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Synopsis:
This project focuses on the development of
a topology optimisation tool for a dissipative
muffler design in collaboration with Lloyd’s
Register ODS. The objective is to determ-
ine the optimal amount and placement of ab-
sorbing material required for a certain damp-
ing of the emitted sound. The initial stages
of the report explains how the element type
and element size is determined for a numer-
ical model based on an analytical model of
a simplified muffler design. The analytical
model is developed based on the theory of
linear acoustics and is used as a reference for
the numerical model modelled in ANSYS® .
When the element technology has been de-
termined, the numerical model is modelled
with the actual geometry. Damping mater-
ial is added to the numerical model within a
predefined design space and the elements are
parametrised, allowing for manipulation of
the material properties within each element.
A thickness filter is applied to the design vari-
ables, which ensures a void-less design. The
topology optimisation is conducted using a
SLP solver. Several different tools are ap-
plied in the optimisation algorithm to ensure
a robust algorithm. The final designs have
provided great reduction of the damping ma-
terial while still fulfilling the requirements for
transmission loss.





Resumé

Denne specialeopgave er udført som den afsluttende del af kandidatuddannelsen Design af
Mekaniske Systemer ved det Teknisk- Naturvidenskabelige Fakultet på Aalborg Universitet
og i samarbejde med Lloyd’s Register ODS. Opgaven omhandler research og udvikling af et
topologi-optimeringsprogram i samspil med MATLAB og ANSYS® APDL til bestemmelsen
af fordelingen af dæmpningsmateriale i et bestemt akustisk domæne.

Projektet er foreslået af Lloyd’s Register ODS idet der fra dennes side ønskes en udvidelse
af kompetencerne i feltet for topologi optimering af akustiske problemer. Intentionen er at
kunne anvende optimeringsprogrammet til bestemmelse af generelle design regler for placering
af dæmpningsmateriale i forskellige typer af lyddæmpere.

Udviklingen af optimeringsprogrammet tager således udgangspunkt i et eksisterende projekt
angående designet af en lyddæmper med indbygget partikelfilter. Da pladsen i lyddæmperen
er trang, ønskes det da at bestemme den minimale mængde dæmpningsmateriale krævet for at
opnå en bestemt dæmpning af lyden ved tre specifikke frekvenser; 446 Hz, 892 Hz og 1338 Hz.

Lyddæmperen består af et 2.10 m langt rør med en diameter på 0.71 m. Åbning og udgang
har ens hul-diameter på 0.24 m. Enderne af lyddæmperen er desuden udført med afrundede
hjørner.

Første skridt i udviklingen af optimeringsprogrammet består i modelleringen af lyddæmperens
akustiske felt uden tilføjet dæmpningsmateriale. Det akustiske felt er modelleret ved at anvende
den lineære akustik teori på en simplificeret model af lyddæmperen, hvor de afrundede hjørner
er erstattet af rette endeplader. Idet den lineære akustiske teori anvendes, antages det at der
ingen interaktion er mellem det akustiske felt og strukturen omkring denne samt at inputtet
ikke påvirkes af reflekterede bølger.

Den analytiske model er benyttet til at bestemme egen-frekvenser og tilhørende egenmodes,
som anvendes til verifikation af en finite element model konstrueret i ANSYS® . Baseret
på resultaterne fra den analytiske model fastsættes net kvaliteten samt element typen for
finite element modellen, således fejlmargen mellem disse er tilfredsstillende. Transmissions
tabet, eller dæmpningen, bestemmes ligeledes for den analytiske model og sammenlignes med
finite element modellen. Der viste sig en god sammenhæng for transmissions tabet imellem
modellerne ved frekvenser under 300 Hz, hvorefter det vurderes at ikke-linearitet, såsom
interaktion med inputtet, begynder at påvirke transmission tabet.

En finite element model med korrekt geometri er efterfølgende konstrueret og udføres med
de anbefalede værdier for net kvalitet og element type. Modellen udvides med inkludering af
dæmpningsmaterialet ved brug af Delany-Bazley materialemodellen tilgængelig i ANSYS® .

Det vurderes at optimeringen må foretages ved brug af en 3D model med Delany-Bazley

iii



DMS 4

materialemodellen, idet materialemodellen ikke er tilgængelig for 2D elementer, samt at
transmissions tabet ikke kan forudsiges analytisk.

Lyddæmperen modelles med et manuelt defineret net og et design domæne defineres i 2D
som efterfølgende projiceres omkring længdeaksen. Design domænet er bestående af 6 x
42 elementer i henholdsvis højden og længden. Hvert element i designdomænet tildeles en
design variabel som skalerer materialeparameteren for flow-resistivitet σ i dæmpningsmaterialet
mellem 0 og 1, således elementet opfører sig som henholdsvis luft eller dæmpningsmateriale.

For at muliggøre fremstilling af fordelingen af dæmpningsmaterialet, anvendes et tykkelsesfilter
reformuleret af René Sørensen og Erik Lund [Sørensen and Lund, 2015] og oprindeligt udviklet
af Fengwen Wang, Boyan Stefanov Lazarov og Ole Sigmund [Wang et al., 2011]. Tykkelses
filteret sikrer at dæmpningsmaterialet påføres fra yderdiameteren af designdomænet og ind
mod centrum af lyddæmperen, således at huller i fordelingen undgås.

Topologi-optimeringen er implementeret i MATLAB og baseres på et allerede eksisterende
program af René Sørensen og Erik Lund [Sørensen and Lund, 2015], som benytter en Squential
Linear Programming (SLP) algoritme til løsning af optimeringsproblemet.

Optimeringsprogrammet har leveret tilfredsstillende resultater for nedbringelsen af forbruget
af dæmpningsmaterialet. Det er observeret, at placeringen af dæmpningsmaterialet har stor
betydning for transmissions tabet gennem lyddæmperen. Det er også observeret at der udvises
stor forskellighed i fordelingen af materialet hvis det ønskes at reducere materialeforbruget for
hver enkel frekvens, i stedet for alle tre frekvenser på en gang. Start designet har endvidere
også en stor betydning for det endelige resultat.

Designforslagene fra optimeringsprogrammet er dog ikke fuldkommen produktionsklar og
kræver en vis mængde post-processering.
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Preface

The following report is the result of a master these for the Design of Mechanical Systems
(DMS), 2015 spring study programme, made in collaboration with Lloyd’s Register ODS. The
references in the appendix relies on the Harvard method, where the author and year are shown,
example [Sørensen and Lund, 2015]. Pictures, equations and graphs are referred to by chapter
number, example figure 1.1, equation (4.21), and chapter 1 Introduction.

The literature used for the report is placed in the bibliography at the end of the report.

The software applications used in the project are listed below:

• LATEX for text editing
• MatLab for optimisation algorithm and graphs
• ANSYS® Classic APDL for FEM analysis
• Inkscape and Illustrator CS6 for creating figures
• Maple for various calculations

As an addition to the main report a CD is attached which contains a copy of the MatLab scripts,
Maple scripts and ANSYS® input files. The CD is placed at the back of the appendix.
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Introduction 1
This report is the documentation of a master thesis conducted at Aalborg University in
collaboration with Lloyd’s Register ODS about topology optimisation of a dissipative silencer.
Lloyd’s Register ODS is a marine society which focuses on developing safety and environmental
standards for design, construction and operation of ships. It has been desired by Lloyd’s
Register ODS to extend its competencies to also include topology optimisation for acoustic
problems. The development of a topology optimisation program for a dissipative silencer
has therefore been appointed to this project group, in order to investigate the possibilities of
acoustic topology optimisation. The topology optimisation tool has been developed by the
authors of this report with help from Sergey V. Sorokin and Rene Sørensen.

The report explains the methods, techniques and theories used for solving the problem at hand.
Results, conclusion and a discussion can be found in the back of the report.

1.1 Background

The silencer in question is attached to a screw compressor. The screw compressor runs at three
pre-set velocities. When the screw compressor is active, large amounts of air is forced through
an exhaust system. As the air leaves the system, sound is emitted. To prevent high amounts
of noise from the system, a silencer is attached to the system. This will cancel out the loud
noises which responsible for noise pollution or damage to the hearing.

1.2 Problem description

Lloyd’s Register ODS provided the authors with a silencer design from a current silencer
design project. Inside the silencer a particle filter must be fitted, which allows less room for
the damping material. The silencer design is initialized by removing the current damping
solution, but applying the existing silencer dimensions. The dimensions of the silencer can be
seen on figure 1.1.
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Figure 1.1: Dimensions of the silencer optimized in this project.
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DMS 4 1. Introduction

The three pre-set input frequencies are; 446 Hz , 892 Hz and 1336 Hz . The task is to develop a
tool which can determine the minimum required damping material and its distribution while
still damping the emitted sound to a set boundary of 17 dB .

1.3 Solution approach

To solve the problem formulated in section 1.2, four main steps were taken.

• Analytical investigation of eigenfrequencies and mode shapes of a simple model
• Implementation of real geometry and boundary conditions in FEM and investigation of
transmission loss

• Introduction of damping material and investigation of transmission loss
• Topology optimisation of damping solution

The analytical investigation of the eigenfrequencies and mode shapes is performed to verify the
numerical model. The theory of linear acoustics of a cylinder with fixed boundary conditions
is well established and can be considered accurate. An accurate numerical model is developed
by creating an analytical model to verify the elements and mesh size of the numerical model.
When the elements and mesh size were determined the model is modified with real geometry and
boundary conditions. The transmission loss is investigated to understand how much damping
is required in the system. Damping material is added to the numerical model and transmission
loss is investigated again. The damping material distribution and volume is optimised with
topology optimisation using a Sequential Linear Programming solver. The solution process is
visualized in figure 1.2.
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Figure 1.2: Flow chart showing the work process of the project.

The process is explained in details in this report ending with result discussions and conclusion.
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Theory of linear acoustics 2
This chapter introduce the prerequisites needed to develop an analytical model. It covers the
derivation of the governing equations needed to derive the wave equation. Later, the wave
equation is used to describe the propagation of sound in a duct by introduction of the reduced
wave equation also known as the Helmholtz equation. Finally the performance of a transmission
line is examined with regards to the emitted sound power, which finally leads to the derivation
of the transmission loss through a transmission line. The chapter will lay the foundation for
the rest of the report as the notation, terminology and understanding of the physical behaviour
of the silencer is presented herein and will be applied throughout the remaining chapters.

2.1 Governing equations

The governing equations sets up the rules for the physical system of the silencer by considering
the physics of infinitesimal volumes of acoustic medium. The governing equations must secure
that basic physical principles of the acoustic medium are obeyed, such as the conservation of
mass and conservation of momentum, which will be discussed in the following.

2.1.1 Conservation of mass

The basic physical principle of conservation of mass is to secure continuity of the fluid. This
implies that the amount of fluid (or mass) flowing into a certain volume must equal the amount
of fluid exiting that volume. Fixed points in space are considered where the fluid might pass.
The points are described by Cartesian coordinates x,y,z and time t is also considered. Consider
now an infinitesimal volume dV . The mass of the volume is determined by the volume integral
of the fluid density ρ. ∫

ρdV = m (2.1)

The mass of flow out of the volume in unit time, is determined by the velocity of the fluid v
and the surface area f . ∫

ρvdf = Mass of flow (2.2)

Note that the flow is positive if it is directed outward of the volume. As there is an outward
flow, there must be a corresponding decrease of the mass inside the volume.

− ∂

∂t

∫
ρdV =

∫
ρvdf (2.3)

The surface integral on the right side of equation (2.3) is converted to a volume integral by the
Divergence theorem [Wendt et al., 1996] and is then inserted back into equation (2.3).∫

ρvdf =

∫
div(ρv)dV (2.4)

3



DMS 4 2. Theory of linear acoustics

Where div = ∂
∂x + ∂

∂y + ∂
∂z .

Rearranging equation (2.3) yields.∫ [
∂ρ

∂t
+ div(ρv)

]
dV = 0 (2.5)

This condition must be valid for any volume, which is why the integral can be removed and
the equation for conservation of mass is now obtained.

∂ρ

∂t
+ div(ρv) = 0 (2.6)

The second basic physical principal which must be valid for the fluid, the conservation of
momentum, is considered next.

2.1.2 Conservation of momentum

The momentum of the fluid must be conserved as it enters and exits an infinitesimal volume
element, as no energy can vanish. Consider the force acting on the surface of a volume element
as the integral of pressure over the surface area. The force F can also be expressed as the
gradient of the pressure over the volume element.

F = −
∫
pdf = −

∫
∇pdV (2.7)

Where ∇ = gradient = i ∂∂x + j ∂∂y + k ∂
∂z .

The equation of motion for the volume element is established. Notice that the volume is
considered as a unit volume.

ρ
dv

dt
= −∇p (2.8)

Equation (2.8) considers a specific fluid particle as it moves about in space, but a formulation
for fixed points in space is needed instead. Thus the derivative must refer to fixed points in
space.

To enable this, consider the change in velocity dv from equation (2.8). It consists of a change in
velocity during the time dt and a difference in velocity between two points in space, separated
by a distance dr. The first part, the change in velocity during the time dt is expressed as(

∂v

∂t

)
dt where

∂v

∂t
∈ x,y,z (2.9)

The second part is the change in velocity between two points separated by a distance dr.

dx
∂v

∂x
+ dy

∂v

∂y
+ dz

∂v

∂z
= (dr · ∇)v (2.10)

The two parts, equations (2.9) and (2.10) are combined in order to describe the change in
velocity dv.

dv =
∂v

∂t
dt+ (dr · ∇)v (2.11)
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2.2. Derivation of wave equation

Dividing both sides of (2.11) by dt and reducing, yields dv/dt of the equation of motion in
equation (2.8).

dv

dt
=
∂v

∂t
+ (v · ∇)v (2.12)

Equation (2.12) is inserted into the equation of motion for the particle (2.13) and is reduced
to the final expression for the conservation of momentum (2.14).

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p (2.13)

⇓
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p (2.14)

As the governing equations have now been derived, they are in the following section, applied
as the basis for the derivation of the wave equation.

2.2 Derivation of wave equation

The wave equation describes the distribution of pressure and velocity throughout the acoustic
system. It is derived using the governing equations that has just been determined.

In order to derive the wave equation, it is required that mass and momentum is conserved for
an infinitesimal volume, meaning that the governing equations are applied.

Conservation of mass:
∂ρ

∂t
+ div(ρv) = 0 (2.15)

Conservation of momentum:
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p (2.16)

Viscosity of the fluid is neglected, as only air is considered as the acoustic medium in this
report. The governing equations are simplified by the introduction of a very small disturbance
to the density and pressure, as seen in equations (2.17) and (2.18).

ρ = ρ0 + ρ′ ρ0 >> ρ′ ρ0 = constant (2.17)

p = p0 + p′ p0 >> p′ p0 = constant (2.18)

A relation between the pressure and density perturbations is now defined.

p′ = c2
0ρ
′ (2.19)

Where c0 is the speed of sound in the acoustic medium.

The conservation of momentum is further simplified by assuming that the velocity in the fluid
is so small that the non-linear term can be neglected.

∂v

∂t
+ (v · ∇)v ≈ ∂v

∂t
(2.20)

The assumptions above are now introduced to the governing equations for mass and momentum
conservation, yielding equations (2.21) and (2.22) respectively.

1

c2
0

∂p′

∂t
+ ρ0div(v) = 0 (2.21)

∂v

∂t
= − 1

ρ0
∇p′ (2.22)
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DMS 4 2. Theory of linear acoustics

The velocity potential ϕ is now introduced as v = ∇ϕ, which rewrites the equation for
conservation of momentum.

∇
(
∂ϕ

∂t
+

1

ρ0
p′
)

= 0 (2.23)

For the left-hand side of equation (2.23) to be equal to zero, it must hold that ∂ϕ
∂t + 1

ρ0
p′ =

constant. The constant represents the reference level of the acoustic pressure p′ and equating
this to zero yields.

p′ = −ρ0
∂ϕ

∂t
(2.24)

Inserting the expression for the pressure perturbation into the conservation of mass (2.21) and
the wave equation is finally derived as equation (2.26).

− 1

c2
0

∂2ϕ

∂t2
+ div(∇ϕ) = 0 (2.25)

− 1

c2
0

∂2ϕ

∂t2
+ ∆ϕ = 0 (2.26)

Where ∆ is the Laplace operator. The Laplace operator is shown for Cartesian and cylindrical
coordinates in equations (2.27) and (2.28) respectively.

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.27)

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
(2.28)

2.2.1 Reduced wave equation

As the general wave equation has been derived, it is now transformed into a time-harmonic
domain. The time-harmonic domain simplifies the wave equation dramatically as the excitation
is no longer arbitrary (which the wave equation supports) but instead purely harmonic. This
implies that the velocity potential ϕ of the wave equation is formulated as a time-harmonic
function.

ϕ = ϕ̃e±iωt (2.29)

With this formulation for the velocity potential, the wave equation transforms to the Helmholtz
equation also known as the reduced wave equation.

∆ϕ̃+
ω2

c2
0

ϕ̃ = 0 (2.30)

The physical variables are expressed in harmonic time domain as well.

~v ≡ ~̃ve±iωt (2.31)

p ≡ p̃e±iωt (2.32)

From equation (2.24) the relation between pressure and velocity potential reduce to an algebraic
equation.

p̃ = ∓iρ0ωϕ̃ (2.33)

6



2.2. Derivation of wave equation

2.2.2 Boundary conditions

In order to solve the Helmholtz equation, which is a second order differential equation, two
boundary conditions must be supplied. One condition is applied to the surface of the source
called S1, located inside an acoustic volume. The source vibrates with a velocity amplitude of
V0 normal to its surface. The sign convention is now readily defined as positive if the velocity
of the source is directed away from the acoustic volume. The boundary on the source is thus
defined as the velocity vector ~̃v in the normal direction of the source surface, see equation
(2.34).

vn ≡ ~n · ~̃v =
∂ϕ

∂n
= −V0 (2.34)

Consider now the second boundary condition surrounding the acoustic volume. Several different
formulations can be used according to physical behavior of the boundary. For a completely
rigid boundary S2, the velocity of a fluid particle at the boundary must equate to zero as in
equation (2.35).

vn = 0 (2.35)

Contrary to the condition of equation (2.35) is an acoustically soft boundary, S3. Here no
acoustic pressure is developed, see equation (2.36). The velocity potential can be used to
describe this boundary condition as well, according to equation (2.33). This is also known as
a pressure release boundary.

p̃ = 0 (2.36)

ϕ̃ = 0 (2.37)

The third case, S4, is of a boundary which is neither completely rigid or completely compliant
with regards to the pressure. This type of boundary is called an impedance boundary and
basically determines the relation between pressure and velocity.

p̃ = Zṽn (2.38)

Where Z is a local impedance of the boundary which can be of complex-value. Applying
equations (2.33) and (2.34) the impedance boundary can be described in terms of the velocity
potential.

∓ iρ0ωϕ̃ = Z
∂ϕ̃

∂n
(2.39)

2.2.3 Plane waves

Consider a one-dimensional case of a propagating wave. In one-dimensional space, the
propagation is referred to as a plane wave propagation. It is useful to consider the propagation
of the wave in one dimension as the direction of the wave can be established more easily. The
Helmholtz equation is reduced to equation (2.40) for one dimensional space.

∂2ϕ̃

∂x2
+
ω2

c2
0

ϕ̃ = 0 (2.40)

If the case of an infinite cylinder, with a piston in one end as the excitation source, the boundary
condition for the source based on equation (2.34) is formulated in equation (2.41). Notice the
change of the sign for Vn.

∂ϕ̃

∂x
= Vn (2.41)

7



DMS 4 2. Theory of linear acoustics

The solution to the one dimensional problem of equation (2.40) is given in equation (2.42), as
the general solution to a homogeneous second order differential equation.

ϕ̃ = A1e
i ω
c0
x

+A2e
−i ω

c0
x (2.42)

As seen from equation (2.42) two constants are to be determined, but only one boundary
condition have been applied as the cylinder is assumed to be infinitely long. This means that
the waves will only propagate away from the source and will never be reflected back towards the
source. The choice of the time dependence formulation in equation (2.29) determines which
constant will describe the wave propagation. If eiωt is used, the positive wave propagation
(away from the source), is determined by A2 while A1 = 0 as the wave cannot propagate into
the source. On the contrary, if e−iωt is applied, the positive direction of the wave propagation
is handled by A1 and now A2 = 0.
In the following, the time dependence will be expressed as e−iωt.

The solution to the reduced wave equation in one dimension is thus only containing the term
with A1.

ϕ̃ = A1e
i ω
c0
x (2.43)

To determine A1, the boundary condition at the source at x = 0 is applied.

dϕ̃

dx
= i

ω

c0
A1 = V0 ⇒ A1 = − ic0

ω
V0 (2.44)

Inserting the expression for A1 back into equation (2.43) the final expression for the velocity
potential arise.

ϕ̃ = − ic0

ω
V0e

i ω
c0
x (2.45)

By applying equations (2.33) and (2.44), formulations for pressure and velocity in the acoustic
field are derived.

ṽx = V0e
i ω
c0
x (2.46)

p̃ = iρ0ωϕ̃ = ρ0c0V0e
i ω
c0
x (2.47)

Equations (2.45), (2.46) and (2.47) gives the solution to the propagation of plane waves.

The ratio between pressure and velocity at any point in the one dimensional space and at any
instant of time is called the characteristic impedance of the plane wave, as shown in equation
(2.48). It is derived from equations (2.46) and (2.47).

Z0 =
p̃

ṽx
= ρ0c0 (2.48)

The characteristic impedance can be interpreted as the unobstructed resistance to the sound
as it moves in the one dimensional acoustic medium. It will later be applied as boundary
conditions at the inlet and outlet in the modelling of the muffler and in the following section
when transmission loss must be determined.

8



2.3. System performance

2.3 System performance

The system performance is in the following used a term to describe the amount of sound
emitted from any given system. First the emitted sound power is considered, as this describes
the amount of energy transferred trough a system. Next the transmission loss is considered as
the energy lost in a system and the prerequisite for an analytical transmission line model is
discussed.

2.3.1 Emitted sound power

The sound wave transports energy from the source, say a piston, to infinity. The average power
over one excitation is usually used to describe the sound power of a given system. Consider
an infinitely long tube as before, with a piston in one end. The sound power for this case is
shown in equation (2.49) [Sorokin].

N =
1

2
Re
[

1

T

∫ t0+T

t0

∫
A
p
′
v∗dAdt

]
(2.49)

Where A is the cross sectional area of the tube, T = 2π
ω is the period of the excitation and v∗

is the complex conjugate of the velocity.

By assuming plane waves and applying the formulations for acoustic pressure and velocity
from equations (2.46) and (2.47), combined with the formulation for velocity and pressure
in harmonic time domain from equations (2.31) and (2.32), the pressure and velocity can be
rewritten.

p
′

= ρ0c0V0e
i ω
c0
−iωt (2.50)

v∗ = V0e
−i ω

c0
+iωt (2.51)

When assuming plane waves in harmonic time domain, the sound power can thus be simplified
as shown in equation (2.52).

N =
1

2
Re
[

1

T

∫
A
p̃ṽ∗dA

]
(2.52)

The sound power can now be applied to determine the transmission loss in for instance an
expansion chamber inserted between two smaller pipes with equal diameter. The reduction
of the emitted sound can be determined by comparing the emitted sound power of the actual
system against an idealised system, where the expansion chamber has the same dimensions as
the connected pipes.

2.3.2 Transmission loss

The transmission loss of a transmission line is now considered by estimating the distribution of
velocity potential in the system with application of the reduced wave equation for plane wave
assumptions. The transmission line is modelled as three connected circular pipes with cross
sectional area si where i ∈ [1,2,3] and s1 = s3. The inlet pipe is connected to the expansion
chamber at x = L1 and the outlet is connected to the chamber at x = L1 +L2, see figure 2.1. It
is assumed that both inlet and outlet has characteristic impedance boundary conditions or in
other words, that the inlet and outlet pipes are infinitely long. Additionally it is assumed that

9



DMS 4 2. Theory of linear acoustics

reflective waves cannot interact with the source. On the inlet a pressure input of amplitude
A1 is applied at the frequency ω.

L1

L2

d1 d1d2ρc ρc
x

Figure 2.1: Sketch of the transmission line used for the analytical model.

To calculate the transmission loss, the distribution of velocity potential must first be determined
throughout the system. In section 2.2.3 a solution to the homogeneous differential equation for
the velocity potential was determined. The solution of the wave equation at each part of the
transmission line is proposed as shown in equations (2.53), (2.54) and (2.55).

ϕ1 = A1e
ikx +A2e

−ikx (2.53)

ϕ2 = A3e
ikx +A4e

−ikx (2.54)

ϕ3 = A5e
ikx (2.55)

Where k = ω/c and A1 is the amplitude of the input pressure which is taken as unity.

The pressure distribution in the tube is defined from equation (2.47) as p̃i = iρωϕi. The volume
velocity qi = ṽisi is introduced where ṽi = dϕi/dx and for a round pipe the cross sectional
area si = πd2

i /4. To ensure continuity in the system the following conditions must be satisfied
at the transitions between different cross sectional areas.

p̃1|x=L1
= p̃2|x=L1

(2.56)

p̃2|x=L1+L2
= p̃3|x=L1+L2

(2.57)

∂ϕ1

∂x
s1

∣∣∣∣
x=L1

=
∂ϕ2

∂x
s2

∣∣∣∣
x=L1

(2.58)

∂ϕ2

∂x
s2

∣∣∣∣
x=L1+L2

=
∂ϕ3

∂x
s3

∣∣∣∣
x=L1+L2

(2.59)

As iρω of the pressure distribution, is constant through the system, continuity in pressure is
reduced to ϕ1 = ϕ2 at x = L1. The following equations can be obtained from the continuity
assumption where s1 = s3.

ϕ1 = ϕ2 ⇒ eikL1 +A2e
−ikL1 = A3e

ikL1 +A4e
−ikL1 (2.60)

dϕ1

dx
s1 =

dϕ2

dx
s2 ⇒ iks1e

ikL1 − iks1A2e
−ikL1 = iks2A3e

ikL1 − iks2A4e
−ikL1 (2.61)

By isolating for A2 in (2.60) and (2.61), and equating the, the following expression is
determined.

A2 = A2 ⇒ A3e
2ikL1 +A4 − e2ikL1 =

s2

s1
A4 −

s2

s1
A3e

2ikL1 + e2ikL1 (2.62)
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Isolating for A4 in (2.62) yields the equation below which only contains the unknown A3.

A4 =
A3

(
− s2
s1
− 1
)
e2ikL1 + 2e2ikL1(

1− s2
s1

) (2.63)

Applying continuity condition at x = L1 +L2 two expressions for A5 and a new expression for
A4 can be determined.

A5 = A3 +
A3

(
− s2
s1
− 1
)
e2ik(L1−L2) + 2eik(L1−L2)(

1− s2
s1

) (2.64)

A5 =
s2

s1
A3 −

s2

s1
A4e

−2ik(L1+L2) (2.65)

A4 =
1

2
A3

(
s2

s1
− 1

)
e2ik(L1+L2) (2.66)

By setting (2.63) equal to (2.66) a final expression for A3 is derived.

A3 =
2e2ikL1(

s2
s1
e2ik(L1+L2) − 1

2e
2ik(L1+L2) − 1

2
s22
s21
e2ik(L1+L2) + s2

s1
e2ikL1 + e2ikL1

) (2.67)

To verify the analytical model the three tubes are assumed to have equal diameter, yielding
the following results.

• If s1 = s2 = s3 and A1 = 1
• A1 = A3 = A5 = 1
• A2 = A4 = 0

That A2 = A4 = 0 explains there are no reflection of the waves travelling through the system,
which makes sense for a tube with uniform cross section. As the velocity potential is now
established, the emitted sound power can be determined from the following expression, as
explained in the previous section.

Ni =
1

2
Re
[∫

A
p̃iṽ
∗
i dA

]
(2.68)

By writing equation (2.68) it can be seen that the x dependency fades and emitted sound
power stays constant throughout the system. The transmission loss (TL) is now determined
by comparing the emitted sound power of the transmission line against the emitted sound
power of the system with uniform cross section (s1 = s2 = s3).

TL = 10 log

(
Nideal

Nreduced

)
(2.69)

Where Nideal is the sound power output of the idealised system with uniform cross section and
Nreduced is the sound power output of the transmission line.

The analytical model derived in this section, is applied in the ensuing chapter to compare the
transmission loss against a finite element model of the actual muffler design.
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Development of numerical
model 3

Now that the common terminology used in acoustics are explained and familiar, an numerical
acoustic model can be developed. An numerical model is preferable to an analytical model as
it can account for effects and disturbances (geometric changes etc.) a simple analytical model
cannot when using linear theory of acoustics without overcomplicating the equations. The
purpose of this chapter is to present an initial FE model aiming to study the suitable element
technology, as well as the effect of the element size in the accuracy of the acoustic analysis.

3.1 Validation of the initial finite element model

The first step in order to build an numerical model is to compare an analytical model with an
numerical model using simplified geometry and boundary conditions with the purpose to test
the element technology and the mesh size suitable for the FE model. Short calculation time
is desired, so implementation of a reasonably large mesh while still acquiring reliable results
are of importance. Aiming to test the mesh quality, the acoustic field of a cylindrical-shaped
region enclosed by rigid walls is considered. The analytical solution of the modal analysis in
the mentioned case is well known, therefore the quality of the mesh used in the FE model
can be easily tested by comparison of the FE modal analysis, where the analytical solution is
assumed to be exact. In the following section the analytical modal analysis is presented firstly,
afterwards the equivalent FE modal analysis is described and comparison of the results are
discussed.

3.1.1 Analytical modal analysis

To verify the FE model a basic acoustic model is developed from the dimensions provided
from Lloyd’s Register and the acoustic domain is assumed to have fixed boundaries, seen
on figure 3.1. The acoustic medium is air, and it is assumed to have a constant density of
ρ = 1.225 [Kg/m3].
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DMS 4 3. Development of numerical model

d = 0.711
L = 2.1

Rigid boundary
condition

Figure 3.1: Dimensions and boundary conditions of the cylindrical acoustic field analysed.
Dimensions expressed in [m].

When the sound is propagating inside a cylindrical rigid boundary, the sound is forced to travel
parallel to the length axis. This is called a wave guide. Under the assumptions of straight tube,
infinite length and uniform circular cross-section, Helmholtz equation is written as:

∂2ϕ̃

∂r2
+

1

r

∂ϕ̃

∂r
+

1

r2

∂2ϕ̃

∂θ2
+
∂2ϕ̃

∂x2
+
ω2

c2
ϕ̃ = 0 (3.1)

And the rigid wall boundary conditions:

∂ϕ̃

∂r

∣∣∣∣
r=r0

= 0 ;
∂ϕ̃

∂x

∣∣∣∣
x=0

= 0 ;
∂ϕ̃

∂x

∣∣∣∣
x=L

= 0 (3.2)

Equation (3.1) has a trivial solution where ϕ̃ = 0. However, equation (3.1) has infinitely many
non-trivial solutions. These non-trivial solution are the eigenmodes of the free vibration. The
eigenmodes are determined by using equation (3.3) as a guess for ϕ̃ in equation (3.1) which
satisfy every boundary condition:

ϕ̃(r,θ,x) =
∞∑
m=0

∞∑
n=0

ϕ̃(r)mncos(mθ)cos
(nπx
L

)
(3.3)

In equation (3.3) first factor of the product express the velocity potential dependency on the
radius of the cavity. The second factor depends on the so-called circumferential wave number
m, which represents the harmonic behaviour of the wave at each cross section of the duct.
Finally, the third factor in equation (3.3), which is x dependent, accounts for the harmonic
behaviour along the length of the cavity where n = 1,2, . . .∞.

The partial differential terms in equation (3.1) is shown in equation (3.4).
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3.1. Validation of the initial finite element model

∂ϕ̃

∂r
=
∂ϕ̃(r)mn

∂r
cos(mθ)cos

(nπx
L

)
∂2ϕ̃

∂r2
=
∂2ϕ̃(r)mn

∂r2
cos(mθ)cos

(nπx
L

)
∂2ϕ̃

∂θ2
= −m2ϕ̃(r)mncos(mθ)cos

(nπx
L

)
(3.4)

∂2ϕ̃

∂x2
= −

(nπ
L

)2
ϕ̃(r)mncos(mθ)cos

(nπx
L

)
The solution of the wave equation must be harmonic along the axial coordinate x. The term
cos(nπxL ) in equation (3.4) is simplified to cos(kx), thereby k = nπ

L . The derivatives shown in
equation (3.4) and k = nπ

L are substituted into equation (3.1), and the term cos(mθ)cos(kx) is
factored out, yielding equation (3.5).

∂2ϕ̃mn(r)

∂r2
+

1

r

∂ϕ̃mn
∂r

− 1

r2
m2ϕ̃mn(r)− k2ϕ̃mn(r) +

ω2

c2
ϕ̃mn(r) = 0 (3.5)

The expression is rearranged to:

∂2ϕ̃mn(r)

∂r2
+

1

r

∂ϕ̃mn
∂r

− 1

r2
m2ϕ̃mn(r) +

(
ω2

c2
− k2

)
ϕ̃mn(r) = 0 (3.6)

Equation (3.6) is recognized to have a solution in the form of a Bessel function. The Bessel
function consists of two kinds. The Bessel equations of the first kind and second kind can be
seen on figure 3.2 and figure 3.3 respectively.

Figure 3.2: Bessel equations of first kind.
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DMS 4 3. Development of numerical model

Figure 3.3: Bessel equations of second kind.

The Bessel equations are defined in a dimensionless domain, so in order to express equation
(3.6) in dimensionless domain, a radius relation r̄ is introduced as the ratio of any radial
distance r over the total radius r0, see figure 3.4.

r
r0

Figure 3.4: Graphical representation of the radius relation.

The radius relation is introduced in equation (3.6) as r = r̄ r0, so that it becomes:

1

r2
0

d2ϕ̃mn(r)

dr̄2
+

1

r0 r̄

1

r0

dϕ̃mn
dr̄

− 1

(r0 r̄)2
m2ϕ̃mn(r) +

(
ω2

c2
− k2

)
ϕ̃mn(r) = 0 (3.7)

Equation (3.7) is further simplified by multiplying with r2
0:

d2ϕ̃mn(r)

dr̄2
+

1

r̄

dϕ̃mn
dr̄

− 1

r̄2
m2ϕ̃mn(r) +

(
ω2

c2
r2

0 − k2r2
0

)
ϕ̃mn(r) = 0 (3.8)

Equation (3.8) is a Bessel equation and its general mentioned in equation (3.9).

ϕ̃mn(r̄) = AmJm(κr̄) +BmYm(κr̄) (3.9)

Where Jm and Ym are the Bessel functions of first and second kind respectively and κr̄ is the
argument of the Bessel functions where κ is given by equation (3.10).

κ =

√
w2

c2
− k2 (3.10)
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3.1. Validation of the initial finite element model

The acoustic pressure and velocity potential are bounded at r = 0 and taking into account
that the Bessel function of second kind Ym tends to infinity as r approaches 0, see figure 3.3,
the constant Bm is set to zero. Then the rigid wall boundary condition is applied as:

d ϕ̃mn(r̄)

dr̄

∣∣∣∣
r̄=1

= 0 → Am
d Jm(κr̄)

dr̄

∣∣∣∣
r̄=1

= 0 (3.11)

The set of non-trivial solutions is given by Am 6= 0, then:

d Jm(κr̄)

dr̄

∣∣∣∣
r̄=1

= 0 (3.12)

Equation (3.12) is known as a dispersion equation and it provides a relation between the
excitation frequency w, the circumferential wave number m and the wave number k of
a propagating wave. The condition (3.12) allows to estimate the pressure and velocity
distributions in the acoustic field once the excitation frequency w is found. The acoustic
pressure distribution is analogous to the eigenmode of mechanical vibration while the excitation
frequency is analogous to the eigenfrequency. In order to estimate the eigenfrequencies, let us
consider the graphical representation of the derivative of the Bessel function, equation (3.12)
where m = 0 , represented in figure 3.5.

d J0(κr̄)

dr̄

∣∣∣∣
r̄=1

= κJ1(κr̄) = 0 (3.13)

Argument, κ r 

D
er

iv
at

iv
e 

of
 J 0(κ

 r)

Figure 3.5: Graphical representation of the derivative of the Bessel function J0(κr̄).

The condition given in equation (3.12) is represented in figure 3.5 by the locations where the
curve cuts the 0 ordinate axis. The first zero of the the Bessel function derivative fulfilling

the condition (3.12), corresponds to an argument κ1r̄|r̄=1 =
√

w2
n
c2
− k2

n = 0 which provides
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infinitely many roots since kn = nπ
L contains the integer n = 1,2 . . .∞. From this it is obvious

the relation kn = wn
c which is only valid for the circumferential wave number m = 0 since

the derivative of J0 is the only one which has a root at the argument κ1r̄|r̄=1 = 0. The
eigenfrequencies are found by isolating w in the expressions of the arguments at the points
where the derivative of the Bessel function is zero. Taking into account that infinitely many
eigenfrequencies are obtained for each zero of the Bessel function derivative, an upper bound
of 2000 [Hz] is established in order to find the eigenfrequencies.

Once the eigenfrequencies are determined, it is important to know the mode shapes of each
frequencyas it is essential to know the mode shape in order to compare frequencies between
models. In the FE model presented in the next section, the mode shape is given by the acoustic
pressure distribution whereas the analytical mode shape is obtained by means of the velocity
potential distribution given by equation (3.3). As it is already known that the velocity potential
varies in the radial direction according to the Bessel function of first kind Jm, equation (3.3)
is rewritten as:

ϕ̃(r,θ,x) =
∞∑
m=0

∞∑
n=0

Jm(κr̄)cos(mθ)cos
(nπx
L

)
(3.14)

Since the purpose is to look at the pressure distribution at the outer surface of the acoustic
field, the amplitude of the velocity potential is equal to 1, therefore Jm(κr̄) = 1. The mode
shape is finally obtained by making a 3-D plot of equation (3.14) with θ ∈ [0,2π] and x ∈ [0,L].
For instance, the circumferential wave number m = 1 and the longitudinal wave number n = 1,
provide the velocity potential distribution shown in figure 3.6, which should represent the shape
of the pressure distribution provided by the numerical model in ANSYS®.

Figure 3.6: 3-D plot of the mode shape
analytical prediction corresponding to m = 1
and n = 1.

Figure 3.7: Plot of the mode shape of an FE
model corresponding to m = 1 and n = 1.

Note that the 3-D plot in figure 3.6 corresponds to the unfolded cylindrical acoustic field,
therefore the domain is given as a rectangle with the following dimensions: 1) The depth
θ ∈ [0,2π] representing the circumferential direction. 2) The width x ∈ [0,L] representing the
longitudinal direction. Comparing figure 3.6 and figure 3.7 it is noted that the mode shapes
are indeed equal, and the models are comparable.
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3.1. Validation of the initial finite element model

At this point it is convenient to introduce the concept of cut-on frequency which is obtained
when the wave number k = 0, meaning that n = 0. Below the cut-on frequency the wave
number k is not a real number, therefore according to the emitted sound power (2.49) these
waves do not convey energy. Form = 0 which is denoted as duct mode, all the frequencies carry
energy since its cut-on frequency is w = 0, whereas for different circumferential wave numbers
the cut-on frequency is greater than zero, therefore not all the frequencies convey energy. The
waves travelling at frequencies below the cut-on frequencies are called evanescent waves and
they are not relevant in the analysis of noise transmission since they do not produce work and
therefore, no sound is created. A select few cut-on frequencies for the simple geometry can be
seen in table 3.1.

Cut-on frequencies
n/m 0 1 2 3
1 0 282.55 468.97 645.1
2 588.15 818.68 1029.76 1230.77
3 1077.36 1310.78 1530.82 1742.28

Table 3.1: A selected number of cut-on frequencies. The full table can be found in the appendix.
Håvard
Borvik
Kleppe
Note!

1 This section has dealt with the analytical estimation of the eigenfrequencies of a simple
acoustic model in order to validate the element size of the equivalent FE analysis which is
presented in the next section.

3.1.2 FE modal analysis

The geometry of the FE modal analysis is a 3-D cylinder where all the walls are assumed to be
rigid. When carrying out an acoustic analysis in ANSYS®, the so-called FLUID elements are
used. This analysis aims to test the acoustic 3-D elements FLUID 220, FLUID 221 and FLUID
30 with the purpose of selecting a determined element technology for posterior FE analyses.
As mentioned, this task is accomplished by comparison of the eigenfrequencies obtained from
the FE modal analysis with the eigenfrequencies obtained from the anlytical modal analysis.
The element technology is shown in table 3.2 and the analysis characteristics are described in
table 3.3. Both hexahedral and tetrahedral can be seen on figure 3.8 and figure 3.9 respectively.

Figure 3.8: Sketch of a hexahedral element. Figure 3.9: Sketch of a tetrahedral element.

1Håvard Borvik
Kleppe Note: remember to say which appendix when it has been added

19



DMS 4 3. Development of numerical model

Element technology

Name Order Shape Nodes Element
matrix

FLUID 220 quadratic hexahedral 20 symmetric
FLUID 221 quadratic tetrahedral 10 symmetric
FLUID 30 linear hexahedral 8 symmetric

Table 3.2: Different acoustic elements tested.

Characteristics of modal analysis

Geometry Cylindrical region according to the dimensions shown in
figure 3.1

Boundary conditions
All the walls are assumed to be rigid as represented in

figure 3.1. If no boundary condition is specified,
ANSYS®assumes all the model boundaries as rigid

Structural influence
The interaction with the structure is not taken into

account, therefore according to the manual, symmetric
element matrix is chosen in the element key options.

Element size An element size of 5 [cm] is specified.
Load Excitation is not considered as it is a modal analysis

Solver

The analysis type is set as modal analysis and the method
chosen for extracting the eigenfrequencies is the Block

Lanczos method since it is suitable for symmetric element
matrices, [Theory Reference, 2013]. Eigenfrequencies are

calculated up to 2000 [Hz].
Table 3.3: Characteristics of the FE modal analysis of the cylindrical acoustic field.

From the analytical modal analysis it is known that there are infinitely many eigenfrequencies
for single values of the circumferential wave number m and the longitudinal wave number n. It
has been said before that in order to compare analytical and numerical models, the frequencies
analysed must create the same mode shape so they are comparable. Continuing, the frequencies
obtained from the analytical model 294.11 Hz, 822.74 Hz, 1313.32 Hz and 1799.41 Hz which
corresponds to the mode m = 1 and n = 1 are considered. For each element technology, the
error in the estimation of the eigenfrequencies, the solution time and the number of elements
contained in the model are compared. The differences regarding solution time and discretization
are shown in table 3.4.

Name Solution time [s] Number of elements
FLUID 220 121 12600
FLUID 221 219 65968
FLUID 30 21 12600

Table 3.4: Performance of the acoustic elements regarding solution time and number of elements
forming the model.

It is visible in table 3.4 that the solution provided by FLUID 30 is very fast compared to the
solution time offered by quadratic elements, the consequence of this is obviously that the linear
element has less number of nodes than the quadratic acoustic elements. Note that although the
number of nodes of the element FLUID 221 (10 nodes) is less than the number of nodes of the
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3.1. Validation of the initial finite element model

element FLUID 220 (20 nodes), the solution takes longer when the analysis is executed with
FLUID 221. This issue is due to the large amount of elements FLUID 221 which are generated
in the model for an established element size of 5 cm (65968 FLUID 221 elements compared to
12600 elements created in case of using FLUID 220). The element size specifies the approximate
length of the element edges. Thus, it must be considered that even though the element size is
established as 5 cm in all the models, FLUID 221 is a tetrahedral element, therefore it has less
number of faces than FLUID 220 or FLUID 30 which are hexahedral elements. Having less
number of faces, it is possible to fit a larger amount of tetrahedral elements than hexahedral
elements in the same volume for the same element size.

The error in the estimation of the eigenfrequencies generating the mode shape m = 1, n = 1

is considered in table 3.5 where the disagreement with respect to the analytical solution is
expressed in relative error.

Analytical result [Hz] Element Type FE result [Hz] Error [%]

294.11
FLUID 220 294.29 0.061
FLUID 221 294.29 0.061
FLUID 30 294.95 0.286

822.74
FLUID 220 822.81 0.009
FLUID 221 822.85 0.013
FLUID 30 834.38 1.415

1313.32
FLUID 220 1314.12 0.061
FLUID 221 1314.41 0.083
FLUID 30 1372.67 4.519

1799.41
FLUID 220 1803.12 0.206
FLUID 221 1804.34 0.274
FLUID 30 not found -

Table 3.5: Relative error of the numerical solution provided by different acoustic elements with
respect to the analytical solution.

By looking at table 3.5 it is very obvious that the results deviate from the analytical solution.
As the frequency increases the number of elements needs to increase to capture a full wave.
If your mesh is too small the full wave behaviour cannot be determined as the wave length is
smaller. It is also visible that the performance of the linear element is very poor compared
to quadratic elements. The accuracy of quadratic elements is a consequence of their midside
node. The presence of the midside node eases the description of the wave behaviour when the
wave length is rather small. Finally it is worth to noting that the accuracy of the analyses
carried out with FLUID 220 is slightly better than the accuracy of the model meshed with
FLUID 221, despite the finer mesh presented by the last. Hence it is demonstrated that the
acoustic element FLUID 220 provides a good performance with rather coarse mesh, probably
due to its 20 nodes. FLUID 221 which is a 10 nodes element needs a finer mesh in order to
accomplish results of the same level of accuracy than FLUID 220.

Even though FLUID 220 has demonstrated to behave better than FLUID 221, in future models
the priority is to mesh with acoustic elements FLUID 221 because they have also shown to
be accurate with respect to the analytical solution and most importantly, it is easier to create
the mesh with tetrahedral elements when a model exhibits certain degree of complexity in
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geometry.

As it is commented on in the beginning of this chapter, the second reason of comparing
analytical and numerical modal analysis is to test the mesh size. It is very common in acoustics
to define the element size depending on the wave length. A rule of thumb is that 5 elements per
wave length (in the case of quadratic elements) are required to describe the acoustic behaviour
properly. The analysis that has been presented in this section, sets an upper bound of 2000
[HZ] in order to narrow down the range of relevant eigenfrequencies, therefore 2000 [Hz] is the
frequency with the shortest wave length, meaning that it provides the finest mesh according to
the rule of thumb. The wave length is given by λ = c/f where c = 343 [m/s] and f = 2000[Hz],
thus λ = 0.171[m]. Remember that the element size used in the analysis which is presented
above is 0.05 [m] and this yields a mesh containing approximately 3 elements per wave length. It
turns out that the mesh used is coarser than the mesh recommended. However, the analysis has
demonstrated good agreement with the analytical solution even for high frequencies (0.274%
was the highest error obtained). This consideration allows to establish an element size of λ/3
as the coarser mesh rule for subsequent models. Even though the results obtained show that
coarser meshes could be used, it must be considered that the model where the mesh has been
tested is very simple and the accuracy might be reduced in more complex models. Hence as a
conservative consideration, in subsequent models the mesh size is finer or equal than the one
provided by the rule λ/5.

3.2 Transmission loss in the muffler

After the suitable element technology and mesh requirements are considered in the previous
section, this section is aimed to build a FE model of the muffler which allows to see how much
energy is naturally lost when the air travels through the muffler i.e. a reflective muffler. The
analysis of a pure reflective muffler is interesting because it provides an idea of how the sound is
attenuated only due to the geometry of the expansion chamber before any absorbing solution is
introduced. In order to construct this model, the transmission loss is determined analytically
for a model with simplified geometry. This simplified analytical model is the reference for
validating the performance of an equivalent FE model with the same simplified geometry.
Once the simplified FE model is validated, the real geometry is introduced in the model so
that it is possible to obtain the transmission loss in the real reflective muffler.

3.2.1 Analytical transmission loss

The analytical model (figure 3.10) is modelled with a standard cylindrical expansion chamber
using planar wave theory. At the end of both the inlet and outlet there is a ρc boundary
condition to represent free flow through the pipes. The boundary condition on the inlet also
prevents disturbance from reflecting waves on the input source. This represents an assumption
that the input source has a constant amplitude during excitation at a certain frequency. In
this case the input source is applied as a normal velocity which oscillates with unit amplitude
within the range of frequencies [0,1000] Hz.
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3.2. Transmission loss in the muffler

Source ρ c ρ c

2.1

0.711

0.84 0.84

0.24282 0.24282

Figure 3.10: Sketch of the analytical model for calculating the transmission loss.

Following the approach presented in section 2.3.2 Transmission loss, the transmission loss is
calculated for the range of frequencies [0,1000] Hz and represented in figure 3.11. Note that
the range of frequencies in figure 3.11 is expressed in 1

s .

Figure 3.11: Transmission loss dB - angular velocity 1
s diagram.

Figure 3.11 shows a continuous oscillation of the transmission loss. It is important to note
that the analytical model only considers plane waves travelling through the system, however
in reality, mixed modes might influence the transmission loss after a certain frequency. By
investigation of the wave length, where λ = c

f [Hz] , it can be seen that peaks in transmission
loss occurs when the wave ends in a quarter wave in the muffler. This will lead to largest
reflecting wave. At the pits of the curve the waves are a half oscillation when it exits the
muffler leading to no reflection of the waves, illustrated on figure 3.12

Wave ending on a quarter wave, full reflection
Wave ending on a half wave, no reflection

Figure 3.12: Illustration of low frequencies ending at certain wave lengths in the muffler.

Now that the transmission loss has been defined analytically, let us solve the same example by
using finite element methods in order to check if the FE model predicts the transmission loss
accurately.
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DMS 4 3. Development of numerical model

3.2.2 Finite Element Model

To make sure the finite element model for transmission loss is reliable, a simple model
resembling the model used for the analytical model is developed. The finite element model
is conducted using the 10 node element FLUID 221 where the mesh size is determined by
the wave length of the frequency i.e. λfreq/7. The element size represented in figure 3.13 is
decided from the element study described in section 3.1.2 FE modal analysis. This will reduce
the calculation time while making sure there are a sufficient amount of elements per frequency.
The model is excited by introducing a plane wave input at the inlet. The plane input is
modelled in ANSYS® by specifying a normal velocity of the nodes at the inlet surface. 2 AsRasmus

Julsgaard
Note!

pressure is usually applied as input the normal velocity is determined from equation (3.15) by
choosing a pressure input.

vn =
pi
ρ · c0

(3.15)

Where vn is the normal velocity on the inlet and pi the desired pressure input which is set to
unity in the following analysis.

Figure 3.13: Finite element model of a simple transmission loss analysis.

The initial analysis was performed only using a ρc boundary condition at the outlet. This
resulted in inconsistent oscillation throughout the entire frequency range, shown on figure 3.14.
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Figure 3.14: Transmission loss dB - Frequency Hz for impedance boundary condition on the
outlet.

2Rasmus
Julsgaard Note: make a figure showing this
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3.2. Transmission loss in the muffler

It can be seen that figure 3.14 only follows figure 3.11 for the first oscillation. It can be noted
that the pits where TL = 0 continues for a larger range of frequencies in the FE model compared
the analytical model. By applying a ρc boundary condition on the inlet the transmission loss
curve tends to follow figure 3.11 until the first cut-off frequency is reached, see figure 3.15.
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Figure 3.15: Transmission loss dB - Frequency Hz for impedance boundary condition on the
inlet and outlet.

This indicates that the input source is influenced by the reflecting waves on the first FE
model, which means that the FE model does not comply with the assumption made in the
analytical model which dictates that the reflected waves does not influence the source. Note
that figure 3.15 is consistent with figure 3.11 until the first cut-on frequency 296.35Hz, which
corresponds to m = 1, see figure 3.16. It is known that the mode shape shown in figure 3.16
is a cut-on frequency because the pressure distribution is constant along the length, meaning
that the longitudinal wave number, n = 0. The discrepancy after the first cut-on frequency is
because the analytical model only considers plane waves, where the FE model includes every
mode affecting the frequencies. However as analytical and FE model are in good agreement
inside the plane wave range, it can be said that the FE model is valid.
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STEP=1
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FREQ=296.35
PRES     (AVG)
RSYS=0
SMN =-688.494
SMX =688.519

Figure 3.16: Pressure distribution of the first cut-on frequency in the simplified model.

Now that the FE model with simplified geometry is verified by comparison with the equivalent
analytical model, the realistic model can be implemented into ANSYS®. This real model is
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DMS 4 3. Development of numerical model

built according to the geometry shown in figure 1.1 and the mesh size is the same than the one
used in the case of simplified geometry, see figure 3.17.

Figure 3.17: Finite Element model of the realistic system.

A graph showing the change in transmission loss with respect to frequency can be seen on
figure 3.18.
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Figure 3.18: Transmission loss dB - Frequency Hz graph for finite element model of realistic
model using two ρc boundary conditions.

Comparing figure 3.15 with figure 3.18 it can be seen that the transmission loss of the realistic
model tends to have a decrease of transmission loss slightly before it reaches its first cut-on
frequency where the simple model has an increase in transmission loss. Intuitively this seems
to be a consequence of the curved edges contained in the real model.

Through the outline of this chapter have, a pure reflective muffler has been modelled by using
finite element methods. Once such a model has been validated, it is used in the next section
in order to examine the pressure distributions inside the muffler.

3.3 Examination of eigen modes at driving frequencies

In the previous section, a pure reflective version of the muffler has been modelled. While
working in the validation of the FE reflective muffler, it was observed that the FE model with
simplified geometry (no curved edges) only showed plane modes when the model was excited in
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3.3. Examination of eigen modes at driving frequencies

order to obtain the transmission loss. On the other hand it was found that the FE model with
real geometry displayed mixed modes for some frequencies. Thus the purpose of this section is
to investigate why mixed modes are present in the real model and check if these also appear
at the driving frequencies specified by Lloyd’s Register. It is worth to emphasise that the fact
of not having mixed modes (only plane waves) at the driving frequencies is beneficial since it
introduces the possibility of applying simplifications if needed. These potential simplifications
would be based on the axisymmetric pressure distributions generated by plane waves.

Let us consider the eigen mode displayed by the FE model with simplified geometry
corresponding to the eigen frequency 888.61 Hz in figure 3.19a. It is visible that this eigen
mode corresponds to m = 4 and n = 2. However when the response of the systems is examined
in the vicinity of this frequency, at 888.50 Hz, no sign of the eigenmode appears, see figure
3.19b. Note that the input is a plane wave and thus shows no mixed modes because of the
concentric and axissymmetric nature of the model.

(a) Modal analysis of initial FE-model. Mode
shape corresponding to m = 4 and n = 2 at
888.61 Hz.

(b) Harmonic analysis of initial FE-model with
plane input at 888.50 Hz only displaying longit-
udinal modes.

Figure 3.19: Comparison between eigenmodes and response of initial model using plane input.
Rasmus
Julsgaard
Note!3

The result is rather different when the detailed model is considered. When the ends of the
muffler are curved instead of flat, they allow for some dispersion of the waves leading to the
results seen in figures 3.20a and 3.20b.

3Rasmus
Julsgaard Note: might need reformulation
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DMS 4 3. Development of numerical model

(a) Modal analysis of detailed FE-model. Mode
shape corresponding to m = 4 and n = 2 at
869.99 Hz.

(b) Harmonic analysis of detailed FE-model with
plane input at 870.00 Hz displaying a pressure
distribution similar to the eigen mode.

Figure 3.20: Comparison between eigenmodes and response of detailed model using plane input.

The mixed modes are excited in the harmonic response analysis of the detailed model, although
some interference is observed. This means that, contrary to the initial model, if a mixed
eigenmode is excited it will be visible in the response of the system and thus not allow for 2D
simplification of the system. Consequently it is important to check that the driving frequencies
of the muffler are not close to any eigenfrequency.

Consider the driving frequencies provided by Lloyd’s Register which are shown in table 3.6.
This frequencies are applied to the FE model with real geometry in order check whether mixed
modes will be present in the response.

Driving frequencies
Fundamental frequency 2nd harmonic 3rd harmonic

446 Hz 892 Hz 1338 Hz

Table 3.6: Driving frequency with 1st, 2nd and 3rd harmonics.

Once the driving frequencies are applied to the detailed FE model of the muffler, the obtained
pressure distributions are shown in figure 3.21
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3.4. Inserting damping material

(a) Response of detailed model at the driving
frequency of 446 Hz with plane input.

(b) Response of detailed model at the 2nd

harmonic (892 Hz) with plane input.
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(c) Response of detailed model at the 3rd

harmonic (1338 Hz) with plane input.

Figure 3.21: Pressure distributions generated in the detailed model when it is excited by the
driving frequencies.

Since the pressure distribution observed in figure 3.21 are axisymmetric, it is proved that there
are not mixed mode when the driving frequencies are applied. In conclusion, simplifications
of the model might be used, based on the fact that axisymmetric pressure distributions are
generated by the driving frequencies.

Remember that the FE model of the muffler presented so far is pure reflective. In the next
section a dissipative solution is considered.

3.4 Inserting damping material

In the previous, the muffler has been modelled as an acoustic domain consisting on the acoustic
media (air) contained within the inner surface of the muffler which is modelled as a rigid wall
boundary condition. With this configuration the waves are fully reflected when they interact
with the boundaries of the muffler, meaning that the sound dissipation mechanism is purely
reflective. However, it is desired by Lloyd’s Register to obtain knowledge about the performance
of dissipative mufflers when the exhaust system operates with different frequencies. In addition
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DMS 4 3. Development of numerical model

according to [Venkataraman and Raj, 2014] the gas restriction is in general lower in dissipative
mufflers, which is beneficial for the compressor efficiency and therefore an interesting solution
for Lloyd’s Register. Consequently, the aim is to find muffler designs which should attenuate
the sound pressure above a minimum required, with the additional consideration of being
designed so that they can handle more than one working frequency. Thus, at this point
the project focuses on the design of the proper distribution of absorbing material inside the
expansion chamber, so that the total amount of damping material used in order to fulfil the
attenuation requirements is minimum. It is crucial to provide a solution with as little damping
material as possible since the materials commonly used for attenuation purposes are expensive.
Before any optimum material distribution is considered, the damping material model has to
be implemented in the muffler FE model. Then, this section presents the procedure followed
to validate the FE model of the dissipative muffler, where the acoustic guide of ANSYS®

[Acoustic Guide, 2013] has been used as a reference for building the model. In order to prove
the validity of the model, the experimental results found in [Mehdizadeh and Paraschivoiu] are
used for comparison.

3.4.1 Validation of damping material model

The damping material commonly used for sound attenuation consist of fibrous materials.
According to [Yoon, 2012], when fibrous damping materials are used to decrease the sound
pressure, the sound attenuation is governed by a complex acoustic impedance and a complex
density which vary depending on the applied excitation frequency. The frequency dependent
behaviour of these complex acoustic impedance and density makes it very difficult to treat
acoustic attenuation with fibrous materials analytically. In this project, the attenuation effect
of the fibrous material is implemented numerically in a FE model by means of the Delany-Bazley
material model. This material model is the one used in the acoustic topology optimization
carried out in [Yoon, 2012], furthermore this material model is available in ANSYS® for
the acoustic elements FLUID 220 and FLUID 221. In addition, the Delany-Bazley material
model is very simple to implement since it is an empirical material model which only needs
one acoustic parameter (the so-called flow resistivity σ) in order to be applied. According to
the documentation of ANSYS® [Theory Reference, 2013], the Delany-Bazley material model is
limited to the working range 0.01 < f/σ < 1 where f is the excitation frequency. There are other
models available in ANSYS® which allow to simulate fibrous materials, one example is the
Johnson-Champoux-Allard model. The Johnson-Champoux-Allard model is more difficult to
implement than the Delany-Bazley model since it needs at least 5 empirical acoustic parameters,
but on the other hand when the the Johnson-Champoux-Allard model is used with 5 empirical
parameters and 5 additional inputs, provides more accurate results than the Delany-Bazley
model. Another model available in ANSYS® is the Miki material model where the frequency
working range is extended in comparison with Delany-Bazley model to f/σ < 1. The Miki
material model is as simple to implement as the Delany-Bazley material model since equally
than in the case of the Delany-Bazley material model, it only needs the flow resistivity σ in
order to be implemented. Although the Miki material model seems more advantageous, the
selection of the Delany-Bazley material model is a consequence of the information found in
[Mehdizadeh and Paraschivoiu], where the Delany-Bazley material model is used to analyse a
muffler similar to the one studied in this project. In [Mehdizadeh and Paraschivoiu], a 3-D
finite element method is implemented in order to analyse the transmission loss in mufflers.
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3.4. Inserting damping material

The validation of the FE method implemented in [Mehdizadeh and Paraschivoiu] is assessed
by comparison with the experimental results presented in [Wu et al., 2002], therefore the results
obtained in [Mehdizadeh and Paraschivoiu] are considered reliable.

The Delany-Bazley material model is formulated in ANSYS® according to the complex
impedance:

Zc = R+ jX (3.16)

and the complex propagation constant defined as:

γ = α+ jβ (3.17)

where R is the resistance, X is the reactance, α is the attenuation constant and β is the phase
constant given by equations (3.18), (3.19), (3.20) and (3.21) respectively.

R = ρ0c0

(
1 + a

(
f

σ

)b)
(3.18)

X = −ρ0c0
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)d)
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σ
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(3.20)
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ω

c0
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1 + s

(
f

σ

)t)
(3.21)

and the different coefficients are found in table 3.7.

Coefficient Value
a 0.0497
b -0.754
c 0.0758
d -0.732
q 0.169
r -0.618
s 0.0858
t -0.7

Table 3.7: Coefficients contained in the Delany-Bazley material model.

Notice that according to these equations, the behaviour of the fibrous material is determined
by the frequency ω and the flow resistivity of the material σ. Remember that f = w/2π Hz.

In order to validate the effectiveness of the dissipative muffler model, the axisymmetric
muffler shown in figure 3.22 is modelled. This dissipative muffler is modelled with the
same characteristics as the axisymmetric muffler presented in [Mehdizadeh and Paraschivoiu],
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DMS 4 3. Development of numerical model

therefore the goal is to obtain the same transmission loss than the obtained in [Mehdizadeh
and Paraschivoiu] when the same range of frequencies is analysed.
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Figure 3.22: Geometry of the absorbing muffler analysed in [Mehdizadeh and Paraschivoiu].
Dimensions given in mm.

The absorbing material is polyester which has a flow resistivity σ = 16000 rayls/m. The
polyester lining of 2.54 cm of thickness is attached to the inner surface of the expansion
chamber as it is represented in figure 3.22 by the grey region. The FE model is meshed in
the same manner than it is done in [Mehdizadeh and Paraschivoiu] i.e. quadratic tetrahedral
acoustic elements (FLUID 221 in ANSYS®) with a mesh size of 12 elements per wave length.
The lengths of the inlet and outlet are not specified in [Mehdizadeh and Paraschivoiu], hence in
this validation the lengths of the inlet and outlet has been chosen rather short assuming that
the muffler in [Mehdizadeh and Paraschivoiu] is modelled with infinite boundary conditions
(Z = ρ0c0). The purpose of modelling short pipes is to save computational resources. The
input excitation is a normal velocity corresponding to a pressure of 1 Pa according to equation
(3.15). This normal velocity is applied on the nodes located at the initial circular cross section
of the inlet.

Once the model is built with the same geometry and FE settings than the muffler presented in
the literature, the analysis is run within the frequency range [100 Hz - 2800 Hz]. The curve
frequency-transmission loss is shown in figure 3.24.

FEM by Mehdizadeh
and Paraschivoiu

Experimental by
Wu et al., 2002

Frequency Hz
0 500 1000 1500 2000 2500 3000

TL
 d

B

10

20

30

40

50

60
TL

Figure 3.23: Frequency-transmission loss
curve taken as reference. Figure extracted
from [Mehdizadeh and Paraschivoiu, pag. 13].

Figure 3.24: Frequency-transmission loss
curve estimated by the model analysed in this
project.
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3.4. Inserting damping material

It is visible that the frequency-transmission loss curve shown in figure 3.24 agrees with the
FEM curve obtained in [Mehdizadeh and Paraschivoiu] (figure 3.23), and therefore with the
experimental curve given by [Wu et al., 2002]. Thus it is proved that the material model has
been successfully implemented in the FE model and that the assumption of infinite boundary
conditions at the inlet/outlet is correct.

So far, the FE model of the absorbing muffler has been validated by comparison with literature
results. In the next section, the Delany-Bazley material model is implemented in the actual
muffler which is object of analysis in this project.

3.4.2 Implementation of damping material model in the actual muffler

The validation of the damping material model in the previous section leads to the analysis of
the muffler performance when it is modelled as a pure dissipative muffler.

The damping material simulated in the model is polyester since its flow resistivity, σ =

16000 rayls/m, is already known from the literature. The thickness of the absorbing material
is represented in figure 3.25 with grey colour, together with the dimensions of the model. Note
that the length of the inlet and outlet has been reduced significantly in order to reduce the
number of elements in the model. Recall that this simplification is possible due to the infinite
boundary conditions applied at the inlet and outlet (Z = ρ0c0). Tetrahedral acoustic elements
(FLUID 221) are used, and the mesh size is set to λ/3 because finer meshes exceeded the limit
of elements allowed by the academic license of ANSYS®. This problem with the number of
elements is a consequence of the wide range of frequencies analysed (f ∈ [100, 2800]Hz) since
the wave length considered in the rule λ/3, corresponds to 2800 Hz. The input excitation
is the same than the excitation applied to the validation model in section 3.4.1 Validation of
damping material model.
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Figure 3.25: Geometry of the dissipative muffler and thickness of the absorbing lining. The
dimensions are shown in mm and the scale is not real.

The transmission loss curve obtained from the execution of the model is represented in
figure 3.26.
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Figure 3.26: Frequency - transmission loss curve extracted from the analysis of the dissipative
muffler.

It is seen in figure 3.26 that the transmission loss is very high for all the frequencies considering
that the requirement established by Lloyd’s Register is a sound attenuation of 17 dB. The high
transmission loss obtained is obviously a consequence of the thick lining of polyester which has
been considered in the analysis. This fact demonstrates that placing the absorbing material
by trial and error could lead to increase the material cost unnecessarily, hence it becomes
convenient to figure out a way of distributing the damping material efficiently. In the next
chapter the problem of optimising the applied absorbing material is dealt.
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Optimisation of muffler 4
A numerical model of the muffler has been created in the previous chapter which allows for
the optimisation process to begin. For convenience the objective of the optimisation is now
repeated in the following.

The assignment set forth by Lloyd’s Register consists of creating a MATLAB optimisation
tool which allows for the optimisation of a muffler used mainly for maritime operations. The
demands for the optimisation is to reduce the the amount of absorbing material applied to
achieve an attenuation of the sound, equivalent to a transmission loss of at least 17 dB.

It was requested by Lloyd’s Register to secure this attenuation throughout the etire spectrum
of frequencies until 2000 Hz, but through a mutual agreement, the range has been reduced to
three discrete frequencies; a fundamental driving frequency at 446 Hz and the 2nd and 3rd
harmonics of the driving frequency at 892 Hz and 1338 Hz respectively.

The general optimisation problem is formulated as:

Minimize: f = m where m = V · ρdamp (4.1)

Subject to: gj = 17− TLj ≤ 0; j = [1,2,3] (4.2)

It is of great concern to ensure that the optimisation will provide a design which is
manufacturable, meaning that voids in the damping material must not be present in the final
design. This must be taken into consideration when choosing an optimisation method.

In the following section the general types of structural optimisations are briefly introduced and
discussed with the aim of choosing one method for application on the problem at hand.

4.1 Types of optimisations

As the general optimisation problem has been identified, the type of optimisation applied to
the problem is discussed. Generally three methods exist for optimisation of structures; sizing,
shape and topology optimisation. Now continues a very brief introduction to each optimisation
method is given in the following.

Sizing optimisation uses a predefined structure and sets to determine individual dimensions in
order to fulfil the objective of the problem. The design variables typically chosen for sizing
optimisation are length, thickness or area and the final design will therefore also be of the same
predefined shape, illustrated on figure 4.1. This method can be applied on the muffler design
to determine the thickness or the inner diameter of the damping material.
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P

Figure 4.1: The principle of sizing optimisation.

Shape optimisation relies on individual points where the design is allowed to change and is most
often combined with finite element models. When applying shape optimisation in conjunction
with finite element model, relevant nodes are used as design variables by assigning them a
degree of freedom, e.i. a certain path they must follow. From here a new design can be
determined. The final design is dependent and thus limited to which nodes are chosen as
design variables, see figure 4.2.

P P

Figure 4.2: The principle of shape optimisation.

The objective of the topology optimisation, is to yield the optimal material distribution not
constrained by initial parametrizations but only limited by initial design space, boundary
conditions and loads. Topology optimisation uses densities as design variables in a discretized
design domain, e.i. an FE model. The design variables scales the material properties on an
element basis, most commonly used in the scaling of Young’s modulus E, for the minimisation
of compliance in a load bearing structure. Ideally these design variables are either zero or one,
which is interpreted as inactive or active elements respectively. However, as many optimisation
methods rely on gradient information, the element densities needs to be continuous rather than
discrete variables. The intermediate density scaled material parameters are often illustrated
using grey-scaled colors, where white is no material (inactive) and black is full material (active).
Anything in between is shown in grey-scale.

Topology optimisation is generally the first step of a structural optimisation and relies on
refinement from either sizing optimisation or shape optimisation. Post processing of the
topology optimisation is also in most cases needed to achieve proper discreteness of the material.
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Figure 4.3: The principle of topology optimisation applied on a muffler.

It is of interest for Lloyd’s Register to obtain knowledge about the advantages of applying
topology optimisation in order to recieve design candidates for the distribution of absorbing
material inside the muffler.

4.2 Choice of optimisation solver

It has been clarified that topology optimisation has been chosen for this project as a mean to
reduce and redistribute the absorbing material used in dissipative mufflers.

The specific solver for the optimisation problem must be chosen, and the choice now stands
between two main branches of numerical optimisation methods; heuristic and gradient based
optimisers. The two are vastly different and will in the following be shortly introduced.

Heuristic optimisation methods, also known as genetic solvers, relies on the evaluations of
different designs, often initially generated randomly to create a so-called generation. The
random designs are then compared. The best design of one generation, is used as basis of
creating new designs within a certain range of the best design from the previous generation.
This way a vast number of different design combinations can be evaluated but the trade-off
is that they must often use many iterations to converge at a minimum, when compared to
gradient based optimisers.
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However, as the heuristic methods initially branches a vast number of possible design
combinations at once, it can be a very effective tool, when combined with gradient based
solvers to determine initial design suggestions.

As the name suggest, gradient based solvers relies on gradient information about the considered
problem. This means, in very basic terms, that a prediction is made of how the problem will
behave, by evaluating the gradient of both objective function and constraints at a certain
design suggestion. A new design can then be determined from the direction which minimises
the objective function.

For the particular problem of this project the Sequential Linear Programming or SLP method
has been chosen, partly because an implemented SLP optimisation algorithm was readily at
hand. The SLP method is a relatively simple method as it relies on a linearisation of both
objective function and constraints creating what is called the linearised sub problem. In other
words, the linearised sub problem predicts the behaviour of the system based on the gradient
information in the current design point. Move limits are applied to the sub problem which
ensures that the prediction is contained in close proximity to the initial design point. Adaptive
move limits are often applied, which will increase or decrease the move limits depending on the
progress of the optimisation. This helps to reduce the risk of violating constraints. The SLP
method is not particularly advanced or quick, but it is a very robust method which works for
most problems.

Another gradient based method known as the Method of Moving Asymptotes [Svanberg, 1987]
or MMA has been considered. The method resembles the SLP method but instead of a purely
linear prediction of the system’s behaviour, the gradient information is used to construct a
second order approximation at the current design point by applying convex functions governed
by lower and upper limits known as asymptotes. The second order approximation at the design
point is modified in each iteration by moving the asymptotes, in the same fashion as the move
limits of the SLP method. This means that MMA is often much faster to converge than the
SLP method, as the prediction is of second order, though it will depend on the problem at
hand as stated in [Svanberg, 1987].

As the choice of solver is the SLP method, a more in-depth description of the method is
presented in the following section.
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4.2.1 Sequential Linear Programming

A slightly more in-depth explanation of the SLP method is now presented. The SLP method is
in short, an iterative process where a linear sub problem is constructed based on a design point
x(k) of iteration k. Where x(k) is a vector containing all design variables. The sub problem
consists of a linearisation of the objective function and the constraints in the current design
point.

Consider now the evaluation of a new design point x(k+1) = x(k) + ∆x(k) approximated using
a first order Taylor expansion of both objective function and constraints in the current design
x(k).

f(x(k) + ∆x(k)) ∼= f(x(k)) +∇fT (x(k))∆x(k) (4.3)

gj(x
(k) + ∆x(k)) ∼= gj(x

(k)) +∇gTj (x(k))∆x(k) ≤ 0 j = [1,2,3] (4.4)

Where ∇fT (x(k)) and ∇gTj (x(k)) are the gradients of the objective and inequality constraints
respectively, evaluated at the current design point x(k).
∆x(k) is the step size or the change of design variables needed for a reduction in the objective
function value.

The linearisation provides and approximation of the value of both objective function and
constraints at the new design point x(k+1).

However, since the problem dealt with in this project does not have any explicit expressions
for determining the transmission loss (TL), the constraint evaluation and the gradient
information must be calculated through an FE analysis. The gradient approximation using
forward/backward difference through a design sensitivity analysis will be described in more
detail in section 4.4.3.

The linear sub problem is now introduced. The sub problem consists of the approximated
gradient information to set up a number of linear equations for which the step size ∆x(k) is
determined.

Minimise: f =
n∑
i=1

∇fT (x(k))∆x(k) (4.5)

Subject to:
n∑
i=1

∇gTj (x(k))∆x(k) ≤ gj(x(k)); j = [1,2,3] (4.6)

With the linear sub problem defined, the collection of linear equations can now quickly be
solved with respect to the step size ∆x(k) which will minimise the objective function. Note
that the step size is limited by the choice of move limits. Traditionally the move limits are
chosen as a certain percentage of the current design but is changed then changed as per iteration
depending on the objective function value. The adaptive move limit strategy for the problem
at hand is explained in more detail in section 4.4.6.

The newly determined design x(k+1) = x(k) + ∆x(k) is applied as the initial design for the next
iteration and the process is repeated.
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Normalisation of the constraints

It is known as good practice to normalize the constraints to avoid numerical problems during
evaluation of the constraints. Normalising the constraints from equation (4.2) related to the
problem at hand, yields equation (4.7).

gi (x) = −TLi (x)

17
+ 1 ≤ 0 (4.7)

In the instance of constraints with vastly different magnitudes, it is especially convenient to
have normalised constraints.

It has now been chosen to apply topology optimisation with a solver based on the sequential
linear programming scheme. As the problem at hand is inherently implicit, an FE analysis
must be carried out to determine the effect on the transmission loss with respect to constraints
evaluations. This motivates a development of a FE model with an easily accessible design
space. The FE model for the topology optimisation will be based upon the findings in chapter
3.

4.3 Absorbing model adapted for optimization

As the constraint evaluation and constraint design sensitivity analysis needs to run the FE
model in order to obtain the transmission loss, this section presents the final FE model of the
muffler which is used in the optimization process. All the considerations taken into account in
order to make the model suitable for the optimization process are described.

4.3.1 The final FE muffler model

The final model used in the optimisation consist on a 3-D acoustic FE model, which uses
the Delany-Bazley material model in order to simulate the effect of the absorbing material
(Polyester). The decision of using a 3-D model relies on the fact that the Delany-Bazley material
model is only available in ANSYS® for 3-D acoustic elements. However, even computationally
expensive, using a 3-D model has an important advantage, which is that mixed modes are not
an issue since 3-D acoustic elements capture wave propagation in all directions.

Consider, the geometry of the final model which is intended to be used in the optimisation
process, shown in figure 4.4. It has been decided to keep the round walls with the aim of
modelling the muffler as close as possible to reality. However the fact of having round walls
increases the complexity of the element manipulation as it is discussed in the next section.
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Figure 4.4: Dimensions in mm of the final model. The scale shown in the figure is not real.

Similarly to the previous models, the inlet and outlet are assumed to be bounded at infinity
i.e Sommerfeld boundary condition1 is applied. The input excitation is a normal velocity Daniel Rey

Romero
Note!

corresponding to a pressure of 1 Pa according to equation (4.8) which is applied in the nodes
located in the inlet.

vn =
pi
ρ · c0

(4.8)

Regarding the element technology used so far, only tetrahedral elements have been employed
since it is easier to mesh complex geometries with these kind of elements. Nevertheless topology
optimization requires element manipulation because each element represents a design variable,
therefore the next section presents how the mesh is adapted in order to be suitable for topology
optimization.

4.3.2 Adapting the mesh for optimization

First of all it is important to present an important decision which has been taken regarding the
choice of the design space. Since the FE optimisation model is 3-D, carrying out a 3-D topology
optimisation might become computational expensive if many design variables (elements) are
contained in the design space. This computational issue would be a consequence of the design
sensitivity analysis2 since it might require many more function evaluations. Taking this into Daniel Rey

Romero
Note!

account, it is desired to simplify the design space by considering the 2-D design space illustrated
in figure 4.5 (top). Then whenever the optimiser dictates that one design variable (element)
needs to change, all the elements located at the same radial position change accordingly as it
is sketched in figure 4.5 (bottom). This way the amount of function evaluations which need to
be performed is reduced considerably. In addition note in figure 4.5 that the regions close to
the rounded edges are neglected, this simplification is further commented in the following.

1Daniel Rey
Romero Note: add Sommerfeld boundary in TLA

2Daniel Rey
Romero Note: this have to be mentioned when presenting SLP
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2-D design space

The change in design variable
(red element) is revolved so that
all the elements located in the 
same radial position change
accordingly

Figure 4.5: Graphical representation of the proposed design space.

It becomes clear that topology optimization needs element manipulation. Basically the material
properties of the elements contained within the design space need to change when the optimizer
dictates that the current design must be updated. Consequently it is essential to know the
element number and the element location within the design space. Furthermore since the
objective is to reduce mass, it is necessary to know the element volume as well. It turns out
that it is very difficult to fulfil all these mesh requirements with a mesh formed by tetrahedral
elements since, it is hard to find specific elements in the mesh. Due to this reason, the element
technology is changed to hexahedral acoustic elements (FLUID 220) so that it is possible to
generate a mapped mesh in the design space as it is represented in figure 4.6, within the
region inside the red lines. Note that figure 4.6, that for simplicity, the regions next to the
round walls are excluded from the design space since the element have random locations and
distorted shapes. Considering these regions where the elements are distorted and not organised
according to a established sequence, would complicate considerably the element manipulation.
In order to get a mapped mesh in the design space the procedure followed is described below:

• The areas corresponding to the design space are selected.
• The selected areas are attributed with absorbing material properties and meshed
afterwards with an element size corresponding to 6 elements per wave length. The highest
driving frequency is chosen to establish the element size as it would provide an adequate
mesh size for all the driving frequencies.

• After the design space is meshed (region bounded by the red lines in figure 4.6), the rest
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4.3. Absorbing model adapted for optimization

of areas are selected. These areas are attributed with air material properties and meshed
afterwards with the same element size than the absorbing region. It is very important
to mesh the design space before the rest of the domain. Following this order the design
space is meshed with square elements while the rest of the domain is meshed with square
elements when it is possible. However distorted quadrilateral elements are generated in
regions where the geometry is rather complicated. If the areas are meshed in a different
order, mesh connectivity problems might occur.

• Once the 2-D mesh is generated, the result looks like the mesh shown in figure 4.6).
Finally the 2-D mesh is revolved so that 40 elements in total are generated along 360◦.
The final mesh is shown in figure 4.7.

X

Y

Z

Figure 4.6: 2-D mesh generation.

X

Y

Z

Figure 4.7: Final mesh generated with hexahedral acoustic elements FLUID 220.

After the mesh of the model has been adapted for topology optimization, the next issue to
discuss is how the mesh is manipulated during the optimization.

4.3.3 Element manipulation

First of all, remember that in order to simplify the optimization, the 2-D design space shown in
figure 4.8 is considered even though the optimization relies on a 3-D FE model. Each element in
the design space constitutes a design variable which may change its material property during
the optimization i.e. either the element remains being absorbing material or the element
becomes air. This means that initially each element is attributed with a flow resistivity
σ = 16000 rayls/m and an element density ρ

(i)
el = 1 where i ∈ [1,ne]. The element density

ρ
(i)
el must be understood as a factor given by the optimizer which defines whether the element
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DMS 4 4. Optimisation of muffler

should be absorbing material or air. The basic idea is that the element becomes air if σ is
multiplied by ρel → 0 and the element remains as absorbing material if σ is multiplied by
ρel = 1. As an illustrative example of this, let us remember the expression of the resistance
defined according to the Delany-Bazley material model where the effect of the element density
ρel has been included:

R = ρ0c0

(
1 + 0.0497

(
f

ρelσ

)−0.754
)

(4.9)

Consider that the optimizer provides an element density ρel = 1 · 10−9 which multiplies the
flow resistivity in equation (4.9) so that the term f

ρelσ
becomes a very large number because

f is divided by a number approaching zero (f can never be divided by zero in order to avoid
numerical singularities). This large number to the power of −0.754 results in a number which
approaches zero. In conclusion if σ → 0 it is obvious that R ≈ ρ0c0, which means that the
element does not offer resistance to the air since ρ0c0 is the Sommerfeld radiation principle.
This example only is shown for illustrative purposes, in the optimization algorithm σ and
the element density ρel are related by means of either the SIMP or RAMP scheme given in
equations (4.14) and (4.15) respectively. In order to attribute a density design variable to each
element inside the design space, the sequence of element number in the model is considered as
explained in the following.

The design space is formed by 6 rows of elements and 42 columns of elements which yields a
total of 252 element design variables ρ(i)

el where i ∈ [1,252]. These element densities are stored
in a vector of dimension 252 according to element numbering shown in figure 4.8.

X

Y

Z

1 11

+ 10

201

211
421

+ 210

1251

+ 
10

1261

ρ el = [1, 11, ... , 2511]

2511

Component 1
Component 2

Component 252

Figure 4.8: Element numbering sequence in the design space.

Another consideration that must be taken into account, is that whenever the element density
is updated, all the elements which result of revolving the element design variable (marked in
red in figure 4.9) change accordingly as represented in figure 4.9. Therefore it is essential to
know the sequence of the element numbers in the group of element formed by elements located
at the same radial position, see figure 4.9.

44



4.4. Optimisation procedure

X

Y

Z

2-D  design spaceρ e,1

Elem.10

2 3 4
5

6
7

8
9

Elem.2521

+2511 elements

Elem.2530Elem.5041

+2511 elements

Elem.5050

Elem.7561

Elem.7570

+2511 elements

Figure 4.9: Representation of the group of elements corresponding to one design variable.

At this point, the FE model is prepared so it can change the element material properties
according to the new designs provided by the optimiser. Provided with a tool for constraint
evaluation and constraint sensitivity analysis, the optimisation procedure is presented in the
following.

4.4 Optimisation procedure

So far, it has been decided to optimise the absorbing material in the muffler by using gradient
based topology optimisation. Then, sequential linear programming is chosen to solve the
topology optimisation problem and the FE model of the muffler has been adapted to the
topology approach since this model is necessary in order to evaluate the constraints. All this,
leads to the description in details of the process followed to solve the topology optimisation
problem.

4.4.1 The thickness filter

The optimisation model presented in the previous section constitutes a tool which allows to
evaluate the constraints as it provides the transmission loss in the system. All elements present
in the design space are subject to change during the optimisation, where an element can either
be air or damping material. The material distribution inside the design space will greatly
influence the transmission loss. It is important to remember that the objective is to minimize
the mass of damping material while still having a minimum sound reduction through the
system, but it is also important to attain a solution which is easy to manufacture. To avoid
complexity due to discontinuity in patches of damping material, it is desired to use the idea of
casting constraints. A thickness filter was developed in [Sørensen and Lund, 2015] which uses
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DMS 4 4. Optimisation of muffler

a reformulation of the projection filter developed by [Wang et al., 2011]. This thickness filter
introduces a new design variable ρc, which represents columns of elements in the design space.
This is represented in figure 4.10.

ρel 1,1 ρel 2,1 ρel 3,1 ρel 6,1

ρc 1 ρc 2 ρc 3 ρc 4 ρc 5 ρel 1,2

ρel 1,6

h=1 h=2 h=3 h=4 h=5

s(l)

s = 0

s = 1

l=1

l=2

l=3

l=4

l=5

l=6

Damping material Air

Figure 4.10: Representation of the column design variables and the mapping of the column
variables onto the element design variables.

The reason to introduce column densities is to ensure the absent of voids in the patches of
damping material. The optimiser only understands column densities, but in order to evaluate
the constraints, the real design variables needs to be determined. Hereby, the element densities
are determined from the expression of the thickness filter, equation (4.10) (found in [Sørensen
and Lund, 2015]), which are then mapped onto the real model.

ρ
(i)
el = 1−

tanh
(
β · ρ(h)

c

)
+ tanh

(
β ·
(
s(l)− ρ(h)

c

))
tanh

(
β · ρ(h)

c

)
+ tanh

(
β ·
(

1− ρ(h)
c

)) (4.10)

Where h = 1 . . . nc is the column number. β is the steepness of the filter. s (l) is a, through-
the-thickness, normalized coordinate system where l is the element number in the column and
nl is the total number of elements per column. An expression for s (l) can be seen on the
following equation.

s (l) =
(l − 1)

nl
+

1

2nl
(4.11)

In order to illustrate the mapping of element densities from column densities, half of a column
density is considered (ρ

(h)
c = 0.5). By applying ρ(h)

c = 0.5 to equation (4.10) the curve shown
in figure 4.11 is obtained.
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Figure 4.11: Graph showing the effects of β for the thickness filter.

It is visible in figure 4.11 that thickness coordinates next to the column density values will never
provide discrete element densities as represented in the figure by the dashed black line. It can
be seen as well, that by increasing β the discreteness of the element density will increase. As the
physical design variables (elements) are dependant on the column densities a new expression
has to be considered in the sensitivity analyses, a general expression for the sensitivity analyses
can be seen on equation (4.12).

∂f

∂ρc
=

∂f

∂ρel
· ∂ρel
∂ρc

(4.12)

Where the second term is the derivative of equation (4.10) with respect to the column density.
It is important to note that equation (4.12) is a general expression and f should not be confused
with the objective function, rather consider it a general function. The second factor in equation
(4.12) is illustrated in figure 4.12 using the same values of β as figure 4.11.
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∂ ρel
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Figure 4.12: Graph showing the sensitivity of the thickness filter.

It can be seen that by increasing β might yield a more discrete solution, but will give a poorer
linear prediction as the gradient is very steep. The discreteness of the design can be determined
from the following expression, suggested in [Sigmund, 2007].

Mdnd =
4 ·
∑

d,l Velρel · (1− ρel)∑
d,l Vel

(4.13)
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Now that the link between column densities and element densities has been determined, the
interpolation of design variables can be applied.

4.4.2 Interpolation and penalization

When working with topology optimisation it is important to note that it is desired to acquire
a purely binary solution. However, as the optimisation of the muffler is conducted using a
gradient based optimisation it is important to interpolate the design. This relaxes the design
variables from purely binary to a range variable 0 ≤ ρel ≤ 1. The interpolation of the design is
done using two different methods to investigate the consequence of the interpolation of a design
in acoustic domain. The interpolation schemes can be seen in equation (4.14) and equation
(4.15).

σ = σ0 + ρpel (σ − σ0) (4.14)

σ = σ0 +
ρel

1 + p (1− ρel)
(σ − σ0) (4.15)

Where equation (4.14) is the SIMP scheme and equation (4.15) is the RAMP scheme. σ0 is
set to be a very small number so if ρel = 0 no problems occur from dividing by zero. By
investigation σ0 = 10−9 has been sufficient in representing air when ρel = 0.
Even though the thickness filter is applied, a fully discrete solution is not guaranteed. Because
the filter is curved it might result in non-discrete values where elements are close to the column
value even if β → ∞. Penalization of the design variable is applied to force the optimiser to
settle on a solution of the column densities which yields discrete solutions of the element
densities.
A penalization of p = 3 for SIMP scheme is well established penalization in optimisation
of compliance. As the design variable has an extra exponent due to the Delany-Bazley
formulation, equation (4.16) is considered to acquire a penalization factor which is coherent
with traditional optimisations.

ρ3
el =

(
1

ρpel

)−0.754

(4.16)

Equation (4.16) is considered at ρel = 0.5 as the solution will be least discrete at this point,
and p = 4 is determined. A study of the traditional SIMP with the equivalent SIMP where
p = 4 equation (4.16) was performed. It can be determined from figure 4.13 that the two
penalizations are equal for every ρel ∈ [0,1].
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Figure 4.13: Plot of the general SIMP and equivalent SIMP from equation (4.16), where p = 4,
with blue and red line respectively.

A series of penalization factors for the SIMP method was chosen for investigation. The
motivation for this is to determine sufficient penalization coefficients for the optimisation if
p = 4 would prove not sufficient. The effects from investigated penalization coefficients can be
seen on figure 4.14.
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Figure 4.14: SIMP method penalizations modified for Delany-Bazley model.

It is important to use a penalization curve where the curvature is smooth. By applying a curve
which resembles a step function, the linear prediction of a new design variable will be poor.
By applying the same the though process to determine the penalization coefficient between
SIMP and RAMP scheme, p = 14 was found. However, by comparing the SIMP curve with
the RAMP curve with equal penalization it can be seen from figure 4.15 that the penalisation
is only equal at ρel = [0.0 , 0.5 , 1.0].

A couple of penalization curves were investigated using RAMP method, seen on figure 4.16.
The idea is to gain knowledge about the parametrisation of the RAMP method.
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Figure 4.15: Comparison between SIMP and RAMP penalization where p = 4 and p = 14
respectively.
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Figure 4.16: RAMP method translated from SIMP penalizations for Delany-Bazley model at
ρel = 0.5.

The RAMP scheme tend to has a weaker penalization towards a function value of zero.
However, when ρel < 0.5 the RAMP scheme has a better curvature than SIMP. Both
interpolation schemes will be tested during the optimisation process where findings will be
discussed later in the report.

As the design variables are relaxed and becomes continuous, a penalization is applied to force
the solution towards a discrete solution. Now that the problem is suitable for gradient based
optimisation the processes of determining the gradients of the design can be performed. This
is explained further in the following subsection.

4.4.3 Gradient approximation

Because the optimiser is gradient based, the derivative of the objective function and constraints
needs to be determined. As the objective function is an explicit analytical equation the gradient
can easily be determined. However, the transmission loss can not be explicitly expressed so
a forward and backward difference approximation is used. Forward or backward difference is
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used over central difference as central difference would need twice the function evaluations,
consequently it would double the computational time. The expressions for the gradients can
be seen on equation (4.17), equation (4.18) and equation (4.19). In these equations, the terms
of the chain rule involving the transmission loss TL are the ones which are calculated by
difference approximations, therefore ANSYS® is executed in order to estimate these terms for
each design variable ρ(i)

el .

∂m

∂ρ
(h)
c

=
∂m

∂ρ
(i)
el

·
∂ρ

(i)
el

∂ρ
(h)
c

(4.17)

∂ g (ωj)

∂ρ
(h)
c

(forward)

=
∂ g (ωj)

(forward)

∂ρ
(i)
el

∂ ρ
(i)
el

∂ρ
(h)
c

= − 1

17

TL
(
ρ

(i)
el + δρ

(i)
el

)
− TL

(
ρ

(i)
el

)
δρ

(i)
el

∂ ρ
(i)
el

∂ρ
(h)
c

(4.18)

∂ g (ωj)

∂ρ
(h)
c

(backward)

=
∂ g (ωj)

(backward)

∂ρ
(i)
el

∂ ρ
(i)
el

∂ρ
(h)
c

= − 1

17

TL
(
ρ

(i)
el

)
− TL

(
ρ

(i)
el − δρ

(i)
el

)
δρ

(i)
el

∂ ρ
(i)
el

∂ρ
(h)
c

(4.19)

h ∈ [1,42] i ∈ [1,252] j ∈ [1,3]

It is important to clarify that the derivative of the constraint with respect to the element design
variable ρ(i)

el is performed either by forward or backward difference but not both of them. The
criterion which dictates which method is used each time is shown below:

If ρ(i)
el − δρ

(i)
el ≤ 0 then

Forward difference
Else
Backward difference

As seen on equation (4.18) and equation (4.19) a small increment in the design variable ρ(i)
el

is introduced. This is to check the sensitivity of the element by applying a small disturbance
to the design variable, also called perturbation size. To determine the perturbation size for
the forward and backward difference, a study of the sensitivity of a single design variable is
performed. The analysis consist on calculating the forward and backward difference of the
chosen design variable within the range of perturbation sizes seen on figure 4.18. This study
was done by applying an incremental disturbance on the lower left element and checking the
transmission loss for each increment, see figure 4.17.

Studied element

Figure 4.17: Chosen element for the perturbation size study.
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Figure 4.18: Constraint gradient tendency by the effects of δρ(i)
el for each frequency.

Figure 4.18 show an unstable tendency of the curves at a very small increment of ρ(i)
el . This

is interpreted as numerical noise. Noise in the curves represent a rough line in the function
curve. In the end of figure 4.18 it is observed that the forward and backward differences are
separating from each other which indicates a non-linear, non-convex curve on a larger scale.
To determine a good step size for the constraint gradient, a zoom of the interval [0, 0.02] was
consider based on the findings of figure 4.18, seen on figure 4.19.
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Figure 4.19: Zoomed view of constraint gradient tendency by the effects of δρ(i)
el for each

frequency.

Figure 4.19 gives a better view of the difference between forward and backward difference. A big
difference can be seen where figure 4.18 predicted noise with a very small increment. However,
both curves tend to equalize at a certain increment range. The increment was eventually chosen
to be δρ(i)

el = 0.01 as the difference between forward and backward difference are similar for
all three driving frequencies. It is important to note that ideally a new increment would be
determined for every element for every iteration, but due to time constraints the increment is
assumed to be sufficient for the whole analysis.
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4.4.4 Merit function

When the design sensitivity is determined a new design variable can be determined using the
linprog function in Matlab. The function solves the linear equation shown in

Aρc ≤ b (4.20)

Where the design variable has pre-set bounds (ρ(LW )
c < ρc < ρ

(UP )
c ).

When solving the linear problem to obtain a new design variable it may occur that the
solver yields an infeasible design. To allow the solver to keep going without shutting off
the optimisation process a merit function is introduced. The merit function introduces an
artificial variable to the constraints in the system, seen on equation (4.21). The constraints
are normalized to avoid scaling problems with the artificial variable.

φ(j)
g (ρc,y) = −TL (ωj)

17
+ 1− yj ≤ 0 (4.21)

Where j = 1,2,3. By applying the artificial variable to the constraint it allows the optimiser to
close the gap of infeasibility of the linear equation by changing the value of yj . To avoid the
optimiser abusing the artificial variable, a penalty is applied to the objective function, show in
equation (4.22).

φo (ρc,y) = min

ne∑
i=1

ρ
(i)
el (ρc)V

(i)
e + a ·

 ng∑
j=1

c · yj +
1

2
· y2
j

 (4.22)

Where a is a scaling parameter which is set to the absolute value of the real objective function,
at first iteration, which ensures a proper scaling throughout the analysis. c is a penalization
parameter for the artificial variable. In [Svanberg, 2007] it is recommended to keep the
penalization of the artificial variable reasonably large to ensure that yj = 0 at the optimum,
where a penalization of c = 100 seems to suit the reasonably large value. However, in [Sørensen
and Lund, 2015] it is stated that a penalization of c = 10 is sufficient in most cases. The linear
problem for the optimiser to solve has now changed to the following:

min φo (ρc,y) = min

ne∑
i=1

ρ
(i)
el (ρc)V

(i)
e + a ·

 ng∑
j=1

c · yj +
1

2
· y2
j

 (4.23)

subject to φ(j)
g (ρc,y) = −TL (ωj)

17
+ 1− yj ≤ 0) (4.24)

Since the optimiser only reads gradients the gradients of the merit function needs to be
determined. The merit gradients can be seen in the following equations
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∂ φg (x,y)

∂yj
= −1 (4.25)

∂ φo (x,y)

∂yj
= a (c+ yj) (4.26)

Equation (4.25) and equation (4.26) is added to the respective gradient matrices for the real
constraints and objective function. Now that the linear problem is guaranteed to be feasible
the optimiser will never fail trying to determine a new design variable. However, an infeasible
design may be determined. A tool to ensure that the functions are feasible a tool to ensure
convergence needs to be applied.

4.4.5 Convergence filter

As mentioned, the merit function guarantees the linear problem to be feasible. However, a
tool needs to be implemented to guarantee a stable convergence of the linear problem. A
convergence filter was developed in [Ming Chin and Fletcher, 2001] from the experiments
conducted in [Fletcher et al., 1998] which is simple to implement to the case at hand. The
filters acts as a line search algorithm within a selected trust region. The filter determines if a
new design variable should be accepted or rejected, by evaluating information from previous
iterations. If the new design variable has been declined the filter will adjust its move limits and
evaluates the new linear problem. A detailed flow chart of the filter can be found in [Ming Chin
and Fletcher, 2001]. It is important to note that in the algorithm for this optimisation problem
only the linear part of the filter is considered. Table 4.1 shows the parameters applied to the
convergence filter during the optimisation of the muffler.

Convergence filter parameters
u γ β σ δ

0.01 10−6 1− γ 2γ γ

Table 4.1: Parameters applied to the convergence filter.

Where u is a infeasibility limit predefined by the user. A smaller infeasibility limit will provide
a better result but at a cost of more iteration needed for convergence. For an initial guess of
full material u = 0.01 has been sufficient. To ensures that the optimiser will continue even if
the result is infeasible the maximum infeasibility u can be increased. The optimiser will aim to
yield a feasible solution, but might converge at a more infeasible solution than with a smaller
infeasibility limit. The filter accumulate points by using the following equations.

h = max
(
0,φng

)
(4.27)

f =
φno
φ0
o

(4.28)

Where h is the measure of infeasibility and f is the normalized value of the objective function
with respect to the initial function value. It is proven in [Ming Chin and Fletcher, 2001]
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that when the convergence filter eventually accepts a new design variable, or a convergence
criteria where the change in design variable reaches a small tolerance, a KKT point has been
determined. The only thing which needs to be defined for the convergence filter is the move
limit strategy.

4.4.6 Adaptive move limit strategy

The adaptive move limit strategy is applied to the convergence filter where the move limit will
change depending on a new design is accepted or rejected. If a design variable is rejected the
move limit is simply reduced by half. Reducing the move limit by half has been sufficient in
most cases. When a design variable has been accepted by the convergence filter the move limit
is increased. However, oscillation of the design variable might occur and should be avoided.
This is handled by reducing certain move limits. To determine if the design variables are
oscillating the following procedure is applied, inspired from [Sørensen and Lund, 2015].

If
(
Zni − z

n−1
i

)
6= 0 then

Osc =
(Zn−1

i −zn−2
i )

Zn
i −z

n−1
i

If Osc < 0 then
∆n+1
i = 0.5

else
∆n+1
i = 1.15

end if
else
∆n+1
i = 1.15

Where ∆n
i is the move limit at nth iteration, the Osc variable tracks oscillation of the design

variable and zni is the bounds for all real design variables and is determined from equation
(4.29) found in [Sørensen and Lund, 2015].

zn+1
i ∈ [max

(
zni −∆n+1

1 ,0
)
,min

(
zni + ∆n+1

1 ,1
)
] (4.29)

An initial move limit of 20% has proven sufficient and makes the optimisation process finish at
a reasonable time. When a design variable is accepted by the convergence filter the move limit
is increased by 15%. However, if the design variable is oscillating the move limit is reduced by
50%. By reducing the move limits when the design variables are oscillating stabilization of the
design variable will occur faster. When a new design variable is determined the new function
values are calculated and the process is repeated until the design is accepted as a minimum.

4.4.7 Convergence criterion

At a certain point in the optimisation process the change in design variable will decrease
drastically and the functions are close to a minimum. A criterion is inserted to stop the
optimisation process as the change in design variable is small. The convergence criteria is
expressed in equation (4.30).
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√√√√√(φ(n−1)
0 (x,y)− φ(n)

0 (x,y)
)2

φ
(n−1)
0 (x,y) + 1

· 100% < ε (4.30)

The convergence tolerance has been set as 10−2 as lower tolerances were significantly increasing
the number of iterations without showing significant change in discreteness. However, the
optimisation runs in a continuous scheme where the steepness variable β and the penalization
is increased. As convergence criterion is met, a new check is done by calculating the Measure of
Density Non-Discreteness. IfMdnd < 2% the solution is accepted as discrete enough. However,
if the convergence criterion is met butMdnd > 2% a larger penalization and steepness is applied
and the optimisation continues. This process continues until all defined penalization values and
steepness values have been applied. The penalization values and steepness values can be seen
in the following equations.

p = [1 , 4 , 6] For SIMP (4.31)

p = [0 , 14 , 62] For RAMP (4.32)

β = [20 , 40 , 80] For Steepness of thickness filter (4.33)

The initial value of the steepness is set to 0.01 and the penalization is set to p = 1 until
the first solution is found. This way the optimiser will not converge prematurely. When the
optimiser has converged with a new β and penalization the measure of density non-discreteness
is calculated again and continues until either Mdnd < 2% or the last entry in both penalization
and steepness has been through the optimisation process. Note that the penalization and
steepness values are checked individually and adding more values to the vectors is possible. In
this work the optimisation process is stopped when all penalizations and steepness values has
been tried even though Mdnd > 2%. If a discrete solution is yet to be found post-processing
of the results must be performed. A flow chart of the optimisation processes can be seen on
figure 4.20. Note that the flow chart does not consider the continuation process and should
only be treated as a visualisation of the basic concept of the optimisation processes.

56



4.4. Optimisation procedure

Terminate
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Reduce Move limit

Minimum Found

Input Ansys Model

Do Design Sensitivity Analysis

Did it fail?

Evaluate Functions

Update Design variable
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Check Against Convergence Filter

Accepted?

Call Optimiser. Find New X
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Calculate Transmission Loss

No
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No
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Yes

No
No
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Figure 4.20: Flow chart of the optimisation routine.
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Conclusion 6
Daniel Rey
Romero
Note!

1

1Daniel Rey
Romero Note: We could explain how LLoyd’s Register can adapt the current optimization algorithm in order
to include sound speed as a constraint, or maybe why not to do it because it would be computationally very
expensive since we need to run ansys as many times as sound speed constraints we have.
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