
Aalborg University

Master Thesis

Content Delivery and Storage in
Wireless Networks Using Network

Coding

Author:

Juan Cabrera

Supervisor:

Dr. Daniel Lucani

A thesis submitted in fulfilment of the requirements

for the degree of Master in Science

in the

Network Coding Focus Group

Electronic Systems

June 2015

http://www.aau.dk
http://vbn.aau.dk/en/persons/daniel-enrique-lucani-roetter%281e4eed9a-8ea0-4725-a5c1-c9eca199ddea%29.html
http://www.ncfg.eu/
http://www.es.aau.dk/

Department of Electronic Systems
Fredrik Bajers Vej 7
DK-9220 Aalborg O

http://es.aau.dk

Title:
Content Delivery and Storage in
Wireless Networks Using Network
Coding

Theme:
Scientific Theme

Project Period:
Spring Semester 2015

Project Group:
15gr1054

Participant(s):
Juan Alberto Cabrera Guerrero

Supervisor(s):
Daniel E. Lucani. R

Copies: 2

Page Numbers: 69

Date of Completion:
June 2015

Abstract:

As an alternative to storing and de-
livering data from a single cloud
server service providers might be
interested in solutions that spread
the data over multiple devices, par-
ticularly peer devices. The dy-
namics of this problem when in-
troducing wireless mobile devices
make the management of content
and design of protocols extremely
challenging. To address these chal-
lenges, this project shall use net-
work coding as a common ground
to manage the storage and commu-
nication among nodes with a single
code structure. When a peer dis-
connects from the network, a re-
pair of the redundancy lost has to
be performed by the other nodes
to guarantee that the information
is reliable against future disconnec-
tions. The contributions include
the evaluation of the state-of-the-
art techniques for repair in stan-
dard distributed storage systems
when applied to a limited set of
peers that are maintaining a file
reliable. Moreover, the project
also explore these repair techniques
when performed in wireless chan-
nels. By taking advantage of the
broadcast nature of the channel it
is shown that the number of trans-
missions for repairing can be re-
duced.

The content of this report is freely available, but publication (with reference) may only be

pursued due to agreement with the author.

http://es.aau.dk

“Let us think the unthinkable, let us do the undoable, let us prepare to
grapple with the ineffable itself, and see if we may not eff it after all.”

Douglas Adams

Acknowledgements

I want to thank my parents for their unconditional support in every aspect

of my life through all these years.

I also wish to express my sincere thanks to Dr. Daniel Lucani, my supervi-

sor. I am extremely grateful for his constant help not only in the academic

field but also in a personal dimension. I am thankful for his helpful e-mails

and suggestions even before my moving to Denmark.

vii

Contents

Acknowledgements vii

Contents viii

List of Figures xi

Acronyms xv

1 Introduction 1

1.1 Peer to Peer Distributed Storage Systems 2

1.2 Erassure Coding and Network Coding for Storage 4

1.3 Our Contributions . 6

2 State of the Art in Peer to Peer Networks 7

2.1 Routing and Resources Discovery 7

2.1.1 Unstructured Peer to Peer Networks 8

2.1.2 Structured Peer to Peer Networks 8

2.2 File Sharing in Peer to Peer Unstructured Networks 9

2.2.1 Centralized Approach: Napster 10

2.2.2 Distributed Approach: Gnutella 10

2.2.3 Hybrid Approach: Kazaa 12

2.2.4 Other Approaches: BitTorrent 13

2.3 Personal Storage in Peer to Peer Networks 14

3 Network Coding in Peer to Peer Distributed Storage Sys-
tems 15

3.1 Coding for Distributed Storage 17

3.2 Network Coding and the Functional Repair in Newcomer Nodes 20

3.2.1 Random Linear Network Coding 23

3.3 Our Contribution: Functional Repair Into a Reduced Set of
Nodes . 25

3.4 Our Contribution: Distributed Storage Systems With RLNC
in Wireless Lossy Channels 29

4 Protocol Design and Software Implementation 33

4.1 The Uploader . 35

ix

Contents x

4.1.1 The Block Partitioning RFC5052 38

4.2 The Downloader . 39

4.3 The Node . 43

4.4 The Pal Web and the Repair Sessions 45

4.4.1 The Repair Session Due to Disconnection 45

4.4.2 The Repair Session Due To Reconnection 48

5 Measurements Results 53

5.1 Measurements of the Time Spent in the Repair Sessions . . 54

5.2 Measurements of the Packets Sent in the Repair Sessions . . 58

6 Conclusions and Future Work 63

6.1 Future Work . 64

Bibliography 65

List of Figures

2.1 Hash functions . 9

2.2 Search process in Napster 10

2.3 Search process in Gnutella 11

2.4 Search process in Kazaa . 12

2.5 Search process in BitTorrent 13

3.1 A node splits a file into four pieces and stores them into four
different nodes. 16

3.2 When the uploader disconnects, the nodes must take actions
and copy the pieces they are storing into other nodes. . . . 16

3.3 Example shows that 50% of redundancy cannot guarantee
100% reliability when any node disconnects. In case a) the
file is not recoverable, in case b) the file can be recovered. . 17

3.4 Example shows that when using coding 50% of redundancy
can guarantee 100% reliability when any node disconnects.
In both cases the file can be recovered. 18

3.5 Example of the repair process when using a (6, 4) Maximum
Distance Separable (MDS) code. The whole file must be
transfered over the network. 19

3.6 Example showing the information flow graph for MSR codes
and a file of 12Mb stored in 3 nodes. All sizes are in Mb. . 22

3.7 Example showing the information flow graph for MBR codes
and a file of 12Mb stored in 3 nodes. All sizes are in Mb. . 23

3.8 Information flow graph for a repair session in a system of
four nodes using MSR codes. 27

3.9 Information flow graph for a repair session in a system of
four nodes using MBR codes. 28

3.10 Example showing the advantages of spatial diversity in wire-
less networks . 29

3.11 Example showing a simplified information flow graph of the
repair session performed by 3 nodes storing a file of 6 pieces
using Minimum Storage Repair (MSR) codes. 31

3.12 Initial six transmissions of a repair session using broadcast
messages. 31

3.13 Final three transmissions of a repair session using broadcast
messages. 32

4.1 General view of the software implemented 33

xi

List of Figures xii

4.2 Upload session seen without the logical distinction of the
uploader entity. 34

4.3 Example of messages exchanged between an uploader and
three target nodes. 35

4.4 Flow diagram of the uploader object. 37

4.5 Example of messages exchanged between a downloader and
three target nodes. 39

4.6 Scenario where multiple ACK messages brings unnecessary
overhead to the system. 41

4.7 Scenario where multiple ACK messages are needed due to
losses in the channel. 41

4.8 Flow diagram of the downloader object. 42

4.9 State diagram of the node object. It is the base of the appli-
cation. 44

4.10 Scenario describing the problem of two pals picking the same
key. 46

4.11 Example of the message sequence of the second stage of the
repair with one leader and three pals. 47

4.12 Example of the message sequence of the third stage of the
repair with one leader and three pals. Each pal stores the
received coded packets. 48

4.13 Actions that the reconnected peer must perform during the
repair session when it must append coded packets. 49

4.14 Actions that the reconnected peer must perform during the
repair session when it must delete coded packets. 50

4.15 Actions that the reconnected peer must perform during the
repair session when it must not delete nor append coded
packets. 50

4.16 Messages sequence for a repair session due to reconnection
where the reconnected peer must append coded packets. . . 51

5.1 Total time spent in the repair sessions for different generation
sizes and symbol sizes using MSR codes. 54

5.2 Total number of packets transferred in the repair sessions for
different generation sizes and symbol sizes using MSR codes. 55

5.3 Total time spent in the repair sessions for different genera-
tion sizes and symbol size using Minimum Bandwith Repair
(MBR) codes. 56

5.4 Comparison of the time spent in the different repair stages
using MSR and MBR codes. 57

5.5 Comparison of the time spent in the different repair stages
using MSR and MBR codes. 58

5.6 Total number of packets transferred (normalized) in the re-
pair sessions MSR codes. 59

5.7 Total number of packets transferred (normalized) in the re-
pair sessions using MBR codes. 59

5.8 Total number of packets transferred (normalized) in the re-
pair sessions using MSR codes. 60

List of Figures xiii

5.9 Total number of packets transferred (normalized) in the re-
pair sessions using MBR codes. 60

5.10 Total number of ACK messages unicasted in the different repair
sessions using MSR codes. 61

5.11 Total number of ACK messages unicasted in the different repair
sessions using MBR codes. 62

Acronyms

DHT Distributed Hash Tables.

FTP File Transfer Protocol.

IoT Internet of Things.

MBR Minimum Bandwith Repair.

MDS Maximum Distance Separable.

MSR Minimum Storage Repair.

P2P Peer to Peer.

PeX Peer Exchange.

RFC Request for Comments.

RLNC Random Linear Network Coding.

SSH Secure Shell.

TTL Time to Live.

WSN Wireless Sensor Network.

xv

To my parents. . .

xvii

Chapter 1

Introduction

Nowadays the standard method for file transfers on the Internet is the

client-server approach. A centralized system in which a server sends the

files to all the nodes that request them. Service providers have to deal with

a range of challenges when they are storing the information in a centralized

manner. For instance, if the server storing the data fails, then the informa-

tion becomes unavailable for the users. When a file becomes popular, the

server might get blocked due to an increased number of requests to down-

load, becoming unable to serve all the users or doing so with a degraded

quality of service. This degradation includes slower data transmission rates

and increased delays between the moment when the user makes the request

and when it is served.

To increase reliability of the information at the server side, service providers

rely on distributed storage system. By doing such spreading of the files, the

system can guarantee that the information is reliable during long periods

of time even though the individual nodes are unreliable. In this scenario,

even if one node fails losing all the data that it was storing, the information

can be recovered from the other nodes. To ensure this reliability, some

redundancy is added. The simplest form of redundancy is replication, for

example, duplicating the files in mirrors server or in caches close to the

edge of the network. Storing the information close to the consumers might

help allowing for greater availability of the information and potentially

better delay performance since it is closer to the users requesting data.

However, besides its high costs, data caching involves a complex problem

when deciding what files or what pieces of files to cache. For distributed

storage, some providers opt for cloud computing systems. For instance,

Google stores information in cells or storage cells which consists in a shared

1

Chapter 1. Introduction 2

pool of machines with different applications and which size might be in the

order of thousands of nodes, connected physically close one to another [1].

Nevertheless, speed may still be constrained due to high load and restric-

tions on the server side. The option of distributing the information in Peer

to Peer (P2P) networks instead, allows the systems to aggregate data from

multiple locations, even if each one of them is limited in capabilities and

resources.

1.1 Peer to Peer Distributed Storage Systems

In practice, having a single distributed cloud storage system is not enough

as a solution to guarantee that data is reliably stored, private and read-

ily available with high data rates. A single cloud system is susceptible to

failures, like those presented by Amazon during the last years that affected

companies like Instagram, Netflix and Pinterest [2]. Besides, managing the

data deep into the network in a centralized manner affects the scalability

of the solutions when a bigger number of users with a higher demand of

content joins the service. For that reason this project focuses on the stor-

age and delivery of content spreading the data in a decentralized manner

over multiple heterogeneous devices e.g. mobile phones, laptops, desktops,

embedded systems.

The project looks particularly into these devices when they organize them-

selves in P2P networks with little to no intervention of a central entity.

Moreover, in these types of systems, nodes continuously leave and recon-

nect to the network. In these systems each node is commonly seen as a

peer, i.e. an entity equivalent to the others without any privilege. All the

peers make a share of their resources available to the rest of the system and

are at the same time consumers and providers of information. Since it is

not centralized, it is a network with the potential to be scalable. In that

sense, in a P2P distributed storage system, a mobile phone, for example,

can store some of its files distributedly into all the other phones and com-

puters members of the network. For that, the peer should make available

part of its storage capacity for the others to use.

In the last two decades, many solutions that make use of P2P networks for

file transferring have appeared. For example, Gnutella, Napster [3], and

Kazaa [4] are file sharing protocols that allow the transfer of files directly

among users. The aim of these services is to distribute complete files among

nodes that constantly joins and leaves the network. The BitTorrent protocol

Chapter 1. Introduction 3

[5] is one of the most famous protocols nowadays and was designed for this

purpose.

In the BitTorrent protocol the files are split into pieces. When a node

wants to download a particular file, it contacts some peers that have pieces

of it and requests them. This bring the complex problem to the system of

deciding in what order to transfer the pieces, specially with less popular

files. It might occur that at a certain point in time, all the nodes that have

one particular piece are not available making impossible the recovering of

the file. It could happen that a small number of nodes have one specific

piece causing, as a consequence, a slow download speed [6] for the other

peers. Or in the scenario of an on-demand streaming, nodes might be

interested in downloading first the pieces that are going to be played soon

[7].

The problem of the selection of pieces is also present in P2P networks where

the nodes are not interested in getting the whole files but part of them in

order to have redundancy in the system for reliability of the information.

The case of the Wireless Sensor Networks(WSNs) present such scenario.

An example would be the deployment of sensors (peers) in a large scale

and in a remote area such that they are not connected to the Internet.

The sensors individually are unreliable and have to collect and store data

for long amounts of time, until a sink requests from them the recorded

information. Taking advantage of distributed storage, the WSN as a whole

has the capacity of storing the files even in the case where individual peers

would surpass its own storage capacity. Besides, the storing of the data

can be reliable against peers failing. Such scenarios are becoming more

common with the advent of the Internet of Things (IoT). For instance [8]

studies that scenario focusing on data dissemination schemes to duplicate

information in WSNs for IoT observation systems to make the storage of

the files resilient.

But the problem of where to store the duplicated pieces remains. If all the

nodes with the same piece fail, then the whole file is unrecoverable. For

that reason such system needs to keep track of what peers are storing what

pieces of what files. Such tracking requires resources of time and energy

which commonly are sparse in low power WSNs.

Chapter 1. Introduction 4

1.2 Erassure Coding and Network Coding for Stor-

age

Erasure coding offers a better option for storage efficiency. Dividing a file

of size M into k pieces of size M/k, an alternative to storing replicas of the

fragments is to produce n coded pieces using an encoder and a MDS code

(n, k), and store those n pieces instead. Then, any set of k pieces of size

M/k is enough to recover the whole file, which makes the approach optimal

in terms of redundancy-reliability tradeoff [9, 10]. This method shows much

more reliability for the same amount of redundancy than simple replication

[11]. Besides, the system should no longer keep track of where it stores the

replicated pieces. Instead it should guarantee only that enough different

pieces are available at all time.

One of the most famous MDS codes used for this purposes are the Reed-

Solomon codes [12]. Companies such as Wuala, which in its origins offered

a peer assisted file caching combined with centralized storage [13], and the

now defunct research project OceanStore [14] use this type of codes for the

redundancy in their data storage systems.

The use of traditional MDS codes brings new difficulties. When a node

fails or a peer disconnects from the network, the system must repair the

redundancy lost with the node. With replication, the piece lost is simply

copied from other node in the network, without any repair overhead i.e. to

repair k bits, only k bits are transmitted over the network. On the other

hand, codes like Reed-Solomon first need to decode the whole file to be

able to generate new coded pieces. This means that repairing a fragment

of size M/k needs a repair bandwidth of at least M i.e. at least the whole

file must be transferred over the network every time the system builds new

redundancy.

Network coding appears as a solution to this difficulty. With this novel

technique it is possible to generate erasure codes that allows repairing by

transmitting the information theoretic minimum over the network [9]. The

most common variant of network coding is Random Linear Network Coding

(RLNC). This variant, when used to code files, takes the original k pieces

of a file x1, x2, x3, ..., xk and creates n linear combinations p1, p2, p3, ..., pn

of the same size called coded packets. Where pj is

pj =

k∑
i=1

ci,j · xi (1.1)

Chapter 1. Introduction 5

In equation 1.1 each ci,j is a coefficient chosen randomly from a finite field,

commonly of the form GF(2m). These coefficients are then appended to

each coded packet. Similarly as in Reed-Solomon codes, any set of k linear

independent packets are enough to decode the file. However, a novelty of

network coding over Reed-Solomon codes is that it allows the recoding of

packets already coded, i.e., it is possible to generate new coded packets

without decoding the whole file. In that sense, given a set of coded packets

p1, p2, ..., pl, a new packet p′ can be generated such as

p′ =
l∑

i=1

ci · pi (1.2)

By distributing random combinations of the files among the peers and

clouds services instead of just raw data, network coding offers an intrin-

sic level of security. The data is still private even when “malicious” peers

are present in the network or when a cloud service gets compromised by

external agents [15, 16]. An eavesdropper would need to compromise the

whole system and gather enough coded packets in order to be able to decode

and “understand” the data.

At the same time, network coding has proven benefits when used in differ-

ent communication scenarios. In point-to-point communications, it allows

the repair of packets losses in lossy channels. If there is an estimation of

the packet error probability, the transmitter can send extra coded packets.

Since it is not relevant to know what specific packets got lost, this does

not require extra feedback from the receiver. In multicast scenarios over

lossy wireless channels, when several nodes are interested in receiving the

same data, if the transmitter broadcast uncoded packets, then it will need

to retransmit every single one of the lost packets. Due to the uncorrelated

losses, many of these retransmissions will be useful only for a few nodes. If

coded packets are sent instead, the information contained in the retransmit-

ted packets might benefit with high probability all the nodes that suffered

from losses.

By using network coding in a distributed storage system to manage the

storage and communications with a single code structure, this project takes

advantages of the benefits of that technology in the field of storage [17] and

wireless communications [18]. Which brings reliable multicast and increased

data transmission rates in lossy channels.

Chapter 1. Introduction 6

1.3 Our Contributions

The goal of this project is to provide mathematical models to analyze the

problem of storage and repair of redundancy in P2P networks. It studies

the use of network coding as a common code to manage the storage and

cooperation between peers at the edge of wireless networks. Specially when

said peers constantly leave and rejoin the network. State of the Art in the

field has considered the benefits of network coding for repairing redundancy

[9] into new nodes, or into new clouds [19]. However, in this project we

go beyond these controlled scenarios and focus on evaluating cases where

there are no new available nodes or cloud services and the system must

repair redundancy in the available nodes to prepare itself for the potential

disconnections of more peers. At the same time, this project studies the

case when the losses of peers or cloud services are temporary. When the

node returns, the system must perform the removal of redundancy built

during repair sessions.

Furthermore, we designed a protocol and a software application that was

tested in real devices. This implementation is capable of maintaining files

reliable when they are stored into a limited set of unreliable nodes. Even

with disconnections of peers, the system can guarantee, after a repair ses-

sion, that the data will be available against the potential disconnection of

another node.

From the results of this project, we are preparing a paper to be submitted

in July 1st 2015 for IEEE Globecom Workshops.

Chapter 2

State of the Art in Peer to

Peer Networks

In a P2P network, opposed to a centralized network where nodes request

resources to a server, each user is a client and a server for the other nodes.

Each user or peer has the same status within the network. The different

nodes share tasks like file storage, video streaming, etc. in such systems.

For this to be possible, each peer makes part of its resources e.g. disk

storage, processing power, network bandwidth directly available for the

others nodes of the network without the need of a centralized coordination

or any other entity [20].

2.1 Routing and Resources Discovery

The P2P networks are built as overlay networks over the underlying physical

network. The data is still transferred through the underlying TCP/IP

network, but at the application layer peers can communicate directly with

each other. This is done through logical overlay links. Each one of these

links correspond to a specific path through the underlying physical layer

(which may involve several hops). Overlays at the same time are used for

indexing and peer discovery.

According to how the nodes are linked within the overlay network and how

the resources are indexed and discovered, the peer to peer networks may

be classified in structured and unstructured networks.

7

Chapter 2. State of the Art in Peer to Peer Networks 8

2.1.1 Unstructured Peer to Peer Networks

An unstructured P2P network presents no particular overlay structure by

design. Each time a node joins the network, it randomly forms connections

with the others peers. This makes the network robust against churn, i.e.,

nodes constantly joining and leaving the system.

A problem with unstructured networks is that the lack of organization

makes it complicated to find a file when a node requests it. If a peer

performs a search query, the other peers must flood it into the network.

This flooding is specially expensive in terms of network resources because

it is done on an overlay network on top of the underlying physical net-

work. There is a tremendous bandwidth consumption in flooding-based

approaches [21]. A forwarded search query from a peer to another in reality

is performing several hops in the physical network. The mismatch between

the P2P network and the physical network produces zigzag routes [21] as

described in [22]. Because of the high cost involved in flooded messages,

the system typically limits their lifetime to a few hops. As a consequence

there are no guarantees that the search query would be successful even if

the file is present in the network.

2.1.2 Structured Peer to Peer Networks

In a structured peer to peer network, the nodes connect to each other in a

specific topology. Since the network maintains a structured and organized

topology, all the peers can cooperatively maintain routing information rel-

evant for reaching all the other nodes in the overlay network [23]. When

any peer performs a search query in the system for a specific file, due to the

structured organization of the overlay, the protocol can guarantee that the

search query will reach all the nodes. As a consequence, rare files stored

only in a few nodes in the system can be found by the other peers.

Structured networks use distributed indexing structures such as Distributed

Hash Tables (DHT) to find files. In these methods, a key is assigned to each

file in the network. The keys are chosen from a finite keyspace, for example,

the space of all the 160-bit long strings. These keys are generated with hash

functions like the SHA-1 function [24]. Hash functions have the property of

producing very different outputs with small changes in the input. Figure 2.1

illustrates how different data on the different peers in a network is indexed

by giving it a hash key using a hash function.

Chapter 2. State of the Art in Peer to Peer Networks 9

Figure 2.1: Distributed hash tables. Small variations in the input of a
hash function results in big variations of the output

When a node wants to retrieve a particular file from the network, it sends

a message get(k) where k is, for example, the SHA-1 key. Then, a search

is performed in the network and the nodes route the message using vari-

ous methods, e.g., routing trees [25], finger tables [26]. Depending of the

protocol used, this search may have a complexity as low as O(log(N)) [21].

Maintaining routing information becomes a problem when nodes are con-

stantly leaving and rejoining the network. Every time that such event

occurs, the peers must update the routing tables.

2.2 File Sharing in Peer to Peer Unstructured

Networks

In the client-server approach, like the File Transfer Protocol (FTP), there

is a clear distinction on which node is serving the files and which node is

consuming them. For that reason, finding where a file is stored is not that

complicated, it is a matter of finding the server. On the other hand, the

architecture of a peer to peer network differs from the classic approach since

in these networks each node is an equal entity that functions as a server and

a client at the same time. The files in these types of networks are distributed

among several nodes. For that reason, a challenge of P2P systems is how

to find a file that is stored somewhere in the network. This challenge is

particularly difficult in unstructured networks and different solutions have

been proposed in the last decades. If we want to distribute content in a

P2P network, then it is important to study the state of the art solutions

proposed for finding data in these systems.

Chapter 2. State of the Art in Peer to Peer Networks 10

2.2.1 Centralized Approach: Napster

In the centralized approach a server has information about all the files in

the system. It contains information about what files holds and share each

peer as well as meta-data information like the file size and file name.

In a centralized approach when a new peer joins the system it reports to

the server what files it posses and share. Then, when a user needs to find a

specific file in the network, it requests it to the server. If the file exists, the

server sends a list of all the peers that have the file. Then the user contacts

the returned peers with a request to download the required file. Figure 2.2

illustrates this search process.

Figure 2.2: Search process in Napster. Image source: [23].

A centralized approach is easy to implement. The network administra-

tor only has one server to take care of and maintain. However, it is not

a scalable approach. When the number of peers increases, the server or

centralized entity needs more storage capacity, bandwidth and processing

power in order to process and serve all the search queries of the peers. A

centralized approach is not robust to attacks or failures since there is one

central point of failure that can bring the system down. If the server fails,

then the system is disabled.

2.2.2 Distributed Approach: Gnutella

The Gnutella protocol does not require a central server, which leads to

a decentralized, dynamic and self organized network. When a new peer

joins the system, it broadcasts a PING message to all its neighbors. Each

Chapter 2. State of the Art in Peer to Peer Networks 11

neighbor responds with a PONG message containing its IP address, port

and information of the files that it shares.

When a peer needs to find a specific file, it broadcasts a search query which

propagates through the network based in flooding. Each peer that receives

the search query checks if it posses the file. If the node have the whole file

or part of it, then it sends a response back through the same path used by

the flooded message.

To prevent a big number of search query messages in the network, these

contain a Time to Live (TTL) which is a value that decrements by one at

each node. However, choosing this value is not an easy task. If it is too big,

then the query message might “live” too long time in the network affecting

the performance of the system. If it is too small then it might lead to

unsuccessful search queries with high probability even if the searched file

exists somewhere in the network. In Figure 2.3 it can be seen the search

mechanism used in this protocol.

Figure 2.3: Search process in Gnutella. Image source: [23].

In a distributed approach each peer connects and communicates with a few

nodes in its vicinity. This allows the system to support an unlimited number

of peers as long as search efficiency is not a constraint. These systems are

also robust to dynamics of the peers. If a peer leaves or joins the network,

then it and its neighbors can connect to other peers easily by the exchange

of PING and PONG messages. Nevertheless, a big disadvantage of this

approach is that the search mechanism is inefficient and might result in

unsuccessful outcomes even if a copy of the file exists somewhere in the

system.

Chapter 2. State of the Art in Peer to Peer Networks 12

2.2.3 Hybrid Approach: Kazaa

Hybrid approaches try to combine the advantages of the centralized and

distributed protocols. In an hybrid approach, some of the nodes, specifically

those with more resources in terms of bandwidth and processing power are

promoted to super nodes. These super nodes contain information of the

files of some of the peers that are connected to it as well as information for

contacting other super nodes. They can be seen as local entities similar to

servers of a centralized P2P network.

In the Kazaa protocol, if a node not promoted to super node, wants to

search for a file, it sends a search query to a super node. The super node

then works as the server in a centralized approach and responds with a list

of peers containing the file. If it does not have that list, then it performs

a search query by flooding, similar to the search queries performed in a

distributed approach, but only among other super nodes. When the regular

node receives the list of peers that have the file, then it starts the download

from them. Figure 2.4 illustrates the search mechanism used in the Kazaa

protocol.

Figure 2.4: Search process in Kazaa. Image source: [23].

An hybrid approach has faster and more successful search queries. Since

only the super nodes flood messages into the network, this approach is

cheaper in term of network resources. It also solves the problem of having

a central point of failure present in centralized protocols. One super node

failing or departing does not disable the whole system. If a super node fails,

then the regular nodes can be connected to other super nodes.

Chapter 2. State of the Art in Peer to Peer Networks 13

2.2.4 Other Approaches: BitTorrent

In the BitTorrent protocol, in order to share a file, the peer creates a torrent

file which contains meta-data information about the file as the size, and

hashing information. In the protocol, the file is split into small pieces of

fixed size. Each piece has a checksum which is also stored in the torrent

file. The torrent file also contains the URL of a “tracker”, which keeps a

record of all the peers that have the file (complete or not).

When a peer wants to download a specific file, it first downloads the torrent

file. This allows it to connect to the tracker. The tracker server then returns

a list of the peers that posses the whole file or that are downloading it. This

information allows the peer to start the communication with the other nodes

sending download requests. Figure 2.5 shows the search mechanism used

in the BitTorrent protocol.

Figure 2.5: Search process in BitTorrent. Image source: [23].

The tracker server is a central entity. This is a problem of these systems

when faced to “lawyer based” attacks. For example, the famous site The

Pirate Bay stopped in 2009 serving as a tracker amid legal troubles [27]

since many of the files stored and shared between peers were copy righted

material. This disgusted right-holder companies which filed a civil law-

suit. This problem has brought research on the area of decentralization of

the tracker during the last decade. For example, the use of Peer Exchange

(PeX) protocol augments the BitTorrent protocol allowing peers participat-

ing in the share of a specific file to directly update other peers about what

other files are being shared by those participating nodes. Another example

is the proposed in [28] which implemented a mechanism of peer discovery

Chapter 2. State of the Art in Peer to Peer Networks 14

alternative to the central tracker approach. The researchers uses the Tri-

bler protocol, based on the BitTorrent protocol, and its creators claims that

“The only way to take it down is to take the internet down”[29].

2.3 Personal Storage in Peer to Peer Networks

Solutions for personal storage in P2P networks have been recently proposed.

For example, [30] proposes Storj, a protocol to store in a decentralized

manner personal information. By removing the need of a centralized agent

like in the traditional cloud storage services, the protocol promises to be

strong against security threats. Man-in-the-middle atacks, malware and

application hacks that expose private information are not efficient if the

data is distributed among different nodes.

This protocol distribute the information of particular users in decentralized

P2P networks. This brings several challenges to the system. The previously

mentioned problem in file sharing P2P systems of finding where the files

are located in the network is still present in Storj. Moreover, since this

is a system not intended for file sharing, it is important to keep the data

encrypted in order to protect sensitive and private information of the users

against malicious nodes.

The distribution of information among peers brings the problem of hav-

ing to use processing power resources at the user side. This is specially

problematic if the client node is a mobile terminal. For instance, the com-

pany Wuala in its origins used to store information in peers close to the

consumer of the data. However they stopped doing this and decided to

change to the traditional client server approach, among other reasons, be-

cause they wanted to reduce the resources usage at the client side in terms

of processing power and data transfers [13].

Chapter 3

Network Coding in Peer to

Peer Distributed Storage

Systems

If a peer wants to distribute a file in a network, and at the same time to

guarantee that the information is reliable when some of the nodes depart

or fail, then it needs to decide how to upload the information. For instance,

the simplest approach would be to add redundancy in the system by storing

replicas of the file. At the same time, the network must decide the actions

that are going to take place when any of the nodes disconnects.

To distribute a file, for example, into four nodes we could split it into four

pieces and store one on each node. As long as the node that uploaded the

file is connected in the network the file can be recovered independently of

the state of the other nodes. However, the system must be prepared for

the departure of the uploader. The preparation involves making sure that

in the other nodes, there is at least a copy of each one of the four pieces of

the file as shown in Figure 3.1.

But if the uploader departs, then the system must take actions to guarantee

that if another node disconnects then the file will be recoverable. One way

to do it is by making a copy of the piece that each node is storing into

another node as seen in Figure 3.2.

The problem of maintaining reliable the information in a distributed stor-

age system has been studied in the past demonstrating that there are better

alternatives than simply storing copies of the file in order to maintain relia-

bility of the information. In the following sections we discuss the state of the

art results for the actions that distributed storage networks perform when

15

Chapter 3. Peer to Peer Distributed Storage Systems 16

Figure 3.1: A node splits a file into four pieces and stores them into
four different nodes.

Figure 3.2: When the uploader disconnects, the nodes must take actions
and copy the pieces they are storing into other nodes.

nodes fail. Subsequently we extend these results to the scenarios where the

distribution of information is performed into P2P networks. These type of

networks have the particularity of being dynamic, meaning that the number

of available nodes for the storing of the information changes in time. Be-

sides the disconnections of the peers do not necessarily means that the data

that they store is lost. Instead the information is unavailable temporarily.

We are interested particularly in the case of wireless P2P networks. We will

show that by taking advantage of the broadcast nature of wireless channels,

it is possible to reduce the number of packets transmitted in the network

when any of the nodes disconnects and the information that it was storing

has to be repaired.

Chapter 3. Peer to Peer Distributed Storage Systems 17

3.1 Coding for Distributed Storage

One problem with the replication of parts of the file in the network is that

the only way to guarantee that the file is recoverable is having at least a

duplicate of the file in the system. This means that for storing a file of four

pieces, four redundant pieces must be added to the system. In Figure 3.3

it can be seen that if only 50% of the file is stored as redundancy then the

system cannot guarantee that the file will be reliable when any of the nodes

departs. The system guarantees reliability only if the node that departs is

storing a piece replicated somewhere else in the network.

Figure 3.3: Example shows that 50% of redundancy cannot guarantee
100% reliability when any node disconnects. In case a) the file is not

recoverable, in case b) the file can be recovered.

However there is an alternative to the storage of exact replicas of the pieces

in the network. For instance, by using MDS codes such as Reed-Solomon

codes it is possible to encode the four pieces of the file into coded packets

that can be distributed into the nodes. The advantage of this method is

that any set of four coded packets are enough to reconstruct the file.

Lets examine the example shown in Figure 3.4. In this example, the same

file of four pieces A1, A2, A3 and A4, is encoded into six coded packets

R1, R2, ..., R6, using an (6, 4) MDS code, which are stored into the nodes.

By doing this and opposed to the example of Figure 3.3, a redundancy of

50% of the size of the file is enough to guarantee that the information is

recoverable no matter what node leaves the network.

The problem of distributed storage in P2P networks goes beyond than just

encoding a file and distributing the coded packets among the nodes. If our

interest is only the tradeoff redundancy-reliability, then we can consider

the problem as solved; MDS codes are optimal in this tradeoff [10] because

Chapter 3. Peer to Peer Distributed Storage Systems 18

Figure 3.4: Example shows that when using coding 50% of redundancy
can guarantee 100% reliability when any node disconnects. In both cases

the file can be recovered.

a file split into k pieces and encoded with a (n, k) MDS code contain the

minimum information required to recover the original data. However, when

a node fails or disconnects, then the system must take actions to maintain

the same level of redundancy-reliability. For instance, if one of the nodes

fails or departs, the other nodes must reconstruct in the system the re-

dundancy lost with the node. These actions require network resources i.e.

the maintenance requires bandwidth to be performed. Distributed storage

systems are built in shared networks where sometimes the time the costs in

terms of bandwidth are more expensive that the costs in terms of storage.

In that sense, the optimal tradeoff of redundancy-reliability is not enough.

We might be interested in sacrificing some of the storage resources to be

able to perform maintenance in the system using less bandwidth.

Most of the researchers study the reconstruction of the redundancy in new-

comers nodes (i.e. when a node fails, some redundancy is built into a new

node in a process called repair) and focus in the costs in terms of band-

width and storage associated with the repair. When MDS codes are used

and the system performs a repair, it needs to reconstruct the whole file in

a node, and subsequently generate new coded packets that will be stored

in a newcomer node.

This means that if each node stores a fraction M/k of a file, to repair the

redundancy lost with a disconnected node, then the process would require

the download of (k − 1) ·M/k bytes into a node so it can reconstruct the

file. This node would then generate a packet of size M/k bytes that it

would transfer to the newcomer node. In conclusion, to repair M/k bytes

the system must transfer (k−1) ·M/k+M/k = M bytes i.e. the whole file

Chapter 3. Peer to Peer Distributed Storage Systems 19

must be transfered over the network. This example is shown in Figure 3.5

with a system which distributes a file into six nodes using a (6, 4) MDS

code.

Figure 3.5: Example of the repair process when using a (6, 4) MDS
code. The whole file must be transfered over the network.

This tradeoff in this type of repairs has been recently studied in [9, 10, 31,

32] among others. Concluding that by using network coding it is possible to

generate codes capable of reducing the bandwidth required for the repair.

They [9] found that , it is possible to find the optimal curve describing

the tradeoff storage-bandwidth, and that such curve can be achieved using

network coding. The optimal curve has two special points of interest: The

MSR codes with a similar behavior to the MDS codes in terms of band-

width required for a repair; and the MBR codes, which sacrificing storage

resources are optimal in bandwidth usage, since they are able to make the

repair of a missing node by transferring over the network the minimum

theoretical information.

Chapter 3. Peer to Peer Distributed Storage Systems 20

However, sometimes the systems might not be able to bring a newcomer

node to the network, and the repair of the redundancy must be performed

in the nodes already present in the system. In this project we are interested

in expanding the concept of the repair. We are interested in studying what

are the actions that the system must perform when the disconnections of

the nodes are not only due to failures but also due to departures i.e. when

the nodes that disconnected do not lose all the information that they were

storing but instead they reconnect after some time with the same data

that they had stored at the moment of the disconnection. In that case the

system must perform a repair of different nature, not with the objective

of reconstructing the redundancy lost, but instead intended to remove the

extra redundancy now that a node reconnected bringing back information

to the system. We are also interested in evaluating some of the results of

[9] in the case where the repair is not performed in a newcomer node but

instead it is built in the remaining nodes, thus preparing the system for

another disconnection.

The type of repair that we are going to consider for the rest of the project is

the so called functional repair. In the bibliography there are described three

types of repairs [10]: If the nodes have to repair exact copies of the packets

stored in the failing node, as in the example of Figure 3.5, then it is called an

exact repair. If the restriction of exact repair is relaxed, and we only need

to guarantee that the code maintains MDS properties, i.e. that only the

minimum number of packets are needed to recover the information. Then

we are talking about a functional repair. If on the other hand, the system

have to perform the storage with a systematic code, meaning that at all

time exists in the system one copy of uncoded data, then the repairs of the

systematic parts of the code are done with an exact repair approach while

the non systematic parts are repaired with a functional repair approach. In

this case we are talking about an exact repair of the systematic part.

3.2 Network Coding and the Functional Repair in

Newcomer Nodes

The key in [9] to describe the tradeoff storage-bandwidth problem of dis-

tributed storage systems is the definition of the information flow graph. Di-

makis et al. define this as an acyclic graph which consists of three different

kinds of nodes. An uploader U , storage nodes N i
in, N

i
out, and a downloader.

The uploader is the node that possesses the original file, the storage node

i is represented by an storage input node N i
in and a storage output node

Chapter 3. Peer to Peer Distributed Storage Systems 21

N i
out connected with a directed edge N i

in → N i
out with capacity equal to the

amount of data stored at the node i. The nodes of the graph might be at

any point in time active or inactive since the graph evolves in time. When

the uploader wants to distribute a file into the storage nodes, it connects

to the storage input nodes U → N i
in with edges of infinite capacity. When

the uploader disconnects, its vertex becomes inactive. A node j can only

download information from active vertices. If a node j downloads informa-

tion from a node i, then it is represented as a directed edge N i
out → N j

j

with capacity equal to the amount of data downloaded. A downloader is a

node that intends to reconstruct the data stored in the system. It connects

with any set of active nodes through directed edges N i
out → D of infinite

capacity.

The main idea in [9] is that given a system of n active storage nodes, stor-

ing α bits each, where a repair is done such as a newcomer downloads β

bites from each d surviving nodes for a total repair bandwidth of γ = dβ,

then exists a family of information flow graphs for each set of parameters

(n, k, d, α, γ) (they focus on the case where any k nodes can recover the

whole file and the newcomer node downloads the same amount of infor-

mation from each node). This family is denoted as G(n, k, d, α, γ) and it

is said that a tuple (n, k, d, α, γ) is feasible if a code with storage α and

repair bandwidth γ exists. Subsequently they prove that exists a threshold

function α∗(d, γ, k, n,M) such that for any α ≥ α∗, the tuple (n, k, d, α, γ)

is feasible. And also they find that there is an optimal tradeoff (α, γ).

There are two special points in their optimal tradeoff curve. The minimum

storage point is

(αMSR, γMSR) =

(
M

k
,

Md

k(d− k + 1)

)
(3.1)

It is important to note that when k = d i.e. when the number of nodes

that the newcomer contact is equal to the minimum required to recover the

file, then γ = M . This means that it is optimal to download the whole

file. This behavior, when k = d is similar to the MDS codes in terms of

redundancy-storage tradeoff and bandwidth-storage tradeoff. However if

we let the newcomer contact more nodes such that d > k, then there are

codes that outperforms the MDS codes with the same storage requirements

in terms of repair bandwidth.

Similarly, the other special point in their optimal tradeoff curve is the min-

imum bandwidth point.

Chapter 3. Peer to Peer Distributed Storage Systems 22

(αMBR, γMBR) =

(
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k

)
(3.2)

In this point αMBR = γMBR which means that to repair a node it is needed

to transfer exactly the same amount of bits that each node stores. This

behavior is similar in terms of bandwidth to the replication approach.

The main idea for reaching their results is to analyze the information flow

graphs as multicasting problems. Then the results offered by linear network

coding show that in multicast networks with a single source and multiple

receivers it is possible to achieve the optimum min-cut max flow bound

[33, 34]. Linear newtwork coding achieves this multicast capacity [35]. This

means that if the min-cut of the information flow graphs is at least of the

same size of the file M , then it is possible to recover the information.

To illustrate this idea, lets consider the example shown in the information

flow graph in Figure 3.6 of a file of size M = 12Mb that we want to store in

three nodes. If we use equation 3.1, with k = d = 2 then we get the tuple

(α, γ) = (6, 12). This means that we need to store 6 coded packets of size

1Mb each into each one of the nodes. According to these results, if a node

disconnects, a newcomer needs to contact the two remaining nodes and

download 12Mb in total to repair the redundancy. As shown in the figure,

when a downloader contact two nodes and requests the file, the minimum

cut of this graph is equal to the size of the file. According to [33, 34] then it

is possible to use linear network coding to achieve this bound and recover

the file.

Figure 3.6: Example showing the information flow graph for MSR codes
and a file of 12Mb stored in 3 nodes. All sizes are in Mb.

Chapter 3. Peer to Peer Distributed Storage Systems 23

In a similar way, if we use equation 3.2, with k = d = 2 then we get the

tuple (α, γ) = (8, 8). In this case, a newcomer node needs to download 8Mb

in total from the surviving nodes. It can be seen that the minimum cut

of this information flow graph shown in Figure 3.7 is also equal to the size

of the file. This shows that with linear network coding, by storing more

redundancy in the system it is possible to repair the information lost with

the disconnection of a node transferring the information theoretic minimum

[9].

Figure 3.7: Example showing the information flow graph for MBR codes
and a file of 12Mb stored in 3 nodes. All sizes are in Mb.

3.2.1 Random Linear Network Coding

Since we are interested in implementing a distributed storage system de-

centralized and with the minimum possible coordination, we will consider

random linear network coding for our approach. Results from [36] show that

RLNC achieves good network codes with high probability. This means that

with high probability it will be possible to achieve the multicast capacity

in the information flow graphs described previously.

In RLNC a coded packet pj is generated producing linear combinations of

the the original data pieces x1, x2, x3, ..., xk. Such as:

pj =

k∑
i=1

ci,j · xi (3.3)

The coefficients of equation 3.3 are chosen randomly from a q-element finite

field usually of the form GF(2m). A finite field is a finite set with well-

defined and efficiently implementable addition, subtraction, multiplication

Chapter 3. Peer to Peer Distributed Storage Systems 24

and division [35]. This means that we can consider each coded packet as

a linear equation with k variables. Since addition and multiplication are

performed over the finite field, then the size of the coded packets will be the

same as the size of the original pieces. And it is possible to use all the known

tools from linear algebra for solving linear equations, e.g. matrices, Gauss-

Jordan elimination. With these tools, a decoder will need only k linear

independent packets to be able to reconstruct the whole data. Equation

3.4 shows the relation between the coded packets, the coding coefficients

and the original packets.

p1

p2

p3
...

pn

=

c11 c12 c13 · · · c1k

c21 c22 c23 · · · c2k

c31 c32 c33 · · · c3k
...

...
...

. . .
...

cn1 cn2 cn3 · · · cnk

x1

x2

x3
...

xk

(3.4)

The coefficients used to generate each pi constitute a vector known as the

coding vector which is appended as an overhead to the coded packet. The

size of this coding vector in bytes depends on the number of original pieces

used, known as generation size and the size of the finite field used.

For example to transfer a file of 100KB, it is split into 100 pieces of 1KB

each. The generation size is then k = 100. Each coded packet is gener-

ated making linear combinations of the 100 original pieces and append-

ing the coding vector. If the size of the finite field used is q = 2 (i.e.

GF(2) = {0, 1}) then the size of the overhead due to coding vectors will

be k · log2(q) = 100bits appended at the end of each coded packet. This

means that each pi contains 1KB of information and 100bits of overhead.

The overhead corresponds to approximately 1.2% of the transfered packet.

When the symbol size get bigger the overhead due to the coding vector

becomes negligible.

When using RLNC there is another type of overhead due to linear depen-

dency. Since the coefficients are being chosen randomly, then the probabil-

ity of generating linear dependent packets is a function of the generation

size and the field size [37, 38]. The overhead due to linear dependencies

occurs because linear dependent packets do not provide new information

to the decoder, so it becomes necessary to transmit extra packets. The

greater the size of the field, the smaller the probability of generating linear

dependent packets, but the greater the overhead due to the size of coding

vectors.

Chapter 3. Peer to Peer Distributed Storage Systems 25

The computational complexity associated with encoding and decoding in-

creases when the generation size becomes bigger. For that reason, if the

system needs to encode or decode a big file it first divides it into blocks or

generations and then performs the encoding operations over these blocks

of a more manageable size.

3.3 Our Contribution: Functional Repair Into a

Reduced Set of Nodes

Imagine that we distributed a file into three different nodes in a network.

One of them fails and we do not possess at the time the resources to connect

a newcomer node to the system. Would we then be doomed to not be able to

maintain the reliability of the information? If we have the storage resources

in the available nodes we might be interested in building redundancy into

them, just to keep the data reliable, transferring it later to a newcomer

node when we get the resources. We are interested then into applying the

concept of the information flow graph to the described scenario. How would

the information flow graph look like in such case?.

To illustrate this, we are making the addition of time windows to the in-

formation flow graph. In every time window we draw the storage nodes

N i
in, N

i
out. The idea is inspired in the concept of trellis graphs and it is

basically that if a storage node N i is available in two time windows tm−1

and tm, then there is an edge with capacity α equal to the data that the

node is storing from N i
out at tm−1 to N i

in at tm. If a node N j downloads β

bits from a node N i then a time window is spanned and we draw an edge

of capacity β from N i
out at tm−1 to N j

in at tm. The first time window t0

has an uploader node U connected to the storage nodes that it contacts to

distribute the file with an edge of infinite capacity. In the same manner in

the last time window there is a downloader node D connected to the nodes

from which it downloads the file, also with an edge of infinite capacity.

Extending the idea in [9] to our scenario, the file can be reconstructed after

several repairs if the minimum cut of the modified information flow graph

is at least equal to the size of the file. If we use RLNC with a big field,

for example GF(28), then the recovering of the file is possible with high

probability.

In Figure 3.8 it is illustrated an example of a modified information flow

graph of a file distributed into four nodes using the MSR codes. Using

equation 3.1 when k = d = 3 meaning that for a repair we need to access

Chapter 3. Peer to Peer Distributed Storage Systems 26

all the surviving nodes in order to retrieve the file, we get that the values

of α and γ are

(αMSR, γMSR)|k=d =

(
M

k
,M

)
(3.5)

So in Figure 3.8 the uploader stores M/3 bits (neglecting the overhead due

to coding vectors) into each of the storage nodes. This results in a total

storage of 4 · M/3 bits i.e. a 33% of redundancy. When the node N4

disconnects the other storage nodes trigger a repair. They elect a leader

and each node transfers M/3 to it. This means that each node transfers to

the leader all the data that they are storing. The leader node was storing

already M/3 bits of the file. So after the transfer from the other nodes it

has now enough packets to recover the file. However the intention of this

node is not to reconstruct the file, but to recode the packets and transfer

M/6 bits to each of the other nodes, to store itself M/6 more of the file

and remove the extra information. These transfers are appreciated in the

time window t2 in Figure 3.8. After doing this, the system has stored M/2

of the file in each node, for a total of 50% redundancy. In total γ = M

bits were transfered over the network. This type of codes have the same

behavior as MDS codes in this system since M bits need to be transfered

to repair one node. In that sense, we can see the repair of a disconnected

node using MSR codes when k = d as the process of making, from a (4, 3)

MDS code (four nodes out of which only three are needed to recover the

file), a (3, 2) MDS code.

It is important to note that when using RLNC this is possible to achieve

with high probability (with a big field), however it cannot be guaranteed.

One possible approach to overcome this issue in a practical scenario using

random codes is to store some more information in each node. And at the

same time transfer some extra packets as the values of β1 and β2

In a similar way we illustrate in Figure 3.9 the modified information flow

graph for the case of a repair using MBR codes. Using equation 3.2 when

k = d we obtain equation 3.6

(αMBR, γMBR)|k=d =

(
2M

k + 1
,

2M

k + 1

)
(3.6)

This means that, as shown in Figure 3.9, the uploader node stores M/2 bits

into each of the storage nodes i.e. a 100% of redundancy is in the system.

But when a node disconnects the repair session requires only a total of M/2

bits transfered.

Chapter 3. Peer to Peer Distributed Storage Systems 27

F
ig
u
r
e
3
.8
:

In
fo

rm
at

io
n

fl
ow

g
ra

p
h

fo
r

a
re

p
a
ir

se
ss

io
n

in
a

sy
st

em
o
f

fo
u

r
n

o
d

es
u

si
n

g
M

S
R

co
d

es
.

Chapter 3. Peer to Peer Distributed Storage Systems 28

F
ig
u
r
e
3
.9
:

In
fo

rm
atio

n
fl

ow
g
ra

p
h

fo
r

a
rep

a
ir

sessio
n

in
a

sy
stem

o
f

fou
r

n
o
d

es
u

sin
g

M
B

R
co

d
es.

Chapter 3. Peer to Peer Distributed Storage Systems 29

3.4 Our Contribution: Distributed Storage Sys-

tems With RLNC in Wireless Lossy Channels

When managing a distributed storage system, we might be interested in

storing the information as close to the peers that are consuming it as pos-

sible. This reduces the time between a message is requested and when it

is served due to the round-trip delay. It could be possible to distribute

the information not in peers but only within commercial cloud providers,

this however would mean that when accessing the information, the sys-

tem would need to wait enough time for the requests to be served. For

instance, in [39] the authors distribute information into four commercial

cloud providers (Dropbox, Box, Skydrive and Google Drive). And when

they perform requests of packets to those services they obtain round-trip

delays that vary from one second for the fastest responding cloud to 4.1

seconds for the slowest cloud.

Most of the time, the peers where we can distribute information share a

wireless channel which they can use for the communications. In multi-hop

networks, this can result in an advantage. For example by exploiting the

spatial diversity and the broadcast nature of wireless channel it is possible

to reduce the packet loss probability. The example in Figure 3.10 illustrate

this scenario. The sender node is in a bad position in the network and

it wants to transmit information to a destination node. If the sender had

a single path to do this, then the best scenario would be achieved when

the sender uses the path with less loss probability (the blue line). In this

case the packet loss probability would be of 50%. However if the sender

broadcasts the information, then any node that receives the packet can

forward it to the receiver, thus reducing the packet loss probability in this

case to 0.53 = 12.5%.

Figure 3.10: Example showing the advantages of spatial diversity in
wireless networks

Chapter 3. Peer to Peer Distributed Storage Systems 30

When the distributed storage system operates in a wireless lossy channel,

then it is possible to exploit the benefits that RLNC offers for the commu-

nications in these scenarios, as well as the benefits of these types of codes

in storage systems described in the previous sections. For instance, RLNC

allows the recoding at intermediate nodes which can increase the number

of innovative transmissions in case of losses in multi-hop networks.

When exploiting the broadcast nature of the wireless channels, it is possible

to reduce the number of transmissions in the repair sessions. To illustrate

this, let us consider an example of the MSR storage codes where a file

consisting of six original pieces is stored into four storage nodes N1, N2, N3

and N4, in a systematic fashion using network coding with a binary field.

After some time N4 disconnects, which triggers a repair session among the

surviving nodes. Let Ci be the matrix of the coding vectors of the packets

stored in the storage node i. Since the system is storing the data in a

systematic manner then

C1 =

[
1 0 0 0 0 0

0 1 0 0 0 0

]
,C2 =

[
0 0 1 0 0 0

0 0 0 1 0 0

]
,

C3 =

[
0 0 0 0 1 0

0 0 0 0 0 1

]

Our previous results tell us that since we are using MSR codes, then we need

to transmit 6 packets during the repair session (illustrated in Figure 3.11

with slightly simplification of the notation for the information flow graph).

If each link has a loss probability of 50% then on average the repair session

will require 12 transmissions to complete.

If instead of performing multicasting, the nodes involved in the repair

broadcast their messages then the number of transmissions could be re-

duced. For example, lets consider the six initial broadcasts, two per node

as shown in Figure 3.12, (full lines mean that the message was received,

while doted lines means that the message got lost). Lets assume that for

the initial transmissions each node sends a copy of the packets they are

storing.

Chapter 3. Peer to Peer Distributed Storage Systems 31

Figure 3.11: Example showing a simplified information flow graph of
the repair session performed by 3 nodes storing a file of 6 pieces using

MSR codes.

Figure 3.12: Initial six transmissions of a repair session using broadcast
messages.

After the six initial transmissions with the losses described in Figure 3.12

the nodes have received the following packets:

Chapter 3. Peer to Peer Distributed Storage Systems 32

r1 =

[
0 0 0 0 1 0

0 0 0 1 0 0

]
, r2 =

[
1 0 0 0 0 0

0 0 0 0 0 1

]
,

r3 =

[
0 1 0 0 0 0

0 0 1 0 0 0

]

Where ri is the matrix with the received coding vectors during the repair

session.

Subsequently, in the following three transmissions, the nodes send linear

combinations of all the packets received as shown in Figure 3.13. After

the 9th transmission is complete, each node has enough information to

store linear independent packets. In this example each link has a 50% loss

probability. At the end of the repair, the matrices of coding coefficients

are:

C′1 =

1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 1 1 1

 ,C′2 =

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 1 1 0

 ,

C′3 =

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 1 1 0

Figure 3.13: Final three transmissions of a repair session using broad-
cast messages.

Any two matrices C′i are enough to recover the information. This example

illustrates that only 9 transmissions are needed to perform a repair session.

Chapter 4

Protocol Design and

Software Implementation

For the purpose of studying in a real scenario the obtained results in chapter

3 we implemented a system and installed it into a group of Raspberry Pis.

The system seen from the most general perspective is illustrated in Fig-

ure 4.1. It can be seen three different types of entities.

Figure 4.1: General view of the software implemented

• There is present a set of nodes N1, N2, ..., N6. Those nodes together

constitute the set of all the peers in the scenario. To simplify the

diagram, only six nodes are shown, however the system may contain

many more. These peers might departure from the network at any

moment and return also at any moment. The peers might experience

total failure. In that case they don’t return to the network, or return

without the data they were storing.

33

Chapter 4. Protocol Design and Software Implementation 34

• There is an uploader. It is a node with the task of uploading a file

into the peers. After the upload is completed, it then dissapears from

the scenario.

• A downloader is an object that contact the nodes of the system and

requests to download a specific file from them.

The distinction between uploader, downloader and peer is merely logical.

In practice, in the P2P network, the uploader and downloader are at the

same time members of the set of peers. In that sense, any peer can request

at any time to upload a file into any other of the peers. If the other peers

possess the resources, then they allow the upload to happen. For example

N1 can request to N2, N3 and N5 permission to upload 10 MB on each.

If N2, N3 and N5 accept, then in the logical distinction of Figure 4.1, N1

becomes the uploader entity. When the upload session finishes, the uploader

becomes N1 again. This example is shown in Figure 4.2.

Figure 4.2: Upload session seen without the logical distinction of the
uploader entity.

In the same manner, any peer can contact the nodes on the network and

request to download a file. If the contacted peer possesses part of the file,

they accept the request and the download session starts. Similarly as in the

upload session, the node that requested the download becomes for a short

period of time, i.e. until the download is finished, into the downloader

entity.

The peers are constantly waiting for requests to upload or download from

other peers. If a subset of the peers accept the upload of a file, that subset

form a pal network. The set of pals of a peer is the set of all the peers

Chapter 4. Protocol Design and Software Implementation 35

that are sharing the storage of a file with such peer. The objective of a

pal network is to maintain the file or files uploaded into them reliable. The

reliability is achieved adding redundancy to the system when any of the

peers disconnects. This is done through repair sessions.

The following sections of this chapter describe the protocols implemented

in the system for the upload, download and repairs of files in the system.

4.1 The Uploader

The uploader is an object whose objective is to distribute a file into a set of

peers. It has the tasks of splitting the file into blocks or chunks, decide into

how many peers will distribute it and decide how much data will upload

into the peers. The messages that it exchanges with the target nodes are

shown in Figure 4.3.

Figure 4.3: Example of messages exchanged between an uploader and
three target nodes.

Chapter 4. Protocol Design and Software Implementation 36

The uploader starts the session deciding the parameters of the encoder it is

going to use. These parameters include the maximum generation size and

the symbol size. After deciding these numbers it collects information on the

file it is going to upload. The uploader determines the SHA-1 sum of the

file and the file size. At this point it has enough information for splitting

the file into blocks or chunks. The uploader calculates the size of each chunk

according to the block partitioning algorithm proposed in the Request for

Comments (RFC) publication 5052 [40] and described in Section 4.1.1.

Once the file is split into chunks, the uploader builds an encoder object,

decides into how many nodes it is going to distribute that particular chunk

and based on that, decides how many packets it is going to transfer to

each peer. The uploader then contacts a target node sending a UPLOAD_REQ

message. This request has information on what chunk is it transferring,

the total number of chunks, the number of packets that it is requesting to

upload and into what other nodes it is uploading the file. Based on this

information, the node decides if it accepts or rejects the upload, answering

ACCEPT_UP or REJECT_UP respectively. In our system the size of the symbols

is fixed and it is known to all the peers. This means that each peer can

calculate, when it process the UPLOAD_REQ message, how much data in bytes

the uploader wants to upload into it. In case of a non fixed size for the

symbols, this imformation could also be included in the UPLOAD_REQ message.

If the target peer answers with an ACCEPT_UP message, the uploader node pro-

ceeds to generate coded packets transferring them in DATA_PACKET messages.

When the uploader receives an ACK message, then it picks the next node in

the list of target nodes for that specific chunk and repeats the process of

upload request and data transfer.

When this has been done for all the chunks then the upload has finished

and the uploader object can be destroyed. Figure 4.4 shows a flow diagram

describing this process.

Chapter 4. Protocol Design and Software Implementation 37

Figure 4.4: Flow diagram of the uploader object.

Chapter 4. Protocol Design and Software Implementation 38

4.1.1 The Block Partitioning RFC5052

When deciding the size of each block, we use the algorithm proposed in

[40] to compute the partitioning of an object into source blocks so that

all blocks are as close to being equal to the same length as possible. The

algorithm divides the object in two groups of source blocks: one group of

the same larger length and a second group of smaller equal length.

The algorithm takes as input the size of the file, the desired maximum

number of symbols and the maximum desired symbol size.

It basically fixes the symbol size to the size provided in the input as max-

imum desired symbol size, and based on that it finds the total number of

blocks and the length in symbols of each block.

The algorithm is described in two steps. The first step, which computes

the total number of symbols and the total number of blocks, is shown in

equations 4.1 and 4.2.

Total Symbols = ceil

(
File Size

Maximum Symbol Size

)
(4.1)

Total Blocks = ceil

(
Total Symbols

Maximum Symbols

)
(4.2)

The second step of the algorithm computes the number of symbols of the

larger blocks and the smaller blocks (shown in equations 4.3 and 4.4) and

the number of larger blocks and smaller blocks (shown in equations 4.5 and

4.6).

Large Blocks Symbols = ceil

(
Total Symbols

Total Blocks

)
(4.3)

Small Blocks Symbols = floor

(
Total Symbols

Total Blocks

)
(4.4)

Large Blocks =Total Symbols− (Small Blocks Symbols · Total Blocks)
(4.5)

Small Blocks = Total Blocks− Large Blocks (4.6)

Chapter 4. Protocol Design and Software Implementation 39

4.2 The Downloader

The task of the downloader object is to request a file to the peers. If the

peers have coded packets of any of the parts of the file, they answer the

request and the download session starts.

In Figure 4.5 it is illustrated the messages sequence between a downloader

that wants to download a file and three target nodes that it contacts for

this purpose.

Figure 4.5: Example of messages exchanged between a downloader and
three target nodes.

The downloader first obtains a file similar to the torrent file of the BitTor-

rent protocol described in Section 2.2.4 which contains meta-data informa-

tion on the file that is stored in the network. Information about the size

of the file, the number of blocks into which it was split, the size of each

Chapter 4. Protocol Design and Software Implementation 40

block, the SHA-1 sum of the file and the IP addresses of the peers that are

storing it in the network. With this information the downloader is able to

start communications with the peers.

The communications start with the downloader sending a DOWNLOAD_REQ mes-

sage with the SHA-1 sum of the requested file. The peers check if they

have any coded packet belonging to that file, and if they do, they answer

with the message ACCEPT_DOWN, otherwise they send the message REJECT_DOWN.

If the downloader receives any positive answer by any of the peers then it

instantiate all the decoders objects (one per each chunk) and waits for the

transmissions of coded packets.

Every time the downloader receives a coded packet in a message DATA_PACKET

which also contains information about the chunk that it belongs to, it feeds

the coded packet to the corresponding decoder. When a chunk is success-

fully decoded the downloader sends an ACK message to the peer that sent

the coded packet. These ACK messages contain information about the chunk

that is being acknowledged. If all the file was successfully decoded, then

the download session finishes and the downloader object is destroyed.

The downloader unicasts the ACK messages every time it receives a coded

packet belonging to a chunk already decoded. This might lead to situations

where extra and unnecessary overhead is introduced to the system. For

instance, lets imagine the scenario where a downloader needs one more

coded packet to decode a chunk as illustrated in Figure 4.6. The node that

is sending the coded packets might send two packets pi and pi+1 before the

downloader can process the first one. So, after the downloader processed

pi it sends an ACK, however pi+1 is already in the queue of received packets

in the downloader. This means that right after the ACK is sent, when it

processes pi+1 it unicasts a second ACK to the transferring peer.

The second transmission of an acknowledgment is unnecessary if the trans-

ferring peer received the first one. However we decided to opt for this ap-

proach because in the presence of a lossy channel, the ACK messages might

get lost. If that happens, the downloader is not able to know if the trans-

mission of pi+1 occurred because the transferring node did not receive the

ACK message and did not know that the chunk was decoded. This is shown

in Figure 4.7.

As a complement to the message sequence in Figure 4.5, the flow diagram

of the downloader object is shown in Figure 4.8.

Chapter 4. Protocol Design and Software Implementation 41

Figure 4.6: Scenario where
multiple ACK messages brings
unnecessary overhead to the

system.

Figure 4.7: Scenario where
multiple ACK messages are
needed due to losses in the chan-

nel.

Chapter 4. Protocol Design and Software Implementation 42

Figure 4.8: Flow diagram of the downloader object.

Chapter 4. Protocol Design and Software Implementation 43

4.3 The Node

The node object is the base of the implementation. As mentioned earlier

and shown in Figure 4.2 it is within the node object that the uploader

and downloader objects are constructed. This object is created at the

beginning of the application and remains in memory until the termination

of the program.

The communications in our application were implemented using the library

Boost Asio C++ [41], specifically the asynchronous calls for the read, write

and timers operations. The advantages of this method over synchronous

calls is that we can design our application to be single threaded, thus avoid-

ing all the complications that multi threaded programming brings. The cost

is the complexity involved when thinking asynchronously [42]. The logic of

the program switches from a sequential perspective such as do A then do

B then do C... and so on where A, B and C are blocking operations, to an

event-driven perspective [41]. It is defined when asynchronous operations

start but not when they end. Instead, when the asynchronous operation

is called, a handler function is given as an argument of the call and the

operation is scheduled. When the operating system performs the opera-

tion, the handler function is called. As long as there is any asynchronous

operation scheduled, the program does not end. So in an asynchronous

approach, when the handler of an operation is called, it should schedule a

new asynchronous call so there are always scheduled tasks preventing the

program to end. This is known as chaining asynchronous operations.

For that reason the best way to understand the node object is to think

of it in terms of a state machine as the one shown in Figure 4.9. When

the application starts, it binds itself to three sockets. One socket for sig-

naling purposes such as upload and download requests, another socket for

upload and download of data packets and a third socket used for the repair

messages exchanged during the repair sessions described in Section 4.4.

If the binding of the sockets is accomplished successfully, the node then in-

vokes the asynchronous operation of listening for requests. This operation is

called with the handler handle_request() as an argument. The node remains in

this state until a request arrives. When any request is received through the

signaling socket, then the handler handle_request() is called changing the state

of the node. In this state, the node processes the request, it evaluates it and

decides if it is going to accept it, reject it or ignore it (in case of receiving an

unknown message). If the request was accepted then the node schedules the

asynchronous operation of sending the ACCEPT_UP or ACCEPT_DOWN message with

the handlers serving_uploader() and serving_downloader() respectively. Before

Chapter 4. Protocol Design and Software Implementation 44

leaving this state, it makes a new asynchronous call to async_listen_request()

in order to be ready for receiving a new request.

At this point, after finishing the execution of the handle_request() function, if

the message was not ignored, the node has made, at least two asynchronous

calls: an async_listen_requests() and an asynchronous call to send the response

to the request. If the request was accepted, the handler provided as argu-

ment to the asynchronous send is serving_uploader() or serving_downloader(). In-

side these handlers new asynchronous operations are scheduled and chained

in order to comply with the established protocols described in Figure 4.3

and Figure 4.5.

Figure 4.9: State diagram of the node object. It is the base of the
application.

Chapter 4. Protocol Design and Software Implementation 45

4.4 The Pal Web and the Repair Sessions

When the uploader uploads a file into a set of nodes, it also provides them

with information about the list of nodes where the file was uploaded. A set

of nodes into which a file has been uploaded form a pal web. Once a node

joins a pal web, it broadcasts HEARTBEAT messages constantly to let the other

nodes know that it is alive. The frequency of the HEARTBEAT messages can be

modified, however for this application the time between broadcasts was set

to three seconds.

From an implementation perspective, the pal web is an object that is con-

structed when the node accepts an upload request. It contains information

on the files that are being shared and protected with the rest of the pals.

It keeps track of the vital signs of each of the pals i.e. connected or dis-

connected. The pal web objects create the repair sessions objects when it

detects the disconnection of a pal.

4.4.1 The Repair Session Due to Disconnection

When a node has not received the HEARTBEAT messages from a pal after a

period of time, it creates an object called the repair session. This object is

in charge of organizing the build of redundancy within the pal network to

prepare the system for the disconnection of another peer.

Three stages constitute a repair session due to disconnection:

The First Stage of the Repair

In the first stage, a leader is chosen among the pals. When the pals broad-

casts the HEARTBEAT messages, they also include a randomly generated key

of four bytes long. This key is then used for choosing who the leader is

going to be in a repair session. The node with the greater key, becomes

the leader. In this stage, the pals also calculate how many packets should

be transferred in the repair session and how many coded packets should

they be storing at the end of the session. These calculations are performed

based on the results obtained in Chapter 3.

The election of a leader in distributed systems is a complex problem by

itself. Researchers have worked for decades in complex algorithms to solve

this problem efficiently in terms of bytes transferred and time spent. For

instance, [43] is an algorithm developed in 1983 which received the Dijikstra

prize for its influence in distributed computing, and it is able to choose a

Chapter 4. Protocol Design and Software Implementation 46

leader in a network ofN nodes and E edges transferring at most 5N log2N+

2E messages. However, for small networks our method of assigning and

broadcasting a four-bytes key as HEARTBEAT used for deciding who is the leader

showed to be sufficient and not that expensive in terms of resources. Since

our protocol already needs the broadcasts of HEARTBEAT messages, making

them of a size of four-bytes is not much expensive.

Our approach adds extra overhead to the system in case of two pals choosing

the same key. In this scenario, the problem is solved as shown in Figure 4.10.

The nodes with the same key must roll again a new key but this time

constrained to a certain range in the key space. To better illustrate the

solution of this problem, lets imagine that four nodes in a network chose the

keys k1, k2, k3 and k4 such as ki ∈ K and k1 < k2 = k3 < k4. Where K is the

set of all possible four-bytes keys. In this example the pals with keys k2 and

k3 must choose new keys k′2 and k′3. But instead of picking a key from the

whole space K, the new keys must be picked from {x |x ∈ K, k1 < x < k4}.

Figure 4.10: Scenario describing the problem of two pals picking the
same key.

The system is ready to react in case of equal keys, but for a small number

of nodes, the event of two pals choosing the same key is very unlikely.

Finding the probability of this event occurring is similar to the famous

birthday problem, which computes the probability of two persons out of

N randomly chosen having the same birthday. Equation 4.7 shows the

probability of at least two pals choosing the same key out of a pool of |K|
keys in a pal web of N nodes.

Chapter 4. Protocol Design and Software Implementation 47

p(N, |K|) = 1− |K|!
|K|N · (N − 1)!

(4.7)

With the Taylor expansion of ex ≈ 1+x it can be approximated to Equation

4.8.

p(N, |K|) ≈ 1− e−N2/2|K| (4.8)

Using Equation 4.8, it can be shown that for at least two pals choosing the

same key out of the space of all four-bytes keys with a probability of 0.1%,

the number of peers in the pal web, N , must be of approximately 2.9 · 103.

The Second Stage of the Repair

In the second stage, the pals builds all the recoders (one per each chunk

that they are protecting) feed them with the coded packets that they are

storing. Then, they send coded packets to the leader. The leader feeds

these coded packets to its own recoders until they reach the desired rank

for this the repair session, calculated on the first stage based on the results

of 3. When such rank is reached in each individual recoder, the leader

broadcasts an ACK message with information about the chunk that reached

such rank. This messages sequence is summarized in Figure 4.11.

Figure 4.11: Example of the message sequence of the second stage of
the repair with one leader and three pals.

Chapter 4. Protocol Design and Software Implementation 48

The Third Stage of the Repair

In the third stage, the leader transmits recoded packets to the rest of the

pals, one by one, in a round-robin fashion. The pals save these packets

appending them to the already stored coded packets. When the nodes

receive all the packets scheduled to store, number which was calculated in

stage one, they send an ACK message to the leader. When this has been done

for all the pals and all the chunks, the leader append some of the packets

to its own file and the repair session ends.

Figure 4.12: Example of the message sequence of the third stage of the
repair with one leader and three pals. Each pal stores the received coded

packets.

4.4.2 The Repair Session Due To Reconnection

When a pal reconnects to its pal network, it must inform the other pals that

it has returned in order to organize a repair session due to reconnection. The

Chapter 4. Protocol Design and Software Implementation 49

objective with this repair is to remove the extra redundancy in the system

and distribute it equally among all the pals now that a pal has reconnected.

This means three things depending on the amount of data stored in each pal

at the moment of the disconnection. To explain them lets imagine the case

where the system stores the minimum possible redundancy. If only three

nodes are alive, it means that each one is storing coded packets summing

up to a total of 50% of the size of each chunk (in this way if another peer

disconnects, the whole file is recoverable). If a fourth pal reconnects, then

after the repair session ends, all the peers must be storing 33% of the size

of each chunk. So depending on the amount of coded packets stored in the

reconnected peer at the moment of the reconnection there are three possible

scenarios:

• If the peer disconnected in a moment when the pal network had a

greater number of peers alive that it has at the moment of the re-

connection, then the rest of the peers must send some coded packets

to the reconnected pal so it can catch up, so it can store the same

number of coded packets. This is illustrated in Figure 4.13. Then the

pals must remove some of the redundancy. This is the same scenario

in case of a new node joining the system.

Figure 4.13: Actions that the reconnected peer must perform during
the repair session when it must append coded packets.

• If the peer disconnected in a moment when the pal network had a

lesser number of peers alive that it has at the moment of the re-

connection, then all the peers, including the reconnected one must

remove redundancy. This is illustrated in Figure 4.14.

• If the peer disconnected in a moment when the pal network had an

equal number of peers alive that it has at the moment of the re-

connection, then all the peers except for the reconnected one must

Chapter 4. Protocol Design and Software Implementation 50

Figure 4.14: Actions that the reconnected peer must perform during
the repair session when it must delete coded packets.

remove redundancy. The reconnected peer must not append nor re-

move coded packets. This is illustrated in Figure 4.15.

Figure 4.15: Actions that the reconnected peer must perform during
the repair session when it must not delete nor append coded packets.

To distribute equally the file and the redundancy, the reconnected peer

must notify the rest of the pals the number of packets that it stored at

the moment of the disconnection. To do this, it broadcasts a RECONNECTED

message which contains this information as shown in the message sequence

in Figure 4.16.

The other pals, based on this message, calculate how many packets the

peers on the pal web should be storing, how many packets should each

individual pal remove and how many packets the reconnected peer should

append or remove. They notify the last calculation to the reconnected peer

with the messages REMOVE_N or APPEND_N depending on if the reconnected node

must append or delete extra packets.

After sending a REMOVE_N message, each peer proceeds to remove the extra

packets they store. Similarly, when receiving a REMOVE_N message, the re-

connected peer also removes a certain number of packets it was storing

depending on the information contained in the message.

Chapter 4. Protocol Design and Software Implementation 51

Figure 4.16: Messages sequence for a repair session due to reconnection
where the reconnected peer must append coded packets.

If on the other hand the reconnected peer needs to append some extra

packets to those that it is storing, then after receiving the APPEND_N message,

it waits for the transmission of coded packets from the other pals.

Chapter 5

Measurements Results

Using the protocol described in Chapter 4 for distributed storage systems,

we implemented an automated test scenario with eight Raspberry Pis de-

vices connected in a network. In the automated test scenario, a central

computer connects through Secure Shell (SSH) to all the devices, and it

starts the application software in seven of them. These devices then wait

for the request to upload a file from another node. After some seconds, the

central computer starts the software in the eighth node. This node uploads

a file of 500K bytes distributedly into the rest of the peers, using one of the

strategies (MSR or MBR) and then disconnects from the network.

After the upload is completed, the computer controlling the test stops the

running application in a Raspberry Pi chosen randomly. This disconnec-

tion, as explained in Chapter 4, triggers a repair session in the remaining

nodes. For this repair session a number of packets are transferred among the

nodes depending on the strategy agreed during the upload of the file. The

number of packets transferred and the time spent in the different stages of

the repair session are recorded. When the repair session finishes, the Rasp-

berry Pi chosen as leader in the protocol notifies the central test machine

that the repair session has finished. After being notified, the computer stops

the running application in another node chosen randomly, which triggers

again another repair. The running applications are stopped until there are

only two nodes remaining.

This process is repeated 50 times for different generation sizes and symbol

sizes. The size of the symbols and the generation sizes are chosen such

that the size of the coded packet plus the coding vector is less than the

size of the Ethernet frame (1472 bytes). This is done in order to prevent

fragmentation of the UDP packets and being able to take advantages of

53

Chapter 5. Measurements Results 54

network coding in communications over lossy channels. The recorded data

is then processed showing the results in the following sections.

5.1 Measurements of the Time Spent in the Re-

pair Sessions

The measurements of the time spent in the different stages of the repairs

sessions for the strategy MSR are shown in Figure 5.1

Figure 5.1: Total time spent in the repair sessions for different genera-
tion sizes and symbol sizes using MSR codes.

It is important to mention that for a generation size of 20 symbols, the

curve in Figure 5.1 seems to be incomplete. This is simply because the

uploader node distributes enough redundancy in the system so the first

repair session is not necessary. One must remember that the values of α

and γ are calculated per chunk, i.e., each chunk is seen as an individual file

that needs to be repaired in the system. This means that for a generation

size of 20 symbols, each packet contains 5% of the information of the file

to repair.

The implemented system requires a long time to perform the repairs when

the generation size is small. This is due the fact that we are using UDP

protocol for our communications. When the generation size is small, the

processing time for encoding packets is short causing that the nodes produce

Chapter 5. Measurements Results 55

and send a large amount of coded packets. All these coded packets cause a

congestion in the network and as a consequence, the ACK messages experience

a long delay before they can be received by the nodes sending the data

packets.

This reduction of the goodput can be verified in Figure 5.2. It can be

appreciated that the total number of transferred packets when the repair

is performed in 5 nodes is around 1350 on average, which represents more

than double of the calculated required packets for the repair session.

Figure 5.2: Total number of packets transferred in the repair sessions
for different generation sizes and symbol sizes using MSR codes.

This issue with congestion is present also for the MBR strategy as shown

in Figure 5.3. It can be seen that for smaller generations, the time required

for the repair is longer than for larger generations. Nevertheless, for the

MBR the effect of congestion is less dramatic when the number of remaining

nodes is two. In Figure 5.3 it can be appreciated that the total repair time

for all the generation sizes is almost the same when the repair session is

performed only in two nodes.

For both strategies, the total required time for the repair sessions is shorter

for larger generations when performed on a larger number of nodes. For

instance, for the MSR strategy shown in Figure 5.1, when the generation

sizes are of 143 packets, and the repair is performed on 6 nodes, then the

repair is done approximately three seconds faster than when the generation

size is of 40 symbols. This difference in time is more dramatic for the MBR

Chapter 5. Measurements Results 56

strategy. It can be seen in Figure 5.3 that the repair requires more than

double of the time when the generation size is of 40 symbols than when it

is of 143 symbols. It takes around 12 seconds and 5 seconds respectively.

When the repairs are performed by the last two nodes, then they take

around the same amount of time for all generation sizes (except those af-

fected dramatically by congestion). So, in Figure 5.1, the repair performed

by two nodes using the MSR strategy lasts around 14 seconds for all gen-

eration sizes. Meanwhile, in Figure 5.3, it can be seen that this last repair

takes around 11 seconds for all generation sizes.

Figure 5.3: Total time spent in the repair sessions for different genera-
tion sizes and symbol size using MBR codes.

Figure 5.4 and Figure 5.5 show a comparison between the time required

to complete each stage of the repair and the total time required for the

entire repair session for both strategies when the generation sizes consist

of 143 and 40 symbols respectively. In both figures it can be seen that, as

expected, the total required time for all the repairs is longer in the MSR

strategy than in the MBR strategy. The results were the expected, since

given that more packets need to be transferred over the network then the

time it takes for the repair sessions to be completed is longer.

It is interesting to notice that the time required for the first stage of the

repair is almost constant for all the repair sessions using the MSR strategy.

This result is appreciated for both generation sizes, and the value is close

to 6.5 seconds in both cases.

Chapter 5. Measurements Results 57

Another interesting result is that for the MSR strategy the first stage of the

repair takes longer than the second stage for almost all the repair sessions

and for both generation sizes. On the other hand, for the MBR strategy, it

is the other way around, i.e., for allmost all the repair sessions, the second

stage takes longer than the first stage of the repair.

Figure 5.4: Comparison of the time spent in the different repair stages
using MSR and MBR codes.

Chapter 5. Measurements Results 58

Figure 5.5: Comparison of the time spent in the different repair stages
using MSR and MBR codes.

5.2 Measurements of the Packets Sent in the Re-

pair Sessions

In Figure 5.6 and Figure 5.7 it is seen that the congestion of the network

makes necessary to transfer many more packets than the necessary for the

repair sessions. The effect of the congestion is more dramatic when the

repairs are performed in a greater number of nodes. This is due the fact that

since more nodes are sending packets, then the network presents greater

delays due to congestion.

In Figure 5.8 and Figure 5.9 it is shown that the total number of packets sent

during the repair sessions is closer to the calculated and expected. This is

specially visible for the MSR strategy. For the MBR strategy, the protocol

still have room for improvement, specially when the repair is performed in

a greater number of nodes. For instance, when the first node disconnects,

and 6 nodes remain, it should be transferred around 30% of the file over

the network, however, our system transferred around 53% of the file. One

solution for this issue would be to transfer at a lower data rate, specially

when there are more nodes performing the repair. The current problem is

that the nodes are sending packets faster than the receiver node can process

them.

Chapter 5. Measurements Results 59

Figure 5.6: Total number of packets transferred (normalized) in the
repair sessions MSR codes.

Figure 5.7: Total number of packets transferred (normalized) in the
repair sessions using MBR codes.

In Figure 5.10 and Figure 5.11 it can be seen the consequences of the

nodes sending packets faster than the speed at which the receiver nodes can

Chapter 5. Measurements Results 60

Figure 5.8: Total number of packets transferred (normalized) in the
repair sessions using MSR codes.

Figure 5.9: Total number of packets transferred (normalized) in the
repair sessions using MBR codes.

process them. This produces the consequence of several ACK messages being

transferred over the network. The reason for this, as described in Section

Chapter 5. Measurements Results 61

4.2, is that when the receiver node process a packet, and its recoder reaches

the desired rank, it unicasts an ACK message to the sender node. The problem

is that if the sender node transferred more packets in the meantime, then

those packets are still in the queue of the receiver node.

Figure 5.10: Total number of ACK messages unicasted in the different
repair sessions using MSR codes.

Chapter 5. Measurements Results 62

Figure 5.11: Total number of ACK messages unicasted in the different
repair sessions using MBR codes.

Chapter 6

Conclusions and Future

Work

The goal of this report has been to evaluate the plausibility of extending

the state of the art results for standard repair of redundancy in distributed

storage systems against node failures to the scenarios where the nodes are

peers members of a P2P network. Through this report we evaluated the use

of network coding as a common ground to manage the distributed storage

of information and communications of peers with a single code structure.

In this project we studied the scenario of performing the repair of lost

redundancy not just due to nodes failing and losing all the data that they

were storing. Instead we focused on the need of repair due to homogeneous

peers departing temporarily from the network. In this scenario we found

that the protocols must be prepared to allow the nodes to build redundancy

similarly to the standard state-of-the-art repair approaches. But we went

beyond and considered that at the same time the protocols should allow

the peers to destroy some of the extra redundancy built when departed

nodes reconnect. We also found that it is necessary not just to build and

destroy redundancy but also to redistribute it when a newcomer node joins

the network or when a node that departed rejoins the system but it has

less information than the peers maintaining the file reliable.

We designed a protocol and implemented an automated test scenario to

show that a practical system that uses RLNC for generating MSR and

MBR codes is achievable. Furthermore we measured and compared the

time spent and the number of packets transfered for both types of codes

in repair sessions and showed that even with the difficulties and flaws of

a practical implementation, it is possible to observe a trade-off between

storage and repair bandwidth as the theory suggested.

63

Chapter 6. Future Work and Conclusions 64

Moreover, we found that by taking advantage of the broadcast nature of

the wireless channels, it is possible to reduce the average number of trans-

missions in repair sessions in P2P wireless networks, when compared with

systems that use only unicast messages.

6.1 Future Work

Several problems need to be addressed in a practical implementation of a

distributed storage system in P2P networks. For example, if UDP is used

as the transport protocol, then it is necessary to implement a method for

the congestion control. As it was shown in our results, congestion becomes

a serious issue even when the number of nodes participating in the storage

is small. The possibility of implementing network coding and the repair

sessions by modifying an existing and robust open source transport proto-

col for file sharing in P2P network (such as uTorrent or Swift) should be

evaluated.

Moreover studying the distribution of the processing operations in P2P net-

works where the nodes are heterogeneous is an interesting topic of research.

For example, if powerful nodes in terms of processing power like personal

computers share the network with mobile devices with less processing power

or with a lifetime determined by its batteries, then it would be interesting

to evaluate a modification in the protocol to choose the powerful devices as

the leaders of the repair sessions.

The security in these distributed storage systems is another topic that must

be addressed. If the users of the network are storing personal or sensitive

information, encryption mechanisms must be implemented in the protocol

to protect the system against malicious nodes, for example, eavesdroppers

nodes.

Bibliography

[1] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely,

Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.

Availability in globally distributed storage systems. In OSDI, pages

61–74, 2010.

[2] Robert McMillan. (real) storm crushes amazon cloud, knocks out net-

flix, pinterest, instagram., 2012. URL http://www.wired.com/2012/

06/real-clouds-crush-amazon/.

[3] P. Krishna Gummadi, Stefan Saroiu, and Steven D. Gribble. A mea-

surement study of napster and gnutella as examples of peer-to-peer

file sharing systems. SIGCOMM Comput. Commun. Rev., 32(1):82–

82, January 2002. ISSN 0146-4833. doi: 10.1145/510726.510756. URL

http://doi.acm.org/10.1145/510726.510756.

[4] Jian Liang, Rakesh Kumar, and Keith W Ross. Understanding kazaa.

Manuscript, Polytechnic Univ, page 17, 2004.

[5] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The

bittorrent p2p file-sharing system: Measurements and analysis. In

Peer-to-Peer Systems IV, pages 205–216. Springer, 2005.

[6] Chi-Jen Wu, Cheng-Ying Li, and Jan-Ming Ho. Improving the down-

load time of bittorrent-like systems. In Communications, 2007. ICC

’07. IEEE International Conference on, pages 1125–1129, June 2007.

doi: 10.1109/ICC.2007.191.

[7] P. Sandvik and M. Neovius. The distance-availability weighted piece

selection method for bittorrent: A bittorrent piece selection method

for on-demand streaming. In Advances in P2P Systems, 2009. AP2PS

’09. First International Conference on, pages 198–202, Oct 2009. doi:

10.1109/AP2PS.2009.39.

[8] Pietro Gonizzi, Gianluigi Ferrari, Vincent Gay, and Jérémie Leguay.

Data dissemination scheme for distributed storage for iot observation

systems at large scale. Information Fusion, 22:16–25, 2015.

65

http://www.wired.com/2012/06/real-clouds-crush-amazon/
http://www.wired.com/2012/06/real-clouds-crush-amazon/
http://doi.acm.org/10.1145/510726.510756

Bibliography 66

[9] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J

Wainwright, and Kannan Ramchandran. Network coding for dis-

tributed storage systems. Information Theory, IEEE Transactions on,

56(9):4539–4551, 2010.

[10] Alexandros G Dimakis, Kannan Ramchandran, Yunnan Wu, and

Changho Suh. A survey on network codes for distributed storage.

Proceedings of the IEEE, 99(3):476–489, 2011.

[11] Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs.

replication: A quantitative comparison. In Peer-to-Peer Systems,

pages 328–337. Springer, 2002.

[12] Irving S Reed and Gustave Solomon. Polynomial codes over certain

finite fields. Journal of the Society for Industrial & Applied Mathemat-

ics, 8(2):300–304, 1960.

[13] Thomas Mager, Ernst Biersack, and Pietro Michiardi. A measurement

study of the wuala on-line storage service. In Peer-to-Peer Computing

(P2P), 2012 IEEE 12th International Conference on, pages 237–248.

IEEE, 2012.

[14] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,

Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea,

Hakim Weatherspoon, Westley Weimer, et al. Oceanstore: An ar-

chitecture for global-scale persistent storage. ACM Sigplan Notices, 35

(11):190–201, 2000.

[15] Barton Gellman and Ashkan Soltani. Nsa infiltrates links to yahoo,

google data centers worldwide, snowden documents say, 2013. URL

http://www.washingtonpost.com/world/national-security/

nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/

2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.

html.

[16] Barton Gellman, Ashkan Soltani, and Todd Linde-

man. How the nsa is infiltrating private networks, 2013.

URL http://apps.washingtonpost.com/g/page/world/

how-the-nsa-is-infiltrating-private-networks/542/.

[17] Szymon Acedanski, Supratim Deb, Muriel Médard, and Ralf Koetter.

How good is random linear coding based distributed networked storage.

In Workshop on Network Coding, Theory and Applications, pages 1–6,

2005.

http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://www.washingtonpost.com/world/national-security/nsa-infiltrates-links-to-yahoo-google-data-centers-worldwide-snowden-documents-say/2013/10/30/e51d661e-4166-11e3-8b74-d89d714ca4dd_story.html
http://apps.washingtonpost.com/g/page/world/how-the-nsa-is-infiltrating-private-networks/542/
http://apps.washingtonpost.com/g/page/world/how-the-nsa-is-infiltrating-private-networks/542/

Bibliography 67

[18] Supratim Deb, Michelle Effros, Tracey Ho, David R Karger, Ralf Koet-

ter, Desmond S Lun, Muriel Médard, and Niranjan Ratnakar. Network

coding for wireless applications: A brief tutorial. IWWAN, 2005.

[19] Yuchong Hu, Henry CH Chen, Patrick PC Lee, and Yang Tang. Nc-

cloud: applying network coding for the storage repair in a cloud-of-

clouds. In FAST, page 21, 2012.

[20] R. Schollmeier. A definition of peer-to-peer networking for the clas-

sification of peer-to-peer architectures and applications. In Peer-to-

Peer Computing, 2001. Proceedings. First International Conference

on, pages 101–102, Aug 2001. doi: 10.1109/P2P.2001.990434.

[21] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-peer systems and

applications. Lecture notes in computer science. Springer, Berlin, New

York, 2005. ISBN 3-540-29192-X.

[22] Rüdiger Schollmeier and Gerald Kunzmann. Gnuviz–mapping the

gnutella network to its geographical locations. Praxis der Informa-

tionsverarbeitung und Kommunikation, 26(2):74–79, 2003.

[23] Xuemin Shen, Heather Yu, John Buford, and Mursalin Akon. Hand-

book of peer-to-peer networking. Springer, New York, NJ, London,

2010. ISBN 978-0-387-09750-3.

[24] PUB FIPS. 180-4. Federal Information Processing Standards Publica-

tion, Secure Hash, 2011.

[25] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In

Middleware 2001, pages 329–350. Springer, 2001.

[26] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger,

M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:

a scalable peer-to-peer lookup protocol for internet applications. Net-

working, IEEE/ACM Transactions on, 11(1):17–32, 2003.

[27] Ernesto Van der Sar. The pirate bay tracker shuts

down for good, 2009. URL http://torrentfreak.com/

the-pirate-bay-tracker-shuts-down-for-good-091117/.

[28] R Vliegendhart. Swarm Discovery in Tribler using 2-Hop Tor-

rentSmell. PhD thesis, TU Delft, Delft University of Technology, 2010.

[29] Rob Waugh. Tribler: New file-sharing technology is

immune to government attacks, 2012. URL http:

//www.dailymail.co.uk/sciencetech/article-2098759/

http://torrentfreak.com/the-pirate-bay-tracker-shuts-down-for-good-091117/
http://torrentfreak.com/the-pirate-bay-tracker-shuts-down-for-good-091117/
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html

Bibliography 68

Tribler-New-file-sharing-technology-IMMUNE-government-attacks.

html.

[30] Shawn Wilkinson and Jim Lowry. Storj: Decentralized autonomous

file storage.

[31] Yunnan Wu, Alexandros G Dimakis, and Kannan Ramchandran. De-

terministic regenerating codes for distributed storage. In Allerton Con-

ference on Control, Computing, and Communication. Citeseer, 2007.

[32] Yunnan Wu. Existence and construction of capacity-achieving network

codes for distributed storage. Selected Areas in Communications, IEEE

Journal on, 28(2):277–288, 2010.

[33] S-YR Li, Raymond W Yeung, and Ning Cai. Linear network coding.

Information Theory, IEEE Transactions on, 49(2):371–381, 2003.

[34] Ralf Koetter and Muriel Médard. An algebraic approach to net-

work coding. Networking, IEEE/ACM Transactions on, 11(5):782–

795, 2003.

[35] Muriel Médard and Alex Sprintson. Network coding: fundamentals

and applications. Academic Press, 2012.

[36] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle

Effros, Jun Shi, and Ben Leong. A random linear network coding

approach to multicast. Information Theory, IEEE Transactions on,

52(10):4413–4430, 2006.

[37] Janus Heide, Morten Videbæk Pedersen, Frank HP Fitzek, and Muriel

Médard. On code parameters and coding vector representation for

practical rlnc. In Communications (ICC), 2011 IEEE International

Conference on, pages 1–5. IEEE, 2011.

[38] Oscar Trullols-Cruces, Jose M Barcelo-Ordinas, and Marco Fiore. Ex-

act decoding probability under random linear network coding. Com-

munications Letters, IEEE, 15(1):67–69, 2011.

[39] Márton Sipos, Frank Fitzek, D Lucani, and Morten Videbæk Pedersen.

Distributed cloud storage using network coding. In IEEE Cons. Comm.

and Netw. Conf, pages 6–19, 2014.

[40] Lorenzo Vicisano, Michael Luby, and Mark Watson. Forward error

correction (fec) building block. 2007.

[41] John Torjo. Boost. Asio C++ Network Programming. Packt Publishing

Ltd, 2013.

http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html
http://www.dailymail.co.uk/sciencetech/article-2098759/Tribler-New-file-sharing-technology-IMMUNE-government-attacks.html

Bibliography 69

[42] Christopher Kohlhoff. Thinking asynchronously: Designing applica-

tions with boost.asio. Presented at the BoostCon (Boost Libraries

Conference), 2011.

[43] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A dis-

tributed algorithm for minimum-weight spanning trees. ACM Transac-

tions on Programming Languages and systems (TOPLAS), 5(1):66–77,

1983.

	English title page
	Acknowledgements
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Peer to Peer Distributed Storage Systems
	1.2 Erassure Coding and Network Coding for Storage
	1.3 Our Contributions

	2 State of the Art in Peer to Peer Networks
	2.1 Routing and Resources Discovery
	2.1.1 Unstructured Peer to Peer Networks
	2.1.2 Structured Peer to Peer Networks

	2.2 File Sharing in Peer to Peer Unstructured Networks
	2.2.1 Centralized Approach: Napster
	2.2.2 Distributed Approach: Gnutella
	2.2.3 Hybrid Approach: Kazaa
	2.2.4 Other Approaches: BitTorrent

	2.3 Personal Storage in Peer to Peer Networks

	3 Network Coding in Peer to Peer Distributed Storage Systems
	3.1 Coding for Distributed Storage
	3.2 Network Coding and the Functional Repair in Newcomer Nodes
	3.2.1 Random Linear Network Coding

	3.3 Our Contribution: Functional Repair Into a Reduced Set of Nodes
	3.4 Our Contribution: Distributed Storage Systems With RLNC in Wireless Lossy Channels

	4 Protocol Design and Software Implementation
	4.1 The Uploader
	4.1.1 The Block Partitioning RFC5052

	4.2 The Downloader
	4.3 The Node
	4.4 The Pal Web and the Repair Sessions
	4.4.1 The Repair Session Due to Disconnection
	4.4.2 The Repair Session Due To Reconnection

	5 Measurements Results
	5.1 Measurements of the Time Spent in the Repair Sessions
	5.2 Measurements of the Packets Sent in the Repair Sessions

	6 Conclusions and Future Work
	6.1 Future Work

	Bibliography

