be constant. However, the constant value
of β(x) still has to be chosen larger than the maximum value of the perturbations given in δ1.
The value of a1,h is chosen at an altitude of 500 km, this means that the largest perturbation
in (a1,h − a1)η is found to be approximately 1.4 m/s2, i.e. the difference in the gravitational
acceleration on Earth compared to at 500 km altitude. As the sliding mode controller is only
supposed to work in the exo-atmospheric phase of the launch, the perturbations with regards to
atmospheric drag are also quite small. Making a conservative estimate, assuming that the velocity
is 3500 m/s in an altitude of 100 km, choosing the worst case angle of attack of 90◦ and choosing
the lowest mass of the rocket of 150 kg, a maximum drag acceleration of approximately 0.1 m/s2

is obtained. Dependent of the choice of k0, the perturbation caused by ∂ηe
∂η ξ = dηe

dt . Choosing
k0 high, i.e. a value of 10 · 10−3, and conservatively choosing the value of dηe

dt to be 2000 m/s,
it will result in a value of 20 m/s2 for k0

dηe
dt . Adding up the conservatively estimated maximum

perturbations, it should be safe to evaluate the sliding mode controller with a choice of β(x) of a
constant value of 40.
With the chosen value for β(x), the sliding mode controller can be evaluated. Table 10.3 shows
the parameters used for the evaluation of the sliding mode controller.

Orbital Parameter Value
Initial position [0 0 6478000]T
Initial velocity [2000 0 1300]T
β(x) 40
k0 5 · 10−3
ε 300

Table 10.3: Parameters chosen for the evaluation of the sliding mode controller.

The test of the sliding mode controller have been setup in such a way that when the norm of s gets
below a certain value together with the altitude error getting below a certain value, the controller
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is turned off and a successful orbital insertion has been achieved. For this test case the threshold
value for the norm of s was chosen to 1 and the threshold for the altitude error was chosen to 200
m. Figure 10.9 shows the altitude of the rocket above the surface of earth. The orbital insertion
happens after roughly 1500 seconds where the altitude reaches 499.8 km.
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Figure 10.9: Shows a graph of the altitude of the rocket above the surface of earth.
The red dotted line indicates the target height of 500 km.

In figure 10.10 the absolute value of the velocity is plotted. As it can be seen from the plot, the
rocket reaches its target velocity of 7.621 m/s after approximately 1000 seconds. This also means
that the rocket uses around 500 seconds on trying to raise the altitude of the orbit to the required
499.8 km where the orbital insertion is deemed successful. As it can be seen from figure 10.12 the
controller uses a lot of control action during this time. It can actually be seen that after around
200 seconds the system reaches the sliding surface and there is a lot of chattering in the control
signal. This is most likely due to the very conservative choice of the value of β(x).

10.3.3 Acceptance verification
For the sliding mode controller to be verified, it has to comply with the requirements given in
section 3. These requirements are presented in table 10.4. The controller is able to perform

Requirement Parameter Value Unit
SS2.R1 Position control accuracy <1.3 [km]
SS2.R2 Velocity control accuracy <3.9 [m/s]

Table 10.4: Position and velocity control requirements

an orbital insertion within the specified requirements. However, for this test, the mass of the
rocket has not been taken into consideration and the control input sequence shown in figure 10.12
indicates that the sliding mode controller would not be able to get to orbit if it was restricted on
mass consumption. Furthermore, the same input sequence was not lower bounded as would be
the case on the actual system. Hence it cannot be verified that the sliding mode controller is able
to comply with the requirements given in table 10.4.
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Figure 10.10: Shows a graph of the speed of the rocket. The red dotted line indicates
the target speed of 7.613 km/s.
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Figure 10.11: Shows a graph of the absolute speed plotted as a function of the height
above the surface of earth. The green dotted line indicates the initial
conditions and the red dotted line indicates the terminal conditions.
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Figure 10.12: Shows a plot of the input sequence generated by the controller.

10.3.4 Subconclusion
This chapter has described two different methods for control of AAURocket. The first con-
trol method is a waypoint tracking controller, meant for controlling the rocket during the endo-
atmospheric part of the ascent. The other controller is a sliding mode controller meant for con-
trolling the rocket during the exo-atmospheric phase and providing a good orbital insertion. Both
controllers have been evaluated on their ability to control the rocket all the way to orbital in-
sertion. Both controllers have shown good performance of controlling the rocket under nominal
conditions. However, when the model of consumption of propellant is included, it must be con-
cluded that non of the controllers are able to optimize the consumption such that it is possible to
perform an orbital insertion where the rocket stays in orbit. This also leads to the conclusion that
it is not deemed relevant to perform an acceptance test for the mission requirements put forward
in section 3. The implemented control laws are as follows for the waypoint tracking controller and
the sliding mode controller, respectively:

Waypoint tracking controller :u = K1pcte +K2ve + K2K3

s
ve

Sliding mode controller :u = a1,hη + a2,hξ ~ |ξ|+ kξ − β(x)sat
(s
ε

)
(10.27)
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Chapter 11

Closure

The goal of this thesis has been twofold: to design a position and attitude determination and con-
trol system for a self-foraging rocket, as well as lay the groundwork for an eventual AAURocket
project, where hopefully other interested students will pitch in with ideas and research.
Following is the conclusion regarding the scope and system requirements of this master thesis.

11.1 Conclusion

In this master thesis a general use case of launching a rocket into a 500 km altitude polar circu-
lar orbit has been studied. Different classical rocket designs has been investigated, of which the
DNU Self-foraging rocket concept was chosen as a specific design platform for AAURocket. The
advantages of such a system would be cheap material, and possibly manufacturing, cost combined
with higher efficiency due to the infinite stage nature of the rocket.

Different sensors were considered, while ultimately choosing a sensor setup range including: a
barometer, a GPS, an accelerometer, a magnetometer, a gyroscope, a tachometer, and propellant
flow sensors.
Furthermore, different classical actuators for chemical rockets were considered with the vernier
thruster being the method of choice.
The primary propulsive thruster setup was chosen to be in a setup of four major boosters with
a smaller orbital thruster in the middle. Each engine was successively dimensioned from the pa-
rameters estimated in the optimization section.

General dynamical equations for both the translational and rotational motion was introduced, as
well as some of the major disturbance forces acting on the rocket during the ascent. Additionally
analytical functions for the changing moment of inertia was derived for fast computational per-
formance.
And finally a simple thermodynamic model was presented to represent the gasification process.

A general Simulink simulation environment was built. Simulink was chosen as environment in the
event that other students want to expand on the work already implemented, as it is an intuitive
platform. Models of the general dynamical motion and rotation of the rocket was implemented,
along with a set of generally used versors to rotate between frames of interest. Furthermore, a
model of the fuel shell was implemented as well as the general environmental forces acting on the
rocket. Sensors, actuators, and an onboard computer was also implemented in Simulink to test
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and verify estimation and control algorithms.

Two different optimal ascent trajectories was calculated, in order to determine both the minimum
amount of fuel needed to get into orbit, the magnitude of the maximum thrust needed, as well as
the overall throttle profile of the rocket. This trajectory can in turn be used for reference tracking
for an endo-atmospheric ascent phase.

An extended Kalman filter was utilized as the general estimation algorithm of the system. The
EKF was tested against the system requirements in three distinct nominal test cases where it
performed satisfactory within the time horizons specified of 800 seconds.
A waypoint tracking controller and a sliding mode controller was designed for controlling the rocket
during the ascent to orbit. While both controllers showed decent performance in controlling the
rocket, none of them were able to launch the rocket into orbit with the provided amount of
propellant. It is expected that both controllers have the problem of utilizing too much control
action to travel along their trajectories, and thereby not alse having enough propellant for raising
the altitude and velocity during the ascent.

11.2 Further Development

As has been mentioned this master thesis has been viewed as an initial study into the plausibility
of self-foraging rockets as a viable launch vehicle from an estimation and control perspective. As
such there is a lot of missing work still to be performed.

One task to further develop is the inclusion of more accurate disturbance forces. While both grav-
ity and some aerodynamic drag has been implemented, several rotational disturbances has been
omitted from this master thesis. These disturbances were modeled but never considered beyond
that scope. As such further development would be to implement these additional disturbance
forces in both Simulink, the estimation algorithms, and the control algorithms.

Another task is to delve deeper into the mechanical part of the project. While definitely not the
focus, the mechanical part of this master thesis has often been a lot of unknown variables needed
for the design of a lot of the algorithms. This task would probably best be suited mechanical
engineering students.

A particular concern arose when the maximum needed mass flow of 40 kg/s arose. Further re-
search into whether this mass flow rate is even plausible or not. If this mass flow rate is too
unrealistic a recommendation would be to utilize the self-foraging rocket as an upper stage of a
parallel staged launch vehicle. In this way a much smaller engine can be utilized and in turn a
lower mass flow rate. Furthermore, this would also significantly reduce the required thrust range
of the rocket, with the initial boosters being detachable.

The EKF algorithm needs a bit more robust testing in order to verify whether or not it will fully
comply to perturbations or not. Additionally it is recommended that the single attitude sensor
setup be expanded to two or more, as this would most likely reduce the attitude drift of the EKF
algorithm.

The optimisation algorithm is very slow in its current iteration and some of this calculation time
could probably be reduced by further normalizing. As it stands now the task of calculating a
trajectory is a tedious and difficult task which require multiple tries as the problem has some
local infeasibility regions.
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Appendix A

Email from Copenhagen Suborbitals

Hej Kasper og Michael,
Tak for jeres intersse.
Vi bruger accelerometre og gyroer, kombineret i en samlet komponent, en såkaldt IMU. Gyroer er
kort sagt delt op i to kategorier, de billige bruger MEMS teknologi, og så er der et stort spring i pris
og performance op til FOG (fiber optik). Det har vi ikke råd til, så vi bruger generelt de bedste
MEMS gyroer vi kan finde. Sapphire fløj med en Analog Devices ADIS16367. I mellemtiden har
Analog lavet en lidt bedre (til vores formål) version der hedder ADIS16448, som vi påtænker at
flyve NEXØ med. Det helt afgørende for positions nøjagtigheden er, hvor meget gyroernes bias
driver efter liftoff, og jo længere tid i skal flyve, jo bedre gyroer skal i bruge. SAPPHIRE kunne
kun styre i de 11-12 sek motoren brændte, og til det formål klarede ADIS16367’en sig rigtigt pænt.
NEXØ skal brænde ca. 4 gange så længe, så selvom den nye IMU er mere nøjagtig, kan vi nok
ikke opretholde helt samme nøjagtighed ved MECO.
Andre kandidater til attitude sensorer er:
Magnetometre, horisont detektorer, solvinkel detektorer. Den store fordel er, at disse ikke lider
af gyroernes afdrift. Ulempen er, at de alt andet lige nemmere kan fejle, end en IMU som er
uafhængig af input udefra. Der findes nogle fine metoder, f.eks. Kalman filtre, til at kombinere
data fra gyroer med data fra sensorer som disse, for at kombinere fordelene. I CS har vi ikke
gjort dette endnu, men på NEXØ kommer vi til at flyve et magnetometer. Planen er, at det ikke
skal indgå i styringen, men at vi gemmer data til efterfølgende analyse, og evaluering af deres
egnethed til fremtidig real time anvendelse.
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Appendix B

Moment of inertia

This appendix contains the derivations of the expressions for calculating moment of inertia for
AAURocket. The derived expressions are also

B.1 Center of Mass

The rocket consists of mainly two parts, the propulsion system and the payload/guidance system.
The propulsion system also consists of two parts, the solid fuel with oxidizer and the engine. The
fuel with oxidizer, which acts as the main structure of the rocket, is a hollow cylinder of polyethy-
lene with an oxidizer of H2O2 inside. Thereby it is fair to assume the center of mass of the fuel
with oxidizer has the center of mass in the geometric center of the of the cylinder. The mission
description indicates top part, including the payload/guidance system has a weight of 50 kg, and
this is assumed to be a cone with a uniformly distributed mass. The bottom part consisting of
the engine is assumed to be a cylinder with a uniformly distributed mass of 100 kg. The figure
B.1 shows how the three parts are assumed to be.

With the assumptions made it is fair to assume that the top and bottom part of the rocket will
not affect the center of mass particularly, and therefore the center of mass of the entire structure
is assumed to be in the geometric center of the fuel part of the rocket.
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Figure B.1: Shows how the rocket is modeled

B.2 Moment of Inertia

For the calculations of the moment of inertia of the rocket, the same model as shown in figure
B.1 is used. The moment of inertia for each of the parts are calculated and summed together. In
general the moment of inertia, J , of a point mass, m, located a length, l away from its axis of
rotation is calculated as shown in equation B.1

J = ml2 (B.1)

Any shape can be described by an infinite amount of small point masses located within the shape.
In this case, three shapes with uniformly distributed masses are considered. This also means that
the mass of any object can be described by equation B.2

m = ρV (B.2)

where:

ρ is the density of the material of the object [kg/m3]
V is the volume of the object [m3]

The general idea is then to take each point mass within an object, calculate the moment of inertia
around the objects principal axes and sum all of these moments of inertia together. This is done
by taking density of the object, multiplying it by the length towards an arbitrary point within
the object and integrating this over the entire volume of the object. This is done as shown in
equation B.3

J =
∫
V

ρl2dV (B.3)

134



B.2. MOMENT OF INERTIA

where:

l is the length towards an arbitrary point within the shape [kg/m3]

With this general method of determining the moment of inertia of an object, it is possible to
determine the moment of inertia for the three parts of the rocket and sum these together to
determine the moment of inertia for the entire rocket.

B.2.1 Payload/Guidance system
To determine the moment of inertia of the rocket top, the method described in equation B.3 is
used. The limits for the volume integral has to be determined to describe a cone.
For the z-axis the limits is determined by the height of the cone. The bottom of the cone is placed
in the height hf

2 and the top of the cone in hf
2 + hp. The y- and x-axis are evaluated over the

diameter of the cone, which varies with the height. A function for the radius, R(z), is defined in
equation to describe the radius as a function of the height, z. The height, z, denotes the distance
from the rocket CoM to the center of the circle plane evaluated.

R(z) = rp
hp − (z − hf

2 )
hp

(B.4)

And thereby all of the limits for the volume integral is determined. The moments of inertia for
the Payload/Guidance system can then be determined as shown in equation B.5, B.6 and, B.7.

Jx = ρp

∫ hf
2 +hp

hf
2

∫ R(z)

−R(z)

∫ √R(z)2−y2

−
√
R(z)2−y2

y2 + z2 dzdydx = 3
10mpr

2
p (B.5)

Jy = ρp

∫ hf
2 +hp

hf
2

∫ R(z)

−R(z)

∫ √R(z)2−y2

−
√
R(z)2−y2

x2 + z2 dzdydx = 1
20mp(5h2

f + 5hfhp + 2h2
p + 3r2

p) (B.6)

Jz = ρp

∫ hf
2 +hp

hf
2

∫ R(z)

−R(z)

∫ √R(z)2−y2

−
√
R(z)2−y2

x2 + y2 dzdydx = 1
20mp(5h2

f + 5hfhp + 2h2
p + 3r2

p) (B.7)

B.2.2 Fuel with oxidizer
When determining the moment of inertia of the fuel with oxidizer it is possible to split it in to
calculating the moment of inertia for a hollow cylinder with the density of the fuel and a "solid"
cylinder with the density of the oxidizer. The moments of inertia for the "solid" cylinder of oxidizer
around the three principal axes can be determined by equation B.8, B.9, and B.10

Jx = ρo

∫ hf
2

−
hf
2

∫ ro

−ro

∫ √r2
o−y2

−
√
r2
o−y2

y2 + z2 dzdydx = 1
2ρoπr

4
ohf = 1

2mor
2
o (B.8)

Jy = ρo

∫ hf
2

−
hf
2

∫ ro

−ro

∫ √r2
o−y2

−
√
r2
o−y2

x2 + z2 dzdydx = 1
12ρoπr

2
ohf (3r2

o + h2
f ) = 1

12mo(3r2
o + h2

f ) (B.9)

Jz = ρo

∫ hf
2

−
hf
2

∫ ro

−ro

∫ √r2
o−y2

−
√
r2
o−y2

x2 + y2 dzdydx = 1
12ρoπr

2
ohf (3r2

o + h2
f ) = 1

12mo(3r2
o + h2

f ) (B.10)

For the hollow cylinder of the fuel the procedure is the same, the only change is that the volume
of the cylinder of oxidizer is subtracted. Thereby the moments of inertia for the hollow cylinder
of fuel around the threee principal axes is determined by equation B.11, B.12, and B.13
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Jx = ρf (
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= 1
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B.2.3 Engine
The engine is also modeled as a cylinder as shown in figure B.1. The moments of inertia for the
engine, modeled as a cylinder, around the three principal axes can be determined by equation
B.14, B.15, and B.16.

Jx = ρe

∫ −hf2
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2 +he)

∫ re
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∫ √r2
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−
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Optimization ICLOCS Implementation Code

C.1 main.m

% MAIN - Main script to solve the Optimal Control Problem
%
% Copyright (C) 2010 Paola Falugi, Eric Kerrigan
% and Eugene van Wyk. All Rights Reserved.
% This code is published under the BSD License.
% Department of Electrical and Electronic Engineering,
% Imperial College London London England, UK
% ICLOCS (Imperial College London Optimal Control) 5 May 2010
% iclocs@imperial.ac.uk

%--------------------------------------------------------

close all
clear all;
format compact;
clc

rng(’shuffle’);

global sol;
sol=[]; % Initialize solution structure

[problem,guess]= MinPropellantToOrbit; % Fetch the problem definition
%[problem,guess]= SparePropellantToOrbit; % Fetch the problem definition
options = settings; % Get options and solver settings
[infoNLP,data]=transcribeOCP(problem,guess,options); % Format for NLP solver
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C.2 MinPropellantToOrbit.m

function [problem,guess] = MinPropellantToOrbit

mfl= 150; %Lower bound for Final Mass [kg]
mfu= 150; %Upper bound for Final Mass [kg]

m0l = 2500; %Lower bound for initial Mass [kg]
m0u = 8000; %Upper bound for initial Mass [kg]

v_orbit = 7621.342985; %Orbit Velocity [m/s]s

%Physical Constants
R_E=6375750; %Earth Radius
g_0=9.8067; %Gravity at sea level
mu = 398600441800000; %Standard Gravitational Paramater

mscale = 1000; %Scaling of mass to ton

%Normalizers
tn = (R_E/g_0).^(.5); %Time Normalizer
rn = R_E; %Position Normalizer
vn = (R_E*g_0).^(.5); %Velocity Normalizer
an = g_0; %Acceleration Normalizer

%inclin = 97.38*(pi/180); %[rad]
inclin = 82.62*(pi/180); %[rad]

init_vertical_speed = 1; %[m/s]
coriolis = [-24.0852 136.5951 0]; %[m/s]
%[-24.0852 136.5951 0]; %[m/s] coriolis vector @ AAU
%||v(t_0)|| = 138.7059 [m/s]

% Initial time. t0<tf. For discrete time systems is the initial index
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is fixed.
problem.time.tf_min=1/tn;
problem.time.tf_max=1200/tn;
guess.tf=580/tn;

% Parameters bounds. pl=< p <=pu
problem.parameters.pl=[1];
problem.parameters.pu=[10];
guess.parameters=[2.2647];

% Initial conditions for system.
problem.states.x0=[];

% Aalborg radius: 6375750
% Initial conditions for system. Bounds if x0 is free s.t. x0l=< x0 <=x0u
problem.states.x0l=[3434202.222/rn ...

605537.877/rn ...
5337580.635/rn ...
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((init_vertical_speed*0.5386)+coriolis(1))./vn ...
((init_vertical_speed*0.0950)+coriolis(2))./vn ...
((init_vertical_speed*0.8372)+coriolis(3))./vn ...
m0l/mscale -24.0852./vn 136.5951./vn];% 0.5787 0.1746];

problem.states.x0u=[3434202.222/rn ...
605537.877/rn ...
5337580.635/rn ...
((init_vertical_speed*0.5386)+coriolis(1))./vn ...
((init_vertical_speed*0.0950)+coriolis(2))./vn ...
((init_vertical_speed*0.8372)+coriolis(3))./vn ...
m0u/mscale -24.0852./vn 136.5951./vn];% 0.5787 0.1746];

% State bounds. xl=< x <=xu
problem.states.xl=[-(R_E+3010000)/rn -(R_E+3010000)/rn -(R_E+3010000)/rn ...
-8000/vn -8000/vn -8000/vn mfl/mscale -inf -inf];% 0 0];

problem.states.xu=[(R_E+3010000)/rn (R_E+3010000)/rn (R_E+3010000)/rn ...
8000/vn 8000/vn 8000/vn m0u/mscale inf inf];% pi 2*pi];

% Terminal state bounds. xfl=< xf <=xfu
%problem.states.xf=[];
problem.states.xfl=[-(R_E+510000)/rn -(R_E+510000)/rn -(R_E+510000)/rn ...
-8000/vn -8000/vn -8000/vn mfl/mscale -inf -inf];% 0 0];
problem.states.xfu=[(R_E+510000)/rn (R_E+510000)/rn (R_E+510000)/rn ...
8000/vn 8000/vn 8000/vn mfu/mscale inf inf];% pi 2*pi];

% Guess the state trajectories with [x0 xf]
% guess.states(:,:)=[x0 xf];
guess.states = [];

% Number of control actions N
% Set problem.inputs.N=0 if N is equal to the number of integration steps.
% Note that the number of integration steps
% defined in settings.m has to be divisible
% by the number of control actions N whenever it is not zero.
problem.inputs.N=0;

% Input bounds
problem.inputs.ul=[0 0 0.025];
problem.inputs.uu=[pi 2*pi-0.00000000000000000000001 1];

% Guess the input sequences with [u0 uf]
guess.inputs=[];

% Choose the set-points if required
problem.setpoints.states=[];
problem.setpoints.inputs=[];

% Bounds for path constraint function gl =< g(x,u,p,t) =< gu
problem.constraints.gl=[1 0 0];
problem.constraints.gu=[1.5 5 5.3610e-04.*10000];

% Bounds for boundary constraints bl =< b(x0,xf,u0,uf,p,t0,tf) =< bu
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problem.constraints.bl=[0 0 0 0];
problem.constraints.bu=[0 0 0 0];

% Store the necessary problem parameters used in the functions
problem.data.R_E=R_E;
problem.data.g_0=g_0;
problem.data.mu = mu;
problem.data.v_orbit = v_orbit;
%Normalizers
problem.data.mscale = mscale;
problem.data.tn = tn;
problem.data.rn = rn;
problem.data.vn = vn;
problem.data.an = an;
problem.data.inclin = inclin;

problem.functions={@L,@E,@f,@g,@b};

%Lagrangian:
function stageCost=L(x,xr,u,ur,p,t,data)
% Syntax: stageCost = L(x,xr,u,ur,p,t,data)
stageCost = 0*t;

%Boundary Cost:
function boundaryCost=E(x0,xf,u0,uf,p,tf,data)
% Syntax: boundaryCost=E(x0,xf,u0,uf,p,tf,data)
boundaryCost=x0(7);

%System Dynamics:
function dx = f(x,u,p,t,data)
%Physical Constants
R_E = data.R_E; %[m]
g_0 = data.g_0; %[m/s^2]

%Normalizers
vn = data.vn; %Velocity [.]
an = data.an; %Acceleration [.]

%State Labels
r1 = x(:,1);
r2 = x(:,2);
r3 = x(:,3);
v1 = x(:,4);
v2 = x(:,5);
v3 = x(:,6);
m = x(:,7);
vcoryx = x(:,8);
vcoryy = x(:,9);

%Input Labels
theta = u(:,1);
phi = u(:,2);
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eta = u(:,3);

%Maximum Thrust
Tmax = x(1,7).*p.*g_0; %[kgm/sÂ2]

%Air Density
rhoair = ((1<(r1.^2+r2.^2+r3.^2).^(.5)).*1.277 ...

.*exp(-761.2645*((r1.^2+r2.^2+r3.^2).^(.5)-1)));

%Control Vector (aka LV Attitude)
cv1 = sin(theta).*cos(phi);
cv2 = sin(theta).*sin(phi);
cv3 = cos(theta);

vmagsquare = ((v1-vcoryx).*vn).^2+((v2-vcoryy).*vn).^2+(v3.*vn).^2;

%Atmosphere Movement
acorix = 2*v2.*vn.*((2*pi)/(24*3600)).*(rhoair./1.277);
acoriy = -2*v1.*vn.*((2*pi)/(24*3600)).*(rhoair./1.277);

%Angle of Attack (LV attitude vs velocity)
vnorm = ((v1-vcoryx).^2+(v2-vcoryy).^2+v3.^2).^(.5);
vnorm1 = (v1-vcoryx)./vnorm;
vnorm2 = (v2-vcoryy)./vnorm;
vnorm3 = v3./vnorm;

cvn1 = cv2.*(cv1.*vnorm2-cv2.*vnorm1)-cv3.*(cv3.*vnorm1-cv1.*vnorm3);
cvn2 = cv3.*(cv2.*vnorm3-cv3.*vnorm2)-cv1.*(cv1.*vnorm2-cv2.*vnorm1);
cvn3 = cv1.*(cv3.*vnorm1-cv1.*vnorm3)-cv2.*(cv2.*vnorm3-cv3.*vnorm2);

alphaprime = vnorm1.*cv1+vnorm2.*cv2+vnorm3.*cv3; %[.]
betaprime = vnorm1.*cvn1+vnorm2.*cvn2+vnorm3.*cvn3;

%Gravity Disturbance
gravity = 1./(((r1.^2+r2.^2+r3.^2).^(.5)).^3); %[.]

% radius = .363;
% CDA = 0.0611
% CDN = 0.7513

%State Equations
dx(:,1) = v1;
dx(:,2) = v2;
dx(:,3) = v3;

dx(:,4) = eta.*(Tmax./(m.*an)).*cv1-gravity.*r1-...
((0.0938.*alphaprime.*cv1+1.0346.*x(:,7).*betaprime.*cvn1)...
.*vmagsquare.*rhoair)./(m.*1000.*an);
dx(:,5) = eta.*(Tmax./(m.*an)).*cv2-gravity.*r2-...
((0.0938.*alphaprime.*cv2+1.0346.*x(:,7).*betaprime.*cvn2)...
.*vmagsquare.*rhoair)./(m.*1000.*an);
dx(:,6) = eta.*(Tmax./(m.*an)).*cv3-gravity.*r3-...
((0.0938.*alphaprime.*cv3+1.0346.*x(:,7).*betaprime.*cvn3)...
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.*vmagsquare.*rhoair)./(m.*1000.*an);

cn = (258.13+24.68.*(1-(rhoair./1.277)))/((R_E/(g_0^3)).^(.5));
dx(:,7) = -eta.*Tmax./cn; %Mass flow [.]

dx(:,8) = acorix./an; %Coriolis state
dx(:,9) = acoriy./an; %Coriolis state

%Path Constraints:
function c=g(x,u,p,t,data)
% Syntax: c=g(x,u,p,t,data)
%State Labels
r1 = x(:,1);
r2 = x(:,2);
r3 = x(:,3);
v1 = x(:,4);
v2 = x(:,5);
v3 = x(:,6);
m = x(:,7);
vcoryx = x(:,8);
vcoryy = x(:,9);

%Input Labels
eta = u(:,3);

Tmax = x(1,7).*p;

c(:,1) = (r1.^2+r2.^2+r3.^2).^(.5); %Surface of the Earth constraint
c(:,2) = eta.*(Tmax./m); %Maximum g-load constraint
c(:,3) = (1<(r1.^2+r2.^2+r3.^2).^(.5)).*0.6385 ...
.*exp(-761.2645*((r1.^2+r2.^2+r3.^2).^(.5)-1))...
.*((v1-vcoryx).^2+(v2-vcoryy).^2+v3.^2).*10000; %Dynamic Pressure

%Boundary Constraints:
function bc=b(x0,xf,u0,uf,p,tf,data)
% Syntax: bc=b(x0,xf,u0,uf,p,tf,data)
rn = data.rn;
vn = data.vn;
R_E = data.R_E;
v_orbit = data.v_orbit;
inclin = data.inclin;

bc=[(xf(1)*xf(1)+xf(2)*xf(2)+xf(3)*xf(3)).^(.5)-1.0784; %Orbit Height
(xf(4)*xf(4)+xf(5)*xf(5)+xf(6)*xf(6)).^(.5)-0.9638; %Orbit Velocity
xf(1)*xf(4)+xf(2)*xf(5)+xf(3)*xf(6); %Eccentricity
(xf(1)*xf(5)-xf(2)*xf(4))-0.1335]; %Inclination

%------------- END OF CODE --------------|
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C.3 SparePropellantToOrbit.m

function [problem,guess] = SparePropellantToOrbit

mfl= 150; %Lower bound for Final Mass [kg]
mfu= 400; %Upper bound for Final Mass [kg]

m0l = 8000; %Lower bound for initial Mass [kg]
m0u = 8000; %Upper bound for initial Mass [kg]

v_orbit = 7621.3429849192434630822390317918; %Orbit Velocity [m/s]s

%Physical Constants
R_E=6375750; %Earth Radius
g_0=9.8067; %Gravity at sea level
mu = 398600441800000; %Standard Gravitational Paramater

mscale = 1000; %Scaling of mass to ton

%Normalizers
tn = (R_E/g_0).^(.5); %Time Normalizer
rn = R_E; %Position Normalizer
vn = (R_E*g_0).^(.5); %Velocity Normalizer
an = g_0; %Acceleration Normalizer

%inclin = 97.38*(pi/180); %[rad]
inclin = 82.62*(pi/180); %[rad]

init_vertical_speed = 1; %[m/s]
coriolis = [-24.0852 136.5951 0]; %[m/s]
%[-24.0852 136.5951 0]; %[m/s] coriolis vector @ AAU

% Initial time. t0<tf. For discrete time systems is the initial index
problem.time.t0=0;

% Final time. Let tf_min=tf_max if tf is fixed.
problem.time.tf_min=1/tn;
problem.time.tf_max=1200/tn;
guess.tf=700/tn;

% Parameters bounds. pl=< p <=pu
problem.parameters.pl=[];
problem.parameters.pu=[];
guess.parameters=[];

% Initial conditions for system.
problem.states.x0=[];

% Aalborg radius: 6375750
% Initial conditions for system. Bounds if x0 is free s.t. x0l=< x0 <=x0u
problem.states.x0l=[3434202.222/rn ...

605537.877/rn ...
5337580.635/rn ...
((init_vertical_speed*0.5386)+coriolis(1))./vn ...
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((init_vertical_speed*0.0950)+coriolis(2))./vn ...
((init_vertical_speed*0.8372)+coriolis(3))./vn ...
m0l/mscale -24.0852./vn 136.5951./vn];

problem.states.x0u=[3434202.222/rn ...
605537.877/rn ...
5337580.635/rn ...
((init_vertical_speed*0.5386)+coriolis(1))./vn ...
((init_vertical_speed*0.0950)+coriolis(2))./vn ...
((init_vertical_speed*0.8372)+coriolis(3))./vn ...
m0u/mscale -24.0852./vn 136.5951./vn];

% State bounds. xl=< x <=xu
problem.states.xl=[-(R_E+3010000)/rn -(R_E+3010000)/rn -(R_E+3010000)/rn ...
-8000/vn -8000/vn -8000/vn mfl/mscale -inf -inf];% 0 0];

problem.states.xu=[(R_E+3010000)/rn (R_E+3010000)/rn (R_E+3010000)/rn ...
8000/vn 8000/vn 8000/vn m0u/mscale inf inf];% pi 2*pi];

% Terminal state bounds. xfl=< xf <=xfu
%problem.states.xf=[];
problem.states.xfl=[-(R_E+510000)/rn -(R_E+510000)/rn -(R_E+510000)/rn ...
-8000/vn -8000/vn -8000/vn mfl/mscale -inf -inf];% 0 0];
problem.states.xfu=[(R_E+510000)/rn (R_E+510000)/rn (R_E+510000)/rn ...
8000/vn 8000/vn 8000/vn mfu/mscale inf inf];% pi 2*pi];

% Guess the state trajectories with [x0 xf]
% guess.states(:,:)=[x0 xf];
guess.states = [];

% Number of control actions N
% Set problem.inputs.N=0 if N is equal to the number of integration steps.
% Note that the number of integration steps
% defined in settings.m has to be divisible
% by the number of control actions N whenever it is not zero.
problem.inputs.N=0;

% Input bounds
problem.inputs.ul=[0 0 0.025];
problem.inputs.uu=[pi 2*pi 1];

% Guess the input sequences with [u0 uf]
guess.inputs=[];

% Choose the set-points if required
problem.setpoints.states=[];
problem.setpoints.inputs=[];

% Bounds for path constraint function gl =< g(x,u,p,t) =< gu
problem.constraints.gl=[1 0 0];
problem.constraints.gu=[1.5 5 5.3610e-04.*10000];
% 700/vn^2 = 5.3610e-04
% 400/vn^2 = 6.3974e-06
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% Bounds for boundary constraints bl =< b(x0,xf,u0,uf,p,t0,tf) =< bu
problem.constraints.bl=[0 0 0 0 -inf];
problem.constraints.bu=[0 0 0 0 0];

% Store the necessary problem parameters used in the functions
problem.data.R_E=R_E;
problem.data.g_0=g_0;
problem.data.mu = mu;
problem.data.v_orbit = v_orbit;
%Normalizers
problem.data.mscale = mscale;
problem.data.tn = tn;
problem.data.rn = rn;
problem.data.vn = vn;
problem.data.an = an;
problem.data.inclin = inclin;

problem.functions={@L,@E,@f,@g,@b};

%Lagrangian:
function stageCost=L(x,xr,u,ur,p,t,data)
% Syntax: stageCost = L(x,xr,u,ur,p,t,data)
stageCost = 0*t;

%Boundary Cost:
function boundaryCost=E(x0,xf,u0,uf,p,tf,data)
% Syntax: boundaryCost=E(x0,xf,u0,uf,p,tf,data)
boundaryCost=-xf(7);

%System Dynamics:
function dx = f(x,u,p,t,data)
%Physical Constants
R_E = data.R_E; %[m]
g_0 = data.g_0; %[m/s^2]

%Normalizers
vn = data.vn; %Velocity [.]
an = data.an; %Acceleration [.]

%State Labels
r1 = x(:,1);
r2 = x(:,2);
r3 = x(:,3);
v1 = x(:,4);
v2 = x(:,5);
v3 = x(:,6);
m = x(:,7);
vcoryx = x(:,8);
vcoryy = x(:,9);

%Input Labels
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theta = u(:,1);
phi = u(:,2);
eta = u(:,3);

%Maximum Thrust
Tmax = 101.2311;

%Air Density
rhoair = ((1<(r1.^2+r2.^2+r3.^2).^(.5)).*1.277 ...
.*exp(-761.2645*((r1.^2+r2.^2+r3.^2).^(.5)-1)));

%Control Vector (aka LV Attitude)
cv1 = sin(theta).*cos(phi);
cv2 = sin(theta).*sin(phi);
cv3 = cos(theta);

vmagsquare = ((v1-vcoryx).*vn).^2+((v2-vcoryy).*vn).^2+(v3.*vn).^2;

%Atmosphere Movement
acorix = 2*v2.*vn.*((2*pi)/(24*3600)).*(rhoair./1.277);
acoriy = -2*v1.*vn.*((2*pi)/(24*3600)).*(rhoair./1.277);

%Angle of Attack (LV attitude vs velocity)
vnorm = ((v1-vcoryx).^2+(v2-vcoryy).^2+v3.^2).^(.5);
vnorm1 = (v1-vcoryx)./vnorm;
vnorm2 = (v2-vcoryy)./vnorm;
vnorm3 = v3./vnorm;

cvn1 = cv2.*(cv1.*vnorm2-cv2.*vnorm1)-cv3.*(cv3.*vnorm1-cv1.*vnorm3);
cvn2 = cv3.*(cv2.*vnorm3-cv3.*vnorm2)-cv1.*(cv1.*vnorm2-cv2.*vnorm1);
cvn3 = cv1.*(cv3.*vnorm1-cv1.*vnorm3)-cv2.*(cv2.*vnorm3-cv3.*vnorm2);

alphaprime = vnorm1.*cv1+vnorm2.*cv2+vnorm3.*cv3; %[.]
betaprime = vnorm1.*cvn1+vnorm2.*cvn2+vnorm3.*cvn3;

%Gravity Disturbance
gravity = 1./(((r1.^2+r2.^2+r3.^2).^(.5)).^3); %[.]

% radius = .363;
% CDA = 0.0611
% CDN = 0.7513

%State Equations
dx(:,1) = v1;
dx(:,2) = v2;
dx(:,3) = v3;

dx(:,4) = eta.*(Tmax./(m.*an)).*cv1-gravity.*r1- ...
((0.0938.*alphaprime.*cv1+1.0346.*x(:,7).*betaprime.*cvn1) ...
.*vmagsquare.*rhoair)./(m.*1000.*an);

dx(:,5) = eta.*(Tmax./(m.*an)).*cv2-gravity.*r2- ...
((0.0938.*alphaprime.*cv2+1.0346.*x(:,7).*betaprime.*cvn2) ...
.*vmagsquare.*rhoair)./(m.*1000.*an);

dx(:,6) = eta.*(Tmax./(m.*an)).*cv3-gravity.*r3- ...
((0.0938.*alphaprime.*cv3+1.0346.*x(:,7).*betaprime.*cvn3) ...
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.*vmagsquare.*rhoair)./(m.*1000.*an);

cn = (258.13+24.68.*(1-(rhoair./1.277)))/((R_E/(g_0^3)).^(.5));
dx(:,7) = -eta.*Tmax./cn; %Mass flow [.]

dx(:,8) = acorix./an;
dx(:,9) = acoriy./an;

%Path Constraints:
function c=g(x,u,p,t,data)
% Syntax: c=g(x,u,p,t,data)
%State Labels
r1 = x(:,1);
r2 = x(:,2);
r3 = x(:,3);
v1 = x(:,4);
v2 = x(:,5);
v3 = x(:,6);
m = x(:,7);
vcoryx = x(:,8);
vcoryy = x(:,9);

g_0 = data.g_0;

%Input Labels
eta = u(:,3);

%Tmax = x(1,7).*p;
Tmax = 101.2311/g_0;

c(:,1) = (r1.^2+r2.^2+r3.^2).^(.5); %Surface of the Earth constraint
c(:,2) = eta.*(Tmax./m); %Maximum g-load constraint
c(:,3) = (1<(r1.^2+r2.^2+r3.^2).^(.5)).*0.6385 ...
.*exp(-761.2645*((r1.^2+r2.^2+r3.^2).^(.5)-1))...
.*((v1-vcoryx).^2+(v2-vcoryy).^2+v3.^2).*10000; %Dynamic Pressure

%Boundary Constraints:
function bc=b(x0,xf,u0,uf,p,tf,data)
% Syntax: bc=b(x0,xf,u0,uf,p,tf,data)
rn = data.rn;
vn = data.vn;
R_E = data.R_E;
v_orbit = data.v_orbit;
inclin = data.inclin;

bc=[(xf(1)*xf(1)+xf(2)*xf(2)+xf(3)*xf(3)).^(.5)-1.0784; %Orbit Height
(xf(4)*xf(4)+xf(5)*xf(5)+xf(6)*xf(6)).^(.5)-0.9638; %Orbit Velocity
xf(1)*xf(4)+xf(2)*xf(5)+xf(3)*xf(6); %Eccentricity
(xf(1)*xf(5)-xf(2)*xf(4))-0.1335; %Inclination
(xf(3)*xf(4)-xf(1)*xf(6))];

%------------- END OF CODE --------------
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C.4 settings.m

function options = settings
%SETTINGS - General and solver-specific settings are selected here
% Unless specified otherwise the options are set using 0 => no and 1 => yes

%------------- BEGIN CODE --------------

% Transcription Method:
%---------------------------------------
options.transcription=’trapezoidal’;
% Discrete-time model (’discrete’)
% Multiple shooting method (’multiple_shooting’)
% WARNING: The ’quasi-newton’ option for the
% hessian computation has to be selected.
% This setting can only be used of tf is not a
% decision variable.
%
% Euler method (’euler’)
% Trapezoidal method (’trapezoidal’)
% Hermite-Simpson method (’hermite’)

% Derivative generation :
%---------------------------------------
options.derivatives=’numeric’;
% Whenever the analytic differentiation is enabled it is necessary to
% specify the available analytic forms for the cost function, the dynamic equations
% and the constraints in the appropriate files .m
% Numerical differentiation: finite differences (’numeric’)
% Analytic differentiation: analytic gradients (’analytic’)

% Numeric generation of the Hessian:
%----------------------------------------------------------------
options.hessianFD=’forward’;
% Whenever the numeric differentiation is enabled it is necessary to
% specify which kind of finite difference approximation to use between
% the following ones:
%
% Central difference (’central’)
% forward difference (’forward’)

% (32*eps)^(1/3)
% (2*eps)^(1/3)
options.perturbation.H=[];
options.perturbation.J=[];
% The perturbation size for numerical second derivatives
% can be set in options.perturbation.H. The perturbation size for
% numerical first derivatives can be set in options.perturbation.J.
%
% It is possible to select default values for the perturbations by setting
% options.perturbation.H and options.perturbation.J to the empty matrix.
% The default values for the gradient approximation is (eps/2)^(1/3)
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% while for the second derivative is (8*eps)^(1/3).

% NLP solver
%---------------------------------------
% IPOPT: recommended but needs ipopt.mex (’ipopt’)
% fmincon (’fmincon’)
options.NLPsolver=’ipopt’;

%Tolererances
relTOL = 1.e-50;
absTOL = 1.e-50;
ipoptTOL = 1.e-3;

% IPOPT settings (if required)
options.ipopt.tol=ipoptTOL; % Absolute tolerance

options.ipopt.print_level=5;
% Print level. The valid range for this integer
%option is [0,12] and its default value is 5.

options.ipopt.max_iter=3000;
% Maximum number of iterations. The default value is 3000.

options.ipopt.mu_strategy =’adaptive’;
% Determines which barrier parameter update strategy is to be used.
% The default value for this string option is "monotone".
% Possible values:
% ’monotone’: use the monotone (Fiacco-McCormick) strategy
% ’adaptive’: use the adaptive update strategy

options.ipopt.hessian_approximation=’limited-memory’;
% Indicates what information for the Hessian of the Lagrangian function is
% used by the algorithm. The default value is ’exact’.
% Possible values:
% ’exact’: Use second derivatives provided by ICLOCS.
% ’limited-memory’: Perform a limited-memory quasi-Newton approximation
% implemented inside IPOPT

% fmincon settings (if required)
%options.fmincon=optimset(’GradObj’,’on’,’GradConstr’,’on’);
%Alternate:
options.fmincon=optimset;

% Automatic scaling (recommended)
options.scaling=1;

% Output settings
%---------------------------------------
% Display relative local discretization error
%(recommended for direct transcription)
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options.print.relative_local_error=1;
options.print.time=1; % Display computation time
options.print.cost=1; % Display cost

options.plot.states=1; % Plot states
options.plot.inputs=1; % Plot inputs
options.plot.multipliers=1; % Plot Lagrange multipliers

% Direct transcription settings
%---------------------------------------
options.nodes=1001;
% Number of integration nodes in the interval t=[0,tf]; nodes=steps+1.
% The quantity steps/N (N number of control actions) must be a positive
% integer.

options.tau=0;
% Distribution of integration steps. Set tau=0 for equispaced steps.
% Otherwise: tau is a vector of length M-1 with 0<tau(i)<1 and sum(tau)=1.
% For discrete time system set tau=0.

options.ODEsolver=’cvodes’;
% Multiple shooting settings
%---------------------------------------
% N/S=normal/stiff. H/M/L=high/medium/low accuracy
%
% ’cvodes’ N/S H High accuracy, difficult problems(slow)
%
%
% Note: ’cvodes’ requires the sundialsTB.

% CVODES settings (if required)
Method=’Adams’; % Method: BDF, Adams
Solver=’Functional’; % Solver: Newton, Functional (requires dfdx)

%Recommended: Combine {BDF,Newton} or {Adams,Functional}

% Options for forward integration
options.cvodes = CVodeSetOptions(’RelTol’,relTOL,...

’AbsTol’,absTOL,...
’LinearSolver’,’Dense’,...
’MaxNumSteps’,10000,...
’LMM’,Method,...
’NonlinearSolver’,Solver);

% Forward sensitivity options
options.cvodesf=CVodeSensSetOptions(’ErrControl’,true,’method’,...
’Staggered’,’RelTol’,relTOL,’AbsTol’,absTOL); % FSA initialization
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