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Abstract:

In the course of the last few decades, robotic sur-
gery has become the preferred type of operation
within certain types of surgery, allowing the sur-
geon to perform precision procedures causing the
patient a minimal amount of scarring while main-
taining an exceptional overview of the operation
site for the surgeon.
Advances are made within automation in the con-
trol of robotic tools, providing the surgeon with
more freedom and higher precision when perform-
ing operations. Based on having attended a robotic
surgery and recognizing the development within
this research community, it is the aim of this the-
sis to contribute to the advancement through the use
of barrier certificates with which safety of the auto-
mated control system can be guaranteed.
Control systems are developed for use cases within
robotic surgery, including control in 3D Euclidean
space and virtual fixture control of a beating heart.
System safety is certified through the construction
of a barrier enclosing areas termed unsafe thus
guaranteeing that the robotic tool will never cross
this barrier. Two different approaches are taken:
design of safety controllers based on manually con-
structed control barrier functions, and analytic ver-
ification of system safety using a software tool
to construct the certificates. The safety verifica-
tion development constitutes a framework in which
any system can be validated in accordance with its
safety requirements.
The controllers are implemented in C++ through
the ROS framework on a first generation da Vinci
surgical robot, and safety is verified for the devel-
oped control systems thus demonstrating the appli-
cability of the theory of barrier certificates.

The content of this report is freely available, but publication (with
source reference) may only take place by agreement with the authors.





Preface

This report documents the development process of a safe controller for automation of a surgical robot
arm with patient safety guaranteed through barrier certificates. The access to robot measurement data
and opportunity to implement a controller heavily benefits from the previous work carried out on the da
Vinci surgical robot in the Control Laboratory at Aalborg University. The project is rated at 30 ECTS-
points, and the work is conducted by the 4th semester group 1032 within the graduate program in Control
and Automation at Aalborg University during the spring of 2015.

Reading Guide

The primary focus of this report is to design a controller and a barrier certificate, the certificate guarantee-
ing the safe control of a surgical robot, as an approach to draw closer to the possibility of implementing
automated control tasks by surgical robots. After an introduction into surgical robotics and the definition
of barrier certificates, two approaches to the design problem are described:

• Explicit approach: A barrier certificate is constructed and a safe controller is designed according
to the method described in [Wieland and Allgöwer, 2007].

• Analytic approach: A controller is designed, criteria are constructed for a barrier certificate and
safety is verified by use of Putinar’s Positivstellensatz.

Symbols, acronyms and a glossary are presented in the nomenclature before the main report. A variant of
the Harvard referencing is used for citations, with the author and publication year of the source given in
square brackets, e.g. [Lasserre 78], and sources listed in the bibliography at the end of the main report. A
comprehensive appendix is included after the bibliography, containing introductions to the used software,
detailed derivations, measurement logs and source code. A digital copy of this report along with cited
references, source code and simulation results can be found on the enclosed CD.
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Acronyms

API Application Programmable Interface

CBF Control Barrier Function

CLF Control Lyapunov Function

DARPA Defence Advanced Research Project
Administration, research administra-
tion under DoD

DH Denavit-Hartenberg, convention for
placement of coordinate frames

DOF Degrees Of Freedom

FK Forward Kinematics

FPGA Field Programmable Gate Array

GUI Graphical user interface

IK Inverse Kinematics

KDL Kinematics and Dynamics Library

MASH Mobile Advanced Surgical Hospital

MIS Minimally Invasive Surgery

MPC Model Predictive Control

NASA National Aeronautics and Space Ad-
ministration

REP ROS Enhancement Proposals

RIO Reconfigurable Input/Output

ROS Robotic Operating System

RPY Roll Pitch Yaw angles, extrinsic ro-
tation about x,y,z axes, respectively

SDP Semi-Definite Programming

SOS Sum of Squares

SRDF Semantic Robot Description Format

TCP/IP Transmission Control Protocol/In-
ternet Protocol

UDP User Datagram Protocol

UI User Interface

URDF Unified Robot Description Format

XACRO XML Macros

YAML Yet Another Markup Language

Symbols

A Linear system matrix, A ∈ Rn×n [·]
B Linear input matrix, B ∈ Rn×m [·]
C Controllability matrix, C ∈ Rn×n [·]
C Linear output matrix, C ∈ Rq×n [·]
∆ Distance between safe and unsafe regions X0 and Xu, when defining B(§) in SOS [·]
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D Linear feedforward matrix, D ∈ Rq×m [·]
Γ Discrete version of the linear system matrix A, Γ ∈ Rn×n [·]
K̄ Augmented feedback matrix, K̄ ∈ Rm×n [·]
Kd Feedback matrix calculated from discrete matrices, Kd ∈ Rm×n [·]
K Feedback matrix calculated from continuous matrices, K ∈ Rm×n [·]
Ld Observer gain calculated from discrete matrices, Ld ∈ Rn×m [·]
M0 Semimajor axis of a CBF which is a function of two state variables [·]
M Gain correction for an observer, M ∈ Rn×m [·]
N̄ Gain correction for a system without an observer, N̄ ∈ Rm [·]
N Gain correction for a system with an observer, N ∈ Rm [·]
O Observability matrix, O ∈ Rn×n [·]
Φ Discrete version of the linear input matrix B, Φ ∈ Rn×m [·]
Q Real positive semidefinite symmetric SOS coefficient matrix [·]
R Rotation matrix describing relative rotation between coordinate frames, R ∈ R3×3 [·]
Σ[x] Denotion of an SOS polynomial in the variable x [·]
T The set of all (safe) states in a transition area between the safe and unsafe region [·]
Th Heart beat period [s]
T Transformation matrix describing rotation and translation between two coordinate

frames, T ∈ R4×4
[·]

Ts Sample period [s]
T Final value of a time series [s]
V (x) Lyapunov function [·]
X0 The set of all safe initial states X0 ⊆ X [·]
Xu The set of all unsafe states, Xu ⊂ X [·]
X The set of all considered states for which safety should be guaranteed, X ⊆ Rn [·]
Y The set of all safe states but excluding the set T , i.e. Y = X0 \T [·]
α Rotation angle about local x axis [rad]
B(x) Barrier function where B(x) ∈ C1(X ) [·]
β Rotation angle about local y axis [rad]
c Centre coordinate for ellipsoid [m]
cp Computation time [s]
δerr Maximum allowed distance between reference and state [·]
dref Distance between a beating heart and robot end effector [m]
d Disturbance input, restricted to d ∈D ⊆ Rp and convex. [·]
ε̄ Minimum value of B(x) on the unsafe set Xu, when defining B(x) in SOS [·]
ε Value of B(x) at the border between T and Y [·]
fs Sampling time [Hz]
f A function, f : Rn→ Rn, mostly a system function in a SS system [·]
g Either: A function, g : Rn→ Rn×m, mostly an input function in a SS system. Or: In

SOS g is a polynomial which is positive on some set
[·]

h A function, h : Rn→ Rn×p, mostly a disturbance function in a SS system [·]
k0(x) Safety controller [·]
Λi Physical boundary where i = h = hard boundary and i = s = soft boundary [·]
λ Eigenvalue [·]
LgB Lie derivative of B(x) along the vector field g(x), i.e. LgB(x) = dB(x)

dx g(x) [·]
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Symbols

L f B Lie derivative of B(x) along the vector field f (x), i.e. L f B(x) = dB(x)
dx f (x) [·]

z Monomial vector in the variable x [·]
m Number of inputs to a system [·]
n Number of states in a system [·]
ωn Natural frequency of a second order system [rad/s]
p Position vector describing translation between coordinate frame origins, p ∈ R3 [m]
q Number of outputs from a system [·]
r Radius vector for ellipsoid [m]
σ(x) Parameter that determines the linear combination between the safe and non-safe con-

troller. It is restricted such that 0≤ σ(x)≤ 1
[·]

s The Laplace operator [·]
τ Time constant [s]
θ Rotation angle about local z axis [rad]
ũ(x) Linear position controller [·]
u Control input restricted to u ∈ Rm where m is the number of inputs [·]
ωh Frequency of a beating heart [rad/s]
x1 Position state of the robot in a system [m]
x2 Velocity state of the robot in a system [m/s]
xh10 Initial value of the position state [m]
xh1 The position state of a beating heart [m]
xh12 Initial value of the velocity state [m/s]
xh2 The velocity state of a beating heart [m/s]
x The state variable which is restricted to x ∈ Rn where n is the number of states [·]
y Output vector, y ∈ Rq where q is the number of outputs [·]
ζ Damping coefficient [·]

General Notation Remarks

Vectors are written i bold upright lowercase letters e.g. x, and vector entries are written as the same italic
lowercase letter with a subscript generally denoting its entry e.g. x1. The composition of the entries will
be clear from the context. Matrices are written in bold upright uppercase letters e.g. A, its transpose is
denoted by AT and its inverse is denoted by A−1.

The n-dimensional real Euclidian space is denoted by Rn and subsets of the real space are written in
calligraphic letters e.g. X ⊆ Rn. A function is written in italic letters followed by the variable(s) it is a
function of e.g. f (x). A differentiable function defined on Rn is denoted by f ∈C1(R).

The time derivative of a variable is indicated by a dot above the symbol e.g. ẋ = dx(t)/dt. In general
the notation (t) denoting a function of time is implicit for the state vector x, and is only included to
emphasize the time dependency. For functions of the state e.g. q(x) the notation (x) is left out when the
dependency is clear from the context. The derivative notation dB(x)/dx implies the row vector of partial
derivatives of B with respect to x1, ...,xn.

Function names such as B(x) or k0(x) represent the same functionality throughout, but may attain dif-
ferent configurations and coefficient values for different system models. The relevant configuration and
numerical values should be clear from the context. The same applies for parameters such as ∆ or ε̄.

Note that the function B(x) should not be confused with the matrix B.
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Chapter 1

Introduction

When the recovery from an injury or disease requires a surgical procedure, traditionally this has been
done with open surgery, where the patient is cut open for the surgeon to perform the procedure. For
many types of operation, however, alternatives to open surgery have emerged, especially over the last half
century. In minimally invasive surgery (MIS), as opposed to traditional open surgery, only small incisions
are made in the patient’s abdomen or pelvis in order to gain access to the area under surgery, hence
causing less trauma beyond this confined area. This in general provides the patient with quicker recovery,
shorter hospital stay and less scarring. One type of MIS is laparoscopy, invented in the beginning of
the 20th century [Hatzinger et al., 2006], where thin metal telescopes (laparoscopes) with specialized
surgical tools attached are inserted into the patient through trocars, allowing the surgeon to maneuver the
tools in the inflated abdomen guided by visual feedback from a flexible miniature camera (endoscope)
inserted alongside the surgical tools [Peters, 2013], see figure 1.1. In the 1980s robotic laparoscopic
surgery was introduced as a master-slave system, where the surgeon controls a robot arm holding the
surgical tools from a master console, instead of manipulating the instruments manually.

(a) Manual laparoscopic tools.

(b) Robotic laparoscopic tools. (c) Tool in trocar. (d) Endoscope.

Figure 1.1: Tools used in laparoscopic surgery.

1.1 Highlights in the Development of Surgical Robotics

While the idea of roboticized telemedicine dates back to 1925 [Novak, 2012], the development of
telesurgery was founded by the National Aeronautics and Space Administration (NASA) in the 1970s
combining research within virtual reality, robotics and medicine, and the first robotic surgery procedure
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1.2 State-of-the-Art in Surgical Robotics

was accomplished in 1985, followed by the first laparoscopic robotic surgical procedure in 1987 [Wall
and Marescaux, 2013; Galeota-Sprung et al., 2004]. In 1998 the first fully endoscopic robotic surgery
were performed and the idea of operating on a beating-heart were initiated [Galeota-Sprung et al., 2004].

The first commercially available surgical robot was introduced in the early 1990s. At the same time
major research within telesurgery was funded by Defence Advanced Research Project Administration
(DARPA), concurrent with the U.S. Army developing the Mobile Advanced Surgical Hospital (MASH)
for loading and teleoperating wounded soldiers in vehicular operating rooms [Wall and Marescaux, 2013;
Galeota-Sprung et al., 2004].

Surgical robots teleoperated from more than a few meters away is, however, still incipient. In 1996
the first tests were performed demonstrating the successful use of telementoring and telemanipulation
of the endoscope by a surgeon placed several 100 m away from the operating room, and in 2001 the
first transatlantic telesurgical procedure, the Lindbergh Operation, was performed by a team of French
doctors in New York operating on a patient in Strasbourg [Wall and Marescaux, 2013]. More research
into remotely telementored and teleoperated robotic surgery was performed during the 2000s with the
NASA Extreme Environment Mission Operations (NEEMO) projects and as part of the DARPA Trauma
Pod program launched in 2005 [Satava et al., 2011; Hannaford and Rosen, 2006].

1.2 State-of-the-Art in Surgical Robotics

Most surgical robots used for telesurgery are master-slave systems which can be fully controlled by the
surgeon, see figure 1.2. The patient manipulator consists of 2-4 robotic arms, each having 6-7 degrees
of freedom (DOF) including the arm, wrist and the end effector (the tip of the laparoscopic tool), one of
the arms holding a stereo-vision endoscope [Abbeel et al., 2014]. The end effectors are positioned by
high-precision motors and are able to reach spaces a human hand cannot [Hannaford and Rosen, 2006],
and furthermore development is progressing within flexible end effector tools [Satava et al., 2011,p 74].

(a) Surgeon master console and slave robotic patient manipulator. (b) The robotic patient manipulator.

Figure 1.2: Example of a master-slave robotic surgical system: the da Vinci.

The 3D visual feedback from the endoscope is sent to the master console, and the control signals for
the surgical instrument are generated with the controller joystick, which scales the surgeon’s movements
down to micro-movements [Hoffman, 2010] steerable through the (zoomed) 3D visual feedback. It also
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1.3 Envisioned Future for Robotic Surgery at Aalborg University Hospital

filters away tremor, and development is made within haptic feedback to the joystick [Satava et al., 2011,p
89], enhancing the surgeon’s feel, enabling greater dexterity, accuracy and stability than a human hand.

In the first generations of surgical robotics the master and slave had to be in the same room, but although
the feasibility of conducting surgical interventions remotely has been demonstrated, there has not been
drivers strong enough to justify its implementation [Satava et al., 2011,p 38]. Experiments and develop-
ment are made within minimizing and coping with the delays for long-distance telesurgery and within
miniaturization and robustness of the surgical robotic systems for use in harsh environments such as war
and space.

Robotic surgical procedures are beginning to show superiority to conventional surgery for some proce-
dures, but is still considerably more expensive [Hannaford and Rosen, 2006]. The excessive price is
particularly owed to Intuitive Surgical’s many patents securing Intuitive the predominant market share
with more than 3000 da Vinci Surgical System units installed worldwide (of which 70 % are in the U.S.)
[Hoffman, 2010]. Autonomous procedures are still only implemented for entirely pre-planned motions
of an operation, and depending on the type of operation not all subtasks in an operation are suited for
autonomy [Abbeel et al., 2014; Hannaford et al., 2013].

1.3 Envisioned Future for Robotic Surgery at Aalborg University Hospital

At Aalborg University Hospital robotisized MIS has been implemented since 2008, and now count two da
Vinci surgical robots employed at the urology and gynaecological wards, each performing 230 surgeries
a year. The authors were granted access to attend a prostatectomy (removal of the prostate gland) at
the hospital, during which robot assistant nurse Jane Petersson explicated the spectacle on the monitors
revealing the process of gaining access to the cancerous prostate, cleaving way through tissue involving
exposure of veins and nerves that must not be cut during the surgery. A view from the surgery is seen in
figure 1.3 showing the da Vinci robot reaching into the patient’s abdomen.

Figure 1.3: Prostatectomy at Aalborg University Hospital conducted by surgeon Grazvydas Tuckus with
the da Vinci Xi robot. The robot arms are wrapped in sterile bags.

1. Introduction 3



1.4 Configuration of da Vinci at Aalborg University

Johan Poulsen, chief surgeon at the urology ward and manager of the Center for Minimally Invasive
Surgery at Aalborg Univeristy Hospital, concurs with the stance that robotic laparoscopy provides the
surgeon with greater dexterity, stability and precision due to the design of the robot tools, the tremor
filtering, micro-movement down-scaling and 3D visual overview of the surgical site. It also allows the
surgeon a much better work posture than manual laparoscopic surgery and he argues that it is easier to
learn operating the robot than manual laparoscopic tools, and with the generations now entering the job
market mastering robotic technologies for surgery will come naturally.

At present the da Vinci robot is routinely used in Denmark in procedures within gastroenterology, gy-
naecology and urology. Dr. Poulsen, who is one of the nationally leading experts within robotic surgery,
argues that the next few years will also see robotics applied in surgery of the alimentary tract as well as
in otorhinolaryngological, lung and heart surgery, in pace with the purchase and maintenance price of
surgical robots going down.

Improvements and Further Development within Surgical Robotics

As described in the preceding, the da Vinci surgery robot is well established nowadays and an immensely
important tool in certain types of operations. According to assistant nurse Jane Petersson and Dr. Johan
Poulsen, two specific use cases are of great interest in the further expansion of robotic surgery:

• Safety in robotic surgery. As nurse Jane Petersson explains, during surgery the surgical tools are in
close contact with nerves and organs that must not be cut under any circumstances. Unfortunately,
it happens occasionally, though very rarely. It is of great interest to be able to guarantee a safe
operation.

• The possibility to automate or semi-automate certain operations. The operation on a beating heart
is a good example of this. If a virtual fixture can be obtained, the need for bypass can be avoided.
It is also clear that once automated robots are taken into use, higher demands will be put forth to
ensure safety.

According to Dr. Poulsen one of the greatest challenges in operating on a beating heart is the concluding
part of the operation suturing the operation site, as the moving tissue is easily pinched or tugged. In
order for the advantages of robotisized heart surgery to compensate for the drawbacks of manual bypass
operations, it is paramount to have a very exact model of the heart movement. As the heart movement
is not a beat as such but rather an expansion and contraction movement propagating from one end of the
heart to the other, even a highly complex model will need correction from position measurements of the
surface of the heart. He sees it as a viable possibility to mount sensors of up to two by two centimetres by
sowing them to the surface of the heart and having a tracking system such as e.g. the Vicon system (Vicon
is an indoor tracking system similar to the outdoor GPS) being part of the range of surgical instruments
in order to get extremely exact position data for the motion-compensated surgical robot.

Dr. Johan Poulsen suggests a surface mounted on a cylinder, which can be controlled to periodically
move up and down, as a first step in testing a surgical robot in following the movement of a surface.

1.4 Configuration of da Vinci at Aalborg University

The configuration at the Control and Automation laboratory at Aalborg University is based on a first
generation da Vinci robot, where the patient manipulator is detached from its surgeon controller console

4 1. Introduction



1.4 Configuration of da Vinci at Aalborg University

and modified to be controllable by automated processes. As seen in figure 1.2 the da Vinci patient
manipulator constitutes four "arms". In this thesis controllers are developed for one of these arms, an
overview of the terminology used for the robot outlined in figure 1.4, depicting the distinction of the

hand

arm

tool

end effector

p4_instrument_jaw_right

p4_instrument_roll

p4_hand_roll
p4_hand_pitch

p4_instrument_pitch

p4_instrument
_slide

Figure 1.4: Naming convention used for the da Vinci robot.

robotic parts each comprising a number of links connected by joints. The "arm" joints are fixed by
electromagnets and are hence uncontrollable, but can be manually released for positioning. The "hand"
consists of the controllable dynamic joints (joint naming convention is displayed in green), including
the "tool", which is a replaceable instrument worth 10.000 kr only licensed to be used for 10 operations.
The outermost point of the instrument is labelled the "end effector" and it is this which should follow a
reference point in the developed controllers.

The technical overview presented in figure 1.5 is structured in descending abstraction layers with the
highest in the top (i.e. the Robotic Operating System (ROS) - an open source software framework for
robots [Quigley et al., 2009], see appendix A for further details), which establishes a wireless TCP/IP
communication channel receiving all positions from the robot as feedback and produces position control
signals to the NI (National Instruments) single board Reconfigurable Input/Outputs (RIOs) which handle
all input/output communication with the user. The NI single board RIOs consist of a primary and a
secondary board. The reason for having two RIO boards is solely the lack of input/outputs on one board.

The RIO boards direct the control signals to a cascaded controller taking in a position reference from the
user and delivering a current control signal to the ESCON motor driver. The velocity and current con-
trollers are implemented in Field Programmable Gate Array (FPGA) based hardware to ensure sufficient
controller speed relative to the system [Wisniewski et al., 2015]. The ESCON motor driver manages
advanced processing and essentially delivers an appropriate PWM signal for the actuators (seven Maxon
motors) which represent the lowest abstraction layer, located at the bottom of the figure.

The NI single board RIOs concurrently handle most safety precautions and enabling/disabling movement
of the arm itself (see appendix B and C for an overview of the arm and its kinematics, respectively)
through solenoids. In order to prevent potential violation of physical joint constraints, stricter constraints
on each joint position are set in the low-level motor controllers, that disable the controller if exceeded.
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Figure 1.5: Overview of the custom made hardware and controllers for the 1st generation da Vinci surgi-
cal robot located at Aalborg University’s department of Control and Automation. The setup
consist of several layers. It is desired to work solely in the ROS (Robotic Operating System)
environment such the underlying layers are left untouched It can be seen that all joint angles
can be controlled from the ROS framework.

An introduction to the da Vinci system has at this point be given. Thus the contribution of this project
will be outlined in the upcoming subsection.

1.4.1 Overview of Thesis Contribution to the AAU da Vinci System

The focus of this thesis is the highest abstraction layer as seen in the top of figure 1.5, i.e. the ROS en-
vironment. The purpose of this layer primarily constitutes the implementation of algorithms that require
heavy processing and non real-time processing or tasks with loose timing constraints [Wisniewski et al.,
2015]. Given the topics described in the introduction to this project and the desire to automate surgery
by means of the da Vinci robot, this thesis will practically and theoretically encompass the tasks outlined
in table 1.1.
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Problem Origin
Design a position controller such that it is possi-
ble to specify regions where it can be guaranteed
that the end effector will never enter.

Provide the surgeon with a feature ensuring that
certain regions will never be touched, e.g. veins,
organs and similar as explained by assistant nurse
Jane Petersson.

Design a position controller taking user input rel-
ative to a point on the surface of a beating heart
while ensuring that the heart is not penetrated.

Founding automated control on beating hearts
where a safe distance to the heart is maintained
such that the heart under no circumstances is pen-
etrated thus ensuring a virtual fixture as desired
from Dr. Johan Poulsen.

Modelling the system sufficiently without touch-
ing the underlying controllers.

The cascaded controllers seen in figure 1.5 are not
to be touched. Safety is desired solely from the
ROS environment.

Implement the controllers physically on the da
Vinci robot. This also implies an understanding
of the entire ROS framework

Verify the theory in practice and thereby be a first
mover on this topic

Table 1.1: Problems to be solved throughout this thesis and why they are desired to be solved.

The problems given in table 1.1 may be solved in a number of ways and it is not initially obvious
which is the more appropriate one. For this reason, it is chosen to bifurcate a solution strategy, thus two
approaches are used:

• The design of a safe end effector setpoint controller, utilizing control barrier functions such that
the robot is physically prevented from entering unsafe areas, thereby guaranteeing safety in real
time [Sloth and Wisniewski, 2014].

• The design of a controller unrestricted from safety considerations. The safety is ensured before the
controller is physically implemented by conducting an analysis adjudicating system safety. Thus
the controller will be given a pass verdict if it does not violate the safety constraints and a not pass
verdict if it violates predefined safety conditions, thus suggesting an iteration of the controller such
that it becomes safe.

The analysis of these two strategies will provide an indication as to which method may be the most appro-
priate one to use given a specific problem, its complexity taken into account. Consequently, this report
presents algorithms, analyses, controllers, software development and formal verification that guarantees
safety for automated surgeries. The chapters of this thesis are structured in the following way:

• A certificate to guarantee system safety is established in chapter 2, forming the basis of the analyses
in the following chapters.

• In chapter 3 a method to apply the theory from chapter 2 to design a controller that guarantees
safety within specified regions is described. This method is used and implemented in the follow-
ing three chapters, chapter 4 providing an exhaustive example of how to apply the theory to the
da Vinci robot. Chapter 5 concerns safety while operating on a beating heart and finally chap-
ter 6 presents safety of the system in three dimensional space. An interim conclusion is given in
chapter 7, concluding the need for an easier way to construct the certificates for safety in higher
dimensions.
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• Accordingly, in chapter 8 the theory behind a rephrasing of the certificate definition from chapter 2
is described, allowing for the application of automated software to search for certificates. This
software is described in chapter 9, providing examples of how to apply the software to the use-
cases described in chapter 4.

The conclusion to the two approaches is given in the discussion in chapter 10 along with an outlook on
future application of the provided theory and implementations.

8 1. Introduction



Chapter 2

Safety Guarantee by Barrier Certificates

A crucial matter when designing a controller for automated operation of robotic surgery tools is the
necessity of guaranteed patient safety. The system has to not only be able to prevent the surgery tool
from entering certain regions, e.g. penetrating the wall of the heart or cutting an artery, but to guarantee
that this cannot happen under any circumstances.

Casting the controller design problem as an optimization problem with constraints, such as Model Pre-
dictive Control (MPC), could in principle guarantee that the tool would not enter a predefined area.
Indeed, MPC is a method which is very popular at the higher abstraction layers, such as setpoint control
[Maciejowski, 2002] which is the case in this specific study. However, most solvers such as the Matlab
plugin cvx requires convexity in the performance function and its constraints to be able to find a global
minimum. This will at best be a lucky special case that unsafe regions can be defined through a convex
function. Furthermore, MPC is mostly used in systems with slow dynamics, i.e. dynamics where the
time constant is measured in seconds or even minutes [Wang and Boyd, 2010]. This is obviously due to
heavy online computations and numerous iterations. Systems containing these time constants are usually
thermal systems and not mechanical systems. Additionally, the feasibility of the optimization problem is
not very transparent and it is well known that cvx is very likely to crash due to infeasibility.

Another very elegant and computationally efficient approach to the safe controller analysis and design
problem is the use of barrier certificates, which provide a formal proof of safe operation in infinite time
horizon [Prajna et al., 2007; Sloth and Wisniewski, 2014]. This chapter describes the requirements for
the construction of barrier certificates along with notation used in relation to these.

2.1 Constraints for a Barrier Certificate

When a barrier certificate can be found for a (closed-loop) dynamical system, the controller is guaranteed
to be safe. In the following the notion of safety is defined in order to describe the guarantee extent
of a barrier certificate. A general state-space representation of an n-dimensional non-linear system is
considered:

ẋ = fcl(x)+h(x)d = f (x)+g(x)u+h(x)d (2.1)

where
x is the state, x(t) ∈ Rn

u is the control input, u(t) ∈ Rm

d is the disturbance input, d(t) ∈D ⊆ Rp

f is a non-linear function, f : Rn→ Rn

g is a non-linear function, g : Rn→ Rn×m

h is a non-linear function, h : Rn→ Rn×p

Consider a subspace of the state-space X ⊆ Rn defining e.g. the physically feasible states for the system
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2.1 Constraints for a Barrier Certificate

in equation (2.1). Within this region X , define the two non-intersecting subspaces Xu ⊂ X and X0 ⊆ X ,
defining an unsafe and a safe region, respectively. The unsafe region contains the states which the
trajectory of the system must never enter, e.g. for a surgical robot this space could be the collection of
veins and organs near the operation site, for which perforation is prohibited. The safe region contains all
the states which the trajectory of the system is allowed to and may be required to enter, e.g. the operation
site and a region for entering the area in the abdomen. Now safety of a closed-loop control system is
given according to [Sloth and Wisniewski, 2014; Prajna et al., 2007] as:

Definition 2.1 (Safety of a System)
Denote a trajectory starting in x(0) = x0 and with bounded disturbance function d̄ : R≥0→D by φd̄

x0
,

defined by
dφd̄

x0

dt
= fcl

(
φ

d̄
x0
(t)
)
+h
(

φ
d̄
x0
(t)
)

d̄(t) (2.2)

The system Γcl = ( fcl,h,X ,X0,Xu,D) is unsafe if there exists a t ∈ [0,T] such that the trajectory
φd̄

X0
: [0,T ]→ Rn with initial state x0 ∈ X0 and bounded disturbance function d̄ satisfies(

φ
d̄
X0
([0, t])∩Xu

)
6= /0 and φ

d̄
X0
([0, t])⊆ X (2.3)

The system Γcl is safe if there are no unsafe trajectories.

A graphical interpretation of equation (2.3) is shown in figure 2.1.

x0

x2

x1

xT

0

u

Figure 2.1: Graphical interpretation of equation (2.3) in the state space. The blue trajectory is unsafe
because

(
φd̄

X0
([0, t])∩Xu

)
6= /0, while the green trajectory is safe.

Disturbances are not considered in the scope of this project, and hence d ∈D is considered to be zero in
the remainder of this thesis.

For the system in equation (2.1) safety can be guaranteed if a barrier certificate for the system exists. A
barrier certificate is defined as a function of the system state, satisfying a set of inequalities, entailing
that its zero level set in the state space forms a barrier between the safe set of initial states X0 and the
unsafe set Xu, thereby certifying system safety [Prajna et al., 2007].

If a barrier certificate can be defined, safety can be guaranteed for the closed-loop system in the region
X , with unsafe region Xu, defined by positive values of the barrier function, and (safe) initial region X0,
defined by non-positive values of the barrier function. In the below the notation L fcl B(x) denotes the
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2.1 Constraints for a Barrier Certificate

Lie derivative of B(x) along the vector field of the closed-loop system fcl(x), corresponding to the time
derivative of the barrier function i.e.

L fcl B(x) =
dB(x)

dx
fcl(x) =

dB(x)
dx

dx(t)
dt

=
dB(x(t))

dt
(2.4)

Requiring that the time derivative of the barrier function must be nonpositive on the entire set X (see
Definition 2.2) corresponds to the value of the barrier function decreasing over time, hence seeking the
minimum of the (convex) barrier certificate. Requiring the trajectory of the state to start within the safe
set X0 this means that the trajectory will never cross the zero level set and enter the unsafe set Xu, as this
set only contains values of the barrier function larger than the initial value.

Definition 2.2 (Barrier Certificate)
If a barrier certificate can be constructed as a continuous and differentiable function B(x) : X → R
adhering to the following inequalities [Prajna et al., 2007]:

B(x)≤ 0 ∀ x ∈ X0 (2.5)a

B(x)> 0 ∀ x ∈ Xu (2.5)b

L fcl B(x)≤ 0 ∀ x ∈ X (2.5)c

Then safety of the closed-loop system fcl(x), as defined in Definition 2.1, is guaranteed.

From equation (2.5) it can be seen that the function B(x) must be constructed such that its zero level set
delimits and separates the safe and the unsafe regions, while the Lie derivative constraint imposes that
the derivative dB(x)/dx must have the opposite sign of the state derivative dx/dt for any state within the
region X , where B(x) is defined. Note how according to equation (2.5)c the barrier certificate requires
mere stability and not asymptotic stability (L fcl B(x)< 0) of the system trajectory. This is rarely enough
when dealing with physical systems, however, mathematically it is sufficient.

Furthermore from equation (2.5)c it is deduced that a controller incorporating the barrier certificate in
its design will ensure stability if B(x) has a finite minimum value. This entails that B(x) is radially
unbounded if X encompasses the entire state-space:

lim
x→±∞

B(x) = ∞ if X = Rn (2.6)

Nexus to Lyapunov Functions

As it can be seen from equation (2.5) the definition of a barrier certificate strongly resembles that of a
Lyapunov function, and indeed the Lie derivative nonpositivity constraint is identical to the time deriva-
tive constraint to a Lyapunov function V (x), a Lyapunov candidate function for a stable system given by

V (x)> 0 ∀ x ∈ R\{0} (2.7)a

V̇ (x)≤ 0 ∀ x ∈ R (2.7)b

and for a system with an asymptotically stable equilibrium in x = 0, equation (2.7)b is replaced by

V̇ (x)< 0 ∀ x ∈ R\{0} (2.7)c
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2.2 Approaches to the Problem of Guaranteeing System Safety

As such a barrier certificate can be seen as an offset Lyapunov function with negative values in the safe
region. The stable focus may also be offset from x = 0. However, a barrier function may also take other
(non-convex) forms.

2.2 Approaches to the Problem of Guaranteeing System Safety

Two approaches to the problem of guaranteeing safety of a system through the construction of barrier
certificates are used in the following: design of safe controllers and safety verification of control systems.

In chapter 3 a method of designing guaranteed safe controllers from barrier certificates is described,
based on [Wieland and Allgöwer, 2007]. This method is used in chapters 4 through 6, where barrier
certificates are constructed by hand, and guaranteed safe controllers are designed and implemented on
the da Vinci surgical robot. The safe controller is used in combination with a linear state space controller
designed through pole placement for setpoint control in the safe region. In chapter 4 and 5 system models
of different orders are considered in 1D Cartesian space, with static and dynamic boundaries (zero level
sets) of the barrier function, respectively, while in chapter 6 a system model is considered in 3D Cartesian
space.

In chapter 8 a recasting of Definition 2.2 according to [Lasserre, 2009] is presented, allowing for auto-
mated construction of barrier certificates with an existing software toolbox for MATLAB. When a barrier
certificate can be found using this toolbox, system safety is hereby certified. In chapter 9 this method
of safety verification is applied to linear position-control systems corresponding to the linear state space
controllers presented in chapter 4.

12 2. Safety Guarantee by Barrier Certificates



Chapter 3

Controller Design from CBFs

This chapter lays the basics of all shared control theory applied in the following chapters dealing with
the design of a safe controller.

Based on [Artstein, 1983], who founded Control Lyapunov Functions (CLFs) based on Lyapunov func-
tions described in equation (2.7), a Control Barrier Function (CBF) can be created according to [Wieland
and Allgöwer, 2007] from where the definition below is stated:

Definition 3.1 (Control Barrier Function)
Given a system ẋ = f (x)+ g(x)u, the function B : Rn → R is a CBF if the below constraints are
fulfilled:

x ∈ Xu ⇒ B(x)> 0 (3.1)a

LgB(x) = 0 ⇒ L f B(x)< 0 (3.1)b

{x ∈ X | B(x)≤ 0} 6= /0 (3.1)c

where
B(x) is a control barrier function

L f B(x) is the Lie derivative of B(x) along the vector field f (x), i.e. dB(x)
dx f (x)

LgB(x) is the Lie derivative of B(x) along the vector field g(x), i.e. dB(x)
dx g(x)

The requirement in equation (3.1)b can be hard to fulfill, and can be replaced with a relaxed constraint
to obtain a weak CBF:

LgB(x) = 0 ⇒ L f B(x)≤ 0 (3.1)d

Note how Definition 3.1 put forth demands for the open loop system as opposed to Definition 2.2 which
describes the closed loop system. Equation (3.1)a essentially states the same as equation (2.5)b, i.e.
when B(x) > 0 then x is in the unsafe region. This makes it possible to design both the unsafe and the
safe region by shaping B(x). Equation (3.1)b puts forth the requirement that the gradient along the vector
field f (x) must point away from the unsafe area, bounded by the zero level set of the barrier function,
whenever the state cannot be controlled by the input (except in the critical point as the system is in its
equilibrium at this point). Equation (3.1)c simply states that the safe area must contain some states as
control otherwise is impossible.

3.1 The Control Law

It is convenient to divide the control law into two controllers. A controller that is used in an area close
to the unsafe region and a controller used in the safe region. The reason for this divided control law is
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3.1 The Control Law

the ability to apply linear control theory in the safe area (the system can be well approximated as a linear
second order system, see section 4.1) and thereby make use of the benefits from linear control. Thus the
safe set X0 is divided into two sections: a transition space T being the subset of the safe region closest
to the unsafe set where safety control should be applied, and the remaining safe region Y where linear
control can be applied, thus introducing a divided control law:

u(x) =

{
ũ(x) if x ∈ Y ⊂ X0

k0(x) if x ∈ T = X0 \Y
(3.2)

where
ũ(x) is the non-safe controller applied on Y well within the safe region, ũ(x) ∈ Rm

k0(x) is a controller guaranteeing system safety, applied in the transition space T close to the
unsafe set, k0(x) ∈ Rm

For a linear system, the non-safe controller can be determined by linear state feedback:

ũ(x) = N̄xref−Kx (3.3)

where
K is a constant feedback matrix for a system with n states and m inputs, K ∈ Rm×n

N̄ is a constant to ensure unity gain from reference to output, N̄ ∈ Rm×m

xref is the position reference, xref ∈ Rm

x is the state vector, x ∈ Rn

The two controllers can be combined as a linear combination determined by a parameter σ(x)∈ [0,1]
[Wieland and Allgöwer, 2007]. This ensures that the switch between the two controllers occurs with less
fluctuations.

u(x, ũ) = σ(x)k0(x)+(1−σ(x))ũ(x) (3.4)

Note the two extremities of σ(x):

σ(x) =

{
0 ⇒ Pure control by pole placement, i.e. u(x) = ũ(x) = N̄xref−Kx

1 ⇒ Pure safety control i.e. u(x) = k0(x)

The interval between 0 and 1 can be refined such that the transition between the two control laws is not
instantaneous. This smoothing can be performed with a smooth approximation of the unit step (a bump
function) of B(x) by introducing a scalar ε > 0 [Wieland and Allgöwer, 2007]:

σ(x) =


0 if B(x)≤−ε

−2
(

B(x)
ε

)3

−3
(

B(x)
ε

)2

+1 if B(x) ∈ (−ε,0)

1 if B(x)≥ 0

(3.5)

A block diagram of a linear closed loop system with control input as described in equation (3.4) is
depicted in figure 3.1.
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Figure 3.1: Block diagram of the control system. The limiter limits the control signal such that it does
not exceed the physical boundaries of the da Vinci robot. The gearing ensures that there is a
1:1 mapping between the control signal and the physical position, i.e. meters for prismatic
joints and radians for revolute joints.

3.1.1 Uniform Construction of the Safety Controller k0(x)

The control law ensuring safety can be found as [Wieland and Allgöwer, 2007]:

k0(x) =

−
L f B(x)+

√
(L f B(x))2 +κ2LgB(x)(LgB(x))T

LgB(x)(LgB(x))T (LgB(x))T if LgB(x) 6= 0

0 if LgB(x) = 0
(3.6)

where κ is a design variable. High values of κ implies increased controller aggressiveness. Equation (3.6)
indeed ensures safety for the closed loop system ẋ = f (x)+g(x)k0(x). This is easily proven as:

L fcl B(x) = L f B(x)+LgB(x)k0(x)

For LgB(x) 6= 0 :

L fcl B(x) = L f B(x)+LgB(x)

(
−

L f B(x)+
√
(L f B(x))2 +κ2LgB(x)(LgB(x))T

LgB(x)(LgB(x))T (LgB(x))T

)

= L f B(x)−LgB(x)(LgB(x))T L f B(x)+
√

(L f B(x))2 +κ2LgB(x)(LgB(x))T

LgB(x)(LgB(x))T

= L f B(x)−L f B(x)−
√
(L f B(x))2 +κ2LgB(x)(LgB(x))T

=−
√
(L f B(x))2 +κ2LgB(x)(LgB(x))T ≤ 0 ∀ x

As all terms within the square root are squared, no imaginary numbers occur, and as a result L fcl B(x)
will always be nonpositive when LgB(x) 6= 0. According to equation (3.6), when LgB(x) = 0:

L fcl B(x) = L f B(x)+LgB(x) ·0 = L f B(x)

As B(x) is constructed such that whenever LgB(x) = 0 then it is always true that L f B(x)< 0, it is thereby
verified that L fclB(x)≤ 0 for all x ∈ X .
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3.2 Using CBFs in the Control Design for the da Vinci Robot

The theory presented in this chapter allows a way to construct a controller such that safety is guaranteed,
if the constraints on the CBF in Definition 3.1 are obeyed. It may, however, be noted that when the
controller is transferred to a digital system, the certificate is built upon an infinite sampling rate as the
certificates are described in continuous time. Adopting the certificate to a discrete system is indeed a
challenge worth respecting.

CBFs will be used in the following chapters to design safe controllers for the da Vinci surgical robot.
In chapter 4 a controller is designed that ensures safety for the slide movement of the robot (sliding the
tool up and down in one dimension, see figure 1.4) thereby illustrating the usefulness of the theory. In
chapter 5 the theory is used to establish the basics for surgery on a beating heart and in chapter 6 the
system is expanded to 3D Cartesian space including all the controllable joints of the robot. For the ROS
implementation of the controllers, the reader is referred to appendix A.3.
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Chapter 4

Founding Safety with Static Boundaries

This chapter intends to implement and analyse a controller ensuring safety if the demands from Defini-
tion 3.1 are obeyed. This shall first be tested on the slide movement on the da Vinci surgical robot as it
comprises a prismatic joint and a 1:1 mapping from slide joint_angle to 1D position. Hence any inverse
kinematics solver can be bypassed in the early phase of this project which is an important simplification
to eliminate initial complications.

The slide movement is visualized in figure 4.1a and an overview of terms used in this section is found in
figure 4.1b, which also encompasses the case study considered in this chapter. It puts forth the demands
that the upper slide region, i.e. the interval [Λh+,Λlim+] is an unsafe area and the rest is considered safe.
Furthermore, everything outside the slide physical limits, i.e. [−∞,Λlim-] and [Λlim+,∞] is also considered
unsafe. This case study is purely made up with the purpose to demonstrate the use of a safety controller.

x y

z

(a) Illustration of slide movement.
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Λlim+ 
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Λh– = Λlim–  
Λs– 

x0

xref

Physical limits
 Λlim+ =   10 cm
 Λlim– = -10 cm

Hard limits 
 Λh+  =    5 cm
 Λh–  = -10 cm

Soft limits 
 Λs+  =  4 cm
 Λs–  = -9 cm

Slide position
 x0: zero
 xref : setpoint

Transition region
0

(b) Boundaries used in this chapter.

Figure 4.1: The slide position of the robotic instrument is visualized for the instrument house. As the
remaining robot joints are not considered in this chapter, there is a one-to-one correspon-
dence between instrument house position and instrument tip position. Slide house position
in x0 corresponds to tool tip position in zero in the z-dimension.

The boundaries for the CBF sets in slide position are summed up in table 4.1.

X Xu X0

X = {x ∈ [Λlim−,Λs−]∪
[Λs+,Λlim+]}

Xu = {x ∈ [Λlim−,Λh−]∪
[Λh+,Λlim+]}

X0 = {x ∈ [Λh−,Λs−]∪
[Λs+,Λh+]}

Table 4.1: CBF state intervals for the robotslide position, with limits as given in figure 4.1b i.e. Λlim is
the physical slide limit (±0.1 m), Λs is a soft limit denoting a transition line and Λh is a hard
limit where a trajectory at all cost can not cross.
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4.1 Modelling of Slide Movement

The interval Y = {x ∈ [Λs−,Λs+]} is safe thus ũ(x) stated in equation (3.3) can be used in this region.
As the control law stated in equation (3.4) utilizes Lie derivatives, a system model is required before any
controller design may be initiated.

4.1 Modelling of Slide Movement

To obtain a model of the slide movement (along the 3D z-axis), the step response will be measured. This
can be done by subscribing to the joint_state topic in ROS (topics are ROS syntax for communication
lines, see appendix A for an introduction to ROS). The experiment is described in further details in
appendix F, and the result is plotted in figure 4.2.
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Figure 4.2: Step response from 0 mm to 5 mm. Plot details and measurements can be found in appendix J
as matlab_scripts/slide_step/plot_slide_pos.m. The experiment is described in ap-
pendix F.

The system can clearly be approximated with an underdamped second order model. For initial simplicity,
however, a simple first order model of the slide movement is used, followed by the second order system
approximation. This introduces a number of other challenges which is the reason for initial simplicity.
These models of the robot slide movement will throughout this chapter be referred to as the first and
second order models, and are treated in the following way:

• The first order system model based on position only is presented in subsection 4.1.1. Its CBF is
constructed in subsection 4.2.1, the controller designed in subsection 4.3.1, subsection 4.4.1 shows
the MATLAB implementation and finally the implementation on the da Vinci robot is presented in
subsection 4.5.1.

• The second order system model based on position and velocity is presented in subsection 4.1.2.
Its CBF is constructed in subsection 4.2.2, the controller designed in subsection 4.3.2, its MAT-
LAB implementation is presented in subsection 4.4.2 and finally subsection 4.5.2 documents the
implementation on the da Vinci robot.
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4.1 Modelling of Slide Movement

4.1.1 1D First Order Model based on Position

The system can be approximated with a linear first order system with a time constant τ. The time constant
is read from figure 4.2 as the time lapse from the step is applied until the state has travelled 63.2 % of the
distance to the reference:

τs = 110ms

A linear system can be outlined as:

Y (s) =
1

τss+1
U(s)

=
1/τs

s+1/τs
U(s) = (s+1/τs)

−1 1/τsU(s)
Y (s)=(C(sI−A)−1B+D)U(s)−→

compare to obtain SS form

ẋ =−τ
−1
s x︸ ︷︷ ︸

Ax

+ τ
−1
s︸︷︷︸
B

u (4.1)

The system matrix A, input matrix B, output matrix C and feedthrough matrix D can be read from the
above equation:

A =−τ
−1
s , B = τ

−1
s , C = 1 and D = 0 (4.2)

This completes the first order approximation.

4.1.2 1D Second Order Model based on Position and Velocity

The second order approximation has the form:

Y (s)
U(s)

=
ω2

n

s2 +2ζωns+ω2
n

(4.3)

where
Y (s) is the output in the Laplace domain [m]
U(s) is the input in the Laplace domain [m]

ωn is the natural frequency of the system [rad/s]
ζ is the damping coefficient [·]
s is the Laplace operator [rad/s]

The model can unambiguously be approximated from the rise time tr, settling time ts (5 % settling time)
and the overshoot Mp [Franklin et al., 2010, pp. 134-136]. They are measured from figure 4.2 with the
purpose to find ωn and ζ:

ωn =
1.8
tr

=
1.8

0.106s
= 17rad/s

ζ =
−1

ωn · ts
log(5%) =

−1
17 ·0.320

log(0.05) = 0.55

Equation (4.3) can be transformed into state space form:

Y (s)s2 +2ζωnY (s)s+ω
2
nY (s)−ω

2
nU(s) = 0

4. Founding Safety with Static Boundaries 19



4.2 Construction of CBF

ÿ(t)+2ζωnẏ(t)+ω
2
ny(t)−ω

2
nu(t) = 0

Choose y(t) = x1(t) to represent the position, and let ẋ1(t) = x2(t)[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
−ω2

n −2ζωn

][
x1(t)
x2(t)

]
+

[
0

ω2
n

]
u(t) (4.4)a

y(t) =
[
1 0

][x1(t)
x2(t)

]
(4.4)b

where
x1(t) is the position [m]
x2(t) is the velocity [m/s]
y(t) is the output (slide position) [m]
u(t) is the control input [·]

Thus the linear system matrices are:

A =

[
0 1
−ω2

n −2ζωn

]
, B =

[
0

ω2
n

]
, C =

[
1 0

]
and D = 0 (4.5)

Which completes the second order model.

4.2 Construction of CBF

To illustrate the usefulness of CBFs, a palpable example hereof will be created with direct application
to the da Vinci robot. This example does not directly constitute application to a patient but favour the
theory in a neat and comprehensible sense and secure a way to visually and physically verify the method.

4.2.1 Construction of CBF Based on the First Order Model

In this subsection, the state vector x∈R consists of the position only. Thus, a parabola is now introduced
as CBF as it allows an easy way to define Xu and X0 from table 4.1.

B(x) = ax2 +bx+ c (4.6)

The parameters a, b and c can be easily chosen to fulfil the requirements in equation (2.5)a and (2.5)b for
a barrier function, thereby fulfilling the parallel requirements for the CBF in equation (3.1)a and (3.1)c.
From equation (3.1)b it is required that either LgB(x) 6= 0 ∀x ∈ X , or that L f B(x)< 0 when LgB(x) = 0,
as the input in that case will not have any influence on the state. Analysing LgB(x) = 0

LgB(x)
∣∣∣
g(x)=B

= (2ax+b) · τ−1 = 0 ⇒ x =
−b
2a

it is seen that this is only the case in x = −b
2a which is indeed the critical point for a one dimensional

parabola. As is the case for Lyapunov functions (see equation (2.7)c) in the critical point the requirement
on the derivative is relaxed to L f B(x)≤ 0.

L f B(x) =
d
dx

B(x) f (x)
∣∣∣

f (x)=Ax
= (2ax+b)(−τ

−1x) =−2τ
−1ax2− τ

−1bx
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4.2 Construction of CBF

L f B(x)
∣∣∣
x=−b

2a

=−2τ
−1a

(
−b
2a

)2

− τ
−1b

(
−b
2a

)
= 0

Hence the CBF is valid for all choices of a,b. The scalar c must be less than zero to comply with
equation (3.1)c. At this point in time, three equations with three unknowns can be outlined to fulfil the
initial demand in figure 4.1b. The value of B(x) in the vertex of the parabola is within the safe region,
and can thus be chosen as any negative real number, here chosen to be -0.025.

aΛ
2
h++bΛh++ c = 0

aΛ
2
h−+bΛh−+ c = 0

a
(

Λh−+Λh+

2

)2

+b
(

Λh−+Λh+

2

)
+ c =−0.025


a = 1.7778
b = 0.0889
c =−0.0089

The CBF is plotted in figure 4.3 from which it is seen that the demands from table 4.1 are fulfilled.

slide position [m]
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

B
(x

)

-0.01

0

0.01

0.02

0.03

0.04
Construction of CBF

CBF
X

c

u
(legal states)

Xu (unsafe states)
slide limits
outside physical limits

Figure 4.3: Barrier function shown along with the Xu and X c
u . Plot details and MATLAB script can be

found in appendix J as matlab_scripts/plot_parabola/plot_parabola.m

4.2.2 Construction of CBF Based on the Second Order model

Consider now for the second order system the same candidate CBF as given in equation (4.6). Note that
B(x) is a function of position only, such that the CBF is:

B(x) = ax2
1 +bx1 + c

For this system model the Lie derivative LgB(x) = 0 ∀x:

LgB(x) =
dB(x)

dx
g(x)

∣∣∣
g(x)=B

=

[
∂B(x)

∂x1

∂B(x)
∂x2

][
0

ω2
n

]
= 0

This puts forth the requirement that L f B(x)< 0 ∀x. Accordingly:

L f B(x) =
dB(x)

dx
f (x)

∣∣∣
f (x)=Ax

=

[
∂B(x)

∂x1

∂B(x)
∂x2

][
0 1
−ω2

n −2ζωn

][
x1

x2

]
= (2ax1 +b)x2−0 · (ω2

nx1 +2ζωnx2)

= (2ax1 +b)x2
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4.2 Construction of CBF

As the velocity can be both decreasing and increasing for all positions, this demand is impossible to fulfil
with this candidate CBF and it is therefore invalid. A solution is to include the velocity in the barrier
function.

Safety constraints on velocity are not of any significant importance as such, but they are necessary for
LgB(x) to obtain values different from zero as opposed to the Lie derivative of the invalid CBF presented
above. Consider instead the elliptic paraboloid as CBF:

B(x) =
(
(x1− x10)

2

a2
2

+
(x2− x20)

2

b2
2

)
c1 + c2 (4.7)

where
x1 is the position [m]
x2 is the velocity [m/s]

x10 is the extremity point for x1 and thereby equilibrium point for an upward paraboloid [m]
x20 is the extremity point for x2 and thereby equilibrium point for an upward paraboloid [m/s]
a2 is a constant that dictates the level of curvature in the x1−B(x) plane [·]
b2 is a constant that dictates the level of curvature in the x2−B(x) plane [·]
c1 is a constant that dictates if the paraboloid points upward (c1 > 0) or downward (c1 < 0) [·]
c2 is a constant that dictates the offset in B(x) axis [·]

The elliptic paraboloid allows constraints on both position and velocity. To ensure that the position
demands from table 4.1 are still fulfilled and are so for all possible velocities (constrained by the slide
movement’s physical limits), the below values are chosen:

x10 =
Λh−+Λh+

2
=−0.025

x20 = 0

M0 = 4

where M0 denotes the semimajor axis of the zero level set of the CBF. Note that x20 ensures velocity
equilibrium in 0 m/s and note that the velocity outermost points are determined far bigger than the robot’s
physical limits to ensure that all position values on the interval [−0.1 0.05] are considered safe (almost)
independently of the velocity. This is sketched in figure 4.4 along with the chosen values.

0

B(x1,x20)

x1

0.1-0.1

-0.1

0.05

0.05
-0.025

B(x10,x2)

B(x) = 0

M0 = 4
B(x)=0

x2

x1

x2

4 4-4-4

Figure 4.4: Choice of critical point coordinate x10 as the middle of the safe position interval. The semi-
major axis of the CBF’s zero level set is chosen much larger than the physical limits of the
slide velocity.

Having chosen the coordinates x10 and x20 for the critical point, an arbitrary negative value is chosen for
B(x10,x20). Using the four known coordinates from the zero level set (Λh+,x20), (Λh−,x20), (x10,−M0)

and (x10,M0), five equations with four unknowns can be outlined with the below numerical values.
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4.2 Construction of CBF


(

Λh−+Λh+
2 − x10

)2

a2
2

+
(0− x20)

2

b2
2

c1 + c2 =−1.000

(
(Λh+− x10)

2

a2
2

+
(0− x20)

2

b2
2

)
c1 + c2 = 0(

(Λh−− x10)
2

a2
2

+
(0− x20)

2

b2
2

)
c1 + c2 = 0

(
Λh−+Λh+

2 − x10

)2

a2
2

+
(4− x20)

2

b2
2

c1 + c2 = 0


(

Λh−+Λh+
2 − x10

)2

a2
2

+
(−4− x20)

2

b2
2

c1 + c2 = 0



x10 = −0.025
x20 = 0.000

B(x10,x20) = −1.000

a2 = 0.075
b2 = 4.000
c1 = 1.000
c2 = −1.000

The Lie derivatives can now be calculated as:

LgB(x) =
dB(x)

dx
g(x)

∣∣∣
g(x)=B

=

[
∂B(x)

∂x1

∂B(x)
∂x2

][
0

ω2
n

]

=

[
c1(2x1−2x10)

a2
2

c1(2x2−2x20)

b2
2

][
0

ω2
n

]
=

c1ω2
n(2x2−2x20)

b2
2

∣∣∣
x20=0

=
2c1ω2

n

b2
2

x2 (4.8)

It is seen that LgB(x) 6= 0 ∀ x2 6= 0, hence L f B(x) is for that reason analysed and evaluated at x2 = 0:

L f B(x) =
∂B(x)

∂x
f (x)

∣∣∣
f (x)=Ax

=

[
∂B(x)

∂x1

∂B(x)
∂x2

][
0 1
−ω2

n −2ζωn

][
x1

x2

]

=

[
c1(2x1−2x10)

a2
c1(2x2−2x20)

b2

][
x2

−ω2
nx1−2ζωnx2

]

=
c1x2(2x1−2x10)

a2
2

− c1(2x2−2x20)(ω
2
nx1 +2ζωnx2)

b2
2

∣∣∣
x20=0

= 2c1

(
x1− x10

a2
2
− ω2

nx1 +2ζωnx2

b2
2

)
x2

∣∣∣
x2=0

= 0 (4.9)

It is noted that L f B(x) = 0 for all points (x1,0) (i.e. at zero velocity) which does not fulfil equation (3.1)b.
It does, however, fulfil equation (3.1)d thus proving B(x) from equation (4.7) to be a weak CBF. Note
that when the velocity is zero, the slide movement is stable, although only marginally stable. As an
engineering reflection it is considered that when the state leaves the marginally stable equilibrium, x2 6= 0,
the safety controller will ensure that the state will increase its distance to the unsafe set and move towards
its stable equilibrium in (x10,x20) = (−0.025,0).
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4.2 Construction of CBF

Figure 4.5: CBF for the second order system model. In the right plot the curve is seen from "above" for
comparison with figure 4.4. Plot details and MATLAB script can be found in appendix J on
the path matlab_scripts/plot_cbf_2d/plot_cbf_2d.m

The elliptic paraboloid with its proper boundaries is plotted in figure 4.5, from which it is seen how
B(x)< 0 only within the specified region, and positive for all x ∈ [Λh−,Λh+]× [−M0,M0]. It is also seen
that for small velocities (physically x2,max ≈ 0.5 m/s) the CBF forms a nearly square subset of the safe
set, i.e. {x ∈ [−0.1,0.05]× [−0.5,0.5]}, leaving X0 almost independent of the velocity in this area, as
prescribed in figure 4.4.

Figure 4.6: CBF. Example to demonstrate how other CBFs suffer when x2 = 0.

Remark: The issue caused by x2 = 0 is not only the case for this specific CBF but for many CBFs. Take
for example another CBF that could fulfil the position requirements from table 4.1:

B(x) = cos(c3x1 + c4) · cos(c5x2 + c6)

It turns out that the coefficients c3 = 21.00,c4 = 119.91,c5 = 0.50,c6 = 3.15 induce a CBF with the same
properties as the one depicted in figure 4.5. The CBF is outlined graphically in figure 4.6.

Thus LgB(x) can be found as:
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4.3 Control Design

LgB(x) =−c5ω
2
n cos(c3x1 + c4)sin(c5x2 + c6)

Now note that LgB(x) = 0 when c6 + c5x2 = iπ, i ∈ Z, which is true for e.g. x2 ≈ 0. This implies the
requirement that L f B(x)< 0 whenever x2 ≈ 0. However, taking a look at L f B(x):

L f B(x) = c5 cos(c3x1 + c4)sin(c5x2 + c6)(ω
2
nx1 +2ζωnx2)− c3x2 cos(c5x2 + c6)sin(c3x1 + c4)

quickly poses the fact that L f B(x) is not necessarily negative for x2 ≈ 0 due to the sign alternation caused
by the term sin(c3x1 + c4) in the boundaries.

4.3 Control Design

This section constitutes the design of the two controllers. The controller based on the first order approx-
imation is straight forward whereas the controller based on the second order approximation requires an
observer because velocity measurements are not available through ROS in the current setup.

4.3.1 Control Design Based on the First Order Model

To be able to find k0(x) from section 3.1, the constant ε used in equation (3.5) must be found. It can be
determined from the CBF from equation (4.6) such that it complies with the requirements from table 4.1:

ε = |B(Λs+)|= |B(Λs−)|= 0.00249 (4.10)

Utilizing σ(x) as described in equation (3.5) secures a neat way to incorporate the transition between the
position controller and the safety controller k0(x), the latter which which gradually takes over when the
trajectory exceeds Λs and has fully taken over when the trajectory reaches Λh. Figure 4.7 illustrates how
ε and B(x) are connected.

slide position [m]
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

B
(x

)

×10-3

-10

-5

0

5
Λ

s+
Λ

h+
Λ

s-
Λ

h-

Connection between ǫ and CBF

CBF
−ǫ

zero level
B(x) ∈ (−ǫ, 0)

Figure 4.7: Connection between ε and CBF. MATLAB script and plot details can be found in appendix J
as matlab_scripts/plot_epsilon/plot_epsilon_slide_1d.m

The system is approximated as a linear system on the form ẋ = Ax+Bu, thus pole placement can be
used. No constraints to the constant feedback matrix K will be outlined except stability. It will therefore
be determined from the pole placement method where a closed loop pole that is ten times faster than the
open loop pole will be placed. Ackermann’s formula can be used [Horowitz, 2014a]:
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4.3 Control Design

1. Identify the desired closed loop polynomial as Acl(s) = sn +ac(n−1)sn−1 + · · ·+ac1s+ac0:

Acl(s) = s+10τ
−1

2. Identify the open loop polynomial as Aol(s) = sn +an−1sn−1 + · · ·+a1s+a0:

Aol(s) = λ+ τ
−1

3. Compute the feedback matrix in controllable canonical form:

K̄T =

k̄1
...

k̄n

=

 ac0−a0
...

ac(n−1)−an−1

 ⇒ K̄T = 10τ
−1− τ

−1 = 9τ
−1

4. Compute the similarity transform Q recursively as:

Q =
[
q1 q2 · · · qn

]
⇒ Q = τ

−1

where
qn = B

q j−1 = Aq j +a j−1B

5. Compute the feedback matrix as:

K = K̄Q−1 = 9τ
−1 1

τ−1 = 9 (4.11)

The constant feedback matrix N̄, ensuring unity gain between reference and output, can be computed as
[Stoustrup, 2014]:

N̄ =−
(
CA−1

cl B
)−1

=−
(
C(A−BK)−1 B

)−1
= 10 (4.12)

With the Lie derivatives computed as:

L f B(x) =−2aτ
−1x2−bτ

−1x ∧ LgB(x) = 2aτ
−1x+bτ

−1 (4.13)

Recapitulation 4.1 (Control Law for First Order Approximation)
The complete control law can be determined from equation (3.4):

u(x) = σ(x)k0(x)+(1−σ(x))(N̄xref−Kx)

where
σ(x) is computed from equation (3.5) with the ε found in equation (4.10) and the CBF found

in equation (4.6)
k0(x) is computed from equation (3.6) with the Lie derivatives stated in equation (4.13)

N̄ is found in equation (4.12)
K is found in equation (4.11)

This completes the control design based on a first order system approximation.
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4.3.2 Control Design Based on the Second Order Model

A necessary condition for a controller is that the system is controllable:

C =
[
B AB

]
=

[
0 ω2

n

ω2
n −2ζω3

n

]
thus rank(C ) = 2 = n ⇒ controllable

To design the smoothing in the transition space T for the second order approximation, ε is found as the
level set value of B(x) at the position soft limit with zero velocity:

ε = |B(Λs+,x20)|= |B(Λs−,x20)|= 0.2489 (4.14)

At this point, two cases will be considered:
• 1. Construction of K and N̄ in a similar way as in subsection 4.3.1. This is possible in an ideal

simulation because the velocity can be extrapolated by means of the forward Euler approach (ideal
design).

• 2. Development of an observer to estimate the velocity based on the model and position measure-
ments. This is necessary on a real system.

Controller Design for MATLAB Simulation

The design of K and N̄ will follow the exact same procedure as described for the first order model except
now K ∈ R1×2, while N̄ remains as a scalar. The entire design procedure is therefore not elaborated.

However, it is of interest to slow down the system dynamics slightly compared to the controller based
on a first order system. This is to enter the transition region with a lower velocity and thereby allow the
safety controller some transition space to navigate the trajectory back to its safe area. The eigenvalues of
the second order system is found to:

λ2nd order system =

{
−10.295−14.765 j

−10.295+14.765 j

The feedback vector can be found with the MATLAB command acker based on pole placement slightly
faster than the system itself.

K = acker(A,B,C,D,[-40 -50])=
[
5.173 0.214

]
(4.15)

The DC gain can now be corrected with:

N̄ =−
(
CA−1

cl B
)−1

=−
(
C(A−BK)−1 B

)−1
= 6.173 (4.16)

These matrices are used in the MATLAB simulation.

Observer Design for Implementation on the da Vinci Robot

As the CBF and hence the safety controller are functions of both position and velocity of the end effec-
tor, measurements of both are needed. For the present setup, however, velocity measurements are not
available through ROS, and thus an observer is designed to estimate the velocity. A necessary condition
for an observer is that the system is observable:

O =

[
C

CA

]
=

[
1 0
0 1

]
thus rank(O) = 2 = n ⇒ observable
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An observer (discrete version) with proper gain corrections can be designed as [Stoustrup, 2014]:

x̂(k+1) = Γx̂(k)+ΦKd x̂(k)+Ld(Cx̂(k)−y(k)︸ ︷︷ ︸
error

)+Mxref (4.17)

with the associated continuous system:

ẋ = Ax+B(Nxref−Kx)

y = Cx

where
k is the current sample
Γ is the discretized system matrix
Φ is the discretized input matrix

Kd is control gain calculated from the discretized matrices
Ld is observer gain calculated from the discretized matrices
M is gain correction to ensure unity gain for the observer
N is gain correction to ensure unity gain for the system

The equations are implemented in simulink as shown in figure 4.8.

N

N

Kd* u

K

1
s

Integrator

A* u

A

B* u

B

C* u

C

Bd* u

Phi

Ad* u

Gamma

C* u

H
z

1

Unit Delay

Ld* u

L

y_hat

Zero-Order
Hold

Step

Zero-Order
Hold1

M

M

x1_hat

x2_hat

P

P
y

ensure unity gain

Observer

System

Figure 4.8: Simulink implementation of the discrete observer.

The augmented (discrete) system with xaugmented ∈ R4 is formulated as:[
x(k+1)
x̂(k+1)

]
=

[
Γ ΦKd

−LdC Γ+ΦKd +LdC

]
︸ ︷︷ ︸

Γcl

[
x(k)
x̂(k)

]
+

[
ΦN
M

]
︸ ︷︷ ︸

Φcl

xref

y(k) =
[
C 0 0

]
︸ ︷︷ ︸

Ccl

[
x(k)
x̂(k)

]
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The discrete matrices Γ and Φ can be found as [Horowitz, 2014b]:

Γ = eATs =

[
0.986 0.009
−2.623 0.817

]
(4.18)

Φ =
∫ Ts

0
eAµ dµ ·B =

[
0.014
2.623

]
(4.19)

where
e is the matrix exponential

Ts is the sampling time, Ts = 100ms

The sampling time Ts is according to Assistant Engineer Simon Jensen limited to 100 Hz caused by the
TCP/IP communication channel between ROS and the underlying hardware as seen in figure 1.5.

The feedback matrix and the observer gain can now be found. They will again be calculated in MATLAB,
as the design procedure follow the exact same as in subsection 4.3.1. The poles (pi) will be placed from
the below considerations:

• No overshoot in the closed loop step response, i.e. Im(pi) = 0.

• Asymptotic stability, i.e. |pi|< 1

• Slow closed loop step response

• Positive feedback, i.e. the controller and observer gains must be negative

• An observer significantly faster than the closed loop system Γ+ΦKd

Kd =−acker
(

Γ,Φ,
[
0.5 0.35

])
=
[
−11.360 −0.305

]
(4.20)

Ld =−acker
(

Γ
T ,CT ,

[
0.01 0.02

])
=

[
−1.773
−68.184

]
(4.21)

The matrix M introduces zeros in the closed loop transfer function y(k)/xref, which can be eliminated by
designing the zeros close to the cut-off frequency. This means that the characteristic polynomial of the
matrix Γza+M̃Cza has zeros close to the cut-off frequency, where Γza = Γ+ΦKd +LdC and Cza =−Kd

[Stoustrup, 2014]. The MATLAB function acker can again be used:

M̃ =−acker
(

Γ
T
za,C

T
za,
[
0.01 0.02

])
=

[
0.014
2.623

]
To ensure unity gain between reference and system state, the N matrix can be computed as [Stoustrup,
2014]:

N =−
(
CclΓ

−1
cl Φ̃cl

)−1
where Φ̃ =

[
Φ

M̃

]
N = 13.739 (4.22)

The matrix M ensuring unity gain between reference and observer state, can now be calculated as [Stous-
trup, 2014]:

M = M̃N =

[
0.186
36.040

]
(4.23)

Thereby, all unknowns from equation (4.17) are calculated.

4. Founding Safety with Static Boundaries 29



4.4 MATLAB Implementation and Results

Recapitulation 4.2 (Control Law for Second Order Approximation)
The complete controller based on the second order system approximation is now designed as:

1. x̂(k+1) = Γx̂(k)+ΦKd x̂(k)+Ld(Cx̂(k)−y(k))+Mxref

2. u(k) = σ(x)k0(x̂)+(1−σ(x))(N · xref−Kd x̂(k))

where
σ(x) is computed from equation (3.5) with ε from in (4.14) and the CBF found in (4.7)

k0(x) is computed from equation (3.4) with Lie derivatives from (4.8) and (4.9)
Γ is found in equation (4.18)
Φ is found in equation (4.19)
N is found in equation (4.22)
M is found in equation (4.23)
Ld is found in equation (4.21)
Kd is found in equation (4.20)

C is found in equation (4.5)

This completes the control design. The implementation constitutes both a MATLAB simulation and an
actual implementation on the da Vinci robot in ROS. The MATLAB implementation is outlined first.

4.4 MATLAB Implementation and Results

The results shown in this section are based on the implemented controller found in appendix G and in
appendix J under the path matlab_scripts/slide_controller/slide_controller.m. All plots are
made with the following characteristics:

• The sampling rate is tested with both fs = 2kHz (expected sampling rate in the long run) and
fs = 100Hz (current limitation of the sample rate caused by the TCP/IP communication channel).

• The control signal is limited to ±0.1 m (actual limit for slide movement).

• The velocity is limited to ±1 m/s (conservatively estimated limit for slide movement).

• The forward Euler method is used to extrapolate the states.

• The design parameter κ from equation (3.4) is set to κ = 1 (neutral).

• The simulation time is 5 s. Various setpoints will indicate the behaviour in different regions.

The model variable in the first line in appendix G is set to the number 1 for the first order model and 2
for the second order model.

4.4.1 MATLAB Results Based on the First Order Model

The state trajectory composing slide position is plotted in figure 4.9, from which it is seen how the correct
position is obtained on the safe interval Y = {x ∈ [Λs−,Λs+]}. When setpoints are given outside the safe
area, the safety controller ensures that the hard boundaries Λh+ and Λh− are not exceeded at any time
and that the position finds its equilibrium at a state determined by the combination of the two controllers.
It is, however, noted that lowering the sampling frequency from 2 kHz to 100 Hz entails a closed loop
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(a) State trajectory with fs = 2kHz.
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(b) State trajectory with fs = 100Hz.

Figure 4.9: State trajectory for slide position for κ = 1. The MATLAB implementation can be found in
appendix G. The plot is based on forward Euler.

system which is too fast compared to the sampling rate, and for setpoints outside the safe region, the
position is oscillating between linear and safety control.

To verify that equation (3.1)b is fulfilled in the simulation, the Lie derivatives are plotted in figure 4.10,
from which it can be seen that LgB(x) 6= 0 for all x 6= −b

2a , and that L f B(x) = 0 in x= −b
2a , which essentially

fulfils equation (3.1)b. Indeed, even for X defined as the entire range [Λh−,Λh+] (compare to table 4.1),
the chosen CBF would have been valid because the only place where LgB(x) = 0 is at the critical point.
Note also that the Lie derivatives are independent of the scalar κ.
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Figure 4.10: Lie derivatives of the CBF along the vector fields f (x) = Ax and g(x) = B.

Varying κ increases the aggressivity of the safety controller and can create fluctuations in the transition
area if the sampling rate is too low. Likewise σ(x) will fluctuate along with an increased κ. One must be
careful when increasing κ when the sampling rate is relatively low.
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4.4.2 MATLAB Results Based on the Second Order Model

The state trajectory composing slide position based on the second order model is shown in figure 4.11.
It is seen how the boundaries are respected at all times regardless of irresponsible setpoints within the
unsafe region, which cause σ(x) to increase and thereby letting the control law be the linear combination
of the safety controller u(x) = k0(x) and the linear controller by pole-placement ũ(x). The state trajectory
shown in figure 4.11 verifies that the slide position does not exceed its limits even when setpoints are
given outside the safe region.
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(a) State trajectory with fs = 2kHz.
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(b) State trajectory with fs = 100Hz.

Figure 4.11: State trajectory for position based on second order system approximation.

The Lie derivatives for the second order model and CBF are plotted in figure 4.12. It is seen how
LgB(x) = 0 and L f B(x) = 0 at the same time which in general is critical but accepted in this specific case
as it is caused by x2 = 0 which implies u(x) = 0 ⇒ x1→ 0 which is safe.
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Figure 4.12: Lie derivatives of the CBF for the second order model.
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4.4.3 Verification of the Observer Developed for the Robot Implementation

The observer developed in subsection 4.3.2 will be verified with a step input at 1 cm. The estimated
position and velocity is plotted with the success criteria that x̂1 = xref for t→ ∞ and that no overshoot in
the position occurs. The velocity must stay within a reasonable velocity span, i.e. below 1 m/s when the
time constant is considered. The error is defined as ŷ–y and must obviously stay very low in steady state.

The observer is initialized with an estimation error in both position and velocity, and the result is plotted
in figure 4.13. It is seen how the position, velocity and error all comply with the expected outcome and
fulfil the requirements.
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Figure 4.13: Simulation results from the simulink implementation of the observer. Plot details and
simulink file can be found in appendix J by running run_observer.m under the path
matlab_scripts/observer/.

The outlined plots throughout this section conclude the MATLAB simulation. The MATLAB imple-
mentation shows the expected scenario, i.e. that the state trajectory complies with the outlined safe and
unsafe regions. It shall now be seen how to implement the results on the da Vinci robot itself.

4.5 Implementation on the da Vinci Robot

The implementation constitutes the below listed bullet points:

• The controller will be implemented in C++. Reason: Along with Python, C++ is the ROS compat-
ible standard. The reason to use C++ over Python is to optimize speed performance. Furthermore,
it is the general opinion among ROS experts (such as Postdoc Karl Damkjær Hansen and others)
that C++ is more useful in robot simulations and development and lastly, the already existing code
at the Robotic Surgery Group - Aalborg University, is by far most developed in C++. However,
Python as a scripting language may be more user friendly, easier to get started with and in many
cases more readable.

• Real-time signal processing to ensure fixed sample rates. Reason: The observer matrices are built
upon fixed sampling rate and for that reason it is crucial to comply with a fixed sample rate.

• Algorithm development to connect these two bullet points.
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python run_controllers.py 

wrapper script
- launch davinci_driver (establish TCP/IP)
- initialize p4_hand_pitch_command topic 
- initialize p4_hand_roll_command topic
- initialize p4_hand_slide_command topic

in parallel

present user interface (UI)

- advertise control signals (prepare to publish)
- import setpoints from references.txt custom angles demo modeother controllers

non real-time processing

subscribe to /joint_states topic (read sensor)

F

T

model_order
   == 1

F - calculate estimated states from observer
- calculate lie derivatives based on 2nd order system

calculate lie derivatives based on 1st order system

T

- calculate degree of linear combination between safety and non-safety controller (sigma) 
- calculate control signal (u)
- limit control signal
- publish control signals on topics : p4_hand_pitch_command and p4_hand_slide_command

make instance timer t (real-time processing)

t.elapsed_time
    > Ts

trajectory 
finished?

F

T
               - trajectory
               - control signal
               - lie derivatives
               - etc..

{export return 0

return 0 return 0return 0

wait for user input

Figure 4.14: Algorithm for slide safety controller. The source code associated with the algo-
rithm can be found in appendix H and in appendix J. It can also be found at
github at the Robotic Surgery Group - Aalborg University under the repository gr1032
(https://github.com/AalborgUniversity-RoboticSurgeryGroup/ ).
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The controller is implemented at the highest abstraction layer, i.e. the ROS environment depicted in
figure 1.5. While ROS runs on most Linux laptops, it is not ROS itself that puts forth limitations for real
time signal processing, neither is it the potentiometers that measure the angle. The bottleneck is caused
by the TCP/IP communication channel which according to Assistant Engineer Simon Jensen is limited
to 100 Hz. For that reason, the maximum allowed execution time cp,max is:

cp,max =
1

100Hz
= 10ms

The main algorithm is depicted in figure 4.14, and the source code can be found in appendix H and in
appendix J. A complete description on how to run the developed framework is found in section A.3.

4.5.1 Implementation on the da Vinci Robot Based on the First Order Model

All plots and measurements in this subsection can be reconstructed by running the MATLAB script
plot_data found in appendix J in the folder measurements/slide_safety_controller/1D_1st_order.
The execution time is validated first as it is essential for the controller to complete successfully. Fig-
ure 4.15 shows a plot of measured execution time for each iteration, verifying that cp < cp,max and
thereby the real-time part.
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Figure 4.15: Execution time for the first order system approximation. It is seen that the controller never
exceeds a computation time of 150 µs.

The measured state trajectory is plotted in figure 4.16. Here it is seen how the controller ensures that
x ∈ X c

u for all x. The poor system approximation is also revealed as the trajectory has an overshoot which
was not included in the simulation found in figure 4.9. This is however not surprising as the first order
approximation was created to simplify the control barrier function and to avoid the observer design as
an initial approach. A consequence of the overshoot is seen when setpoints very close to Λs+ are given.
Here the slide movement starts to oscillate, caused by σ(x). This is obviously not a good thing, but
nevertheless it is the intended outcome when x ∈ T . Additionally, it is seen how σ(x) allows k0(x) to
force the position from reaching its setpoint when xref ∈ Xu but allows x to cross xref when xref ∈ T . It is
finally seen that the safety controller is fully functional for both R− and R+.

The Lie derivatives are calculated based on the measured position. The result is seen in figure 4.17. It
is seen that the Lie derivatives from figure 4.17 are very similar to the theoretical Lie derivatives from
figure 4.10.
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Figure 4.16: Measured position trajectory based on the first order system approximation. Joint velocity
limiting to 25 % becomes effective when large steps are given, thus altering the system
dynamics. This feature is set in the underlying low-level controllers on the FPGA (see fig-
ure 1.5) in the development phase to protect the system from excessive mechanical stress.
This is particularly noticeable for the step at sample 700, but is not important in this context
as the aim merely is to show setpoint tracking and safety controller effectiveness.
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Figure 4.17: Calculated Lie derivatives based on measured position for the first order approximation.
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4.5.2 Implementation on the da Vinci Robot Based on the Second Order Model

All plots and measurement in this subsection can be reconstructed by running the MATLAB script
plot_data found in appendix J in the folder measurements/slide_safety_controller/2D_2nd_order.
Again, the execution time is validated first. A plot of measured execution time for each iteration is shown
in figure 4.18. It is seen that the real time part is completed within the allowed 10 ms (100 Hz sample
rate). Note that the execution time is slightly higher than in figure 4.15 because the velocity is estimated
with the observer.
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Figure 4.18: Execution time for second order system approximation. It is seen that the controller never
exceeds a computation time of 200 µs.
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Figure 4.19: Measured position trajectory based on the second order approximation. Similar to fig-
ure 4.16 it is seen how joint velocity limiting becomes effective when large steps are given.
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4.6 Conclusion for the Slide Safety Controller

The measured state trajectory is plotted in figure 4.19, visualizing how the overshoot is eliminated, which
was indeed the main purpose of the development of a controller based on a second order approximation.
Also, note how it is possible to give setpoints close to the the set T and still avoid oscillations caused by
σ(x) 6= 0. This is a big advantage when a doctor needs to operate close to an unsafe region. Finally, just
as in figure 4.16, it is seen how σ(x) allows k0(x) to force the position from reaching its setpoint when
xref ∈ Xu but allows x to cross xref when xref ∈ T , as is intended with σ(x).
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Figure 4.20: Calculated Lie derivatives based on measured position and estimated velocity for the sec-
ond order system approximation.

The Lie derivatives are calculated based on the measured position and the estimated velocity. The result
is seen in figure 4.20 showing that the Lie derivatives are quite different from the simulated derivatives
in figure 4.12. This may be due to an imprecise state estimation.

4.6 Conclusion for the Slide Safety Controller

In conclusion, this chapter verifies the usefulness of the theory presented in chapter 3 verifying that it
complies with both simulation and real world implementation. It is seen how the trajectory is forced away
from the unsafe region whenever setpoints are given in Xu, thus the theory presented in [Wieland and
Allgöwer, 2007] does indeed turn out to be very useful in practical implementations. It is worth noting
that the construction of barrier certificates can be quite time consuming (especially when the state vector
grows in order) and that the velocity causes some challenges when barrier certificates are constructed.
For that reason, one may look in other directions when higher order systems are considered.

The results from this chapter suggest some improvements in the current setup:

• Replace the TCP/IP communication channel with a User Datagram Protocol (UDP) channel such
that the topic joint_states updates faster, i.e. preferably with 2 kHz. This will improve the
precision and resolution and ultimately help save human lives.

• Improve the transition region T such that precise setpoints can be given in this region. This could
imply a purely non-linear controller in T .

• Improve the bump function σ(x) for the second order system such that the braking distance is
optimized.

The above considerations conclude this chapter.
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Chapter 5

Safety and Surgery on Beating Hearts

This chapter establishes the fundamentals for a system ensuring safety when a surgeon operates on a
patient with a beating heart. In addition to the safety, it is the objective to establish a system with virtual
fixture of the heart, i.e. such that the surgeon experiences the beating heart as static. As suggested by
chief surgeon at Aalborg University Hospital, Johan Poulsen (see section 1.3), a proper initial set-up
emulating a beating heart could be a surface mounted on a cylinder moving periodically as a sinusoid.
This scheme is outlined in figure 5.1 illustrating how the virtual fixture of the heart should be obtained
by dynamically positioning the end effector at a fixed distance from the surface of the heart.
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(a) Terms

drefdref
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(b) Time sequence of a tool keeping a fixed distance dref to a moving surface

Figure 5.1: The objective is to attain a virtual fixture of the moving object by controlling the end effector
distance to its surface, such that the surgeon experiences the object as static and can operate
as if the object was in fact standing still. An overview of terms applied is found in figure 5.1a.

Thus a model of heart movement is needed along with a model of the robot dynamics, such that a
reference relative to the surface of the heart can be given. These models are presented in the following,
after which a Control Barrier Function (CBF) can be constructed and from this a controller is designed
that ensures safety of the system.

5.1 Modelling the Dynamics of the System

First a model of a beating heart is introduced. This is needed in order to be able to give a dynamic position
reference such thath the end effector can be controlled to keep a fixed distance to the heart surface. The
the system model from section 4.1 is recapitulated, and the dynamic reference is introduced through an
augmented system.

5.1.1 Modelling the Beating Heart as a Sinusoid

The simplified heart movement can be represented as a matrix with eigenvalues on the imaginary axis in
the complex frequency domain:
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ẋh =

˙[
xh1

xh2

]
=

[
0 ωh

−ωh 0

][
xh1

xh2

]
with xh(0) =

[
xh10

xh20

]
(5.1)

where
xh1 is the position of a point on the surface of the heart
xh2 is the velocity of the point
ωh is the heartbeat frequency, ωh = 2π/Th rad/s with an average heartbeat period Th= 1.1 s

[Duindam and Sastry, 2007]
xh10 is the initial value of xh1

xh12 is the initial value of xh2

Note that the magnitude of ωh determines the frequency and that the initial conditions determine the
amplitude of the heart oscillation, e.g. if xh(0) = [0 2]T this indicates a sine with an amplitude of 2,
while xh(0) = [3 0]T corresponds to a cosine with an amplitude of 3. The heartbeat will with this system
have a natural oscillation around zero.

5.1.2 Modelling the Robot Slide Movement

As in chapter 4, the slide movement of the robot is considered the degree of freedom of the system,
illustrated in figure 4.1. To model the one dimensional robot movement along the slide axis, the same
system model can be used as presented in equation (4.1), i.e.:

ẋ1 =−τ
−1x1 + τ

−1u (5.2)

where
x1 is the position of the end effector [m]
τ is the time constant of the first order system, measured in figure 4.2, τ = 110 ms [s]
u is the input to the system [m]

The one dimensional model is used to simplify the equations thus precluding complications at this stage.
Additionally, the second order model merely proved few advantages in the form of elimination of the
overshoot.

Introducing a Dynamic Reference in the Model

In order to control the robot end effector to maintain a fixed distance to the surface of the heart, an addi-
tional state can be added the system. Thus, a new set of states is introduced representing the movement
of the beating heart, the movement of the robot and the fixed distance dref between the two. Combin-
ing equation (5.1) and equation (5.2) with the relative distance yields the below stated linear state space
system:

ẋ(t) =

˙
x1

xh1

xh2

dref

=


−1/τ 0 0 0

0 0 ωh 0
0 −ωh 0 0
0 0 0 0


︸ ︷︷ ︸

A


x1

xh1

xh2

dref


︸ ︷︷ ︸

f (x)

+


1/τ

0
0
0


︸ ︷︷ ︸

B︸ ︷︷ ︸
g(x)

ũ(x) (5.3)
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y(t) =
[
1 0 0 0

]
︸ ︷︷ ︸

C

x(t) (5.4)

The control law is introduced as a linear position controller on the form from equation (3.3), where the
position reference follow the dynamic movement of the heart at a fixed distance dref from its surface, i.e.
xref = xh1 +dref such that:

ũ(x(t)) = N̄xref−Kx1

= N̄
(

xh1(t)+dref

)
−Kx1(t)

=
[
−K N̄ 0 N̄

]
x(t)

= K̄x(t) (5.5)

where
K is the linear system controller designed according to equation (4.11), K ∈ R
N̄ is the system gain ensuring unity gain between position and reference, found according to

equation (4.12), N̄ ∈ R
K̄ is the augmented feedback vector, K̄ ∈ R1×4

Note how the closed loop system can be rewritten in a more intuitive way, such that the system is reduced
to three states taking dref as input:

˙
x1

xh1

xh2

dref

=


−1/τ 0 0 0

0 0 ωh 0
0 −ωh 0 0
0 0 0 0


︸ ︷︷ ︸

A


x1

xh1

xh2

dref


︸ ︷︷ ︸

f (x)

+


1/τ

0
0
0


︸ ︷︷ ︸

B︸ ︷︷ ︸
g(x)

[
−K N̄ 0 N̄

]
︸ ︷︷ ︸

K̄


x1

xh1

xh2

dref


︸ ︷︷ ︸

ũ(x)

(5.6)

˙ x1

xh1

xh2

=

−(I+K)/τ N̄/τ 0
0 0 ωh

0 −ωh 0


︸ ︷︷ ︸

Acl

 x1

xh1

xh2

+
N̄/τ

0
0


︸ ︷︷ ︸

Bcl

dre f (5.7)

Note the eigenvalues of Acl:

λAcl =


−90

5.71 j

−5.71 j

The eigenvalues reveal a stable (controllable) subsystem consisting of the robot end effector and an
obviously marginally stable (uncontrollable) subsystem consisting of the beating heart.

This concludes the modelling of the augmented system. In the next section a CBF will be constructed.
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5.2 Construction of CBF

A barrier certificate for the system presented in equation (5.6), with a zero level set at the surface of the
heart, comprises moving boundaries and hence should be a function of both robot and heart position.
Definition 2.1 implies that the CBF should be constructed with unsafe region Xu below the surface of the
heart, i.e. such that B(x) is positive if x1 < xh1 and negative otherwise, with x1 being the position of the
robot end effector and xh1 being the position of the heart surface. The coherence is clear:

B(x)> 0 ∀ x ∈ Xu = {(x1,xh1) | xh1− x1 > 0} (5.8)

Thus a CBF can be constructed as:
B(x) = c̃(xh1− x1) (5.9)

with a positive constant c̃ > 0, which is chosen to be c̃ = 1. Thus according to Definition 3.1 this is a
valid CBF if LgB(x) 6= 0 and {x ∈ X | B(x) ≤ 0} 6= /0. The latter is trivial as the safe states are present
whenever x1 > xh1. Thus LgB(x) is analysed:

LgB(x) =
dB(x)

dx
g(x)

∣∣∣∣∣
g(x)=B

=

[
∂B(x)

∂x1

∂B(x)
∂xh1

∂B(x)
∂xh2

∂B(x)
∂dref

]
B

=
[
−c̃ c̃ 0 0

]
1/τ

0
0
0

 ∣∣∣c̃=1
=
−1
τ
6= 0 ∀x ∈ X (5.10)

It is seen that LgB(x) 6= 0 for all x ∈ X . The CBF is therefore valid on X .

5.3 Control Design

As introduced in equation (3.2), the safe set X0 can be divided into two sections: the transitions space T
close to the unsafe set and the remaining part Y = X0 \T . These sections are indicated in figure 5.1a.
The control law is, just as in chapter 4, split in two parts. A linear controller where no safety precautions
are taken is used in Y and a controller ensuring safety is used in T

⋃
Xu. The controller ensuring safety

is defined in equation (3.6).

The transition between the two controllers on T is determined by σ(x) which is defined in equation (3.5).
Thus a scalar ε is required, determining when the effect of the safety controller k0(x) is brought into
effect, while the weighting of k0(x) is determined by σ(x). To give the safety controller some margin to
force the robot end effector away from Xu, it is reasonable to let k0(x) take effect when the end effector
comes within a distance from the unsafe set of 1 cm, thus:

ε = 0.01 (5.11)

The safety controller, as defined in equation (3.6), requires the Lie derivatives of the CBF, where LgB(x)
is found in equation (5.10), and L f B(x) is found as:

L f B(x) =
dB(x)

dx
f (x)

∣∣∣
f (x)=Ax
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=

[
∂B(x)

∂x1

∂B(x)
∂x1h

∂B(x)
∂x2h

∂B(x)
∂dref

]
1/τ 0 0 0
0 0 ωh 0
0 −ωh 0 0
0 0 0 0




x1

xx1

xx2

dref



=
[
−c̃ c̃ 0 0

]
−x1/τ

ωhxh2

−ωhxh1

0

= c̃
(

ωhxh2 +
x1

τ

) ∣∣∣
c̃=1

= ωhxh2 +
x1

τ
(5.12)

Recapitulation 5.1 (Control Law for Dynamic System with Relative Reference)
Using equation (3.4), the control law can be summarized as:

u(x) = σ(x)k0(x)+(1−σ(x))ũ(x)

where
σ(x) is calculated from equation (3.5) with B(x) found in equation (5.9) and ε found in

equation (5.11)
k0(x) is calculated from equation (3.6) with the Lie derivatives from (5.10) and (5.12)
ũ(x) is calculated from equation (5.5)

This completes the control design.

5.4 MATLAB Implementation and Results

The results presented in this section are implemented with the following characteristics:

• Extrapolation by means of forward Euler.

• A sampling rate fs = 2kHz. The current realistic sampling rate at fs = 100Hz is not plotted as the
forward Euler method proves itself unstable for this system at a 100 Hz sampling rate.

• Simulation time is 5 s.

• The distance dref is initially set to 3 cm which is safe. At 2 s the reference distance dref is altered to
-1 cm emulating a surgeon who accidentally forced the robot to penetrate the heart. The expected
outcome of this is obviously that the safety controller prevents this by ensuring a distance between
end effector and the beating heart.

• Initial conditions are set such that the robot end effector is positioned at a distance to the heart
greater than the desired distance. The expected outcome is that the system will attempt to track the
distance xref− xh1 = dref.

The MATLAB implementation itself can be found in appendix G and in appendix J under the path
matlab_scripts/beating_heart/beating_heart_controller.m. The state trajectory is plotted in
figure 5.2.
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Figure 5.2: Dynamic system with heart position defined as the zero level set of the CBF. References are
given as relative distances to the moving surface. When a reference outside the safe region
is given, the safety controller prevents the tool from entering the unsafe region.

It is from figure 5.2 seen that the robot end effector settles at a distance at dâC¢tre f = 3cm until the
simulation reaches 2 s (k = 4000). It is, however, seen that dref is not constant which is due to the lack
of integral action in the system. This could obviously be resolved by including integral action in the
controller. At 2 s dref changes to -1 cm which causes the safety controller to react. The state x1 settles
at a safe distance from the beating heart which is left untouched, and the simulated controller is thereby
verified to work as intended.

5.5 Implementation on the da Vinci Robot
A complete description on how to run the developed framework is found in section A.3.

For the implementation of the beating heart controller, the setup depicted in figure 5.3 is used. A tissue
phantom representing the heart is mounted on top of a cylinder controlled by a motor to move in a
sinusoid. In the motor controller interface the amplitude, frequency and offset of the sinusoid can be set.

The algorithm that implements the beating heart controller is outlined in figure 5.5. The developed
software can be found in appendix J and in appendix H. The execution time is not shown here as it is
verified in figure 4.15 and figure 4.18 that it is far below the allowed maximum execution time and this
controller does not constitute heavier calculations. The measured state trajectory is plotted on figure 5.4.

It can from figure 5.4 be seen how the end effector moves along with the beating heart with a nearly
constant distance dref. It is seen how the safety controller ensures that x1 > xh1 for all t even when the
distance dref is set to the unsafe value -2 cm. It is also seen how dref can be set to various values. The lack
of integral action is again exposed in the plot. It is also seen how the trajectory fluctuates significantly
more than the simulated response from figure 5.2 which is due to the far lower sampling rate.
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5.5 Implementation on the da Vinci Robot

Figure 5.3: Setup of the beating heart implementation. A tissue phantom is mounted on a cylinder con-
trolled by a motor to move as a sinusoid. The robot end effector is following the movement
at a distance dref.
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Figure 5.4: It is seen how x1 moves along with the beating heart with a nearly constant distance dref.
It is seen how the safety controller ensures that x1 > xh1 for all t even when the distance
dref is set to the unsafe value -2 cm. It is also seen how dref can be set to various val-
ues. Measurement files and plotting details can be found in appendix J under the path
measurements/beating_heart.
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python run_controllers.py 

wrapper script
- launch davinci_driver (establish TCP/IP)
- initialize p4_hand_pitch_command topic 
- initialize p4_hand_roll_command topic
- initialize p4_hand_slide_command topic

in parallel

present user interface (UI)

- advertise control signals (prepare to publish)
custom angles demo modeother controllers

non real-time processing
F

T

- subscribe to /joint_states topic (read sensor)
- calculate lie derivatives 
- calculate degree of linear combination between safety and non-safety controller (sigma) 
- calculate control signal (u)
- limit control signal
- publish control signals on topics : p4_hand_pitch_command and p4_hand_slide_command

make instance timer t (real-time processing)

t.elapsed_time
    > Ts

Done?

F

T
               

export trajectory return 0

return 0
return 0

return 0

wait for user input

beating heart controller

Figure 5.5: Algorithm for dynamic slide safety controller. The source code associated with the
algorithm can be found in appendix H and in appendix J. It can also be found at
github at the Robotic Surgery Group - Aalborg University under the repository gr1032
(https://github.com/AalborgUniversity-RoboticSurgeryGroup/ ). Note that the control sig-
nal is published to the pitch_command topic as well. This is used to change the dynamics
in the x-direction in case of resonance.
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5.6 Conclusion for the Beating Heart Controller

In conclusion, this chapter verifies that a control barrier function can be found which indeed ensures
safety for the beating heart following controller, which takes a relative position in the form of the distance
to the heart dref as input. It is seen how the developed controller would benefit from a higher sampling
rate. It is also seen that the controller suffers from the lack of integral action, and future work on this
topic should include integral action as well.

Finally it is noted that the synchronization of the motor controlled sinusoid movement and the modelled
sinusoid implemented on the robot, should be automated for a future test setup through measurements to
allow for model adjustment.
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Chapter 6

Safety in the 3D Euclidean Space

This chapter presents the design of a safe controller for the robotic patient manipulator in 3D Cartesian
space, where the unsafe region is defined as an ellipsoid with static boundaries, i.e. fixed in space with
respect to time. The unsafe region is defined such that it is within the reach of the instrument tip. It
is desired to construct the unsafe area such that the interior of the ellipsoid is unsafe, thus representing
a heart or another vital sensitive organ which must not be cut under any circumstances. An important
simplification is made throughout the entire chapter, i.e. the orientation of the hand is not considered.

x0

z0

y0

(a) The Robotic patient manipulator.

safe

unsafe
z0

y0
x0

(b) The robot hand and instrument.

Figure 6.1: Patient manipulator and a fixed region within the reachable space X that is unsafe, Xu,
marked by a red ellipsoid thus implying an ellipsoid as zero level set of the CBF.

Given the reachability of the robotic end effector which is tested to be roughly a square with the measures
[0.2 0.2 0.2] m centered in (0,0,0), the sets considered in this chapter can be outlined in table 6.1.

X Xu X0 T
X = {x ∈ [−Λ̄lim, Λ̄lim],

y ∈ [−Λ̄lim, Λ̄lim],
z ∈ [−Λ̄lim, Λ̄lim]}

Xu consist of an ellipsoid
with semi-axes rx,ry,rz.

X c
u = X \Xu T is a layer around the el-

lipsoid with thickness =

0.01m.

Table 6.1: Sets considered in this chapter, where rx = 0.03 m, ry = 0.06 m, rz = 0.03 m are lengths of
the semi-axes of an ellipsoid and Λ̄lim = 0.1m being the extremity of the box encircling the
reachable space.
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6.1 Modelling of Robot Hand Movement in 3D

The theory, analysis and implementation aspects presented in this chapter differ from the previous work
in this report. In contrast to chapter 4 and chapter 5, which solely comprise the prismatic slide joint, this
chapter concerns the five independent revolute joints as well (see figure 1.4). Accordingly, this chapter
presents the material required to be able to manoeuvre the da Vinci robot in the 3D Cartesian space and
to be able to specify an unsafe set Xu contained within an ellipsoid. This implies the topics:

• Development of a sufficient model describing movement in three dimensions.

• Construction of a control barrier function fulfilling the demand for an ellipsoid encirclement of Xu.

• Development of the control system.

• Implementation in MATLAB.

• Implementation on the da Vinci robot. This entails a kinematic description of the robot links
and joints such that a translation between the 3D Cartesian space and the 6D joint space can be
established.

Thus the first topic will be to model the movement sufficiently.

6.1 Modelling of Robot Hand Movement in 3D

The system shall be modelled as a linear state space system on the form:

ẋ = Ax+Bu

y = Cx

The movement in the three dimensional space may be modelled as three decoupled systems. While there
may be coupling between the systems, the decoupling simplifies the modelling phase significantly and it
is still a realistic version of the real scenario.

ẋ =

˙xx

xy

xz

=

−1/τx 0 0
0 −1/τy 0
0 0 −1/τz


︸ ︷︷ ︸

A

xx

xy

xz


︸ ︷︷ ︸

f (x)

+

1/τx 0 0
0 1/τy 0
0 0 1/τz


︸ ︷︷ ︸

g(x)=B

u (6.1)

where
xx is the position in the x-axis
xy is the position in the x-axis
xz is the position in the x-axis
τx is the time constant associated with a step purely in the x-axis
τy is the time constant associated with a step purely in the y-axis
τz is the time constant associated with a step purely in the z-axis

The time constants are measured and as presented in section F.2 are found to be:

τx = 0.070s, τy = 0.100s, τz = 0.040s
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6.2 Construction of CBF

With a sufficient model established the CBF can be considered.

6.2 Construction of CBF

A CBF is proposed that complies with the first two constraints in Definition 2.2, i.e. a function that is
positive on the set Xu and nonpositive on the set X0. In order to make sure that the robot tool can be
prevented from penetrating the heart or another desired three dimensional region, the unsafe set Xu is
defined as an ellipsoid. This ellipsoid enclosing the region Xu as visualized in figure 6.1b, must be the
zero level set of the CBF. The CBF is proposed of the form:

B(x) =−

((
xx− cx

rx

)2

+

(
xy− cy

ry

)2

+

(
xz− cz

rz

)2

−1

)
(6.2)

where
[cx cy cz] is the coordinate of the center of the ellipsoid, c ∈ R3

[rx ry rz] is the lengths of the semi-axes of the ellipsoid, r ∈ R3
+

The CBF is visualized in figure 6.2. The zero level set enclosing the unsafe region Xu shown as a green
ellipsoid. Note that the function−B(x) will have the same zero level set, but have positive values outside
the ellipsoid, indicating that it is the safe area X0 that is enclosed by the ellipsoid.

Figure 6.2: CBF on the form described in equation (6.2) with c = [0, 0, 0] and r = [0.03, 0.05, 0.03].

As suggested in equation (3.1)b, if L f B(x) 6= 0 ∀x then safety can always be guaranteed. Thus testing
L f B(x):

LgB(x) =
dB(x)

dx
g(x)

∣∣∣
g(x)=B

=

[
∂B(x)

∂xx

∂B(x)
∂xy

∂B(x)
∂xz

]1/τx 0 0
0 1/τy 0
0 0 1/τz


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6.3 Control Design

=

[
2
r2

x
(cx− xx)

2
r2

y
(cy− xy)

2
r2

z
(cz− xz)

]1/τx 0 0
0 1/τy 0
0 0 1/τz


= 2

[
1

r2
x τx

(cx− xx)
1

r2
y τy

(cy− xy)
1

r2
z τz

(cz− xz)

]
(6.3)

6= 0 ∀ xx 6= cx, xy 6= cy, xz 6= cz

It can be seen that LgB(x) = 0 in the centre of the ellipsoid [cx,cy,cz], which is the vertex of the barrier
function. While LgB(x) = 0 implies the demand L f B(x)≤ 0, it causes no issue in this specific case. Sim-
ply subtract a small region around the center of the ellipsoid, call it S = {xx = [−δ δ], xy = [−δ δ] xz =

[−δ δ]} where δ is some small scalar, from X such that X̄ = X \S . Thus B(x) is valid on X̄ . These con-
siderations are valid as no trajectory under any circumstances will penetrate the surface of the ellipsoid,
thus no reason to include the interior in X . With LgB(x) 6= 0 ∀x ∈ X̄ , the control design can be initiated.

6.3 Control Design

The control design is built upon the control law from equation (3.4), i.e:

u(x, ũ) = σ(x)k0(x)+(1−σ(x))ũ(x) (6.4)

with:

ũ(x) = N̄xref−Kx (6.5)

where
u(x, ũ) is the control input where safety ensured, u(x, ũ) ∈ R3

ũ(x) is the input where no safety is considered, ũ(x) ∈ R3

k0(x) is the controller ensuring safety, k0(x) ∈ R3

σ(x) founds a linear combination between the two control laws, σ(x) ∈ R
N̄ ensures unity gain from reference input to output, N̄ ∈ R3×3

K is the gain in the controller where no safety is considered, K ∈ R3×3

x is the state vector, x = [xx xy xz]
T ∈ R3

The input ũ(x) is used in the safe area and is found according to regular pole placement where stability
is the main design consideration, thus the MATLAB command acker is simply used to places the poles
faster than the system itself and in the left half plane in the complex frequency domain:

K = acker
(

A,B,
[
−15 −15 −15

])
=

0.050 0 0
0 0.500 0
0 0 −0.385

 (6.6)

The matrix N̄ is found as [Stoustrup, 2014]:

N̄ =−
(
CA−1

cl B
)−1

=

1.050 0 0
0 1.500 0
0 0 0.615

 (6.7)

The safety controller k0(x) requires both LgB(x) and L f B(x). With LgB(x) found in equation (6.3),
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L f B(x) is found to:

L f B(x) =
dB(x)

dx
f (x)

∣∣∣
f (x)=Ax

=

[
∂B(x)

∂xx

∂B(x)
∂xy

∂B(x)
∂xz

]
Ax

=

[
2
r2

x
(cx− xx)

2
r2

y
(cy− xy)

2
r2

z
(cz− xz)

]−1/τx 0 0
0 −1/τy 0
0 0 −1/τz


xx

xy

xz


=−2

(
1

r2
x τx

(cxxx− x2
x)+

1
r2

y τy
(cyxy− x2

y)+
1

r2
z τz

(czxz− x2
z )

)
(6.8)

The control law presented in equation (6.5) suggests a smooth transition on T , just as derived in chapter 4
and chapter 5. This obeys with the desire to cover the ellipsoid with a 1 cm thick rim (from table 6.1),
such that the scalar ε > 0 is introduced according to equation (3.5), i.e.:

σ(x) =


0 if B(x)≤−ε

−2
(

B(x)
ε

)3

−3
(

B(x)
ε

)2

+1 if B(x) ∈ (−ε,0)

1 if B(x)≥ 0

(6.9)

where ε can be found by considering the CBF:

ε = B(x)∣∣∣∣∣∣
xz = 0
xx = rx +0.01
xy = 0

=−

((
rx +0.01− cx

rx

)2

+

(
cy

ry

)2

+

(
cz

rz

)2

−1

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

rx = 0.03
ry = 0.06
rz = 0.03
cx = 0
cy = 0
cz = 0

= 0.778 (6.10)

Note that setting xx = rx + 0.01 and xy = xz = 0 ensures that a 1 cm thick transition layer is designated
around the ellipsoid. Thus, from equation (3.6), the non-linear controller ensuring safety can be found
as:

k0(x) =

−
L f B(x)+

√
(L f B(x))2 +κ2LgB(x)(LgB(x))T

LgB(x)(LgB(x))T (LgB(x))T if LgB(x) 6= 0

0 if LgB(x) = 0
(6.11)

The control law can thereby be summarized.

Recapitulation 6.1 (Control Law for Safety Controller in the Euclidean Space)
Using equation (6.4), the control law can be summarized as:

u(x, ũ) = σ(x)k0(x)+(1−σ(x))ũ(x) (6.12)

where
σ(x) is calculated in equation (6.9) with ε from equation (6.10)

k0(x) is calculated from equation (6.11) with Lie derivatives from (6.3) and (6.8)
ũ(x) is calculated from equation (6.5) with N̄ from (6.6) and K from (6.7)
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6.4 MATLAB Implementation

The MATLAB implementation can be found in found in appendix G and in appendix J under the path
matlab_scripts/safe_3d/safety_in_3d.m. The implementation is built upon these considerations:

• Forward Euler extrapolation.

• Sampling time fs = 2kHz.

• Simulation time at 10 s.

• Various setpoints are given to illustrate how the controller ensures that the trajectory is redirected
in alternative paths to ensure that the ellipsoid is not penetrated at any time.

The trajectory (blue) along with the immediate path (red) between the given setpoints (blue stars) and
the unsafe set outlined by B(x) = 0 as an ellipsoid (green) are plotted in figure 6.3. The black circle
indicates the initial position (outside Xu) of the trajectory and the destination coordinate is indicated as a
green circle.

Figure 6.3: Result of the MATLAB implementation of the safe controller which allows manoeuvring
in the Euclidean space with an ellipsoid as zero level set of the CBF outlining Xu. The
trajectory (blue) along with the immediate trajectory (red) determined from the setpoints
given (blue stars). The black circle indicates initial position and the green circle indicates
the destination.

It is from figure 6.3 seen how the controller ensures that the state never enters the interior of the ellipsoid
which indeed was the purpose of the controller. It is also seen how the controller ensures a smooth and
elegant detour to reach the desired setpoint while ensuring safety. If a setpoint is given in the interior of
Xu, the state will settle at the shortest safe distance from that setpoint. It is finally seen how setpoints in
the safe area are reached without any problems.
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The state trajectory is also plotted in figure 6.4 where each coordinate trajectory is plotted individually
which makes it slightly easier to see the effect of σ(x).
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Figure 6.4: The same trajectory as depicted in figure 6.3. It is seen how σ(x) increases in value when
the trajectory approaches the zero level set of B(x) and the position is adjusted accordingly.

It is from figure 6.4 seen how σ(x) increases in value when the trajectory approaches the zero level set of
B(x), and the position is adjusted accordingly. Additionally, figure 6.4 is the only plot where the actual
dynamics can be seen, which clearly demonstrate the first order approximations in both x, y and z. It is
also seen how the dynamics is completely changed when the trajectory enters T , hence causing a highly
non-linear system, for which it actually is very difficult to predict the exact behaviour, except that it will
escape the unsafe area.

The thickness of 1 cm, outlining T , ensured by ε, is visualized in figure 6.5 along with the simulated
trajectory.

Figure 6.5: The inner (black) ellipsoid marks the surface of Xu and the rim between the two ellipsoids
is T . Thus X0 = X \Xu. The trajectory is initiated from the black circle.

It is from figure 6.5 seen that the trajectory starts to be redirected when it enters T in a smooth manner.
The trajectory will always take the shortest safe path.
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6.5 Implementation on the da Vinci Robot

In contrast to the MATLAB implementation, the implementation on the da Vinci robot comprises some
additional topics. The code developed as a result of the implementation can be found in appendix H,
appendix I and appendix J. It can also be cloned from GitHub with the following git commands:

• git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/Gr1032

• git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/

davinci_description --branch reduced_robot

• git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/

davinci_driver --branch gr1032

It is also important to setup the ROS framework as described in appendix A. A complete description
on how to run the developed framework is found in section A.3. The implementation of the controller
derived in this chapter consists of the topics stated below:

• A description of the kinematic chain. This is required to compute the end effector position. The
kinematic description is written in the ROS framework, located in the davinci_description

package under the folder robots as a number of xacro (XML macros) files. These xacro files
are at launch time converted to a Unified Robot Description Format (URDF) such that kinematic
solvers can access the information. The ROS framework and file system is described more thor-
oughly in appendix A.

• Integration of an inverse kinematic solver such that a desired (x,y,z) position can be obtained from
the six active joint angles (see figure 1.4), i.e. from:

– p4_hand_roll

– p4_hand_pitch

– p4_instrument_slide

– p4_instrument_roll

– p4_instrument_pitch

– p4_instrument_jaw_right

• Integration of a forward kinematic solver such that the position can be read from the six angles.

• An original description of the kinematic chain is present at the Robotic Surgery Group - Aalborg
University at GitHub. However, a modification of the kinematic chain is required such that only
active joints are a part of the kinematic chain. This is necessary for the kinematic solver as it will
not be able to distinct passive joints from active.

• Algorithm development such that the above topics are connected and real-time signal processing
is ensured. As discussed in section 4.5, this should be done in C++ in the ROS framework.

Thus before proceeding to the actual implementation, a kinematic description is necessary.
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6.5.1 Kinematics of the AAU da Vinci Robot

The upcoming subsections will first describe how kinematics in general are defined, then how the kine-
matics are desired to be defined for the da Vinci robot followed by the original kinematic description (the
structure of the xacro files when this project was initiated). It concludes with a necessary modification
of the original kinematic description such that a sufficiently fast solver can be applied.

How a Kinematic Description is Defined

A kinematic description of an object requires defining a right-handed coordinate frame fixed in the object
and a coordinate frame fixed in inertial space, the latter which the position and orientation of the object
can be described relative to. This relative orientation and position of an object (or the frame i fixed in it)
with respect to another frame j = i−1 can be described through a transformation matrix T, containing
the orthonormal rotation matrix R and the translation vector p of the frame origin, as

j
i T =

[
R p
0 1

]
, where p =

a
b
d

 (6.13)

and the simplest rotation matrices R are rotations about a single axis, which can be combined to obtain
an arbitrary rotation

Rx(α) =

1 0 0
0 cosα −sinα

0 sinα cosα

 Ry(β) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (6.14)

where
α,β,θ are angles
Rx(α) is rotation around the x-axis
Ry(β) is rotation around the y-axis
Rz(θ) is rotation around the z-axis

For the robotic patient manipulator, which comprises a number of links, coordinate frames are defined
for each degree of freedom, i.e. placed in each joint such that one of the frame axes is the axis of free
rotation or translation. The kinematic chain is now the sequence of alternate links and joints starting
from the link fixed in inertial space and ending at the tip of the robotic tool. The link preceding a joint is
its parent link, while the link succeeding it is its child link. The transformation between any two frames
is given as the product of the transformation matrices in the kinematic chain between them. An example
of a sequence of transformations can be seen in appendix C.

Desired Kinematic Description

For the resolution of frame definitions it is preferred to adapt the robot coordinate frame convention
Denavit-Hartenberg (DH) because it is one of the most widespread kinematic descriptions in the robot
kinematics community, and because it describes transformations between two successive frames in the
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kinematic chain on a succinct and standardized form, i.e.:

i−1
iT =

Rz(θi)

0
0
di


0 1


Rx(αi)

ai

0
0


0 1

 (6.15)

In the DH kinematic description each frame is fixed with respect to its parent link, and its z-axis is aligned
with the actuation axis of its child link. The free rotation/translation always takes place around/along the
local z axis, and as seen from equation (6.15) any fixed or free rotation/translation about/along the z-
axis is implemented (intrinsically) before any fixed rotation/translation about/along the (new) x-axis. For
more details on the DH convention and robot frames defined according to it, see section C.2.

Implementable Kinematic Description

In the robot description in ROS (the implementation framework), however, the kinematics are described
in the xacro files on the form

i−1
iT =

Rz(yaw)Ry(pitch)Rx(roll)

ai

bi

di


0 1


Rz(θ

∗
i )Ry(β

∗
i )Rx(α

∗
i )

a∗i
b∗i
d∗i


0 1

 (6.16)

Here fixed translations are implemented first, then RPY rotations (extrinsic roll (about x-axis), pitch
(about y-axis), yaw (about z-axis) rotation), and finally the free rotation or translation (denoted by ∗ in
equation (6.16)) about/along one of the rotated axes. Furthermore, the convention here is that each frame
(joint) is fixed in its child link (corresponding to the fixed rotations preceding the free rotation), and not
in its parent link as in the DH convention. The transformation i−1

iT is implemented in joint i in the xacro
file as (for joint 8)

1 < joint name="p4_hand_pitch" type="revolute">
2 <origin
3 xyz="0 0 0"
4 rpy="1.5708 0 0" />
5 <parent link="rcm_vitual0" />
6 <child link ="rcm_vitual1" />
7 <axis xyz="0 0 1" />
8 ...
9 </ joint >

Taking this small code example for the p4_hand_pitch joint, line 3 and 4 constitute the fixed translation
and rotation of equation (6.16). Line 7 represents the latter part of equation (6.16), and combined with
the information given from the revolute parameter, it suggests a free rotation about the z-axis (i.e. θ∗i )
and that Rx(α

∗
i ) = Ry(β

∗
i ) = I and a∗i = b∗i = d∗i = 0 .

Modifying the Kinematic Description to fit the Kinematic Solver

The indisputable most important application of the kinematic description, is to use it for forward kine-
matics (FK) and inverse kinematics (IK). The IK is not a trivial task and can be implemented in different
ways. Three candidate technologies are described in table 6.2.
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Technology Advantage Disadvantage Conclusion
MoveGroup (a thor-
ough test of Move-
Group is made in sec-
tion A.4.)

This is an API which
is easy and simple to
use. It offers a GUI
to initialize joints and
links and certain poses.
It is possible to specify
joint limits.

It is slow and requires
computational time be-
tween every setpoint.
Also, it implements its
own controller destruc-
ting the dynamics.

Due to the slow pro-
cessing time and the
shattered dynamics,
the solver offered by
the MoveGroup API is
rejected.

KDL (offered by The
Orocos Project) (it is
in fact the underlying
solver of MoveGroup)

All additional features
offered by MoveGroup
can be bypassed and
the speed can thereby
be increased.

Interfacing with KDL
directly complicates
the code significantly.
No specification of
joint limits is possi-
ble. Cannot distinct
between passive and
active joints.

This is a good solu-
tion with the only real
issue being the lack
of joint limit specifica-
tion. Passive joints can
be omitted by redefin-
ing the kinematic de-
scription.

Custom design Full control of all as-
pects of the solver and
the possibility to tai-
lor each developed fea-
ture.

The development of an
IK solver for a six DOF
manipulator is not a
trivial task.

The extra features of-
fered by a custom IK
solver does not match
the development costs
which it will induce.

Table 6.2: Candidate technologies to implement inverse kinematics and forward kinematics.

Weighting the advantages and disadvantages from table 6.2, a proper solver is chosen as the KDL solver.
Thus, the original kinematic description/chain needs to be modified to exclude all passive joints such that
it only describes the active joints. This is necessary for the KDL solver as it otherwise will attempt to
control passive joints. A simplified overview of the problem and how it is solved is outlined in figure 6.6

p4_instrument
_jaw_right

p4_instrument_roll

p4_hand_rollp4_hand_pitch

p4_hand_pitch
mimic

p4_hand_pitch
mimic

p4_instrument
_pitch

p4_instrument
_slide

Figure 6.6: Modified kinematic chain. The two mimic joints (green) must be bypassed.

The new modified set of frames is defined for the da Vinci kinematics, adhering to the DH constraint that
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all free rotation/translation is about/along the local z-axis. In conclusion the set of frames is modified to
comply with the KDL solvers needs, i.e. a kinematic chain consisting of purely active joints.

The new modified kinematic description is depicted more thoroughly in figure 6.7b. The parameters as-
sociated with these are listed in table 6.3b. The original kinematic description, containing the two passive
joints mimicking the hand pitch movement are depicted in figure 6.7a and the associated parameters are
listed in table 6.3a for comparison.

fixed translation [m] fixed rotation [rad] freedom
frame a (x) b (y) d (z) roll pitch yaw α∗,β∗,θ∗ or d∗ joint name

7 -0.042 0 0.161 0 0 0 α∗7 hand_roll

8 0 0 0 0 -0.288 0 −β∗8 hand_pitch

9 0.011 0 0.186 π 0.288 0 β8 mimic hand_pitch
10 0.520 0 0 π 0 0 −β8 mimic hand_pitch
11 0 0 -0.120 0 0 0 d∗11 instrument_slide

12 0.052 0 0 π 0 π/2 θ∗12 instrument_roll

13 0 0 0.177 0 0 0 −α∗13 instrument_pitch

14L 0 0 0.009 π/2 π/2 0 −θ∗14L instrument_jaw_left

14R 0 0 0.009 π/2 π/2 0 θ∗14R instrument_jaw_right

(a) Original robot hand kinematics including mimicking joints, corresponding to figure 6.7a. The two
mimicking joints mimic hand_pitch are removed in the modified description.

fixed translation [m] fixed rotation [rad] freedom
frame a (x) b (y) d (z) roll pitch yaw θ∗ or d∗ joint name

7 0.482 0 0.047 0 π/2 0 θ∗7 hand_roll

8 0 0 0 π/2 0 0 θ∗8 hand_pitch

9 0.097 0 0 0 −π/2 0 d∗9 instrument_slide

10 0 0 0 0 0 0 θ∗10 instrument_roll

11 0 0 0 0 π/2 0 θ∗11 instrument_pitch

12L 0.009 0 0 −π/2 0 0 θ∗12L instrument_jaw_left

12R 0.009 0 0 −π/2 0 0 θ∗12R instrument_jaw_right

(b) New modified robot hand kinematics excluding mimicking joints, corresponding to figure 6.7b.

Table 6.3: Parameters and variables (marked with ∗) for the robot kinematic description implemented in
ROS and visualized in figure 6.7. Free angles are named with α for rotation about the +x-axis,
β about the +y-axis and θ about the +z-axis.

The values are measured on the da Vinci robot in the AAU control and surgery laboratory. Note that
the new set of frames does not adhere to the DH standard completely, but they follow it as close as
possible. The reason that the DH convention is not implemented fully is the underlying structure in the
way the URDF file is read (in equation (6.16) the free rotation/translation is post-multiplied the fixed
rotation/translation, while in equation (6.15) the free rotation/translation is pre-multiplied). This is not
straightforward to correct. The modified frames are tested and verified in section C.3.

At this point, all variables from equation (6.16) are outlined in table 6.3b and implemented in the corre-
sponding xacro files in the davinci_description package, i.e.:

• robot/remote_center_manipulator.xacro containing all joints associated with p4_hand

• robot/instruments/needle_driver.xacro containing all joints associated with p4_instrument
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(a) Original robot hand kinematics including mimick joints, parameters given in table 6.3a.
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(b) New robot hand kinematics excluding mimick joints, parameters given in table 6.3b.

Figure 6.7: Orientation and position of coordinate frames 7,8, etc., corresponding to the controllable joints of the robotic
patient manipulator. For convenience of placing the hand roll and pitch frames in the pivot point (the stagnant
fixed point) in the new kinematic description in figure 6.7b, a virtual link is inserted in the xacro file after
each of these two joints.
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In conclusion a three dimensional position of the tool tip is described in a frame oriented as the inertial
frame and offset such that a robot configuration with all free angles and slide set to zero equals a position
of the tool tip in [0,0,0].

For more details on the original and new kinematic descriptions implemented in ROS; including all
measurements of parameters, gearing ratios, code for testing the kinematic description in MATLAB, and
measurements of distances for different configurations; please refer to section C.1 and C.3 in appendix C.

Employing Inverse Kinematics for a Controller in 3D Cartesian Space

The controller relies on the use of inverse kinematics for the (ambiguous) mapping from 3D Cartesian
space to 6D joint space. The inverse of the kinematic transformation matrix presented in equation (6.13)
is [Murray et al., 1994]:

j
i T−1 =

[
j
i RT − j

i RT j
i p

0 1

]
(6.17)

With the sequence of transformations from frame k to frame i being represented by the transformation
matrix k

i T, the inverse transformation, from frame i to frame k, is then its matrix inverse k
i T−1 [Murray

et al., 1994]:

k
i T =k

j T j
i T =

[
k
jR

j
i R k

jp+k
j R j

i p
0 1

]
⇔ k

i T−1 =

[
j
i RT k

jR
T − j

i RT k
jR

T k
jp−

j
i RT j

i p
0 1

]
(6.18)

A mapping from six to three degrees of freedom is a surjective map, i.e. several elements in the 6D
domain may map to the same element in the 3D co-domain. However the inverse map from 3D to 6D is
neither injective nor surjective, as each element in the 3D domain can map to several elements in the 6D
co-domain, and hence the mapping requires a decision of the "best" map.

In practice this mapping from the desired 3D Cartesian space configuration to a prudent 6D joint space
position of the da Vinci robotic patient manipulator is handled by the KDL inverse kinematics solver.
Then the transformed joint position commands are published on the appropriate ROS topic and thereby
passed to the low level controllers (see figure 1.5).

The IK KDL solver employed in ROS utilizes the kinematic chain from the URDF, which is generated
from the xacro link and joint kinematic description as presented in section C.3. From this chain a FK
position solver is created along with an IK velocity solver in order to define the IK position solver.

The KDL IK position solver utilizes the Newton-Raphson (NR) iterative numerical technique through
the function CartToJnt to determine a prudent joint configuration implementing the desired Cartesian
configuration. Note that the NR requires both position and velocity (derivative of position) to find a
solution.

The actual implementation of the KDL solver follows the recommended implementation method as de-
scribed by The Orocos Project main web page [Orocos, 2015]. Thus, the algorithm deployed for the
KDL solver follows the steps described below:
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Utilize KDL for Forward Kinematics

• Make a KDL tree (several chains) from URDF.

• Fetch all KDL segments, i.e. links

• Create chain from desired links: p4_rcm_base

to needle_driver_jawbone_right.

• Create FK kinematic solver based on that chain

• Get number of joints and create a joint array

• Ask for joint values

• Compute rotation/translation matrix T

Utilize KDL for Inverse Kinematics

• First three points are identical to FK solver

• Instantiate position solver x for Newton-
Raphson (NR) based on that chain

• Instantiate velocity solver ẋ for NR

• Specify NR resolution and no. of iterations

• Ask for desired (x,y,z) destination

• Call solver to compute necessary 6D angles

• Deliver result in a vector q

The KDL solver is, however, far from perfect. At present time, the solver has a tendency to choose joint
angles requiring multiple revolutions on the unit circle to obtain the same position as, obviously, less than
one revolution could have done. This is caused by the lack of joint limit specification. The problem and
the solution is outlined in figure 6.8 where q(i) is the ith controllable joint, e.g. p4_instrument_roll.

Q

q(i) > pi

Q

q(i) < -pi

Figure 6.8: Adjusting the KDL sultion for q(i) > pi and q(i) < -pi from red to blue direction of
rotation.

The solution found in figure 6.8 can be implemented as:

while(|q(i)|> π) : q(i) =


−(π− (q(i)−π)) if q(i)> π

(π+(q(i)+π)) if q(i)<−π

q(i) otherwise

This solution does, however, introduce limitations. The trajectory will inevitably be corrupted with
flicker and other unsightly behaviours when the solver wishes to spin a joint multiple times around the
unit circle. Additionally, not all joints can reach all the way to ±π which can cause imprecise settling
stages.

With the FK and IK solver ready, the algorithm connecting the subtasks can be presented.

6.5.2 Main Algorithm

The main algorithm is outlined in figure 6.9.
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python run_controllers.py 

wrapper script
- launch davinci_driver (establish TCP/IP)
- initialize p4_hand_pitch_command topic 
- initialize p4_hand_roll_command topic
- initialize p4_instrument_slide_command topic
- initialize p4_instrument_roll_command topic
- initialize p4_instrument_pitch_command topic
- initialize p4_instrument_jaw_right_command topic

in parallel

present user interface (UI)

- initialize IK solver:
        - make tree
        - load modified geometry from xacro files 
- advertise control signals (prepare to publish)
- import references_3d.txt

custom angles demo modeother controllers

non real-time processing
F

T

- subscribe to /joint_states topic (read the 6 angles from sensor (p4_hand_roll .... p4_instrument_jaw_right))
- convert the 6d angles to (x,y,z)coordinates with forward kinematics (compute_fk_chain()) with modified geometry
- calculate lie derivatives based on estimated (x,y,z) position
- calculate degree of linear combination between safety and non-safety controller (sigma)
- calculate safe controller (k0) 
- calculate control signal (u) in 3d
- use IK solver to calculate 6d angles based on desired (x,y,z) position (u)
- adjust angles to plus/minus pi and limit control signals
- publish control signals on topics : p4_hand_pitch_command .... p4_instrument_jaw_right_command

make instance timer t (real-time processing)

t.elapsed_time
    > Ts

Done?

F

T
export trajectory return 0

return 0 return 0return 0

wait for user input

safety 3d controller

Figure 6.9: Main algorithm for a safe controller in the 3 dimensional euclidean space.

The algorithm presented in figure 6.9 comprises the entire code structure which will not be elaborated
here, though as written in the introduction, it can be found in appendix H. The real-time part runs every
0.01s (100 Hz) which corresponds to the publish rate which also is set to 100 Hz. With all subtasks
implemented appropriately, it is time to analyse the results.
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6.5.3 Results

The results presented intends to demonstrate the below listed features:

• That the controller can find setpoints on Y = X0 \T .

• That the controller is stable on Y .

• That the controller will redirect the trajectory to a safe area if the direct path to the setpoint passes
through Xu or T .

• That the controller will ensure that the trajectory is redirected to a safe area if a setpoint is given
on the unsafe set Xu.

• That σ(x) increases its value as the trajectory reaches Xu starting from X0 through T (from 0 to 1).

The execution time of the controller is validated first, and a measurement is plotted in figure 6.10. From
this it is seen that the real time part is completed well within the 10 ms (100 Hz sample rate). As expected,
the execution time is considerably higher than for the 1D system (compare to figure 4.15) because of the
necessity of an inverse kinematics solver.
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tim
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]

#10-3
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Measured Real Time Execution time for Safety in 3D

execution time

Figure 6.10: Execution time for 3D system. It is seen that the controller never exceeds a compu-
tation time of 1.2 ms. This plot can be reconstructed by running the MATLAB script
measurements/safety_3d/execution_time/plot_exe_3d.m in appendix J.

The features listed above can be verified in the trajectory plot shown in figure 6.11. Plot details and mea-
surements can be reconstructed by running the MATLAB script plot_3d_meas.m found in appendix J
in the folder measurements/safety_3d. The first 2-3 setpoints given in figure 6.11 are within the set Y
and thereby safe. It is seen how the desired setpoints initially are reached (with a slight detour caused by
the KDL solver). It is seen that when a setpoint is given which requires a path through Xu, the safety con-
troller gradually takes over and redirects the trajectory around Xu and finally allows it to find its reference
value.

It is also seen that σ(x) increases along with a shorter distance to Xu, as indicated with green when
σ(x) ∈ (0,0.25] and magenta when σ(x) ∈ (0.25,1] in figure 6.11. It can be noted that not all setpoints
are reached completely, which is due to imprecise kinematics, joint values computed by the IK solver that
are outside the implementable range and last but not least, the lack of integral action in the controller.
Finally, when a setpoint is given on Xu, it is seen how the safety controller quite aggressively forces
the trajectory away from Xu. All these features are indeed the expected outcome of the controller, thus
verifying the implementation.

The result depicted in figure 6.11 and its associated analysis concludes the implementation.
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Figure 6.11: Results from safety controller in the 3D Euclidean space. The interior of the green ellip-
soid comprises Xu and around it is a 1 cm thick rim which constitutes T (not plotted). The
trajectory is plotted with a blue color, and it is overlay with a green color if σ(x)∈ (0,0.25]
and a magenta color if σ(x) ∈ (0.25,1]. The red lines demonstrate the direct path between
two desired setpoints (red circles). The trajectory is initiated in x = (0.06,0.08,−0.01)
(safe) and has a desired final destination in x = (0,0,0) (unsafe). This plot can be recon-
structed by running the MATLAB script measurements/safety_3d/plot_3d_meas.m in
appendix J.

6.6 Conclusion for Safety in the 3D Euclidean Space
A big step has been taken towards ensuring safety in the three dimensional Euclidean space, i.e. a three
dimensional control barrier function which is defined to fulfil the demands given in Definition 3.1 and
a developed controller which proves itself very efficient in the MATLAB simulation environment, i.e.
with ideal sampling rate and under no influence of an IK solver and other stochastic uncertainties. The
controller fulfils all the initial outlined requirements.

The implemented controller on the da Vinci robot does indeed show the full potential of using barrier
certificates in surgical robotics and proves that safety control can be implemented on a robot moving in
3D Cartesian space. It does, however, suffer from a poor IK solver, imprecise kinematics and the lack
of integral action. Also, the model derived for the three dimensional space is very simplified, though
sufficient to establish a "proof of concept" framework.

An additional huge simplification is the consistent disregard of the orientation of the end effector in the
implementation, thus merely guaranteeing safety for the position of the end effector, not the full extent
of the physical volume of the robotic tool.
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Due to present limitations in the TCP/IP connection to the robot the implementation is made at a 100 Hz
sampling rate, which causes erratic behaviour. Based on the results in chapter 4 and chapter 5 it is
expected that an increase of the sampling rate to 2 kHz will smooth the behaviour of the trajectory on
the verge of the transition region, where the safety controller starts to take effect. It is anticipated that
the trajectory will settle at a near constant distance to the unsafe set on its path to setpoints "on the other
side" of this region, similar to what was seen in the MATLAB simulation in section 6.4.

These topics are important to investigate and implement in future work.
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Chapter 7

Interim Conclusion

An introduction to the concept of automated surgery with robotic manipulators is given in chapter 1.
This founds the need for a way to guarantee safety in such operations. Thus, the initial task posed in
subsection 1.4.1 concerns two approaches to the problem of ensuring safety for the da Vinci robotic
manipulator, i.e.:

1. The design of a safe controller ensuring safety in real-time.

2. The analysis of a controller, posing the question if it is safe.

The first bullet point is at this point investigated. The theory presented in [Wieland and Allgöwer, 2007]
is adopted and described in chapter 3 which ensures that the barrier certificate requirements outlined in
chapter 2 are obeyed, thereby allowing the development of safe controllers.

The theory is applied to specific use cases. First, a palpable example is conducted in chapter 4 which
ought to give experience with control barrier functions (CBFs) and the way the theory is applied. The
outcome is not only a fully functional safe controller in one dimension, but also a valuable experience in
the application of the theory. As expected, when the system order increases, the difficulty in constructing
a valid CBF, is also increased. Though, with a system order n = 2, it is indeed still possible. Primarily
because the states can be translated into physically meaningful quantities such as position and velocity.
However, it is easy to imagine that as n increases and the physical interpretation of the states obscures to
abstract states, this approach will be nearly impossible.

The next step is taken in chapter 5 where the problem consists of ensuring safety for a beating heart, such
that a virtual fixture can be ensured in a safe manner. The problem here differs from chapter 4 because
the CBF is dynamic. Though, again, a successful implementation is performed and a valid CBF can be
found. The dimension of the system is kept low which simplifies the task of finding a valid CBF. The
lack of integral action is obvious in this chapter and with a more advanced/realistic model of the heart,
the search for a valid CBF will be a highly non-trivial task. If not impossible.

The dimension of the considered system is yet again increased in chapter 6. A safe controller in the
3D Euclidean space is developed with an associated valid CBF alongside. It is from here seen that the
creativity and complexity increases yet a step. With a simplified model of the robotic manipulator, a suc-
cessful analysis and implementation is performed. The result is as expected and indeed quite convincing,
but it is also clear that to reach the end goal of a realistic model of the heart or other vital organs and of
the robotic manipulator, the system order must be increased. Again, this implies serious challenges in
the construction of a valid CBF.

Accordingly, it is desirable to find a different approach to defining barrier certificates that is more efficient
for higher order systems. Indeed, an efficient and straightforward approach may be difficult to derive,
but the success criteria for constructing CBFs for higher order systems is not to find a simple method, but
to find a method at all. Thus the success criteria can more appropriately be defined as: If it is possible, it
is better. This is where the second bullet point becomes active.

67



The MATLAB toolbox SOSTOOLS can be used to perform a "controller analysis". This toolbox uses
Sums of Squares optimization to solve problems, so it is necessary to cast the definition of the barrier
certificate as an SOS problem in order to perform a barrier certificate search with the toolbox. Hence the
background to the SOS formulation of the problem is presented in the upcoming chapter, after which the
SOSTOOLS toolbox is introduced, and used for barrier certificate search.

This approach intends to solve the second bullet point, i.e. to find a way to analyse if a control system is
safe, thereby giving it a "safe" or "not safe" verdict.
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Chapter 8

Safety Verification with Barrier Certificates

The construction of a valid barrier certificate can be a non-trivial task, as it was seen in the construction of
a CBF for the second order system in subsection 4.2.2. And with increasing order of the system for which
safety need to be guaranteed the difficulty rapidly increases. Hence it is desired to use a more methodical
approach to construct barrier certificates, and for this purpose the MATLAB toolbox SOSTOOLS can be
used [Prajna et al., 2007] (for acquisition, see appendix E). This toolbox requires that the problem is cast
as a sum of squares (SOS) program, which is why this chapter is dedicated to give an introduction to the
concept of SOS and how the barrier certificate definition can be recast as an SOS problem.

Now, instead of manually constructing a CBF for the open-loop system in order to design a safety con-
troller from it, a barrier certificate for a closed-loop system is sought with SOSTOOLS. When a barrier
certificate can be found for a closed-loop system fcl(x) according to Definition 2.2 this signifies a verifi-
cation that the system, and hence the controller, is safe according to the outlined problem. SOSTOOLS
can be used to search for a polynomial barrier certificate given that: [Prajna et al., 2007]

• The vector field of the closed-loop system is polynomial.

• The sets X , X0 and Xu can be described as intervals in each of the n dimensions, which can be
defined through positivity of polynomials on each interval.

Furthermore the recasting of the barrier certificate definition as an SOS problem requires the use of SOS
polynomials. An SOS polynomial p(x) is denoted by p ∈ Σ[x] signifying that p is a polynomial in the
variable x with coefficients in the set of SOS variables: Σ. A polynomial p(x) is SOS if there exist
polynomials f1, . . . , fm such that [Parrilo, 2003]

p(x) =
m

∑
j=1

f 2
j (x) (8.1)

A short illustrating example is given initially with the intention to provide some understanding about
SOS polynomials and the notation applied.

Example 8.1 (Sum of Squares Polynomial)
Consider the second order polynomial f1(x) = ax2 +bx+ c. Comparing to the structure of an SOS
polynomial f2(x) = (d + ex)2 = d2 +2dex+ e2x2, it is seen that if the relationship:

a = e2, b = 2de, c = d2
(

or simply b = 2
√

ac
)

holds, then a,b,c are SOS variables, denoted by a,b,c ∈ Σ, because they are the coefficients in an
SOS polynomial. It can additionally be stated that:

f1(x) ∈ Σ[x]

where Σ[x] denotes a set of polynomials in x with coefficients in Σ, i.e. f1(x) is SOS.
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Declaring a polynomial in SOSTOOLS is done by defining a monomial vector for which the program
solves for polynomial coefficients. Introducing the notion of a monomial vector as a vector z in x of
degree deg; e.g. if x ∈ R2 and deg = [0 : 2] each entry has the form xa

1xb
2 with exponents a+b = deg =

0, ...,2 i.e.

z = [x0
1x0

2 x1
1x0

2 x0
1x1

2 x2
1x0

2 x1
1x1

2 x0
1x2

2]
T = [1 x1 x2 x2

1 x1x2 x2
2]

T (8.2)

Now, according to [Parrilo, 2003] an SOS polynomial p ∈ Σ[x] can be formulated on a quadratic form
comprising a coefficient matrix and a monomial vector

p = zT Qz, p≥ 0 ∀ x ∈ Rn (8.3)

where
z is a monomial vector in x ∈ Rn

Q is a real positive semidefinite symmetric coefficient matrix

With monomials and SOS polynomials defined, a polynomial barrier certificate can now be constructed.
An SOS description of a problem, however, is a global description of nonnegativity (positive or zero),
and it is desired to set up local requirements for the barrier polynomial on each of the sets X , X0 and Xu.

A way to be able to define nonnegativity locally is to use Positivstellensätze. A Positivstellensatz is a
structure theorem of a polynomial which is positive on some set, and gives an algebraic certificate that
a solution exists for a system of real polynomial inequalities [d’Angelo and Putinar, 2009]. In Putinar’s
Positivstellensatz, presented in Theorem 8.2, a compact set K⊂Rn (a strict subset of the state-space, i.e.
not including the entire state-space) is defined by the nonnegativity of some polynomials g j. Now the
positivity of a polynomial h on the set K can be expressed in terms of a weighted sum of these polyno-
mials g j with SOS polynomials as coefficients q j ∈ Σ[x] [Laurent, 2009,pp 184-186],[Lasserre, 2009,pp
28-29].

Theorem 8.2 (Putinar’s Positivstellensatz)
Given the finite family of polynomials (g j)

m
j=1 and the subset Q(g) generated by the family (g j)

m
j=1

[Lasserre, 2009,p 29]

polynomials (g j)
m
j=1 ∈ R[x] (8.4)a

set Q(g) = Q(g1, ...,gm)≡

{
q0 +

m

∑
j=1

q jg j

∣∣∣∣∣ (q j)
m
j=0 ∈ Σ[x]

}
(8.4)b

Assume that there exists a function u(x)∈Q(g) such that the level set {x∈Rn | u(x)≥ 0} is compact
[Lasserre, 2009,p 29]. Given a polynomial h and the compact basic semialgebraic set K defined by
the nonnegativity of the polynomials g1, . . . ,gm

polynomial h ∈ R[x] (8.5)a

set K≡
{

x ∈ Rn | (g j)
m
j=1 ≥ 0

}
(8.5)b

If the polynomial h is strictly positive on the set K, then h ∈ Q(g), which means that h can be
formulated as

h = q0 +
m

∑
j=1

q jg j (8.6)
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x0

∆
g

0
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Figure 8.1: Example of g-polynomials defining each of the sets X , Xu and X0 by their nonnegativity,
with a distance ∆ between the safe and unsafe sets.

In equation (8.5)b the region of nonnegativity of the polynomial(s) (g j)
m
j=1 define the extent of the set

K, the gs being polynomials in the state variables x as defined by equation (8.4)a, e.g. in 1D Cartesian
space g(x) may be a parabola which is positive-valued on the interval x ∈ [a,b], hence defining the
semialgebraic set K= {x ∈ [a,b]}. In this way appropriate polynomials g j can be constructed to define
each of the sets X , X0 and Xu as given by Definition 2.2. An example of a polynomial g1 for each of the
sets is sketched in figure 8.1.

The variables (q j)
m
j=1 in equation (8.4)b are SOS and thereby nonnegative per definition. Hence from the

definition of the gs and qs it can be seen from equation (8.6) that the polynomial h is positive on the set
K. Outside the set K one or more g js are negative, and hence the sign of h cannot be determined outside
K. Rearranging equation (8.6) to

q0(x)︸ ︷︷ ︸
≥0 ∀ x

= h(x)−
m

∑
j=1

q j(x)︸ ︷︷ ︸
≥0 ∀ x

g j(x)︸ ︷︷ ︸
≥0 ∀ x∈K

∈ Σ[x] (8.7)

however, the right-hand expression will always be nonnegative due to the SOS equality. Using SOS-
TOOLS it is possible to solve for the unknown h setting up a number of SOS inequalities corresponding
to defining the right-hand side of equation (8.7) as being nonnegative.

8.1 Recasting the Barrier Certificate Definition

Now equation (8.7) can be seen as a template for the reformulation of the requirements for a barrier
certificate in Definition 2.2. Setting up each of the requirements for the barrier certificate B(x) on each
of the semialgebraic sets X , Xu and X0, is a matter of defining one or more polynomials g j(x) for each
set such that the intersection of the nonnegative regions of the polynomials outline the set. E.g. in order
to define the region Xu ⊂ X ⊂ R construct a polynomial g(x) such that it is positive within the unsafe
interval and its zero level set constitutes the desired border of the region. An example of a polynomial
g(x) defining the region Xu is seen in figure 8.1 as the red curve. If several polynomials g j(x) are used
to define Xu, the set is defined by the nonnegative intersection region, i.e. the subset of the state-space
where all of the g j(x)s are nonnegative.

When the polynomials g j(x) have been defined for each of the sets, the polynomial h(x) in equation (8.7)
is substituted according to Definition 2.2, such that h(x)≥ 0 on the relevant set. That is, when defining X
according to equation (2.5)c, the polynomial h(x) can be written as −L fcl B(x) and when defining X0 use
h(x) = −B(x) according to equation (2.5)a. However, when defining Xu according to equation (2.5)b,
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the positivity constraint on B(x) has to be transformed into a nonnegativity constraint. This can be done
by introducing a small scalar value ε̄ > 0, such that B(x)≥ ε̄ or identically B(x)− ε̄≥ 0 which can now
be substituted for h(x).

Definition 8.3 (Barrier Certificate Recast to SOS Formulation)
In summary, referring to the requirements for a barrier certificate in Definition 2.2 and the SOS for-
mulation of the polynomial h in equation (8.7) based on Putinar’s Positivstellensatz, the inequalities
defining the barrier certificate B(x) can be set up as

−B(x)≥ 0 ∀ x ∈ X0 ⇐ −B(x)−
m

∑
j=1

q jg j ∈ Σ[x] (8.8)a

B(x)− ε̄≥ 0 ∀ x ∈ Xu ⇐ B(x)− ε̄−
m

∑
j=1

q jg j ∈ Σ[x] (8.8)b

−L fcl B(x)≥ 0 ∀ x ∈ X ⇐ −L fcl B(x)−
m

∑
j=1

q jg j ∈ Σ[x] (8.8)c

With this formulation the Lie derivative is required to be nonpositive on set X and the barrier certificate
is required to be nonpositive on the safe set X0 and greater than or equal to the constant ε̄ on the unsafe
set Xu. When defining the sets, the safe and unsafe regions must be separated by some distance ∆. This
is illustrated in figure 8.2.

The task of searching for a barrier certificate validating system safety is now a matter of the fairly easy
construction of the polynomials g j(x) to define the desired outline of each of the sets X , Xu and X0, as in
the example in figure 8.1, in SOSTOOLS. However, it is also a matter of deciding the polynomial degree
(through monomials) of B(x) and of each of the SOS polynomials q j(x). As small a degree "as possible"
is desired for all monomials, but it may be necessary to increase the degree iteratively. This introduces
numerical errors, which may require that the size of ε̄ must be increased. When no solution can be found,
it may be necessary to increase the distance ∆ separating the safe and unsafe regions, i.e. contract the
safe region by altering the polynomials g j(x) outlining the region.

x
B(x) ≥ ε–B(x) ≤ 0

ε–

∆

0 0

B(x)

Figure 8.2: The value of B(x) on the unsafe set is at least the small positive value ε̄, while the value on
the safe set is nonpositive. This requires that the two sets are separated by a small distance ∆.

In the following chapter the syntax for SOSTOOLS is introduced and barrier certificates are sought to
validate safety of systems, based on linear closed-loop systems representing the da Vinci robot from the
preceding chapters.
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Chapter 9

Barrier Certificate Search with SOSTOOLS

As presented in chapter 8 a polynomial barrier certificate can be constructed using SOS optimization
by employing the MATLAB toolbox SOSTOOLS. This toolbox is a convex relaxation framework based
on sum of squares decompositions of multivariate polynomials and semidefinite programming solvers
[Prajna et al., 2007] (for acquisition, see appendix E).

In this chapter barrier certificates are found with SOSTOOLS by using Putinar’s Positivstellensatz, pre-
sented in Theorem 8.2, to set the constraints for the barrier certificate on each of the sets X , Xu and X0.
First, section 9.1 introduces the basic functions in SOSTOOLS needed to formulate the requirements
for the barrier certificate, and a step-by-step guide to define the program is presented, concluding with
an overview of how to evaluate the validity of a solution. In section 9.2 the one-dimensional system
comprising the da Vinci robot slide movement from chapter 4 is analysed, initiated by an exhaustive
example of the full formulation of a barrier certificate search for the first order system model, and finally,
in section 9.3, the robot slide movement modelled as a second order system is safety validated.

9.1 Formulation of a Barrier Certificate in SOSTOOLS Syntax

An SOS program is the framework in which the barrier certificate is defined by setting up the SOS
requirements from Definition 8.3, and searching for the barrier certificate corresponds to solving the SOS
program. This section gives a short introduction to the SOSTOOLS formulation of the parameters and
variables necessary to set up the requirements for the barrier certificate, based on the SOSTOOLS user
guide [Papachristodoulou et al., 2013]. An overview of necessary SOS functions is given in table 9.1.

Syntax Explanation
pvar x1;
prog = sosprogram(x1);

Initialization of an SOS program prog in the state variable
x1, which is declared as type pvar (symbolic variable)

Z = monomials(x1,deg);
[prog,q] = sossosvar(prog,Z);

Parametrize an SOS polynomial q in the SOS program
prog. The degree of the SOS polynomial is defined by the
monomial vector Z of degree deg (i.e. deg(q) = 2deg)

Z = monomials(x1,deg);
[prog,B] = sospolyvar(prog,Z);

Parametrize a polynomial B in the SOS program prog. The
degree of the polynomial is defined by the monomial vector
Z of degree deg (i.e. deg(B) = deg)

prog = sosineq(prog,-B-q·g); Declare the inequality constraint, e.g. -B-q·g (or more ex-
act: -B-q·g ∈ Σ[x1]) in the SOS program prog

prog = sossolve(prog); Solve the SOS program prog i.e. find coefficients for all
polynomials conforming with all constraints

getB = sosgetsol(prog,B) After solving, get the solution (with coefficients) for the
polynomial B

Table 9.1: SOSTOOLS functions necessary to search for a barrier function as given by Definition 8.3.
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An SOS program is initialized with the command sosprogram, and polynomials and SOS polynomials
can be declared in the program as functions of the variables that are input to the program (see table 9.1)
with sospolyvar and sossosvar, respectively. When the necessary SOS variables and polynomials
are defined, the inequalities in Definition 8.3 can be defined with the function sosineq, and when all
constraints are set up, the program is (attempted to be) solved by calling sossolve. This will return an
overview of the precision of the solution (if any was found) as a residual error norm, number of iterations
and time elapsed for solving the problem. To get the solution (coefficients) found for any of the SOS
variables or polynomials, call the function sosgetsol (more about evaluating the solution is found in
subsection 9.1.2).

9.1.1 Step-by-step Guide to Search for a Polynomial Barrier Certificate in SOSTOOLS

Searching for a polynomial barrier certificate in SOSTOOLS requires the definition of all of the variables
and polynomials given by Definition 8.3 as follows:

• Initialize the Program
First declare the state space variables x ∈ Rn as pvar, and initialize the SOS program with the
system states by the function sosprogram.

• Define the Vector Field
The open-loop state space system fol(x) is defined, and a controller is found according to pole
placement or another preferred method. Then write the closed-loop system equation fcl(x) in
terms of the symbolic state vector.

• Set up the Constraints for the Polynomial Barrier Certificate
Declare a monomial vector zB in x (or part of x) of sufficiently large degree, and parametrize the
polynomial B(x) as a function of zB with sospolyvar. The problem of finding the coefficients for
the barrier certificate is now for each region X , Xu and X0 a matter of defining the following:

◦ Define the Polynomials g j(x)
Define one or more polynomials g j that are positive in the region to be defined, e.g. X , and
negative outside.

◦ Declare the SOS Variables q j(x)
Declare monomial vectors zq j in x of appropriate degree (preferably as small as possible),
and parametrize the SOS polynomials (multipliers) q j with sossosvar.

◦ Set up the Inequality
Cf. the nonnegativity of an SOS polynomial (q0), each sosineq can be formulated as given
by Definition 8.3. For equation (8.8)b choose a small positive number ε̄. The inequality
pertaining to a set may be defined in terms of several g js; if the set is defined by

• g1
⋂

g2
⋂
...

⋂
gm, then write h−∑q jg j ≥ 0

• g1
⋃

g2
⋃
...

⋃
gm, then write h−q1g1 ≥ 0, h−q2g2 ≥ 0 etc.

Note that each expression in the inequalities in Definition 8.3 must have even degrees in the
leading and trailing terms in order for the expressions to be SOS.

• Solve the SOS Program
With all inequalities defined in the program, SOSTOOLS is now ready to solve for the barrier
certificate with sossolve, if any certificate exists for the given system fcl(x). If no solution is
found, adjusting the degree of the SOS variables q j or the polynomial B(x) may yield a solution.
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Also, adjusting ∆ and ε may increase the probability of finding a solution. Otherwise it can be
concluded that safety cannot be guaranteed of the system under scrutiny and the set X0 may be
forced smaller.

9.1.2 Evaluating the SOSTOOLS Solution

If no valid solution is found, the tested closed-loop system fcl(x) cannot be guaranteed to be safe. It may,
however, still be possible to find a barrier certificate and validate safety using a different degree of the
polynomial B(x) or SOS polynomials q j(x). Otherwise the safe region X0 may have to be smaller.

When the SOS program is solved, the list of information printed out in the MATLAB terminal includes
a number of useful parameters for evaluating the validity of the solution, summarized in table 9.2. If the
problem is either primal or dual infeasible, indicated by pinf or dinf being 1, respectively, obviously no
solution could be found. The feasibility ratio is an indicator of the feasibility as well, and converges to 1
for feasible solutions and to -1 for strongly infeasible solutions [Aylward et al., 2008]. A value in between
is an indicator of numerical problems, which will also be written in the overview. The residual norm

is the norm of the numerical error in the solution [Papachristodoulou et al., 2013], and when numerical
problems cause this error to exceed a tolerance set in the SOSTOOLS solver, this is indicated as a warning
of numerical errors with numerr = 1, while a numerical error of 2 indicates failure of the solver.

Parameter Explanation
pinf = 0 Primal infeasibility of the problem is indicated with pinf = 1

dinf = 0 Dual infeasibility of the problem is indicated with dinf = 1

feasratio = 1 Feasibility ratio converges to 1 for feasible solutions and to -1 for strongly
infeasible solutions, while values in between indicate numerical problems in
the solution

numerr = 0 Numerical error warning is indicated with numerr = 1 if the residual norm
exceeds a tolerance value (default to 1e-9, see sossolve.m line 61), and
complete failure of the solution is indicated with numerr = 2

Residual norm Norm of the numerical error in the solution
[Q,Z,f] =

findsos(-B-g*q);

Test that the solution found complies with the requirement that the inequality
is in fact SOS by checking that it can be resolved as ZTQZ or ∑f2

Table 9.2: SOSTOOLS parameters useful in the evaluation of the validity of a solution barrier function.

A final test that the solution is valid is to check that the SOS inequalities, i.e. the formulation of the
constraints according to Definition 8.3, are SOS. This can be done by testing that each of the expressions
can be resolved in the form in equation (8.1) or equation (8.3), i.e. as ∑ f 2(x) or zT (x)Qz(x) with the
function findsos using the polynomial coefficients from the solution (using sosgetsol as described in
table 9.1). If any of the three expressions cannot be resolved in these forms, it can be concluded that it is
not SOS, and hence the solution does not comply with the requirements for a barrier certificate, i.e. the
solution is invalid.
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9.2 Barrier Certificate Search for First Order Robot Slide System

In order to search for a barrier certificate the robot slide system from chapter 4 is reintroduced, and will
be recapitulated along with new notation. As illustrated in figure 9.1 the physical limits of the slide
movement, ±10 cm, defines the set X , and the unsafe region Xu is the upper 5 cm of this interval. The
safe set should be as large as possible, but due to the fact that the barrier certificate must have a minimum
value of ε̄ on the unsafe set, the safe set X0 is separated from Xu by a small distance ∆, as was illustrated
in figure 8.2. This can be summarized (with units in meter) as

• Considered subset of the state space is the interval between the physical limits of the slide move-
ment, i.e. X = {x1 ∈ [−0.1,0.1]} ⊂ R

• The unsafe set is Xu = {x1 ∈ [0.05,0.1]} ⊂ X
• The safe set is as much of the remaining part of the considered set as possible, i.e. X0 = {x1 ∈
[−0.1,0.05−∆]} ⊂ X \Xu

It is noted that the design criteria differ from the criteria in chapter 4 given that the barrier certificate now
must be valid in the entire safe region.

Physical limits
         = -10 cm
         =   10 cm

Unsafe region 
         =    5 cm
         = -10 cm

Distance between
safe and unsafe sets
 ∆ > 0 

min

min

max

max

0

u,min

u,min

u,max

u

∆

0 cm

Figure 9.1: The boundaries in slide position of the robotic instrument for each of the sets X , Xu and X0,
is visualized for the instrument house.

Using the first order linear model of the robot slide system described in subsection 4.1.1, and the lin-
ear position controller described in subsection 4.3.1 with proportional gain K and unity gain between
reference and position secured by N̄ = K+1, the closed-loop system is recapitulated as

ẋ1 = Ax1 +Bu = Ax1 +B(N̄xref−Kx1)

= (A−BK)︸ ︷︷ ︸
−τ−1(K+1)

x1 + BN̄︸︷︷︸
τ−1(K+1)

xref

= τ
−1(K+1)(xref− x1), with τ = 110ms (9.1)

This system is used in the following subsections in the barrier function search. First with a reference
in zero giving detailed explanations of the program formulation, and subsequently for the same system,
testing for how wide a range of references safety can be guaranteed. Last, a coordinate shift from the
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position-reference-space to the error-space is performed in order to simplify the search for reference
intervals yielding valid solutions.

9.2.1 Safety Verification of First Order System with Zero Reference

To give a clear picture of the structure of the SOS program, an initial exhaustive example is given for
the one-dimensional first order system with zero as reference position. Commands associated with SOS-
TOOLS is marked in brown in the following code snips. The full code can be found in subsection G.2.1
and in appendix J on the path matlab_scripts/sostools/1storder_noRef.m

Search for a barrier certificate by first defining the open-loop system, and designing a controller (with
pole placement) as described in subsection 4.3.1.

1 % Time constant from measurement
2 tau = 0.11;
3 % State−space matrices from first order system
4 A = −1/tau;
5 B = 1/tau;
6 K = place(A,B,10*eig(A));

Define the desired distance ∆ between the safe and unsafe sets along with the minimum value ε̄ of the
barrier function on the unsafe set.

1 % Distance between defined safe and unsafe regions
2 delta = 1e−3;
3

4 % Minimum value of the barrier certificate on the unsafe set Xu
5 epsilon = 1e−3;

Then the symbolic state variables are declared for the SOS program in SOSTOOLS with the command
pvar. Now the SOS program prog can be initialized using the function sosprogram which takes the
state variable as input.

1 % Declare state variables
2 pvar x1
3

4 % Initialize the sum of squares program
5 prog = sosprogram(x1);

The vector field or derivative of the state can now be defined in terms on the symbolic state variable. This
function is necessary for the SOS program when requiring that the Lie derivative of the barrier certificate
must be negative on the set X .

1 % Vector field dx/dt = fx (closed loop)
2 fx = (A−B*K)*x1;

For ease of defining a (1D) function g that is positive on an interval [p1, p2], a parabola function is used.
1 function [a,b,c] = parabola(p1,p2,a)
2 if ~exist ( ’a ’,’ var ’ )
3 a=−1;
4 end
5 b=a*(p1^2−p2^2)/(p2−p1);
6 c=−a*p1^2−b*p1;
7 end

Now declare the polynomial barrier function with the command sospolyvar. To do this, a monomial
vector must be specified with monomials (see the monomial example in equation (8.2)), which takes the
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state variable and the monomial degree(s) as input. The monomial degrees for B(x1) are chosen as low
as possible until a solution can be found. In this case a solution can be found for a degree of B(x1) that
is [0:4], i.e. a polynomial in x1 of degrees zero through four.

1 % Declare the polynomial barrier function
2 zB = monomials(x1,0:4);
3 [prog,Bar] = sospolyvar(prog,zB);

Now the set X can be defined as the slide region according to figure 9.1 using the Lie derivative inequality
in equation (8.8)c, which is defined with the command sosineq. The SOS polynomials q are of the form
in equation (8.3), i.e. q = zT Qz (so the degree of q is twice the degree of the monomial vector z), and
are declared with the command sossosvar, also taking a monomial vector as input.

1 % Define space X in Rn
2 [a,b,c] = parabola(−0.1,0.1); % get coefficients for parabola which is positive for x in [−0.1,0.1] m
3 gX = a*x1^2+b*x1+c;
4

5 zX = monomials(x1,0:4);
6 [prog,qX] = sossosvar(prog,zX);
7

8 prog = sosineq(prog,−diff(Bar,x1)*fx−gX*qX);

Similarly, the unsafe region Xu is defined according to the SOS inequality in equation (8.8)b as the area
between slide positions 5-10 cm as given by figure 9.1.

1 % Define space Xu in X
2 [a,b,c]=parabola(0.05,0.1);
3 gXu = a*x1^2+b*x1+c;
4

5 zXu = monomials(x1,0:4);
6 [prog,qXu] = sossosvar(prog,zXu);
7

8 prog = sosineq(prog,Bar−epsilon−gXu*qXu);

And finally the region X0 is defined according to the SOS inequality in equation (8.8)a as X0 ⊂ X \Xu,
separated from the unsafe set by the distance ∆.

1 % Define space X0 in X
2 [a,b,c]=parabola(−0.1,0.05−delta);
3 gX0 = a*x1^2+b*x1+c;
4

5 zX0 = monomials(x1,0:4);
6 [prog,qX0] = sossosvar(prog,zX0);
7

8 prog = sosineq(prog,−Bar−gX0*qX0);

With all three areas defined according to Definition 8.3, the program is ready to be solved by using
the command sossolve. If a solution is found, an overview of the solution accuracy is printed in the
MATLAB terminal as the residual norm, feasibility ratio, number of iteration steps and solving time. To
get the polynomial B(x1) use the function sosgetsol.

1 % Solve for barrier certificate
2 prog = sossolve(prog);
3 getB = sosgetsol(prog,Bar)

From the terminal printout it is verified that the problem is neiter primal or dual infeasible, and that the
feasibility ratio for this solution is given as 1.0122, which is fairly close to 1 and hence indicates that the
solution is valid. The solution is found in 15 iterations with a residual norm of 7.5521e-10 and thereby
no indication of numerical errors.
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To additionally verify that the solution is indeed valid, it is tested that the solution complies with the
inequalities being SOS by testing if they can be resolved to the form in equation (8.3).

1 % Get coefficients for the remaining polynomials
2 getdBdx = diff (getB,x1)
3 getqXu1 = sosgetsol(prog,qXu);
4 getqX01 = sosgetsol(prog,qX0);
5 getqX1 = sosgetsol(prog,qX);
6

7 % Test if the inequalities are SOS
8 [Q,~,~] = findsos(getB−epsilon−gXu*getqXu1);
9 [Q2,~,~] = findsos(−getB−gX0*getqX01);

10 [Q3,~,~] = findsos(−detdBdx*fx−gX*getqX1);

This is indeed the case, and it is thereby verified that a barrier certificate is found for the closed-loop
system in equation (9.1), namely

B(x1) = 373.0249 · x4
1 +151.3339 · x3

1 +16.8843 · x2
1−6.4509e-6 · x1−0.061301 (9.2)

The first three coefficients of the polynomial barrier certificate are of ample size (not in the order
1e-5 or less), while the fourth seem unimportant. Decreasing the degree of the monomial zB (and
thereby the order of B) to [0,2:4] gives the solution

B(x1) = 290.559 · x4
1 +112.4642 · x3

1 +12.2165 · x2
1−0.044304 (9.3)

which is also a valid barrier certificate, found in 13 iterations with feasibility ratio 0.9797 and a residual
norm of 1.0412e-09. The two barrier certificates are depicted in figure 9.2, from which it is seen that
both comply with the requirements for a barrier certificate, i.e. they are positive (B(x1) ≥ ε̄) on Xu =

{x1 ∈ [0.05,0.1]} and negative on X0 = {x1 ∈ [−0.1,0.05−∆]}, and their Lie derivatives are nonpositive
on X = {x1 ∈ [−0.1,0.1]}, in accordance with Definition 2.2. It is also seen that the value of each of the
barrier certificates on the set X seem reasonable being neither exceptionally small or large, verifying that
the choice of ε̄ seems reasonable.

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

B(x) on LfclB(x) on 

slide position [m] slide position [m]
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deg(B)=[0:4]
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Figure 9.2: Barrier certificates found with SOSTOOLS for the first order system in equation (9.1) with
zero reference, that comply with the requirements in Definition 8.3.

It is noted that the safety verification is accomplished with a fourth order polynomial barrier certificate,
while it can be argued that it could be possible with a second order polynomial. This is, however, not
important for the safety verification of the system, where the conclusion is that a solution can be found,
thus the system is safe.
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9.2.2 Verifying a Range of Reference Positions for the First Order System

Now a non-zero reference is introduced. As it is desired to verify safety for a whole range of references,
the barrier polynomial is now formulated as a function of both position and reference B(x1,xref), thus
introducing the reference as an independent state implying an augmented state space equation equivalent
to equation (9.1):

ẋ =

˙[
x1

xref

]
=

[
A+BK BN̄

0 0

][
x1

xref

]
=

[
−τ−1(K+1) τ−1(K+1)

0 0

][
x1

xref

]
(9.4)

In the SOS program constraints are set up for the new variable xref for each of the sets, included as
extra terms in the sums in Definition 8.3, e.g. for the set X a new term with SOS polynomial q(x) and
polynomial g(xref), positive on the reference interval [rMin,rMax], is included in the inequality as:

1 % Constraint on the set X being nonpositive for the interval of references
2 [a,b,c] = parabola(rMin,rMax);
3 gX2 = a*xref^2+b*xref+c;
4

5 zX2 = monomials([x1,xref],0:2);
6 [prog,qX2] = sossosvar(prog,zX2);
7

8 prog = sosineq(prog,−[diff(Bar,x1) diff (Bar,xref ) ]*[ fx ;0] − gX1*qX1 − gX2*qX2);

The goal is to verify safety of this system for a range of references, preferably for all references within
the safe position interval, such that the sets would be as depicted in figure 9.3a.

Expected Barrier Certificate Geometry

In order to get a picture of the expected outcome, a brief analysis of the considered state space is made.
It can be seen from equation (9.4) that the system vector field will be zero when x1 = xref, which in turn
means that the Lie derivative of the barrier function will be zero for x1 = xref, marked in figure 9.3b with
a green line. To the upper left of this line the system will have a positive time derivative, thus requiring
that the derivative of the barrier function with respect to x1 must be negative in this region in order to
comply with equation (2.5)c i.e. L fcl B(x) ≤ 0. Thus, to the left of this line the barrier polynomial will
have decreasing values in the positive x1 direction. To the lower right of the green line the system will

0 u
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Figure 9.3: Outline of the safe and unsafe sets marking the value requirements for the barrier certificate
as a function of the robot position and the position reference. Figure 9.3b sketches that
L fcl B(x) = 0 in x1 = xref as inferred from equation (9.1).
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have negative time derivative, thus analogously requiring that the derivative dB(x)/dx1 must be positive
in this region, meaning that B(x) will have increasing values in the positive x1 direction here.

In figure 9.3c the zero level set of a barrier function is sketched with a red line between the safe and unsafe
regions. As this level set gets closer to the green line indicating the zero-value of the Lie derivative for
increasing values of xref, it is expected that the value of B(x) is increasing along this line in the positive
xref direction.

Results and Conclusions

A number of tests are run with SOSTOOLS varying the values of the parameters ε̄, ∆, and the degree of
the SOS polynomials q j and the polynomial B(x), in order to see for how high a level of the upper end of
the allowed reference interval, rMax, solutions can be found. The MATLAB implementation can be found
in appendix G.2.2 and in appendix J under the path matlab_scripts/sostools/1storder_withRef.m.
As seen from figure 9.3 ε̄ is the minimum value of the barrier function on the unsafe set, and increasing
this may require the zero level set to be pushed further away from Xu. This may in turn require also
increasing the distance ∆ to the safe set, i.e. contracting the region X0. The conclusions are summarized
in table 9.3.

Parameter Effect of variation
deg(B) In general the feasibility ratio is better (closer to one) when testing for higher degrees of

B(x) ([0:6] or [0:8] compared to [0:4]), and solutions can be found for larger intervals
of the reference when B(x) has higher degree.

deg(q j) Increasing the degree of the SOS polynomials (monomial degrees [0:6] compared to
[0:2] or [0:4]) generally degrades the feasibility ratio.

ε̄ Increasing ε̄ decreases the allowed reference interval and also shows a trend of slightly
increasing the residual norm. Increasing ε̄ iteratively proves that gradually an increase
in ∆ is also required in order for solutions to be found.

∆ Generally increasing ∆ will also decrease the allowed interval of references, and shows
a trend of decreasing the residual norm until some limit.

K Lowering the gain of the controller increases the allowed reference interval.

Table 9.3: Effect of varying different parameters in the SOS program; see figure 8.2 for a visualization
of ε̄ and ∆. Results are only included for solutions where all inequalities were verified to be
SOS with findsos.

Numerical problems are reported for all solutions found, and the residual norms (size of numerical error
in the solution) are in general in the order of -3 and -4, so it is desired to keep the degree of polynomials
low and to increase the value of ε̄, compared to subsection 9.2.1 to be sure that the numerical error of the
solution does not cause the barrier polynomial to attain nonpositive values on the unsafe set.

The choice of parameter values are explained in table 9.4 and the barrier certificate is plotted in figure 9.4
separately for the safe and unsafe sets to validate the sign of B(x) on each set. Evaluating the curve for
the barrier polynomial and its Lie derivative, the geometric considerations are verified in that B(x) indeed
is (slightly) decreasing along the x1 axis to the left of the line x1 = xref, and increasing to the right, as
seen on the plot of X0 (and increasing along the x1 axis on the entire set Xu). It is also verified that
the Lie derivative is zero along the line x1 = xref. Thereby it is verified that the barrier certificate is
valid according to Definition 2.2, guaranteeing safety for the first order system in equation (9.4) with
references in the interval xref ∈ [rMin,rMax] = [−0.1,0.017]m.
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Choice Reason
deg(B) = [0:6] Increasing the degree of B(x) from [0:4] to [0:6] elevates the upper limit for al-

lowed references. Increasing the degree (keeping the remaining parameters con-
stant) yields an infeasible solution.

deg(q j) = [0:2] Keeping the degree low, as increased degree entails poorer feasibility ratio and
greater residual norm.

ε̄ = 0.1 Smaller values of ε̄ allows solutions to be found for larger values of rMax, while
the residual norm speaks in favour of increasing ε̄. A compromise is made, as this
choice of ε̄ gives a residual norm that is approximately twice as big as with ε̄= 0.01,
while it is almost an order of magnitude smaller than for ε̄ = 1.

∆ = 0.015 It is preferred to have as small a value of ∆ as possible, as this increases the value
of rMax for which solutions can be found. On the other hand lower values of ∆

deteriorate the feasibility ratio. The value is increased slightly along with ε̄ until a
solution is found.

K = 0.2 Lower gain allows a larger value of rMax (the demand L fcl B(x) ≤ 0 is affected by
K), and it is known from the implementation described in section 4.5, that at present
time the controller gain implemented is approximately this size.

Table 9.4: Chosen value for each of the parameters. The barrier certificate is plotted in figure 9.4.
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Figure 9.4: Barrier certificate of degree [0:6], all SOS polynomials of (monomial) degree [0:2],
ε̄ = 0.1, ∆ = 0.015 and gain K = 0.2. The solution is found for an inter-
val of references X = {xref[−0.1,0.017]}, with feasratio=0.9888 and Residual
norm=3.5e-4. The plots can be generated by running the script 1storder_withRef.m
such that a custom 3D rotation is possible (located in appendix G.2.2 under the path
matlab_scripts/sostools/1storder_withRef).

It can be concluded that this approach to determining for which references system safety can be guar-
anteed is not ideal. The tests conducted are not exhaustive, as the possibilities of combining parameter
values are vast. This also means that it is highly possible that a "better" barrier certificate can be found
certifying safety for a wider range of references without compromising on the feasibility ratio. It is in
particular desired to increase the value of rMax such that it gets closer to Xu,max. In order to decrease the
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number of parameters, a different approach is used in the following.

9.2.3 Considering the Error as the Independent Variable

As it is seen from table 9.3 there are many tuning parameters when searching for a barrier certificate
in SOSTOOLS, and iteratively finding a combination giving as large an interval of allowed references
outside Xu as possible can be a long process. In the previous section a barrier certificate was found
validating the system for references in the interval xref ∈ [−0.1,0.017]m, i.e. references up to a distance
of 3.3 cm from the unsafe set, Xu = {x1 ∈ [0.05,0.1]} (see figure 9.1).

A different approach is now used in order to validate system safety for references closer to the unsafe
set. Instead of formulating the barrier certificate in terms of the robot position and the position reference
as in equation (9.1), the dimensionality of the problem can be reduced through a coordinate shift to the
error state as seen in figure 9.5a, the error being:

xerr = xref− x1

giving the error dynamics

ẋerr =−ẋ =−τ
−1(K+1)(xref− x1)

=−τ
−1(K+1)xerr (9.5)

Now safety can be tested for relative positions instead of absolute.

Relating the Error Space Sets to the Sets for Absolute Position

As seen from figure 9.1, the unsafe region is the upper part of the interval X , which means that for
references given outside the unsafe set, unsafety of the system will only occur if the robot end effector
position is above the reference, corresponding to a negative error. This is illustrated in figure 9.5b. Hence
it is required to restrict the error in the negative direction to some value -δerr, thus restricting the upper
value of allowed (safe) references to a distance δerr from the unsafe region, as sketched in figure 9.5c.
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Figure 9.5: If the error is certified to stay above the value -δerr, system safety is guaranteed for all
references up to a safety distance of δerr from the unsafe set.

When restricting the error to a lower limit -δerr, this restriction corresponds to not allowing the end
effector position more than the distance δerr above the reference anywhere outside the unsafe region.
However, if a barrier certificate can be found for the error state system with unsafe set being values
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below -δerr, this means that safety of the system in equation (9.1) can be guaranteed for references up to
the distance δerr from the unsafe region.

The system equation in equation (9.1) is tested and known to be valid for small steps of approximately
5 mm, thus the set to be considered in the error state space is chosen to ±3 cm. This gives the set
definitions for the error state system:

• The set considered is well over the usual reference step size of approximately 5 mm, X = {xerr ∈
[−0.03,0.03]}.

• The unsafe set includes values below -δerr, Xu = {xerr ∈ [−0.03,−δerr]}.
• The safe set is a distance ∆ from the unsafe set, where ∆ < δerr such that the safe set will include

xerr = 0, X0 = {xerr ∈ [−δerr +∆,0.03]}.

If a valid solution can be found, it will certify that steps in positive direction (upwards) of 3 cm is
acceptable, and will never yield an error below −δerr, and that references can safely be given as long
as they have a distance of at least δerr to the unsafe positions, hence certifying safety of the system:

• The set considered is the set described in figure 9.1, X = {x1 ∈ [−0.1,0.1]}.
• The unsafe set is also seen in figure 9.1, Xu = {x1 ∈ [0.05,0.1]}.
• The safe set for the references is X0 = {xref ∈ [−0.1,0.05−δerr]} ensuring that X0 ⊆ X \Xu.

Results and Conclusions

The parameters ε̄, ∆, δerr, and the degree of the SOS polynomials q j and the polynomial B(xerr), are
tweaked to find the smallest possible value of δerr yielding a valid solution. The MATLAB implementa-
tion of this approach can be found in appendix G.2.2 and in appendix J under the path matlab_scripts/

sostools/1storder_error.m. The findings conform with the conclusions presented in table 9.3, with
the additional conclusions listed in table 9.5.

Parameter Effect of variation
deg(B) In general the residual norm is lower when testing for higher degrees of B(xerr) ([0:6]

compared to [0:4]).
deg(q j) Increasing the degree of the SOS polynomials (monomial degrees [0:4] compared to

[0:2]) generally increases the residual norm. Having different degrees for the different
SOS polynomials also generally increases the residual norm.

ε̄ Increasing ε̄ in general increases the residual norm of the solution.
∆ Decreasing ∆ too much will preclude a solution to be found, otherwise ∆ does not have

much influence on the solution.
K Lowering the gain of the controller decreases the residual norm of the solution.
δerr Decreasing δerr increases the residual norm of the solution.

Table 9.5: Effect of varying different parameters in the SOS program. Results are only included for
solutions where all inequalities were verified to be SOS.

The choice of parameter values are explained in table 9.6 and the barrier certificate is plotted in figure 9.6.
It is seen that the barrier certificate is positive on the unsafe region below -9 mm, i.e. Xu = {xerr ∈
[−0.03,−δerr]} = {xerr ∈ [−0.03,−0.009]}, and nonpositive on the safe region X0 = {xerr ∈ [−δerr +

∆,0.03]}= {xerr ∈ [−0.005,0.03]}, and that its Lie derivative is nonpositive on the entire set X = {xerr ∈
[−0.03,0.03]}, confirming that it is a valid barrier certificate in accordance with Definition 2.2.
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Choice Reason
deg(B) = [0:6] Increasing the degree of the barrier certificate from [0:4] to [0:6] does not change

the curve much on the interval X , while it does lower the residual norm an order.
deg(q j) = [0:4] The degree of the SOS polynomials are chosen as low as possible allowing a solu-

tion to be found with the remaining parameters.
ε̄ = 1e-2 Increasing ε̄ by an order of magnitude scales up the barrier certificate approximately

ten times in value, but also increases the residual norm approximately an order of
magnitude. A compromise is made choosing a scaling of B(xerr) yielding neither
very small nor very large values of B(xerr) on the set X , still giving a solution with
relatively low residual norm.

∆ = 4e-3 The value of ∆ is desired as low as possible, and at least lower than δerr (such that
the safe set will include xerr = 0). The lowest value yielding a solution is chosen.

K = 0.2 A low gain is chosen identical to the choice in subsection 9.2.2, as implementable
gains are ascertained to be of this order.

δerr = 9e-3 No solutions could be found for δerr < 9 mm.

Table 9.6: Chosen value for each of the parameters. The barrier certificate is plotted in figure 9.6.

Relating this relative position to the absolute positions, this certificate guarantees safety for the system
in equation (9.1) with references up until a minimum distance of 9 mm from the unsafe set in Xu =

{x1 ∈ [0.05,0.1]} (see figure 9.1), i.e. system safety is guaranteed for references in the interval X0 =

{xref ∈ [−0.1,0.041]}. Thus, this barrier certificate verifies safety for a considerably less restrictive set
of references, as it guarantees safety for references at distances as low as 9 mm from the unsafe region,
compared to the 3.3 cm found with the approach described in subsection 9.2.2.
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Figure 9.6: Barrier certificate of degree [0:6], all SOS polynomials of degree [0:4], with ε̄ = 1e-2, ∆ =
4e-3, δerr = 9e-3 and gain K = 0.2. The solution has a feasratio=1.0262 and Residual
norm=2.8e-7.

A corresponding positive value can be found restricting the error in the positive direction hence also
restricting how much the end effector position is allowed to be below any reference. Although this is not
tested, it is clear that if a barrier certificate for the error can be found ensuring that the error will stay
within the interval X0 ⊆ {xerr ∈ [−δerr,δerr]} i.e. with unsafe regions on both sides of this interval, this
means that for any reference, the end effector position can be guaranteed never to be more than a distance
δerr away from the reference.
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9.3 Barrier Certificate Search for Second Order Robot Slide System

To complete the construction of barrier certificates with SOSTOOLS for the robot slide movement par-
allel to the construction of CBFs in chapter 4, and in order to test SOSTOOLS on a system of a higher
state space dimension, finally a barrier certificate is found for the second order model of the robot slide
position from subsection 4.1.2.

As for the first order model in section 9.2, safety is validated for the closed loop system using a linear
position controller. The system is tested for safety compliance using the same controller gains as pre-
sented in subsection 4.3.2 with proportional gain K = [K1 K2] = [5.173 0.214] and unity gain between
reference and position secured by N̄ = K1 +1 = 6.173. The closed-loop second order system with x1 =

position and x2 = velocity of the end effector, is recapitulated as

ẋ =

˙[
x1

x2

]
=

[
0 1
−ω2

n −2ζωn

][
x1

x2

]
+

[
0

ω2
n

]N̄xref−
[
K1 K2

]
︸ ︷︷ ︸

K

[
x1

x2

] , with
ωn = 17rad/s

ζ = 0.55
(9.6)

From the analysis in subsection 9.2.3 it is found that a coordinate shift from absolute to relative positions
in the form of the position error proves the more efficient method to validate system safety for a wide
range of references. Using the position error xerr,1 as the free variable and letting xerr,2 signify the rate of
change of the error, the dynamics of the error state can be expressed as

xerr,1 = xref− x1

ẋerr,1 =−ẋ1 =−x2 = xerr,2

ẍerr,1 = ẋerr,2 =−ẋ2 = ω
2
nx1 +2ζωnx2−ω

2
n(N̄xref− (K1x1 +K2x2))

= (2ζωn +K2)x2−ω
2
n(K1 +1)(xref− x1)

=−(2ζωn +K2)xerr,2−ω
2
n(K1 +1)xerr,1

which can be compressed to standard state space form as

ẋerr =

˙[
xerr,1

xerr,2

]
=

[
0 1

−ω2
n(K1 +1) −(2ζωn +K2)

][
xerr,1

xerr,2

]
(9.7)

Relating the Error State Space Sets to the Sets for Absolute Position

The relation between the state space system of absolute positions in equation (9.6) and relative positions
in equation (9.7) is equivalent to the relation presented in subsection 9.2.3. Again, as seen in figure 9.1,
the unsafe positions are positions in the upper end of the interval of positions in the set X , which means
that for references given outside the unsafe set, the system can only be unsafe if the robot end effector
position is above the reference, corresponding to a negative error. This is illustrated in figure 9.7b with
an overshoot, although the system presented should not overshoot due to the placement of real poles (in
-40 and -50, see equation (4.15)). When the error can be guaranteed to stay above a value -δerr, this is
equivalent to guaranteeing that the end effector position will never be more than the distance δerr above
the reference which in turn means that the system is safe for all references with a minimum distance δerr

to the unsafe region. This is illustrated in figure 9.7c.
Equivalent to the first order system, the model in equation (9.6) is tested and known to be valid for
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Figure 9.7: With references given outside the unsafe region, system safety can be guaranteed if the error
is certified to stay above the value −δerr. When this is the case, system safety is guaranteed
for all references up to a safety distance of δerr from the unsafe set.

small steps of approximately 5 mm, and again the set X to be considered is chosen to ±3 cm. For the
second order system, the sets X , Xu and X0 must also be specified for the velocity dimension. As the
rate of change of the error is related to the end effector velocity by a factor -1, the considered interval of
velocities is chosen as the upper limits for the robot slide velocity of approximately ±0.5 m/s. This is
visualized in figure 9.7a, and gives the set definitions for the second order error state system:

• The set considered is well over the usual reference step size of 5 mm, and the the upper bound on
the velocity considered is the physical limits of the system, X = {xerr,1 ∈ [−0.03,0.03], xerr,2 ∈
[−0.5,0.5]}.

• The unsafe set includes relative positions below -δerr, Xu = {xerr,1 ∈ [−0.03,−δerr], xerr,2 ∈ [−0.5,0.5]}.
• The safe set is a distance ∆ from the unsafe position, where ∆ < δerr such that the safe set will

include xerr,1 = 0, X0 = {xerr,1 ∈ [−δerr +∆,0.03], xerr,2 ∈ [−0.5,0.5]}.

If a valid solution can be found, it will certify that that steps in positive direction (upwards) of 3 cm and
system velocities up to ±0.5 m/s are acceptable, and will never yield an error below -δerr, which means
that references can safely be given as long as they have a distance of at least δerr to the unsafe positions,
hence certifying safety of the system:

• The positions considered are as described in figure 9.1, and the velocity is bounded by the physical
limits of the system, X = {x1 ∈ [−0.1,0.1], x2 ∈ [−0.5,0.5]}.

• The unsafe positions are also seen in figure 9.1, Xu = {x1 ∈ [0.05,0.1], x2 ∈ [−0.5,0.5]}.
• The safe set for the reference is X0 = {xref ∈ [−0.1,0.05−δerr] ensuring that X0 ⊆ X \Xu.

Results and Conclusions

The parameters ε̄, ∆, δerr, and the degree of the SOS polynomials q j and the polynomial B(xerr), are
tweaked to find the smallest possible value of δerr yielding a valid solution. The MATLAB implementa-
tion of this certificate can be found in appendix G.2.4 and in appendix J under the path matlab_scripts/
sostools/2ndorder_error.m. The findings conform with the conclusions presented in table 9.3 and
table 9.5. The choice of the parameter values is presented in table 9.7 and the barrier certificate is plotted
in figure 9.8.

9. Barrier Certificate Search with SOSTOOLS 87



9.3 Barrier Certificate Search for Second Order Robot Slide System

Choice Reason
deg(B) = [0:4] The residual norm of the solution is growing when the polynomial degrees are

increased, thus the smallest degree of B(xerr) yielding a solution is chosen.
deg(q j) = [0:1] Decreasing the degree of the SOS polynomials decreases the residual norm of

the solution, hence the degree is chosen as low as possible.
ε̄ = 5e-2 The value of ε̄ is chosen from the solution yielding the best compromise between

small residual norm and feasibility ratio close to 1.
∆ = 5e-3 The smallest possible value of ∆ yielding a solution for the chosen δerr.
K = [5.173 0.214] Choice of closed loop system with real poles from equation (4.15).
δerr = 8e-3 No solutions could be found for δerr < 8 mm.

Table 9.7: Chosen value for each of the parameters. The barrier certificate is plotted in figure 9.8.
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Figure 9.8: Barrier certificate of degree [0:4], all SOS polynomials of degree [0:1], ε̄ = 5e-2, ∆ =
5 mm, δerr = 8 mm and gain K = [5.173 0.214] gives feasratio=1.0176 and Residual
norm=3.2e-6.

It is seen from figure 9.8 that the barrier certificate is positive on the unsafe region for positions below
-8 mm, i.e. Xu = {xerr ∈ [−0.03,0.008]× [−0.5,0.5]}, and nonpositive on the safe region X0 = {xerr ∈
[−0.005,0.03]× [−0.5,0.5]}, and that its Lie derivative is nonpositive on the entire set X = {xerr ∈
[−0.03,0.03]× [−0.5,0.5]}, confirming that it is a valid barrier certificate for the system in equation (9.7)
in accordance with Definition 2.2.

Relating the relative position to the absolute positions, this certificate guarantees safety for the sys-
tem in equation (9.6) for refereces up until a minimum distance of 8 mm from the unsafe positions
{x1 ∈ [0.05,0.1]} (see figure 9.1), i.e. system safety is guaranteed for references in the interval X0 =

{xref ∈ [−0.1,0.042]}. Comparing this result to the conclusion drawn for the first order system in sub-
section 9.2.3, it is seen that for the second order system safety is certified for references that are 1 mm
closer to the unsafe set. This is attributed coincidence in the combination of tested parameter values,
and it is thus expected that safety can be guaranteed for the first order system for references closer to the
unsafe set than 9 mm using a different combination of parameter values.
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9.4 Conclusion on the Use of SOSTOOLS

To wrap up the approach of using the MATLAB toolbox SOSTOOLS in the construction of barrier
certificates presented in this chapter, the following closing considerations are regarded:

• Formulating and setting up the constraints for a barrier certificate has successfully been imple-
mented in SOSTOOLS. An overview has been gained into the evaluation of solutions, and barrier
certificates validating safety for first and second order systems have been constructed. Further-
more, a thorough step-by-step guide has been compiled which can be used as a launch pad for
future studies at Aalborg University in using the toolbox for system safety validation.

• Safety validation of higher dimension systems can be seen as a natural extension of the tested
systems, and it is considered a relatively staightforward task to expand the 1D system to a 3D
system, such as the system presented in chapter 6, and test for safety using the same principles
for the parameters. It is expected that dynamic barrier certificates such as the one described in
chapter 5, can be found with SOSTOOLS, as it has been proven to exist.

• It is deemed an elaborate approach to use SOSTOOLS for constructing barrier certificates for
systems of low dimension, such as the ones considered in this chapter, and it is assessed that the
manual construction of CBFs presented in chapters 3 through 6 is the most efficient approach
for systems of a dimensionality allowing for intuitive visualization of the barrier function. It is,
however, also assessed that when physical visualization of the problem is not possible, an approach
such as using SOSTOOLS may be the only feasible way of constructing a barrier certificate and
validating safety of a system.

This concludes the analysis of barrier certificate search with SOSTOOLS.
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Chapter 10

Conclusion and Discussion

This chapter will conclude on the results obtained throughout this thesis and put the solution and entire
strategy into perspective in the discussion part.

Conclusion

Safety aspects in robotic surgery and automated robotic surgery are found to be the important factor, as
analysed in chapter 1. Concurrently, it founds the basic framework in the long term goal of obtaining
virtual fixtures. Consequently, a barrier certificate is stated in chapter 2 which modifies and adapts the
Lyapunov stability criteria to enable a way to define safe and unsafe regions within the state-space.

A theoretical controller is developed in chapter 3 based on control barrier functions which ensures that
the barrier certificate requirements presented in chapter 2 are obeyed at all times. Thus, the control
barrier function allows a way to ensure safety in real-time with astounding few calculations.

The control topology presented in chapter 3 is applied to three use cases which intend to commence a
solution to the problem of guaranteeing safety in automated surgeries, i.e.:

• A concrete example of the use of control barrier functions is founded in chapter 4. It comprises
the instrument slide movement. The system is modelled as both a first and second order system,
thereby slowly increasing the complexity of the CBFs, such that necessary experience in the con-
struction of CBFs can be gathered. The result is a successful controller guaranteeing safety by
never entering predefined unsafe regions in one dimension for both a first and second order system
approximation.

• A safe regulator is designed to ensure system safety in relation to virtual fixtures in chapter 5. A
dynamic CBF is constructed in accordance with the desire of virtual fixture and thus founds safety
for operation on a beating heart. The result for this use case is that a safe distance between heart
and robotic end effector can be set as desired.

• Then safety considerations are extended to the 3D Euclidean space in chapter 6 which implies
additional implementation challenges such as a kinematic description (mapped and verified in
appendix C), forward kinematics and inverse kinematics. The construction of a CBF is taken to
higher dimensions forming a barrier enclosing the interior of an ellipsoid, thus representing a heart
or another vital organ fixed in space. The result is a valid CBF ensuring that the robot end effector
is kept outside the ellipsoid at all time.

All three use cases are implemented in a simulation environment in MATLAB with convincing results,
i.e. system safety is ensured by preventing the system state from entering specified unsafe regions. The
controllers are furthermore implemented in C++ in the ROS (Robotic Operating System) framework.
The ROS framework is founded in appendix A as a necessary condition to allow any implementation on
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the da Vinci robot. All development within ROS is tailored for this project and did not exist at project
initiation. The implemented controllers comply with the expected outcome and do indeed behave as
desired, i.e. ensuring safety by evading the predefined unsafe regions. Additionally, the implemented
controllers are verified to require very little processing power making them ideal as real-time controllers.

The three use cases do, however, consist of simple models where the system order does not exceed 3.
An important conclusion is drawn from the use cases, which already could be inferred from the one
dimensional safe slide controller (developed in chapter 4) with system order 2. That is, for high order
systems where the physical interpretation of the state vector is obscured, the construction of a valid CBF
is a highly non-trivial task – if not impossible.

For this reason, the problem is turned upside down in chapter 8, thus no restrictions are put forth in the
controller development. Instead, the closed loop system is evaluated and the question is asked whether
it complies with the barrier certificate requirement in chapter 2. The verdict is hereafter given as pass or
not pass. For this purpose, chapter 8 presents the global SOS (Sum Of Squares) positivity characteristic
and through Putinar’s Positivstellensatz recast the barrier certificate formulation as a problem of local
positivity, thus allowing sets of unsafe and safe regions to be defined by unrestricted polynomials.

The strategy presented in chapter 8 is applied with the MATLAB toolbox SOSTOOLS in chapter 9 such
that barrier certificates can be searched for by automated means. Here, a framework is developed such
that the toolbox takes a closed loop system description and a description of the safe and unsafe regions
as inputs. The developed framework delivers an unambiguous certificate answering if the system is safe,
thus constituting the pass and not pass verdict. The slide controller developed in chapter 6 is accordingly
taken as an example and the framework is verified with this example. Both the first and second order
system approximation is analysed in the designed SOSTOOLS framework. It is, as expected, certified to
be safe in almost the entire desired range. These examples conclude and verify the use of the developed
framework. The framework can easily handle other systems, as the task merely comprises other closed
loop system descriptions as input in other dimensions with different safe and unsafe sets. This is a trivial
task.

Hence, it can be concluded that the two initially desired strategies comprising the design and analysis of
a safe controller are investigated and solved sufficiently to provide a "proof of concept" framework. This
applies for both theory, simulation and implementation.

Discussion and Future Work

The developed solution proves itself very efficient in both theory and simulation. However, the imple-
mentation aspect suffers from a number of issues which should be investigated in future work. This
includes:

• Incorporate integral action in all controllers to eliminate steady state errors.

• Increase the sampling rate from 100 Hz to 2 kHz which indeed is the long term goal. All controllers
will draw benefits from this on the transition set T . This may, however, introduce challenges as
the allowed execution time (process time between every sample) is lowered to 0.5 ms which is less
than the actual execution time in figure 6.10 for the safety controller in the 3D Euclidean space.
Therefore, optimization must be performed in the implementation.
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• Improvement of the inverse kinematics solver as it occasionally chooses joint angles requiring
multiple revolutions around the unit circle to obtain a position which could be reached with an
angle less than π.

Additionally, the position controller already implemented on the FPGA (as seen in figure 1.5), is left
untouched. It may with removed to draw benefits from a more clear dynamics. This will require another
system model, but may well be worth the trouble.

Furthermore, a consistently disregarded topic in this project is the use of trajectory planning. The con-
trollers developed take only small steps as input. However, large step sizes have been given to the
controllers in this project to demonstrate certain features, but obviously, it is desired to construct a trajec-
tory planning layer taking the setpoints as input and breaking the path down into a sequence of adjacent
points, thus ensuring that small step sizes are given to the controller.

Additionally, at no point the orientation of the robot hand has been considered. Obviously, ensuring
safety for the end effector is not sufficient as the heart or other vital organs can be penetrated or crushed
by collision with the physical volume of the robotic tool other than the tip of the tool. This is an important
topic in future work. Collision avoidance for the robotic parts themselves must also be studied when
employing all four of the da Vinci arms in the setup, which is indeed the long term objective.

It is suggested for future use of the framework developed for barrier certificate search with SOSTOOLS
to conduct the search in a more methodical manner by running the search like a Monte Carlo simulation,
each time varying a parameter while keeping the others fixed. In this way the chance of determining a
valid barrier function is maximized, thus indispensably invalidating system safety if no valid certificate
can be found.

As explained by assistant nurse Jane Petersson in section 1.3, there are veins, nerves and other organs
which must not be cut during a surgery. It has been the aim to construct barrier certificates that can
represent these parts of the body. However, it is clear that a realistic barrier certificate representing these
parts is far away. Especially because they are time dependent and because, from time to time, the surgeon
needs to move these parts to be able to operate in a certain area, thus reshaping these parts. Consequently,
a very creative and adaptive barrier function is required and will as a necessary condition require robot
vision (a continuous video stream analysis) such that these parts can be tracked. A way to resolve this
complex problem of high dimensionality could be a combination of the design approach and analysis
approach in the following way:

1. Search for a barrier certificate using the framework developed in chapter 9.

2. Apply this barrier certificate as control barrier function in a similar way as done in chapter 4,
chapter 5 and chapter 6.

3. Analyse the situation. Adjust the barrier certificate if necessary and describe the new closed loop
system.

4. Take the new closed loop system as input to the framework developed in chapter 9 and start from
1 again.

This iterative approach may along with the preceding listed bullet points get the robotic surgery industry
one step closer to the end goal of guaranteed safe robotic surgery with the da Vinci robot, which has been
the sole application of the safety controllers derived throughout this project. However, it should take
very little imagination to envisage that this way of constructing controllers has the potential to be used in
many other industries where safety is critical or simply where regions are desirable to be left untouched.
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Appendix A

Interfacing da Vinci with ROS

This appendix contains:

• An installation guide and an introduction immediately after this itemize.

• A description of the general structure of ROS in section A.1.

• A description of how to initiate ROS and how to setup the low level controllers in section A.2.

• An overview of the final developed framework and how to run it in section A.3.

• An explanation of why the Moveit package is not used in section A.4.

Accordingly, this appendix ought to give concrete knowledge to utilize the ROS environment wrt. the
da Vinci surgery robot at Aalborg University as it comprises an immense load of files, packages and
various GUI interfaces. It also intends to provide an overview of the code structure and the underlying
thoughts. The ROS environment is currently only developed for Ubuntu. The content of this appendix is
accordingly assuming Ubuntu as operating system and assumes additionally basic knowledge in Unix.

To install ROS on a private laptop, it is recommended to follow the below URL:

http://wiki.ros.org/ROS/Installation

Once ROS is installed, it is possible to work on the surgery-srv.lab.es.aau.dk computer. It may
introduce some advantages to work directly on the server in the lab as it provides additional GUI appli-
cations such as rviz, but it is obviously more convenient to work from a private laptop and the GUIs can
be set-up without too much trouble locally. Connection to the server can be established through ssh:

$ ssh <user>@surgery-srv.lab.es.aau.dk

To get started with everything, open a terminal and initialize a ROS workspace as:

$ mkdir -p daVinci_ws/src

Then navigate to the source directory (src) and type:

$ catkin_init_workspace

This creates a number of necessary files and folders. The code located at the "Robotic Surgery Group -
Aalborg University" can be copied/cloned to the src folder. The original environment (clean configura-
tion) can e.g. be cloned with the following git terminal commands:

$ git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/davinci_description

$ git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/davinci_driver

Each command clones a package. The name and file structure of a package should follow a certain
standard, i.e. the ROS Enhancement Proposals (REP) (it is not just the packages that should follow the
REP standard, but in fact the entire ROS workspace). This ought to make it easier to share and reuse
code. The code developed in this thesis obeys to a large extend the REPs but exceptions may occur.
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A.1 General structure of a ROS setup

The two initial packages used are in that sense:

• davinci_description

• davinci_driver

If the installation takes place on a local laptop, be sure to install all ROS dependencies. The necessary
dependencies can be checked by running rosdep check <package_name>.

To build the entire environment, open a terminal, navigate to the root of the workspace (daVinci_ws/)
and type:

$ catkin_make

This connects all executables and the environment should hereafter be ready for use.

A.1 General structure of a ROS setup
After the workspace is created (called daVinci_ws), the packages are cloned and the environment is
build, the overall code structure should look like the tree structure found below:

daVinci_ws

src

package n

· · ·· · ·

· · ·package 2

· · ·· · ·

package 1

· · ·· · ·

m CMakeLists.txt
input to the CMake build system

m

devel

lib/setup

build

make files etc.

Each package has a similar structure. While the content of each package may vary, they always have a
file called package.xml and CMakeLists.txt, and often the structure shown below.

package m

· · ·others

· · ·· · ·

launch

· · ·· · ·

config

· · ·· · ·

package.xmlCMakeLists.txt

Before elaborating on the significance of these folders and files, it is to some extend important to have
an overview of the general used terms in the ROS environment. Those terms are briefly mentioned in
figure A.1.

rosnode 1 rosnode 2rostopic
(communication)

Figure A.1: Coherence between rosnodes and rostopics. A node is simply a process that performs some
computation and a topic is the communication channel between two or more ROS nodes.
Two often used terms in this context are to publish/subscribe to a topic. To "publish" means
to send a message from a topic and one can decode the message by "subscribing" to a topic.
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A.2 Setup of Low Level Control and how to Initiate ROS

With a basic understanding of ROS nodes and topics, the generic content of the two required files
(CMakeLists.txt and package.xml) and the often used launch folder can be elaborated in table A.1.
Other folders and files like src, config, include and similar are indeed also often used. They all have
the purpose to enhance overview. The name should to some extend be self explaining, e.g. the config

folder includes configuration files for the da Vinci robot, the src folder often includes C++ files used for
algorithms designed for specific purposes etc.

CMakeLists.txt package.xml launch
Package/project description,
catkin version, specification of
required packages (not ROS
packages but packages to create
CMake environment variables),
catkin dependencies and defi-
nitions and the specification of
catkin build targets (executables
and library targets). ∗

It provides information about
the maintainer, version, package
name (e.g. davinci_driver)
and author. It specifies build
tool dependencies (for the pack-
age to build itself - typi-
cally only catkin), build depen-
dencies (required packages at
build time), run-time dependen-
cies and test dependencies (not
used). ∗∗

The content of a launch folder
is primary used to start a group
of nodes with unique topics
and/or parameters. They are
executed by the roslaunch

terminal command followed by
package name and lastly the
name of the launch file, i.e.:
roslaunch <package name>

<name of launch file>.

Table A.1: Brief explanation of the purpose of the most common used folder names in a package.
∗ [Open Source Robotic Foundation, 2015a], ∗∗ [Open Source Robotic Foundation, 2015b].

With a somewhat superficial, but sufficient, introduction to ROS, the concrete interfacing can be consid-
ered.

A.2 Setup of Low Level Control and how to Initiate ROS

Before the communication between ROS and da Vinci may be considered, all low level PID controllers
must run correctly and the RIO configuration must be performed.

From the aau86730 computer, launch the p4_primary_Control icon located on the desktop and connect
RT Single Board RIO (172.26.12.32) by right clicking the icon and press connect. Subsequently,
navigate to p4_prim_control_FPGA_multichannel_7_FLOAT_SPI_5.vi and open it. This launch a
GUI comprising access to the seven low level controllers which are activated from the arrow in the upper
left corner. The controller gains, setpoints, maximum step size and various calibration options are easily
accessible from this GUI, though it should not be necessary to modify any of those.

Be sure that the gearing factors are specified as follows:

Intrument Jaw
Left

Intrument Jaw
Right

Intrument
Pitch

Instrument
Roll

Instrument
Slide

Hand Pitch Hand Roll

12 12 12.4 7.5 1340 200 200

Table A.2: Measured gearing factors. Gearing factors are measured such that π/4 from ROS corresponds
to 45 degrees on the real robot.

To allow the ROS environment access to the full range of setpoints, launch p4-control_prim-main4.vi
and activate this GUI in a similar manner. This GUI acts merely as interface and offers no user options
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A.3 Specific Structure of this Thesis - The gr1032 Development Branch

as such. All necessary setup before initiating ROS is at this point in time performed.

ROS

It is important to notice that every time a new terminal is commenced it is important to source the bash
file from the workspace, i.e.

$ source devel/setup.bash

The following list of commands must be executed from the root of the workspace. It is first of all
important to collect all ROS nodes such that they are able to communicate with each other. Open a
terminal and run:

1. $ roscore # Leave this running in the terminal

Now, to secure the TCP/IP connection between ROS and the RIO board (Rx & Tx of setpoints), launch
the driver from a new terminal:

2. $ roslaunch davinci_driver davinci_driver.launch # Leave this running

With these files processes running, the environment is proper set up. The remainder of this appendix will
first elaborate what the moveit Application Programmable Interface (API) consist of, why it could be a
good idea to use it and why it essentially is not used.

A.3 Specific Structure of this Thesis - The gr1032 Development Branch

Be sure that ROS is installed according to the beginning of this appendix but no packages should be
cloned. Additionally, the low level controllers and ROS must be initiated as described in section A.2.
The gr1032 package can be cloned from github as:

git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/Gr1032

If the original davinci_description and davinci_driver package are cloned to the workspace,
delete them. It is important that the gr1032 branch is cloned from the driver package and the description
package as:

git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/davinci_driver

--branch gr1032

git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/davinci_description

--branch reduced_robot

The file structure in the daVinci workspace should be similar to the one depicted below (plus additional
files).
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/..
davinci_ws

run_controllers.py wrapper script
build

... all make-files
devel

... all libraries and setup files
src

CMakeLists.txt
davinci_description

CMakeLists.txt
config

davinci.rviz
launch

demo.launch
visualize_in_rviz.launch

meshes
... all .stl files (used for the 3D model in rviz)

package.xml
robots

remote_center_manipulator.xacro # rotation matrices for the hand
davinci.xacro # assembles all xml macros
p4_arm.xacro # rotation matrices for the arm
instruments

needle_driver.xacro # rotation matrices for instrument
davinci_driver

CMakeLists.txt
launch

davinci_driver.launch # include control output
ros_control.launch # include controllers

src
davinci_driver.cpp # establish connection
ros_driver.cpp # establish connection
sbrio_driver.cpp # establish connection

config
davinci_ip_adresses.yaml # set IP for RIO primary/secondary board
p4_hand_controller.yaml # specify each controllable joint

gr1032
CMakeLists.txt
package.xml
src

run_controller.cpp # main C++ interface (controllers)
demo_gr1032.cpp # demo
demo_gr1032.h # associated .h file
ik_gr1032.cpp # inverse kinematic test script
ik_gr1032.h # associated .h file
safe_3d.cpp # safety controllers in 3D
safe_3d.h # associated .h file

launch # not used

The python wrapper script run_controllers.py located in the root of the workspace is not located in
any package and it must be created apart from the ROS framework. It can be copied from appendix I or
from appendix J.

The controllers are executed by running the two commands below in two individual terminals:

• roslaunch davinci_driver davinci_driver.launch

• python run_controllers.py

The launch file launches all necessary drivers to interface with the da Vinci robot and the wrapper
scripts ensures that the control signal is published on the appropriate topics and that the main C++ file
run_controllers.cpp is executed with proper ROS syntax.
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A.4 Structure of Moveit and Why it is Not Used

After running these commands, a Graphical user interface (GUI ) appears as shown below:

1 ******************************************************
2 The following options are avaiable:
3 ------------------------------------------------------
4 press ’a’ to run slide safety controller
5 press ’b’ to specify custom joint angles (FK mode)
6 press ’c’ to run demo
7 press ’d’ to run beating heart controller
8 press ’e’ to specify custom 3D angles (IK mode)
9 press ’f’ to run 3D safety controller

10 ******************************************************

The desired controller is now ready to be executed by entering the inquired letters. The gr1032 package
provides also demo’s with the exclusive purpose of demonstrating the capabilities of the da Vinci robot.
The file and code structure is not as such described deeper in this appendix. The algorithms associated
with each controller is described under each appertaining chapter in the main report.

A.4 Structure of Moveit and Why it is Not Used

Moveit is an interface to standard robots. The use of Moveit ought to ease trajectory planning and to
ease interfacing with da Vinci. The moveit package includes the very handy move_group node which
searches for a Unified Robot Description Format (URDF) which is a description of the robot (containing
parameters like joint limits, kinematics etc.) and it searches for a Semantic Robot Description Format
(SRDF) which is a parameter generated by the setup assistant (elaborated in subsection A.4.1), thus
representing parameters not in the URDF. This could be group state configurations or alike.

In that sense the move_group node offers a (when the ROS learning curve is conquered) sorely easy user
interface from both python, C++ and a GUI. It is indeed an apparent starting interface to use, and the
first successful interface to the robot was indeed established through the move_group node and for that
reason described in this appendix. As is shall be seen, move_group has some disadvantages when the
objective is a real-time safety controller, which mostly consist of:

• Speed. The move_group node offers many features, including static obstacle avoidance and tra-
jectory planning. All very useful applications, but they slow down the process and proofs itself
useless when the controllers developed in chapter 4 and chapter 5 are to be implemented.

• The move_group node already includes controllers hence shattering the dynamics modelled. The
safety controllers developed are at a lower abstraction layer.

A significant amount of code is developed with the move_group node. The low level details will, how-
ever, not be elaborated. However, the results of the work undertaken with the Moveit package, can be
cloned as the development branch at github:

$ git clone https://github.com/AalborgUniversity-RoboticSurgeryGroup/

davinci_moveit_config --branch develop # Clone driver, description and Moveit package from
development branch

To give an overview of the code structure when the Moveit package is used, the directory tree on the
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following page is provided. It shows merely the "interesting files" seen from a developers point of view.
In reality, additionally files are present.

To run the code, be sure that step 1 and 2 in section A.2 is carried through. Thus, it is possible to allow
trajectory planning, by linking the OMPL (Open Motion Planning Library) to the system by running:

3.a $ roslaunch davinci_moveit_config move_group.launch # Leave this running

If a 3D GUI interface is desired, open a new terminal and launch:

3.b $ roslaunch davinci_bringup visualization.launch # This opens rviz

Press the "add" button in rviz and add the "MotionPlanning" option to the panel where start and goal
state can be specified. Hereafter, plan and execute the specified goal. This cause the arm of da Vinci to
reach out for the specified goal state consisting of five joint angles.

To launch the developed C++ interface, which allows 3D setpoints (by the KDL inverse kinematic solver)
and custom joint specification, open a terminal and type:

4 $ rosrun davinci_moveit_config MoveGroupInterfaceExecute

This executes a GUI where a IK test and FK test can be executed. Both of them ask the slide position
to move to the position 0.005 m and move back to 0.00 cm immediately. Thus no delay between the two
queries are desired. The position is concurrently recorded (the recording can be done similar to the setup
described in appendix F). Thus the trajectories are plotted in figure A.2.
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Figure A.2: Trajectories plotted by means of Moveit. It is seen that the processing time is high and
nearly useless when the objective differs from trajectory planning. The code used to
generate the trajectories is showed in figure A.3. It is also seen that the dynamics are
limited. Measurement files and plotting details can be found in appendix J by running
run_moveit_trajectory.m under the path measurements/moveit_test.

As seen from figure A.2, the move_group node requires processing time to calculate a trajectory which
is nearly useless for real-time controllers. The processing time is due to the highly advanced trajectory
generation calculated by the move_group node. An example of how to use of the move_group node
is provided in figure A.3. The code snippet are used to generated the trajectories in figure A.2. It is
important to include the proper Moveit libraries and structure of CMakeLists.txt and package.xml

correctly. These are found at GitHub when the development moveit development branch is cloned. The
Setup Assistant is important for the moveit package, thus mentioned in the coming subsection.
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1 while(1) {
2 ROS_INFO("set test angles");
3 joints [p [2]] = 0; // hand roll
4 joints [p [1]] = 0; // hand pitch
5 joints [p [0]] = 0.0; // slide
6 joints [p [3]] = 0; // inst roll
7 joints [p [4]] = 0; // inst pitch
8 joints [p [5]] = 0; // jaw right
9 group.setJointValueTarget( joints ) ;

10 group.move();
11

12 ROS_INFO("set test angles");
13 joints [p [2]] = 0; // hand roll
14 joints [p [1]] = 0; // hand pitch
15 joints [p [0]] = 0.005; // slide
16 joints [p [3]] = 0; // inst roll
17 joints [p [4]] = 0; // inst pitch
18 joints [p [5]] = 0; // jaw right
19 group.setJointValueTarget( joints ) ;
20 group.move();
21 }

1 while(1) {
2 geometry_msgs::Pose target_pose3;
3 target_pose3.position.x = 0.000000 + off_x;
4 target_pose3.position.y = 0.000000 + off_y;
5 target_pose3.position.z = 0.000000 + off_z;
6 group.setPoseTarget(target_pose3);
7 moveit::planning_interface :: MoveGroup::Plan my_plan_3;
8 bool success_3 = group.plan(my_plan_3);
9 ROS_INFO("success = %d", success_3);

10 group.move();
11

12 geometry_msgs::Pose target_pose4;
13 target_pose4.position.x = 0.000000 + off_x;
14 target_pose4.position.y = 0.000000 + off_y;
15 target_pose4.position.z = 0.000000 + off_z;
16 group.setPoseTarget(target_pose4);
17 moveit::planning_interface :: MoveGroup::Plan my_plan_4;
18 bool success_4 = group.plan(my_plan_4);
19 ROS_INFO("success = %d", success_4);
20 group.move();
21 }

Figure A.3: The code snippet to the left shows how to use forward kinematics with the move_group
node (p is a string array containing the six joints). The snippet to the right shows how to use
the inverse kinematics solver with the move_group node.

A.4.1 Setup Assistant Associated with MoveGroup

To run the setup assistant, open a terminal, navigate to the root of the workspace and type:

• $ roslaunch davinci_moveit_config setup_assistant.launch # GUI is launched

A GUI offering eight setup options will now be present. Load the current davinci_moveit_config
package. The content of the eight options will be explained in the below itemize as it is important that
all options are configured correctly for the kinematic solver to work correctly.

1. Start: It is possible to specify a new configuration package. This should only be necessary to
do once. Since the davinci_moveit_config package is cloned from the development branch,
it is sufficient to edit the existing package by pressing the associated button while the path to
davinci_moveit_config is specified correctly. This list is auto-generated from the associated
xacro files specified in the davinci_ description package (from where a URDF file is generated
and initially fed to the setup assistant). The default mode of operation disable collisions between
adjacent links, links that can not physically collide, links that are always in collision and links that
are in collision in the start-up mode. This enhances processing time [Sucan and Chitta, 2013].

2. Virtual Joints: It is here the robot is attached to the physical world by use of a virtual frame.

Virtual Joint Name Child Link Parent Frame Type
virtual_joint base_link world fixed

3. Planning Groups: It is from here possible to describe the joints of the p4_arm of da Vinci. The
Orocos KDL kinematic solver seems to be dependent of at least six DOF (six active joints). It
is possible to describe the arm by means of either joints, links or as a chain. It is chosen to
describe the arm as joints. Be sure that a group "gripper" is added with the following kinematic
specifications:
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• Kinematic Solver: kdl_kinematic_plugin/KDLKinematicPlugin

• Kin. Search Resolution: 0.005 (default)

• Kin. Search Timeout (sec): 0.005 (default)

• Kin. Solver Attempts: 3 (default)

It is furthermore important that it has the following joints specified:

gripper
joints

p4_instrument_slide - Prismatic
p4_instrument_roll - Revolute
p4_hand_pitch - Revolute
p4_hand_roll - Revolute
p4_rcm_instrument_holder_upper_bar_joint - Revolute
p4_rcm_upper_bar_base_joint - Revolute
p4_instrument_jaw_right - Revolute

Links # Leave this empty
Chain # Leave this empty
Subgroups # Leave this empty

This ensures that the group gripper can operate with six DOF.

4. Robot Poses: It is from here possible to specify standard positions for the arm. The code devel-
oped during this thesis utilized a pose for an initial positions, hence be sure that a pose named
ready is present under the group gripper. All joint states should be set to zero for this pose.

5. End Effectors: The end effector is specified as shown:

End Effector Name Group Name Parent Link Parent Group
Gripper gripper base_link -leave this empty-

6. Passive Joints: A list of all joints will be available. It is important to specify the passive joints
such that the davinci_moveit_config package know which joints are controllable, i.e. mark all
passive joints in the presented table.

7. Configuration Files: The package will be generated from here. Be sure that p4_hand_controller.yaml,
davinci_moveit_controller_manager.launch, controllers.yaml, CMakeLists.txt and
package.xml are not erased by the setup assistant.

In conclusion, the moveit package is too slow, and the applied file structure is accordingly different.

Yet Another Markup Language (YAML)XML Macros (XACRO)
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Appendix B

Links and Joints 3D Overview
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Appendix C

Kinematic Models of the Robot

A rotation matrix a
bR is an orthonormal matrix (R−1 = RT ) describing the rotation between two right-

handed coordinate frames Ψa and Ψb such that any vector bv (including Ψb coordinate axes) given in the
Ψb frame can be "rotated" into Ψa coordinates by the operation

av = a
bR bv (C.1)

Note that the matrix a
bR can also be seen as the rotation required of the frame Ψa for it to coincide with

Ψb. Rotation of the frame Ψa with an angle θ counterclockwise about a single axis (equal to clockwise
"rotation" of the any vector in Ψb) correspond to the rotation matrices

a
bRx(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 a
bRy(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 a
bRz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (C.2)

A sequence of rotations, transforming the vector cv given in the Ψc frame to Ψa coordinates, is imple-
mented as

av = a
bR b

cR︸ ︷︷ ︸
a
cR

cv (C.3)

The translation of the origin from the coordinate system Ψa to Ψb can be described by the position vector
a
bp, which is a vector given in the Ψa coordinate frame. The relative configuration of two coordinate
frames is their relative position and orientation, which can be expressed expressed by a homogeneous
transformation matrix

a
bT =

[
a
bR a

bp
0 1

]
(C.4)

The inverse of a configuration matrix is

a
bT−1 =

[
a
bRT −a

bRT a
bp

0 1

]
(C.5)

A sequence of configurations is implemented as

a
nT = a

bT b
cT ... m

n T =

[
a
bR b

cR ... l
mR m

n R a
bp+a

b R b
cp+ ...+(a

bR b
cR ... l

mR m
n p)

0 1

]
(C.6)

where each matrix T is a function of a rotation angle θ and a translation distance, which may be functions
of time. R p α β θ
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C.1 Existing Kinematics for the AAU da Vinci Robot

The position of the end effector (the tip of the instrument) given in an inertial frame can be described as
a sequence of joint rotations of the robot and the instrument, and translation from the inertial origin via
the fixed-length links and the slide of the instrument.

A coordinate frame is defined for each degree of freedom, with origin on the axis of rotation. A set
of coordinate frames and transformation matrices between the frames are given according to the ROS
xacro files tower, p4_arm, remote_center_manipulator and needle_driver.

The position and orientation of the ith coordinate frame is given as a transformation matrix from the
i−1th frame, where fixed distances and rotations are measured along/about the axes of the i−1th frame
while free distances and rotations are measured along/about the axes of the ith frame. The parameters
and variables shown in figure C.1 are given in table C.1.

frame a [m] b [m] d [m] fixed rot. α [rad] free rot. θ [rad] name
1 0 0 d∗1 I I elevation
2 0.186 0 0.554 Rz(π/2)Rx(π) Rz(θ

∗
2) arm_yaw1

3 0 0.583 0 Rz(π/2)Rx(−π) Rz(−θ∗3) arm_yaw2
4 0.479 0 -0.001 I Rz(−θ∗4) arm_yaw3
5 0.057 0 0.198 I Rx(−θ∗5) arm_roll1
6 0.352 0 -0.117 I Rz(θ

∗
6) arm_yaw4

7 -0.042 0 0.161 I Rx(θ
∗
7) hand_roll

8 0 0 0 Ry(−0.288) Ry(−θ∗8) hand_pitch
9 0.011 0 0.186 Ry(0.288)Rx(π) Ry(−θ8) upper_bar

10 0.520 0 0 Rx(π) Ry(−θ8) instrument_holder
11 0 0 -0.120 + d∗11 I I instrument_slide
12 0.052 0 0 Rz(π/2)Rx(π) Rz(θ

∗
12) instrument_roll

13 0 0 0.177 I Rx(−θ∗13) instrument_pitch
14L 0 0 0.009 Ry(π/2)Rx(π/2) Rz(−θ∗14L) instrument_jaw_left
14R 0 0 0.009 Ry(π/2)Rx(π/2) Rz(θ

∗
14R) instrument_jaw_right

Table C.1: Variables (marked with ∗) and parameters for the robot in figure C.1. I is the identity
matrix (no rotation). Recent measures indicate that d2 = 0.812, a2 = 0.198, a4 = 0.435,
α8 = Ry(−0.07), α9 = Ry(0.07)Rx(π), a9 = 0 and d11,fixed = 0.188 (⇒ d12 = 0.472).

I.e. according to table C.1, the transformation between frame 1 and 2 is given as:

1
2T =

[
Rz(π/2)Rx(π)Rz(θ

∗
2) p2

0 1

]
, p2 = [0.186 0 0.554]T (C.7)

The physical, low level controller and ROS limits for each of the variables are given in table C.2

limits θ∗7 θ∗8 d∗11 θ∗12 θ∗13 θ∗14L θ∗14R
physical ±1.670 [-0.951, 0.912] [0.169, 0.410] ±4.712 [-1.466, 1.536] [-1.850, θ∗14R] [θ∗14L, 1.702]
FPGA [-1.333, 1.424] [-0.812, 0.773] [0.170, 0.409] [-4.294, 4.416] [-0.977, 0.908] [-0.785, 1.335]
xacro ±π/2 [-0.8, 1] ±0.12 ±3π/2 ±1.5 ±1.8 ±1.8

Table C.2: Limits on the (controllable) variables in table C.1 and figure C.1. The low level controller
limits in the FPGA are set to avoid the physical limits, by switching off the motors on viola-
tion. The physical limits are measured limits.
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p4_arm_roll1
p4_arm3 ► p4_arm4
axis=[-1 0 0]

base_link
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Figure C.1: Orientation and position of coordinate frames Ψ0, Ψ1, ..., Ψ14 according to the ROS xacro
files.
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The first 6 degrees of freedom are elevation and rotation of the arm joints, and are manually set preoper-
atively and fixed, hence only the last 7 variables are controllable for trajectory planning. The frames are
superimposed on the robot in figure C.2.
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Figure C.2: Coordinate frame placement, distances and positive rotation direction for the robot arm,
hand and instrument. In figure C.2b the positive rotation direction is shown for both ROS
(green) and potentiometers (blue).

The position of the potentiometers measuring the joint variables 1-6 can be read from the interface to the
secondary RIO as voltages. The scaling factor from these potentiometer voltages to the joint angle (in
radians) are found through measurements and are given in table C.3.

joint rotation [rad] θ2, yaw1 θ3, yaw2 θ4, yaw3 θ5, roll1 θ6, yaw4
scaling factor [rad/V] -0.225365326 0.302076216 -0.306198114 -0.311665937 0.314159265

Table C.3: Factor from potentiometer voltage measurements to arm joint angles.
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C.1.1 Testing Existing Kinematics in MATLAB

MATLAB script and measurement files can be found in appendix J on the path matlab_scripts/kinematic_
models/robot_kinematics.m. The single-axis rotation matrices are defined according to equation (C.2)

1 function rotation = rot (axis,angle)
2 if axis==1
3 rotation = [1 0 0; 0 cos(angle) −sin(angle); 0 sin(angle) cos(angle)];
4 elseif axis==2
5 rotation = [cos(angle) 0 sin(angle); 0 1 0; −sin(angle) 0 cos(angle)];
6 elseif axis==3
7 rotation = [cos(angle) −sin(angle) 0; sin(angle) cos(angle) 0; 0 0 1];
8 end
9 end

The parameters are set according to table C.1 (corrected according to measurements, see table C.3) and
the transformation matrices are computed as follows

1 %% Existing reference frames according to xacro files
2

3 % parameters: distances [m], a: along x, b: along y, d: along z
4 a = [0.0 0.198 0.0 0.435 0.057 0.352 −0.052 0.0 0.0 0.430 0.0 0.052 0.0 0.0 0.0];
5 b = [0 0 0.583 0 0 0 0 0 0 0 0 0 0 0 0];
6 d = [0 0.812 0 −0.001 0.198 −0.117 0.161 0 0.186 0 −0.104 0.0 0.177 0.009 0.009];
7

8 % parameters: rotations [rad]
9 R = [eye(3) rot (3, pi /2)* rot (1, pi ) rot (3, pi /2)* rot(1,−pi) eye(3) eye(3) eye(3) eye(3) rot(2,−0.1745) rot(2,0.1745)*rot (1, pi ) rot (1, pi ) eye(3)

rot (3, pi /2)* rot (1, pi ) eye(3) rot (2, pi /2)* rot (1, pi /2) rot (2, pi /2)* rot (1, pi /2) ];
10 for i = 1:length(a)
11 Rot (:,:, i ) = R (:,( i−1)*3+1:i*3);
12 end
13

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % variables: actuation axes
16 ax = [3 3 −3 −3 −1 3 1 −2 2 −2 3 3 −1 −3 3];
17

18 % first make the variable rotation matrices (assume all variables are angles)
19 for i = 1:length(a)
20 Rot_var (:,:, i ) = rot (abs(ax(i) ) ,sign(ax(i ) )*state( i ) ) ;
21 end
22 % eliminating the two rotations where the variable is a distance
23 Rot_var (:,:,1) = eye(3);
24 Rot_var (:,:,11) = eye(3);
25

26 % making the variable translation vectors
27 for i = 1:length(a)
28 for j = 1:3
29 if i == 1 || i == 11
30 if j == abs(ax(i))
31 p( j , i ) = sign(ax(i ) )*state( i ) ;
32 end
33 else
34 p( j , i ) = 0;
35 end
36 end
37 end
38

39 % Transformation matrices (forward kinematics)
40 for i = 1:length(a)
41 fixed = [Rot (:,:, i ) [a( i ) b( i ) d( i ) ]’; zeros(1,3) 1];
42 free = [Rot_var (:,:, i ) p (:, i ) ; zeros(1,3) 1];
43 Trans (:,:, i ) = fixed*free ;
44 end
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To test the accuracy of the defined kinematics, computed distances are compared to measured distances.
The results are shown in table C.4, for different state configurations, with state = [statearm, statehand]
= [{d1,θ2,θ3,θ4,θ5,θ6},{θ7,θ8,d11,θ12,θ13,θ14L,θ14R}] (as θ8 = θ9 = θ10, 9 and 10 are left out).

dist. calc. meas.
|67 p| 16.92 16
|68 p| 16.92 16
|69 p| 35.43 34
|610 p| 55.52 53
|611 p| 49.75 51
|612 p| 54.36 52
|613 p| 49.18 47
|614 p| 49.07 47
|014 p| 231.49 229

(a)

dist. calc. meas.
|67 p| 16.92 16
|68 p| 16.92 16
|69 p| 29.72 27
|610 p| 39.53 36
|611 p| 45.42 44
|612 p| 49.57 46
|613 p| 60.15 65
|614 p| 60.77 66
|014 p| 243.72 241

(b)

dist. calc. meas.
|67 p| 16.92 16
|68 p| 16.92 16
|69 p| 33.81 31
|610 p| 44.99 46
|611 p| 44.71 49
|612 p| 49.82 50
|613 p| 53.64 53
|614 p| 53.99 54
|014 p| 185.16 189

(c)

dist. calc. meas.
|67 p| 16.92 16
|68 p| 16.92 16
|69 p| 31.66 32
|610 p| 62.96 65
|611 p| 53.98 55
|612 p| 56.84 56
|613 p| 44.05 42
|614 p| 43.49 41
|014 p| 217.15 207

(d)

Table C.4: Calculated and measured distances [cm] between frame origins. In C.4a all variables are set
to zero. In C.4b statehand =[1.3, 0.7, -0.05, 0, 0, -0.23, 0]. In C.4c state = [{0, 0.2, 0.5, -1.4,
0, 0.8}, {-0.5, 0.5, 0.03, 0, 0, -0.2, 0}]. In C.4d state = [{0, -0.2, -0.6, 0.9, 0, 0.4}, {-0.6, -0.6,
0, 0, 0, -0.2, 0}].

C.2 Defining Kinematics According to Denavit-Hartenberg Convention

In order to simplify calculations, the robot coordinate frame convention DH is adapted, and a new set of
coordinate frames and transformation matrices are established. According to the DH convention a frame
is placed such that

• frame i is fixed with respect to link i
• the zi axis is aligned with link i+1 actuation axis
• variable/parameter θi is the angle from xi−1 to xi about zi−1

• variable/parameter di is the distance from origin i−1 to xi measured along zi−1

• parameter ai is the distance from zi−1 to zi measured along xi

• parameter αi is the angle from zi−1 to zi about xi

Using this convention, all transformations between frames can be written on the form

i−1
i T =

Rz(θi)

0
0
di


0 1


Rx(αi)

ai

0
0


0 1

=


cos(θi) −cos(αi)sin(θi) sin(αi)sin(θi) ai cos(θi)

sin(θi) cos(αi)cos(θi) −sin(αi)cos(θi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (C.8)

The placement of coordinate frames according to the DH convention is shown in figure C.3 and the
parameters used for this set of frame transformations are given in table C.5.

C.2.1 Testing DH Kinematics in MATLAB

The new transformation matrices are computed and tested similarly, to determine the accuracy of the
defined robot kinematics, and the results are seen in table C.6. MATLAB script and measurement files
can be found in appendix J on the path matlab_scripts/kinematic_models/robot_kinematics.m.
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Figure C.3: Orientation and position of coordinate frames Ψ0, Ψ1, ..., Ψ14 defined according to the DH
convention.
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i θi [rad] di [m] ai [m] αi [rad]
1 0 0.453+d∗1 0.198 0
2 θ∗2 0 0.582 0
3 θ∗3 0 0.435 0
4 π/2+θ∗4 0 0 π/2
5 π+θ∗5 0.412 0 π/2
6 θ∗6 0.047 0 −π/2
7 −π/2+θ∗7 -0.035 0 −π/2
8 0.03+θ∗8 0 0.190 π

9 0.03+π/2+θ∗8 0 0.515 π

10 θ∗8 0 0.040 π/2
11 0 0.282+d∗11 0 0
12 θ∗12 0 0 π/2
13 π/2+θ∗13 0 0.009 π/2

14L θ∗14L 0 0.009 0
14R θ∗14R 0 0.009 0

Table C.5: Variables (marked with ∗) and parameters for the robot in figure C.3 defined according to
the DH convention, where θi and di are rotation/translation along zi−1, while ai and αi are
translation/rotation along xi.

1 %% Coordinate frames defined according to Denavit−Hartenberg convention
2 % Parameters
3 a_fix = [0.198 0.5820 0.435 0 0 0 0 0.1900 0.515 0.0400 0 0 0.0095 0.0095 0.0095];
4 d_fix = [1 0 0 0 0.4122 0.0474 −0.0450 0 0 0 0.282 0 0 0 0];
5 alpha = [0 0 0 pi/2 pi/2 −pi/2 −pi/2 pi pi pi /2 0 pi/2 pi/2 0 0];
6 theta_fix = [0 0 0 pi/2 pi 0 −pi/2 10/180*pi 10/180*pi+pi/2 0 0 0 pi/2 0 0];
7

8 % Variables (signs are included as long as state comes from old frame convention)
9 d_free = [d1 0 0 0 0 0 0 0 0 0 −d11 0 0 0 0];

10 theta_free = [0 −th2 −th3 −th4 −th5 th6 th7 th8 th8 th8 0 th12 −th13 th14L −th14R];
11

12 % Transformation matrices
13 for i = 1:length(a_fix )
14 Tz = [ rot (3,theta_free( i )+theta_fix ( i ) ) [0;0; d_free( i )+d_fix( i ) ]; zeros(1,3) 1];
15 Tx = [ rot (1,alpha(i ) ) [ a_fix ( i ) ;0;0]; zeros(1,3) 1];
16 T_DH(:,:, i ) = Tz*Tx;
17 end

dist. calc. meas.
|56 p| 4.74 5
|57 p| 6.54 7
|58 p| 24.71 24
|59 p| 49.60 49
|510 p| 53.15 53
|511 p| 47.94 48
|512 p| 47.94 48
|513 p| 48.04 48
|514 p| 48.16 48
|014 p| 230.20 229

(a)

dist. calc. meas.
|56 p| 4.74 5
|57 p| 6.54 7
|58 p| 23.79 24
|59 p| 35.40 34
|510 p| 39.20 39
|511 p| 57.82 64
|512 p| 57.82 64
|513 p| 58.54 67
|514 p| 59.23 68
|014 p| 243.20 241

(b)

dist. calc. meas.
|56 p| 4.74 5
|57 p| 6.54 7
|58 p| 25.14 24
|59 p| 39.04 40
|510 p| 43.02 42
|511 p| 51.33 51
|512 p| 51.33 51
|513 p| 51.86 52
|514 p| 52.40 52
|014 p| 184.99 189

(c)

dist. calc. meas.
|56 p| 4.74 5
|57 p| 6.54 7
|58 p| 21.65 22
|59 p| 58.87 58
|510 p| 61.22 61
|511 p| 42.53 41
|512 p| 42.53 41
|513 p| 42.08 40
|514 p| 41.67 40
|014 p| 216.08 207

(d)

Table C.6: Calculated and measured distances [cm] between frame origins. The same states are used as
given in table C.4.
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C.3 Defining da Vinci Kinematics for Active Joints

As the kinematics described via the xacro files implement translations first, and then RPY rotations (ex-
trinsic roll (about x-axis), pitch (about y-axis), yaw (about z-axis) rotation), the DH convention cannot
be implemented directly in the robot kinematics through the joint description in the xacro files. Further-
more, the convention here is that each frame (joint) is fixed in its child link (corresponding to the fixed
rotations preceding the free rotation), and not in its parent link as in the DH convention.

A compromise is made, defining a new set of frames for the xacro kinematics, adhering to the DH con-
straint that each free rotation/translation is about/along the local z-axis. Furthermore, for convenience of
the inverse kinematics solver, the two passive joints mimicking the hand pitch movement are removed
from the kinematic chain, also removing a series of links (marked with grey in figure C.4b). For conve-
nience of placing the hand roll and pitch frames in the pivot point, a virtual link is inserted in the xacro

file after each of these two joints.

Transformation matrices describing the kinematics of the xacro files are written on the form

i−1
i T =

Rz(yaw)Ry(pitch)Rx(roll)

ai

bi

di


0 1


Rz(θ

∗
i )

 0
0
d∗i


0 1

 (C.9)

where the transformation described in i−1
i T is implemented in joint i in the xacro file as (for joint 8)

1 < joint name="p4_hand_pitch" type="revolute">
2 <origin
3 xyz="0 0 0"
4 rpy="1.5708 0 0" />
5 <parent link="rcm_vitual0" />
6 <child link ="rcm_vitual1" />
7 <axis xyz="0 0 1" />
8 ...
9 </ joint >

The measures for all translations and rotations are displayed in table C.7.

fixed translation [m] fixed rotation [rad] freedom
frame a (x) b (y) d (z) roll pitch yaw θ∗ or d∗ joint name

1 0 0 0.998 0 0 0 d∗1 elevation
2 0.198 0 0 0 0 0 θ∗2 arm_yaw1
3 0.582 0 0 0 0 0 θ∗3 arm_yaw2
4 0.435 0 0 0 0 0 θ∗4 arm_yaw3
5 0 0 0 0 π/2 0 θ∗5 arm_roll1
6 0 0 0.412 0 −π/2 0 θ∗6 arm_yaw4
7 0.482 0 0.047 0 π/2 0 θ∗7 hand_roll
8 0 0 0 π/2 0 0 θ∗8 hand_pitch
9 0.097 0 0 0 −π/2 0 d∗9 instrument_slide

10 0 0 0 0 0 0 θ∗10 instrument_roll
11 0 0 0 0 π/2 0 θ∗11 instrument_pitch

12L 0.009 0 0 −π/2 0 0 θ∗12L instrument_jaw_left
12R 0.009 0 0 −π/2 0 0 θ∗12R instrument_jaw_right

Table C.7: Fixed translations and rotations implemented via xacro as described in equation (C.9), fol-
lowed by a free rotation or translation about the (new) z-axis.
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Figure C.4: Orientation and position of coordinate frames Ψ0, Ψ1, ..., Ψ12 defined according to the
compromise between the DH convention and the xacro convention.
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C.3.1 Testing Active Joint Kinematics in MATLABb

As for the previous sets of coordinate frames, the transformations are tested in MATLAB to check the
conformity with the two other kinematic chains. MATLAB script and measurement files can be found in
appendix J on the path matlab_scripts/kinematic_models/robot_kinematics.m.

1 %% Coordinate frames defined as a compromise between DH and the xacro syntax, excluding passive joints
2 % parameters: distances [m], and rotations [rad]
3 a = [0 0.198 0.582 0.435 0 0 0.482 0 0.097 0 0 0.009 0.009];
4 d = [0.998 0 0 0 0 0.412 0.047 0 0 0 0 0 0];
5 roll = [0 0 0 0 0 0 0 pi/2 0 0 0 −pi/2 −pi/2];
6 pitch = [0 0 0 0 pi/2 −pi/2 pi/2 0 −pi/2 0 pi/2 0 0];
7

8 % Variables (signs are included as long as state comes from old frame convention)
9 d_free = [d1 0 0 0 0 0 0 0 −d11 0 0 0 0];

10 theta_free = [0 −th2 −th3 −th4 −th5 th6 th7 th8 0 th12 −th13 th14L −th14R];
11

12 % Transformation matrices (forward kinematics)
13 for i = 1:length(a)
14 fixed = [ rot (2, pitch ( i ) )* rot (1, roll ( i ) ) [a( i ) 0 d( i ) ]’; zeros(1,3) 1];
15 free = [ rot (3,theta_free( i ) ) [0 0 d_free( i ) ]’; zeros(1,3) 1];
16 Trans (:,:, i ) = fixed*free ;
17 end

The new frame transformations result in a set of calculated distances corresponding relatively well to the
measured distances, as seen in table C.8.

state as in table C.4a table C.4b table C.4c table C.4d
calculated distance 2.31 m 2.38 m 1.85 m 2.17 m
measured distance 2.29 m 2.41 m 1.89 m 2.07 m

Table C.8: Calculated and measured distances between origin of the inertial and the tool tip frames,
when using the the active joint kinematics for the calculations.

Roll Pitch Yaw angles, extrinsic rotation about x,y,z axes, respectively (RPY)

116 C. Kinematic Models of the Robot



Appendix D

Dynamic Model of a Beating Heart

The motion of a point on the surface of the heart can be described as a quasi-periodic rigid 3D motion,
which is a combination of the two periodic motions of the diaphragm and the heart [Duindam and Sastry,
2007]. The two separate movements can be described as the vector field [Sloth et al., 2012]

x(t0) =
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·d (D.1)

where
t0 is the start time (t0 = 0) [s]

ωd is the frequency of the diaphragm movement, read off ECG (ωd = 2π

4 ) [rad/s]
ωh is the frequency of the heart movement, read off mechanical ventilator (ωh =

2π

1.1 ) [rad/s]
xi is the ith entry of the state vector x [·]
d is a disturbance vector (d1 = ddiaphragm ≡ [−0.4,0.4] and d2 = dheart ≡ [−0.11,0.11]) [rad/s]

The two transformation matrices describing the movement of the diaphragm frame relative to the inertial
frame, and the heart frame relative to the diaphragm frame can be composed from the state at time t as
[Sloth et al., 2012]

0
dH(t) =


x6 x5x8 x5x7 0
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7
6 x4− 7

6
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−x13x16 x14 x13x15 −10
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 (D.2)

The desired position of the robot manipulator can be formulated as the desired transformation (rotation
and distance) from the heart (surface point) frame.
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Appendix E

MATLAB Toolbox SOSTOOLS

This appendix serves as a short description of how to download and install the MATLAB toolbox SOS-
TOOLS.

SOSTOOLS is a free third-party Matlab toolbox developed by engineering departments of four major
universities. A zip file of the toolbox can be downloaded from

http://www.cds.caltech.edu/sostools

also containing a user guide [Papachristodoulou et al., 2013] to sum of squares (SOS) problems and how
to formulate a problem to solve it with the toolbox, along with a set of demos.

SOSTOOLS takes as input the SOS program formulation, recasts it as a Semi-Definite Programming
(SDP) problem, calls SDP solvers, and recasts the solution to the SDP problem into the solution to the
SOS problem. This means that the toolbox requires that an SDP solver toolbox is installed, e.g. the
SeDuMi (Self-Dual-Minimization) solver, which can be downoaded from

http://sedumi.ie.lehigh.edu/downloads

The toolboxes are activated in Matlab by adding the downloaded unzipped folders to the Matlab path.
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Appendix F

Measurement Logs

This appendix contains measurement description of most experiments carried out.

F.1 Step Response of Slide Position

The test setup for this test is fairly simple and includes:

• The da Vinci robot

• A laptop (preferable with 10 GB storage available on the AFS drive)

The setup is depicted in figure F.1.

TCP/IP

Da Vinci Robot

Laptop

slide position

(1)

(2)

(3)

(5)

python run_controllers.py

Figure F.1: Test setup to measure slide position.

• Configure the ROS environment as described in appendix A, i.e. make sure all low level con-
trollers are running, that roscore is running and that the davinci_driver (on branch gr1032) is
running. Make sure that the gr1032 package is cloned and that the python wrapper script found in
appendix I is copied to the root of the workspace.

At this point, three terminals should be running. Now, open two additional terminals and prepare both
by typing:

• ssh <user name>surgery-srv.lab.es.aau.dk

• cd <path_to_ root_of_workspace>

• source devel/setup.bash.
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F.1 Step Response of Slide Position

First Terminal

Type:

python run_controllers.py

This launches the User Interface (UI) shown below.

1 ******************************************************
2 The following options are avaiable:
3 ------------------------------------------------------
4 press ’a’ to run slide safety controller
5 press ’b’ to specify custom joint angles (FK mode)
6 press ’c’ to run demo
7 press ’d’ to run beating heart controller
8 press ’e’ to specify custom 3D angles (IK mode)
9 press ’f’ to run 3D safety controller

10 ******************************************************

Type b + enter to enter custom joint angle mode. It is by default at its zero position for all joint angles.
Type 0.005 for slide position and zero for the remaining angles.

Second Terminal

By subscribing to the joint_state topic (rostopic echo joint_states), all information about the
current states can be fetched from the sensors, i.e. the potentiometers that measure all joint angles. An
example of this is shown below.

1 ---
2 header:
3 seq: 4553
4 stamp:
5 secs: 1428950592
6 nsecs: 666452523
7 frame_id: ’’
8 name: [’p4_hand_pitch’, ’p4_hand_roll’, ’p4_instrument_jaw_left’, ’p4_instrument_jaw_right’, ’

p4_instrument_pitch’, ’p4_instrument_roll’, ’p4_instrument_slide’]
9 position: [-0.021504180505871773, 0.027300411835312843, 0.0006707065622322261, -0.00013414131535682827,

0.0012072718236595392, -0.0896063968539238, 1.055011398420902e-05]
10 velocity: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
11 effort: [-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5]
12 ---

For this test, it is more appropriate to merely publish the slide position, this can be done by:

rostopic echo joint_states/position[6]

Which gives an output as shown below.
1 ---
2 8.20564400783e-06
3 ---
4 8.20564400783e-06
5 ---
6 8.20564400783e-06
7 ---

Instead of leaving the output as a terminal output, the information is mapped to a .txt file with a suitable
name, e.g:
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F.2 Step Response of the da Vinci Robot in 3D Cartesian Space

rostopic echo joint_states/position[6] > taus_05cm_1_speedlimit_100.txt

Use the MATLAB script and the recorded measurement data found in appendix J under the path matlab_

scripts/slide_step/plot_slide_pos.m, to plot the recorded slide position along with an estimated
first and second order approximation. The step response is seen in figure F.2.
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Figure F.2: Step response from 0 mm to 5 mm. Plot details and measurements can be found in appendix J
as matlab_scripts/slide_step/plot_slide_pos.m

.

This completes this measurement log.

F.2 Step Response of the da Vinci Robot in 3D Cartesian Space

This test is carried out in a similar manner as the test in section F.1, now subscribing to the full joint_state
topic (rostopic echo joint_states) as described in section F.1. This displays the measurements of
the joint angles from the potentiometers, that correspond to angles in radians (and for instrument_slide:
in meters), secured by the calibration of the motor gearings. An example of a measurement can be seen
in section F.1.

The measurements are copied directly from the terminal output, and the joint measurements extracted
from this string. Use the MATLAB script and the recorded measurement data found in appendix J
under the path matlab_scripts/step_3d/3d_time_const_measurement.m, to plot the recorded step
responses. The step responses for steps in the x, y and z direction are shown in figure F.3.
From the plots it is seen, as expected, that a step in one Cartesian coordinate direction is not completely
decoupled from the other two directions, because of the movements being implemented by the six rev-
olute joints of the da Vinci robot. It is, on the other hand, also seen that the movements in the other
directions are sub-millimeter and that they settle approximately at their initial value. Thus it is consid-
ered that the three directions can be seen as approximately decoupled, and a first order approximation of
the step response for each direction is presented in figure F.4.
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F.2 Step Response of the da Vinci Robot in 3D Cartesian Space
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Figure F.3: Step responses for the x, y and z directions from 0 mm to 5 mm. Plot details and mea-
surements can be found in appendix J in matlab_scripts/step_3d/3d_time_const_
measurement.m.

For the step in the x direction it is seen how the end effector oscillates for a long time after the step
movement, which can be attributed to the flexibility of the structure. The step in the x direction is mainly
implemented through a hand_pitch angle change (see figure 1.4).

It is seen how the step input of 5 mm in the y direction only causes a robot movement of 4 mm in this
direction. This is experiences in all tests, and is attributed to uncertainties in the kinematics and in the
inverse kinematics solver. The step in the y direction is mainly implemented through a hand_roll angle
change (see figure 1.4).

The step in the z direction is mainly implemented through a instrument_slide angle change (see
figure 1.4), and should be comparable to figure F.2. It is, however, seen that the dynamics have changed,
which is expected since an inverse kinematics solver is employed (see subsection 6.5.1). This does not
explain the considerably lower time constant, which may be explained by a change in the ROS setup from
using MoveGroup for publishing control signals to doing it directly (see appendix A for an overview of
the two approaches to publishing control signals in ROS), or from changes in the low level controllers
and joint motor gearings.

The time constants inferred from these measurements are

τx = 70.088 ms

τy = 100.288 ms

τz = 40.114 ms
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F.2 Step Response of the da Vinci Robot in 3D Cartesian Space
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Figure F.4: Step response for each direction from 0 mm to 5 mm along with first order approxima-
tions. It is seen how uncertainties in the y direction cause the robot to step to only
4 mm. Plot details and measurements can be found in appendix J in matlab_scripts/
step_3d/3d_time_const_measurement.m
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Appendix G

MATLAB Implementation

G.1 Implementation of Safety Controllers

This appendix contains the MATLAB implementation of the controllers developed throughout the project,
i.e.:

• Safety controller for a system with static boundaries for instrument slide in subsection G.1.1.

• Safety controller for a system with dynamic boundaries to simulate a set-up consisting of a beating
heart and a safe distance between heart and robot end effector. This is in subsection G.1.2.

• Safety controller for a system in 3D Euclidean space comprising control of all joints in the robotic
hand, employing forward an inverse kinematics. This is in found subsection G.1.3.

G.1.1 Implementation of Instrument Slide Safety Controller with Static Boundaries

This section contains the MATLAB implementation of the slide controller developed in chapter 4. No
user inputs are required to run the script. The script shown here includes no plotting, but the script found
in appendix J under the path matlab_scripts/slide_controller/slide_controller.m includes all
plotting details.

1 model = 2; % 1 = first order model, 2 = second order model
2

3 %−−− parabola coeficients for position constraints −−−%
4 a = 16/9; b = 4/45; c = −2/225;
5 %−−− elliptic paraboloid coeficients for position constraints −−−%
6 x10 = 1/40; x20 = 0; a1 = −3/40; b1 = −10; c1 = 1; c2 = −1;
7

8 if model == 2
9 s = tf (’ s ’) ; % prepare Laplace operator

10 ts = (28−9)*1/50; % 5 percent settling time
11 tr = 0.1; % rise time
12 wn = 1.8/ tr ; % calculate natural frequency
13 zeta = −1/(wn*ts)*log(0.02); % calculate the damping ratio
14 H = wn^2/(s^2 + 2*zeta*wn*s + wn^2); % calculate transfer function
15 num = wn^2; % Specify numarator
16 den = [1 2*zeta*wn wn^2]; % specify denominator
17 A = [0 1; −wn^2 −2*zeta*wn];
18 B = [0 wn^2]’;
19 C = [1 0];
20 D = 0;
21 sys = ss(A,B,C,D)
22 x(1,1) = 0 % initial state position
23 x(2,1) = 0; % initial state velocity
24 K = acker(sys.a,sys.b,[−14 −15]);
25 elseif model == 1
26 tau = 0.110; % time constant
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G.1 Implementation of Safety Controllers

27 a_sys = −1/tau; %
28 b_sys = 1/tau; % sine wave frequency
29 sys = ss(a_sys,b_sys,1,0);
30 x(1,1) = 0; % initial state ;
31 K = acker(a_sys,b_sys,[1.1*eig(sys.a)]) ; % control gain
32 end
33

34 kappa = 1; % design parameter
35 Nbar = − inv(sys.c*inv(sys.a−sys.b*K)*sys.b); % ensure unity gain
36 scrsz = get(groot, ’ScreenSize’); % get screen information
37

38 %−−− Find epsilon −−−%
39 x_epsilon = 0.04; % find epsilon from desired soft limit
40 epsilon = a*x_epsilon^2 + b*x_epsilon + c; % find epsilon
41 syms x0
42 softlims = solve(a*x0^2 + b*x0 + c == epsilon); % find soft limits
43 epsilon = abs(epsilon); % specify ep silon as a positive number
44

45 %−−− make reference vector −−−%
46 XREF = [0.02 0.09 −0.14 −0.02 0.045 0.01]; % simulation setpoints
47 xref = XREF(1); % initial reference
48

49 f = 100; Ts = 1/ f ; % sampling frequency
50 N = 5; % simulation time in seconds
51 fprintf ( ’Simulation time: %d seconds\n’, N)
52

53 i = (0:Ts:N); % make simulation resolution realistic
54 utilde = zeros(round(length(i) ) ,1) ; % init utilde
55 Rplot(1) = 1; % init reference plot
56

57 for R = 1:length( i )
58 %−−− set various references −−−%
59 REFS = 6;
60 if R == round(length(i) /REFS)*1
61 xref = XREF(2);
62 Rplot(2) = R;
63 elseif R == round(length(i) /REFS)*2
64 xref = XREF(3);
65 Rplot(3) = R;
66 elseif R == round(length(i) /REFS)*3
67 xref = XREF(4);
68 Rplot(4) = R;
69 elseif R == round(length(i) /REFS)*4
70 xref = XREF(5);
71 Rplot(5) = R;
72 elseif R == round(length(i) /REFS)*5
73 xref = XREF(6);
74 Rplot(6) = R;
75 end
76

77 %−−− physical constraints for velocity −−−%
78 if 1
79 if model == 2
80 max_vel = 1;
81 if x(2,R) > max_vel
82 x(2,R) = max_vel;
83 elseif x(2,R) < −max_vel
84 x(2,R) = −max_vel;
85 end
86 end
87 end
88

89 %−−− output −−−%
90 y (:, R) = sys.C*x(:,R);
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91

92 %−−− determine sigma −−−%
93 if model == 1
94 if (a*(x(1,R))^2 + b*(x(1,R)) + c) <= −epsilon
95 sigma = 0;
96 elseif ((a*(x(1,R)).^2 + b*(x(1,R)) + c) > −epsilon) && ...
97 ((a*(x(1,R)).^2 + b*(x(1,R)) + c) < 0)
98 sigma = −2*((a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon).^3 − ...
99 3.*(( a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon ).^2 + 1;

100 else
101 sigma = 1;
102 end
103 elseif model == 2
104 cbf = (a.*(x(1,R)).^2 + b.*x(1,R) + c) ;
105 if cbf <= −epsilon
106 sigma = 0;
107 elseif (cbf > −epsilon) && (cbf < 0)
108 if model == 1
109 sigma = −2*((a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon).^3 − ...
110 3.*(( a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon ).^2 + 1;
111 elseif model == 2
112 sigma = −2*((a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon).^3 − ...
113 3.*(( a*(x(1,R)).^2 + b*(x(1,R)) + c) /epsilon ).^2 + 1;
114 end
115 else
116 sigma = 1;
117 end
118 end
119

120 %−−− print every thousand iteration to user −−−%
121 if mod(R,1000) == 1
122 if R ~= 1
123 fprintf ( ’ iter = %d of %d\n’, R−1, length(i)−1);
124 else
125 fprintf ( ’ iter = %d of %d\n’, R, length( i )−1);
126 end
127 end
128

129 %−−− find lie derivatives −−−%
130 if model == 2
131 LgB(1,R) = (c1*wn^2*(2*x(2,R) + 2*x20))/b1^2;
132 LfB(1,R) = (c1*x(2,R)*(2*x(1,R) + 2*x10))/a1^2 − ...
133 (c1*(2*x(2,R) + 2*x20)*(x(1,R)*wn^2 + 2*x(2,R)*zeta*wn))/b1^2;
134 elseif model == 1
135 LgB(1,R) = (2*(a)*(x (:, R)) + (b))*(sys.b);
136 LfB(1,R) = (2*(a)*(x (:, R)) + (b)) *(( sys.a)*x (:, R));
137 end
138

139 %−− Find controller by pole placement −−%
140 utilde (1,R) = xref*Nbar − K*x(:,R);
141

142 %−−− Find safe controller −−−%
143 threshold = 0.001;
144 if abs(LgB(1,R)) >= threshold
145 k0(1,R) = −( ( LfB(1,R) + sqrt (LfB(1,R)^2 ...
146 + kappa^2*LgB(1,R)*LgB(1,R)’ )) / (LgB(1,R)*LgB(1,R)’) ) *LgB(1,R);
147 kplot (1,R) = k0(1,R);
148 else
149 k0(1,R) = 0;
150 kplot (1,R) = k0(1,R);
151 end
152

153 %−−− control law −−−%
154 u0(1,R) = sigma*k0(1,R)+(1−sigma)*utilde(1,R);
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155

156 %−−− physical constraints for control signal −−−%
157 slide_lim = 0.1;
158 if u0(1,R) > slide_lim
159 u0(1,R) = slide_lim ;
160 elseif u0(1,R) < −slide_lim
161 u0(1,R) = −slide_lim;
162 end
163

164 %−−− save the LfclB −−−%
165 LfclB(1,R) = LfB(1,R) + LgB(1,R).*k0(1,R);
166

167 %−−− extrapolate with forward euler −−−%
168 xdot = sys.a*x (:, R) + u0(1,R)*sys.b;
169 x (:, R+1) = xdot*Ts + x(:,R);
170 sig (1,R) = sigma;
171

172 end

G.1.2 Implementation of Instrument Slide Safety Controller with Dynamic Boundaries

This section contains MATLAB implementation of the controller developed in chapter 5. All plotting
details are omitted in this section, but the controller can also be found in appendix J under the path
matlab_scripts/beating_heart/beating_heart_controller.m which includes the plotting sec-
tion as well.

1 %−−− setup systems −−−%
2 k = 9;
3 Nbar = 10;
4 tau = 0.110;
5 wh = 2*pi/1.1;
6 A = [−1/tau 0 0 0;
7 0 0 wh 0;
8 0 −wh 0 0;
9 0 0 0 0];

10 B = [(1/ tau) 0 0 0]’;
11 K = [−k Nbar 0 Nbar];
12

13 %−−− initial conditions −−−%
14 x(1,1) = 0.05; % initial state position
15 x(2,1) = −0.03; % initial heart position
16 x(3,1) = 0; % initial heart velocity
17 x(4,1) = 0.03; % initial distance
18

19 kappa = 1;
20 scrsz = get(groot, ’ScreenSize’); % get screen information
21

22 f = 2000; Ts = 1/f ; % sampling frequency
23 N = 5; % simulation time in seconds
24 fprintf ( ’Simulation time: %d seconds\n’, N)
25

26 i = (0:Ts:N); % make simulation resolution realistic
27 utilde = zeros(round(length(i) ) ,1) ; % init utilde
28 Rplot(1) = 1; % init reference plot
29

30 %−−− run controller −−−%
31 epsilon = 0.01;
32 for R = 1:length( i )
33
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34 if mod(R,1000) == 1
35 if R ~= 1
36 fprintf ( ’ iter = %d of %d\n’, R−1, length(i)−1);
37 else
38 fprintf ( ’ iter = %d of %d\n’, R, length( i )−1);
39 end
40 end
41

42 %−−− give an unsafe distance −−−%
43 if R > f*2
44 x(4,R) = −0.01;
45 end
46

47 cbf = x(2,R) − x(1,R);
48 %−−− determine sigma −−−%
49 if cbf <= −epsilon
50 sigma = 0;
51 elseif ( (cbf > −epsilon) && (cbf < 0) )
52 sigma = −2*(cbf/epsilon).^3 − 3.*(cbf/epsilon).^2 + 1;
53 else
54 sigma = 1;
55 end
56 %sigma = 0;
57

58 %−−− find lie derivatives −−−%
59 LgB(1,R) = −1/tau;
60 LfB(1,R) = wh*x(3,R) + x(1,R)/tau;
61

62 %−− Find controller by pole placement −−%
63 utilde (1,R) = K*x(:,R);
64

65 %−−− Find safe controller −−−%
66 threshold = 0.001;
67 if abs(LgB(1,R)) >= threshold
68 k0(1,R) = −( ( LfB(1,R) + sqrt (LfB(1,R)^2 ...
69 + kappa^2*LgB(1,R)*LgB(1,R)’ )) / (LgB(1,R)*LgB(1,R)’) ) *LgB(1,R);
70 kplot (1,R) = k0(1,R);
71 else
72 k0(1,R) = 0;
73 kplot (1,R) = k0(1,R);
74 end
75

76 %−−− control law −−−%
77 u0(1,R) = sigma*k0(1,R)+(1−sigma)*utilde(1,R);
78

79 %−−− save the LfclB −−−%
80 LfclB(1,R) = LfB(1,R) + LgB(1,R).*k0(1,R);
81

82 %−−− extrapolate with forward euler −−−%
83 xdot = A*x(:,R) + u0(1,R)*B;
84 x (:, R+1) = xdot*Ts + x(:,R);
85

86 %−−− record sigma −−−%
87 sig (1,R) = sigma;
88

89 %−−− calculate distance between heart and robot end effector −−−%
90 Delta(1,R) = x(1,R) − x(2,R);
91 end
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G.1.3 Implementation of 3D Euclidean Space Safety Controller

This section contains the MATLAB implementation of the controller of the full robotic hand and instru-
ment in 3D Euclidean space developed in chapter 6. All plotting details are omitted in this section, but the
controller can also be found in appendix J under the path matlab_scripts/safe_3d/safety_in_3d.m.

1 close all ;
2 clear ;
3 clc ;
4 format long;
5 hfile = matlab.desktop.editor.getAll ;
6

7 %−−− setup systems −−−%
8 taux = 0.070;
9 tauy = 0.100

10 tauz = 0.041
11

12 A = [−1/taux 0 0 ;
13 0 −1/tauy 0 ;
14 0 0 −1/tauz];
15 B = [ 1/taux 0 0 ;
16 0 1/tauy 0 ;
17 0 0 1/tauz ];
18 K = place(A,B,[−15 −15 −15])
19 C = eye(3);
20 x = [0.05 0.05 0.02]’; % initial conditions
21 xref = [0.05 0.05 0.02]’; % initial reference
22

23 Nbar = − inv(C*inv(A−B*K)*B); % ensure unity gain
24 kappa = 1;
25 scrsz = get(groot, ’ScreenSize’); % get screen information
26

27 f = 2000; Ts = 1/f ; % sampling frequency
28 N = 10; % simulation time in seconds
29 fprintf ( ’Simulation time: %d seconds\n’, N)
30

31 i = (0:Ts:N); % make simulation resolution realistic
32 %utilde = zeros(3,round(length(i ) ) ) ; % init utilde
33 Rplot(1) = 1; % init reference plot
34

35 cx = 0;
36 cy = 0;
37 cz = 0;
38 rx = 0.03;
39 ry = 0.06;
40 rz = 0.03;
41

42 %−−− run controller −−−%
43 for R = 1:length( i )
44 xref_vec (:, R) = xref ;
45 if mod(R,1000) == 1
46 if R ~= 1
47 fprintf ( ’ iter = %d of %d\n’, R−1, length(i)−1);
48 else
49 fprintf ( ’ iter = %d of %d\n’, R, length( i )−1);
50 end
51 end
52

53 if R > f*1
54 xref = [0.06 0.02 0.0]’;
55 end
56 if R > f*1.5
57 xref = [−0.055 0.03 0.01]’;
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58 end
59 if R > f*2.5
60 xref = [−0.01 −0.01 0]’;
61 end
62 if R > f*3.5
63 xref = [−0.055 0 −0.01]’;
64 end
65 if R > f*4.5
66 xref = [0 −0.09 0]’;
67 end
68 if R > f*5.5
69 xref = [0 0.09 0.0001]’;
70 end
71 if R > f*6.5
72 xref = [0.01 0.09 0.01]’;
73 end
74

75 cbf = −(((x(1,R)−cx)/rx)^2 + ((x(2,R)−cy)/ry)^2 + ((x(3,R)−cz)/rz)^2 −1);
76

77 %−−− determine sigma −−−%
78 epsilon = 0.777777777777778;
79 if cbf <= −epsilon
80 sigma = 0;
81 elseif ( (cbf > −epsilon) && (cbf < 0) )
82 sigma = −2*(cbf/epsilon).^3 − 3.*(cbf/epsilon).^2 + 1;
83 else
84 sigma = 1;
85 end
86

87 LgB(R,:) = [(2/( taux*rx^2))*(cx−x(1,R)) ...
88 (2/( tauy*ry^2))*(cy−x(2,R)) ...
89 (2/( tauz*rz^2))*(cz−x(3,R))];
90 LfB(1,R) = −2*( ((cx*x(1,R)−x(1,R)^2)/(taux*rx^2)) + ...
91 ((cy*x(2,R)−x(2,R)^2)/(tauy*ry^2)) + ...
92 ((cz*x(3,R)−x(3,R)^2)/(tauz*rz^2)));
93

94 utilde (:, R) = −K*x(:,R) + Nbar*xref(:) ;
95

96 %−−− Find safe controller −−−%
97 threshold = 0.000001;
98 %abs(LgB(R,:));
99

100 if norm(LgB(R,:),2) >= 0.0000001
101 k0 (:, R) = −( ( LfB(1,R) + sqrt (LfB(1,R)^2 ...
102 + kappa^2*LgB(R,:)*LgB(R,:)’ )) / (LgB(R,:)*LgB(R,:)’) ) *LgB(R,:) ’;
103 else
104 k0 (:, R) = [0 0 0]’;
105 disp(R);
106 end
107 %sigma = 0;
108 u0(:,R) = sigma*k0(:,R)+(1−sigma)*utilde(:,R);
109

110 %−−− extrapolate with forward euler −−−%
111 xdot = A*x(:,R) + B*u0(:,R);
112 x (:, R+1) = xdot*Ts + x(:,R);
113

114 sig (1,R) = sigma;
115 xref_plot (1,R) = xref (1) ;
116 xref_plot (2,R) = xref (2) ;
117 xref_plot (3,R) = xref (3) ;
118 end
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G.2 Safety Verification with SOSTOOLS

This appendix contains the MATLAB/SOSTOOLS safety verification (barrier certificate search) tested
throughout the project, i.e.

• Safety verification of a first order system given a zero reference in subsection G.2.1.

• Safety verification of a first order system given a range of references in subsection G.2.2.

• Safety verification of a first order system in terms of the error state in subsection G.2.3.

• Safety verification of a second order system in terms of the error state in subsection G.2.4.

G.2.1 Safety Verification of First Order System with Zero Reference

This section contains the MATLAB/SOSTOOLS implementation of the barrier certificate search de-
scribed in subsection 9.2.1. All plotting details are omitted in this section, but can be found in appendix J
under the path matlab_scripts/sostools/1storder_noRef.m.

1 % 1D system WITHOUT REFERENCE
2 clear all ; clc ;
3

4 % Time constant from measurement
5 tau = 0.11;
6 % State−space matrices for first order system
7 A = −1/tau;
8 B = 1/tau;
9 K = place(A,B,[10*eig(A)]) ;

10

11 % Distance between safe and unsafe regions
12 delta = 1e−3;
13

14 % Minimum value of the barrier certificate on the set Xu
15 epsilon = 1e−3;
16

17 % Set upper and lower limits for the set intervals X, Xu and X0
18 Xmax = 0.1;
19 Xmin = −0.1;
20 Xumax = Xmax;
21 Xumin = 0.05;
22 X0max = Xumin−delta;
23 X0min = Xmin;
24

25 % Set degree of barier certificare and SOS polynomials
26 degB = [0,2:4];
27 degq = [0:4];
28

29 % =============================================
30 % Declare state variable
31 pvar x1
32

33 % Initialize the sum of squares program
34 prog = sosprogram(x1);
35

36 % Vector field dx/dt = fx (closed loop)
37 fx = (A−B*K)*x1;
38

39 % Declare the polynomial barrier function
40 zB = monomials(x1,degB);
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41 [prog,Bar] = sospolyvar(prog,zB);
42

43 % =============================================
44 % Define space X in Rn
45 [a,b,c] = parabola(Xmin,Xmax); % get coefficients for parabola which is positive for x in [−0.1,0.1]
46 gX = a*x1^2+b*x1+c;
47 zX = monomials(x1,degq);
48 [prog,qX] = sossosvar(prog,zX);
49

50 prog = sosineq(prog,−diff(Bar,x1)*fx−gX*qX);
51

52 % Define space Xu in X
53 [a,b,c]=parabola(Xumin,Xumax);
54 gXu = a*x1^2+b*x1+c;
55 zXu = monomials(x1,degq);
56 [prog,qXu] = sossosvar(prog,zXu);
57

58 prog = sosineq(prog,Bar−epsilon−gXu*qXu);
59

60 % Define space X0 in X
61 [a,b,c]=parabola(X0min,X0max);
62 gX0 = a*x1^2+b*x1+c;
63 zX0 = monomials(x1,degq);
64 [prog,qX0] = sossosvar(prog,zX0);
65

66 prog = sosineq(prog,−Bar−gX0*qX0);
67

68 % =============================================
69 % Solve for barrier certificate
70 prog = sossolve(prog);
71 getB = sosgetsol(prog,Bar)
72

73 % Get coefficients for the remaining polynomials
74 getdBdx = diff (getB,x1)
75 getqXu1 = sosgetsol(prog,qXu);
76 getqX01 = sosgetsol(prog,qX0);
77 getqX1 = sosgetsol(prog,qX);
78

79 % Test if the inequalities are SOS
80 [Q,~,~] = findsos(getB−epsilon−gXu*getqXu1);
81 [Q2,~,~] = findsos(−getB−gX0*getqX01);
82 [Q3,~,~] = findsos(−getdBdx*fx−gX*getqX1);

G.2.2 Safety Verification of First Order System for Reference Interval

This section contains the MATLAB/SOSTOOLS implementation of the barrier certificate search de-
scribed in subsection 9.2.2. All plotting details are omitted in this section, but can be found in appendix J
under the path matlab_scripts/sostools/1storder_withRef.m.

1 % 1D system WITH REFERENCE INTERVAL
2 clear all ; clc ;
3

4 % Time constant from measurement
5 tau = 0.11;
6 % State−space matrices for first order system
7 A = −1/tau;
8 B = 1/tau;
9 K = 0.2;

10 Nbar = K+1;
11

12 % Distance between safe and unsafe regions
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13 delta = 0.015;
14

15 % Minimum value of the barrier certificate on the set Xu
16 epsilon = 1e−1;
17

18 % Set upper and lower limits for the set intervals X, Xu and X0
19 Xmin = −0.1;
20 Xmax = 0.1;
21 Xumin = 0.05;
22 Xumax = Xmax;
23 X0min = Xmin;
24 X0max = Xumin−delta;
25 rMin = −0.1;
26 rMax = 0.017;
27

28 % Set degree of barier certificare and SOS polynomials
29 degB = [0:6];
30 degq = [0:2];
31

32 % =============================================
33 % Control Barrier Function Search for 1D system
34 pvar x1 xref
35 xtilde = [x1; xref ];
36

37 % Initialize the sum of squares program
38 prog = sosprogram(xtilde);
39

40 % Vector field dt /dx = fx (closed loop)
41 fx = [A−B*K B*Nbar; 0 0]*xtilde;
42

43 % Declare the polynomial barrier function
44 zB = monomials(xtilde,degB);
45 [prog,Bar] = sospolyvar(prog,zB);
46

47 % =============================================
48 % Define space X in Rn
49 [a,b,c] = parabola(Xmin,Xmax); % get coefficients for parabola which is positive for x in [−0.1,0.1]
50 gX1 = a*x1^2+b*x1+c;
51 zX1 = monomials(xtilde,degq);
52 [prog,qX1] = sossosvar(prog,zX1);
53

54 [a,b,c] = parabola(rMin,rMax);
55 gX2 = a*xref^2+b*xref+c;
56 zX2 = monomials(xtilde,degq);
57 [prog,qX2] = sossosvar(prog,zX2);
58

59 prog = sosineq(prog,−diff(Bar,x1)*fx−gX1*qX1 − gX2*qX2 );
60

61 % Define space Xu in X
62 [a,b,c]=parabola(Xumin,Xumax);
63 gXu1 = a*x1^2+b*x1+c;
64 zXu1 = monomials(xtilde,degq);
65 [prog,qXu1] = sossosvar(prog,zXu1);
66

67 [a,b,c]=parabola(rMin,rMax);
68 gXu2 = a*xref^2+b*xref+c;
69 zXu2 = monomials(xtilde,degq);
70 [prog,qXu2] = sossosvar(prog,zXu2);
71

72 prog = sosineq(prog,Bar−epsilon−gXu1*qXu1−gXu2*qXu2);
73

74 % Define space X0 in X
75 [a,b,c]=parabola(X0min,X0max);
76 gX01 = a*x1^2+b*x1+c;
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77 zX01 = monomials(xtilde,degq);
78 [prog,qX01] = sossosvar(prog,zX01);
79

80 [a,b,c]=parabola(rMin,rMax);
81 gX02 = a*xref^2+b*xref+c;
82 zX02 = monomials(xtilde,degq);
83 [prog,qX02] = sossosvar(prog,zX02);
84

85 prog = sosineq(prog,−Bar−gX01*qX01−gX02*qX02);
86

87 % =============================================
88 % Solve for barrier certificate
89 prog = sossolve(prog);
90 getB = sosgetsol(prog,Bar)
91

92 % Get coefficients for the remaining polynomials
93 getdBdx = [ diff (getB,x1) diff (getB,xref) ]
94 getqXu1 = sosgetsol(prog,qXu1);
95 getqX01 = sosgetsol(prog,qX01);
96 getqX1 = sosgetsol(prog,qX1);
97 getqXu2 = sosgetsol(prog,qXu2);
98 getqX02 = sosgetsol(prog,qX02);
99 getqX2 = sosgetsol(prog,qX2);

100

101 % Test if the inequalities are SOS
102 [Q,~,~] = findsos(getB−epsilon−gXu1*getqXu1−gXu2*getqXu2);
103 [Q2,~,~] = findsos(−getB−gX01*getqX01−gX02*getqX02);
104 [Q3,~,~] = findsos(−getdBdx*fx−gX1*getqX1−gX2*getqX2);

G.2.3 Safety Verification of First Order Error State System

This section contains the MATLAB/SOSTOOLS implementation of the barrier certificate search de-
scribed in subsection 9.2.3. All plotting details are omitted in this section, but can be found in appendix J
under the path matlab_scripts/sostools/1storder_error.m.

1 % 1D first order system FOR ERROR STATE
2 clear all ; clc ;
3

4 % Time constant from measurement
5 tau = 0.11;
6 % State−space matrices for first order system
7 A = −1/tau;
8 B = 1/tau;
9 K = 0.2;

10 Nbar = K+1;
11

12 % Distance between safe and unsafe regions
13 delta = 4e−3;
14

15 % Minimum value of the barrier certificate on the set Xu
16 epsilon = 1e−2;
17

18 % Set upper and lower limits for the set intervals X, Xu and X0
19 Xmin = −0.03;
20 Xmax = 0.03;
21 Xumin = Xmin;
22 Xumax = −0.009;
23 X0min = Xumax+delta;
24 X0max = Xmax;
25

26 % Set degree of barier certificare and SOS polynomials
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27 degB = [0:6];
28 degq = [0:4];
29

30 % =============================================
31 % Control Barrier Function Search for 1D system
32 pvar xerr
33

34 % Initialize the sum of squares program
35 prog = sosprogram(xerr);
36

37 % Vector field dt /dx = fx (closed loop)
38 fx = (A−B*K)*xerr;
39

40 % Declare the polynomial barrier function
41 zB = monomials(xerr,degB);
42 [prog,Bar] = sospolyvar(prog,zB);
43

44 % =============================================
45 % Define space X in Rn
46 [a,b,c] = parabola(Xmin,Xmax);
47 gX1 = a*xerr^2+b*xerr+c;
48 zX1 = monomials(xerr,degq);
49 [prog,qX1] = sossosvar(prog,zX1);
50

51 prog = sosineq(prog,−diff(Bar,xerr)*fx−gX1*qX1);
52

53 % Define space Xu in X
54 [a,b,c]=parabola(Xumin,Xumax);
55 gXu1 = a*xerr^2+b*xerr+c;
56 zXu1 = monomials(xerr,degq);
57 [prog,qXu1] = sossosvar(prog,zXu1);
58

59 prog = sosineq(prog,Bar−epsilon−gXu1*qXu1);
60

61 % Define space X0 in X
62 [a,b,c]=parabola(X0min,X0max);
63 gX01 = a*xerr^2+b*xerr+c;
64 zX01 = monomials(xerr,degq);
65 [prog,qX01] = sossosvar(prog,zX01);
66

67 prog = sosineq(prog,−Bar−gX01*qX01);
68

69 % =============================================
70 % Solve for barrier certificate
71 prog = sossolve(prog);
72 getB = sosgetsol(prog,Bar)
73

74 % Get coefficients for the remaining polynomials
75 getdBdx = diff (getB,xerr)
76 getqXu1 = sosgetsol(prog,qXu1);
77 getqX01 = sosgetsol(prog,qX01);
78 getqX1 = sosgetsol(prog,qX1);
79

80 % Test if the inequalities are SOS
81 [Q,~,~] = findsos(getB−epsilon−gXu1*getqXu1);
82 [Q2,~,~] = findsos(−getB−gX01*getqX01);
83 [Q3,~,~] = findsos(−getdBdx*fx−gX1*getqX1);
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G.2.4 Safety Verification of Second Order Error State System

This section contains the MATLAB/SOSTOOLS implementation of the barrier certificate search de-
scribed in section 9.3. All plotting details are omitted in this section, but can be found in appendix J
under the path matlab_scripts/sostools/2ndorder_error.m.

1 % 1D second order system FOR ERROR STATE
2 clear all ; clc ;
3

4 % Settling and rise time from measurement
5 ts = (28−9)*1/50; % 5 percent settling time
6 tr = 0.1; % rise time
7 wn = 1.8/ tr ; % natural frequency
8 zeta = −1/(wn*ts)*log(0.02); % damping ratio
9

10 % State−space matrices for second order system
11 A = [0 1; −wn^2 −2*zeta*wn];
12 B = [0 wn^2]’;
13 K = acker(A,B,[−40 −50]);
14

15 % Distance between safe and unsafe regions
16 delta = 5e−3;
17

18 % Minimum value of the barrier certificate on the set Xu
19 epsilon = 5e−2;
20

21 % Set upper and lower limits for the set intervals X, Xu and X0
22 velMin = −0.5;
23 velMax = 0.5;
24 Xmin = −0.03;
25 Xmax = 0.03;
26 Xumin = Xmin;
27 Xumax = −0.008;
28 X0min = Xumax+delta;
29 X0max = Xmax;
30

31 % Set degree of barier certificare and SOS polynomials
32 degB = [0:4];
33 degq = [0:1];
34

35 % =============================================
36 % Control Barrier Function Search for 1D system
37 pvar xerr1 xerr2
38 xerr = [xerr1; xerr2 ];
39

40 % Initialize the sum of squares program
41 prog = sosprogram(xerr);
42

43 % Vector field dt /dx = fx (closed loop)
44 fx = (A−B*K)*xerr;
45

46 % Declare the polynomial barrier function
47 zB = monomials(xerr,degB);
48 [prog,Bar] = sospolyvar(prog,zB);
49

50 % =============================================
51 % Define space X in Rn
52 [a,b,c] = parabola(Xmin,Xmax);
53 gX1 = a*xerr1^2+b*xerr1+c;
54 zX1 = monomials(xerr,degq);
55 [prog,qX1] = sossosvar(prog,zX1);
56

57 [a,b,c] = parabola(velMin,velMax);
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58 gX2 = a*xerr2^2+b*xerr2+c;
59 zX2 = monomials(xerr,degq);
60 [prog,qX2] = sossosvar(prog,zX2);
61

62 prog = sosineq(prog,−[diff(Bar,xerr1) diff (Bar,xerr2) ]* fx−gX1*qX1−gX2*qX2);
63

64 % Define space Xu in X
65 [a,b,c]=parabola(Xumin,Xumax);
66 gXu1 = a*xerr1^2+b*xerr1+c;
67 zXu1 = monomials(xerr,degq);
68 [prog,qXu1] = sossosvar(prog,zXu1);
69

70 [a,b,c] = parabola(velMin,velMax);
71 gXu2 = a*xerr2^2+b*xerr2+c;
72 zXu2 = monomials(xerr,degq);
73 [prog,qXu2] = sossosvar(prog,zXu2);
74

75 prog = sosineq(prog,Bar−epsilon−gXu1*qXu1−gXu2*qXu2);
76

77 % Define space X0 in X
78 [a,b,c]=parabola(X0min,X0max);
79 gX01 = a*xerr1^2+b*xerr1+c;
80 zX01 = monomials(xerr,degq);
81 [prog,qX01] = sossosvar(prog,zX01);
82

83 [a,b,c] = parabola(velMin,velMax);
84 gX02 = a*xerr2^2+b*xerr2+c;
85 zX02 = monomials(xerr,degq);
86 [prog,qX02] = sossosvar(prog,zX02);
87

88 prog = sosineq(prog,−Bar−gX01*qX01−gX02*qX02);
89

90 % =============================================
91 % Solve for barrier certificate
92 prog = sossolve(prog);
93 getB = sosgetsol(prog,Bar)
94

95 % Get coefficients for the remaining polynomials
96 getdBdx = [ diff (getB,xerr1) diff (getB,xerr2) ]
97 getqXu1 = sosgetsol(prog,qXu1);
98 getqX01 = sosgetsol(prog,qX01);
99 getqX1 = sosgetsol(prog,qX1);

100 getqXu2 = sosgetsol(prog,qXu2);
101 getqX02 = sosgetsol(prog,qX02);
102 getqX2 = sosgetsol(prog,qX2);
103

104 % Test if the inequalities are SOS
105 [Q,~,~] = findsos(getB−epsilon−gXu1*getqXu1−gXu2*getqXu2);
106 [Q2,~,~] = findsos(−getB−gX01*getqX01−gX02*getqX02);
107 [Q3,~,~] = findsos(−getdBdx*fx−gX1*getqX1−gX2*getqX2);
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Da Vinci Implementation of Controllers

This appendix features the the source code for the files:

• run_controllers.cpp (this file includes the main C++ function and the safety controllers devel-
oped in chapter 4 (slide) and chapter 5 (beating heart)).

• safe_3d.cpp (this file implements the safety controller developed in chapter 6 in the 3D euclidean
space).

Along with their associated .h files, they are both located at the Robotic Surgery Group - Aalborg Univer-
sity at github (https://github.com/AalborgUniversity-RoboticSurgeryGroup/ ) as the repository gr1031.
Some additional test files are developed, such as ik_gr1032.cpp and ik_gr1032.cpp. These files are
only used for demonstrations and testing and features nothing "new", thus not shown here, but can be
found at github as well.

run_controllers.cpp

1 #include "ik_gr1032.h"
2 #include "demo_gr1032.h"
3 #include "safe_3d.h"
4

5 /*** include libraries ***/
6 #include < stri ng>
7 #include <vector>
8 #include <iostream>
9 #include <stdio.h>

10 #include <ros/ros.h>
11 #include <std_msgs/Header.h>
12 #include <std_msgs/Float64.h>
13 #include <time.h>
14 #include "ros/ros.h"
15 #include "std_msgs/String.h"
16 #include <sensor_msgs/JointState.h>
17 #include <math.h>
18 #include <fstream>
19 #include <Eigen/Dense>
20

21 /*** define macros ***/
22 #define K 0.1
23 #define Nbar 1.1
24 #define kappa 1
25 #define a 1.7778
26 #define b 0.0889
27 #define c −0.0089
28 #define epsilon 0.002488888888889
29 #define tau 0.1
30 #define N_samples 100
31 #define a2 0.07500
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32 #define b2 −4
33 #define zeta 0.55
34 #define x10 0.0250
35 #define wn 17
36 #define c1 1
37 #define c2 −1
38

39 /*** synopsises ***/
40 int slide_safety_controller ( int model);
41 int write_meas_to_files();
42 int slide_angles() ;
43 int demo();
44 int beating_heart();
45 int write_sine_data_to_file () ;
46 int ik_angles() ;
47

48 /*** global doubles ***/
49 double x1;
50 double x1_hat;
51 double x2_hat;
52 double xref = 0.00;
53 double LgB;
54 double LfB;
55 double k0;
56 double utilde ;
57 double u = 0;
58 double sigma = 0;
59 double cbf;
60 double Ac1 = −1/tau;
61 double Gamma1 = 1.095169439874664;
62 double Bc1 = 1/tau;
63 double Phi1 = 0.095169439874664;
64 double N;
65 double P;
66 double err;
67 double x_inst_slide ;
68 double x_inst_roll ;
69 double x_inst_pitch;
70 double x_jaw_right;
71 double x_jaw_left;
72 double x_hand_roll;
73 double x_hand_pitch;
74

75 /*** global vectors ***/
76 std :: vector<double> x1_vec;
77 std :: vector<double> xref_vec;
78 std :: vector<double> sigma_vec;
79 std :: vector<double> u_vec;
80 std :: vector<double> LgB_vec;
81 std :: vector<double> LfB_vec;
82 std :: vector<double> err_vec;
83 std :: vector<double> x1_hat_vec;
84 std :: vector<double> x2_hat_vec;
85 std :: vector<double> dur_vec;
86 std :: vector<double> x1_beat_vec;
87 std :: vector<double> dref_vec;
88

89 /*** global matrices ***/
90 Eigen::MatrixXd Gamma(2,2);
91 Eigen::MatrixXd Phi(2,1);
92 Eigen::MatrixXd C(1,2);
93 Eigen::MatrixXd Kd(1,2);
94 Eigen::MatrixXd Ld(2,1);
95 Eigen::MatrixXd x_hat(2,1);
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96 Eigen::MatrixXd x1_eigen(1,1);
97 Eigen::MatrixXd eigen_temp(1,1);
98 Eigen::MatrixXd M(2,1);
99

100 /*** beating heart matrices ***/
101 Eigen::MatrixXd A_beat(4,4);
102 Eigen::MatrixXd B_beat(4,1);
103 Eigen::MatrixXd K_beat(1,4);
104 Eigen::MatrixXd x_beat(4,1);
105

106 /*** global integers ***/
107 int ref_counter = 0;
108

109 /*** callback function to read position sensor ***/
110 void joint_states_callback (const sensor_msgs::JointState::ConstPtr& msg)
111 {
112 // ROS_INFO("slide postion: %f", msg−>position[6]);
113 // ROS_INFO("name: %s", msg−>name[6].c_str());
114 x1 = msg−>position[6];
115 x_inst_slide = x1;
116 x_inst_roll = msg−>position[5];
117 x_inst_pitch = msg−>position[4];
118 x_jaw_right = msg−>position[3];
119 x_jaw_left = msg−>position[2];
120 x_hand_roll = msg−>position[1];
121 x_hand_pitch = msg−>position[0];
122 }
123

124 /*** timer class ***/
125 class timer {
126 private :
127 long double begTime;
128 public :
129 void start () {
130 begTime = clock();
131 }
132 };
133

134 int main(int argc, char **argv) {
135 ros :: init (argc, argv, " run_controllers" , ros :: init_options :: AnonymousName);
136

137 /*** define Gamma for slide safety controller ***/
138 Gamma(0,0) = 0.9864; Gamma(0,1) = 0.0091;
139 Gamma(1,0) = −2.6232 ; Gamma(1,1) = 0.8167;
140 /*** define Phi for slide safety controller ***/
141 Phi(0,0) = 0.0136;
142 Phi(1,0) = 2.6232;
143 /*** define the output matrix C for slide safety controller ***/
144 C(0,0) = 1; C(0,1) = 0;
145 /*** define the feedback Kd for slide safety controller ***/
146 Kd(0,0) = 0.25; Kd(0,1) = −0.03;
147 /*** define the observer gain Ld for slide safety controller ***/
148 Ld(0,0) = −0.25;
149 Ld(1,0) = −0.02;
150 x1_eigen(0,0) = 0;
151 /*** define gains for slide safety controller ***/
152 N = 58;
153 M(0,0) = 0.78;
154 M(1,0) = 152.31;
155 P = 0.0129;
156

157 /*** initialize x_hat ***/
158 x_hat(0,0) = x1;
159 x_hat(1,0) = 0;
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160

161 /*** welcome screen ***/
162 std :: cout << "Starting program..." << std ::endl;
163 std :: cout << "\n ****************************************************** " << std ::endl;
164 std :: cout << "The following options are avaiable:" << std ::endl;
165 std :: cout << "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" << std::endl;
166 std :: cout << "press ’a’ to run slide safety controller " << std ::endl;
167 std :: cout << "press ’b’ to specify custom joint angles (FK mode)" << std::endl;
168 std :: cout << "press ’c’ to run demo" << std::endl;
169 std :: cout << "press ’d’ to run beating heart controller " << std ::endl;
170 std :: cout << "press ’e’ to specify custom 3D angles (IK mode)" << std::endl;
171 std :: cout << "press ’ f ’ to run 3D safety controller " << std ::endl;
172 std :: cout << " ****************************************************** " << std ::endl;
173

174 char choice;
175 std :: cin >> choice;
176

177 /*** initialize callback function for sensor measurements ***/
178 ros :: NodeHandle n;
179 ros :: Subscriber sub = n.subscribe(" joint_states " , 1000, joint_states_callback ) ;
180

181 while (choice != ’q ’) {
182 if (choice == ’a ’) {
183 /*** remove old files ***/
184 remove("slide_data.txt" ) ;
185 remove("slide_ref. txt " ) ;
186 remove("control_signal. txt " ) ;
187 remove("sigma.txt");
188 remove("LgB.txt");
189 remove("LfB.txt") ;
190 remove("err. txt " ) ;
191 remove("x1_hat.txt");
192 remove("x2_hat.txt");
193 remove("dur.txt") ;
194

195 /*** ask for underlying approximation ***/
196 int model;
197 std :: cout << "model order approximation? (1 or 2)" << std ::endl;
198 std :: cin >> model;
199

200 /*** run controller ***/
201 slide_safety_controller (model);
202

203 return 0;
204 }
205 else if (choice == ’b ’) {
206 slide_angles() ;
207 return 0;
208 }
209 else if (choice == ’c ’) {
210 demo();
211 return 0;
212 }
213 else if (choice == ’d ’) {
214 remove("x1_beat.txt");
215 remove("sigma.txt");
216 beating_heart();
217 return 0;
218 }
219 else if (choice == ’e ’) {
220 ik_pos() ;
221 return 0;
222 }
223 else if (choice == ’ f ’) {
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224 remove("x.txt" ) ;
225 remove("y.txt" ) ;
226 remove("z.txt" ) ;
227 remove("x_ref.txt" ) ;
228 remove("y_ref.txt" ) ;
229 remove("z_ref.txt" ) ;
230 remove("sigma_3d.txt");
231 remove("exe_3d.txt");
232 safe_3d();
233 return 0;
234 }
235 else {
236 std :: cout << "please press one of the given letters or press ’q’ to quit " << std ::endl;
237 std :: cin >> choice;
238 }
239 }
240 return 0;
241 }
242

243 /*** slide safety controller ***/
244 int slide_safety_controller ( int model) {
245 std :: cout << "Entered safety controller for slide position ! " << std ::endl;
246 std :: cout << "running safety controller " << std ::endl;
247

248 /*** prepare to publish control signal ***/
249 ros :: NodeHandle node;
250 ros :: Publisher setpoints_pub_pitch = node.advertise<std_msgs::Float64>("pitch_command", 1);
251 ros :: Publisher setpoints_pub_slide = node.advertise<std_msgs::Float64>("slide_command", 1);
252

253 /*** read setpoints from file ***/
254 std :: vector<double> xrefs (200);
255 int i = 0;
256 int iter = 0;
257 std :: fstream myfile("references. txt " , std :: ios_base::in) ;
258 while (myfile >> xrefs[ i ])
259 {
260 printf ( "%f ", xrefs [ i ]) ;
261 i += 1;
262 }
263 int N_xrefs = i ;
264 std :: cout << N_xrefs << " reference points provided" << std ::endl;
265

266 long double Ts = 0.01;
267 /*** run slide controller ***/
268 while(true) {
269

270 /*** subscribe to topics with 100 Hz ***/
271 ros :: Rate r(100);
272

273 /*** prepare real time processing ***/
274 timer t ;
275 t . start () ;
276

277 while(true) {
278 if ( t .elapsedTime() >= Ts) {
279

280 /*** read sensor ***/
281 ros :: spinOnce();
282

283 /*** determine setpoint ***/
284 if ( iter % N_samples == 0) {
285 xref = xrefs [ref_counter ];
286 ref_counter += 1;
287 }
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288

289 std :: cout << "x1 = " << x1 << std::endl;
290 std :: cout << "xref = " << xref << std ::endl;
291

292 /*** start timer to meassure execution time ***/
293 std :: clock_t start ;
294 double dur;
295 start = std :: clock() ;
296

297

298 /*** barrier function based on first order approximation ***/
299 cbf = a*x1*x1 + b*x1 + c;
300

301 if (model == 1) {
302 /*** calculate linear control output ***/
303 utilde = Nbar*xref − K*x1;
304

305 /*** lie derivatives based on first order approximation ***/
306 LgB = 2*a*x1*(1/tau) + b*(1/tau) ;
307 LfB = −2*(1/tau)*a*pow(x1,2) − (1/tau)*b*x1;
308 }
309 else if (model == 2) {
310 /*** calculate linear control output ***/
311 eigen_temp = Kd*x_hat;
312 double temp_ = (double) eigen_temp(0,0);
313 utilde = temp_ + N*xref*P;
314 x1_eigen(0,0) = x1;
315

316 /*** calculate error ***/
317 double err = (double) x1_eigen(0,0) − x_hat(0,0);
318 std :: cout << "error = " << err << std ::endl;
319

320 /*** calculate x_hat(k+1) ***/
321 x_hat = Gamma*x_hat + Phi*Kd*x_hat + Ld*( C*x_hat − x1_eigen ) + M*xref*P;
322

323 /*** calculate lie derivatives ***/
324 x1_hat = x_hat(0,0);
325 x2_hat = x_hat(1,0);
326 LgB = x2_hat * (2*c1*pow(wn,2) / pow(b2,2) );
327 LfB = x2_hat * ( (c1*(2*x1_hat+2*x10)) / (pow(a2,2)) − (2*c1*(2*x1_hat*pow(wn,2) + 2*x2_hat*zeta*wn)) / (pow(b2,2)));
328 std :: cout << "x_hat = \n" << x_hat << std::endl;
329 }
330

331 /*** safe control law ***/
332 int delta = 0.00001;
333 if (abs(LgB) > delta) {
334 k0 = −LgB*( LfB + sqrt( LfB*LfB + kappa*kappa + LgB*LgB ) )/( LgB*LgB );
335 }
336 else {
337 k0 = 0;
338 std :: cout << "k0 = 0!!! " << std ::endl;
339 }
340

341 /*** calculate sigma ***/
342 if (( cbf < −epsilon) || (cbf == −epsilon)) {
343 sigma = 0;
344 }
345 else if (( cbf > −epsilon) && (cbf < 0)) {
346 sigma = 3*(−2*pow(cbf/epsilon,3) − 3*pow(cbf/epsilon,2 ) + 1);
347 }
348 else {
349 sigma = 1;
350 }
351 if (sigma > 1) {
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352 sigma = 1;
353 }
354

355 std :: cout << "sigma = " << sigma << std::endl;
356

357 /*** control law ***/
358 u = sigma*k0 + (1 − sigma)*utilde;
359

360 /*** slide physical limits ***/
361 if (u > 0.099)
362 u = 0.099;
363 else if (u < −0.099)
364 u = −0.099;
365

366 /*** send control signals to robot ***/
367 std_msgs::Float64 zero_msg;
368 zero_msg.data = 0.7;
369 setpoints_pub_pitch.publish(zero_msg);
370 std_msgs::Float64 u_msg;
371 u_msg.data = u;
372 setpoints_pub_slide.publish(u_msg);
373

374 /*** provide some user information ***/
375 iter += 1;
376 std :: cout << iter << " iterations " << std ::endl;
377 std :: cout << "model order = " << model << std::endl;
378

379 /*** write slide measurements to file after inital transients ***/
380 if ( iter > 0) {
381 x1_vec.push_back(x1);
382 xref_vec.push_back(xref);
383 sigma_vec.push_back(sigma);
384 u_vec.push_back(u);
385 LgB_vec.push_back(LgB);
386 LfB_vec.push_back(LfB);
387 if (model == 2) {
388 err_vec.push_back(err);
389 x1_hat_vec.push_back(x1_hat);
390 x2_hat_vec.push_back(x2_hat);
391 }
392 dur_vec.push_back(dur);
393 }
394

395 /*** check execution time ***/
396 dur = ( std :: clock() − start ) / (double) CLOCKS_PER_SEC;
397 std :: cout << "execution time = " << dur << std ::endl;
398 std :: cout << "\n";
399

400 if ( iter > N_xrefs*N_samples) {
401 write_meas_to_files();
402 ros :: shutdown();
403 return 0;
404 }
405

406 break;
407 }
408 else {
409 /*** do some other stuff if necessary***/
410 }
411 }
412 }
413 return 0;
414 }
415
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416 int beating_heart() {
417 std :: cout << "beating heart controller is entered" << std ::endl;
418

419 /*** define local variables ***/
420 double wh = 5.7119866;
421 double Kbar_beat = 0.1;
422 double Nbar_beat = 1.1;
423

424 /*** define augmented feedback vector ***/
425 K_beat(0,0) = −Kbar_beat; K_beat(0,1) = Nbar_beat; K_beat(0,2) = 0; K_beat(0,3) = Nbar_beat;
426

427 /*** prepare to publish control signal ***/
428 ros :: NodeHandle node;
429 ros :: Publisher setpoints_pub_pitch = node.advertise<std_msgs::Float64>("pitch_command", 1);
430 ros :: Publisher setpoints_pub_slide = node.advertise<std_msgs::Float64>("slide_command", 1);
431

432 /*** subscribe to topics with 100 Hz ***/
433 ros :: Rate r(100);
434

435 /*** initial conditions ***/
436 x_beat(0,0) = 0.05;
437 x_beat(1,0) = 0.01;
438 x_beat(2,0) = 0;
439 x_beat(3,0) = 0.03;
440

441 int iter = 0;
442 double cbf_beat;
443 double epsilon_beat = 0.015;
444 long double Ts = 0.01;
445 while(true) {
446 /*** prepare real time processing ***/
447 timer t ;
448 t . start () ;
449 while(true) {
450 if ( t .elapsedTime() >= Ts) {
451 /*** read sensor ***/
452 ros :: spinOnce();
453

454 /*** update state vector ***/
455 x_beat(0,0) = x1;
456 x_beat(1,0) = 0.01*cos(wh*Ts*iter);
457 x_beat(2,0) = 0.01*sin(wh*Ts*iter);
458

459 if (( iter > 500) && ( iter < 700)) {
460 /*** give unsafe distance ***/
461 x_beat(3,0) = −0.02;
462 }
463 else if ( iter > 1000) {
464 x_beat(3,0) = 0.025;
465 }
466 else {
467 /*** give safe distance ***/
468 x_beat(3,0) = 0.04;
469 }
470

471 /*** control barrier function ***/
472 cbf_beat = x_beat(1,0) − x_beat(0,0);
473

474 /*** calculate linear control output ***/
475 eigen_temp = K_beat*x_beat;
476 utilde = (double) eigen_temp(0,0);
477

478 /*** lie derivatives ***/
479 LgB = −1/tau;
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480 LfB = wh*x_beat(2,0) + x_beat(0,0)/tau;
481

482 /*** safe control law ***/
483 int delta = 0.00001;
484 if (abs(LgB) > delta) {
485 k0 = −LgB*(LfB + sqrt(LfB*LfB + kappa*kappa + LgB*LgB))/(LgB*LgB);
486 }
487 else {
488 k0 = 0;
489 std :: cout << "k0 = 0" << std ::endl;
490 }
491

492 /*** calculate sigma ***/
493 if ((cbf_beat < −epsilon_beat) || (cbf_beat == −epsilon_beat)) {
494 sigma = 0;
495 }
496 else if ((cbf_beat > −epsilon_beat) && (cbf_beat < 0)) {
497 sigma = (−2*pow(cbf_beat/epsilon_beat,3) − 3*pow(cbf_beat/epsilon_beat,2) + 1);
498 }
499 else {
500 sigma = 1;
501 }
502

503 /*** control law ***/
504 u = sigma*k0 + (1 − sigma)*utilde;
505

506 /*** slide physical limits ***/
507 if (u > 0.099)
508 u = 0.099;
509 else if (u < −0.099)
510 u = −0.099;
511

512 /*** make sure to start robot in a safe area ***/
513 if ( iter < 50 ) {
514 u = 0.08;
515 }
516

517 /*** send control signals to robot ***/
518 std_msgs::Float64 zero_msg;
519 zero_msg.data = 0.0;
520 setpoints_pub_pitch.publish(zero_msg);
521 std_msgs::Float64 u_msg;
522 u_msg.data = u;
523 setpoints_pub_slide.publish(u_msg);
524

525 /*** give some user information ***/
526 std :: cout << "xh1 = " << x_beat(1,0) << std ::endl;
527 std :: cout << "x1 = " << x1 << std::endl;
528 std :: cout << "sigma = " << sigma << std::endl;
529 std :: cout << "u = " << u << std ::endl;
530 std :: cout << " iter = " << iter << std ::endl;
531 iter += 1;
532

533 /*** save measurements ***/
534 if ( iter > 0) {
535 x1_beat_vec.push_back(x1);
536 sigma_vec.push_back(sigma);
537 dref_vec.push_back(x_beat(3,0));
538 }
539

540 /*** write measurements to file and end section ***/
541 if ( iter == 1400) {
542 write_sine_data_to_file () ;
543 return 0;
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544 }
545 break;
546 }
547 else {
548 /*** do some other stuff if necessary***/
549 }
550 }
551 }
552 return 0;
553 }
554

555 int write_sine_data_to_file () {
556 /*** print position trajectory to file ***/
557 std :: ofstream f1;
558 f1 .open("x1_beat.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
559 for ( int i = 0; i < x1_beat_vec.size(); i += 1) {
560 f1 << x1_beat_vec[i] << std::endl;
561 }
562 f1 .close() ;
563 /*** print reference distance to file ***/
564 std :: ofstream f2;
565 f2 .open("dref. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
566 for ( int i = 0; i < dref_vec.size() ; i += 1) {
567 f2 << dref_vec[i ] << std ::endl;
568 }
569 f2 .close() ;
570 /*** print sigma values to file ***/
571 std :: ofstream f3;
572 f3 .open("sigma.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
573 for ( int i = 0; i < sigma_vec.size(); i += 1) {
574 f3 << sigma_vec[i] << std::endl;
575 }
576 f3 .close() ;
577 }
578

579 int write_meas_to_files() {
580 /*** print position trajectory to file ***/
581 std :: ofstream f1;
582 f1 .open("slide_data.txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
583 for ( int i = 0; i < x1_vec.size(); i += 1) {
584 f1 << x1_vec[i] << std ::endl;
585 }
586 f1 .close() ;
587 /*** print position references to file ***/
588 std :: ofstream f2;
589 f2 .open("slide_ref . txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
590 for ( int i = 0; i < xref_vec.size () ; i += 1) {
591 f2 << xref_vec[i ] << std ::endl;
592 }
593 f2 .close() ;
594 /*** print sigma values to file ***/
595 std :: ofstream f3;
596 f3 .open("sigma.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
597 for ( int i = 0; i < sigma_vec.size(); i += 1) {
598 f3 << sigma_vec[i] << std::endl;
599 }
600 f3 .close() ;
601 /*** print control signals to file ***/
602 std :: ofstream f4;
603 f4 .open("control_signal. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
604 for ( int i = 0; i < u_vec.size() ; i += 1) {
605 f4 << u_vec[i] << std ::endl;
606 }
607 f4 .close() ;
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608 /*** print LgB to file ***/
609 std :: ofstream f5;
610 f5 .open("LgB.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
611 for ( int i = 0; i < LgB_vec.size(); i += 1) {
612 f5 << LgB_vec[i] << std::endl;
613 }
614 f5 .close() ;
615 /*** print LfB to file ***/
616 std :: ofstream f6;
617 f6 .open("LfB.txt" , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
618 for ( int i = 0; i < LfB_vec.size(); i += 1) {
619 f6 << LfB_vec[i] << std ::endl;
620 }
621 f6 .close() ;
622 /*** print error to file ***/
623 std :: ofstream f7;
624 f7 .open("err. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
625 for ( int i = 0; i < err_vec.size () ; i += 1) {
626 f7 << err_vec[i ] << std ::endl;
627 }
628 f7 .close() ;
629 /*** print estimated position to file ***/
630 std :: ofstream f8;
631 f8 .open("x1_hat.txt" , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
632 for ( int i = 0; i < err_vec.size () ; i += 1) {
633 f8 << x1_hat_vec[i] << std ::endl;
634 }
635 f8 .close() ;
636 /*** print estimated velocity to file ***/
637 std :: ofstream f9;
638 f9 .open("x2_hat.txt" , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
639 for ( int i = 0; i < err_vec.size () ; i += 1) {
640 f9 << x2_hat_vec[i] << std ::endl;
641 }
642 f7 .close() ;
643 /*** print duration to file ***/
644 std :: ofstream f10;
645 f10.open("dur.txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
646 for ( int i = 0; i < dur_vec.size() ; i += 1) {
647 f10 << dur_vec[i] << std ::endl;
648 }
649 f10.close() ;
650 }
651

652 int slide_angles() {
653 /*** prepare to publish control signal ***/
654 ros :: NodeHandle node;
655 ros :: Publisher setpoints_pub_pitch = node.advertise<std_msgs::Float64>("pitch_command", 1);
656 ros :: Publisher setpoints_pub_slide = node.advertise<std_msgs::Float64>("slide_command", 1);
657 ros :: Publisher setpoints_pub_roll = node.advertise<std_msgs::Float64>("roll_command", 1);
658 ros :: Publisher setpoints_pub_inst_roll = node.advertise<std_msgs::Float64>("inst_roll_command", 1);
659 ros :: Publisher setpoints_pub_inst_pitch = node.advertise<std_msgs::Float64>("inst_pitch_command", 1);
660 ros :: Publisher setpoints_pub_inst_jaw_right = node.advertise<std_msgs::Float64>("inst_jaw_right_command", 1);
661

662 while(1) {
663 std :: cout << "Type values... (type 9 to exit ) " << std ::endl;
664

665 std :: vector<std :: string> names;
666 names.push_back("p4_hand_pitch");
667 names.push_back("p4_hand_roll");
668 names.push_back("p4_instrument_slide");
669 names.push_back("p4_instrument_roll");
670 names.push_back("p4_instrument_pitch");
671 names.push_back("p4_instrument_jaw_right");
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672 names.push_back("p4_instrument_jaw_left");
673

674 double input;
675 std :: vector<double> control_signals(7,0.0);
676 for ( int i = 0; i < names.size()−1; i += 1) {
677 std :: cout << names.at(i) << ": " << std ::endl;
678 std :: cin >> input;
679 if ( input == 9) {
680 return 0;
681 }
682 control_signals .at( i ) = input ;
683 }
684

685 /*** load p4_hand_pith ***/
686 std_msgs::Float64 u_msg_0;
687 u_msg_0.data = control_signals.at(0);
688

689 /*** load p4_hand_roll ***/
690 std_msgs::Float64 u_msg_1;
691 u_msg_1.data = control_signals.at(1);
692

693 /*** load p4_instrument_slide ***/
694 std_msgs::Float64 u_msg_2;
695 u_msg_2.data = control_signals.at(2);
696

697 /*** load p4_instrument_roll ***/
698 std_msgs::Float64 u_msg_3;
699 u_msg_3.data = control_signals.at(3);
700

701 /*** load p4_instrument_pitch ***/
702 std_msgs::Float64 u_msg_4;
703 u_msg_4.data = control_signals.at(4);
704

705 /*** load p4_instrument_jaw_right ***/
706 std_msgs::Float64 u_msg_5;
707 u_msg_5.data = control_signals.at(5);
708

709 std :: cout << "hand_pitch = " << u_msg_0.data << std::endl;
710 std :: cout << "hand_roll = " << u_msg_1.data << std::endl;
711 std :: cout << " inst_slide = " << u_msg_2.data << std::endl;
712 std :: cout << " inst_roll = " << u_msg_3.data << std::endl;
713 std :: cout << " inst_pitch = " << u_msg_4.data << std::endl;
714 std :: cout << "inst_jaw_right = " << u_msg_5.data << std::endl;
715

716 /*** publish setpoints ***/
717 setpoints_pub_pitch.publish(u_msg_0);
718 setpoints_pub_roll.publish(u_msg_1);
719 setpoints_pub_slide.publish(u_msg_2);
720 setpoints_pub_inst_roll .publish(u_msg_3);
721 setpoints_pub_inst_pitch.publish(u_msg_4);
722 setpoints_pub_inst_jaw_right.publish(u_msg_5);
723

724 std :: cout << "Done!" << std::endl;
725 }
726 return 0;
727 }
728

729 int demo() {
730 std :: cout << "running demo.." << std::endl;
731 demo_func();
732 return 0;
733 }
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safe_3d.cpp

1 #include "safe_3d.h"
2

3 /*** include libraries ***/
4 #include < stri ng>
5 #include <ros/ros.h>
6 #include <kdl_parser/kdl_parser.hpp>
7 #include <kdl/chain.hpp>
8 #include <kdl/chainfksolver .hpp>
9 #include <kdl/chainfksolverpos_recursive.hpp>

10 #include <kdl/chainiksolverpos_nr.hpp>
11 #include <kdl/chainiksolvervel_pinv.hpp>
12 #include <kdl/frames_io.hpp>
13 #include <stdio.h>
14 #include <iostream>
15 #include <vector>
16 #include <iostream>
17 #include <stdio.h>
18 #include <ros/ros.h>
19 #include <std_msgs/Header.h>
20 #include <std_msgs/Float64.h>
21 #include <time.h>
22 #include "std_msgs/String.h"
23 #include <sensor_msgs/JointState.h>
24 #include <math.h>
25 #include <fstream>
26 #include <Eigen/Dense>
27

28 #define pi 3.14149
29 #define epsilon 0.7777778
30 #define cx 0
31 #define cy 0
32 #define cz 0
33 #define rx 0.03
34 #define ry 0.06
35 #define rz 0.03
36 #define taux 0.110
37 #define tauy 0.110
38 #define tauz 0.110
39 #define kappa 0.05
40

41 int compute_fk_chain();
42 int write_meas_to_files_3d();
43

44 int i_ref ;
45 int N_iter = 20;
46

47 long int iter_ref = 0;
48

49 double x_inst_slide ;
50 double x_inst_roll ;
51 double x_inst_pitch;
52 double x_jaw_right;
53 double x_jaw_left;
54 double x_hand_roll;
55 double x_hand_pitch;
56 double x1;
57 double x_cart_meas = 0.6;
58 double y_cart_meas = 0.0;
59 double z_cart_meas = 0.0;
60

61 std :: vector<double> x_ref_vec;
62 std :: vector<double> y_ref_vec;
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63 std :: vector<double> z_ref_vec;
64 std :: vector<double> x3d_x_vec;
65 std :: vector<double> x3d_y_vec;
66 std :: vector<double> x3d_z_vec;
67 std :: vector<double> x3d_x_ref_vec;
68 std :: vector<double> x3d_y_ref_vec;
69 std :: vector<double> x3d_z_ref_vec;
70 std :: vector<double> sigma3d_vec;
71 std :: vector<double> exe_time_vec;
72

73 Eigen::MatrixXd u_3d(3,1);
74 Eigen::MatrixXd utilde_3d(3,1);
75 Eigen::MatrixXd x(3,1);
76 Eigen::MatrixXd xref_3d(3,1);
77 Eigen::MatrixXd K(3,3);
78 Eigen::MatrixXd Nbar(3,3);
79 Eigen::MatrixXd LgB_3d(1,3);
80 Eigen::MatrixXd LfB_3d(1,1);
81 Eigen::MatrixXd sigma(1,1);
82 Eigen::MatrixXd k0(3,1);
83 Eigen::MatrixXd cbf(1,1);
84 Eigen::MatrixXd temp(1,1);
85

86 class timer {
87 private :
88 long double begTime;
89 public :
90 void start () {
91 begTime = clock();
92 }
93 };
94

95 int safe_3d() {
96 /*** static matrices ***/
97 double gain = 0.02;
98 K(0,0) = gain; K(0,1) = 0.00; K(0,2) = 0.00;
99 K(1,0) = 0.00; K(1,1) = gain; K(1,2) = 0.00;

100 K(2,0) = 0.00; K(2,1) = 0.00; K(2,2) = gain;
101

102 Nbar(0,0) = 1 + gain; Nbar(0,1) = 0.00; Nbar(0,2) = 0.00;
103 Nbar(1,0) = 0.00; Nbar(1,1) = 1 + gain; Nbar(1,2) = 0.00;
104 Nbar(2,0) = 0.00; Nbar(2,1) = 0.00; Nbar(2,2) = 1 + gain;
105

106 /*** initialize variable matrices ***/
107 xref_3d(0,0) = 0.06;
108 xref_3d(1,0) = 0.00;
109 xref_3d(2,0) = 0.00;
110

111 x(0,0) = 0.06;
112 x(1,0) = 0.00;
113 x(2,0) = 0.00;
114

115 u_3d(0,0) = 0.00;
116 u_3d(1,0) = 0.00;
117 u_3d(2,0) = 0.00;
118

119 utilde_3d(0,0) = 0.00;
120 utilde_3d(1,0) = 0.00;
121 utilde_3d(2,0) = 0.00;
122

123 std :: cout << "K = \n" << K << std::endl;
124 std :: cout << "Nbar = \n" << Nbar << std::endl;
125 std :: cout << "x = \n" << x << std ::endl;
126 std :: cout << "xref_3d = \n" << xref_3d << std::endl;
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127 std :: cout << "utilde_3d = \n" << utilde_3d << std ::endl;
128 std :: cout << "u_3d = \n" << u_3d << std::endl;
129

130 /*** prepare real time processing ***/
131 timer t ;
132 t . start () ;
133

134 std :: cout << "Inverse Kinematic Mode!" << std::endl;
135

136 ros :: NodeHandle node;
137 KDL::Tree my_tree;
138 std :: string robot_desc_string;
139 node.param("robot_description", robot_desc_string, std:: string () ) ;
140 if (! kdl_parser::treeFromString(robot_desc_string, my_tree))
141 {
142 ROS_ERROR("Failed to construct kdl tree");
143 }
144

145 /*** use modified geometry ***/
146 KDL::Chain my_chain;
147 std :: string root_link ("p4_rcm_base");
148 std :: string tip_link ("needle_driver_jawbone_right");
149 if (! my_tree.getChain(root_link, tip_link , my_chain))
150 {
151 ROS_ERROR("Failed to get chain from tree");
152 }
153

154 for (unsigned int i = 0; i < my_chain.getNrOfSegments(); ++i)
155 {
156 std :: cout << my_chain.getSegment(i).getName() << "(" << my_chain.getSegment(i).getJoint().getName() << ")" << std::endl;
157 }
158

159 // Create solver based on kinematic chain
160 KDL::ChainFkSolverPos_recursive fksolver(my_chain);
161 KDL::ChainIkSolverVel_pinv iksolverv(my_chain);
162 KDL::ChainIkSolverPos_NR iksolver = KDL::ChainIkSolverPos_NR(my_chain,fksolver,iksolverv,100,1e−6);
163

164 KDL::JntArray q(my_chain.getNrOfJoints());
165 KDL::JntArray q_init (my_chain.getNrOfJoints());
166

167 /*** prepare to publish control signal ***/
168 ros :: NodeHandle node_pub;
169 ros :: Publisher setpoints_pub_pitch = node_pub.advertise<std_msgs::Float64>("pitch_command", 1);
170 ros :: Publisher setpoints_pub_slide = node_pub.advertise<std_msgs::Float64>("slide_command", 1);
171 ros :: Publisher setpoints_pub_roll = node_pub.advertise<std_msgs::Float64>("roll_command", 1);
172 ros :: Publisher setpoints_pub_inst_roll = node_pub.advertise<std_msgs::Float64>("inst_roll_command", 1);
173 ros :: Publisher setpoints_pub_inst_pitch = node_pub.advertise<std_msgs::Float64>("inst_pitch_command", 1);
174 ros :: Publisher setpoints_pub_inst_jaw_right = node_pub.advertise<std_msgs::Float64>("inst_jaw_right_command", 1);
175

176 /*** read 3d references ***/
177 std :: vector<double> ref_vector;
178 double str_ref ;
179 std :: ifstream fin ("references_3d_mod.txt");
180 while ( fin >> str_ref )
181 {
182 ref_vector .push_back(str_ref);
183 }
184 fin .close() ;
185

186 /*** read references from file ***/
187 int j = 0;
188 for ( int i = 0; i < ref_vector .size () ; ++i) {
189 if ( j == 0) {
190 x_ref_vec.push_back(ref_vector.at(i)) ;
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191 j += 1;
192 }
193 else if ( j == 1) {
194 y_ref_vec.push_back(ref_vector.at(i)) ;
195 j += 1;
196 }
197 else if ( j == 2) {
198 z_ref_vec.push_back(ref_vector.at(i)) ;
199 j = 0;
200 }
201 }
202

203 /*** print references ***/
204 std :: cout << "\n";
205 std :: cout << "x references: " << std ::endl;
206 for ( int i = 0; i < x_ref_vec.size() ; ++i)
207 std :: cout << x_ref_vec.at( i ) << std ::endl;
208 std :: cout << "\n";
209 std :: cout << "y references: " << std ::endl;
210 for ( int i = 0; i < y_ref_vec.size() ; ++i)
211 std :: cout << y_ref_vec.at( i ) << std ::endl;
212 std :: cout << "\n";
213 std :: cout << "z references: " << std ::endl;
214 for ( int i = 0; i < z_ref_vec.size() ; ++i)
215 std :: cout << z_ref_vec.at( i ) << std ::endl;
216 std :: cout << "\n";
217

218 /*** give some time to digest references ***/
219 int i = 1;
220 int wait_time = 2;
221 while( i < wait_time+1) {
222 std :: cout << " starting in " << (wait_time−i+1) << " seconds.." << std::endl;
223 sleep(1);
224 i += 1;
225 }
226

227 /*** start controller ***/
228 int iter = 0;
229 while(true) {
230 /*** subscribe to topics with 100 Hz ***/
231 ros :: Rate r(100);
232

233 /*** prepare real time processing ***/
234 timer t ;
235 t . start () ;
236 double long Ts = 0.01;
237

238 while(true) {
239 if ( t .elapsedTime() >= Ts) {
240 /*** read sensor ***/
241 ros :: spinOnce();
242

243 /*** convert to 3D ***/
244 compute_fk_chain();
245

246 /*** start timer to meassure execution time ***/
247 std :: clock_t start ;
248 double dur;
249 start = std :: clock() ;
250

251 /*** update trajectory ***/
252 if ( iter_ref > N_iter) {
253 xref_3d(0,0) = x_ref_vec.at( i_ref ) ;
254 xref_3d(1,0) = y_ref_vec.at( i_ref ) ;

H. Da Vinci Implementation of Controllers 153



255 xref_3d(2,0) = z_ref_vec.at( i_ref ) ;
256 i_ref += 1;
257 iter_ref = 0;
258 }
259 iter_ref += 1;
260

261 /*** update state vector ***/
262 x(0,0) = x_cart_meas;
263 x(1,0) = y_cart_meas;
264 x(2,0) = z_cart_meas;
265

266 /*** control barrier function ***/
267 cbf(0,0) = −( pow(((x(0,0)−cx)/rx),2) + pow(((x(1,0)−cy)/ry),2) + pow(((x(2,0)−cz)/rz),2) − 1 ) ;
268

269 /*** linear non−safe controller ***/
270 utilde_3d = Nbar*xref_3d − K*x;
271

272 /*** lie derivatives ***/
273 LgB_3d(0,0) = (2/(pow(rx,2)*taux))*(cx−x(0,0));
274 LgB_3d(0,1) = (2/(pow(ry,2)*tauy))*(cy−x(1,0));
275 LgB_3d(0,2) = (2/(pow(rz,2)*tauz))*(cz−x(2,0));
276 LfB_3d(0,0) = (−2/(pow(rx,2)*taux))*(cx*x(0,0)−pow(x(0,0),2)) + (−2/(pow(ry,2)*tauy))*(cy*x(1,0)−pow(x(1,0),2)) + (−2/(

pow(rz,2)*tauz))*(cz*x(2,0)−pow(x(2,0),2));
277

278 temp = LgB_3d*LgB_3d.transpose();
279 /*** safe control law ***/
280 if (LgB_3d.squaredNorm() > 0.000001) {
281 k0 = −LgB_3d.transpose()*sqrt(pow(LfB_3d(0,0),2) + pow(kappa,2)*temp(0,0) ) /(temp(0,0));
282 }
283 else {
284 k0(0,0) = 0;
285 k0(1,0) = 0;
286 k0(2,0) = 0;
287 }
288

289 /*** calculate sigma ***/
290 if (( cbf(0,0) < −epsilon) || (cbf(0,0) == −epsilon)) {
291 sigma(0,0) = 0;
292 }
293 else if (( cbf(0,0) > −epsilon) && (cbf(0,0) < 0)) {
294 sigma(0,0) = (−2*pow(cbf(0,0)/epsilon,3) − 3*pow(cbf(0,0)/epsilon,2) + 1);
295 }
296 else {
297 sigma(0,0) = 1;
298 }
299

300 /*** give time to start in X0 ***/
301 if ( iter < 60) {
302 sigma(0,0) = 0;
303 }
304

305 /*** control law ***/
306 u_3d = sigma(0,0)*k0 + (1 − sigma(0,0))*utilde_3d;
307

308 /*** translation is displaced ***/
309 u_3d(0,0) = u_3d(0,0) + 0.482 + 0.01;
310 u_3d(1,0) = u_3d(1,0);
311 u_3d(2,0) = u_3d(2,0) − 0.059 + 0.01;
312

313 double x_kdl = u_3d(0,0);
314 double y_kdl = u_3d(1,0);
315 double z_kdl = u_3d(2,0);
316

317 KDL::Vector dest_pos(x_kdl,y_kdl,z_kdl);
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318 KDL::Frame dest_frame(dest_pos);
319

320 /*** Compute ***/
321 int ret = iksolver .CartToJnt(q_init ,dest_frame,q);
322

323 for (unsigned int i = 0; i < q.rows(); ++i)
324 {
325 std :: cout << "Joint #" << i << ": " << q(i ) << std ::endl;
326 }
327

328 std :: vector<double> control_signals;
329

330 /*** adjust instrument_roll ***/
331 while (q(3) > pi ) {
332 q(3) = −(pi − (q(3) − pi)) ;
333 std :: cout << "instrument_roll adjusted to : " << q(3) << std ::endl;
334 }
335 while (q(3) < −pi) {
336 q(3) = (pi + (q(3) + pi ) ) ;
337 std :: cout << "instrument_roll adjusted to : " << q(3) << std ::endl;
338 }
339

340 /*** adjust instrument_jaw_right ***/
341 while (q(5) > pi ) {
342 q(5) = −(pi − (q(5) − pi)) ;
343 std :: cout << "instrument_jaw_right adjusted to : " << q(5) << std ::endl;
344 }
345 while (q(5) < −pi) {
346 q(5) = (pi + (q(5) + pi ) ) ;
347 std :: cout << "instrument_jaw_right adjusted to : " << q(5) << std ::endl;
348 }
349

350 /*** adjust instrument_jaw_right ***/
351 if (q(5) > 0.1) {
352 q(5) = 0.1;
353 std :: cout << "instrument_jaw_right > 0.1" << std ::endl;
354 }
355 if (q(5) < −0.1) {
356 q(5) = −0.1;
357 std :: cout << "instrument_jaw_right < −0.1" << std::endl;
358 }
359

360 /*** physical limits for hand_roll ***/
361 if (q(0) > 1.5) {
362 q(0) = 1.5;
363 }
364 else if (q(0) < −1.5) {
365 q(0) = −1.5;
366 }
367 /*** physical limits for hand_pitch ***/
368 if (q(1) > 0.7) {
369 q(1) = 0.7;
370 }
371 else if (q(1) < −0.7) {
372 q(1) = −0.7;
373 }
374 /*** physical limits for instrument_slide ***/
375 if (q(2) > 0.097) {
376 q(2) = 0.097;
377 }
378 else if (q(2) < −0.097) {
379 q(2) = −0.097;
380 }
381 /*** physical limits for instrument_pitch ***/
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382 if (q(4) > 0.8+1.65551) {
383 q(4) = 0.8+1.65551;
384 }
385 else if (q(4) < −0.8+1.65551) {
386 q(4) = −0.8+1.65551;
387 }
388

389 /*** collect all control signals in one vector ***/
390 control_signals .push_back(q(0)); // hand roll
391 control_signals .push_back(q(1)); // hand pitch
392 control_signals .push_back(q(2)); // instr slide
393 control_signals .push_back(q(3)); // inst roll
394 control_signals .push_back((q(4)−1.65551)); // inst pitch
395 control_signals .push_back(q(5)); // jaw right
396

397 /*** execute p4_hand_pith ***/
398 std_msgs::Float64 u_msg_0;
399 u_msg_0.data = control_signals[1];
400

401 /*** execute p4_hand_roll ***/
402 std_msgs::Float64 u_msg_1;
403 u_msg_1.data = control_signals[0];
404

405 /*** execute p4_hand_slide ***/
406 std_msgs::Float64 u_msg_2;
407 u_msg_2.data = control_signals[2];
408

409 /*** load p4_instrument_roll ***/
410 std_msgs::Float64 u_msg_3;
411 u_msg_3.data = control_signals[3];
412

413 /*** load p4_instrument_pitch ***/
414 std_msgs::Float64 u_msg_4;
415 u_msg_4.data = control_signals[4];
416

417 /*** load p4_instrument_jaw_right ***/
418 std_msgs::Float64 u_msg_5;
419 u_msg_5.data = control_signals[5];
420

421 /*** publish joint angles ***/
422 setpoints_pub_pitch.publish(u_msg_0);
423 setpoints_pub_roll.publish(u_msg_1);
424 setpoints_pub_slide.publish(u_msg_2);
425 setpoints_pub_inst_roll .publish(u_msg_3);
426 setpoints_pub_inst_pitch.publish(u_msg_4);
427 setpoints_pub_inst_jaw_right.publish(u_msg_5);
428

429 /*** check execution time ***/
430 dur = ( std :: clock() − start ) / (double) CLOCKS_PER_SEC;
431 std :: cout << "execution time = " << dur << std ::endl;
432 std :: cout << "sigma = " << sigma(0,0) << std::endl;
433 std :: cout << "u = " << u_3d << std::endl;
434

435 /*** provide some user information ***/
436 iter += 1;
437 std :: cout << iter << " iterations " << std ::endl;
438 std :: cout << "\n";
439

440 /*** write slide measurements to file after inital transients ***/
441 if ( iter > 20) {
442 /*** export trajectory ***/
443 x3d_x_vec.push_back(x(0,0));
444 x3d_y_vec.push_back(x(1,0));
445 x3d_z_vec.push_back(x(2,0));
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446 /*** export references ***/
447 x3d_x_ref_vec.push_back(xref_3d(0,0));
448 x3d_y_ref_vec.push_back(xref_3d(1,0));
449 x3d_z_ref_vec.push_back(xref_3d(2,0));
450 /*** export sigma ***/
451 sigma3d_vec.push_back(sigma(0,0));
452 /*** export execution time ***/
453 exe_time_vec.push_back(dur);
454 }
455

456 if ( iter > N_iter*x_ref_vec.size() + N_iter) {
457 std :: cout << "writing meas to file ... " << std ::endl;
458 write_meas_to_files_3d();
459 ros :: shutdown();
460 return 0;
461 }
462

463 break;
464 }
465 else {
466 /*** do some other stuff if necessary***/
467 }
468 }
469 }
470 }
471

472 int compute_fk_chain() {
473 KDL::Tree my_tree;
474 ros :: NodeHandle node_meas;
475 std :: string robot_desc_string;
476 node_meas.param("robot_description", robot_desc_string, std::string()) ;
477 if (! kdl_parser::treeFromString(robot_desc_string, my_tree)){
478 ROS_ERROR("Failed to construct kdl tree");
479 }
480

481 /*** get chain from reduced robot ***/
482 KDL::Chain my_chain;
483 std :: string root_link ("p4_rcm_base");
484 std :: string tip_link ("needle_driver_jawbone_right");
485 if (!( my_tree.getChain(root_link, tip_link , my_chain)))
486 {
487 ROS_ERROR("Failed to get chain");
488 }
489

490 /*** Create solver based on kinematic chain ***/
491 KDL::ChainFkSolverPos_recursive fksolver = KDL::ChainFkSolverPos_recursive(my_chain);
492

493 /*** Create joint array ***/
494 unsigned int nj = my_chain.getNrOfJoints();
495 KDL::JntArray jointpositions = KDL::JntArray(nj) ;
496 jointpositions (0) = x_hand_roll;
497 jointpositions (1) = x_hand_pitch;
498 jointpositions (2) = x_inst_slide ;
499 jointpositions (3) = x_inst_roll ;
500 jointpositions (4) = x_inst_pitch ;
501 jointpositions (5) = x_jaw_right;
502

503 /*** Create the frame that will contain the results ***/
504 KDL::Frame cartpos;
505

506 /*** Calculate forward position kinematics ***/
507 bool kinematics_status;
508 kinematics_status = fksolver .JntToCart( jointpositions ,cartpos);
509 if (kinematics_status >= 0) {
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510 printf ( "%s \n","FK calculated succesfully") ;
511 }
512 else {
513 printf ( "%s \n","Error: could not calculate FK");
514 }
515

516 /*** subtract translation ***/
517 x_cart_meas = cartpos(0,3) − 0.482;
518 y_cart_meas = cartpos(1,3) + 0.00;
519 z_cart_meas = cartpos(2,3) + 0.059;
520

521 return 0;
522 }
523

524 int write_meas_to_files_3d() {
525 std :: cout << "writing measurements to files.." << std ::endl << std ::endl;
526 /*** print x position trajectory to file ***/
527 std :: ofstream f1;
528 f1 .open("x. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
529 for ( int i = 0; i < x3d_x_vec.size(); i += 1) {
530 f1 << x3d_x_vec[i] << std::endl;
531 }
532 f1 .close() ;
533 /*** print y position trajectory to file ***/
534 std :: ofstream f2;
535 f2 .open("y. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
536 for ( int i = 0; i < x3d_y_vec.size(); i += 1) {
537 f2 << x3d_y_vec[i] << std::endl;
538 }
539 f2 .close() ;
540 /*** print z position trajectory to file ***/
541 std :: ofstream f3;
542 f3 .open("z. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
543 for ( int i = 0; i < x3d_z_vec.size(); i += 1) {
544 f3 << x3d_z_vec[i] << std::endl;
545 }
546 f3 .close() ;
547 /*** print x position reference to file ***/
548 std :: ofstream f4;
549 f4 .open("x_ref. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
550 for ( int i = 0; i < x3d_x_ref_vec.size(); i += 1) {
551 f4 << x3d_x_ref_vec[i] << std ::endl;
552 }
553 f4 .close() ;
554 /*** print y position reference to file ***/
555 std :: ofstream f5;
556 f5 .open("y_ref. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
557 for ( int i = 0; i < x3d_y_ref_vec.size(); i += 1) {
558 f5 << x3d_y_ref_vec[i] << std ::endl;
559 }
560 f5 .close() ;
561 /*** print z position reference to file ***/
562 std :: ofstream f6;
563 f6 .open("z_ref. txt " , std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
564 for ( int i = 0; i < x3d_z_ref_vec.size(); i += 1) {
565 f6 << x3d_z_ref_vec[i] << std ::endl;
566 }
567 f6 .close() ;
568 /*** print sigma to file ***/
569 std :: ofstream f7;
570 f7 .open("sigma_3d.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
571 for ( int i = 0; i < sigma3d_vec.size(); i += 1) {
572 f7 << sigma3d_vec[i] << std::endl;
573 }
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574 f7 .close() ;
575 /*** print execution time to file ***/
576 std :: ofstream f8;
577 f8 .open("exe_3d.txt", std :: ios :: out | std :: ios :: app | std :: ios :: binary) ;
578 for ( int i = 0; i < exe_time_vec.size(); i += 1) {
579 f8 << exe_time_vec[i] << std ::endl;
580 }
581 f8 .close() ;
582

583 return 0;
584 }
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Appendix I

Developed Auxiliary Files

This appendix contains auxiliary files developed such that the ROS framework is initialized correctly.
All packages mentioned in this appendix can be found at GitHub - Robotic Surgery Group - Aalborg
University (https://github.com/AalborgUniversity-RoboticSurgeryGroup). It includes development of:

• CMakeLists.txt (Founds Cmake build system for package gr1032)

• package.xml (States dependencies for package gr1032)

• run_controllers.py (wrapper script to run all developed controllers)

• p4_hand_controller.yaml (allows direct propagation of the control signal to the joints)

• davinci_driver.launch (spawn controllers such the control signal can be passed to the joints)

• remote_center_manipulator.xacro (implementation of the kinematics for the hand and instru-
ment slide. A similar one is present for the remaining parts of the instrument, though not shown
here).

CMakeLists.txt

1 cmake_minimum_required(VERSION 2.8.3)
2 project (gr1032)
3

4 find_package(catkin REQUIRED COMPONENTS
5 roscpp kdl_parser
6 )
7

8 catkin_package(
9 )

10

11 include_directories (
12 ${catkin_INCLUDE_DIRS}
13 )
14

15 add_library(ik_gr1032
16 src/${gr1032}/ik_gr1032
17 )
18 add_library(demo_gr1032
19 src/${gr1032}/demo_gr1032
20 )
21 add_library(safe_3d
22 src/${gr1032}/safe_3d
23 )
24

25 add_executable(run_controllers src/run_controllers.cpp)
26

27 target_link_libraries ( run_controllers
28 ik_gr1032
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29 demo_gr1032
30 safe_3d
31 ${catkin_LIBRARIES}
32 )

package.xml

1 <?xml version="1.0"?>
2 <package>
3 <name>gr1032</name>
4 <version>0.0.0</version>
5 <description>gr1032 Master Thesis</description>
6 <maintainer email="15gr1032@es.aau.dk">gr1032</maintainer>
7 <license>GPLv3</license>
8 <author email="15gr1032@es.aau.dk">gr1032</author>
9 <buildtool_depend>catkin</buildtool_depend>

10 <build_depend>roscpp</build_depend>
11 <build_depend>kdl_parser</build_depend>
12 <run_depend>roscpp</run_depend>
13 <run_depend>kdl_parser</run_depend>
14 <export>
15 </export>
16 </package>

run_controllers.py

1 1 import os
2 2 os.system("rosrun gr1032 run_controllers /slide_command:=/davinci/slide_position_controller/c ommand /pitch_command:=/davinci/

hand_pitch_position_controller/command /roll_command:=/davinc i/hand_roll_position_controller/command /inst_roll_command:=/
davinci/instrument_roll_position _controller/command /inst_pitch_command:=/davinci/instrument_pitch_position_controller/comman d /
inst_jaw_right_command:=/davinci/instrument_jaw_right_position_controller/command")

p4_hand_controller.yaml

1 davinci :
2 # Publish all joint states −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 joint_state_controller :
4 type: joint_state_controller / JointStateController
5 publish_rate: 100
6

7 # Position Controllers −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 slide_position_controller :
9 type: position_controllers / JointPositionController

10 joint : p4_instrument_slide
11 publish_rate: 100
12 hand_pitch_position_controller:
13 type: position_controllers / JointPositionController
14 joint : p4_hand_pitch
15 publish_rate: 100
16 hand_roll_position_controller :
17 type: position_controllers / JointPositionController
18 joint : p4_hand_roll
19 publish_rate: 100
20 instrument_roll_position_controller :
21 type: position_controllers / JointPositionController
22 joint : p4_instrument_roll
23 publish_rate: 100
24 instrument_pitch_position_controller :
25 type: position_controllers / JointPositionController
26 joint : p4_instrument_pitch
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27 publish_rate: 100
28 instrument_jaw_right_position_controller :
29 type: position_controllers / JointPositionController
30 joint : p4_instrument_jaw_right
31 publish_rate: 100

davinci_driver.launch

1 <!−−
2 Launch file for the driver .
3

4 Karl D. Hansen (kdh@es.aau.dk)
5 modified by: Gr1032 in 2015
6 −−>
7

8 <launch>
9 <!−−

10 If not using default ips , remember to load them
11 into the param server elsewhere.
12 −−>
13 <arg name="default_ips" default="true" />
14

15 <!−−
16 Load the IPs of the davinci embedded controllers
17 into the parameter server as a list .
18 −−>
19 <rosparam
20 if ="$(arg default_ips )"
21 command="load"
22 file ="$(find davinci_driver ) /config/davinci_ip_adresses.yaml"
23 />
24

25 <node name="davinci_driver_node" pkg="davinci_driver" type="davinci_driver_node" output="screen" ns="davinci">
26 <remap from="/davinci/joint_states" to="/ joint_states " />
27 </node>
28

29 <!−− Load the robot description into the param server. −−>
30 <param name="robot_description"
31 command="$(find xacro)/xacro.py ’$(find davinci_description)/robots/davinci_description.xacro’" />
32

33 <!−− Combine joint values into the tf tree based on the above model. −−>
34 <node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
35

36 <!−− Load joint controller configurations from YAML file to parameter server −−>
37 <rosparam
38 command="load"
39 file ="$(find davinci_driver ) /config/p4_hand_controller.yaml"
40 />
41 <!−− load the controllers −−>
42 <node
43 name="controller_spawner_joint_state_controller"
44 pkg="controller_manager"
45 type="spawner"
46 respawn="false"
47 output="screen"
48 ns="davinci"
49 args=" joint_state_controller "
50 />
51 <node
52 name="controller_spawner_position_controller_slide"
53 pkg="controller_manager"
54 type="spawner"
55 respawn="false"
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56 output="screen"
57 ns="davinci"
58 args=" slide_position_controller "
59 />
60 <node
61 name="controller_spawner_position_controller_hand_pitch"
62 pkg="controller_manager"
63 type="spawner"
64 respawn="false"
65 output="screen"
66 ns="davinci"
67 args="hand_pitch_position_controller"
68 />
69 <node
70 name="controller_spawner_position_controller_hand_roll"
71 pkg="controller_manager"
72 type="spawner"
73 respawn="false"
74 output="screen"
75 ns="davinci"
76 args="hand_roll_position_controller"
77 />
78 <node
79 name="controller_spawner_position_controller_instrument_roll"
80 pkg="controller_manager"
81 type="spawner"
82 respawn="false"
83 output="screen"
84 ns="davinci"
85 args=" instrument_roll_position_controller "
86 />
87 <node
88 name="controller_spawner_position_controller_instrument_pitch"
89 pkg="controller_manager"
90 type="spawner"
91 respawn="false"
92 output="screen"
93 ns="davinci"
94 args="instrument_pitch_position_controller"
95 />
96 <node
97 name="controller_spawner_position_controller_instrument_jaw_right"
98 pkg="controller_manager"
99 type="spawner"

100 respawn="false"
101 output="screen"
102 ns="davinci"
103 args="instrument_jaw_right_position_controller"
104 />
105 </launch>

remote_center_manipulator.xacro

1 <?xml version="1.0"?>
2 <robot name="davinci" xmlns:xacro="http://www.ros.org/wiki/xacro">
3

4 <xacro:include filename="$(find davinci_description) /robots/davinci_link_macro.xacro" />
5

6 <xacro:davinci_link name="p4_rcm_base" color="slate" />
7

8 < joint name="p4_hand_roll"
9 type="revolute">

10 <origin
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11 xyz="0.482 0 0.047"
12 rpy="0 1.5708 0" />
13 <parent
14 link ="p4_rcm_base" />
15 <child
16 link ="rcm_vitual0" />
17 <axis
18 xyz="0 0 1" />
19 < limit
20 lower="−1.5708"
21 upper="1.5708"
22 effort ="1"
23 velocity ="1" />
24 </ joint >
25

26 <link name="rcm_vitual0" />
27

28 < joint name="p4_hand_pitch"
29 type="revolute">
30 <origin
31 xyz="0 0 0"
32 rpy="1.5708 0 0" />
33 <parent
34 link ="rcm_vitual0" />
35 <child
36 link ="rcm_vitual1" />
37 <axis
38 xyz="0 0 1" />
39 < limit
40 lower="−0.8"
41 upper="1.0"
42 effort ="1"
43 velocity ="1" />
44 </ joint >
45

46 <link name="rcm_vitual1" />
47

48 < joint name="p4_instrument_slide"
49 type="prismatic">
50 <origin
51 xyz="0.097 0 0"
52 rpy="0 −1.5708 0" />
53 <parent
54 link ="rcm_vitual1" />
55 <child
56 link ="needle_driver_house" />
57 <axis
58 xyz="0 0 1" />
59 < limit
60 lower="−0.12"
61 upper="0.12"
62 effort ="1"
63 velocity ="1" />
64 </ joint >
65

66 </robot>
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Appendix J

Attached CD

• Digital Copy of this Thesis

• Literature

•MATLAB scripts

•Measurement Files

• Source Code

Λi λ X X0 Xu LgB A B C D q cp fs L f B K N̄ C O ROS topic

injective function surjective function bijective function compact space extrinsic intrinsic Transmission
Control Protocol/Internet Protocol (TCP/IP) Ts y r c
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