
User-to-User Recommendations in a Fashion Portal,
Utilizing a Social Network, Implicit Feedback and

Clustering Approaches

Master Thesis, Aalborg University

June 3rd 2015

Department of Computer Science

Aalborg University

Selma Lagerlöfs Vej 300

9220 Aalborg Øst

Phone no.: 99 40 99 40

Homepage: http://cs.aau.dk

Title: User-to-User Recommendations
in a Fashion Portal, Utilizing a So-
cial Network, Implicit Feedback and
Clustering Approaches

Theme:

Recommendation Systems

Project period:
10th Semester (MI)
Spring semester 2015

Project group:
mi102f15

Group members:
Bjarne Kock

Dan Duus Thøisen

Davide Frazzetto

Supervisor:
Thomas D. Nielsen

Pages: 108

Finished on June 3rd 2015

Synopsis:

Abstract

In this report we address the so-

cial link prediction problem, apply-

ing our research to design a recom-

mender system for the Sobazaar so-

cial network. This domain shows

several interesting characteristics.

Firstly, differently from most rec-

ommender system scenarios, solely

Implicit Feedback is available. Sec-

ondly, the evolution of the fash-

ion trends causes complex social dy-

namics to appear in the structures of

the network, therefore finding com-

munities of users with similar char-

acteristics is crucial to understand

the users’ behavior. We conclude

that by combining clustering with

information that can be extracted

from the users’ activity it is possible

to positively contribute to the social

link problem.

http://cs.aau.dk

We would like to express our gratitude to our supervisor Thomas D. Nielsen
for his remarks, useful comments and engagement throughout master thesis.
We would like to thank our families and friends for their kind support during
this challenging period of our life.

Resume

In this report we have worked with data gathered from Sobazaar, an online
fashion portal which caters to primarily women. Sobazaar gathers women
wear from webshops such as H&M and Vero Moda and scrapes their products
to preview them in a structured way on their own web portal. Sobazaar can be
accessed from an iPhone via an application. The users of Sobazaar can browse
through different products, and like the products, or create labeled boards and
publish them for their follower to see. Users can follow each other which results
in them receiving the followed users’ updates, in the sense of likes or new
published boards. We investigate the underlying cause of one user following
another, and how we can combine implicit feedback and a social graph in order
to make user-to-user recommendations. To do so, we build several crawlers to
gather the data from the public Sobazaar API, in the period between the 27th
of February 2015 to the 10th of April 2015.

We give a complete overview and an analysis of the data gathered. In
our analysis we find popular products and popular boards. We analyze how
users behave in this system and what they like to share and we build a so-
cial network using the follow connections between the users. The social graph
consists of 45, 650 nodes with 860, 883 directed connections. We use 4 differ-
ent clustering approaches on the social network, the clustering algorithms are:
Social Network Clusterer, Voltage Clusterer, Authority Clusterer, and Spectral
Clusterer which try to detect communities in the social network or densely
connected sub graphs. Clustering will also reduce the number of users we will
have to consider, in order to make recommendations as it splits the graph into
smaller sub graphs which means that the running time of our recommender
can be improved. The recommender we have developed uses the clustering
approaches and it is evaluated using the K-Fold cross validation method. We
investigate which recommender to use by running experiments on the matrix
factorization and K-NN approach. In the second experiment we investigate
which perception feature performs the best. The features for the perception
are: Pagerank, Item Similarity, Common Neighbors, Activity, PageRank, and
Adjacency. In the final experiment we investigate which of the four clustering
algorithms clusters the graph best, based on the quality of the recommenda-
tions created using that clustering.

Our results show that the best recommender is K-NN with the common
neighbors feature as perception, and not using any clustering. The best clus-
tering approach was voltage using 10 clusters. Using clusters improves the
running time which makes the choice of using clusters a performance versus
accuracy decision. We have found evidence for users following one another
in the social graph and that people try to conform to their friends follow-
ing common users as the users around them. We propose that the implicit
feedback and social network structure can be combined to make user-to-user
recommendation using a clustering approach.

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Goals . 2

1.3 Discussion . 2

1.4 Structure of Report . 4

2 Data Analysis 5

2.1 Overview of Sobazaar Application 5

2.2 Data Overview . 6

2.3 Preliminary Analysis . 7

2.3.1 Boards . 8

2.3.2 Highly Popular Boards 10

2.3.3 Follow and Unfollow . 11

2.3.4 Like and Unlike . 11

2.4 Social Graph Analysis . 13

2.4.1 Graph Definition and Notation 13

2.4.2 Generating the Social Graph 13

2.4.3 Structure of the Graph 14

2.4.4 Degree of Nodes . 15

2.4.5 Scale Free Network . 16

2.4.6 Reasons for Following 16

2.5 Clustering the Social Network 19

2.5.1 Size of the Clusters . 20

2.5.2 Trends and Communities 24

2.5.3 Density of the Clusters 25

2.5.4 Evolution of the Clusters 27

2.6 Conclusion . 29

3 State of the Art 30

3.1 Recommender Systems . 30

3.2 Analyzing Social Networks . 32

3.2.1 Social Influence . 33

3.3 Combining Social Network and Recommendations 34

3.3.1 Probabilistic Matrix Factorization 36

CONTENTS

3.3.2 Social Recommendations using Probabilistic Matrix Fac-
torization . 37

3.3.3 SoRec . 38

3.4 Social Link Problem . 41

3.4.1 Problem Definition . 41

3.4.2 State of the Art . 42

3.4.3 Neighborhood Based Methodologies 42

3.4.4 Conclusion . 44

3.5 Clustering . 44

3.5.1 Social Network Clustering 45

3.5.2 Betweenness Clustering 46

3.5.3 Voltage Clusterer . 48

3.5.4 Authority Clustering . 49

3.5.5 Spectral clustering . 49

3.5.6 Conclusion . 51

4 Recommender System Setup 53

4.1 Evaluation of Recommender Systems 53

4.1.1 Evaluation methods . 53

4.1.2 Learning to Rank Evaluation 56

4.1.3 Conclusion . 58

4.2 Recommender System Model 58

4.2.1 Social Network Model 60

4.2.2 Features of the Model 60

4.2.3 Clustering Algorithms 63

4.2.4 Recommender System Algorithms 64

4.2.5 Evaluation of the Recommender System 66

4.3 Overview of SaLT . 71

4.3.1 Packages . 71

4.4 Conclusion . 73

5 Evaluation of the Experiments 74

5.1 Experiments . 74

5.1.1 Experiment 1: Recommender System Algorithm Com-
parison . 74

5.1.2 Experiment 2: Defining the Similarity Function 78

5.1.3 Experiment 3: Clustering 79

5.2 Discussion . 83

5.2.1 Problems with the Evaluation 83

5.2.2 Implicit Feedback for User Recommendations 84

5.2.3 Clustering for User Recommendations 84

6 Conclusion 86

A Sobazaar Application 92

CONTENTS

B SQL Queries 95

C Implementation Code 96
C.1 AuthorityClusterer . 96

C.1.1 Class Diagrams . 99
C.1.2 Classes . 99

D Results 106
D.1 Clustering . 106

Chapter 1

Introduction

Recommendation systems are widely used today in many different applica-
tions. They are used to create a highly personalized user experience, in ei-
ther recommending movies, songs or other products the user has not seen be-
fore. Recommendations can increase user satisfaction and potentially increase
profit. The purpose of a recommendation system is to predict a user’s prefer-
ence of some given product, before the user has ever seen nor purchased this
product. In domains where it is unfeasible to browse through a vast amount of
products, a recommendation system can filter out irrelevant products that the
system has predicted the user not to like. In larger e-commerce websites such
as Amazon.com that has millions of both physical and virtual products, it is
impossible for the users to browse through all products. Amazon.com is using
a recommendation system to present the users with products they most likely
want to buy. The E-commerce industry wants to increase sales, and one of the
ways this can be done is using recommendation systems. According to [26]
there are three different ways of doing it: Converting browsing visitors into
buying customers (Browsers into buyers), recommending products which
are related to a product currently being bought (Cross-buy), and improving
the relationship between user and store, such that the user gains more loyalty
to the store (Loyalty).

In our previous work [14] we presented a recommendation system for the
online fashion portal Sobazaar. In the Sobazaar mobile application, users can
browse through women wears, purses, jewelry, and accessories. While browsing
users can express their preference by pressing a heart button, symbolizing that
the user likes this product, create a board consisting of products they seem
fit or follow other users and brands. Following brands and users will give the
user updates from all their followings on the frontpage of the application. In
recommender systems we differentiate between implicit and explicit feedback.
Explicit feedback is when a user has the option to express both a negative or a
positive feedback, for example the 1-5 star system in Netflix or the thumbs-up
or thumbs-down on Youtube. The feedback Sobazaar receives from users is
solely implicit. Implicit feedback can be used to extract a preference from a

1

1.1. PROBLEM DEFINITION

user that can only be positive or negative and not a mixture. In other words,
the users of Sobazaar has only a choice of giving a preference, or removing a
preference after it has been given. The user cannot show aversion for a given
product or another user. Implicit feedback does therefore not directly show the
preference of a user which makes the tasks of constructing a recommendation
system using implicit feedback especially interesting.

Equally interesting was it to process the amount of data we gathered.
The recommender system we constructed in our previous report, was able to
recommend items to users. This report will focus on recommending users to
other users.

We expect you to be familiar with notation used in our previous report
[14, Section 3.1.2].

1.1 Problem Definition

This report will explore the possible solutions to create user to user recom-
mendations, in the online fashion portal Sobazaar, by solving the following
problems:

Problem 1 What is the underlying cause of one user following another?

Problem 2 How can we make user-to-user recommendations using a social
network utilizing implicit feedback and clustering techniques?

1.2 Goals

In this project we want to achieve the following goals

• Solve the problems stated in the problem statement.

• Contribute to the current research done in the area of recommendation
systems more specifically on the use of social graphs and implicit feed-
back in a fashion portal context.

1.3 Discussion

Sobazaar contains mainly women wear, bags and other accessories which the
system allows their users to interact with. The users can also interact with
each other, they can follow other users, browse products, give likes to products
and construct labeled boards they can share among followers. Much of this
is like a traditional social network such as facebook and twitter although the
users are limited to interact only with products Sobazaar provides. This is
uncommon for a social network to provide the content the users are allowed
to share and like.

2

CHAPTER 1. INTRODUCTION

Finding the underlying cause of users following one another is therefore an
interesting problem not only because it allows to recommend relevant users,
but also in identifying how the behavior differs from conventional social net-
works and how users interact in a fashion domain.

The type of data used in this report is implicit feedback, and we cannot for
this reason directly identify what a user prefers and as an effect we only have
partial knowledge of which products or users she has visited. It is therefore
interesting to see if this data can contribute to find users which are relevant
to recommend and how it could be used in conjunction with a social network.

When considering a recommendation, an intuitive choice is to look at sim-
ilarities between users depending on similar user preference of products. We
assume that people trust their friends when it comes to choices, asking friends
for recommendations. If this is true we can utilize the social structure of the
application to find the connections between users. Finding their network of
trusted users allows for additional information which can be incorporated in
the recommender system.

In a social fashion application users’ activity is a balance of both personal
interest and conformity. The users’ activity is publicly available, and the need
of belonging to a certain group or to show only certain aspect of herself is
central in the social activity. Relevant research on the topic has already been
conducted in [33], where it has been shown that users change their preferences
to conform to others. In our application it will be important to understand
what the balance of these two components are, in the users’ decisions. Our
analysis of the difference between the purchase and like activity in [14] sup-
ports this hypothesis. We saw that there was a difference in the users activity
of the two actions, the purchase was private and like was public, this resulted
in users having different items as targets of their private activity. A con-
sequence to this relevance of an item for a subject might depend more on
her social connections than on the items she has purchased. Because of this,
an interesting point would be to identify these communities and group users
together based on the current trend in that community.

We conclude that a clustering approach might be able to find these com-
munities which are reflected both in the social network and in the items which
the users liked and/or put into boards. The result of recommending users
correctly is twofold. Firstly, recommending new connections will supposedly
lead to a higher user activity.

Secondly, we argue that an accurate user recommendation will have a pos-
itive side effect to the recommendation of relevant items to users. This as-
sumption is made on the basis of how the Sobazaar application works. The
public activity of a user is published on the front page of each of the followers
of this user. If a recommended user shares preferences with her new followers,
these public feeds will find their interests, hence a higher probability for them
to interact with the items. One can argue that the user feeds become a rec-
ommendation, hence the followed user is unknowingly recommending items to

3

1.4. STRUCTURE OF REPORT

the target.

1.4 Structure of Report

Chapter 2 contains a description of the Sobazaar application, an overview of
the data, how it was retrieved and an analysis of both the implicit feedback
and the social graph.

Chapter 3 gives an overview of the current state of the art techniques in
the area of recommendation systems and clustering techniques.

Chapter 4 outlines all our experiment pipelines and shows the approaches
we have taken, which algorithms we have chosen and the evaluation of the
recommender we have built.

In Chapter 5 we show the experiments we conducted and make comparisons
of different algorithms we have chosen.

Chapter 6 makes a conclusion on the results and the discussion about the
results and also discusses which additional research could be done.

4

Chapter 2

Data Analysis

This chapter gives an overview and analysis of the data collected from the
Sobazaar API. Section 2.1 describes the Sobazaar application, Section 2.2
gives a brief overview and explains the structure of the data and defines the
terminology used. Section 2.3 describes the metrics of the data and show
statistics of the occurrences of certain events. Section 2.4 briefly explains how
the social graph is generated and presents an analysis. Section 2.5 gives a
detailed analysis of how clustering algorithms can be applied to the social
graph.

2.1 Overview of Sobazaar Application

Figure 2.1: Sobazaar App for the iPhone.
Taken from [14].

Sobazaar is a mobile application
[app] for the iPhone and was pre-
viously also a web portal which is
now closed. Sobazaar collects women
wears from online retailers such as
H&M or Vero Moda, and displays
them as seen in Figure 2.1. When
opening the app the user is presented
with her feed, which contains up-
dates from brands or users she fol-
lows as shown in Figure A.2b.

Users of the application can then
select items and visit their prod-
uct details as shown in Figure A.2a.
The product detail shows the current
price of the item, how many likes it
has received, allows the user to pur-
chase the item and like it herself as
well as gain more information about
the item.

5

2.2. DATA OVERVIEW

An additional function in the Sobazaar application is the creation of boards.
Figure A.1a shows the interface where the user can choose the layout of the
board shown at the bottom of the phone and the items she selects in the top
part. Figure A.1b shows the board in its published state. The author is seen
at the top of the board, while comments are made on the bottom.

Users in the Sobazaar system have profiles, Figure A.3 shows a profile,
which displays the items they have liked and the boards they have created it
also displays the number of users which she is following and being followed by.
When following a user, the followed user’s boards and likes will appear on the
feed of the following user. The follow system of Sobazaar can be compared to
the subscription system of YouTube. On YouTube you subscribe to a channel
if you like what the channel provides and you want to be notified when this
channel uploads new videos. The same happens on Sobazaar when a user
follows another user. The activity of the followed user is visible to the user
who follows.

2.2 Data Overview

The data used in this research has been gathered from the public online API
of the fashion portal Sobazaar. We have developed four webcrawlers that have
extracted the data from this API in the time period between 27th of February
2015 and 10th of April 2015. Each of the crawlers has been used to obtain a
different category of data, e.g. users, items, boards, etc. A database design of
the datasets we have available can be seen in Figure 2.2. The data has been
saved into a MySQL database, with the appropriate keys and foreign keys.

Initially we have collected a dataset of users we have obtained by requesting
the API for sequentially generated user ids, obtaining those users associated to
a valid id. This process required a lot of time as the user ids are not contiguous.
The extracted user ids has been used as initial seed for the crawlers. Like a web
crawler moving through page links, our implementation is crawling through
the user connections.

If we consider a user u, the users that are following u are called followers,
while followings are users u is following. When crawling the user u we retrieve
her followers and followings. For each of these users v we check if the pairs
(u, v) or (v, u) are already present in the following table of the database. If
for example (u, v) is not in the database, we add this as a new entry into the
database, associated with a timestamp of when the crawler has encountered
this new following/follower. This timestamp is not the time of when the user
u followed the user v.

An unfollow is defined as a user u that has followed a user v at a timestamp
t and removed the follow connection to the same user at a timestamp t′, where
t′ > t. This unfollow is then added to the database. If u starts following v
again, and the crawler encounters this event, the entry will be added again.

An unlike is added to the database in the same way as the unfollow. If a

6

CHAPTER 2. DATA ANALYSIS

user likes a product, and then the crawler detects the user does not like it any
more, it will be added as an unlike. Notice that this is not a dislike, this is
only indicating that a user has removed the preference of a like.

Figure 2.2: Database Design

In Figure 2.2 we show our database design, consisting of tables: follow,
board, board product, board user, user, unlike, unfollow, product and like.
A connection from a column inside a table symbolizes a foreign key. Follow
and unfollow both have user a id and user b id which reference the user ta-
ble. Follow, unfollow, unlike and like all have an added column which is a
timestamp of when the crawler added this entry to the database. Board has
a createdDate which is a timestamp gathered from the API that states when
the board was created by the user, and a deleted at which is a timestamp the
crawler is adding, if it detects that the board does not exist anymore. The
tables board product and board user are both pivot tables, and are used to
store the foreign keys of boards, the users creating the boards, board and the
products inside.

In Table 2.1 we list a count of all the tables in the database. Notice
here that inside the follow and unfollow table there can exist duplicates with
a different timestamp. If a user has followed, and unfollowed another user
multiple times, these will end up being duplicates with different timestamps.

2.3 Preliminary Analysis

In this section we discuss the data we retrieved from the Sobazaar API, more
specifically: boards, likes, and follows.

7

2.3. PRELIMINARY ANALYSIS

Table Count(*)

board 46407
board product 203498
board user 46377
follow 860883
like 601721
product 35470
unfollow 4495
unlike 165
user 45650

Table 2.1: Database table overview with count for each table

2.3.1 Boards

In the Sobazaar system users can publish labeled displays of products called
boards. To create a board the user chooses a board design, which decides
how many products the board can contain. The user then adds her products
to the board, assigns a name to the board, and publishes the board. When
the board is published, all her followers can see this board on their feed. We
have 46, 407 boards in total, with one user having the maximum of 432 boards
published. An average of boards published of 6.7822, only considering users
with at least one published board. We have 35, 470 products where 20, 050 of
them are present in at least one board.

Number of products Count of boards

1 283
2 519
3 6022
4 26685
5 17
6 12881

Table 2.2: Number of boards containing 1-6 products

In the Table 2.2 we see a count of how many products are inside of the
boards. The Number of products is in the interval from 1 to 6 products re-
spectively. Where the Count of boards are how many boards consist of these
1 up to 6 products. The first line gives us the information that there exist 283
boards which only contains one product and 17 boards with 5 products.

The product with the id 95118006 has been used in 1992 boards and is the
most used product.

There are products being used in boards multiple times by the same user.
We will list the top 5 products, which can be seen in Table 2.3.

In Table 2.3 we can see that the users find particular products and com-

8

CHAPTER 2. DATA ANALYSIS

product id user id present in # boards
Product
image

17388368 120948003 31

383868025 175788022 27

359488006 167908001 26

115638018 186538038 26

209118003 169328013 24

Table 2.3: Products that are present in multiple boards by one user

9

2.3. PRELIMINARY ANALYSIS

bines them with different outfits. Because the same product has been used in
multiple boards.

product id # boards
Product
image

95118006 1992

1918030 832

106808093 790

127388010 766

45258004 548

Table 2.4: Products and the number of boards they appear in

In Table 2.4 we see the products and the number of boards they appear
in. These products are the most popular products used inside boards.

2.3.2 Highly Popular Boards

We are finding highly popular products by counting the number of times each
product has been used in boards. Then by assigning this popularity value to
each product, we sum the popularity value for each board’s products, to find
the most popular boards.

We believe there can be many reasons for why a user created a highly
popular board. One can be that the user finds all the products inside this
board appealing, or that the products inside this board seem fit with many
outfits.

10

CHAPTER 2. DATA ANALYSIS

2.3.3 Follow and Unfollow

Every user inside the Sobazaar system can indicate a relationship with another
user, by pressing a follow button. Users can follow multiple people, and be
followed by multiple people. If a user follows another user, and later decides
to stop following this user, we call this an unfollow.

Via the Sobazaar API we gathered the follow connections, by asking for
a particular user’s followings, and the API returned a JSON string with all
her followings. Taking this list and saving each following user in our own
local database, and adding a timestamp of when this entry was added to the
database. This timestamp is being used to identify changes to the current
state, for example if a user unfollows another user at a later point in time.

We have in total 860, 883 follow connections and in total 4, 495 unfollows.

2.3.4 Like and Unlike

When a user is browsing the Sobazaar IOS application or the website, and
is finding products she prefers, she can press a little heart button to indicate
a preference for this product. This heart button is called a like button. We
have built a crawler that request the Sobazaar API for a user’s like list, which
retrieves a JSON string consisting of all the products this user likes. In total
we have 601, 721 likes where only 11, 413 users have one or more likes. We have
165 unlikes, and an unlike is gathered when the crawler, by retrieving the like
list, checks our database for an already existing like. If the like existed, and
is not present in the retrieved list any more, it is being considered an unlike,
and saved in the database as such.

We have an average count of likes per user of 13.18. The average like of
the users who has at least one like is 52.7224 and a median of 18, where the
most active users and their like count is shown in Table 2.5.

As expected we have users that are way more active than others, and
digging deeper into these highly active users. To eliminate any bias from our
data, such as a developer testing out features which could result in many likes,
boards published or many followings. We looked up some of the highly active
users, on other social media websites, and found that some of them do in fact
work for Sobazaar as a fashion blogger, and since this is not unusual behavior,
i.e. a fashion blogger working for a fashion portal is expected, and should be
included in a recommendation system also. So since this is real events from a
human being, and not a developer testing features, we chose to keep the data
as is.

In Table 2.6 we see the top 5 highly popular products via a like count,
listed in a descending order. Comparing the Table 2.4 and Table 2.6 we can
see that the product ids 95118006, 1918030 and 106808093 is occurring in both
lists.

11

2.3. PRELIMINARY ANALYSIS

user id like count

177508024 5712
5002 3468
303818007 2817
7268020 2661
141518010 2090

Table 2.5: Top 5 user ids with their like count

product id like count
Product
image

95118006 1457

106808093 1018

210328037 967

1918030 931

94808034 891

Table 2.6: Top 5 products with like count

12

CHAPTER 2. DATA ANALYSIS

2.4 Social Graph Analysis

In Section 2.3.3 we mentioned that users and their connection with other users
is called a follow connection. We also gathered if a connection between two
users has been disconnected by one of the users, called an unfollow.

We have constructed a social graph utilizing the users following and fol-
lower connection with each other.

2.4.1 Graph Definition and Notation

A social network can be described as a graph G = (V,E), defined by a set of
vertices V = {v1, v2, ..., vn} and a set of directed edges E ⊆ {(vi, vj) | vi, vj ∈
V }. An edge in E represents an action that connected two users associated
with the time in which this interaction took place t(vi, vj).

The social graph can be constructed from the log of the users’ activity. In
the Sobazaar application a user vi can follow another user vj at time t. This
creates the edge (vi, vj)t between the two vertices in the social graph. If at a
time point t′ the user vi unfollows vj then the edge (vi, vj)t is removed from
the graph.

2.4.2 Generating the Social Graph

The SQL query to gather the data used to construct this social graph can be
seen in the appendix Listing B.1.

The construction of the graph, runs through all users and adds them as a
vertex in the graph, and connects all vertices, with a directed edge, where a
follow connection is made.

In Table 2.7 we present some of the characteristics of the social network.
The density describes the percentage of edges in a graph G = (V,E),

defined as

density =
|E|

|V | · (|V | − 1)

The denominator is the number of possible edges in the graph, the numerator
the number of edges present in the graph. With a density of 0.0004% we can
see how the Sobazaar social network is extremely sparse: only 856, 388 edges
are present out of the 2, 083, 876, 850 possible edges.

The mutuality describes the percentage of pairs of nodes (u, v) that are
connected in both directions. Formally it is defined as

mutuality =

∑
u,v∈G((u, v)|(u, v) ∈ E ∧ (v, u) ∈ E)

|E|
where the denominator is all the possible pairs of nodes, and in the nu-

merator we are counting those for which both edges exist. As we can see in
Table 2.7 the mutuality coefficient is 0.44485%. This shows how the relation-
ships in Sobazaar are most probably not related to actual friendship, as it

13

2.4. SOCIAL GRAPH ANALYSIS

could be in other type of social networks, but more subject to trends or taste
similarity.

The number of nodes for which we have a like lists is 11, 413, which is only
26.9% of all nodes in the graph. This means that we can only partially use
the like lists in our models.

In the next sections we will investigate the nature of the social network,
analyzing how the users are connected, what the relationship between their
connections are, and how the general structure of the graph can help our
objective of improving a social link recommender system.

number of nodes in the network 45,650

number of disconnected nodes 3,222

number of edges 856,388

average degree 20.1849

density 0.00041

mutuality 0.44485%

Table 2.7: Overview of the social network’s characteristics

2.4.3 Structure of the Graph

We start the analysis of the social network by investigating the structure
of the graph. The first aspect of the social network we want to describe is
the general connectivity of the graph, considering the existence of different
separated components in the graph. Given a graph G = (V,E), a component
is a subgraph, such that each pair of nodes in the subgraph is connected by
a path, and these nodes in the subgraph, are not connected to other nodes
of the graph. Since the social network is a directed graph, the definition of
component that would naturally apply is the strongly connected component,
defined as

G′ = {v ∈ G | ∀u ∈ {G \ v} : ∃v u}

In the case of a social graph we can not expect to find large strongly con-
nected components. In our case we are more interested in understanding how
the nodes are connected, independently from the direction of the connections.
Therefore, if we consider that the existence of an edge between two nodes
represents a connection, we can translate the directed graph into an undi-
rected graph. A graph is weakly connected if by replacing all the edges with
undirected edges, the graph is strongly connected.

We have translated our social network into an undirected graph and started
a breadth first search from a random node, adding the nodes that are found
by BFS in the same component. The result is that all the nodes of the graph
are discovered by one single run of BFS, meaning that all nodes with at least
one incident edge are all part of the same weakly connected component. At
first this could seem like an interesting result, showing that all the users are

14

CHAPTER 2. DATA ANALYSIS

part of the same undirected graph, if we do not consider the direction of their
connections. It is important though to recall the way we have constructed the
dataset; since we do not have access to all the users, we have designed the
crawlers to move from user to user following their connections. Even though
we have initialized the crawlers with a set of seed users, as described in Sec-
tion 2.2, it is highly probable that the original social network of the Sobazaar
application contains more users. Therefore, we can not guarantee that the
original social network consists of only one weakly connected component. If
this is the case, then what we have retrieved is only part of the social net-
work and we can not make any hypothesis on the size of the original platform.
Nonetheless, we will now study the interactions between users and the par-
ticularities of the graph which can be extracted from our dataset, to confirm
that it is still representative of the original network.

2.4.4 Degree of Nodes

From this point of view, an important aspect of the social network is the
degree distribution, namely how many inner and outer edges each node has.
In Figure 2.3 it is possible to see how most of the users are following less than
100 users, and the highest percentage of users have less than 100 followers. By
extracting the users that have more than 200 edges, we have seen that they
only account for 53, out of the 45, 650 users of our data set.

Figure 2.3: In and Out degree distributions of the network, in a logarithmic scale

15

2.4. SOCIAL GRAPH ANALYSIS

2.4.5 Scale Free Network

An interesting type of network is the scale-free network. A common feature
in real world networks is the presence of hubs and authorities. v∆+ describes
the indegree of node v while v∆− describes the outdegree of node v. While
authorities are nodes with a higher indegree than most of the nodes of the
network, hubs are nodes with an outdegree above the average. The property
of this can be seen from the long tail of the distribution we have shown in
Figure 2.3. The users in this tail, i.e. the right part of the distribution, have
a lower degree compared to those in the head, the leftmost section. This long
tail behavior confirms that our social network follows the definition of a scale
free network.

Definition 1. Given a directed graph G = (V,E) a set of nodes A ⊂ V of
size k is defined as the set of authorities if

∀a ∈ A,∀v ∈ V \A, a∆+ > v∆+

Definition 2. Given a directed graph G = (V,E) a set of nodes A ⊂ V of
size k is defined as the set of hubs if

∀a ∈ A, ∀v ∈ V \A, a∆− > v∆−

The main consequence of this property is that these authorities function as
centers of connections, on which the other nodes are aggregated. In our case
this is an important feature, since the presence of these authorities indicates
that the users tend to connect with the very popular users of the network,
while the degree of connection among the other users is fairly sparse. This
is important for two reasons. Firstly, the possibility to identify and utilize
these authorities to find communities in the network. Secondly, it shows that
it is possible to recommend new links to users inside these communities. Since
most of the connections only address the authorities the density between the
other nodes is low, theoretically leaving space to new recommendations among
them.

We have extracted the names associated to the IDs of these authorities.
Afterwards, we have tried to find their identities by looking at different pub-
lic social networks, and we have discovered that some of them are Sobazaar
employees, users we could describe as fashion blogger which role we assume
is to publish content. These users are probably famous to the users in the
application, and this ulteriorly confirms our hypothesis that users that are
important for fashion purposes are also those that are highly connected.

2.4.6 Reasons for Following

We wish to investigate the reasons for why one user follows another since these
reasons ultimately are required in order to make successful recommendations.
We therefore investigate whether we can find a relation between the implicit

16

CHAPTER 2. DATA ANALYSIS

feedback and a users followers and followings. We take a baseline for the
similarity based on the implicit feedback, namely the likes, by creating every
possible edge between all users for whom we have like lists.

Metric Outgoing Edges All Pairs

Mean 0.1142 0.0631

Standard Deviation 0.1387 0.0884

Similarity above zero 51.48% 19.08%

Table 2.8: Statistics of the similarity based on the like lists.

Table 2.8 shows the statistics of all pairs of outgoing edges for which we
have like lists. It can be seen that over 51% of the pair of nodes there exists
similarity and this similarity is around 0.11. To compare we added the same
metric for all possible pairs for which we have like lists, which is much lower,
around 19% and the mean similarity is also lower 0.6. The distribution of
these two subsets can be seen in Figure 2.5 and Figure 2.4.

Figure 2.4: Similarity of all nodes with a like list, zero entries omitted

17

2.4. SOCIAL GRAPH ANALYSIS

Figure 2.4 shows the distribution of similarity of the subset of node pairs
which have like lists and which have similarity greater than zero.

Figure 2.5: Similarity between nodes and their outgoing edge target nodes, zero entries
omitted

The Figure 2.5 shows the similarity of nodes based on their like list for all
node pairs that have an outgoing edge. The user pairs with zero similarity
have been omitted for clarity.

The similarity is calculated as follows:

|Lu ∩ Lv|
|Lu|

for |Lu| ∧ |Lv| > 0 (2.1)

where u, v are both users and Lu, Lv are like lists of user u and v respec-
tively.

The numbers in the Table 2.8 clearly indicate that there exists a relation
between the like list and social connections. An interesting question is now
whether the similarity causes the following or whether the following causes
the similarity. Currently there only exists evidence for the latter; we know
that as soon as a user follows another user, she will receive likes and boards
from that user on her feed, which suggests that she will have opportunity to
like the same items as the user she follows, thereby increasing similarity.

18

CHAPTER 2. DATA ANALYSIS

Activity

The activity of a user might give information about her popularity in the social
graph or the popularity might indicate high activity. User’s likes and boards
get published to the feed of all their followers, this means that an active user
would intuitively seem to be preferred as this would give additional content
for the user following.

Figure 2.6: A scatter plot of the indegree on the x-axis and activity on the y-axis of users in
the Sobazaar system.

We therefore plotted the degree and activity of each user for which we
have activity, Figure 2.6. The activity is generated by taking the number of
likes and the number of published boards and adding them. Figure 2.6 only
refers to the indegree of the users, meaning their followers. The figure shows
that there is no correlation between a user following another user and their
activity.

We can therefore conclude that the activity by itself is not a reliable metric
for predicting popularity.

2.5 Clustering the Social Network

We now focus our analysis on investigating if, and how, it is possible to find
clusters of users in the social network. In Section 1.3 we have introduced how,
by clustering the social graph, it could be possible to identify communities of
users, fashion trends, understand why people connect to each others, and in

19

2.5. CLUSTERING THE SOCIAL NETWORK

general, to improve the performance of the recommender system, as we will
discuss in more detail in Section 4.2 and Section 5.1.3. We analyze different
clustering techniques, which algorithms’ details we describe in Section 3.5. A
preliminary consideration before showing our analysis is to fully understand
the mechanisms that lead to the creation and evolution of these clusters. We
should have access to the time data for each of the events in the social network,
therefore, our analysis is not fully representative of the real behavior of the
users in the Sobazaar application, but we still believe we could obtain some
useful insights for our research. In order to cope with this lack of information,
we perform our clustering analysis only on a sub graph of the entire social
network, and we will compare how the clusters obtained from this sub graph
adapt when considering the whole graph, in exactly the same way shown in
Section 4.2.5.

In Table 2.9 we present the clustering algorithms we have tested, with all
the associated parameters. For each of them we have tried different number
of clusters, 5, 20, 30 and 50. The only difference is Voltage Clustering, for
which we can only specify the maximum number of clusters that should be
generated, then the algorithm finds the number of clusters it considers appro-
priate accordingly to the set threshold and likewise with the Social Network
Clusterer that takes as input an α and a β value that the clusters obey.

With the previous number of clusters set as limits, the number of clusters
that Voltage Clustering obtained are 4, 13, 16 and 22. For Spectral Clustering
we use three different affinity matrices, depending on three different types of
distance functions: Adjacency, Item similarity and Common Neighbors simi-
larity, that we define in Section 4.2.2.

The Social Network Clustering algorithm’s α and β parameters have been
set to 0.01 and 0.009 respectively, after several attempts to find the right
parameters that could fit our graph.

Algorithm Parameters Number of Clusters

Authority Clustering / 5,20,30,50

Spectral Clustering Adjacency, Item Simi-
larity, Common Neigh-
bor

5,20,30,50

Social Network Clustering α = 0.01, β = 0.009 /

Voltage Clustering / 4,13,16,22

Table 2.9: List of the clustering algorithms with the associated parameters

2.5.1 Size of the Clusters

We look at the size of the clusters generated by each clustering algorithm.

We do not show the size of the clusters when the number of clusters are
50 for lack of space, the behavior is similar to the one shown in Figure 2.9.

20

CHAPTER 2. DATA ANALYSIS

Figure 2.7: Size of the clusters and outliers when number of cluster = 5.

We can see that when increasing the number of requested clusters the
clusters found by the Spectral Clustering change. Both Voltage Clustering
and Authority Clustering find instead the same clusters with almost the same
number of nodes, while generating other very small clusters with less than 100
nodes. Spectral Clustering instead finds completely different clusters, equally
distributing the nodes over all the clusters. For example, in Figure 2.7 Author-
ity Clustering finds that most of the nodes are in cluster 1 and 2, containing
together approximately 75% of the nodes in the graph, and continues to keep
these two clusters in Figure 2.8, now named as clusters 1 and 12. Spectral
Clustering instead, independently from the parameters used, changes the size
of all the clusters, decreasing from an average of 7500 nodes in Figure 2.7 to
1200 in Figure 2.9.

Finally, for each clustering algorithm the graphs show the number of out-
liers, i.e. those nodes that the algorithm can not associate to any cluster.

Because of the workings of Authority Clustering, defined in Section 3.5.4,
all the nodes are associated to the closest authority, hence no outliers are
found by this algorithm. Spectral Clustering finds instead the same number
of outliers for all the number of clusters, average 8800 when using the adja-
cency matrix and 6285 with the Common Neighbors similarity matrix. Voltage
clustering considers 12956 nodes as outliers when only 4 clusters are retrieved,
2895 for 13 clusters and 4229 for 16 clusters.

We can conclude that, since these three completely different behaviors both

21

2.5. CLUSTERING THE SOCIAL NETWORK

Figure 2.8: Size of the clusters and outliers when number of cluster = 20.

22

CHAPTER 2. DATA ANALYSIS

Figure 2.9: Size of the clusters and outliers when number of cluster = 30.

23

2.5. CLUSTERING THE SOCIAL NETWORK

in terms of size of the clusters and outliers, it is not clear which algorithm is
more appropriate in our data set, in order to correctly describe the structure
of the communities or groups we are willing to find. We continue investigating
the characteristics of these clusters.

2.5.2 Trends and Communities

Considering the fashion nature of the Sobazaar application, it is natural to
wonder if users follow different trends and fashion groups, if users with sim-
ilar taste connect to each others and if they create communities inside the
social network where they share these interests. Assuming that such behav-
ior is present in the social network, the question is if it is possible to detect
these communities, and finding the underlying reasons which ties these users
together. If the reasons are their interest in a particular group of items, we
should see how the users inside these clusters like similar items and how these
items differ between clusters and compared to the popular items in the entire
social network.

In Figure 2.10 we analyze how the clusters find communities of users that
more tightly share interests based on items. To do so, we calculate the average
similarity of the user in a graph G = (V,E) as∑

(u,v)∈E sim(u, v)

|E|
(2.2)

where sim(u, v) is the similarity between user u and v for which there is a
directed edge (u, v) in the graph. We calculate the similarity for the graph and
find it to be 0.0045129. For each clustering algorithm, we then calculate the
similarity inside the subgraphs obtained from the clusters. We can compare
these values by dividing the similarity inside the cluster with the similarity in
the graph. If the value of this ratio is greater than 1 we can conclude that we
have restricted the cluster to those users that share similar interests in terms
of the items they have interacted with and thereby found fashion trends inside
these communities.

In Figure 2.10 we show the results where we have requested 20 clusters
from each of the algorithms mentioned, and only analyze those clusters that
contain at least 50 nodes.

All the clusters have a strictly positive ratio. Some of the clusters have
users for which the average similarity is 500 times higher than in the original
graph, and in particular Voltage Clustering obtains the overall higher results,
meaning that it finds users that are connected and that also share interests.
On the other hand, Spectral clustering does not perform well.

In Figure 2.11 we show how the most popular items in the communities
differ from the items that are popular in the social network.

We consider the 10 items that have received the largest number of likes
and that have been published in the highest number of boards as the most

24

CHAPTER 2. DATA ANALYSIS

Figure 2.10: Ratio between the user similarity based on the Like and Boards similarity in
clusters against the user similarity in the entire graph. The X axis shows the clusters, the
Y axis the ratio between the two user similarities.

popular. We retrieve the items, for both the entire graph and for each cluster.
In Figure 2.11 we show, for each cluster, the percentage of most popular items
in that cluster which are also popular in the graph. The figure shows only
those clusters that contain at least 50 users.

For most of the clusters, the percentage of popular items which are popular
in the graph as well, are above 60%, and for some of the clusters found by
authority clustering and spectral clustering the value reaches 90% of similarity.
The only difference is voltage clustering, for which all the clusters have below
70% of common popular items. This particular behavior of Voltage clustering,
together with the high similarity inside the cluster found by this algorithm
previously shown in Figure 2.10, is an indication that voltage clustering is able
to identify communities in which users share interest about particular fashion
trends, that can be considered different from the general trend of the network.
Knowing this, we could enforce our hypothesis that by recommending users
that lie in the same community we can also recommend items based on these
connections, since these users also share particular fashion interests.

2.5.3 Density of the Clusters

Considering our objective of finding communities of users that are connected
to each other, a good indication of the quality of the clusters is to compare
the density of the cluster with the density of the whole graph.

25

2.5. CLUSTERING THE SOCIAL NETWORK

Figure 2.11: The graph shows the percentage of most popular items that are in common
between the clusters found by Authority, Voltage and Spectral Clustering and the items that
are generally popular in the social network. The x-axis shows the values for the different
clusters, the y-axis the percentage of items that are popular in both that cluster and the
graph.

We remind the definition of density D(G) of a graph G = (V,E) as

D(G) =
|E|

|V | · (|V | − 1)

When the clustering algorithm finds the set of nodes Ci inside the i-th
cluster, we can then extract the sub graph Gi = (Ci, Ei) of G with only the
nodes in Ci and the edges that are incident on these nodes Ei = {(u, v) ∈ E |
u ∈ Ci ∧ v ∈ Ci}.

We can now compare the density of a cluster and of the original graph as
D(Gi)
D(G) , where a value greater than 1 shows that the density in the cluster is
higher than the density in the graph.

In Figure 2.12 we show the ratio of the average density of the clusters, for
each clustering algorithm, against the density of the graph. The plot shows
how this ratio changes for the different numbers of clusters, on the x-axis.

We can see how all the ratios are greater than 1, meaning that on average
the clusters are more dense than the graph. As shown in the previous section,
some clusters contain only one node, or very few nodes, hence the density of
their sub graphs are 0 or close to 0. Nevertheless, it is possible to see that
the higher the number of clusters, the larger the ratio is, meaning that the
clusters are more densely connected structures. This is especially true for
the authority clustering algorithm, the average density, when 30 clusters are
extracted is 90 times larger than the density of the graph. This is expected

26

CHAPTER 2. DATA ANALYSIS

Figure 2.12: Ratio between the average density of the clusters compared to the density of
the graph. The x-axis shows the number of clusters and the y-axis the density ratio.

because of the nature of the algorithm; since we know that most of the users
in the social network are only connected to the authorities, when authority
clustering groups the nodes around these users we obtain sub graphs that are
more dense than the original graph.

In conclusion, we can observe that all the clustering algorithm are able
to find more dense sub graphs than the original graph. The cause of these
results varies dependent on the algorithm and to understand if our techniques
are able to correctly identify the reason why users connect to each others, we
investigate if the evolution of the network follows the same patterns.

2.5.4 Evolution of the Clusters

The objective of clustering is to find communities in which the users connect
to other users that lie in the same cluster. Our assumption is that considering
the evolution of these communities, they will continue connecting to the same
group of users.

To understand if this behavior applies to the Sobazaar social network we
extract a sub graph of the original social graph by removing a subset of the
edges, while keeping all the nodes. We call the sub graph training set, while
we keep the set of removed edges as test set. We describe the details of this
process in Section 4.2.5. We apply our clustering algorithms to the training
set, obtaining the different clusters in which the users are grouped. For each
edge (u, v) in the test set we check if v lies in the same cluster of u. If it does,
we have correctly predicted that the users will connect to users in their same
cluster.

In Figure 2.13 we show the results for all our clustering algorithms. The
first result shown by this analysis is that each clustering algorithm is able
to find groups in which at least one new edge is in the same cluster, since
the percentage is positive for all the algorithms. While the different types of
Spectral Clustering and the Social Network Clustering perform poorly in this

27

2.5. CLUSTERING THE SOCIAL NETWORK

regard, both Authority Clustering and Voltage Clustering show how more than
40% of the new connections reside in the same cluster. This is particularly
interesting because it shows how, even by focusing on small subgraphs of the
social network, we could still perform accurate recommendations.

Finally, since we have observed that we can rely on these algorithms for
finding communities that will evolve in time, especially for the authority clus-
tering and for the voltage clustering, we can now move the analysis to the
evaluation of the recommender system based on these algorithms, as we will
show later in Section 5.1.3.

Figure 2.13: The graph shows the number of edges in the test set for which both ends lie in
the same cluster. The different lines show the results for the clustering algorithms. In the
x-axis the number of clusters extracted from the graph, the y-axis the percentage of edges
for which this criterion holds.

Results of the Clustering Analysis

We have seen different points of view that can give a first overview of how
clustering the social network could contribute to our research. First of all
we have seen that the clustering algorithm find different clusters, each with
different characteristics. While it is hard to identify fashion trends in the
different communities, we can still observe how the algorithm group users
that are connected and that share similar interests together. Algorithms as
Voltage Clustering and Authority Clustering are able to identify clusters that
describe an evolution that perpetuates in time.

Considering all these results, we will continue our analysis of how clustering
can contribute in the social link problem in Section 5.1.3, where we will apply
these algorithms to evaluate the recommender system.

28

CHAPTER 2. DATA ANALYSIS

2.6 Conclusion

In this chapter we described the data collected from crawling the Sobazaar
API, we described the data scheme used in order to store the data collected
and we analyzed aspects of the data.

Section 2.1 described the Sobazaar application for the iPhone. A user of
the application can through the feed see what the users or brands she follows
have liked or which boards they have published.

Section 2.2 presented how the data was collected using several crawlers on
the Sobazaar API and how we structured the database. The terms follower,
following, unfollow and unlike was defined.

Section 2.3 contains a detailed description of the data crawled, and analysis
of each of the tables in the database, to get a better insight in the data.

Section 2.4 gives an introduction to the graph notation used in this report,
furthermore it gives an analysis of the social network created by using the
follow as a directed edge, connecting the users.

Section 2.4.6 starts combining the analysis of the social network and the
likes and boards previously described. It is shown that the similarity inside
the social graph, on average, is higher than nodes, which are not directly
connected in the network.

Section 2.5 described the cluster generated by the different clustering algo-
rithms which will be described in Section 3.5, and how each of them generated
clusters with different characteristics which could have useful applications.

After completing the data analysis we will now investigate which techniques
we can use in order to address the problems stated in the Section 1.1 taking
the observations made in this analysis as the starting point.

29

Chapter 3

State of the Art

This chapter describes the state of the art approaches in the field of recommen-
dation systems and social graphs. Section 3.1 describes the current state of the
art techniques in recommendation systems. Section 3.2 describes which infor-
mation can be retrieved by analyzing and using a social network. Section 3.3
describes a common approach used in recommendation systems, namely ma-
trix factorization and describes how social information can be used directly to
improve the recommendations.

Section 3.4 elaborates the problems which exists when predicting missing
links in a social network, which is the equivalent to having to recommend users
to one another. Section 3.5 presents common clustering algorithms which have
an application in the context of this report.

3.1 Recommender Systems

This section introduces the objective, the theory and the notation of recom-
mender systems.

We have stated in Section 1.1 the main problem we wish to address is
how to recommend users to one another. We propose that techniques which
are used in order to recommend items in most cases can have application
for recommending users as well. We therefore investigate techniques for item
recommendations as well as user recommendation in this section.

In [14] we have already described the most important goals of a recom-
mender system, where we have focused on the task of recommending items
to users. In Section 3.1 we will instead describe different objectives that the
modern recommender systems have addressed. Moreover, we will expand our
research in a social network context, where the recommender systems incor-
porate information about users’ relationships or when the objective is shifted
to increase the connectivity of users. Later in the same section we will remind
the reader of the theory and notation behind recommender systems.

In [14, Section 4.3.1] we have addressed the difficulty of evaluating our
recommender system for the Sobazaar application. Several problem arose:

30

CHAPTER 3. STATE OF THE ART

defining how implicit feedback affects the recommendation, offline evaluation
processes, absence of negative feedback and extremely sparse data. In Sec-
tion 4.1 we will explore different ways of dealing with this problems, looking
at what researchers have already studied in similar cases.

Introduction to Recommender Systems

In modern web based applications, recommender systems are an important
tool to narrow the users’ search for the provided services, from the hundreds
of thousands to those few the user is really interested in. In an application
like Sobazaar, where users are browsing items, a recommender system’s main
goal is to find the items a particular user prefers.

In the research, the two most popular approaches for designing recom-
mender systems are content-based filtering and collaborative filtering.

Content-Based Filtering Content-based filtering (CBF) is a technique
used for recommending items to users based on the content describing the
items, such as a text-description. By using this information, users’ preferences
can be described in terms of the content they have showed a preference for,
which then again can be used for recommending new items.

Collaborative filtering (CF) is a technique used to filtrate information
using the effort of multiple collaborators. In recommender systems, where we
are interested in finding new items preferred by users, other users can be used
collaboratively to find the preferences of items for each others.

Collaborative filtering can be grouped into two different types: Memory-
based and Model-based.

In the Memory-based approach, the ratings given by users are used di-
rectly in predicting new items, either by using the ratings of similar users,
an approach called user-based, or by using the ratings of similar items, called
item-based.

In the Model-based approach, the preferences of similar users or items are
not used directly, but instead utilized to make a predictive model. This makes
enables the system to give new recommendations without having to access the
whole database of users, items and their ratings, but rather use a model which
abstracts on a higher level how preferences of items relates to users.

In a traditional application these two methods have been the most com-
monly used. In [14, Chapter 3] we described the current state of the art and
applied some selected methods to our Sobazaar application seen in [14, Chap-
ter 4]. Nevertheless, the social network nature of Sobazaar opens two other
relevant points:

• Exploiting the social network to boost items to users recommendations.

• Recommending users to other users.

31

3.2. ANALYZING SOCIAL NETWORKS

For the first point, traditional recommender systems assume that all users
are identical. As shown before, CF techniques make use of other users to
predict the preference of a new user. Similar users are considered to have equal
influence, but this assumption disregards the different relationships people
establish in a social context. The social network contains all the information
on how the users interact with each others, what is their type of common
activity, and to whom they are closer. These are important features that
can be used while designing a recommender system, and we will deepen our
research for these possibilities in Section 3.3.2.

The second point opens the path to one of the main topic of our research:
finding to whom users would prefer to connect. So far the objective has been
to recommend items to users. Nevertheless the task of recommending users
to other users can be as interesting as the previous one. In the literature,
this topic is defined as Social Link Prediction. In 3.4.2 we will define the
particularity of this problem, why it is important to research and we will
present different techniques to address this task.

Recommender System’s Definition

Now that we have described the main ideas of recommender system we can
introduce the notation we will use throughout our report for defining the
recommender systems concepts.

Let U denote the set of users for a given recommender system and I denote
the items of the system. We use the set R to denote the recorded ratings in
the system and the set S, such as S = {1, 2, 3, 4, 5} or S = {Dislike, Like},
to denote the possible values of ratings. To get the rating given to an item
i ∈ I by a user u ∈ U , we use the notation rui and to get the set of users of
U ,who has rated on a specific item i ∈ I we use the notation Ui. Similarly let
Iu denote the set of items rated by a user u.

The goal of recommender systems is to learn a function f : U × I → S,
which can predict the rating a user u ∈ U would give a not yet rated item
i ∈ I, this rating is also preferred to in this report as r̂ui. Using this function
we can find an item i∗, which will be deemed having the highest preference
for a user u.

i∗u = arg max
i∈I\Iu

, f(u, i) (3.1)

3.2 Analyzing Social Networks

Social Network Analysis is the study of the social relationships between en-
tities [20]. This discipline views these relationships in terms of nodes and
edges, representing the actors of the interactions, describing their relation-
ships. Therefore a suitable way to represent this model is a graph, that in-
trinsically describes the concept of network.

32

CHAPTER 3. STATE OF THE ART

Due to the proliferation of social network websites the interest in social
network analysis has grown among technical researchers, after being a topic
of research in the areas of psychology, sociology and behavior science [27]. By
the mean of computer science, data mining and graph theory, social network
analysis has been seen as a way to utilize the large amount of data that users
reverse in websites such as Facebook, Twitter and others.

Social network analysis attempts to address an important problem: de-
termining the function and role of the individuals in the network. Humans
interact differently, but their behavior is reflective of their persons, and from
their activity in the social networks information about them can be extracted,
and used for different purposes: finding leaders of a community, the early
adopters of a new product, terrorist groups and, last but not least, used for
recommender systems.

In Section 2.4.1 we define a social network and the standard methodology
for mining information. In Section 3.2.1 we propose solutions to one of the
relevant problems for our research: how to find influential users in a fashion
social network.

3.2.1 Social Influence

Some persons are more influential than others, meaning that what they do in
terms of activity, ideas, publications and so on is considered, by other people,
more important than what other would do. It is enough to consider how people
rely on important scientists, prime ministers or celebrities for their everyday
life to understand how relevant is the influence of a person in understanding
the behavior of individuals.

A social network models these interactions, and heuristic have been studied
to recognize influential nodes. Some of these are the betweenness, closeness
or degree centralities.

The most intuitive of these measures is the degree centrality, describing the
number of edges incident in a node v. This criterion simply describes the size
of the neighbourhood of a node, therefore its possibility of sharing or receiving
information. For a node v ∈ G the measure is defined as:

D(G, v) = deg(v)

where deg(v) is the number of edges incident in v, both inner edges and outer
edges.

Betweenness centrality describes the probability that a node acts as a
bridge between other nodes in the graph [20]. We define the shortest paths,
or geodesics, between two nodes vi and vj as the notation Ωvi,vj and the
subset of these geodesics that also include v as intermediate node, Ωvi,vj (v).
Betweenness centrality is then defined as:

Definition 3. The betweenness centrality for v given graph G, BC(G, v), is
the number of times it appears in the shortest path between all the pairs of

33

3.3. COMBINING SOCIAL NETWORK AND RECOMMENDATIONS

nodes in graph G:

BC(G, v) =
∑

vi,vj∈V

Ωvi,vj (v)

Ωvi,vj

where vi, vj 6= v

The following pseudocode shows how to calculate the betweenness central-
ity value for each node in the graph.

1 T[][] <- Floyd_Warshall(G) // T[i,j] = shortest path between <i,j>
2 for v in V
3 for u,w in V: u,w != v
4 if v in T[u][w]
5 B[v]<- B[v] + 1

To compute the matrix of the shortest paths between all the pairs of nodes
in the graph the Floyd-Warshall algorithm can be used, associating a weight
of 1 to each edge e ∈ E. The running time of this algorithm is O(V 3). The two
cycles to calculate the betweenness have a cost of O(V · (V − 1) · (V − 2)) =
O(V 3). Therefore the cost is O(V 3), that in a large social network could
become a problem.

The intuition behind the last measure, closeness centrality, is the time it
takes to spread information from a node v to the rest of the graph. This can
be seen as a measure of how close a node is to the other nodes. With Vv
describing the vertices reachable from a node v, the farness of the node v is
defined as the sum of the shortest distances to all the nodes in Vv

F (v) =
∑

vi∈Vv
d(v, vi)

where d(v, vi) is the shortest distance between v and vi, defined as V if there
is no path in 〈v, vi〉. The closeness is computed as:

C(G, v) =
|Vv|2

|V |F (v)

In this case the fewer the nodes that are reachable from a node v the
smaller the numerator, hence a lower value. Similarly, more nodes that are not
reachable from v make the denominator bigger, again decreasing the centrality
measure.

3.3 Combining Social Network and Recommenda-
tions

To answer the problems we have stated in Problem 1 and Problem 2 we wish
to investigate techniques for understanding how to extract information from
a social network that can be used for our recommender system.

Traditional recommender systems often use a collaborative approach when
recommending items to users. This section investigates collaborative based

34

CHAPTER 3. STATE OF THE ART

techniques for recommending users to users. Although techniques presented
here are mainly focused on recommending items, these approaches are applica-
ble for recommending users as well, as the same metrics used for recommending
items also exists in the context of users, i.e. there exist underlying reasons
why one user follow another.

In order to explore collaborative filtering we refer to a common approach,
namely latent factor models which make use of underlying features or factors,
which are not explicitly stated but inferred from users preferences for items. In
the context of Sobazaar such features might for example have factors which are
not apparent from the description of the product, i.e. for a summer dress and
sandals an underlying factor which might not be directly stated could be that
these items are usually popular during the summer season, the same might
hold true for the underlying design and the current popularity of the brand
which has produced them. Latent factor model often represent the data as a
matrix consisting of ratings, indicating how much a user preferred an item. A
common type of latent factor model approach is matrix factorization [15].

The goal of matrix factorization is to predict a rating a user would give an
item which he has not yet interacted with, based on her previous interactions
and other users previous interactions. Recommendations can therefore be
made by selecting the items with highest predicted preference.

More formally given a rating matrix R, where rui ∈ R and rui represents
a user u’s preference of item i, we want to find the predicted values r̂ui for all
users and items by decomposing the matrix R into two latent factor matrices
P and V such that R = P · V . We then find the predicted rating for a given
user and item by taking the dot product of the column vectors of P and V , p
and v respectively [15].

r̂ui = pTi · vu

Where pTi is transposed. A way to learn the latent factor matrices is to
minimize the squared error given some training data T :

min
p·,v·

∑
(u,i)∈T

(rui − pTi · vu)2 + λ(||qi||2 + ||pu||2) (3.2)

here λ is a regularization constant, and the use of ||qi|| and ||pu|| is L2-
Norm, L2 is used because L1 norm is non-differentiable, and will not work with
Stochastic Gradient Descent. The difference between L1 and L2 is that L2 is
the sum of the square of the weights, and L1 is the sum of the weights. There
exist several techniques to minimize the squared error, one such technique is
stochastic gradient descent [15].

In stochastic gradient descent we first find the error of the current rui of
the training set by using the column vectors:

eui = rui − pTi vu

35

3.3. COMBINING SOCIAL NETWORK AND RECOMMENDATIONS

We then follow the update rules below which modify the column vectors, P
and V , given a learning rate γ, following the opposing direction of the gradient
λ until convergence:

vi = vi + γ · (eui · pu − λ · vi)

pu = pu + γ · (eui · vi − λ · pu)

In conclusion, this approach allows us to approximate a predicted rating
rui for a given user u on an item i.

3.3.1 Probabilistic Matrix Factorization

In the previous section we briefly described the general matrix factorization
approach, the paper [22] introduces a new concept, namely probabilistic matrix
factorization which is based on a probabilistic model.

Probabilistic matrix factorization more commonly used in order to incor-
porate social networks directly in the decomposition of the rating matrix [18]
[12], which makes it relevant in the context of Sobazaar.

The problem addressed by this approach is that there is a need for algo-
rithms which scale linearly with the number of observations and have accept-
able precision even when applied to sparse data or data that is imbalanced.
To illustrate the intuition behind this approach we take an example based on
Sobazaar.

We define m to be the pieces of clothing and n the users of Sobazaar and
let r be a value with the domain [0, 1], where 1 indicates that a user has liked
an item and 0 if a user did not like an item.

First we create a rating matrix R : M × N , where M = |m| and N =
|n| which contains the rating of user ni of the products mj at position Ri,j .
By choosing an arbitrary number of factors D we can find two latent factor
matrices U and V as U ∈ RD×M and V ∈ RD×N such that R = UT × V .

We define Ui and Vj to be column vectors where Ui contains user specific
latent values, while Vj contains clothing specific latent values. The conditional
distribution of R is then defined as

p(R|U, V, σ2
R) =

M∏
i=1

N∏
j=1

N
[
(ri,j |UTi Vj , σ2

R)

]IRi,j
(3.3)

where N is a probability density function with mean µ = UTi Vj and variance
σ2, while IRi,j is an indicator function returning 1 if the position at (i, j) is 1,
0 otherwise.

The prior probability of the latent feature vectors are defined with a zero
mean density function:

36

CHAPTER 3. STATE OF THE ART

p(U |σ2
U) =

N∏
i=1

N (Ui|0, σ2
UI) (3.4) p(V |σ2

V) =
M∏
j=1

N (Vj |0, σ2
V I) (3.5)

Prior probability of U and V, defined by a zero mean density function.

The objective function is then found by minimizing the sum-squared-error
of the log posterior distribution

E =
1

2

M∑
i=1

N∑
j=1

Ii,j(Rij − UTi Vj)2 − λU
2

M∑
i=1

||Ui||2F +
λV
2

N∑
j=1

||Vj ||2F (3.6)

λ is the regularization constant given for each matrix respectively and usually
defined by the variance of the matrices further described in Section 3.3.3,
and || ∗ ||2F describes the frobenius normal form of a matrix. To optimize
this objective function E we can apply algorithms such as stochastic gradient
descent as presented in the previous Section 3.3.

In the following section we will describe how this probabilistic matrix fac-
torization is used in order to create recommendations which incorporate a
social network.

3.3.2 Social Recommendations using Probabilistic Matrix Fac-
torization

The following sections contain a description of state of the art recommenda-
tion systems which use social networks in order to improve their accuracy. As
we have already discussed in Section 3.1, traditional recommendation systems
assume that users are independent and identically distributed. This assump-
tion ignores the social connections among users of a system. In reality, we
always turn to friends for asking suggestions and advice, and this turns into
a natural offline recommendation, where we simply receive recommendations
from our friends. In [29] it has been studied how friends’ recommendations
are preferred over those given by a recommendation system. This is because
of the concept of trust. We trust our friends, we trust people we believe
being expert in a field but we do not, usually, trust an automatic system,
even if its recommendations are tailored on our needs more than those from
a friend would be. Because of this reason, recommendation systems which do
not consider social relationships fail modelling the users’ preferences properly.
Recently, researchers have started including the social properties of a user
while constructing a recommendation system. Before introducing algorithms
which make use of both social networks and user-item data, we introduce the
concept of social trust.

37

3.3. COMBINING SOCIAL NETWORK AND RECOMMENDATIONS

Social trust Social trust is the concept of describing the strength of a rela-
tion between two users [18]. In the context of recommendation systems,
the more a user trust another user the more gladly she will accept rec-
ommendations coming from her.

Given a social graph, trust could be considered to be a weight on the
edges, representing the trust between two users in the direction of that edge.
However, in a normal scenario, we do not have these weights, hence trust must
usually be inferred from the users’ activity. How the social trust is computed is
highly dependent on the domain. Intuitively, the social trust could be inferred
by investigating the number or the type of interactions between a user and her
friends. For example, a high amount of similar interaction in common would
give a high trust value, while a low value would be given if there is little or no
interaction.

In our case, the option which would be available is to investigate whether
a user has some interactions with the systems in common with her friends,
as for example liking the items a friend also liked or that she just put into
a board. This source of information is implicit and one can not assume that
similar interactions between two users is a result of trust. To address this we
would introduce the concept of discounting the trust calculated through this
method, by assigning confidence to each of the trust values generated. This
confidence is based on the similarity of users and the similarity of interactions
in the data.

3.3.3 SoRec

Figure 3.2 shows a social graph of trust. The weights on the edges describe
the degree of trust from one user to another. The trust value is bounded in
the interval [0, 1], where a higher value represents higher trust.

u1

u2

u3

u4

u5u6

0.70.7

1

0.4

0.2
0.6

0.7

0.3 0.5

Figure 3.2: Social Graph G = (V,E)

A way to use this social graph in order to create recommendations is pre-
sented in the paper [18], which introduces SoRec. In order to create recom-
mendations SoRec converts the graph 3.2 into a matrix, referred to as the

38

CHAPTER 3. STATE OF THE ART

social network matrix C: N × N , where N is the number of users, as shown
in Table 3.1. Each value in the matrix corresponds to the trust value in the
graph where non existing edges are set to zero. The intuition of SoRec is to
apply matrix factorization on both the social network matrix and user-item
matrix in order to generate recommendations, even if the user-item matrix is
sparse.

u1 u2 u3 u4 u5 u6

u1 0 0 0 0 0.7 0

u2 0 0 0 0.7 0 0.2

u3 0 1 0 0 0 0

u4 0.6 0 0.4 0 0 0

u5 0.7 0 0 0 0 0

u6 0 0 0.3 0 0.5 0

Table 3.1: Social Network Matrix C

The Table 3.2 shows a user-item matrix R where the value of a cell indicates
whether the user has liked the item. For example, the cell [1, 1]rangle with
a value of 1 indicates that user u1 liked the item i1. Otherwise, a cell with a
value of 0 shows that the user has never liked or interacted with the item.

u1 u2 u3 u4 u5 u6

i1 1 1 0 1 0 1

i2 1 0 1 1 0 0

i3 1 1 0 0 0 0

i4 0 0 1 0 0 1

i5 0 1 1 0 0 1

i6 0 1 1 1 0 0

Table 3.2: User-Item R. The rows represents the items, while the columns the users.

The social network matrix C and user item matrix R are then decomposed
into three factor matrices such that C = UTZ and R = UTV .

Some users in the social network might have a lot of outgoing edges, here
the value cik of the social trust should be diminished as the confidence in that
the user trusts all users also decreased. If a user on the other hand has a lot
of incoming edges the confidence in the trust value cik should be increased as
she is trusted by many users. To incorporate the decay in trust the term c?ik
is introduced and defined as:

c?ik =

√
indegree(vk)

outdegree(vk) + indegree(vk)
× cik (3.7)

39

3.3. COMBINING SOCIAL NETWORK AND RECOMMENDATIONS

where vk is the node corresponding to ck in the graph G and the func-
tions indegree and outdegree return the number of directed edges ending and
originating in vk respectively. In order to compute the factor matrices the
indicator function ICik is introduced. ICik returns a value of one if there is a
non-zero value at position (i, k) in matrix C and is used in order to refer if
there is any data available for the current position in a matrix.

The probability for the N × N size matrix C is then given by the latent
matrices U and Z, where Ui and Zk are column vectors at the i-th and k-th
position, as:

p(C|U,Z, σ2
c) =

N∑
i=1

N∑
k=1

ICik(c
∗
ik − g(UTi Zk))

2 (3.8)

where g(UTi Zk) is a logistic function used for bounding a value in the range
[0, 1], defined as:

g(x) =
1

1 + exp(−x)
(3.9)

A similar approach is taken for the user-item matrix R, where m is the
number of users and n is the number of items, the probability is defined as:

p(R|U, V, σ2
R) =

m∑
i=1

n∑
j=1

IRij (rij − g(UTi Vj))
2 (3.10)

Finally the objective function over all matrices R, C, U, V, Z is defined as
the following objective function:

L(R,C,U, V, Z) =
1

2

m∑
i=1

n∑
j=1

IRij (rij − g(UTi Vj))
2

+
λC
2

m∑
i=1

m∑
k=1

ICik(c
∗
ik − g(UTi Zk))

2

+
λU
2
||U ||2F +

λV
2
||V ||2F +

λZ
2
||Z||2F

(3.11)

λ is the regularization constant and defined as λC =
σ2
R

σ2
C

, λU =
σ2
R

σ2
U

, λV =

σ2
R

σ2
V

, λZ =
σ2
R

σ2
Z

where σ2 is defined as the variance of a matrix.

The first term describes the user-item matrix while the second term de-
scribes the social network objective. Here λC describes the magnitude the
social network has on the final predicted rating. The last term is the regular-
ization where different weights can be assigned to each of the three matrices.
Giving more weight to one of them would result in a higher bias towards that

40

CHAPTER 3. STATE OF THE ART

model. We can apply stochastic gradient descent in the same way it was
described in Section 3.3.

The problem with applying SoRec directly on the Sobazaar data is that
we do not have any information regarding the amount of trust a user has to
the other. As previously discussed in Section 3.3.2 it could be possible to
create a model which allows, with some confidence, to generate trust values
by for example investigating if users liked the same items one after another in
a short period of time, which would indicate that a user might have influenced
another. Although our data does not allow that, since we do not have real
timestamps of the like event.

3.4 Social Link Problem

In 3.4.1 we will describe the problem and why it is relevant in our research,
while in 3.4.2 we present several state of the art techniques to address this
task.

3.4.1 Problem Definition

We have already described how social network analysis has been widely re-
searched to extract information about the actors and their interactions. Re-
cently, the task of understanding the mechanisms modeling the evolution
through time of the relationships among entities in such a complex structure
has received interest [16] [17]. A social network is a dynamic object where
connections can be tied and untied, or new entities can enter in the process
changing the structure of the network. An important problem in this scenario
is to understand if the evolution of the network can be explained by informa-
tion held by the network itself, without the need of reasons exogenous to the
network. This lead to the task of social link prediction:

Social Link Prediction Given a snapshot of a social network at time t, the
task of link prediction aims to accurately predict the edges that will be
added to the network during the interval from time t to a given future
time t′ [16]

In our application, the social link prediction problem can be formally de-
fined as follows. Let G = (V,E) be a social network in which each edge
e = (u, v) ∈ E represents an interaction between u and v that took place at
a particular time t(e), this time is when a follow connection was made. We
select four different time points t0 < t1 < t2 < t3. G[t0, t1] is the graph con-
taining only the edges in E[to,t1] = {e ∈ E | t0 ≤ t[e] < t1}, where t[e] is the
time label associated to the edge e. Using G[t0, t1] as training set for a link
recommender system, the objective is to propose a list of edges that do not
appear in G[t0, t1] and that are expected to appear in G[t2, t3]. Intuitively, a
relevant recommendation will be an edge that is not present in the training

41

3.4. SOCIAL LINK PROBLEM

set and that is present in the test set, meaning that we have recommended to
a user a new followings that she will eventually connect with.

3.4.2 State of the Art

In this section we present some of the possible methods for solving the link
prediction problem. Each of the following approaches assign a score(u, v)
to each pair of nodes 〈u, v〉 of the graph, defining the connection strength
between these two nodes. Intuitively, the higher the score the better the
recommendation will be. This score is computed using the graph based on
the training set and, for a given user, the recommendation will be a set of
other users she is not connected with that have obtained the highest scores,
accordingly to a specific method.

3.4.3 Neighborhood Based Methodologies

These methods define the score(·, ·) dependently on the structure of the neigh-
borhood of a node. Let τ(u) be the set of neighbors of a node u. For two nodes
u, v in the graph the idea is that if the intersection of τ(u) and τ(v) is large,
then it is more probable for these two nodes to be connected in the future
since they are connected with the same other users. Following this intuition,
a simple implementation of the score can be defined as

score(u, v) =| τ(u) ∩ τ(v) | .

We discuss the following methods, as reviewed in [16], which tries to refine
this definition of similarity.

Jaccard’s coefficient Given a random feature f representing a characteristic
of one node, either u or v, the Jaccard coefficient describes the proba-
bility that both nodes possess this feature. The feature can be specified
for example having a user x in the neighborhood, which means that the
score can be measured as probability of having users in common:

score(u, v) =
| τ(u) ∩ τ(v) |
| τ(u) ∪ τ(v) |

.

Adamic/Accard The Jaccard’s coefficient simply counts the number of fea-
tures in common between two users u and v. Another option is to weight
those features that are more rare to appear with higher weights, because
they will define the similarity between the two users more than features
that more frequently appear to be in common in pairs of users. If the
feature that we are considering is a user in common in the neighborhood
of two users u and v, the measure can be defined as

42

CHAPTER 3. STATE OF THE ART

∑
z∈τ(u)∩τ(v)

1

log | τ(z) |

With this definition, having in common a user z who has a small neigh-
bor, hence with a small probability of appearing in some other user’s
neighborhood, gives an higher score.

Preferential Attachment This measure defines the probability of two nodes
u and v to connect in the future to be directly proportional to the size
of their neighborhoods. The intuition is that the more connections they
have, the easier is to get in contact with other users. Then the score is
calculated as follows

score(x, y) = | τ(u) | · | τ(v) |

PageRank

PageRank is a ranking algorithm proposed by Sergey Brin and Lawrence Page
in 1998 as a feature for their search engine Google [5]. The algorithm was
initially designed to infer the importance of a page by exploiting the hyperlink
structure of the web graph. This idea can also be applied in a social network,
where the objective is to identify the important users. The main criterion of
PageRank is to give high scores to pages that are highly cited, i.e. referenced
or hyper-linked by other pages.

The intuition behind the ranking principle is to try to model the user’s
behavior in her web navigation. The assumption is that a random surfer per-
forms a random navigation starting from a given web page. This user will
randomly visit other pages through the hyperlinks it finds, until it decides to
jump to another random page using the address bar. With this kind of be-
havior the probability that the random surfer will visit one of the pages of the
graph is exactly what the PageRank is describing. PageRank is then a mea-
sure of how many pages are referencing a given page: the higher this number,
the higher the probability that the random surfer will end its navigation in
that page. Furthermore, PageRank also weights the links accordingly to the
importance, expressed in term of PageRank score, of their source nodes. The
algorithm will then consider both the number of edges pointing to a particu-
lar node and their quality. For example if a page is linked by bbc.co.uk it is
highly probable that the reference is not broken and that its quality is good,
therefore these links will have a higher weight for the algorithm.

PageRank can be applied in any network context, hence also in our social
network. Here the web pages are the users and the hyperlinks the relationships
among them. The objective in our case is to find those users who are attracting
more followers, and again that are connected with other popular users. Using

43

3.5. CLUSTERING

the same criterion explained for a search engine, these important users will
have higher PageRank scores.

The formula to calculate the PageRank for a node u of the network is

PR(u) = α
∑
v∈Tu

PR(v)

C(v)
(3.12)

where α is the probability for one user will visit one of the users she is
connected to, while with probability 1 − α to jump to a random destination.
Tu is the set of users that are following u. PR(v) and C(v) are respectively
the PageRank and the outdegree of the node v, this last one used to normalize
the weights of the edges by the number of users v is following. To consider the
two aspects of the measure, both the number of links and the quality of these,
the equation makes a recursive use of the PageRank value. Because of this,
multiple iterations of the algorithm are necessary in order to approximate the
PageRank to reflect the theoretical true values.

A PageRank based recommend system will then calculate the score for all
the nodes of the social network. Sorting the users by this value a recommen-
dation is then a list of k users with the highest PageRank value. A drawback
of using only the PageRank as the recommendation criterion is that this al-
gorithm does not take into account the preference of each user, but solely use
the general link structure of the graph.

3.4.4 Conclusion

A social network is a constantly changing graph, where users add new con-
nections with each other or users remove their already existing connections.
A way to look at the social graph in a specific timeframe, means that all
the connections inside the graph must have a timestamp, to see when their
connections was made. The social graph we have generated does contain times-
tamps, although they are mostly from the same timeframe because of the way
the crawler was made, meaning we cannot use the social link prediction. In
Section 3.4.2 we present the score function which computes a score between
two users, that can be used to strengthen a recommendation. Then in Sec-
tion 3.4.3 we describe Pagerank, that is a way to give each node a score of
popularity, i.e. a node that is being visited many times by the pagerank, gets
a high score.

3.5 Clustering

Clustering of social graphs is a viable method to find patterns which can be
used to predict future trends or recommendations. Clusters in social recom-
mendations are often referred to as communities [8]. In the following sections
we describe the theory and intuition behind state of the art clustering algo-
rithms and if they are applicable in the context of Sobazaar.

44

CHAPTER 3. STATE OF THE ART

3.5.1 Social Network Clustering

The paper [21] presents a novel way of finding communities in a social net-
work graph. The clustering approach presented in this paper is referred to
as (α, β)-clustering. The motivation of this approach is to find communities
which are highly connected, secondly we do not want to assume that users in
these communities only belong to one community. The α value is therefore
a threshold defining how well users in a community are connected to other
communities, and the β value is a threshold defining how well users in a com-
munity are connected with one another. The function E(u,C) returns the set
of all nodes v ∈ C with an edge to u, while |C| refers to the number of nodes
in the cluster C. The definition is found in [21]:

Definition 4. Given an undirected graph G = (V,E) where V is the set of
vertices and E the set of edges, and each vertex has an edge to itself, we define
an (α, β)-cluster C such that C ⊂ V given that

• All vertices in C are densely connected:

∀v ∈ C, |E(v, C)| ≥ β · |C| (3.13)

• All vertices in V \ C are sparsely connected:

∀u ∈ V \ C, |E(u,C)| ≤ α · |C| (3.14)

In addition to this definition they also propose a deterministic algorithm
to find all (α, β)-clusters in a given undirected graph, which is based on the
notion of P-champions. The intuition behind these champions is that a node,
which champions a cluster, has less connections outside the cluster than a P
percentile of the cluster size. Γ(c) is defined to be the neighbors of c and τ(c)
is defined as the neighbors of neighbors τ(c) = Γ(c) ∪ Γ(Γ(v)).

Definition 5. A node v ∈ C champions a cluster C if the following holds:

|Γ(c) ∩ V \ C| ≤ P · |C|

where P is a value bound in the range of [0, 1].

The deterministic algorithm of finding the clusters using this approach is a
direct consequence of definition 4. Note that the term |(v, cluster)| is defined
as being the number of edges going from node v into the cluster cluster.

45

3.5. CLUSTERING

Listing 3.1: Determistic Algorithm to find the clusters.

1 SocialNetworkClusterer(α, β, size, V,E)
2 clusters ← ∅
3 foreach node c ∈ V
4 C ← ∅
5 foreach node v ∈ τ(c)
6 if |Γ(v) ∩ Γ(c)| ≥ (2β − 1)size
7 C.put(v)
8 if ∀v ∈ (V \ C), |E(v, C)| ≤ α · |C| ∧ ∀v ∈ C, |E(v, C)| ≥ β · |C|
9 clusters.put(C)

10 output clusters

Listing 3.1 shows the pseudo code for the deterministic algorithm proposed
in the paper [21].

In relation to the Sobazaar domain we assume that people are interested
in several different styles of clothing meaning they could be interested in a
wide variety of users which have different items in their boards and like lists.
This approach takes this assumption into consideration and allows the user to
be in several clusters.

3.5.2 Betweenness Clustering

The paper [8] proposes a technique to identify communities in a graph by using
the betweenness metric as described in Section 3.2.1.

The intuition of this approach is that most social-graphs contain tightly
knit communities which are sparsely connected to other communities. By
removing the edges which have the highest amount of betweenness the links
between clusters get removed which makes it possible to detect these clusters.

A

C

B

D E

G

F

H

Figure 3.3: The betweenness of an edge be-
tween two communities, here (D,E) has the
highest betweenness.

The Figure 3.3 shows an exam-
ple of two communities {A,B,C,D}
and {E,F,G,H}. The edge (D,E)
has the highest betweenness as it has
the highest number of shortest paths
passing through it.

The proposed algorithm for de-
tecting these edges is presented as
having four steps:

1. For all edges, calculate the betweenness.

2. For all edges, remove the edges with the highest betweenness.

3. For all edges affected by the removal, recompute the betweenness.

4. If less than x edges remain terminate else go to step 2.

x is a user defined number, if too few edges are removed not fully connected
communities might be split up, while removing too few edges results in a graph

46

CHAPTER 3. STATE OF THE ART

still containing edges which connect communities. Step 3 is necessary as there
might exists more than one connection between communities and if all nodes in
the community only used the first connection in their shortest path the second
connection is not be detected and will not be removed in the next iteration.

The Listing 3.2 shows the aforementioned steps which are taken in order
to compute the cluster using the betweenness. The betweenness is computed
for the whole graph as presented in Section 3.2.1 Definition 3.

Listing 3.2: Betweenness Clustering

1 BetweennessClusterer(G, numberOfEdgesToBeRemoved)
2 BetweennessCentrality ← computeBetweenness(G)
3 while(k < numberOfEdgesToBeRemoved)
4 score ← 0
5 to_remove ← null
6 for edge e ∈ G
7 if BetweennessCentrality.getScore(e) > score
8 to_remove ← e
9 score ← BetweennessCentrality.getScore(e)

10 G.removeEdge(to_remove)
11 BetweennessCentrality ← recomputeCentralityForAffectedLinks(

to_remove)
12 k++
13 weakcomponentClusterer(G)

The function recomputeCentralityForAffectedLinks performance
the third step mentioned above namely to recompute the shortest path for the
nodes which are affected by the removal of an edge.

The weakcomponentClusterer creates the clusters by sequentially go-
ing through the graph’s nodes clustering nodes which still have edges between
one another into the same cluster and removing them from consideration.

The running time of the proposed algorithm, assuming the use of the New-
man betweenness algorithm proposed in [23], is O(n ×m2) where m are the
number of edges and n are the number of nodes in the graph.

This clustering approach allows cluster the social network only based on the
structure of the network. Further it requires no specifications of how many
clusters are wanted but a number of edges which should be removed which
could allow for interesting results given that we do not know the number of
communities.

In relation to Sobazaar this clustering algorithm allows for an alternative
to the social network algorithm clustering algorithm presented in Section 3.5.1.
It also only uses the social network structure in order to create clusters, but
rather than allowing for nodes to be part of several clusters this algorithm
restricts the nodes to be part of only one cluster. A difficulty using this
clustering algorithm is to find the number of edges to be removed to the point
where the clusters created are useful for creating recommendations.

47

3.5. CLUSTERING

3.5.3 Voltage Clusterer

Voltage clustering proposed by [32], presents a way to find clusters in linear
time. The intuition behind the voltage clusterer is that the graph is seen as
a circuit board where edges between nodes function as resistors with equal
resistance, and by applying a voltage to a node at one end of the graph,
and a ground applied to another node at the other end of the graph, we can
distinguish between sections of the graph by looking at the voltage of each
node. If the voltage of nodes is close together we expect that they are located
in a densely connected part of the network while if there are large drops in
the level of voltage we can expect that the nodes lie in a sparse region.

We define V1 = 1 to be the vertex which receives the initial voltage, the
source, and we define V2 = 0 to be the ground or sink. These nodes are selected
randomly from the graph, this means that results of this algorithm might be
impaired as nodes in the same cluster might be picked thereby obfuscating the
fact they belong to the same cluster.

The paper defines a function based on the Kirchhoff equations [10] in order
to find the voltage of the remaining vertices in the graph:

Vi =
1

ki

n∑
j=3

Vjaij +
1

ki
ai1 for i = 3, ..., n (3.15)

where ki is the degree of node i, and aij is the adjacency matrix.

For each node in the graph, besides the source and sink we therefor update
the voltage of node c, defined as Vc using the following update step:

Vc =
1

kc

n∑
i=1

VDi , (3.16)

updating the voltage of a node by the average of it’s neighbors. This
update step is repeated a finite number of time until convergence.

Here the implementation used for this report deviates from the paper [32],
as we are using an external library, more in Section 4.3.

The paper proposes a way to find communities which are equal in since,
as we do not assume that clusters have to be of equal size we use a simpler
approach; We generate a laplacian matrix from the subgraph, using the voltage
values as the degree matrix, not containing the sink and source and apply the
k-means clusterer using the eigenvalues. The k-means clusterer is further
explained in Section 3.5.5.

Finally the output is a set of clusters which is either equal to or less than
the number of clusters requested. Nodes which could not be clustered are
stored in the kth cluster and can be discarded.

48

CHAPTER 3. STATE OF THE ART

3.5.4 Authority Clustering

We developed an approach for clustering the users in the social network based
on authorities as previously defined in Section 2.4.5 Definition 1, authorities in
a graph are the top k nodes with the highest indegree. The approach is based
on the assumption that popular users, meaning users with a high degree of
followers, are able to set trends. Thereby attracting like minded users, which
we are then able to detect and recommend to one another. A good value for
the number of authorities k, can be found by investigating the distribution
of the indegree for nodes as shown in Section 2.4.4. The number of clusters
generated is equal to the number of authorities set.

Listing 3.3: Authority Clustering Algorithm.

1 AuthorityClusterer(G, k)
2 clusters ← ∅
3 authorities ← getTopKInDegreeUsers(G, k)
4 distanceFromAuthority ← ∅
5 for authority in authorities
6 clusters.put(authority, new cluster)
7 for node in graph
8 distanceFromAuthority ← calculateDistances(G,authorities)
9 closestAuthority ← findCluster(distanceFromAuthority.get(node),

authorities)
10 cluster.get(closestAuthority).add(node)
11 return clusters

The pseudo code in Listing 3.3 shows which steps the clustering algorithm
takes. getTopKInDegreeUsers retrieves the users with the highest indegree
from the graph G, the clusters are then created from those authorities. cal-
culateDistances returns the distances from the clusters to all nodes. We then
for each node find the cluster for which the authority the cluster is based on
is closest. Ties caused by a node having equal distance to two authorities are
solved by picking the cluster for which the authority has the most indegrees.

Clustering the social graph by authorities could be a useful approach in
the Sobazaar application if the premise for this approach holds namely that
users who have similar interests want to follow one another and authorities in
Sobazaar are setting trends, by trends is meant a meaningful assortment of
clothing which in some form fits together, eg. summer shoes and a dress.

3.5.5 Spectral clustering

This section describes the spectral clustering algorithm and k-means and how
to convert a social graph to a similarity matrix and a laplacian matrix.

As mentioned in Section 2.4 we have constructed a social graph using
connections gathered from the Sobazaar API. For each edge in the social graph
we have created a similarity between each node in the graph as given by their
similarity based on their likes list, defined in Equation 2.1. Given a set of data
points {x1, ...xn} and the nodes similarity sij ≥ 0 between all pairs of data

49

3.5. CLUSTERING

points xi and xj , a clustering of the points is to divide them into groups that
are similar to each other, and dissimilar to other points in other groups.

A similarity matrix shows the similarity between all nodes in a graph. A
graph G = (V,E) will generate a |V |2 similarity matrix S, and with a graph
consisting of 45650 nodes as the Sobazaar data set does, it will generate a
similarity matrix which is too large to work with efficiently. The solution
to this is to compressed the matrix by exploiting the fact that the matrix is
symmetric on the diagonal, meaning without loss of data, information can be
stored by only retaining the information on either diagonal side of the matrix.
We generate our similarity matrix by comparing all pairs of nodes in the social
graph, and retrieving both nodes’ like list, i.e. the list of the products they
like. Comparing these list of users, using Equation 2.1.

For the purposes of this report we define the laplacian matrix as the nor-
malized Laplacian as described in [31]. Where we define D as the degree matrix
A as the adjacency matrix and L is the laplacian matrix before normalization
which is defined as L = D −W where W is the weight matrix:

L := D−1/2LD−1/2 = I −D−1/2AD−1/2 = (˜̀
ij)

where:

˜̀
i,j :=

1 if i = j and deg(vi) 6= 0

− 1√
deg(vi) deg(vj)

if i 6= j and vi is adjacent to vj

0 otherwise.

The laplacian matrix for a directed graph can be constructed by either
considering only the in- and out-degree or by considering the edges as a uni-
directional edge.

The spectral clusterer uses the k-means algorithm in order to create the
final clusters, the main idea behind the k-mean algorithm is to define k cen-
troids, one for each cluster [19]. The placement of these centroids are what
initially defines the end clusters. Given a set of observations (x1, x2, . . . , xn)
where each observation is a d-dimensional real vector. K-means partitions the
n observations into k(≤ n) sets S = {S1, S2, . . . , Sk} while minimizing the sum
of squares from within clusters. The objective function is defined as follows:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2

where µi is the mean of points in Si and the term ‖x − µi‖ provides the
distance between a point and the cluster’s centroid.

The k-means algorithm goes through the following steps:

1. Define the initial groups’ centroids. (Picked at random)

50

CHAPTER 3. STATE OF THE ART

2. Assign each entity to the cluster that has the closest centroid. (Using
euclidean distance)

3. Recalculate the values of the centroids. (Taking the average of the clus-
ter, and finding new centroids)

4. Repeat steps 2 and 3 until entities can no longer change groups.

Listing 3.4 shows the pseudocode for constructing clusters using the spec-
tral clustering approach using k-means, it is worth noting that the spectral
clusterer is used to find the seeds of the clusters and then clusters based on
the similarity matrix S.

Listing 3.4: Spectral clustering taken from [31]

1 SpectralClusterer(G, k)
2 S ← computeSimilarityMatrix(G)
3 D ← computeDegreeMatrix(G)
4 W ← computeWeightMatrix(G)
5 L ← D −W
6 L ← D−1/2LD−1/2

7 U ← computeKeigenvectors(L, k)
8 C ← {C1, ...Ck}
9 for i ∈ K

10 y ∈ RK is the set of column vector of U.
11 for j ∈ y
12 cluster yj into clusters C, by K-means
13 return C

The spectral clustering implementation we use, is from [2] Apache Mahout.
We describe in more detail how we create different similarity matrices for
spectral clustering in Section 4.2.3. We use spectral clustering instead of
solely k-means because of the clusters k-means produce show a compactness
of points, where spectral clustering shows the connectedness in the graph,
spectral clustering also outperforms k-means on for instance concentric circles.

3.5.6 Conclusion

In this section we described five different clustering algorithms, Social Net-
work Cluster, Betweenness Clustering, Voltage Clustering, Authority Cluster-
ing and Spectral Clustering. The Section 3.5.1 describes the social network
clustering which allows nodes to be clustered in to more than a single cluster
and which besides internal density also requires nodes inside the cluster to have
sparse connections to the outside. The parameters which dictate how sparse
or dense the connection have to be can be set using the α and β parameters.
We concluded that the Social Network Cluster could be a valid approach as
we assume that users might follow different styles and are influenced by sev-
eral users which might be better reflected if they are a part of more than one
community which in this case would be equivalent to be part in more than
one cluster.

51

3.5. CLUSTERING

We described in Section 3.5.2 the edge betweenness clustering algorithm
which removes a parameterized amount of edges from the graph based on their
betweenness, meaning how often the edge is traversed in the set of shortest
paths between all nodes. We concluded that the difficulty would be to find
the correct amount of edges to be removed especially since the data set has
over 800, 000 edges, but it could be a valuable alternative to the social network
clustering as it also only uses the network structure and requires no additional
information, although edge betweenness has a running time of O(n × m2),
where m is number of edges and n is the number of nodes, this is not a
suitable running time on larger graphs, which resulted in not using it.

A faster clustering algorithm was described in Section 3.5.3 voltage cluster,
which runs in linear time. This algorithm clusters a graph as a circuit board
one put an electrical current to, and finds closely connected components in
the graph.

In Section 3.5.4 we described the Authority Clustering which was an ap-
proach developed during the project which tries to model the assumption that
users follow authorities and by grouping users into clusters based on their
closest authority, we can recommend users which follow the same trend.

52

Chapter 4

Recommender System Setup

This chapter describes our recommender system model. In Section 4.1 we
start by investigating how to properly approach and evaluate a recommender
system. In Section 4.2 we describe our model and our experiment methodology.
Finally, in Section 4.3 we present a short overview of our implementation.

4.1 Evaluation of Recommender Systems

In our previous research [14] we have described the different ways a recom-
mender system can be evaluated. The main objective we have so far presented
is to predict the rating a user would give to an item she has never interacted
with before. The dominant methodology to evaluate this task has been the
prediction error, described by measures as RMSE or MAE, representing how
close the recommender’s predictions can get to the original ratings.

Recent interest has been shown in understanding what should be the real
objective of a recommender system, such that in 2012 ACM RecSys 1 dedicated
a workshop to this problem [4].

In this section we open our research to this direction, especially trying
to understand how to deal with the particularities of our system: implicit
feedback, sparse dataset, social network and offline evaluation.

In Section 4.1.1 we describe the evaluation problems and the current status
of the research. Later in Section 4.1.2 we present alternative approaches that
can be used to evaluate these methods.

4.1.1 Evaluation methods

Most of the research in recommender systems has relied on the idea that the
prediction of new ratings is the most informative criterion for evaluating the
performance. The Netflix prize was also based on this opinion, where the goal
was to decrease the RMSE by the 10% [25]. In such scenario the recommender
system is tailored to be able to perform the best in the task of predicting

1The ACM Conference Series on Recommender Systems

53

4.1. EVALUATION OF RECOMMENDER SYSTEMS

Actual Positive Actual Negative

Test Positive True Positive (TP) False Positive (FP)

Test Negative False Negative (FN) True Negative (TN)

Table 4.1: Truth table describing the evaluation of results.

ratings. For example, popular algorithms based on Matrix Factorization, as
those that we have described in Section 3.3, make use of objective functions
based on the prediction error to learn a model, as the following

min
q,p

∑
(u,i)∈R

(rui − r̂ui)2 (4.1)

where the objective is to find the parameters that minimize the error be-
tween the prediction r̂ui and the original rating rui.

On the other hand, modern research has started questioning the role of a
system based on rating predictions [4] [7]. The motivation is that the predic-
tion error alone is now regarded as a misleading criterion for the evaluation
of a recommender system, especially in an offline scenario where no real user
feedback is available in response to the recommender’s proposals. Neverthe-
less, the mathematical convenience of using prediction error as a basis for
the optimization methods, as the one in Equation 4.1, has made such metrics
popular in the literature.

Other approaches for evaluating recommendation systems are instead in-
spired by Statistics and Information Retrieval evaluation measures such as
precision, recall and the F1-score [9]. To define these measures we start by
showing in Table 4.1 a truth table where each cell describes the outcome of a
binary classification.

The objective of the classification is to find a relevant recommendation of
a new user v to a target user u. If the recommender proposes a user that is
relevant for u it is considered a true positive, otherwise a false positive. If
a recommendation is not relevant for u and it is evaluated as not relevant
by the recommender system, it is considered a true negative, in the opposite
case a false negative. The relevance of a recommendation must be defined
dependently on the application.

We can now define the metrics used in these evaluations, namely:

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

F1 =
2 · precision · recall
precision+ recall

(4.4)

54

CHAPTER 4. RECOMMENDER SYSTEM SETUP

Because of the divergences in the adoption of a standard evaluation method-
ology for recommender systems, the interpretation and comparability of the
research of different authors is still a difficult task. One of the advantages
of using the measures we have just shown is the higher readability of the
results, given a definition of what a relevant recommendation is. Precision
already shows a percentage of how many relevant items are recommended,
rather than a simple numerical value showing the distance of the recommen-
dation from a precise value. For this reason, we have also chosen Information
Retrieval measures in the evaluation of our experiments, that we will show in
Section 5.1. A wrong definition of relevance would lead to unclear results, a
problem we have already faced in our previous research [14].

Recommender systems are usually modeled and evaluated on all the avail-
able items. Most of the users are interested in a small subset of recommen-
dations, and recommender systems only present a very small number of the
available items. In this kind of scenario it has been shown how IR based al-
gorithms can outperform RMSE based ones [7]. The prediction error looks
not being the best estimation of the real results. Other points supporting this
argument are:

Rating is not shown In most applications, the recommended items are not
shown with the predicted rating, but they are simply proposed to the
users.

More difficult problem When the objective is to propose a set of items to
the user, the rating is only a way to obtain the user’s preference, not the
goal.

Small recommendations User analysis has shown how the attention of an
average user focuses only on a very few number of proposal, i.e. the first
page of results in a search engine.

A different trend is connected to the first two points. A question re-
searchers have started addressing is why to perform the rating prediction in
the first place when the final objective is to present a set of items, sorted ac-
cordingly to the preference of the user. A more natural solution would be to
eliminate the middle step of prediction and simply being able to understand
if a list of items is relevant for a user or not.

Regarding the third point, neither RMSE nor IR measures can capture
the particular behavior of a user visiting a web page, when her attention is
focused on small portions of the data. In this case, a good recommendation
at the very top of a list of proposals should be recognized as more relevant
than as if the same recommendation was instead put at the end of such list.
This idea stems from the field of Learning to Rank, and we will describe it in
detail in the next section.

55

4.1. EVALUATION OF RECOMMENDER SYSTEMS

4.1.2 Learning to Rank Evaluation

Considering the previous ideas, several researchers [24] [28] [11] have started
approaching the evaluation of a recommender system in a different way from
what we have previously described. Considering the difficulty of finding rele-
vant recommendations when the data set is sparse and no online feedback is
directly available, the focus has moved on evaluating if a recommender system
is able to discern between relevant and irrelevant recommendations. To do this
the basic approach is, instead of requesting the recommender to find a set of
relevant users to propose to a target user u, to directly propose a list of users
where each of them has already been identified as relevant or non relevant.

The objective of the recommender is then to sort the list such that all
the relevant users appear on the top of the list, while the negative recom-
mendations are moved to the bottom. The closer the list produced by the
recommender is to this kind of configuration, the more accurate the recom-
mender system is. This method can be described as in Figure 4.1: starting
from a perfect list (left side of the figure) as input for the recommender al-
gorithm, a sorted version of the same list is produced, accordingly to values
based on the model on which the recommender has been trained (right side).
These two lists are then compared, comparing the occurrences at each position
of the lists.

User Relevance

1 positive

2 positive

... ...

n-1 negative

n negative

RS

User Relevance

n-1 negative

2 positive

... ...

n-1 negative

1 positive

compare

input output

perfect list sorted list

Figure 4.1: Learning to Rank listwise comparison method.

There are two reasons for applying this method. First, we avoid the case
in which the recommendations are considered negative only because the target
user has never interacted with them, since we already focus on the users with
which the target has already connected. Secondly, in a real scenario the user
will mostly be interested in a small subset of proposal, hence an evaluation
that considers also the position of the relevant items in a list to propose to

56

CHAPTER 4. RECOMMENDER SYSTEM SETUP

the user, is more representative of the real usage of a recommender system.

In the following sections we will formally define the concept of relevance
in our application, and we will propose measures that can be used to evaluate
this new methodology.

Binary Relevance

Relevance in information retrieval is the concept that some information is more
relevant to a user. This concept is useful when evaluating ranked lists as we
do in this report. The most intuitive way of defining relevance is by assigning
a binary value to the samples, that can then be called Binary Relevance.

In the context of evaluating a social link recommender, an example of a
binary relevance score for a user v, considering a target user u for which we
want to make a recommendation, can be defined as follows

• 1 - The user u follows the user v

• 0 - The user u does not follow user v

With a definition of relevance, we can then apply the measures we will
describe in the following sections.

Cumulative Gain

Cumulative Gain is a technique in information retrieval to evaluate ranked
lists with binary relevance associated to them. The main point is to use the
information relevance as described in 4.1.2 to compute the cumulative gain at
position i the following way: assume that G′ is a vector, where each entry is
the relevance relating to a specific user with the domain G′D = {0, 1}

G′ = 〈0, 1, 1, 0, 1, 1, ...〉

The Cumulative Gain (CG) is then defined as

CGp(G
′) =

p∑
i=1

reli

where p is the length of the ranked list, while reli is the relevance score at
position i.

Even though this definition can be useful in order to evaluate the gain
individually, in order to assign meaning to the position of the information it
is necessary to discount the relevance in relation to the ranking.

Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) is based on the following premise:

57

4.2. RECOMMENDER SYSTEM MODEL

Premise 1 Information at a lower position is less valuable than at a higher
position, as the likelihood of a user finding it will be lower [13].

DCGp(G
′) =

p∑
i=1

2ri − 1

log2(i+ 1)

where ri is the relevance for the entry at i. This definition gives a special
emphasis on higher relevance at higher ranks, therefore satisfying the premise
of more valuable items having a higher value [6].

Normalized Discounted Cumulative Gain

The only difference compared to the previous criterion is that the function is
normalized in such a way that a perfect ranking has a value of 1:

nDCG =
DCG(G′)

DCG(G′i)

where G′i refers to the ideal ranked list.

4.1.3 Conclusion

In Section 4.1.1 we have presented the common problems in evaluating a rec-
ommender system, that we also face in our application. Together with these,
we propose to apply Information Retrieval metrics, as already adopted in other
similar research.

In Section 4.1.2 we describe an alternative evaluation approach, that tries
to compensate the flaws of the most commonly used methods.

In the next section we will continue defining the specifications and the
design of our recommender system, taking into consideration all the ideas pro-
posed so far in our Data Analysis of Chapter 2, the State of the Art presented
in Chapter 3 an the concepts presented in this section.

4.2 Recommender System Model

In order to find the answers for the questions posed in Section 1.1 we have
designed an experimental methodology that allows us to evaluate the different
techniques we have described so far, and to analyze to what extend they can
be successfully applied to the Sobazaar application.

In particular, we remind again our main goals:

Problem 1 What is the underlying cause of one user following another?

Problem 2 How can we make user-to-user recommendations using a social
network utilizing implicit feedback and clustering techniques?

58

CHAPTER 4. RECOMMENDER SYSTEM SETUP

Furthermore, our approach is based on the following two assumptions:

Assumption 1 If users, represented as nodes in a social graph, are clustered
based on density of edges, the resulting cluster’s nodes will have
a higher similarity with nodes inside the cluster, than nodes
outside the cluster.

Assumption 2 If Assumption 1 holds we assume that users in the future con-
tinue with this pattern of following users which are similar to
themselves.

In Chapter 2 we have investigated if Assumption 1 holds by applying dif-
ferent clustering algorithms on the social graph, and they do.

Our experiment model combines different features to produce accurate
recommendations, and can be outlined as in Figure 4.2. Considering our main
goal to propose a solution for the social link problem, the model has been
designed to combine both the information from the structure of the social
network and the user’s activity in the application. We will extract features
that will help finding relevant recommendations from these two sources, that
we will show in Section 4.2.2. We will also apply different clustering algorithms
to the social network, using methods that utilize both the activity of the users
and the social graph, and we will describe the techniques we have applied in
Section 4.2.3. These three components are used in the recommender system
model, and we show the algorithms we have tested in Section 4.2.4. Finally,
in Section 4.2.5 we define how we evaluate the recommender system.

DATALOG

RSCLUSTERING

SOCIAL GRAPH

feature extraction

feature extraction

Figure 4.2: General overview of the model: the social network and the data log of the users
and the clustering algorithm used to model the recommender system

59

4.2. RECOMMENDER SYSTEM MODEL

4.2.1 Social Network Model

The Sobazaar’s social network has been modeled as a directed graph, using
the classes shown in Figure C.2 in the Appendix. The package allows the
construction of different type of graphs. We use the user IDs to construct the
nodes of the graph and the follow actions to connect the edges.

A social network is usually defined as a labeled graph, where the labels on
the edges are the timestamps on which the connections between two users were
created. As we have shown in Section 2.2, the follow actions in our database
are associated to the timestamp on which the crawler found the connection.
Reconstructing the graph using this data, applying the timestamps to edges,
we have discovered that most of the timestamps lie in the same 24 hours time
span. This is due to the way the crawler retrieves the data from the API, and
because the Sobazaar application closed before the end of our data collection
phase.

Because of this, we have simply decided to remove the timestamps from
the edges. Nevertheless, this has lead to the impossibility to make a proper
evaluation of the social link prediction problem, since we do not have any pos-
sibility to analyze the time evolution of the network, crucial for understanding
the activity of the users. As described in Section 3.4.1, when evaluating link
recommendations a common approach is to split the data set accordingly to a
definite moment of time, then learning the recommender system with the data
that appears in the first time window and test the proposed recommendation
against the data in the second time window. To overcome the absence of the
time labels in our graph, we have designed a different way of evaluation, that
we will describe in detail in Section 5.1.

4.2.2 Features of the Model

The implicit feedback that represents the activity of the users in our data,
does not allow a direct description of their preferences. In [14] we have al-
ready approached the difficulty of extracting valuable information from im-
plicit feedback. The approach we follow in this section is similar to a common
data mining scenario, we extract domain relevant features that can be used to
translate the raw data to a profile of the interests of the users. Since the data
we work on in this project is different from the one we had available in [14],
we focus now on different ways of mining the data.

From the data log of the users’ activities that we have described in Sec-
tion 2.2 and from the structure of the graph we have selected different features
that we have used for both the recommender system algorithms and for the
clustering algorithms. These features define either the importance of a user in
the network or the similarity between two users.

In Table 4.2 we show a review of the features we have extracted and their
focus.

60

CHAPTER 4. RECOMMENDER SYSTEM SETUP

Feature Description

Item Similarity Similarity of two users in terms of the number of
items they both like or they both use in boards

Adjacency Similarity that indicates if two users are con-
nected (considering the direction of the edge)

Common Neighbors Similarity of two users in terms of the number
of user that they both have as neighbors

Pagerank Degree of authority of a user in the network

Activity Rate Degree of visibility of a user in the network

Table 4.2: The perception features

Item Similarity This feature describes if two users have interacted with
the same items, either with a like action or by putting them in their boards.
The Item Similarity IS(u, v) of a user u following user v is calculated as:

IS(u, v) =
|Lu ∩ Lv|
|Lu|

+
|Bu ∩Bv|
|Bu|

(4.5)

where Lx is the set of items liked by a user x and Bx is the set of items
the user x has put in at least one board. The combination of these two
values describes how many common items they have expressed a preference
for. Although it should be noted that, since we are considering a directed
graph, the similarity between users is also calculated considering the direction.

Adjacency This simple feature assigns a value of 1 to a pair of users if they
are connected in the graph, again considering the direction of the edges. The
Adjacency AD(u, v) is then defined as:

AD(u, v) =

{
1, if(u, v) ∈ E
0, otherwise

(4.6)

where E is the set of edges of the graph

Common Neighbors This feature implements the Jaccard’s coefficient that
we have described in Section 3.4.3, that considers, for a pair of users (u, v)
where u follows v, the number of users they have in common in their respective
neighborhoods:

score(u, v) = |Γ(u) ∩ Γ(v)|

where Γ(u) has been defined as the set of users in the neighborhood of u.
This criterion describes the tendency of users to group together, if they

have common friends. We will use this feature to show if the Sobazaar’s users
also behave according to this assumption, that will then positively contribute
to find relevant recommendations. We have defined our network as directed,

61

4.2. RECOMMENDER SYSTEM MODEL

hence we adapt the Jaccard’s coefficient to consider the direction of the rela-
tionship between two users. Therefore, the coefficient JC(u, v) is calculated
as

JC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u)|

(4.7)

Since our graph is directed, we consider neighbors to be both the followers
and followings of u, because we believe that both connections can contribute
in describing the user.

Pagerank As we have already described in Section 3.4.3, this feature indi-
cates the relevance of a user in the network, purely using the structure of the
graph. Since Pagerank has already been proven a successful indicator of the
quality of a recommendation, for example in the case of web pages in search
engines, we assume it can be used to find those users that the network regards
as more important.

Activity Rate This feature describes the amount of public interactions the
user has in the system, namely the number of product liked and the number
of boards published. Similarly to the concept of most popular user, we assume
that a user with a high level of activity, compared to the average user activity
of the network, will be considered more interesting and reliable in their taste
by another user, hence it will also be followed with a higher confidence. The
activity rate AR(u) of a user u is calculated as

AR(u) =
|Lu|
|L|

+
|Bu|
|B|

(4.8)

where L and B are the set of liked items and published boards in our data
set respectively, while Lu and Bu are instead the items liked and the boards
published by the user u.

It is worth noting that Pagerank and Activity Rate are static values, inde-
pendent on which pair of users we are considering to evaluate. Therefore, when
making a recommendation to a user, Pagerank and Activity Rate will give a
value that is not tailored on the user we want to make a recommendation to.
We will then use these features alone and in combination with the other ones
to understand if they can be used to improve a personalized recommendation.

Focus of the research at this point will be to define what a combination
of features is, and how it can be used to extract the preference of the user.
Since some of these features go beyond the classic interpretation of similarity
between two users, as Pagerank and Activity, we define the concept of Per-
ception as a linear combination of these different features, where each of them
has equal weight. To allow the combination of the features we normalize each
of them in [0, 1] using min-max normalization.

62

CHAPTER 4. RECOMMENDER SYSTEM SETUP

After the initialization of the structures and the computation of these
different features, the output of this phase is then the Perception function,
that can be used in the following steps by the clustering and the recommender
system algorithms.

4.2.3 Clustering Algorithms

To group the users of the social network in clusters we will test the algorithms
described in Section 3.5, using the different configuration parameters.

Algorithm Number of Clusters Input

Authorities Clustering 5,20,50 G=(V,E)

Social Network Clustering / G=(V,E), α = 0.01,
β = 0.009

Spectral Clustering 5,20,50 Similarity Matrix:{ Per-
ception }

Voltage Clustering 5,20,50 G=(V,E)

Table 4.3: The different clustering algorithms use in the evaluation.

After having analyzed how these clustering algorithms perform on our data
set in Section 2.5 we have decided to apply the algorithms shown in Table 4.3,
with the parameters described in the table.

In particular we have tested the algorithms to find 5, 20 and 50 number
of clusters for each algorithm, in order to find which one more accurately
represent the structures of the Sobazaar social network. The Social Network
Clustering algorithm does not look for a fixed number of clusters but instead
uses α and β to find the clusters that fulfil the constraints given by these
parameters, as explained in Section 3.5.1.

All the clustering algorithms, beside Spectral Clustering, require as input
the graph representing the social network and the number of clusters, since
they only consider the structure of the network for finding the clusters. The
only difference is Spectral Clustering, for which we have already discussed the
algorithm in Section 3.5.5. The algorithm uses the similarity matrix repre-
senting the graph as input. To generate this matrix we have considered three
possible similarity functions: Adjacency, Common Neighbor Similarity, Item
Similarity, that we have defined in Section 4.2.2. Since Spectral Clustering
is commonly used on undirected graphs, we define the undirected similarity
between two users S(u, v) as the average of the similarity of the two edges
(u, v) and (v, u)

S(u, v) =
P (u, v) + P (v, u)

2
(4.9)

where P is the Perception function.

63

4.2. RECOMMENDER SYSTEM MODEL

Finally, we can generate a Social Similarity Matrix M : |U | × |U |, where
U is the set of users, describing the similarity between two nodes of the graph
only if they are connected by an edge, calculated as follows:

M(u, v) =

{
S(u, v), if(u, v) ∈ E
0, otherwise

∀u, v ∈ U (4.10)

Using this matrix the Spectral Clustering algorithm will consider both the
structure of the network and the similarity between users. In our methods
we will evaluate how the Spectral Clustering algorithm performs when using
different Perception functions to construct the similarity matrix.

Independently of the clustering algorithm used, the result of this phase is
a set of clusters, each containing the set of nodes in that cluster. Each cluster
can then be transformed into a directed graph, that can be extracted from the
main graph with the following function:

Listing 4.1: Function to extract the subgraph

1 function Graph extractSubGraph(Set nodes) {
2 Graph subGraph = Graph;
3 foreach (node : nodes) {
4 subGraph.addVertex(node);
5 for(Node successor : subGraph.getOutEdges(node)) {
6 if nodes.contains(successor) {
7 subGraph.addEdge(node, successor);
8 }
9 }

10 }
11 return subGraph;
12 }

where the input is the set of nodes in that particular cluster. If applied,
these graphs can then be used in the next steps by the recommender system
instead of the main graph. Our objective at this step is twofold. First of
all we want to prove if the users’ behavior follows the assumptions defined in
Assumption 1 and Assumption 2, leading to the possibility to obtain better
recommendations by looking at the clusters as communities inside the social
network. Limiting the size of the graph the number of possible connections
and nodes to consider decreases, hence the recommender system algorithms
can process the recommendations more efficiently. We will show the results
for both objectives in the next chapter.

4.2.4 Recommender System Algorithms

The recommender system algorithms we propose are used to recommend new
links to the users of the graph. Given a user u the recommender system is
able to associate a value to each of the possible new user candidates, then
considering those with higher values more relevant for u. Table 4.4 shows the
two main type of algorithms we have used.

64

CHAPTER 4. RECOMMENDER SYSTEM SETUP

Recommender System Clusters Input

K-NN Yes/No Perception

Matrix Factorization Yes/No Similarity Matrix, Perception

Table 4.4: Recommendation algorithms which we are considering.

K Nearest Neighbors Recommender This algorithm implements a sim-
ple K-NN recommender. Given a graph G = (V,E) and the Perception func-
tion, for each user u it considers all the new edges of the type (u, v), such
that (u, v) 6∈ E. It then calculates the distance between u and v using the
Perception function P (u, v). The recommendations will vary accordingly to
the Perception, and the goal of the evaluation is then to find which types of
Perception features provide the maximum contribution to the relevance of the
recommendation.

K-NN recommender can also use the clusters obtained from the clustering
phase. In this case, when recommending new edges for a target user u, it only
considers the edges which endpoints lie in the same cluster of u. Since the
clusters are implemented as directed graphs, if we consider the entire graph as
a unique cluster, the K-NN recommender algorithm can be applied uniformly
to both the clustered and non-clustered graph. The pseudocode in Listing 4.2
outlines the function that recommends a new set of links to target users.

Listing 4.2: LinkRecommender, recommendLinks

1 function recommendLink(User u, Perception p), returns List of Users
2 Graph g = findCluster(u);
3 List candidateUsers = {}
4 for each node v in g
5 if !g.containsEdge(u,v)
6 candidateUsers.add(v);
7 sort(candidateUsers, p);
8 return candidateUsers;

The function recommendLink receives the target user u as input, together
with the Perception function p. After having found the cluster of the target
user (the whole graph in case no clustering algorithm has been applied), it
finds the nodes with whom u is not connected yet. Using the Perception
function to associate each of these new nodes with a value, the function sort
will sort them in descending order, then it returns the sorted list of candidates.
A subset of the K best candidates can be extracted and proposed to the user.

Matrix Factorization Recommender In Section 3.3 we have shown how
Matrix Factorization normally addresses the recommendation by using a ma-
trix containing the users’ ratings. In our case, since we are not trying to predict
the preference of a user towards items, we change the common User-Items rat-
ing matrix to a User-User Similarity Matrix, similar to the one defined in
Equation 4.10. In this case we are interested in the direction of the edges to

65

4.2. RECOMMENDER SYSTEM MODEL

understand the preference of a user for another user, exactly as we would do
for an user-item ratings matrix.

The matrix factorization algorithm, using this similarity matrix, behaves
exactly as described in Section 3.3, with the difference that now the factoriza-
tion will look for latent factors representing the preference of a user for other
users.

4.2.5 Evaluation of the Recommender System

In this section we present our experiment methodologies, with the different
steps needed to perform the recommendation, following the structure in Fig-
ure 4.2.

In Figure 4.3 we show the experiment work flow. In the first step we split
the dataset in a training set and test set and constructs the graph of the
social network. In step 2 we extract the features from the training set. A
clustering algorithm can be applied to the graph, and the recommendations
will be made on subgraphs. Although the clustering step can be skipped.
Then we can choose the type of recommender system algorithm we want to
apply. Finally, it is possible to evaluate the results of this recommender with
two different methods. Accordingly to the configuration chosen for all these
different components, the system will build all the required structures and
apply the chosen algorithms.

We now explain the details in the following paragraphs.

CONSTRUCT
SOCIAL

NETWORK

SELECT
PERCEPTION

FEATURES

SELECT
CLUSTERING
ALGORITHM

SELECT
RECOMMENDER

SYSTEM

SELECT
EVALUATION

METHOD

Item Similarity

Common
Neighbors

Activity

Pagerank

Social Network
Clustering

Spectral
Clustering

Authority
Clustering

Voltage
Clustering

K-NN

Matrix
Factorization

K-Fold CROSS Set

Ranking

Figure 4.3: The evaluation work flow

Constructing the Social Network

To construct the social graph we collect the data of the follow interactions from
the database, namely a set of entries of (u, v), meaning that user u follows v.
To do this we query the database requesting the most recent snapshot of the
graph with the query from Listing B.1.

At the end of this process we have a data set as described in Table 4.5,
that we can use to create the social graph G = (V,E). For each userID in the

66

CHAPTER 4. RECOMMENDER SYSTEM SETUP

user a user b

u1 u2

u3 u4

.

ui uj

Table 4.5: Follow Set: the data set of the follow interactions between the user a (source)
and the user b (target).

data set we create a node v ∈ V , and for each entry in the Table 4.5 we insert
an edge in E.

We have already explained in Section 4.2.1 the difficulty of evaluating the
social link prediction problem when time data is absent. We overcome this is-
sue by applying K-fold cross validation, a common model validation technique
in machine learning and statistics. A generic data set can be randomly par-
titioned in K subsets of equal size. While one of these partitions is removed
from the original dataset to be used as test set, the other K − 1 partitions
are considered the training set, and can be used to train the model. After the
learning process, the removed partition is used to validate the model. The
validation step is then repeated K times, where at each iteration a different
partition is selected as test set.

In our case we construct the social network from the original dataset. After
selecting the parameter K for the number of partitions, we divide the set of
out edges of each node in K subsets and, as described before, we remove one
of these subsets of edges from the graph. The resulting graph is then equal in
the number of nodes, but only a subset of the original edges is present. We call
this graph training graph, and we will use it in the next steps of the evaluation
process to extract the features, to apply the clustering algorithms and to train
the model for the recommender system. The subsets removed from the graph
are used as test set, and we will use it to validate our predictions.

In a normal social link prediction problem scenario, the edges in the test set
would be the new follow actions the user has performed, that can be inferred
by her past activity from the training set. In this case, by splitting the data
set without considering the time of the interactions, we are not ensured that
the edges in the test set represent interactions that have been established
after those in the training set, hence the evaluation of such a model could
not be fully representative of the actual behavior of the user. This is the
reason for using the K-Fold cross evaluation. We repeat the validation step
K times, using each time a different partition. When all the iterations are
completed, the results of each user are collected and averaged together. With
this configuration we smooth the probability that, while splitting the data set
in training and test sets, we are over fitting the problem of not considering
the time relationships between edges, since that it is not possible to identify
which edges have been inserted in the network at a given point of time.

67

4.2. RECOMMENDER SYSTEM MODEL

Selecting Perception Features

In this step we use the training graph to extract the features we have described
in Section 4.2.2. The only feature that has to be precomputed is Pagerank, that
can be calculated offline before the evaluation step. We have already shown
the algorithm and the steps required behind this metric in Section 3.4.3. The
other functions can be calculated online during the evaluation step. The only
computation needed is to find the range of the values to allow all of them to
be normalized in the same range, in order to be possible to aggregate them as
a linear combination.

Select Clustering Algorithm

After selecting the clustering algorithm and the relevant parameters, the train-
ing graph is split in C clusters. Using these clusters we can then extract sub-
graphs from the social network, consisting of the nodes in these clusters and
the edges between them.

Select Recommender System

In this step we train the model for the social link recommender system, by ap-
plying either K-NN or Matrix Factorization. Accordingly to the combination
of the Perception function and clustering algorithm used, the recommender
system is able to define a score for each pair of users.

Listing 4.3: LinkRecommender, getScore

1 function Double getScore(User u, User v)
2 return Perception.userSimilarity(u,v);

The pseudocode in Listing 4.3 shows the simplicity of the implementation
of our recommender system, independently from the type of recommender,
from the Perception function and from the clustering algorithm. When the
recommender object is constructed it can be used to find the relevance of the
recommendation of the user v to the user u.

Evaluation Method

After having trained the model for the recommender system it is possible to
evaluate the predictions with two different methodologies. The first one, in
Figure 4.4 is a pure recommendation evaluation. For each user u in the graph
we ask the recommender system to select the n best recommendations, namely
the n users to which u is not connected and that obtain the highest scores from
recommender system. We compare these n links to the edges that we have
removed from the set of the user u in step a in Figure 4.4. To evaluate the
users we require them to have a certain amount of out edges in the test set.
We do this to not incur in the case where many of the users with a low activity

68

CHAPTER 4. RECOMMENDER SYSTEM SETUP

in the system will bias our results. In our experiments we will set different
values for this threshold, comparing how this will affect the results.

1 2 ... k

training
graph

test set
RS...

...

...

 recommended links

check

a)

b)

e)

dataset

c)
learning
phase

out

CLUSTERING
d)

Figure 4.4: Evaluation workflow of a set recommendation.

Table 4.6 shows our definition of what True Positive and False Positive
predictions are. We do not define True Negative and False Negative because
of the absence of real information that could represent a negative preference
of a user, hence it would be impossible to correctly evaluate these parameters.
We define a link predicted by the recommender that is not present in the test
set as a False Positive. This is an assumption, but leads to a common problem
in recommendation system analysis: when using an offline dataset we identify
a user v to whom another user u is not connected in the test set as a negative
prediction. In reality, this fact only shows that u might never encountered the
user v, so it is impossible to say if the recommendation is positive or negative.
We have already faced the same problem in our previous research on Sobazaar
[14], and our conclusion is that there is no easy answer to this question, so the
only consideration to take into account is to carefully read the results as not
being fully representative of the real quality of the recommendations produced
by the system.

The comparison between recommendations and test sets can be described

69

4.2. RECOMMENDER SYSTEM MODEL

Link in Test set Link not in Test set

Link predicted True Positive False Positive

Table 4.6: Definition of True Positives and False Positives in our evaluation.

in terms of Precision and Recall, that we have defined in Section 4.1.1.

In Section 4.1 we have described alternative methodologies for evaluating
a recommender system, that has lead us to the definition of a different exper-
iment methodology, shown in Figure 4.4. The difference in this setup is that
we try to evaluate how accurate the recommender system is, at recognizing a
good recommendation from a bad one. To do this, for each user u that we
want to evaluate we create a list containing the users in his test set followed
by a the same amount of users that are disconnected from u in the training
graph, namely users that are not in the neighborhood of u. We tag the first
set of users of this list as followings and the rest as disconnected, as in point c
in Figure 4.5. This list is then sent to the recommender system that, by using
the getScore function in Listing 4.3, will associate to each of the entries of the
list a score value.

1 2 ... k

training
graphtest set

RS...

...

...

ideal list recommended list

compare

a)

b)

c)

f)

dataset

d)
learning
phase

input

out

CLUSTERING
e)

followings

disconnected

Figure 4.5: Evaluation workflow of a ranking recommendation.

70

CHAPTER 4. RECOMMENDER SYSTEM SETUP

The list can be sorted in descending order, accordingly to this value. By
comparing the original list, with all the users labeled as followings on top,
with the one sorted by the recommender system using Normalized Discounted
Cumulative Gain, as described in Section 4.1.2, we can evaluate if the recom-
mender system is able to associate the highest scores to those users that the
user u is already following in the test set, compared to those that are instead
disconnected.

A perfect recommender should be able to sort the list having all the users
with the label followings on top, that we assume being a good recommendation.

By using this methodology we also avoid the possibility of recommending
users which u has never seen, that will be evaluated as negative recommenda-
tions. In this case we instead focus only on the users that we know u is already
following, and only analyzing the ability of the system to discern between users
that are connected to users that are not.

4.3 Overview of SaLT

We now present our implementation of the model shown in the previous sec-
tion: SaLT, Social Analytic Link Transformer. The goal of SaLT is to allow
the testing of possible approaches on user to user recommendations. In this
section we describe the tool and elaborate on the design choices.

SaLT uses several libraries and the most notables are Java Universal Net-
work/Graph Framework (JUNG) [3], the Apache Commons Lang [1] and the
Apache Mahout [2].

4.3.1 Packages

SaLT is implemented using Java 8 build 1.8.0. The implementation is sepa-
rated into several packages sorted by functionality.

SaLT

SaLT.algorithms

SaLT.algorithms.graph

SaLT.algorithms.graph.clustering

SaLT.database connection

SaLT.eval

SaLT.graph

SaLT.recommender

SaLT.utils

data model

Table 4.7: Complete list of packages in the SaLT implementation

The Table 4.7 shows the table of packages which exist in the SaLT imple-
mentation.

71

4.3. OVERVIEW OF SALT

The base package, SaLT contains a main class file API which contains a
menu which allows to run the data analysis, the clustering algorithm and the
evaluation. It also contains functionality related to displaying small graphs
using the jung library.

The largest package in the implementation is the SaLT.Algorithm package.
A UML of this package containing all the sub-packages and their respective
classes can be found in Figure C.3. The package contains the SocialNet-
workClusterer which was implemented using the definitions and specifications
described in the paper [21] and previously described in Section 3.5.1. The
SaLT.algorithm.graph package contains the classes which are used to analyze
the social graph. It contains an implementation for Dijkstra’s shortest path
and breath first search, a class which contains the implementation of the data
analysis, which was made in the Chapter 2, namely SocialGraphAnalysis, it
contains functions which return the density, diameter the top k most influen-
tial users, the degree of the nodes in the graph, the cluster similarity of the
clusters and more.

The SaLT.algorithm.clustering packages contains the clustering algorithms
which are available for use and also contains the data structure for the clus-
ters. SaLT uses clustering in order to make recommendation, therefore several
clustering algorithms are implemented: betweenness centrality, authority clus-
terer, voltage clusterer, social network clusterer and spectral clustering.

SaLT.database connection contains the functionality which is used to ac-
cess data from a database. The specifications of the database used for this
project can be found in Section 2.2. Specifically it allows to mine data directly
from the Sobazaar API, storing and accessing it.

The SaLT.eval contains the evaluation process initializing and running the
algorithms specified and evaluating them using evaluation methods such as
normalized discounted cumulative gain.

SaLT.graph contains the implementation of the graph structure of SaLT.
In order to accommodate several different graph structures we implemented
different types of edges and graph functionality. The class diagram for the
edges is presented in the form of a UML diagram in Figure C.1, there exists
functionality for directed and undirected edges. The AffinitEdge is especially
useful in the domain of this report, it has a weight associated with it which
in this case is referred to as similarity and allows to store the items which
both users have in common, which has a direct relation to the similarity if it
is also associated by the items users have in common, this allows us to save
computation time in a large graph by storing this information directly, instead
of recomputing it.

A UML diagram of the class hierarchy can be found in the Figure C.2,
as can be seen the social graph in this implementation is modeled after a
directed weighted graph, which implements additional functionality in order
to create subgraphs, retrieve domain specific values such as getFollowersOfuser
and testing functionality.

72

CHAPTER 4. RECOMMENDER SYSTEM SETUP

4.4 Conclusion

In Section 4.1 we have described the different challenges of evaluation a recom-
mender system, and also proposed techniques that can applied to our specific
domain.

In Section 4.2 we have presented the general design and objective of our
recommender system, together with the specifications of all the different com-
ponents of which the model is made of.

Section 4.2.5 continues describing the methodology used to apply our rec-
ommender system to the Sobazaar data, with the entire worflow process used
for evaluating the predictions.

Finally, in Section 4.3 we have given a quick overview of the implementation
of the recommender system, with the definition of the classes and the most
important features.

In the next chapter we will present our analysis of the results of different
experiments in which we have applied our recommender system for addressing
the social link prediction problem in the Sobazaar application.

73

Chapter 5

Evaluation of the
Experiments

5.1 Experiments

In this section we will show the results of the different experiments we have
performed on the Sobazaar data set. In these experiments we address the
social link prediction problem, therefore we limit ourselves to user to user
recommendations. We will compare the different algorithms and techniques
we have introduced and we will answer the questions we have posed as basis
of our research, focusing on the following two ideas which are extensions of
Problem 1 and Problem 2:

• Is it possible to extract valuable information from the social network’s
structure and from the implicit feedback of the users, in order to increase
the performance of user to user recommendations?

• Is it possible to to find clusters in the social network, to improve the
performances of the recommender system both in terms of execution
time and quality of the recommendation.

In Section 5.1.1 we show a comparison between the two main categories
of recommender system algorithms, in Section 5.1.2 we show how different
configurations of the Perception function affects the recommendations and in
Section 5.1.3 we analyze the contribution of the clustering algorithms to the
system.

5.1.1 Experiment 1: Recommender System Algorithm Com-
parison

In this experiment we test both K-NN and Matrix Factorization based on two
simple configurations. In Table 5.1 and Table 5.2 we show the different con-
figurations of the two algorithms, according to the parameters that we have

74

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

already described in the previous sections. The objective is to understand
which algorithm, in a basic configuration performs the best with our data
set. As baseline for this comparison we utilize a random recommender. In
this experiment we only perform an evaluation based on a set recommenda-
tion, considering precision, recall and F1-score obtained from the K-Fold cross
validation.

Perception Function Adjacency/Item Similarity

Followings Threshold {0,5,10,20,30}
Number of Recommended Links {20}
K-fold cross {5}
Evaluation Classification

Table 5.1: Tested configurations of the KNN recommender systems

User-User Matrix Adjacency/Item Similarity

Number of latent factors {10,20,30}
Followings Threshold {0,5,10,20,30}
Number of Recommended Links {20}
K-fold cross {5}
Evaluation Classification

Table 5.2: Tested configurations of the Matrix Factorization recommender system

We performed the first analysis in order to find the correct parameters
for the Matrix Factorization algorithm, namely the number of latent factors
to extract. We compared three different numbers of latent factors, 10, 20, 30.
We have trained the model using both an adjacency matrix, results shown in
Figure 5.1, and an Item similarity matrix where the values are based on the
Item similarity defined in Section 4.2.2. Precision and F1 score has been used
as evaluation metric.

We can see in Figure 5.1 that while using only the adjacency matrix we
obtain unclear results, with the F1-score decreasing when rising the following
threshold, and with indefinite difference in performances when changing the
number of factors.

In Figure 5.2 we show how by utilizing the Item similarity matrix we obtain
both an increase in the F1-score and we can more clearly define 30 features as
a better choice. We hence decide to set 30 as the initial configuration for the
next experiments.

We compared the two algorithms showing both the performances using the
adjacency distance and the Item similarity. We propose that the results are
poor in both cases as we lack the necessary data to receive a better score.

By comparing the results in Figure 5.3, we can see how utilizing the im-
plicit feedback, namely the Item similarity, we can increase the quality of the
recommendation.

75

5.1. EXPERIMENTS

Figure 5.1: Matrix Factorization algorithm based on an adjacency matrix, different latent
factors. The x-axis shows the increasing threshold for the number of out edges for a user,
the y-axis the F1 score.

Figure 5.2: Matrix Factorization algorithm based on an similarity matrix with Item similar-
ity, different latent factors. The x-axis shows the the increasing threshold for the number of
out edges for a user, the y-axis the F1 score.

76

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

We also observed that it is crucial to set a high following threshold for
the users to be evaluated by the recommender system. As expected, the
higher the threshold the more accurate the prediction is, we contribute this
fact to the Cold Start problem. It is reasonable to assume that a user, to
be accurately profiled by the recommender system, needs to have a certain
amount of activity. For this reason we set the threshold of out edges a user
must have to be considered in the following experiments to 20.

Figure 5.3: Recommender System Algorithms evaluation: K-NN and Matrix Factorization.
The Perception function and the similarity matrix are based on the Item similarity.

As we compare the two algorithms in Figure 5.3 we observe how the K-NN
algorithm outperforms the matrix factorization. We consider that the reason
for this result is the higher complexity of the matrix factorization algorithm,
that needs a more accurate tuning in terms of the parameters of the learning
process. Since the K-NN allows a more direct evaluation of the configurations
we will analyze in the next experiments, we choose this algorithm as our main
recommender algorithm.

Finally, we can conclude from this first experiment that there is information
present in the implicit feedback, as already hypothesized in Section 2.4.6 we
can observe how there is a relation between the preference of the users and
the way the connect to each other, although the recommendation results in
this experiment are poor. To further investigate to what extent it is possible
to use implicit feedback for the social link problem, we continue with our
second experiment that we will present in the next section, where we will
compare different similarity measures to extract information from the data.
The following experiments will be key in gaining an understanding of why
users follow each other.

77

5.1. EXPERIMENTS

5.1.2 Experiment 2: Defining the Similarity Function

The purpose of the 2nd experiment is to find a similarity measure for which
the KNN algorithm achieves the best results.

The Perception features used in this experiments are, PageRank, Item sim-
ilarity, Common Neighbors, Activity, Popularity, PageRank with Item simi-
larity, PageRank with Common Neighbors.

Figure 5.4 shows the results of the experiments for a follower threshold
of 20, precision at k = 20, meaning that for each user we retrieve 20 recom-
mendations. The metrics used are the F1 score, REC which is the recall and
%POSITIVE which is the percentage of users for which the recommender is
able to give at least one true positive.

We can see that the Common Neighbors similarity and the PageRank with
Common Neighbors outperform all other similarity measures by one orders of
magnitude.

Figure 5.4: F1-score, Recall and percentage of atleast one correct recommendation for the
similarity measures.

This result shows that although the Item similarity improve the recom-
mendations slightly, as shown in Section 5.1.1, there is no significant increase
when using them as similarity measures for the KNN algorithm. One reason
for the poor results using this similarity measure compared to the neighbors
can be explained by the lack of data. We mentioned in Section 2.4.6 that we
only have 11, 413 like lists which corresponds to 27% of the data set.

Figure 5.5 shows the normalized discounted cumulative gain when using
the different similarity functions. Since the NDCG does not reduce the score

78

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

Figure 5.5: The Normalized Discounted Cumulative Gain for the different similarity functions

for recommendations which are not in the test set, and it does not reduce the
score for missing users in the test set, we can expect different results from
this evaluation method. Figure 5.5 shows that Pagerank, Common Neighbors,
Popularity and Pagerank with Common Neighbors outperform all other sim-
ilarity measures. We can expect popularity to perform well in this kind of
evaluation as popular nodes naturally have more connections and therefore
are likely to have connections to the nodes in the test set.

Based on these results we can see that the similarity based on common
neighbors has the best results, however the F1 score is still at 0.1.

5.1.3 Experiment 3: Clustering

In these experiments we apply the different clustering algorithms described in
Section 4.2.3.

Figure 5.6 and Figure 5.7 show the F1-score with the respective similarity
measures for the KNN algorithm with a follower threshold of 20 and precision
at 20. We can see that the perception using the Common Neighbor similarity
feature outperforms the Item similarity by one order of magnitude. This result
is consistent with the previous experiment, Figure 5.4 where we saw a similar
increase in the F1-score by using the Perception with the Common Neighbor
similarity feature.

Figure 5.7 shows that spectral clustering and the social network cluster-
ing perform worse than the voltage clustering and authority clustering. For
the authority and spectral clustering we can observe that the quality of the
recommendation decreases with the number of clusters which we contribute
to the fact that the clusters these algorithms do not reflect the structure of

79

5.1. EXPERIMENTS

Figure 5.6: F1 scores for the Authority Clusterer, Voltage Clusterer and Spectral Clusterer
with Item similarity measures and KNN recommender, precision at 20 and follower threshold
at 20.

Figure 5.7: F1 scores for the Authority Clusterer, Voltage Clusterer, Spectral Clusterer and
Social Network Clusterer with Neighborhood similarity measures and KNN recommender,
precision at 20 and follower threshold at 20, α = 0.01 β = 0.009

.

80

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

the community in Sobazaar. The voltage clusterer increases the quality of
recommendations for 10 clusters and even on 50 clusters the F1-score is still
higher than with 5 clusters, this observation shows that the voltage clustering
approach seems to model the Sobazaar application in the best way out of all
four algorithms tested. The data of the results including figures for precision,
recall, and the percentage of users for which have at least one true positive,
are shown in the appendix Table D.1, Figure D.1,Figure D.2, Figure D.3.

In order to further investigate the quality of recommendations we compare
the F1-score of the best voltage clustering results to the best KNN result
without cluster in Figure 5.8.

We contribute this loss of quality of the recommendation to the fact that
we have removed important information from the graph by splitting it into
clusters.

Figure 5.8: Best KNN result with and without clustering on the same configuration: Com-
mon Neighbor similarity, following threshold at 20, precision at 20.

Another aspect to take into consideration for our evaluation is if by ap-
plying the clustering algorithms we can decrease the execution time of the
recommender system. When finding the closest neighbours of a user u, K-NN
looks for all the nodes in the cluster of u that are not already followed by
this user. If no clustering algorithm has been applied to the graph, all the
nodes are contained in the same cluster, namely the entire graph. Therefore,
in the worst case K-NN has to calculate the distance between all possible
|V | · (|V |− 1) pairs of nodes in the graph. Since some Perception functions, as
the Common Neighbors similarity, can be expensive in term of computational

81

5.1. EXPERIMENTS

time, the execution of the K-NN becomes unaffordable.

On the other hand, if the users can be clustered in smaller subgraphs the
number of pairs K-NN needs to consider decreases. For each node the rec-
ommender system calculates the distance between the pairs of nodes that are
contained in the same cluster. If we assume that it is possible to uniformly
distribute the nodes among the different clusters, then the cost of K-NN be-
comes |V | · (|V |/C − 1), where C is the number of clusters we extract from
the graph. When C increases the execution time decreases, since the number
of pairs in each clusters diminishes. The objective is to find the golden spot
where it is possible to obtain the maximum tradeoff between quality of the
recommendations and time performance.

In Figure 5.9 we show the difference in execution time by using different
clustering algorithm, while we increase the number of clusters. We again
test for 5, 20 and 50 clusters, and we compare the algorithms using different
Perception functions. The graph compares the execution time of the K-NN
recommender with and without clusters time(K−NN)

time(K−NN−Cluster) . Hence a value of
y in the y-axis express that K-NN algorithm runs y times faster by applying
the clusters. We have run these experiments on the same machine, to allow
an equal comparison of the time costs.

Figure 5.9: F1 scores for the Authority Clusterer, Voltage Clusterer, Spectral Clusterer
and Social Network Clusterer with Common Neighbor similarity measures and KNN recom-
mender.

The first result we can observe is that all the clustering algorithm allow
a faster execution of the recommendations, from 2.5 times faster up to 50

82

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

times faster than without using any clustering. The increase in performance
generally rises with higher number of clusters, since the subgraphs become
smaller in the number of nodes. Voltage clustering’s performance does not
follow this common pattern, considering that the execution when extracting
20 clusters is slower than for 5 clusters. This behavior can be associated to
the particularity of voltage clustering, of finding non predictable clusters sizes
in each execution.

Although Spectral Clustering is obtaining the best increase in performance,
being at least 20 times faster than a non clustered K-NN when using more
than 20 clusters, it is not achieving the best results in terms of quality of the
recommendations. The reason for this fast execution has already been shown
in Section 2.5.1, where we can see that the size of the clusters is indirectly
proportional to the number of clusters. Notwithstanding, it is not possible
to achieve both good execution times and relevant recommendations for this
particular algorithm.

In conclusion, the results of this analysis can be considered positive, since
the most successful clustering algorithms that we have tested in our dataset,
Voltage Clustering and Authority Clustering, contribute with a faster execu-
tion of the recommender system.

5.2 Discussion

In this section we will discuss the results of the experiments and address some
of the problems we identified after running all three experiments.

5.2.1 Problems with the Evaluation

We wish to address some problems which we have found in the way we evaluate
our recommendations which have been discovered after retrieving the results.

The current evaluation scheme causes our results to be discounted. This
is due to the static parameters of the amount of user we recommend for the
users we evaluate. The current evaluation scheme has a following threshold
of 20 users. Splitting these followings into 5 separate sets in order to perform
the 5-fold cross validation causes users which have the minimum number of
followings to only have 20

5 = 4 links in the test set. For each 5-fold cross
validation iteration we recommend 20 users, this means that for the minimum
threshold the maximum precision is given by the number of users in the test set,
4, over the number of recommendations 20: 4

20 = 0.2. The reverse situation
also discounts the results; if a user has more than 20 users in the test set for
each 5-fold cross validation iteration, the recall will always be strictly smaller
than 1, since the formula we use for calculating recall is defined as: TP

CP , where
CP are the links in the test set. A way to address this would be to dynamically
recommend the amount of users which are available in each of the test sets,
meaning that for the user with the minimum threshold of 20 followings we

83

5.2. DISCUSSION

would recommend 4 users. This problem does not affect the comparability
between the different algorithms, as the parameters affected are kept static
throughout all three experiments.

An additional problem which was not addressed during the experiments
but mentioned was that we only have like lists for 27% of all users in the
graph. This naturally decreased the precision of the algorithms based on the
Item similarity. A way to address the sparsity of the likes in the social graph
would have been to introduce an additional threshold which would require a
user to have a certain amount of likes.

A final addition to the evaluation scheme would have been to run different
perception functions for the clustering algorithm and for the KNN recommen-
dation algorithm. In the current evaluation scheme the same perception is
used for both, whether using different perceptions would improve the quality
of the recommendation remains to be investigated.

5.2.2 Implicit Feedback for User Recommendations

In Section 2.4.6 we investigated the relation between the social network and
item similarity. Table 2.8 showed that there a significantly higher amount
of nodes which have greater similarity to those users they are connected with
compared to the overall similarity in the graph, 0.1142 and 0.0631 respectively.
In Section 5.1.1 we saw an increase in the F1 score when applying a perception
based on the item similarity instead of using perception based on adjacency.

The item similarity performing worse than approaches which use the so-
cial graph in Section 5.1.2 most likely stems from the fact that 73% of the
users have no like lists associated to them, this fact is further discussed in
Section 5.2.1. Finally the results from the experiment 3, Section 5.1.3, specifi-
cally Figure 5.6 show that clustering using perception based on item similarity
worsens the F1 score, especially when spreading the sparse information avail-
able into clusters which further suggests the sparsity of the like lists being the
reason for poor results compared to network based approaches.

In conclusion given the results of the experiments we can not say with
certainty whether the results of the perception based on the item similarity
are due to lack of data or to the item similarity not containing the informa-
tion required to identify users for recommendations. Based on the similarity
inside the graph Table 2.8 and the results of experiments 1, Section 5.1.1, we
conjecture that there is a pattern which supports the theory that the implicit
feedback is useful and the poor results are due to the lack of data.

5.2.3 Clustering for User Recommendations

In Section 2.5 we analyze the different clusters generated by the clustering
algorithms described in Section 3.5. The analysis showed that it is possible
to detect communities for which the item similarity inside the cluster was
on average 500 times higher than the original graph, seen in Figure 2.10. It

84

CHAPTER 5. EVALUATION OF THE EXPERIMENTS

was also possible to find clusters where the most popular items inside the
clusters deviated from the whole graph, seen in Figure 2.11 Section 2.5.2. We
also found that the connections inside the clusters is higher for all approaches
Section 2.5.3. Whether the clusters can be used to predict future connections
is asserted in the Section 2.5.4 by splitting the data set into training set and
test set and investigating how many nodes for which there was a connection
in the test set were in the same cluster. All approaches had at least a positive
percentage of nodes which were connected in the test set clustered into the
same cluster.

In conclusion by analyzing the clusters we found that the clustering al-
lows to find trends for communities which deviate from the global popularity,
clustering allows to find sub graphs that a more densely connected than the
complete graph and clusters have been shown to be able to cluster node to-
gether for which edges will be established at a later time. This shows that
clustering can be a useful tool for the social link problem.

Experiment 3 Section 5.1.3 showed how the different clustering algorithms
performed based on their F1 score. As the analysis of the clusters suggested
the authority and voltage clustering have the best performance out of the four
algorithms tested using the perception based on Common Neighbors. Figure
Figure 5.8 in Section 5.1.3 compares the best result using clusters and the best
result without. The F1 score is 0.03 lower using the clustered approach. We
attribute this decrease in quality of recommendation to the decrease of infor-
mation which occurs when we separate the data into clusters. Nevertheless,
we can expect an decrease in the computational time as shown in Figure 5.9.

The results show that the question whether clustering can be applied in
the Sobazaar domain in order to do user to user recommendations comes
down to a trade-off between execution time performance and quality given the
current results, as the separation of data into clusters can not be done by the
techniques used in the setup without a loss of generality.

85

Chapter 6

Conclusion

The Chapter 1 gave an introduction to the domain and presented the problems
which this report addresses, namely:

1. What is the underlying cause of one user following another ?

2. How can we make user-to-user recommendations using a social network
utilizing implicit feedback and clustering techniques?

It also contains a discussion of how finding the underlying cause of a follow is
interesting in respect to identifying behavior in a fashion domain, allowing to
recommend users to one another and how the domain differs from other social
networks. It further describes the fact of having a social network as being
interesting in regards to the implicit feedback as it allows for a combination of
information which might contribute to a better understand of the domain and
to enable useful user-to-user recommendations. A final point of the discussion
is the motivation to find communities which might reflect both in the social
network structure and the item similarity, this in turn motivates the use of
clusters for the purposes of detecting such communities.

Chapter 2 gave an overview of the Sobazaar domain from which we re-
trieved the data using the public API and a description of the data crawled.
In order to solve Problem 1 the data was then analyzed first from the point
of view of the items found in the like lists and boards, then from the point
of view of the social network culminating in an analysis which looked at both
the social network and items together, Section 2.4.6, which in turn lead into
the analysis of clusters.

Chapter 3 introduced the techniques used throughout the report and de-
fined the common terminology. Section 3.1 defined what a recommendation
system is. Section 3.3 gave an overview of an already existing approach to
item recommendations using a social graph namely SoRec and concluded that
this approach is not applicable to the Sobazaar data set as the data required
for generating the social trust is not available. Section 3.4 described the social
link problem and elaborated on the difficulty in user-to-user recommendations

86

CHAPTER 6. CONCLUSION

and gave an overview of state of the art approaches which address these prob-
lems. Section 3.5 described and defined the clustering approaches used in this
report.

Chapter 4 described the experimental setup and the recommender system
developed during the project. In Section 4.1.1 we described the different eval-
uation methods, namely precision, recall, F1-score, and NDCG using binary
relevance. Section 4.2 gave a description of the design of our recommender sys-
tem, and the definition of the experimental methodology which was devised in
order to analyze0 the questions posed in the problem definition. Furthermore,
we described the different perception features, such as item similarity which
uses boards and the like list in order to calculate the similarity, the input of
the clustering algorithms used and the settings of the two recommendation al-
gorithms used, K-NN and Matrix Factorization. Section 4.2.5 explained how
the data was evaluated using K-Fold cross validation.

Chapter 5 described the experiments conducted and discussed the results
in relation to the data analysis. We conducted three different experiments,
Section 5.1.1 described experiment 1 for which the purpose was to find the
recommendation algorithm which performed better on the data set, which we
conclude to be K-NN. Section 5.1.2 presented the results for the K-NN algo-
rithm with each perception feature, for which the Common Neighbors similar-
ity performed best. Finally the Section 5.1.3 described experiment 3 where we
clustered the graph based on the four different clustering algorithms and eval-
uated the results, first against each other, where the voltage clustering with 10
clusters using perception based on Common Neighbors similarity performed
the best, and then to the result for the same perception feature, without clus-
tering the graph. The results are shown in Figure 5.8 and show that the K-NN
without clustering performed better. Although, we conclude that it is possi-
ble to lower the computational cost by using clustering approaches, seen in
Figure 5.9.

In Section 5.2 we reflected on the results which were achieved, and it is
pointed out that the reason for the low results in the experiments can be
attributed to a flaw in the evaluation scheme which discounted the results
by not adjusting the number of recommendations to the number of available
users in the test set. Section 5.2.2 discussed the results of the item similarity
perception feature, and we can conclude that the amount of implicit feedback,
namely likes and boards, available makes it difficult to clearly state if the im-
plicit feedback can contribute to the recommendations. We conjecture that
there exists a pattern based on evidence throughout the analysis and experi-
ment 1. If this conjecture can be proven with additional data or an additional
evaluation as proposed in the section Section 5.2.1, we can with confidence
answer Problem 2, as we can combine the implicit feedback with a social net-
work graph by applying a clustering approach on the social network graph
using perception based on item similarity. Section 5.2.2 discussed whether
clustering can contribute positively in recommending users to one another.

87

We conclude that it is not possible to find clusters without removing valuable
data, using the clustering approaches presenting in this report. Therefore, the
choice of clustering comes down to the choice of quality versus execution time.

Problem 1 is addressed in several sections. As we obtain the best results
using the perception based on Common Neighbors, we argue that the main
source of information about the users can be found in the structure of the social
network. Nevertheless, the results shown in data analysis give interesting hints
on how communities of users based on the fashion trends seem to appear, when
accurately applying clustering algorithms. To fully understand the patterns in
the social network and the evolution of these trends additional data is required,
both regarding the users’ activity and the temporal dimension of this activity,
currently missing in our research.

With the availability of such data, our research could deepen in two dif-
ferent directions. On the one hand, how can we define a Perception function
that can accurately describe the preferences of a user, by investigating and
combining different features. On the other hand, how do we analyze in what
way users influence each others’ interests, and how to utilize this information
for understanding the dynamics of the social network.

88

Bibliography

[1] Apache commons. https://commons.apache.org/proper/
commons-lang/. Accessed: 2015-05-15.

[2] Apache mahout. https://mahout.apache.org/. Accessed: 2015-
05-15.

[3] Java universal network/graph framework. http://jung.
sourceforge.net/. Accessed: 2015-05-15.

[4] R. 2012. Worhshop on recommendation utility evaluation: Beyond rmse.
http://ir.ii.uam.es/rue2012/. Accessed: 2015-02-19.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1):107–117,
1998.

[6] C. Burges, T. Shaked, E. Renshaw, M. Deeds, N. Hamilton, and G. Hul-
lender. Learning to rank using gradient descent. In In ICML, pages 89–96,
2005.

[7] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender
algorithms on top-n recommendation tasks. In Proceedings of the fourth
ACM conference on Recommender systems, pages 39–46. ACM, 2010.

[8] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences of
the United States of America, 99(12):pp. 7821–7826, 2002.

[9] C. Goutte and E. Gaussier. A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation. In D. Losada and
J. Fernández-Luna, editors, Advances in Information Retrieval, volume
3408 of Lecture Notes in Computer Science, pages 345–359. Springer
Berlin Heidelberg, 2005.

[10] P. Graneau. Kirchhoff on the motion of electricity in conductors.(gustav
kirchhoff). pages 19–, 1994.

[11] L. Hang. A short introduction to learning to rank. IEICE TRANSAC-
TIONS on Information and Systems, 94(10):1854–1862, 2011.

89

https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://mahout.apache.org/
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://ir.ii.uam.es/rue2012/

BIBLIOGRAPHY

[12] M. Jamali and M. Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In Proceedings of
the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages
135–142, New York, NY, USA, 2010. ACM.

[13] J. Kekäläinen. Binary and graded relevance in ir evaluations-comparison
of the effects on ranking of ir systems. Inf. Process. Manage., 41(5):1019–
1033, Sept. 2005.

[14] B. Kock, D. D. Thøisen, D. Frazzetto, and K. P. Jensen. Creating a
recommender system using solely implicit feedback for the fashion portal
sobazaar. Cannot be disclosed, is under a non disclosure agreement, 12
2014.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, Aug. 2009.

[16] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social
networks. Journal of the American society for information science and
technology, 58(7):1019–1031, 2007.

[17] L. Lü and T. Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150–1170,
2011.

[18] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: Social recommenda-
tion using probabilistic matrix factorization. In Proceedings of the 17th
ACM Conference on Information and Knowledge Management, CIKM
’08, pages 931–940, New York, NY, USA, 2008. ACM.

[19] J. MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oak-
land, CA, USA., 1967.

[20] S. E. Marcus, M. Moy, and T. Coffman. Social Network Analysis. John
Wiley and Sons, Inc., 2006.

[21] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Clustering social
networks. In Algorithms and Models for the Web-Graph, pages 56–67.
Springer, 2007.

[22] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages 1257–1264, 2007.

[23] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths,
weighted networks, and centrality. Phys. Rev. E, 64:016132, Jun 2001.

90

BIBLIOGRAPHY

[24] J.-F. Pessiot, V. Truong, N. Usunier, M. Amini, and P. Gallinari. Learning
to rank for collaborative filtering. ICEIS 2007, 2007.

[25] N. Prize. Netflix prize.

[26] J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-
commerce. In Proceedings of the 1st ACM Conference on Electronic
Commerce, EC ’99, pages 158–166, New York, NY, USA, 1999. ACM.

[27] J. Scott. Social network analysis. Sage, 2012.

[28] Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix
factorization for collaborative filtering. In Proceedings of the fourth ACM
conference on Recommender systems, pages 269–272. ACM, 2010.

[29] R. R. Sinha and K. Swearingen. Comparing recommendations made by
online systems and friends. In DELOS workshop: personalisation and
recommender systems in digital libraries, volume 1, 2001.

[30] Sobazaar. Sobazaar - your daily fashion fix, May 2015. Seen May 25th
2015.

[31] U. Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17(4):395–416, 2007.

[32] F. Wu and B. A. Huberman. Finding communities in linear time: a
physics approach. The European Physical Journal B-Condensed Matter
and Complex Systems, 38(2):331–338, 2004.

[33] H. Zhu and B. A. Huberman. To switch or not to switch understanding
social influence in online choices. American Behavioral Scientist, page
0002764214527089, 2014.

91

Appendix A

Sobazaar Application

(a) Board Creation (b) Board Published

Figure A.1: Sobazaar App for the iPhone. Taken from [30].

92

APPENDIX A. SOBAZAAR APPLICATION

(a) Product Details (b) Feed

Figure A.2: Sobazaar App for the iPhone. Taken from [30].

93

Figure A.3: Profile of a User. Taken from [30].

94

Appendix B

SQL Queries

Listing B.1: SQL Query to retrieve all follow connections with unfollow

1 SELECT follow.user_a_id as user_a, follow.user_b_id as user_b,
2 MAX(IFNULL(follow.added,’1970-01-01 00:00:00’)) as follow_added,
3 MAX(IFNULL(unfollow.added,’1970-01-01 00:00:00’)) as

unfollow_added
4 FROM follow
5 LEFT JOIN unfollow ON follow.user_a_id = unfollow.user_a_id
6 AND follow.user_b_id = unfollow.user_b_id
7 GROUP BY follow.user_a_id, follow.user_b_id
8 ORDER BY ‘user_a‘ ASC

The SQL query from Listing B.1 retrieves all follow connections and also
the unfollow entries. We take the maximum of the added timestamp, i.e.
the latest entry. If any of the follow or unfollow added column is NULL,
we set the NULL value to be a very early date. The reason for the very
early date is to be able to check for which event happened latest. The latest
event indicates the current state. For example if the follow.added date is
”2015-02-02 12:00:00” and the unfollow.added is ”2015-02-03 12:00:00”, the
unfollow happened after the follow, and we can guarantee that user a id does
not follow user b id anymore. We group by the follow’s user a id and user b id
for avoiding duplicates, that can happen if a user has multiple follow and
unfollow entries.

95

Appendix C

Implementation Code

C.1 AuthorityClusterer

Listing C.1: AuthorityClusterer implementation, SearchAlgorithms.java

1 public static <T> Map<T, Double> findDistancesToTarget(
AbstractTypedGraph graph, T target) {

2 Set<T> visitedNodes = new TreeSet<>();
3 Queue<T> frontier = new LinkedList<>();
4 Map<T, Double> distances = new HashMap<>();
5 frontier.add(target);
6 visitedNodes.add(target);
7 distances.put(target, 0d);
8 while(!frontier.isEmpty()) {
9 T head = frontier.poll();

10 double distance = distances.get(head);
11 for(T adj : (Collection<T>)graph.getPredecessors(head))

{
12 if(!visitedNodes.contains(adj)) {
13 distances.put(adj, distance+1);
14 frontier.add(adj);
15 visitedNodes.add(adj);
16 }
17 }
18 }
19 distances.remove(target);
20 return distances;
21 }

96

APPENDIX C. IMPLEMENTATION CODE

Listing C.2: Finding the Distances to clusters, AuthorityClusterer.java

1 private <T> T findCluster(Map<T, Double> authoritiesDistances, Map<T
, Integer> degrees) {

2 T bestAuthority = null;
3 Double maxImportance= -1d;
4 for (Map.Entry<T, Double> authority : authoritiesDistances.

entrySet()) {
5 if (authority.getValue() == null) {
6 continue;
7 }
8 Double importance = (double) degrees.get(authority.

getKey()) / (double)(authority.getValue()*authority.
getValue());

9 if (bestAuthority == null || importance > maxImportance)
{

10 bestAuthority = authority.getKey();
11 maxImportance = importance;
12 }
13 }
14 return bestAuthority;
15 }

Listing C.3: Finding the Top-k Nodes with the Highest In-degree, SocialGraphAnalysis.java

1 public static <T> Map<T, Integer> getTopKInDegreeInfluentialUsers(
SocialGraph graph, int K) {

2 Map<T, Integer> users = graph.getInDegreeOfUsers();
3 Integer min = null;
4 Integer max = null;
5 for (Map.Entry<T, Integer> e : users.entrySet()) {
6 if (min == null || min > e.getValue()) {
7 min = e.getValue();
8 }
9 if (max == null || max < e.getValue()) {

10 max = e.getValue();
11 }
12 }
13 IntegerValueComparator bvc = new IntegerValueComparator<>(

users);
14 TreeMap<T, Integer> sortedDegrees = new TreeMap<>(bvc);
15 for (Map.Entry<T, Integer> e : users.entrySet()) {
16 sortedDegrees.put(e.getKey(), e.getValue());
17 }
18 Map<T, Integer> topKUsers = new TreeMap<>();
19 int k = 0;
20 for (Map.Entry<T, Integer> user : sortedDegrees.entrySet()) {
21 if (k != K) {
22 topKUsers.put(user.getKey(), user.getValue());
23 k++;
24 }
25 }
26 return topKUsers;
27 }

97

C.1. AUTHORITYCLUSTERER

Listing C.4: AuthorityClusterer, AuthorityClusterer.java

1 public Map<T, Cluster<T>> cluster(int k) {
2 clusteredNodes = k;
3 Map<T, Cluster<T>> clusters = new HashMap<>();
4 Map<T, Set<T>> tmpClusters = new HashMap<>();
5 Map<T, Integer> authorities = SocialGraphAnalysis.<T>

getTopKInDegreeInfluentialUsers(graph, k);
6 Set<T> authorityKeys = new HashSet<>(authorities.keySet());
7 for (Map.Entry<T, Integer> authority : authorities.entrySet())

{
8 clusters.put(authority.getKey(), new Cluster());
9 Set<T> c = new HashSet<>();

10 c.add(authority.getKey());
11 tmpClusters.put(authority.getKey(), c);
12 }
13 calculateDistances(authorityKeys);
14 ((Set<T>) graph.getNodesIds()).parallelStream().forEach(node

-> {
15 Map<T, Double> distancesToAuthorities = new HashMap<>();
16 if (!authorityKeys.contains(node)) {
17 for (Map.Entry<T, Integer> authority : authorities

.entrySet()) {
18 distancesToAuthorities.put(authority.getKey

(), distancesFromAuthorities.get(
authority.getKey()).get(node));

19 }
20 T closestAuthority = findCluster(

distancesToAuthorities, authorities);
21 if (closestAuthority != null) {
22 incrementClusteredNodesCounter();
23 tmpClusters.get(closestAuthority).add(node);
24 }
25 }
26 });
27 }

98

APPENDIX C. IMPLEMENTATION CODE

C.1.1 Class Diagrams

Figure C.1: Class Diagram of the Edge Classes.

C.1.2 Classes

99

C.1. AUTHORITYCLUSTERER

Figure C.2: Class Diagram of the Graph Classes.

100

APPENDIX C. IMPLEMENTATION CODE

Figure C.3: SaLT.Algorithm and underlying packages including their public functions.

101

C.1. AUTHORITYCLUSTERER

Figure C.4: SaLT package with classes including their public functions.

102

APPENDIX C. IMPLEMENTATION CODE

Figure C.5: database connection package containing the functionality of access information
from the database.

103

C.1. AUTHORITYCLUSTERER

F
ig

u
re

C
.6

:
ev

a
l,

re
co

m
m

en
d
er

a
n
d

u
ti

l
p
a
ck

a
g
e

a
n
d

th
ei

r
cl

a
ss

es
.

104

APPENDIX C. IMPLEMENTATION CODE

F
ig

u
re

C
.7

:
T

h
e

g
ra

p
h

p
a
ck

a
g
e

co
n
ta

in
in

g
g
ra

p
h

im
p
le

m
en

ta
ti

o
n

105

Appendix D

Results

D.1 Clustering

F1-Score CL 5 CL 10 CL 50 (α, β)

authority clusterer 0.0974820 0.0900520 0.0888550 -
voltage clusterer 0.0886210 0.1071100 0.0989540 -
spectral clusterer 0.0784910 0.0507640 0.0444220 -
social network clusterer - - - 0.0694290

Positive Recommendations CL 5 CL 10 CL 50 (α, β)

authority clusterer 0.6898900 0.6534300 0.6473700 -
voltage clusterer 0.5743000 0.7216400 0.6775000 -
spectral clusterer 0.6392400 0.4605000 0.3802500 -
social network clusterer - - - 0.53201

Precision CL 5 CL 10 CL 50 (α, β)

authority clusterer 0.0741630 0.0682110 0.0673260 -
voltage clusterer 0.0673970 0.0814810 0.0751750 -
spectral clusterer 0.0599240 0.0390860 0.0346030 -
social network clusterer - - - 0.051946

Recall CL 5 CL 10 CL 50 (α, β)

authority clusterer 0.1579700 0.1467000 0.1446700 -
voltage clusterer 0.1426900 0.1736900 0.1604900 -
spectral clusterer 0.1264800 0.0807910 0.0696680 -
social network clusterer - - - 0.11579

Table D.1: Results of KNN using Clusters for precision at 20, CL are the number of clusters,
following threshold set to 20 with Common Neighbor perception.

106

APPENDIX D. RESULTS

Figure D.1: Result of KNN using Clustering for precision @20, following threshold set to 20
with Common Neighbor perception.

Figure D.2: Result of KNN using Clustering for precision @20, following threshold set to 20
with Common Neighbor perception.

107

D.1. CLUSTERING

Figure D.3: Result of KNN using Clustering for precision @20, following threshold set to 20
with Common Neighbor perception.

108

	Introduction
	Problem Definition
	Goals
	Discussion
	Structure of Report

	Data Analysis
	Overview of Sobazaar Application
	Data Overview
	Preliminary Analysis
	Boards
	Highly Popular Boards
	Follow and Unfollow
	Like and Unlike

	Social Graph Analysis
	Graph Definition and Notation
	Generating the Social Graph
	Structure of the Graph
	Degree of Nodes
	Scale Free Network
	Reasons for Following

	Clustering the Social Network
	Size of the Clusters
	Trends and Communities
	Density of the Clusters
	Evolution of the Clusters

	Conclusion

	State of the Art
	Recommender Systems
	Analyzing Social Networks
	Social Influence

	Combining Social Network and Recommendations
	Probabilistic Matrix Factorization
	Social Recommendations using Probabilistic Matrix Factorization
	SoRec

	Social Link Problem
	Problem Definition
	State of the Art
	Neighborhood Based Methodologies
	Conclusion

	Clustering
	Social Network Clustering
	Betweenness Clustering
	Voltage Clusterer
	Authority Clustering
	Spectral clustering
	Conclusion

	Recommender System Setup
	Evaluation of Recommender Systems
	Evaluation methods
	Learning to Rank Evaluation
	Conclusion

	Recommender System Model
	Social Network Model
	Features of the Model
	Clustering Algorithms
	Recommender System Algorithms
	Evaluation of the Recommender System

	Overview of SaLT
	Packages

	Conclusion

	Evaluation of the Experiments
	Experiments
	Experiment 1: Recommender System Algorithm Comparison
	Experiment 2: Defining the Similarity Function
	Experiment 3: Clustering

	Discussion
	Problems with the Evaluation
	Implicit Feedback for User Recommendations
	Clustering for User Recommendations

	Conclusion
	Sobazaar Application
	SQL Queries
	Implementation Code
	AuthorityClusterer
	Class Diagrams
	Classes

	Results
	Clustering

