
Author:
Jonas B. Markussen

Vision, Graphics & Interactive Systems
Master Thesis

Period:
1/2/2015 - 3/6/2015

Aalborg University, Denmark

Vision system for indoor UAV flight

Aalborg University
Vision, Graphics & Interactive Systems

Fredrik Bajers Vej 7
9220 Aalborg, Denmark

http://www.create.aau.dk/vgis/

Title:
Vision System for Indoor UAV flight

Theme:
Computer Vision

Project Period:
Spring Semester 2015
1-2-2015 to 3-6-2015

Project Type:
Master thesis

Author:
Jonas Borup Markussen

Supervisor:
Thomas Baltzer Moeslund

Copies: 3

Page Numbers: 94

Date of Completion:
June 3rd, 2015

Abstract:

The purpose of this project is to develop a
framework containing two subsystems to aid
in indoor UAV flight. The two systems will
be developed and tested independently. A vi-
sual odometry system to be able to estimate
motion in GPS denied areas, and an obstacle
avoidance system to help avoid collisions. For
the visual odometry system a novel method us-
ing a downwards and upwards facing camera
is proposed. Features are tracked using Shi-
Tomasi and Lucas-Kanade. From the tracked
features a homography is estimated for each of
the cameras. These are combined into a single
motion estimate. For the obstacle avoidance
system, a method is proposed which divides
the image into left, right and center region
and classifies these independent. Features are
tracked using Shi-Tomasi and Lucas-Kanade,
the tracked features are combined into trajec-
tories. The trajectories are classified using the
proposed method. The visual odometry sys-
tem is found to have a mean absolute error
varying from 0.16cm up to 0.54cm per sam-
ple. Errors in rotation have been found to vary
from 0.13◦ up to 0.19◦. For the obstacle sys-
tem 82 different tests have been carried out in
3 different scenarios. The left and right region
is classified with a 78.3% detection rate. The
center region is classified with a 100% detec-
tion rate.

The content of this report is freely available, but publication (with reference) may only be pursued due
to agreement with the author.

Preface

This master thesis concludes the work of the 10th semester master programme Vision,
Graphics and Interactive Systems at Aalborg University in the spring of 2015. The
curriculum of the master programme is cited. [24]

During this project several external sources will be used, which will be referred to when
used the first time. The reference is seen as a number in square brackets like this:
[#]. The number refers to the source in the bibliography, which is found at the end of
this report. In the bibliography the books are described with its author, title, pages,
publishers, edition, and year. Online sources, like web pages, will be described with its
author, title and URL. This bibliography is auto generated by BibTex.
The enclosed CD contains a digital PDF edition of the project, the source code of the
developed systems and data sets captured for tests.
Figures and tables are numbered according to which chapter they appear in, i.e. the
first figure in Chapter 7 has the number 7.1, the second figure has number 7.2 etc.
Abbreviations are found in the word list on page vii. Appendices are found at the end
of the report, and are referred to with A, B, C, ...

Jonas Borup Markussen

v

Acknowledgments
I would like to thank the people who have been a help during the development of this
project. Thanks to:

Thomas Baltzer Moeslund For supervising the project.

Sky-Watch A/S For assisting with hardware

Chris Bahnsen For helping with the motion estimation calculations

Wordlist

Abbreviations
UAV Unmanned Aerial Vehicle
GPS Global Positioning System
SFM Structure From Motion
CV Computer Vision
FPS Frames per second
RANSAC Random Sample Consensus
FOV Field of view
IMU Inertial measurement unit
Glossary
Monocular cam-
era

A camera with a single lens

Visual Odometry The problem of estimating motion from images

vii

Contents

1 Introduction 1
1.1 The scenario . 1
1.2 Position estimation . 1
1.3 Obstacle avoidance . 1

2 Analysis 2
2.1 Visual odometry . 2

2.1.1 Initial tests . 4
2.2 Obstacle avoidance . 9

2.2.1 Monocular methods . 9
2.2.2 Stereo based methods . 9
2.2.3 Initial tests . 10

2.3 Problem statement . 14

3 System Composition 16
3.1 Visual odometry . 16

3.1.1 Pipeline . 16
3.1.2 Image acquisition . 16
3.1.3 Feature extraction . 18
3.1.4 Feature matching . 20
3.1.5 Motion estimation . 23

3.2 Obstacle avoidance . 29
3.2.1 Pipeline . 29
3.2.2 Image acquisition . 29
3.2.3 Feature extraction + Feature matching 30
3.2.4 Classification . 32

4 System Implementation 43
4.1 OpenCV . 43
4.2 Calibration . 44
4.3 Visual odometry . 44

4.3.1 Hardware . 44
4.3.2 Flow . 46

4.4 Obstacle avoidance . 47
4.4.1 Hardware . 47
4.4.2 Flow . 48

viii

CONTENTS

5 Tests 50
5.1 Visual odometry . 50

5.1.1 The test setup . 50
5.1.2 Test scenarios . 54

5.2 Obstacle avoidance . 57
5.2.1 The test setup . 58
5.2.2 Test scenarios . 59

6 Results 63
6.1 Visual odometry . 63

6.1.1 Per sample results . 63
6.1.2 Trajectory results . 69
6.1.3 Error causes . 71

6.2 Obstacle avoidance . 76
6.2.1 Uncluttered scenario . 77
6.2.2 Cluttered scenario . 78
6.2.3 Open space scenario . 80
6.2.4 Error causes . 81

7 Conclusion 84

8 Discussion 86
8.1 Visual Odometry . 86
8.2 Obstacle avoidance . 89
8.3 Perspectivation . 91

Bibliography 92

A Alternative center obstacle classification A:1

B Obstacle detection from extrinsic parameters B:1

ix

1 Introduction

Small UAVs have been around for some years now and are slowly entering the market
industry. At the moment they are primarily used for defense, emergency management,
law enforcement and agriculture. All of these areas have in common that the UAV is
used outdoor. This project will aim to allow indoor use of UAVs.

1.1 The scenario
The use case this project will aim to solve is allowing the UAV to fly inside of warehouses.
The idea is that an indoor flying autonomous UAV can be beneficial in reaching storage
areas, which are not easily accessible for a human. This could be the area right below the
ceiling where the height makes in difficult for a human to reach. It also has the benefit
of being faster. A person could just order the UAV to fetch a part and it would deliver
the wanted part. The outcome of this project will be a framework using computer vision
to handle some of the difficulties associated with indoor flight. The problems are being
handled in this project are position estimation, and obstacle avoidance.

1.2 Position estimation
Traditionally UAVs have been using GPS as a method of obtaining a position. This so-
lution may be sufficient outdoors but when flying indoor, GPS is not available. Recently
research into using monocular cameras to estimate movement of an UAV has begun.
This project will be analyzing these methods and propose a system capable of detecting
the motion which can be used as part of the control algorithms for an UAV in order to
navigate indoors.

1.3 Obstacle avoidance
If an UAV should be allowed to fly inside of a larger warehouse it is deemed necessary
that the UAV is aware of its surroundings. Indoors there are often people moving in the
same space as the UAV. Therefore this project will be analyzing previous work in the
field of obstacle avoidance and propose a solution capable of detecting obstacles which
can be used as part of the control algorithms in order to avoid the obstacles.

1

2 Analysis

The analysis will be focused on researching current technologies and get an overview of
how a system may be developed. Some initial tests are also introduced as part of the
analysis; the purpose of these tests is to get a better understanding of how to implement
the system. The final outcome of the analysis is the problem statement, which the rest
of the report will be built upon.

2.1 Visual odometry
Visual odometry is the process of estimating the motion using the input from one or
multiple cameras. Visual odometry is used in various applications varying from robotics
to augmented reality. In this project visual odometry will be used to estimate the motion
of an UAV. The term visual odometry was introduced in 2014 by Nister et. al [17]. They
propose a method for both stereo cameras and monocular cameras. In their paper Harris
corners are used as feature detector and features are matched through frames using SAD
and a small search region. To estimate the motion between frames the 5-point algorithm,
also proposed by Nister, is used [16]. Traditional odometry is the process of estimating
the position from integrating the movement of wheel or other moving parts. Similar
visual odometry works by finding the motion between consecutive frames in the form of
rotation and translation. By integrating these values the overall motion can be found.

The problem of visual odometry is closely related to the problems associated with SFM.
In the CV literature SFM is known as the problem of constructing 3D information from
a set of images. In SFM the goal is to estimate camera poses to reconstruct a 3D scene,
visual odometry aims only at finding the camera pose. A typical pipeline for a visual
odometry system is illustrated in figure 2.1.

Figure 2.1: A typical visual odometry pipeline. [22]

In the following subsections the presented steps in the pipeline will be described.

Image Sequence
This step involves the gathering of images. In this step various different sensors can be
used. The most common setup is a stereovision setup with two calibrated cameras. An

2

CHAPTER 2. ANALYSIS

example of this is proposed by Milella et al. [14]. Methods using a monocular setup have
also proven promising results. The first method using a monocular camera was proposed
by Nister[17]. Other sensors like LiDARs could be utilized in this step but no research
has been found using such a sensor.

Feature Detection
The purpose of the feature detection method is to find points in a frame, which can be
found again in the next frame. Various different feature detectors exist. To choose the
best feature detector, the requirements of the systems need to be taken into account.
Feature detectors like SIFT has the benefit of being very stable and robust to rotations
and scale, but they are hard to compute. Therefore SIFT features may be of better use
for an offline system where the frame rate is not critical. A method using SIFT for visual
odometry is proposed by Scaramuzza et el. [21]. However with a system for an UAV as in
this project, it is better to use features that are easy to compute, an example of this could
be Harris corners. Harris corners is a popular method for extracting features. Compared
to SIFT it is faster to compute, but is not scale invariant. However the movements
between consecutive frames means that scale is not a big issue. Harris corners is used in
the approach by Nister et al. [17].

Feature Matching
Feature matching is the step involved in finding corresponding points in two frames.
Different approaches have been used to track features across frames. One of the most
common methods used is the Lucas-Kanade method. An example of the Lucas-Kanade
method used for visual odometry is described by Cambell et al. [4]. Other methods
can be used such as matching points by comparing SIFT descriptors, or other feature
descriptors.

Motion Estimation
Motion estimation is the most vital part of a visual odometry system. In this step
the actual motion is found. The motion is expressed in a rotation matrix R and a
translation vector T . The general approach is to estimate the essential matrix from a
group of corresponding image points. By knowing the translation between corresponding
points in image coordinates, rotation and translation can be estimated in 3D. In figure
2.2 the concept is illustrated. x1 and x2 are the corresponding image coordinates found
from feature matching. R and T are the rotation matrix and the translation vector and
X is the 3D point in world coordinate.

3

2.1. VISUAL ODOMETRY

Figure 2.2: Motion estimation illustrated.

Bundle Adjustment
Bundle Adjustment is not necessary in a visual odometry setup as the motion has already
been estimated. However a lot of the proposed methods in the literature apply bundle
adjustment. Bundle adjustment aims to optimize the pose graph. Ideally the entire
graph would be optimized but this is only possible in an offline system. To be able to
run bundle adjustment online, a method called Windowed bundle adjustment can be
applied [25].

2.1.1 Initial tests
To find out how to successfully implement a visual odometry system for indoor UAV
flight, some initial tests are carried out. In this section the tests carried out will be
described and what was learned from them. First the test implementation will be de-
scribed. This implementation is not tended to be the final implementation, it is only
meant to draw some initial conclusions.

Test implementation
To test how the typical visual odometry pipeline performs, a simple implementation is
tested. The purpose of this test is to determine where the problems will arise in the
system. The test setup is presented following the pipeline described earlier. The test
system is implemented using functionality from the library OpenCV(See section 4.1). As
this implementation is only used for initial tests, in-depth description of the algorithms
used will not be presented.

Image Sequence

This step simply fetches the next available image from the test data set. This enables
the system to run the images on the frame rate they where acquired even though the

4

CHAPTER 2. ANALYSIS

processing takes longer than available between each frame.

Feature detection

In this step good features to track are extracted. They are extracted using the Harris
Corner Detector [8]. The threshold is set low to detect many features in scenes where
not a lot of texture is present. To make sure the detected features are scattered across
the image a minimum distance between the features is introduced. This distance is set
to 20 pixels.

Feature matching

The features are tracked across 10 consecutive frames using the Lucas Kanade method
[12]. In this process points that are not tracked successfully are removed. After 10 frames
the matched points are passed along to the next step.

Motion estimation

This step tries the estimate the motion between the last 10 frames using the tracked
points from feature detection. The implementation uses the 5-point algorithm to estimate
the essential matrix E [16]. The essential matrix is the matrix that maps points from
one view to another, see equation 2.1.

x′Ex = 0 (2.1)

where x are points in the first view and x′ are points in the second view. From the
essential matrix E the rotation and translation can be estimated using SVD.

Camera mounting
The first test is to determine the best mounting of the camera. Two situations are tested
these are described below.

First data set

This data set was captured using an iPhone 6. The resolution is scaled down to 640x360
to process the images faster while still maintaining the aspect ratio. The video was
captured pointing the camera forward and downwards with approximately an angle of
45◦. In figure 2.3 the path captured in the data set is shown.

Figure 2.3: The path captured in the data set.

5

2.1. VISUAL ODOMETRY

From testing it has been found that the rotations estimated are at times really unreliable
and jumps up to 180◦ in a single run. To eliminate the problems caused by rotations
the data set described earlier is captured without rotations. In practice it is impossible
to avoid rotations when the camera is hand held. The video is captured by only moving
forward, to the sides and backwards. Now the rotation can be ignored and only the
translations are concatenated. As shown in figure 2.4 the extracted path does not look
similar to the one described in figure 2.3. At first when the camera is moving forward
the translations seem to be an almost straight line as it is supposed to be. When the
camera start moving sideways or backwards the calculated translations begins to fail.

Figure 2.4: Path calculated. Left: Tracked Features. Right: Concatenated points.

When looking at the left image in figure 2.4 the tracked features are drawn. By comparing
the tracked features across frames it seems that these features are tracked correctly, also
when the motion estimation fails. This leads to the assumption that it is not the feature
tracking part of the system that does not work but instead it is the motion estimating
that fails.

Second data test

The second test performed is to test how the orientation of the camera affects the results.
A new data set is collected. The path collected is the same as in the previous test but
instead of pointing the camera at an angle of approximately 45◦ the camera is held
perpendicular to the ground plane. Again the rotations calculated are found to contain
large errors, therefore only the translations are used.

Figure 2.5: Path calculated. Left: Tracked Features. Right: Concatenated points.

6

CHAPTER 2. ANALYSIS

In figure 2.5 the results of the second test is shown. It is clear that the results here are
way better than the results from the first test. It is clear that the forward movement and
side ways movement are calculated successfully but on the way back, where the camera
is moving backwards, problems arise. Even though the backward movements are not
correctly calculated they are still better, compared to the first test.

This leads to the assumption that it is better to mount the camera perpendicular to the
ground plane.

Texture
In the two first data sets the ground plane is very well textured. This test will reveal
how the system performs when the ground plane is not well textured.
As with the camera mounting test a video sequence was captured using an iPhone 6
camera. The camera was pointed perpendicular to the floor as determined in the previous
test. This time the video was captured indoors with artificial lighting on a typical non-
textured floor. In figure 2.6 the path captured in the video is shown.

Figure 2.6: The captured path indoor

The video is fed through the test implementation to see how it performs with little to
no texture present in the images. The system performs really badly and the calculated
path does not at all look like a line. When looking at the tracked features it is also clear
that these are not accurate. The result is shown in figure 2.7.

Figure 2.7: Path calculated. Left: Tracked Features. Right: Concatenated points.

This test has revealed that there is a problem when it comes to texture of the surfaces

7

2.1. VISUAL ODOMETRY

the UAV will fly over. At the moment there is no solution to this problem meaning that
this will be one of the problems to tackle in the implementation of the system.

8

CHAPTER 2. ANALYSIS

2.2 Obstacle avoidance
As mentioned in the introduction this project will also consist of a system for obstacle
avoidance. Obstacle avoidance is the process of detecting obstacles before the vessel hits
them. Obstacle avoidance has been heavily researched, both for ground moving vessels
as well as airborne vessels. In this section previous work will be described. The methods
will be described in two groups. Monocular methods and stereo based methods.

2.2.1 Monocular methods
Monocular based methods are obstacle avoidance methods based on only having a singe
camera to find obstacles from. Mori et al. [15] proposed a method based on relative
scale to determine obstacles. Objects are tracked using SURF features and template
matching. For each feature point the region around the feature is evaluated to determine
whether the scale of the region has changed. By tracking regions that grow rapidly over
time potential obstacles can be determined. Figure 2.8 shows how the proposed method
works, to the left the tracked features are found. To the right the regions that have
expanded are shown, here it is clearly seen that the region belonging to the obstacle is
found.

Figure 2.8: Left: Found SURF features Right: Regions that are expanding [15]

Another monocular based method is proposed by Zingg et al. [26]. The proposed method
is based on using optical flow instead of change in relative size. This method is based
on using the fact that objects closer to the camera will generate larger flow vectors than
objects further away from the camera. These kinds of methods are especially great when
flying in small corridors or similar scenes. In the proposed method Lucas-Kanade optical
flow is applied to detect optical flow between frames. An onboard IMU is used to correct
for rotations leaving only translations. Methods using optical flow have the problem that
objects straight in front of the camera will not generate any flow vectors meaning that
the vessel will not be able to detect potential obstacles.

2.2.2 Stereo based methods
Stereo-based methods are the methods, which are based on having more than one camera
to estimate depth and use that information to detect obstacles from. A method using
stereo cameras is proposed by Heng et al. [1]. In the proposed method a stereo camera is

9

2.2. OBSTACLE AVOIDANCE

pointing in the flight direction and the disparity image is used to calculate a point cloud.
This point cloud is used to generate an obstacle map and determine a free flight path.
Stereovision systems have the disadvantage that the distance at where the disparity can
be calculated is determined by the baseline between the cameras. If a large baseline is
chosen it becomes more difficult to find corresponding points however a larger distance
is supported. Another problem by using a large baseline is that the minimum supported
distance becomes larger. This problem is illustrated in figure 2.9. The triangle between
the two image planes shows the region in front of the stereo camera that cannot be seen
by either of the cameras.

Figure 2.9: Figure showing the baseline problem.

Because many UAVs are already equipped with a single front facing camera this project
will aim at developing a system using a single camera.

2.2.3 Initial tests
In this subsection a simple test implementation is used to analyze which problems arise
when using a single camera to try and estimate obstacles using optical flow. Some
different scenarios are analyzed in order to be able to design the final system.

Data sets
To visualize the flow some data sets are captured. Three different data sets are captured
each representing a scenario where obstacles are present. The data sets are captured
using a Parrot Ar.Drone 2. For an in depth description of the Ar.Drone see section 4.4.1.

The first data set captured is of an obstacle approaching on the left side of the drone.
The drone is flying straight forward and a pillar is approximately 0.5m to the left of the
drone as it flies by. The second data set is of an obstacle approaching on the right side
of the drone. The drone is flying straight forward and the pillar is approximately 0.5m
to the right side of the drone. The final data set is of an obstacle approaching straight
in front of the drone. The drone is flying directly towards a pillar and is stopped just
upon impact.

Optical flow
In this section optical flow will be calculated for the three different data sets to see how
the optical flow behaves in the different scenarios. A simple test program is implemented

10

CHAPTER 2. ANALYSIS

which captures the optical flow and draws in on top of the image. The optical flow is
captured using Shi-Tomasi(see section 3.1.3) to find corners in the image to track. The
optical flow is found using Lukas-Kanade(See section 3.1.4). The flow is then drawn on
the image for the last 15 frames. The flow is colored according to the sample number
from blue to red. The blue is the oldest sample and red is the current sample.

Obstacle to the left

In figure 2.10 a screen shot from the test with the pillar on the left is shown.

Figure 2.10: Flow with obstacle to the left.

It is seen that the flow spreads faster in the horizontal direction of the image in the
region where obstacles are present. In the region of the image right to the pillar it is
seen that the flow is much smaller. In the bottom of the image the flow generated by
the floor is also quite large.

Obstacle to the right

In figure 2.11 a screen shot from the test with the pillar on the right is shown.

Figure 2.11: Flow with obstacle to the right.

11

2.2. OBSTACLE AVOIDANCE

In this scenario the flow behaves quite similar to the one where the pillar was on the left.
Again it is seen that the flow is larger in the regions where obstacles is present. Also the
flow generated by the floor is quite large.

Obstacle in front

In figure 2.12 a screen shot from the test with the pillar straight in front of the drone is
shown.

Figure 2.12: Flow with obstacle in front.

Again the result is quite similar to the two previous tests. The flow is large where
obstacles are present. However the flow generated by the pillar in the center of the
image does not generate larger flows than the wall to the right. This is because the pillar
is in the center of the image.

Conclusion

From these tests some conclusions can be drawn, these will be described here. As both
the initial tests shows and as the literature describes, obstacles in the center of the image
does not generate as much flow as obstacles to the left and to the right of the center. This
can be used to divide the image into sections where the optical flow can be analyzed in
different ways. Because the flow behaves differently in the different sections of the image,
the image can be divided into 5 different areas. These are top, bottom, left, right and
center. Ultimately this can be used to determine which one of these different directions
it would be safe to fly. The regions are illustrated in figure 2.13.

12

CHAPTER 2. ANALYSIS

Figure 2.13: The regions the image can be divided in.

In the top region a high flow in the negative vertical direction will be obstacles. In the
bottom region a high flow in the positive vertical direction will be an obstacle. In the
left region a high flow in the negative horizontal direction will be obstacles. In the right
region a high flow in the positive horizontal direction will be obstacles. In the center
region flow expanding rapidly in all directions will be obstacles. In this project focus
will be on determining whether it is safe to fly forward, left or right. This means that
the top region and bottom region will be ignored.

13

2.3. PROBLEM STATEMENT

2.3 Problem statement
Based on the description of the project and the analysis chapter, a problem description
and problem statement can be formed. This problem statement will be used for con-
cluding the project in the conclusion chapter. The problem is divided into two separate
parts. These are visual odometry and obstacle avoidance.

Visual Odometry
From the initial tests a system setup can be proposed. From the initial tests it is known
that the best camera position is the camera pointing downwards. The initial tests also
showed that lack of texture is a big problem. To make the possibility of more texture
present, it is proposed to use two cameras instead of one. These cameras will be mounted
so that one points downwards and the other upwards. Along with these cameras there will
be two distance sensors parallel to the image sensors. These sensors will be used to scale
the motion estimate from each camera. The system will only be focusing on translation
in the horizontal plane, and rotation around the vertical axis. The reason for this is
that the motion vertically can be read directly from the distance sensor. The reason to
only focus on the rotation around the vertical axis is that it is assumed that the UAV
is capable of leveling itself. Where most visual odometry systems focus on calculating
a trajectory over a longer time period, this system will be focusing on estimating the
current motion at a fixed time rate. These measurement can be summed over time to
estimate the full trajectory.

The output from this system would be incorporated into the control system of the UAV.
Therefore the control algorithms and the characteristics of the UAV would have a large
impact on the final system performance. As these parameters are unknown at this time,
requirement to the system cannot be determined. Therefore the tests in this project will
be focusing on what kind of performance that can be expected from the visual odometry
system.

Obstacle Avoidance
From the analysis multiple methods have been analyzed which can be used for obstacle
avoidance. 3D vision methods have an obvious advantage by being more precise and
faster at detecting obstacles. However for 3D cameras to work at a longer distance the
baseline needs to be wide which would increase the weight of the system, and with a large
baseline the system would not be able to detect object that are close to the UAV. By
using the 3D technology the problems of finding obstacles is already solved. Therefore
this project will be focusing on using a single camera to detect obstacles. This method
could easily be combined with a 3D camera to detect obstacles close to the UAV. The
camera will be mounted in the front of the UAV and will be facing forwards.

The purpose of this system is to be able to detect obstacles in time to avoid an impact.
Two parameters controls whether it is possible to avoid an impact. These are the velocity
of the vessel and the time needed to bring the vessel to a stop. These parameters will
be determined by the UAV. As this project aims at developing a generic method for
different types of UAVs, general requirements cannot be determined without knowledge

14

CHAPTER 2. ANALYSIS

about the UAV. Therefore the testing of this system will be based on the parameters of
the vessel available for developing this system. Furthermore the tests will generate some
requirements for the vessel in order for it to be able to avoid an impact.

Figure 2.14: Proposed setup.

In figure 2.14 the proposed system is shown. The red boxes are the visual odometry
system and the blue box is the obstacle avoidance system.

Problem statement
Now that the two problems have been narrowed down the actual problem statement is
formed. As the goal is to develop a framework indoor flight with a UAV the problem
statement of this project will be:

• How to develop a visual odometry capable of estimating the movement at a fixed
time interval.

• How to develop a computer vision system capable of detecting and avoiding obsta-
cles using a single camera.

15

3 System Composition

This chapter will be describing the methods used to solve the problems described in the
problem statement. The chapter will be divided into two main sections, these are the
two components described earlier. Visual odometry and obstacle avoidance.

3.1 Visual odometry
This section will be describing the methods used in the composition of the visual odom-
etry system. The system will be described following the pipeline described in the next
subsection.

3.1.1 Pipeline
To ease the description of the visual odometry system the description will follow the
steps in the processing pipeline. The pipeline in shown in figure 3.1.

Figure 3.1: The processing pipeline of the visual odometry system.

As seen the proposed pipeline varies a bit from the typical pipeline presented in the
analysis chapter figure 2.1. The proposed pipeline runs the three first steps image acqui-
sition, feature extraction and feature matching in parallel. The reason to run these steps
in parallel is because two cameras are used instead of just one. The extracted features
from the two images are then combined into a single motion estimate. Also the step
bundle adjustment is omitted, as it is deemed not necessary to solve the problem.

3.1.2 Image acquisition
The image acquisition step is simply grabbing the frames from the camera. Ideally the
two cameras should be synchronized so that the frames are grabbed from the camera at
the exact same time. However the only cameras that where available for this project,
where two cheap web cams where this functionality is not available.

16

CHAPTER 3. SYSTEM COMPOSITION

Distortion
When working with cameras especially cheaper models, distortion is introduced due
to the lens. Two types of distortion are introduced, radial distortion and tangential
distortion. Radial distortion comes from the shape of the lens, typically a wider field of
view generates more distortion. Radial distortion can be seen in the image, as straight
lines become bend in the image. The radial distortion is zero at the optical center and
increases towards the edges of the image. The distortion is modeled using a Taylor
expansion around r = 0 using three coefficients k1, k2, and k3. Equation 3.1 shows how
the parameters are used to correct the image. [3]

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

xcorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.1)

In figure 3.2 a visualization of how radial distortion is generated is shown. The object
has straight lines in the world, but when seen on the image plane the lines have been
bend.

Figure 3.2: Example of how radial distortion is introduced because of the lens. [3]

Tangential distortion occurs when the image sensor and the lens is not perfectly aligned.
Meaning that the lens and sensor is not parallel to each other. As with radial distortion
this problem is more common when using cheap cameras. Tangential distortion can be
modeled using two parameters p1 and p2. Equation 3.2 shows how the parameters are
used to correct the image. [3]

xcorrected = x+ [2p1y + p2(r
2 + 2x2)]

xcorrected = y + [p1(r
2 + 2y2) + 2p2x]

(3.2)

In figure 3.2 a visualization of how tangential distortion is generated is shown.

17

3.1. VISUAL ODOMETRY

Figure 3.3: Example of how tangential distortion is introduced because the lens and sensor is
not parallel. [3]

Before the captured images are sent to the next step in the pipeline they are corrected
for both radial and tangential distortion.

3.1.3 Feature extraction
The features are extracted in the frames from each camera. The purpose of the feature
extraction step is to find points in the frame that can be found again in the next frame.
Various different methods exist for tracking of points. As this system is intended to run
on board a UAV in real-time, execution time is important, as it will affect the frame rate
of the system. Some of the most popular feature extractors are SIFT[11] and SURF[2].
The benefit of these feature extractors is that they are both scale invariant. A test is
conducted to determine the execution time between a scale invariant feature detector
and a non-scale invariant feature detector. As the feature extractors are closely related
to the feature matching, the timing is measured for both the feature extraction and
feature matching step. The scale variant feature detector tested is the Shi-Tomasi corner
detector with Lucas-Kanade feature matching. The scale invariant feature detector tested
is SURF with a nearest neighbor matching. SURF is chosen, as it is faster than SIFT.
In table 3.1 the timings are shown.

18

CHAPTER 3. SYSTEM COMPOSITION

SURF Shi-Tomasi/Lucas-Kanade
Points Time Points Time

Test 1 221 65ms 400 14ms
Test 2 221 59ms 400 10ms
Test 3 208 68ms 400 10ms
Test 4 209 65ms 400 11ms
Test 5 211 67ms 400 11ms
Test 6 216 68ms 400 9ms
Test 7 198 62ms 400 10ms
Test 8 220 64ms 400 12ms
Mean 213 64.75ms 400 10.63ms

Table 3.1: Execution times SURF vs Shi-Tomasi/Lucas-Kanade.

From the table is seen that the tracking of points using the non-scale invariant method is
significantly faster. As the scale will not vary much from frame to frame the Shi-Tomasi
method is chosen.

Shi-Tomasi corner detector
Following the Shi-Tomasi corner detector method will be described [23]. A pixel is
determined to be a corner if there is sufficient magnitude in two opposite directions. To
make the corners rotation invariant the eigenvalues of the matrix A are computed see
equation 3.3. Ix and Iy are the horizontal and vertical gradient images within a specified
window size. These are found by convolving the image with a Sobel kernel.

A =

[∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]
(3.3)

If both eigenvalues λ1 and λ2 are above a certain threshold the pixel is considered to be
an edge. In figure 3.4 the decision matrix is shown. The green region represents the area
where both eigenvalues are large enough to be considered a corner. The areas in red is
where only one of the eigenvalues are large, this means that it is an edge.

19

3.1. VISUAL ODOMETRY

Figure 3.4: Visualization of the Shi-Tomasi method.

In figure 3.5 and 3.6 some examples of corners found using this method are shown. As
seen, especially in figure 3.6, this method finds some points which are introduced due to
specular highlights in the plastic. When the camera is moved these points would not be
found in the next image.

Figure 3.5: Non rotated example Figure 3.6: Rotated example

The algorithm also makes sure that there is sufficient spacing between the points found.
This insures that all found points are not in the same region of the image. If multiple
corner points are found in the same region only the one with the largest eigenvalues is
used.

3.1.4 Feature matching
The purpose of the feature matching step is to find the points from the previous image
in the current image. This step is very dependent on the chosen method for feature
extraction. As Shi-Tomasi was chosen as the feature extractor the optical flow method
proposed by Lucas-Kanade [12] is chosen as feature matcher.

20

CHAPTER 3. SYSTEM COMPOSITION

Lucas-Kanade Optical Flow
The optical flow algorithm will find the a flow vector (u, v) for each point extracted in
the feature extraction step of the pipeline. Each vector describes the translation from
a frame at time t to the frame at time t + 1. In figure 3.7 these vectors are illustrated.
Throughout this section the book [3] is used to describe the theory.

Figure 3.7: Visualization of optical flow.

The Lucas-Kanade method relies on three main assumptions:

• Pixel intensity does not change between frames.

• Neighboring pixels have similar motion.

• Movement is small between frames.

The first assumption is needed as the method operates directly on the intensity of the
image, if these were to change much between each frame the algorithm would fail. The
second assumption is needed as the algorithm uses a window around the point of interest.
The window is necessary as (u, v) cannot be computed from just one pixel. The last
assumption is needed as the algorithm uses a search window to find the vector (u, v). If
the movement between frames are too large it may fall outside of the search window and
the vector can not be calculated.

u and v are found by solving the equation shown in equation 3.4. Ix and Iy are the
horizontal and vertical gradient images within the search window. These are found by
convolving the image with the vertical and horizontal Sobel kernels. q1, q2...qn are the
pixels coordinates of the pixels in the neighborhood of the point being evaluated.

Ix(q1)v + Iy(q1)u = −It(q1)
Ix(q2)v + Iy(q2)u = −It(q2)
...
Ix(qn)v + Iy(qn)u = −It(qn)

(3.4)

21

3.1. VISUAL ODOMETRY

These equations can be converted to a matrix form Av = b where v = (u, v)

A =


Ix(q1) Iy(q1)
Ix(q1) Iy(q1)

...
...

Ix(qn) Iy(qn)

 , v =

(
u
v

)
, b =


−It(q1)
−It(q2)

...
−It(qn)

 (3.5)

The system can be solved using the least squares method. By doing so the final solution
to find the vector (u, v) can be found by solving the following equations 3.6.(

u
v

)
=

[∑
Ix(qi)

2
∑
Ix(qi)Iy(qi)∑

Iy(qi)Ix(qi)
∑
Iy(qi)

2

]−1 [−∑ Ix(qi)It(qi)
−
∑
Iy(qi)It(qi)

]
(3.6)

The original Lucas-Kanade method has a problem when trying to track larger motions. If
the motions are large, then a larger search window is needed to find the motion. However
when a larger search window is used the coherent assumption is broken. To cope with this
problem a pyramid structure is used. This pyramid consists of down sampled versions
of the image. Starting from the top with the lowest resolution image the optical flow is
calculated. The flow is then used as an initial guess for the position in the next level
of the pyramid. The process is repeated until the lowest level of the pyramid is reached
which is the full resolution image. This way a smaller search window can be used and
large motions can still be found. In figure 3.8 the pyramid method is visualized.

Figure 3.8: Visualization of the Lucas-Kanade pyramid approach. [3]

In figure 3.9 and 3.10 an example of the optical flow method is shown. In the first figure
the corners are found as described earlier. Then the optical flow is calculated for each
of these points across 10 frames. This is what is shown in the second figure where the
green lines correspond to the optical flow vectors (u, v). In this example is clear to see
that there is a translation in both the y direction and in the x direction. This means
that the camera has been moved a bit down and to the right.

22

CHAPTER 3. SYSTEM COMPOSITION

Figure 3.9: First frame where the red dots
are the found corners.

Figure 3.10: Optical flow tracked across
10 frames.

3.1.5 Motion estimation
This step is where the actual motion is estimated. The input to this step is the corre-
sponding points between two images in time. This step will first find a motion estimate
for both of the cameras. This estimate is in pixel coordinates. The next step is to
combine the estimate from the upwards pointing camera and the downwards-pointing
camera. Finally the last step is to map the estimate from the pixel coordinate to world
coordinates.

Homography matrix
The homography matrix is used to find the motion between frames in pixels coordinates.
The homography matrix relates the points from one image to another, see equation 3.7.
H is the homography matrix and P1 and P2 are the corresponding points between two
frames in homogeneous format.

HP1 = P2

P1 =

x1y1
1

 , P2 =

x2y2
1

H =

h1 h2 h3
h4 h5 h6
h7 h8 h9

 (3.7)

This means that the homography matrix maps the points from one plane to another.
This could potentially be a problem if not all the points lies on a plane. Latter it will be
explained why not all the points must lie on the same plane but just most of them.

The typical way of finding the homography matrix is by using the Direct Linear Trans-
form [5]. The equation 3.7 can be rewritten as seen in equation 3.8.

−h1x1 − h2y1 − h3 + h7x1x2 + h8y1x2 + h9x2 = 0

−h4x1 − h5y1 − h6 + h7x1y2 + h8y1y2 + h9y2 = 0
(3.8)

These equations can be written in a matrix form as Ah = 0 with 4 corresponding
points which is the minimum required points to estimate the homography matrix. For
simplicity the corresponding points will be described as follows P1 = (x, y)T , P2 = (u, v)T .

23

3.1. VISUAL ODOMETRY

In equation 3.9 the equations are seen in matrix form with 4 corresponding points.

A =



−x1 −y1 −1 0 0 0 u1x1 u1y1 u1
0 0 0 −x1 −y1 −1 v1x1 v1y1 v1
−x2 −y2 −1 0 0 0 u2x2 u2y2 u2

0 0 0 −x2 −y2 −1 v2x2 v2y2 v2
−x3 −y3 −1 0 0 0 u3x3 u3y3 u3

0 0 0 −x3 −y3 −1 v3x3 v3y3 v3
−x4 −y4 −1 0 0 0 u4x4 u4y4 u4

0 0 0 −x4 −y4 −1 v4x4 v4y4 v4


h =

(
h1 h2 h3 h4 h5 h6 h7 h8 h9

)T
(3.9)

From A the vector containing the values of h can be found. h is found by using Singular
value decomposition. h corresponds the last column of V where A = UΣV T . This leads
to the final composition of H seen in 3.10.

A = UΣV T

H =

V1,9 V2,9 V3,9
V4,9 V5,9 V6,9
V7,9 V8,9 V9,9

 1

V9,9

(3.10)

As an example the image from the Lucas-Kanade method description is used. The
homography matrix is estimated using the points gathered from the optical flow. These
are the green lines, which are tracked across 10 frames. The flow is shown in figure 3.11
and the corresponding homography matrix is shown in equation 3.11.

Figure 3.11: Optical flow tracked across
10 frames.

H =

0.9598 −0.0337 52.8250
0.0182 0.9659 12.0100
0.000 0.0000 1


(3.11)

From the homography matrix a motion estimate can be extracted.

RANSAC
As mentioned earlier using the homography matrix assumes that the points are on the
same plane. To make the system robust to points that are not on same plane as the
majority of the points, a method called Random sample consensus (RANSAC) is utilized
[7]. This method will also sort out noise generated by faulty calculated optical flows.
RANSAC is a widely used method for generating models from noisy data. The typical

24

CHAPTER 3. SYSTEM COMPOSITION

way of estimating a model from a over determined system is by using least squares
approximation. However least squares approximation is very sensitive to outliers in the
dataset. Points which are not on the same plane as the majority of the points, would
appear as outliers in the dataset. The RANSAC algorithm ignores these outliers in an
iterative way. In figure 3.12 the difference between the result of RANSAC and least
squares approximation is shown on a noisy dataset where a linear model is wanted.

Figure 3.12: RANSAC and Least squares difference. Red Line: Least squares approximation.
Blue Line: RANSAC estimation.

RANSAC works by randomly selecting a minimum of points required to generate a model.
In the case of a linear model as shown in the previous example this would be 2 points.
From these points a model is generated. Afterwards the distance from all points to the
model is calculated. If the distance if above a certain threshold, the point is considered
as an outlier. If the distance is below the threshold the point is considered as an inlier.
Afterwards a ratio between inliers and outliers can be calculated. If this ratio is high
enough meaning that the most points are below the threshold the model is considered
to be good enough. If not then the process is started again. Different implementations
exists, one method is to keep restarting this process until a fixed number of iterations is
reached and then the model returning the best ratio is used. Another approach is to use
least squares approximation on the points in the inlier group to refine the model.

In the case of using RANSAC to estimate the homography matrix the model is the
homography matrix itself. As mentioned earlier 4 points is required to estimate the
matrix. The threshold function applied to the remaining points is simply the distance
from the input point multiplied with the matrix to the output point see equation 3.12.

E = ||P1 −HP2||
E = Distance, P1 = Point in source, P2 = Point in destination

(3.12)

Again the example from the optical flow section is used. This time the homography
estimation is using RANSAC to find the homography matrix. In figure 3.13 the flow

25

3.1. VISUAL ODOMETRY

tracked across 10 frames is shown. In figure 3.14 the filtered flow is shown. The green
lines are the ones matching the homography matrix and the red ones are those, which
are, filtered away using RANSAC.

Figure 3.13: Optical flow tracked across
10 frames.

Figure 3.14: Filtered flow for homogra-
phy.

Distance
To be able to map the translation from pixels to actual distances in world coordinates
a distance sensor is placed along with each camera. This distance sensor returns the
distance to the object in front of the sensor in meters. The sensor is placed parallel to
the camera. This means that the distance should correspond to the distance from the
camera to the plane where the tracked features are located.

Combination
The final step is combine the two calculated homography matrixes into a single motion
estimate. The first step is to decompose the homography matrix into the following parts
R which is the rotation of the plane. T which is the translation of the plane and finally
S which is the skewing of the plane. The decomposition is shown in equation 3.13.

H =

[
R T
S 1

]
R =

[
r1 r2
r3 r4

]
, T =

(
tx
ty

)
, S =

(
s1 s2

) (3.13)

As it is the translation and rotation are the parameters that are to be estimated the
skewing part of the homography matrix is ignored. Translation can be generated by
both actual translation of the camera, which is the translation that needs to be extracted.
However translation can also be generated by the camera rotating around another axis
than the optical axis, these translations needs to be removed. This is where the advantage
of having two cameras comes into play. If the camera is rotated around another axis than
the optical axis the translation from one of the cameras should even out the translation
in the other camera. This is illustrated in figure 3.15.

26

CHAPTER 3. SYSTEM COMPOSITION

Figure 3.15

Because the translation is dependent on the distance to the plane the translations needs
to be in same format before they are combined. Therefore the translation is mapped
to meters. The mapping is done by multiplying the translation in pixels by the inverse
focal lengths in pixels. This normalized translation can now be scaled using the distance.
Equation 3.14 shown how the translation is mapped from pixels to meters.

Tm = TpxF
−1D

Tm =
(
Txmeters Tymeters

)
, Tpx =

(
Txpixels Typixels

)
, F =

[
Fx 0
0 Fy

]
, D = Distance

(3.14)
The calculation of the focal length in pixels is shown in equation 3.15. fx and fy are the
vertical and horizontal focal lengths. W and H are the width and height of the image
sensor. w and h is the vertical and horizontal resolution of the image.

Fx = fx
W

w
,Fy = fy

H

h
(3.15)

Now that the translations are in the same format they can be combined into a single
translation estimate. The combination is simply the one translation added to the other
and then divided by two.

Tm =
TtopF

−1
topDtop + TBottomF

−1
BottomDbottom

2
(3.16)

In equation 3.16 the final equation to calculate the estimated translation is shown.

As the rotation will be the same in both of the two homography matrixes the rotation
is simply estimated as a mean between the two extracted rotation matrixes Rtop and
Rbottom. The equation to estimate the combined rotation matrix can be seen in equation
3.17.

R =
Rtop +Rbottom

2
(3.17)

27

3.1. VISUAL ODOMETRY

The actual angle can be extracted from the rotation matrix using equation 3.18.

angle = atan2(R3, R1)

R =

[
R1 R2

R3 R4

]
(3.18)

Smoothing
From testing the system it has been determined that the estimates suffers from some
noise. To cope with this noise a smoothing filter can be applied to the data. It is noted
that the results presented in chapter 6 does not have this filter applied.

Because the cameras are not synchronized the motion is not captured in the same frames,
which will lead to some undesired spikes in the output from the system. By averaging
the result over a few frames the output becomes much more smooth. The function used
to smooth the output is seen in equation 3.19. Where xt and yt are the motion estimate
at time t.

xt =
xt + xt−1 + xt−2 + xt−3

4

yt =
yt + yt−1 + yt−2 + yt−3

4

(3.19)

Filtering
To make the system a bit more robust to errors in the estimates the values are filtered
after they are calculated. From testing the system as described up till this point, some
potential error causes have been found. The first problem arises when an incorrect
homography matrix is found. In such cases the three estimates are all set to zero.
Whether or not the matrix is incorrect is determined by examining the result of the
three estimates. If either of the three conditions shown in 3.20 are true all estimates are
set zero.

xMotion > 6cm

yMotion > 6cm

Rotation > 6◦
(3.20)

These thresholds have been determined by examining the results from the test data.

The second problem that arises is when rotation is present. When the platform rotates,
wrong translations are calculated. To solve this problem the x motion and y motion is
set to zero when rotation is larger than 1◦ per sample. Again this threshold has been
determined by analyzing the test data.

28

CHAPTER 3. SYSTEM COMPOSITION

3.2 Obstacle avoidance
This section will be describing the methods used in the composition of the obstacle
avoidance system. The system will be described following the pipeline described in the
next subsection.

3.2.1 Pipeline
To ease the description of the obstacle avoidance system the description will follow the
pipeline composing the obstacle avoidance system. The pipeline is shown in figure 3.16.

Figure 3.16: The processing pipeline of the obstacle avoidance system.

Image acquisition is responsible for data gathering, feature extraction is responsible for
finding points, feature matching is the process of finding the extracted points in the next
frame and finally classification will be the step responsible for determining whether or
not obstacles are present in the scene.

3.2.2 Image acquisition
In this step a single image is grabbed from the camera on the UAV. Along with the
image information from the IMU onboard the UAV is captured. The information from
the IMU is the 3 angles yaw, pitch, roll and the horizontal velocity vx and vy.

Distortion
To be able to see as much as possible of the scene the UAV is approaching, it is beneficial
to use a camera with a large FOV. When using cameras with a large FOV the effect
of radial distortion becomes larger. To cope with this the image from the sensor is
undistorted before being sent to the next step in the pipeline. In figure 3.17 and 3.18 a
distorted image and the undistorted image from a camera with a FOV of 92◦.

Figure 3.17: Distorted image Figure 3.18: Undistorted image

In the first image the effect of the radial distortion is clearly seen as the straight lines

29

3.2. OBSTACLE AVOIDANCE

on the floor are warped to bend lines. These lines are straight in the undistorted image.
For an in depth description of distortion and how it is modeled see section 3.1.2.

Rotation
Before the image is sent to the next step of the pipeline, the image is rotated with the
roll angle of the UAV. This helps to stabilize the image when the UAV is moving. In
figure 3.19 and 3.20 the result of rotating the image is shown.

Figure 3.19: Before rotation Figure 3.20: After Rotation

From the images it is seen that the rotation caused by the drone rolling is removed.
However this is at the cost of cropping some of the image away and introducing the
black borders in the edges of the image. This is not a problem as the edge regions of the
image are not of a big interest.

3.2.3 Feature extraction + Feature matching
As the feature extraction and the feature matching steps of the pipeline have been de-
scribed in detail in the visual odometry system these two steps have been combined in
this section. This section will be describing the different methods that have been con-
sidered.
Two different methods have been considered for the feature extraction and feature match-
ing steps, which extracts the optical flow. The first considered method is Farneback
optical flow [6]. The advantage of using this method is that a dense optical flow map is
generated; this means more information is available for the classification step. The other
method considered uses Shi-Tomasi corner detector to find corner points and Lucas-
Kanade optical flow to find the points in the next frame. This approach is identical to
the method used in the visual odometry system. This method generates a spatial flow
map, which means less information is available for the classification step. As this system
is supposed to run in real time the execution time needed to process each frame is of
great importance. Therefor a simple test is executed to estimate the time requirement
for both methods.

The test is carried out by testing the execution time for the calculation of the optical flow
between two frames using both methods. For the Shi-Tomasi/Lucas-Kanade method the
flow is calculated for 1000 points. The image resolution is 640x360 pixels. The test is
carried out 8 times and the results are displayed in table 3.2.

30

CHAPTER 3. SYSTEM COMPOSITION

Farneback Shi-Tomasi/Lucas-Kanade
Test 1 241ms 7ms
Test 2 240ms 7ms
Test 3 239ms 8ms
Test 4 240ms 7ms
Test 5 239ms 7ms
Test 6 242ms 7ms
Test 7 238ms 7ms
Test 8 237ms 7ms
Mean 239.5ms 7.13ms

Table 3.2: Execution times for optical flow.

From the table it is clearly seen that the dense optical flow is much harder to calculate
compared to the spatial optical flow. The spatial optical flow can be calculated at a
frame rate of 137 fps where the dense can only be calculated at a frame rate of 4.18 fps.
For this reason the spatial optical flow is used to generate the optical flow. For an in
depth description of the Shi-Tomasi/Lucas-kanade method see section 3.1.3 and 3.1.4.

Trajectories
The optical flow is calculated from frame to frame. When a point is successfully tracked
between two frames the same point is tracked again in the following frames and the flow
is added to a vector for each frame. This results in trajectories across multiple frames,
which are sent to the classification step of the pipeline. For each sample new points are
added using Shi-Tomasi. The distance from these points to points already in the system
is calculated and if the distance is below a threshold the points are not added. This
ensures that points already belonging to a trajectory are not added again. In figure 3.21
the process of generating trajectories is shown.

Figure 3.21: How trajectories are generated.

In figure 3.22 an example of the trajectories generated for 15 frames is shown.

31

3.2. OBSTACLE AVOIDANCE

Figure 3.22: Example of trajectories generated for 15 frames.

3.2.4 Classification
From the analysis it is known that the flow behaves in different ways depending on the
region of the image. Therefore the classification step is divided into two different sections.
One section describes the method for estimating obstacles in the left and the right region
of the image. The other section describes the method used for estimating obstacles in
the center region of image. Both methods rely on the trajectories extracted from feature
extraction and feature matching. For an alternative method tried for classification see
appendix B.

The different sections are divided based on how much an object would fill when close to
the camera. The center region is 80 pixels to both sides of the center of the image. This
corresponds to an object being 20cm to the left or right of the center at a distance of 1.5
meters. This calculation is with a camera with a FOV of 92◦. If another FOV is used
the regions may need to be altered.

Left and right region
When the camera moves towards objects to the left or right of the camera, these objects
will start to move from the center region of the image towards the outer region of the
image. The closer an object is to the camera the faster the object will move towards
the outer region of the image. A simple plot is generated to see how the position differs
depending on the distance. In figure 3.23 the x pixel coordinate is shown for an object
that is 0.5m to the right of a camera and the distance is changed from 3 to 2 meters and
from 6 to 5 meters. The pixel coordinate is calculated using equation 3.21.xiyi

1

 = K

 0.5
0

D − 1
30
i

T

D = distance to object, K = Camera matrix

(3.21)

The camera matrix K if the for a camera with a FOV of 92◦. This scenario would
correspond to the UAV flying towards the object at 1 meter per second with a frame
rate of 30 fps.

32

CHAPTER 3. SYSTEM COMPOSITION

5 10 15 20 25 30
350

400

450

500

Samples

x
co
or
di
na

te
Object at 3 meters distance)

5 10 15 20 25 30
350

400

450

500

Samples

x
co
or
di
na

te

Object at 6 meters distance

Figure 3.23: The position of the object at different distances.

From the figure it is seen that obstacles that are closer to the camera generates a steeper
slope. An example sequence is extracted from the initial test data to see how this as-
sumption fits real world data. In the example two trajectories are selected, one generated
by the pillar which is close to the camera and one from the background. In figure 3.24
the two points generating the trajectories are shown, and in figure 3.25 the two curves
generated are shown.

Figure 3.24: The two corner points
Figure 3.25: The curve of the two points.

In the figures it is clearly shown that the slope of the point on the pillar generates a
much steeper slope than the one from the background.

Estimating the slope
The next step is to actually classify the slopes as obstacles close to the camera. For
each trajectory the slope of the x pixel coordinate is calculated using least square linear
regression. The regression line is calculated for the last 30 points of each trajectory and

33

3.2. OBSTACLE AVOIDANCE

only if the trajectory contains at least 30 points. The formula for calculating the slope
is shown in equation 3.22 where a is the slope.

y = ax+ b

a =

∑n
i (xiyy)− nXY∑n
i (x2i)− nX

2

b = Y − bX

(3.22)

Scaling
Because the slope of objects closer to the edge of the image generates a steeper slope
than objects close to the image center the slope is scaled according to the position of the
last point in the trajectory. The scale is interpolated from 3 to 1 from pixel coordinate
0 to 320 and from 1 to 3 from pixel coordinate 320 to 640. The scaling value is found
by testing with the different data sets from the initial tests. In figure 3.26 the scaling of
the slopes is illustrated.

Figure 3.26: The scaling of the calculated slopes.

Determining if an obstacle is present
From tests it is known that some errors occur on some of the trajectories. These errors
occur because the point position is not estimated correctly from the feature matching
step. An example of this can be seen in figure 3.27. In the figure a circle is draw around
the last point of each trajectory. The color corresponds to the scaled slope from blue to
red. Where blue is 1 and red is 4.

34

CHAPTER 3. SYSTEM COMPOSITION

Figure 3.27: The scaled slope of the trajectories.

In the figure it is clearly seen that the trajectories generated by the pillar to the left is
draw in a red color. The points lying on other surfaces have a smaller slope and are
therefore not drawn in red. However there are some points, which does not lie on the
pillar that is still marked as red. Because these errors occur the region cannot be marked
as containing an obstacle if just one trajectory is above the slope threshold.

To find groups of trajectories the trajectories are clustered using euclidean distance.
The trajectories are clustered if the distance between them is below 20 pixels and if the
difference between their slopes is below 0.5. If any clusters are found with a size larger
than 8 points and a scaled slope above 3.5 the region is considered as not safe. These
values have been found from tests using the data sets from the initial tests. In figure
3.28 the final output from the left and right section obstacle detection is shown.

Figure 3.28: The final output from the left and right section.

35

3.2. OBSTACLE AVOIDANCE

In the figure the last point of the trajectories from the clusters are draw from blue to red
where the color represents the scaled slope from 1 to 4. The two colored rectangles in
the top of the image shows if the system considers the region to contain obstacles or not.
It can be seen that the pillar to the left of the camera has been detected and therefore
the rectangle in the left section is colored red. The distance to the pillar to the right is
larger and has therefore not been considered as an obstacle. This is shown as a green
rectangle in the right section.

Center region
When the camera moves towards an object in the center of the camera frame, the object
will become larger. The closer the object is to the camera the more it will grow between
frames. This means that object closer to the camera will grow faster than object further
away. A simple plot is generated to see how the scale differs depending on the distance
to an object. In figure 3.29 4 points on an object is drawn, the object is in the exact
middle of the frame and have a size of 20x20cm. To the left 30 frames is draw of the
object approaching from a distance of 2 meters and to the right the same object at a
distance of 4 meters.

280 300 320 340 360
140

160

180

200

x coordinate

y
co
or
di
na

te

Object from 4 to 3 meters

280 300 320 340 360
140

160

180

200

x coordinate

y
co
or
di
na

te

Object from 2 to 1 meters

Figure 3.29: The scaling of an object based according to distance.

From the figure it is clearly seen that the object grows faster i.e. the scaling between the
frames is larger as the object comes closer to the camera.

Extracting the scale
To have a parameter to describe the scale of all the points in the center region of the
image, the homography matrix between each frame is extracted. An alternative approach
have been tested to extract the scale, for a description of this method see appendix A. To
see a detailed explanation of the homography matrix and how it is extracted see section
3.1.5. From the homography a scaling factor can be extracted. In equation 3.23 the

36

CHAPTER 3. SYSTEM COMPOSITION

equation used for extracting the scale from the homography matrix is shown.

S =
√
H2

1,1 +H2
1,2

S = Scale, H =

H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3

 (3.23)

The scale extracted is the scale in the horizontal direction, as the objects should scale
uniformly the scale in the horizontal direction is the same as the scale in the vertical
direction. In figure 3.30 the scale of the object from before is plotted from 2 to 1 meters
and from 4 to 3 meters.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1.01

1.01

1.02

Sample

Sc
al
e

Scale of homography

Figure 3.30: The scaling extracted from homography. Blue: From 2 to 1 meters Red: From
4 to 3 meters

From the figure it is clearly seen that the scale increases as the object comes closer to
the camera. The scale of the object closer to the camera increases faster than the one
from the object further away. Also it is noted that the increase in scale follows a second
order polynomial. Two example sequences are extracted from the test data to see how
well these assumptions fit real world data. Two sequences are selected; one where the
camera moves straight towards an obstacle, and one where no obstacles is present. In
figure 3.31 the scenario without obstacles is seen, the frame corresponds to sample 30 in
figure 3.32.

37

3.2. OBSTACLE AVOIDANCE

Figure 3.31: The scenario with no obsta-
cles in center region

5 10 15 20 25 30
1

1.02

1.04

1.06

Samples

Sc
al
e

Extracted scales

Figure 3.32: The scale extracted from the
center region

In the plot it is seen that the scale between frames lays around 1, which fits with the
assumptions that the scale only increases when an obstacle is approaching. From the
plot it is seen that some noise is generated so that some samples have a higher scale
than they should. This is probably because of points not tracked entirely correct from
the feature matching step. Based on this result it is deemed possible to determine that
no obstacle is present.

The same test is carried out with an obstacle present in the center region of the image.
In figure 3.33 the scenario with an obstacles is seen, the frame corresponds to sample 30
in figure 3.34.

Figure 3.33: The scenario with an obsta-
cles in center region

5 10 15 20 25 30
1

1.02

1.04

1.06

Samples

Sc
al
e

Extracted scales

Figure 3.34: The scale extracted from the
center region

In the plot is seen that the scale is higher and increases towards the last samples when
an obstacle is present in the center region. As with the scales from the previous test
some noise is present in the scales. It seems that the noise is larger when an obstacle is
present compared with result where no obstacle was present. This may be due to the
fact that not the entire center region belongs to the obstacle, which means that all points
will not lie on the same plane. By applying RANSAC as described in section 3.1.5 the
homography estimation should be more robust to this problem. Based on this result it
is deemed possible to determine that an obstacle is present

38

CHAPTER 3. SYSTEM COMPOSITION

Filtering
As previously mentioned, the extracted scales contain some noise. Before the scales are
further processed a filtering process is applied. The purpose of the filter is to remove
some of the noise and make the scales fit the desired result better. In equation 3.24 the
filter applied is shown.

Fi = αFi−1 + (1− α)Si

F = Filtered values, S = Unfiltered values, α = Filter constant
(3.24)

The filter is a simple low pass filter controlled by the filter constant α. A high α value
will result in values not affected by large spikes in the samples. If a low α value is chosen
the effect of spikes will be more prominent and the filter will be faster to react to changes
in the samples. In this scenario a slowly reacting filter is wanted which culls large spikes
in the data. Therefore a α value of 0.9 is chosen. In figure 3.35 the affect of the filter is
shown.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1

1.01

1.02

1.03

samples

sc
al
e

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1

1.02

1.04

1.06

samples

sc
al
e

Filtered scales

Figure 3.35: The scaling extracted from homography. Blue: Extracted scales Red: Filtered
scales

In the plots is seen that the filtered values resembles the scales, which were calculated
for a similar scenario.

Slope estimation
As previously noted, the scales increases following a second order polynomial. There-
fore a second order least squares polynomial fitting is applied to the data in order to
parameterize the data. In equation 3.25 the calculation of the second order least squares

39

3.2. OBSTACLE AVOIDANCE

polynomial fit is shown.

y = ax2 + bx+ c

a =
Sx2y Sxx− Sxy Sxx2

Sxx Sx2x2− Sxx22

b =
Sxy Sx2x2− Sx2y Sxx2

Sxx Sx2x2− Sxx22

c = Y − bX − a
∑

(x2)
1

n

Sxx =
∑

(x2)− 1

n

∑
(x)2

Sxy =
∑

(x y)− 1

n

∑
(x)
∑

(y)

Sxx2 =
∑

(x3)− 1

n

∑
(x2)

∑
(x)

Sx2y =
∑

(x2 y)− 1

n

∑
(x2)

∑
(y)

Sx2x2 =
∑

(x4)− 1

n

∑
(x2)2

(3.25)

From the equation the 3 parameters describing the slope of the data can be found. In
figure 3.36 the samples, the filtered values and the least squares solution is shown.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1

1.01

1.02

1.03

samples

sc
al
e

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1

1.02

1.04

1.06

samples

sc
al
e

Least squares polynomial fit

Figure 3.36: The scaling extracted from homography. Blue: Extracted scales. Red: Filtered
scales. Green: The least squares solution.

Determining if an obstacle is present
The final step is to determine if an obstacle is present or not. The decision is based
on the polynomial coefficients found using least squares. From the previous tests it is

40

CHAPTER 3. SYSTEM COMPOSITION

known that a scale that increases towards the last samples means that an obstacle is
present. Therefore the slope of the tangent line at the last sample is used to determine
is an obstacle is present. The tangent line is found by differentiating the second order
polynomial at sample 30. The calculation of the slope is shown in equation 3.26.

slope = 2× a× 30 + b (3.26)

If the slope is above a threshold of 0.0013 the center region is marked as containing an
obstacle. This threshold value has been found from testing the method against different
data sets both with and without obstacles. As with the left and right region obstacle
avoidance system, a rectangle is draw in the top of the image. If no obstacles are present
the rectangle will be green. If an obstacle is detected the rectangle will turn red. In
figure 3.37 an example is shown. In the center the trajectories used to calculate scale is
shown and in the top the status rectangle is shown.

Figure 3.37: The final output from the center region classification.

Combination
Now that a classification method have been developed for both the left, right and center
region these can be combined. The bar in the top of the image determines whether or
not it is safe to fly in the three directions. In figure 3.38 an example of the final output
from the obstacle avoidance system is shown. An obstacle is present to the left and is
detected.

41

3.2. OBSTACLE AVOIDANCE

Figure 3.38: The final output from the obstacle avoidance system.

42

4 System Implementation

In the following chapter the implementation of the systems will be described. First of
some general implementation regarding both of the systems are described. Then the
details for each of the two systems are described.

4.1 OpenCV
Both the visual odometry system and the obstacle avoidance system is implemented us-
ing OpenCV. OpenCV is an open source library containing functions used for computer
vision computations [18]. The library is implemented in C++ therefore the implementa-
tion of the systems will also be done in C++. As C++ programs are compiled it allows
for fast execution of code, which is preferable when working with real time systems. The
library contains functionality to compute many of the required operations as described
in the system composition chapter of this report. Following the functions used from the
OpenCV library will be described.

Undistortion

The OpenCV function undistort takes a distorted image and undistorts it. It takes
the distortion coefficients as a vector with the 3 radial distortion coefficients and the
2 tangential distortion parameters. Also the camera matrix is needed as the image is
shifted so that the optical center matches the image center.

Shi-Tomasi

The OpenCV function goodFeaturesToTrack is used to find points to track using the Shi-
Tomasi method. The method is supplied with 3 parameters. These are the maximum
points to find in the image, the threshold for when a point is considered as a corner and
the minimum distance between the points.

Lucas-Kanade

The OpenCV function calcOpticalFlowPyrLK is used to estimate the optical flow for
the points found using Shi-Tomasi. The function takes a vector of points and returns
another vector with the corresponding points. The function parameters are windows
size, number of levels to use for the pyramid.

Homography

The OpenCV function findHomography is used to find the homography matrix. The
function already implements RANSAC, which means that the found matrix has already
removed points that are outliers. The function takes two vectors of corresponding points

43

4.2. CALIBRATION

and returns the found homography matrix along with a vector of describing whether or
not the points are inliers or outliers to the model.

4.2 Calibration
Both the visual odometry and the obstacle avoidance systems apply undistortion of the
images. To undistort the images the distortion parameters are needed. As well as the
distortion parameters the camera matrix is needed in the visual odometry system. From
the camera matrix the focal length expressed in pixels can be extracted which is used to
map from pixel coordinates to world coordinates. The OpenCV library contains func-
tionality to extract these parameters from a set of images. The process of getting these
parameters is by holding a known texture in front of the camera in different configura-
tions. The texture used is a chessboard, which is used because the corners in this texture
are easy to find by using Harris corners. 15 different images are used for each camera
with different translation and rotation. In figure 4.1 4 examples of calibration images
are shown.

(a) (b) (c) (d)

Figure 4.1: Examples of calibration images

4.3 Visual odometry
In this section the implementation specific to the visual odometry system will be de-
scribed.

4.3.1 Hardware
First the hardware used to compose the visual odometry system will be described. This
is the cameras and the distance sensors.

Cameras
The cameras used in this system are Logitech C310 webcams [10]. These cameras are
cheap and small which also means that the quality of the images leaves a lot to be desired.
The reason these cameras are chosen is simply that these where the cameras available
during the project period. In table 4.1 the specifications of the cameras are shown

44

CHAPTER 4. SYSTEM IMPLEMENTATION

Specification Value

Max resolution 1280x960
Max FPS 30fps @ 640x480
Field of View 60◦
Connection Type USB 2.0

Table 4.1: Data sheet of the Logitech C310. [10]

The camera cannot both run at full resolution and full frame rate at the same time. For
this reason it has been chosen to use the lower resolution of 640x480 as the higher frame
of 30fps is prioritized.

Distance sensors
As mentioned earlier the distances from the cameras to the plane they are looking at
are needed. In this project it has been chosen to use an ultra sonic range finder. The
reason to choose this sensor is simply that this sensor was available during the project
period. The sensor used is the Maxbotix MB1320 XL-MaxSonar [13]. In table 4.2 the
specifications of the ultra sonic range finder are shown.

Specification Value

Resolution 1cm
Update rate 10Hz
Minumum range 20cm
Maximum range 765cm

Table 4.2: MB1320 specifications. [13]

The sensors can output the distance using 3 different methods, these are: Analog voltage,
RS232 Serial and Analog Envelope. For simplicity it has been chosen to use the analog
voltage. The voltage is read using a micro controller that is sending the values to a
computer using UART. In this project it was chosen to use an Arduino UNO as the
micro controller. The Arduino read the analog value of both sensors and maps the value
to cm. Afterwards the value is send to the computer using UART. The update rate is at
10Hz as this is the update rate of the sensor. In figure 4.2 the wiring of the sensors and
the Arduino is shown.

45

4.3. VISUAL ODOMETRY

Figure 4.2: The connection of the sensors to the Arduino.

4.3.2 Flow
To summarize the composition and the implementation of the visual odometry system
the final system is described in a flow chart. This chart is shown in figure 4.3. The final
implementation can be found on the enclosed CD.

Figure 4.3: The flow of the final visual odometry system

46

CHAPTER 4. SYSTEM IMPLEMENTATION

4.4 Obstacle avoidance
In this section the implementation specific to the obstacle avoidance system will be
described.

4.4.1 Hardware
First the hardware used to implement the obstacle avoidance system is described. The
hardware used is a Parrot Ar.Drone 2 [20]. The Ar.Drone is a small quadcopter equipped
with a front facing camera. The quadcopter is controlled via Wi-Fi. In figure 4.4 the
quadcopter is seen.

Figure 4.4: The quadcopter used to gather data.

The description of the Ar.Drone is divided into two main sections, camera and IMU.

Camera
The camera used is the one on board the Ar.Drone. The camera is a small camera and
the video is compressed using H264 compression. The reason why the feed is compressed
is to be able to send it fast through the wireless connection with a low latency. The com-
pression introduces some artifacts and may affect the precision of the detected corners.
In table 4.3 the specifications of the camera are listed.

Specification Value

Max resolution 640x360
Max FPS 30fps
Field of View 92◦
Connection Type Wifi

Table 4.3: Data sheet of the Ar.Drone camera. [20]

47

4.4. OBSTACLE AVOIDANCE

IMU
On board the Ar.Drone is an IMU. The control algorithms on board the drone use the
IMU in order to stabilize it during flight. The roll, pitch and yaw angle from the IMU is
continuously sent through the Wi-Fi link to the computer. No details about the precision
of these angles are available, however it seems that the precision is below 5◦. As well as
angles the velocity in all 3 directions is sent through the wireless link. The velocity is
calculated as an unspecified fusion between the IMU and a downwards-pointing camera.
Again the precisions of these velocities are not specified and are dependent on the amount
of visual features on the floor below the drone.

Drone control
The drone is controlled through a Wi-Fi connection. The way the drone is moved is by
sending an angle, which the drone will hold. If a negative pitch angle is set the drone will
move forward, a positive angle and the drone will move backwards. To move the drone
left or right the roll angle is altered. If all angles are set to zero, the drone will go into
a hovering mode where the drones tries to hold its position. The software developed to
control the drone and receive video is based on the public available HeliSimple software
[9]. This software is altered to copy the image information into the OpenCV format.

4.4.2 Flow
To summarize the composition and the implementation of the obstacle avoidance system
the final system is described in a flow chart. This chart is shown in figure 4.5. The final
implementation can be found on the enclosed CD.

48

CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.5: The flow of the final obstacle avoidance system

49

5 Tests

This chapter will be describing the test setups for both of the proposed systems. The
results from the tests will be described in chapter 6.

5.1 Visual odometry
In this section the tests of the visual odometry system will be described. First the test
setup including the hardware will be described. Following the test steps will be described.
As no requirements to this system can be derived at this point, the tests will be designed
to reveal the precision that can be achieved using the proposed method.

5.1.1 The test setup
In this subsection the setup used to conduct the tests are described.

Mounting
To test the system the cameras and distance sensors needs to be mounted as described
earlier. It has been chosen to mount the cameras and the distance sensors on a piece of
hard plastic, which can be moved around simulating a UAV flying. The most realistic
results would have been gathered by mounting the system on an actual UAV, however
the time allotted to this project means that there is not enough time to get such a system
up and running. In figure 5.1 the mounting of the sensors on the plastic plate is shown.

50

CHAPTER 5. TESTS

(a) (b)

Figure 5.1: The mounting of the camera and distance sensors. Red boxes: The cameras.
Blue boxes: The distance sensors. Green box: The Arduino used to process the signal from
the distance sensors.

To make sure that the cameras are mounted exactly on top of each other, the cameras are
mounted on a piece of aluminum. These two pieces are identical and with holes drilled
out at the same place. When the cameras were mounted on the plate, a screw was
screwed through these holes and through the plastic plate. This results in the cameras
being mounted exactly on top of each other. The distance sensors are simply glued to the
plate next to the image sensor. In figure 5.2 the alignment of the cameras are illustrated.

Figure 5.2: The alignment of the cameras.

Ground truth data
To be able to compare the results gathered from the system, some ground truth data is
needed. The ground truth data is needed to compare the output from the system with
the actual true data. The university has a laboratory named AVA Lab (Audio Visual
Arena Laboratory) available where it is possible to track an object in 3D. This room is
used to capture the position of the plate as well as the orientation of the plate. In figure
5.3 the room is shown.

51

5.1. VISUAL ODOMETRY

Figure 5.3: The room used to capture the position of the plate.

The system works by having 18 infrared cameras mounted on an aluminum grid along the
ceiling of the room. These cameras emit light in the infrared spectrum that is not visible
to the human eye. An object can be tracked by placing markers, coated in a special
reflective material, on the object. These markers are easily found by the cameras. A
computer is gathering the images from the cameras and by knowing the cameras precise
position in the room; triangulation can be used to calculate the position of the markers
in the room. The processing of the images and the triangulation process is handled by
the software application Motive, which is supplied by the manufacturer of the system
OptiTrack [19].

The room is approximately 7.5x7.5x7.5 meters and the area where the object can be
tracked is approximately 3x2 meters. This area is a bit small to test the system drift
over a longer distance, but it will be enough to test the precision over a smaller period
of time. The precision of the system is reported to be ±1mm by the Motive application.

Mounting of the markers

As mentioned reflective markers are needed on the object in order to be able to track it.
The markers are mounted on a plastic structure that is then glued to the plastic plate.
In order to get the position of the camera centers instead of the markers, the position
is offset using the Motive application. This means that the position returned is actually
the position of the camera sensor instead of the markers, this is shown in figure 5.5. In
figure 5.4 the reflective markers mounted on the plastic plate is shown.

52

CHAPTER 5. TESTS

Figure 5.4: The reflective markers
mounted on the plastic plate.

Figure 5.5: The offset of the markers to
the camera. Blue sphere: The detected
reflective markers. Yellow sphere: The
center position of the cameras.

Texture
The initial test showed that a lack of texture on the plane that is tracked leads to errors.
The floor in the room is painted black which means that not corners would be found,
to cope with this problem small pieces of white tape is taped to the floor in a random
pattern. The white tape on the black floor should result in some nice sharp corners for
the algorithm to find. The ceiling of the room is white and features are only present
in the areas where ventilation pipes are running across the room. To add some extra
features the ceiling two pieces of black cloth measuring 7.4x1.4 meters is stretched across
the room. On these two pieces of cloth small pieces of white tape is applied in a random
pattern. As with the floor this should result in nice sharp corners. Figure 5.6 shows the
added texture in the room.

(a) (b)

Figure 5.6: The texture added to the laboratory. a: The ceiling. b: The floor.

Data gathering
To be able to post process and tweak parameters in the system it has been chosen to not
conduct the tests in real time. Instead data sets containing the necessary information
are gathered. The data sets contains the following: Top image, bottom image, a text
file with the heights from the two sensors and a text file containing the ground truth
positions and rotations. The ground truth data is sent from the processing computer to
a laptop using Ethernet. This laptop is gathering the images from the two cameras, and

53

5.1. VISUAL ODOMETRY

the distance from the sensors. Due to some technical issues the sample rate is only 15
fps instead of 30 fps.

5.1.2 Test scenarios
Different test scenarios are setup which aims to determine the precision of the system.
The reason to have different tests is to determine how different movements affect the
system. As the purpose of the project is not to validate that the system works but
instead to determine how well the proposed method works, the outcome of the tests will
be results described as precision.

Following the different test scenarios will be described and the purpose of the scenarios.

Hoover test
This test is conducted to determine how the system performs when no movement is
present. This would be the equivalent of the UAV hovering at a fixed position. Following
the test steps are described.

1. A person holds the platform as far away from the person as possible.

2. The recording of data is started.

3. The platform is held as steady as possible.

4. The recording is stopped after 60 seconds.

Translation test
This test is conducted to show how the system performs when the system is moving
without rotations. In this test the platform is only moving sideways, forwards and
backwards. The reason to not include rotations in this data set is to eliminate errors
occurring due to rotations.

1. A person holds the platform as far away from the person as possible.

2. The recording of data is started.

3. The person starts moving the platform following the specified path.

4. When the person reaches the end of the path, the recording is stopped.

The path the platform should follow is shown in figure 5.7. As it is a person moving the
platform it is impossible to eliminate rotations. However a UAV would not be able to
eliminate rotations either, which makes the test quite realistic.

54

CHAPTER 5. TESTS

Figure 5.7: The path the test platform is following.

Translation + rotation test
This test is conducted to show how the system performs when the system is moving. In
this test the platform is moving sideways, forwards, backwards and rotating around the
optical axis. This test is conducted to simulate actual UAV flight.

1. A person holds the platform as far away from the person as possible.

2. The recording of data is started.

3. The person starts moving the platform following the specified path.

4. At the specified points the platform is rotated.

5. When the person reaches the end of the path, the recording is stopped.

The path the platform should follow is shown in figure 5.8. As it is a person moving
the platform it is impossible to eliminate rotations at other points than the designated.
However a UAV would not be able to eliminate rotations either, which makes the test
quite realistic.

55

5.1. VISUAL ODOMETRY

Figure 5.8: The path the test platform is following.

Rotation
This final test is conducted to examine the effect of only rotating the platform, leaving
out the translation. This would be the equivalent of the UAV hovering at a fixed position
while yawing.

1. A person holds the platform as far away from the person as possible.

2. The recording of data is started.

3. The platform is continuously rotated to -90◦ up to 90◦.

4. The recording is stopped after 60 seconds.

On the enclosed CD the data set from the translation test can be found.

56

CHAPTER 5. TESTS

5.2 Obstacle avoidance
In this section the tests of the obstacle avoidance system will be described.

Test execution
The purpose of the obstacle avoidance system is to be able to detect obstacles in order
to be able to avoid them. As described in the problem statement, the minimum distance
to an object before it must be detected varies depending on the platform. To validate
the proposed method, the system will be tested using the Ar.Drone. From testing it
has been found that the Ar.Drone needs less than 0.7 meter to stop independent on
the flying speed. This value was found by flying at speeds from 0.6m/s to 2m/s. The
distance needed to stop was determined by examining the data from the IMU.

Three different tests are executed, two of the tests are used to test how the system
performs with an obstacle present, and one to determine how it performs with no obstacle
present. The reason to have different tests with an obstacle is because of the two different
classification methods. These classification methods are evaluated individually as both
methods works independently of each other.

Left and right region

The purpose of the left and right region test is to verify that obstacles to either sides of
the drone can be detected. The test is conducted using the following steps:

1. The drone is placed at least 6 meters from the obstacle and approximately 0.5
meters to the left or the right of the obstacle.

2. The drone takes off.

3. The drone is rotated so that it faces the obstacle.

4. The recording is started.

5. The drone flies towards the obstacle at ≈1m/s and passes by.

6. The drone is stopped.

7. The recording is stopped.

Center region

The purpose of the center region test is to verify that obstacles straight in front of the
drone can be detected. Straight in front of the drone is defined as within the horizontal
field of view of 24.6◦. This corresponds to the 160px wide center region as described in
the system composition subsection 3.2.4. The test is conducted using the following steps:

1. The drone is placed at least 6 meters from the obstacle.

2. The drone takes off.

3. The drone is rotated so that it faces the obstacle.

57

5.2. OBSTACLE AVOIDANCE

4. The recording is started.

5. The drone flies towards the obstacle at ≈1m/s.

6. The drone is stopped just before hitting the obstacle.

7. The recording is stopped.

No obstacles

The purpose of the test with no obstacle present is to verify that the system does not
generate false positives. The test is conducted using the following steps:

1. The drone is placed at the beginning of the specified path.

2. The drone is rotated so that is faces the end of the specified path.

3. The recording is started.

4. The drone flies towards the end of the specified path at ≈1m/s.

5. The drone is stopped when reaching the end of the path.

6. The recording is stopped.

5.2.1 The test setup
The test is divided into three scenarios. First the two tests with obstacles are carried out
in a controlled environment. The purpose of this test is to see how the system performs
when a single obstacle is present in a otherwise uncluttered scenario. In this scenario the
obstacles is generated with as well defined texture as possible. In the second scenario
the same two tests with an obstacle is carried out. The second scenario is used to test
the system in a cluttered environment similar to the one where the initial test data is
gathered. This scenario is deemed more similar to a real world scenario. In this scenario
the texture on the obstacle is less prominent. The last scenario is in a large open space
with no obstacles, in this scenario the test with no obstacles is carried out. All three
scenarios are described in detail in subsection 5.2.2.

Texture
In the two scenarios with an obstacle present, texture is added to make it easier for the
algorithm to track the obstacle. In the uncluttered environment the obstacle is generated
from a piece of black cloth. On this cloth a lot of small pieces of white tape are taped.
The white tape on the black cloth will generate corners for the feature extraction step to
find. In the cluttered environment the obstacle is a pillar. Larger pieces of white paper
are taped to the obstacles, which will generate more corners for the feature detection
step to detect. In the uncluttered scenario more pieces are added and with a smaller
distance compared to the cluttered scenario. This will help to determine if the amount
of texture have an impact on the ability to detect obstacles. In figure 5.9 and 5.10 the
texture from the two scenarios are shown.

58

CHAPTER 5. TESTS

Figure 5.9: Uncluttered

Figure 5.10: Cluttered

Data gathering
To be able to post process the data it has been chosen not to conduct the tests in real
time. Instead different data sets are collected in order to verify the performance of the
system. Each data set contains the necessary information from the drone to simulate a
real time flight. Each data set contains all the images for the flight as well as IMU data.
For each image received the image is written to the hard drive. Along with the images
the IMU data roll, pitch and yaw angles, as well as velocity information is written to
a text file. The file contains a single line with the information for each image received.
Data is sampled at ≈25Hz.

5.2.2 Test scenarios
As mentioned earlier, test data is gathered from three different scenarios. These will be
described in the following subsection.

Uncluttered scenario
The first scenario is with an artificial obstacle created with features as optimal as possible
for the feature detection step to detect. The background is chosen to contain as little
features as possible. The tests are carried out in the cantina area at Aalborg University
Rendsburggade 14. 10 data sets are collected with the obstacle in the center, 5 data sets
are collected with the obstacle to the left and 5 data sets are collected with obstacle to
the right. In total 10 sets are collected to tests the center region classification and 10
data sets to test the left and right region classification.

59

5.2. OBSTACLE AVOIDANCE

(a) (b) (c)

Figure 5.11: The three different test setups in a uncluttered environment.

In figure 5.11 the three different setups are shown.

Cluttered scenario
The purpose of gathering data sets from a cluttered environment is to see how the system
performs in a more realistic scenario with a more realistic obstacle. The cluttered area is
the same as where the initial test data is gathered. This is in the cantina area of Aalborg
University Frederik Bajers Vej 7. Data are collected from 4 different pillars not including
the one used for gathering the initial data sets. The reason to gather data from different
pillars is to test the system with varying backgrounds.

For each pillar 4 data sets are captured where the drone approaches the pillar straight
on. The purpose of these tests is to test the classification of the center region of the
image. For two of the pillars 4 data sets are collected where the drone is flying past the
pillar to the right. For the other two pillars 4 data sets are collected where the drone
flies past the pillar to the left. This means that in total 16 data sets are collected to test
the center region of the image, and 16 data sets are collected to test the left and right
region of the image.

60

CHAPTER 5. TESTS

Figure 5.12: Pillar 1

Figure 5.13: Pillar 3

Figure 5.14: Pillar 2

Figure 5.15: Pillar 4

Figure 5.12, 5.14, 5.13 and 5.15 shows the 4 different pillars where data sets are collected.

Open space scenario
The purpose of gathering data sets from the open space scenario is to verify that the
system does not generate false positives when flying in an area where no obstacles are
present. The test is carried out in the hall area of Novi at Niels Jernes Vej 14, Aalborg
University. The "No obstacles" test is carried out with 3 different paths. The reason to
have multiple paths is to vary the background in where features are tracked. For each
of the three different paths 10 data sets are collected. Figure 5.16 shows the 3 different
paths in the open area.

61

5.2. OBSTACLE AVOIDANCE

Figure 5.16: The open scenario with the three paths shown.

Summary
In table 5.1 a summary of the different test is shown. A total of 82 different data sets
are collected from the three different scenarios.

Uncluttered Scenario Cluttered Scenario Open Scenario Total
Left Region 5 8 0 13
Right Region 5 8 0 13
Center Region 10 16 0 26
No obstacle 0 0 30 30

Table 5.1: Summary of the different test carried out in the different scenarios.

On the enclosed CD an example of each of the tests from each of the scenarios can be
found.

62

6 Results

In this chapter the results from the tests described in chapter 5 will be presented. The
chapter is divided into two sections, one for visual odometry and one for obstacle avoid-
ance.

6.1 Visual odometry
In this section the results from the tests of the visual odometry system, described in
chapter 5, will be presented. The test will be divided into three subsections; the first
subsection will be focusing on the precision of the system per sample. The other sub-
section will be focusing on the results from concatenating the results into a trajectory.
Finally the third subsection will be discussing the reasons believed to cause errors.

6.1.1 Per sample results
In this subsection focus will be on the per sample precision of the system. For each of the
tests two plots are displayed. The first plot shows the estimated motion along with the
ground truth for the x-axis, the y-axis and for the rotation. The second plot shows the
absolute error per sample and the mean absolute error. The calculation of the absolute
error and the mean absolute error is shown in equation 6.1.

Ei = |Xi −Gi|

E =

∑n
i=1 |Xi −Gi|

n
E = Error, E = Mean error, X = Estimate, G = Ground truth

(6.1)

The reason to look at the absolute error and the mean absolute error is because it tells
something about what the predicted error would be of the system and which constrains
it would put on the UAV. All the results are shown without the smoothing filter, the
reason to not filter the results is to show the raw per sample data. The filtering of the
data would typically be implemented as a step of the control algorithms and fused with
information from other sensors.

Following the results from the four tests will be presented.

Hoover test
In figure 6.1 the results from the hoover test are shown. The left column shows the
estimate(Red line) along with the ground truth(Blue line). The right column shows
the absolute error(Red line) along with the mean absolute error(Blue line). The rows
correspond to the x-axis, the y-axis and rotation respectively.

63

6.1. VISUAL ODOMETRY

200 400 600 800
0

1

2

200 400 600 800
−1

0

1

2

Samples in 4 Hz

D
eg
re
ss

Rotation
200 400 600 800

−1

0

1

2

cm

Y axis
200 400 600 800

−1

0

1

cm

X axis

200 400 600 800
0

0.1

0.2

0.3

Samples in 4 Hz

200 400 600 800
0

0.2

0.4

0.6

0.8

1
Absolute Error

Figure 6.1: Hoover test results.

This plot shows that there is some error present in the system. An interesting tendency
to notice is that the error is more or less scattered equally on both sides of the ground
truth.
In table 6.1 the minimum, maximum and mean absolute error is show for each of the
three estimates.

Min Max Mean
X Axis 0.0010cm 0.9557 cm 0.1696cm
Y Axis 0.0003cm 2.1974cm 0.1482cm
Rotation Axis 0.0000◦ 0.2650◦ 0.0441◦

Table 6.1: Error values for hoover test.

Translation test
In figure 6.2 the results from the translation test is shown. The left column shows the
estimate(Red line) along with the ground truth(Blue line). The right column shows

64

CHAPTER 6. RESULTS

the absolute error(Red line) along with the mean absolute error(Blue line). The rows
correspond to the x-axis, the y-axis and rotation respectively.

200 400 600 800
0

2

4

Samples in 4 Hz

200 400 600 800
−4

−2

0

2

4

6

cm

Y axis

200 400 600 800
−2

0

2

4

6

Samples in 4 Hz

D
eg
re
ss

Rotation
200 400 600 800

0

1

2

3

4

200 400 600 800
−4

−2

0

2

4

cm

X axis

200 400 600 800
0

1

2

3
Absolute Error

Figure 6.2: Translation test results.

This plot clearly shows that there is some error present in the system. By looking at
the plots it seems that the errors are larger in periods where there is large movement in
the opposite direction. An example of this can be seen from sample 50 to 150 where the
error seems large in the x direction while there is movement in the y direction. Another
place where errors are present is around sample 580 where the rotation is just above the
threshold that set the motion to zero. As seen in the previous test there is a tendency
towards that the error is more or less scattered equally on both sides of the ground truth.
In table 6.2 the minimum, maximum and mean absolute error is show for each of the
three estimates.

65

6.1. VISUAL ODOMETRY

Min Max Mean
X Axis 0.0003cm 2.9189 cm 0.3671cm
Y Axis 0.0000cm 3.2529cm 0.4170cm
Rotation Axis 0.0002◦ 4.0516◦ 0.1247◦

Table 6.2: Error values for translation test.

Translation+Rotation test
In figure 6.3 the results from the translation+rotation test is shown. The left column
shows the estimate(Red line) along with the ground truth(Blue line). The right column
shows the absolute error(Red line) along with the mean absolute error(Blue line). The
rows correspond to the x axis, the y axis and rotation respectively.

200 400 600 800
0

1

2

3

4

200 400 600 800
0

1

2

3

Samples in 4 Hz
200 400 600 800

−4

−2

0

2

Samples in 4 Hz

D
eg
re
ss

Rotation

200 400 600 800
0

2

4

6
Absolute Error

200 400 600 800
−4

−2

0

2

4

cm

Y axis
200 400 600 800

−4

−2

0

2

4

6

cm

X axis

Figure 6.3: Translation+rotation test results.

This plot shows that there is some error present in the system. By examining the results
it seems that there is a tendency towards larger errors in the translation estimate when

66

CHAPTER 6. RESULTS

the platform is rotating. An example of this can be seen from sample 580 to 650 where
the error estimate in the x-axis is much larger probably due to the rotation. As seen
in the previous test there is a tendency towards that the error is more or less scattered
equally on both sides of the ground truth except for the segments where the platform is
rotating.
In table 6.3 the minimum, maximum and mean absolute error is show for each of the
three estimates.

Min Max Mean
X Axis 0.0001cm 5.7430 cm 0.4023cm
Y Axis 0.0012cm 3.6747cm 0.5139cm
Rotation Axis 0.0002◦ 2.6207◦ 0.1940◦

Table 6.3: Error values for translation+rotation test.

Rotation
In figure 6.4 the results from the rotation test is shown. The left column shows the
estimate(Red line) along with the ground truth(Blue line). The right column shows
the absolute error(Red line) along with the mean absolute error(Blue line). The rows
correspond to the x-axis, the y-axis and rotation respectively.

67

6.1. VISUAL ODOMETRY

200 400 600 800
0

2

4

6
Absolute Error

200 400 600 800
−4

−2

0

2

4

Samples in 4 Hz

D
eg
re
ss

Rotation
200 400 600 800

0

1

2

3

4

200 400 600 800
−4

−2

0

2

4

cm

Y axis
200 400 600 800

−10

−5

0

5

cm

X axis

200 400 600 800
0

1

2

3

4

Samples in 4 Hz

Figure 6.4: Rotation test results.

This plot shows that there is some error present in the system. The results from this
test match quite well the ones from the translation+rotation test. It is clearly seen that
there are higher errors present in the translation estimate. This matches well with the
assumption that the errors are caused by the platform rotating.
In table 6.4 the minimum, maximum and mean absolute error is show for each of the
three estimates.

Min Max Mean
X Axis 0.0005cm 5.0555 cm 0.4221cm
Y Axis 0.0019cm 3.2692cm 0.4817cm
Rotation Axis 0.0007◦ 3.0082◦ 0.1913◦

Table 6.4: Error values for rotation test.

68

CHAPTER 6. RESULTS

6.1.2 Trajectory results
This subsection will be focusing on the results of calculating a trajectory from the esti-
mates. Only two of the test scenarios are used here, these are the translation test and the
translation+rotation test. The reason to only use these two scenarios is because there
is no movement in the other tests. For each of the tests, a plot is generated for each of
the three estimates. Also a scatter plot in 2D showing the trajectory is plotted. The
trajectory is simply found summing the results and rotating using the summed rotation.
The calculation of the trajectory is shown in equation 6.2

∆i = ∆i−1 +

[
cos(

∑i
1 θ) −sin(

∑i
1 θ)

sin(
∑i

1 θ) cos(
∑i

1 θ)

]
Ti

∆ = The trajectory, θ = The estimated rotation, T = The estimated translation
(6.2)

Translation
In figure 6.5 the calculated trajectory for the translation test is shown. The left column
shows the individual estimates along with the ground truth. The right column shows
the 2D plot of the trajectory. The red lines are the estimate and the blue lines are the
ground truth.

69

6.1. VISUAL ODOMETRY

200 400 600 800

0

200

400

cm

−100 0 100 200 300
−50

0

50

100

150

200

250

300

350

cm

cm

Trajectory

200 400 600 800
−20

0

20

Samples

D
eg
re
ss

200 400 600 800
−100

0

100

200

300

cm

Individual estimates

Figure 6.5: Translation test trajectory result. Top: X axis. Middle: Y axis. Bottom:
Rotation.

By examining the plots it seems that the translation estimate is fairly accurate. However
it is clearly seen that the rotation drifts quite a lot. An interesting thing to notice is
that the rotation drifts in a positive direction when the platform moved forward and in
a negative direction when the platform moves backwards. This is seen as the rotation
trajectory approaches the ground truth near the last samples.

Translation+Rotation
In figure 6.6 the calculated trajectory for the translation+rotation test is shown. The left
column shows the individual estimates along with the ground truth. The right column
shows the 2D plot of the trajectory. The red lines are the estimate and the blue lines
are the ground truth.

70

CHAPTER 6. RESULTS

−300 −200 −100 0 100
−100

−50

0

50

100

150

200

250

300

350

cm

cm

Trajectory

200 400 600 800

0

200

400

cm

200 400 600 800
−300

−200

−100

0

100

cm

Individual estimates

200 400 600 800
−100

0

100

200

300

Samples

D
eg
re
ss

Figure 6.6: Translation+rotation test trajectory result. Top: X axis. Middle: Y axis.
Bottom: Rotation.

By examining the plot it seems that the translation estimate is fairly accurate except in
the areas where the platform rotation. As with the previous test it is clearly seen that
the rotation drifts.

6.1.3 Error causes
In this subsection the causes believed to generate the errors will be described.

Rotation filter
As described in the system composition subsection 3.1.5, a filter is applied to the output
estimates. This filter sets the motion equal to zero when the rotation is above a certain
threshold. When examining the motion output is clearly seen when this filter kicks in.
It is believed that the results are better when this filter is applied but it could be more
intelligent. Sometimes the filter removed too much and other times too little. This is
especially visible in the translation+rotation test trajectory. In the x-axis trajectory too

71

6.1. VISUAL ODOMETRY

little motion is removed and in the y direction too much is removed. The reason that
this filter is needed at all is probably due to some of the reasons described following. If
these problems where fixed it is believed that this filter is not needed at all.

Non synchronized cameras and low frame rate
The problem of non-synchronized cameras is believed to cause two problems and the
effects of these problems are increased due to the low frame rate of 15fps. The two
problems is the noise in the estimate, the second is actual errors in the estimate.

Equal noise

When looking at the plots that are comparing the estimate and the ground truth for all
the tests, it is clearly seen that estimate fluctuates on both sides of the ground truth.
This is probably because the two cameras are not in sync. This means that the world
can have moved more in one of the cameras than the other. This missing motion is then
caught up in the other camera in the next frame, which results in these fluctuations. If
the system is used to calculate a trajectory this problem is not a big problem as it is
leveled out when summing up the estimates. However is the motion per sample is used
then this could cause some problems.

Errors in estimate

Another problem that can arise when having non-synchronized cameras is that poten-
tially an extreme point can be caught. When the platform is moving it is impossible to
eliminate shaking of the platform. If one of the cameras grabs a frame at an extreme
point and the other one does not then the motion estimate will be wrong. The problem
is illustrated in figure 6.7. The blue line is the motion in one direction. The red and
green lines are the sampling points from the two cameras.

0 10 20 30 40 50 60 70 80 90 100 110 120
−10

−5

0

5

10

Time

M
ot
io
n

Synchronization problem

Figure 6.7: Figure showing cause of error due to non synchronized cameras.

To get a better understanding of how large errors are to be expected, some calculations
are carried out to determine the impact of the different parameters. The two main
parameters that determine the error are the rotation and the distance to an object. The

72

CHAPTER 6. RESULTS

translation in a frame can be calculated from the formula show in 6.3.

T = D × tan(θ)

T = translation,D = distance, θ = angle
(6.3)

From the ground truth data the maximum rotation around the two other axis than the
optical is determined to be 10◦ per second. By dividing this value with the frame rate
the maximum rotation per sample can be determined. In figure 6.8 the impact of the
two parameters is shown.

Figure 6.8: Maximum translation with varying frame rate and distance.

In the test data acquired the distance from the camera to the ceiling is 3 meters. At
a frame rate of 15 frames per second the translation error can be up to 0.234cm. By
increasing the frame rate to 60Hz this error can be reduced to 0.056cm.

Distance sensors
The precision of the distance sensors can also have an impact on the results. It has been
found that the distance sensor at times jumps to a wrong height for a period of time. To
investigate the precision of the distance sensor further the ground truth data is compared
with that of the distance sensor pointing downwards. The height from the ground truth
data should be equal to the distance from the downwards-pointing distance sensor. In
figure 6.9 the height from the ground truth data(Blue line), and the distance returned
by the distance sensor(Red line) is shown. To the right the absolute errror(Red line) and
the mean absolute error(Blue line) is shown.

73

6.1. VISUAL ODOMETRY

0 200 400 600 800
60

80

100

120

Sample

C
m

Distance

0 200 400 600 800
0

20

40

60

Sample

C
m

Absolute error

Figure 6.9: Left: is the output from the distance sensor shown along with the height from
the ground truth data. Right: The absolute error.

From the figure it is clear that the distance does not math the ground truth data. In
one of the samples the error in the distance is 59cm. This can lead to large errors in
the motion estimate. For a translation of 1 meter at a height of 1.2m, as in the above
example, the translation would be calculated as a translation of 0.51m instead if the
error in the height were 59cm.

Motion Blur and Low Light
Another cause of errors is simply the quality of the images. To not have the top pointing
camera look directly up into the lamps in the ceiling, these where turned off while
gathering the data, and some smaller lamps where placed around in the room. This
means that there are not as much light present as preferable. A higher quality camera
would be able to take pictures in the same lighting conditions but with less noise. An
example of a noisy image due to low light in shown in figure 6.11.

Figure 6.10: Example frame showing the low light problem.

Also due to the quality of the cameras motion blur is introduced when the motion is
quick. Especially when the platform rotates, a lot of motion blur is seen in the pictures.

74

CHAPTER 6. RESULTS

Figure 6.11: Example frame showing the motion blur problem.

As a consequence of the image quality the point quality threshold used for the Shi-Tomasi
method have also been set very low. If higher quality images where used the, threshold
could be higher. This would leave better point to estimate a more precise homography
from. Also blur in the images can lead to errors in the precision of the points.

The work of Ferit Üzer [27] have been dedicated to analyze the effect of blur on feature
detectors. In the thesis the effect of motion blur on Harris Corners was analyzed, due to
the similarities between Harris corners and Shi-Tomasi corners the effect is assumed to
be the same. In the work it was determined that the precision of the detected corners
decreased as the amount of blur increases. From this work it was also determined that
an effect of motion blur can be a single corner splitting into multiple.

75

6.2. OBSTACLE AVOIDANCE

6.2 Obstacle avoidance
In this section the results from the obstacle avoidance tests described in section 5.2 will
be presented. First the methods used to describe the results are presented, following the
actual results will be presented. Finally some error causes will be discussed.

Result classes
To describe the results from the system the results are grouped in four different classes.
These are false positives(FP), true positives(TP) and false negative(FN). These groups
are used to group the results into classes than can describe results across different test
sets.

False positive

False positives are used to describe a scenario where no obstacles are present, but the
system classifies the scenario as containing an obstacle.

True positive

True positives are used to describe a scenario where an obstacle is present and where the
system classifies the scenario as containing an obstacle.

False negative

False negatives are used to describe a scenario where an obstacle is present but the
system classifies the scenario as not containing an obstacle.

True negative

True negatives are used to describe a scenario where no obstacle is present and the system
classifies the scenario as not containing an obstacle.

For each test the occurrence of each of these classes will be logged.

Distance calculation
For each of the tests the distance at where the obstacle is detected is presented. As no
distance sensor is available on the test platform the distance is calculated from the camera
matrix and the known size of the obstacle. In equation 6.4 the distance calculation is
seen.

D =
W

w × F−1x

(6.4)

Where D is the distance to the obstacle, W is the width of the obstacle in meters, w is
the width of the obstacle in pixels and Fx is the horizontal focal length in pixels.
This method can lead to some small errors as the pixel width is manually measured in
the frame. However, when the obstacle is close to the camera single pixels does not alter
the distance a lot. If this method were used to calculate distances further away from the
camera this problem would be much larger. Another thing to notice is the calculated
distance corresponds to the distance to the object at the time the frame is grabbed. The
drone may actually be closer to the obstacle at this moment due to latency in the overall
system.

76

CHAPTER 6. RESULTS

6.2.1 Uncluttered scenario
In this subsection the results from the tests in a uncluttered environment will be de-
scribed. First the results from the left and right region tests will be described, then the
results from the center region tests will be described

Left and right region
Following the results from the tests of the right and left region will be presented. The
tests are divided into two tables. One for the tests where the obstacle is to the left and
one for the tests where the obstacle is to the right. The distance is the distance at where
the object is first detected.

FP TP FN Distance
Test1 0 1 0 2.05m
Test2 0 0 1 N/A
Test3 0 0 1 N/A
Test4 0 1 0 2.94m
Test5 0 1 0 2.97m
Mean 0 0.6 0.4 2.65m

Table 6.5: Left region results from un-
cluttered scenario

FP TP FN Distance
Test1 0 1 0 3.00m
Test2 0 1 0 2.42m
Test3 0 1 0 2.91m
Test4 0 1 0 2.71m
Test5 0 1 0 2.21m
Mean 0 1 0 2.65m

Table 6.6: Right region results from un-
cluttered scenario

From the two tables the results from the 10 different tests are shown. In all the cases
where the obstacle is detected, it have been detected at a distance higher than the 0.7
meters which have been determined to be the minimum distance needed to stop the
drone. The test fails 2 times where the obstacle is not detected. The reason why these
tests have failed is discussed later in this chapter section 6.2.4. It is noted that all tests
where the system fails is where the obstacle is to the left of the drone. However it
is believed that this is just a coincidence and that the left and right region generally
performs equally

Center region
Following the results from the tests of the center region will be presented. The distance
is the distance at where the object is first detected.

77

6.2. OBSTACLE AVOIDANCE

FP TP FN At distance
Test 1 0 1 0 1.74m
Test 2 0 1 0 1.87m
Test 3 0 1 0 1.55m
Test 4 0 1 0 1.64m
Test 5 0 1 0 1.61m
Test 6 0 1 0 0.93m
Test 7 0 1 0 0.96m
Test 8 0 1 0 1.88m
Test 9 0 1 0 1.84m
Test 10 0 1 0 2.09m
Mean 0 1 0 1.61m

Table 6.7: Center region results from uncluttered scenario

In table 6.7 the results, dedicated to testing the center region, are shown. In all the tests
the obstacle have been found with a distance higher than the threshold of 0.7m, which
is determined to be the minimum. This means that all of the tests have passed.

6.2.2 Cluttered scenario
In this subsection the results from the tests in a cluttered environment will be described.
First the results from the left and right region tests will be described then the results
from the center region tests will be described

Left and right region
Following the results from the tests of the right and left region, described in section 5.2,
will be presented. Each table presents the results for at single pillar. The distance is the
distance at where the object is first detected.

78

CHAPTER 6. RESULTS

FP TP FN Distance
Test1 0 1 0 2.69m
Test2 1 1 0 2.43m
Test3 0 1 0 3.33m
Test4 0 1 0 4.17m

Table 6.8: Right region results from pillar
1

FP TP FN Distance
Test1 0 1 0 2.01m
Test2 0 1 0 3.34m
Test3 0 1 0 3.29m
Test4 0 1 0 3.54m

Table 6.9: Left region results from pillar
3

FP TP FN Distance
Test1 0 1 0 2.49m
Test2 0 1 0 4.41m
Test3 0 0 1 N/A
Test4 0 0 1 N/A

Table 6.10: Left region results from pillar
2

FP TP FN Distance
Test1 0 1 0 1.53m
Test2 0 0 1 N/A
Test3 0 1 0 1.48m
Test4 0 0 1 N/A

Table 6.11: Right region results from pil-
lar 4

In the four tables the results from the 16 different tests are shown. In all the cases where
the obstacle is detected, it has been detected at a distance higher than the 0.7 meters,
which have been determined to be the minimum distance. The test fails 4 times where
the obstacle is not detected. The reason why these tests have failed is discussed later
in subsection 6.2.4. In table 6.12 the mean results from the tests of the left and right
region are shown.

Mean FP Mean TP Mean FN Mean Distance
Pillar 1 0.25 1 0 3.16m
Pillar 2 0 0.5 0.5 3.45m
Pillar 3 0 1 0 3.05m
Pillar 4 0 0.5 0.5 1.51m
All 0.06 0.75 0.25 2.79m

Table 6.12: Mean results for all 4 pillars left and right region.

Center region
Following the results from the tests of the center region will be presented. Each table
presents the results for at single pillar. The distance is the distance at where the object
is first detected.

79

6.2. OBSTACLE AVOIDANCE

FP TP FN Distance
Test1 0 1 0 1.62m
Test2 0 1 0 2.14m
Test3 0 1 0 1.43m
Test4 0 1 0 2.78m

Table 6.13: Center region results from pil-
lar 1

FP TP FN Distance
Test1 0 1 0 1.53m
Test2 0 1 0 2.29m
Test3 0 1 0 1.42m
Test4 0 1 0 1.47m

Table 6.14: Center region results from pil-
lar 3

FP TP FN Distance
Test1 0 1 0 1.43m
Test2 0 1 0 1.93m
Test3 0 1 0 1.39m
Test4 0 1 0 1.38m

Table 6.15: Center region results from pil-
lar 2

FP TP FN Distance
Test1 0 1 0 1.19m
Test2 0 1 0 1.28m
Test3 0 1 0 1.02m
Test4 0 1 0 1.18m

Table 6.16: Center region results from pil-
lar 4

In the four tables the results from the 16 tests, dedicated to test the center region, are
shown. In all the tests the obstacle is detected and with a distance higher than the 0.7
meters, which was determined to be, the minimum distance needed. In table 6.17 the
mean results from the tests are shown.

Mean FP Mean TP Mean FN Mean Distance
Pillar 1 0 1 0 1.99m
Pillar 2 0 1 0 1.53m
Pillar 3 0 1 0 1.68m
Pillar 4 0 1 0 1.17m
All 0 1 0 1.59m

Table 6.17: Mean results for all 4 pillars center region

6.2.3 Open space scenario
In this subsection the results from the open area scenario will be presented. Table 6.18
shows the results from the 30 tests. Each test is classified as true negative or false
positive. In case of a false positive the region, where the false positive is registered, is
also shown.

80

CHAPTER 6. RESULTS

Path 1 Path 2 Path 3
FP TN Region FP TN Region FP TN Region

Test 1 0 1 N/A 1 0 Center+Right 1 0 Center
Test 2 0 1 N/A 0 1 N/A 0 1 N/A
Test 3 0 1 N/A 0 1 N/A 0 1 N/A
Test 4 0 1 N/A 0 1 N/A 1 0 Right
Test 5 0 1 N/A 1 0 Right 1 0 Right
Test 6 0 1 N/A 0 1 N/A 0 1 N/A
Test 7 0 1 N/A 0 1 N/A 0 1 N/A
Test 8 0 1 N/A 0 1 N/A 0 1 N/A
Test 9 1 0 Right 1 0 Right 0 1 N/A
Test 10 0 1 N/A 0 1 N/A 1 0 N/A
Mean 0.1 0.9 0.3 0.7 0.4 0.6

Table 6.18: Results from the 30 test in the open space scenario.

From the table it is seen that the system generates some false positives. The overall false
positive rate is 26.7%, however from the test it is seen that typically the regions that
generate false positives are actual obstacles. This means that the system is over sensitive
to obstacles as obstacles further away are considered as obstacles. The false positive rate
is only 6.67% for the center region. In figure 6.12 two examples of this problem is shown.

(a) (b)

Figure 6.12: Examples of false positives on actual obstacles.

6.2.4 Error causes
In this subsection the reason behind the errors will be discussed. First the reason for the
false positives will be described, then for the false negatives.

False positives
False positives are both observed in the left and right region classifier as well as the center
region. First an explanation of the left right region false positives will be described.
Secondly an explanation of false positive errors in the center region will be described.

81

6.2. OBSTACLE AVOIDANCE

Left and right region

The system is built upon the assumption that the UAV will only fly forwards. If the
UAV flies to the left, right or yaws the translation of the tracked points will not only be
due to obstacles coming closer. For some unknown reason the drone is having problems
flying entirely straight. This is what causes the test to fail. In the cluttered environment
pillar 1 test 2, an example of a false positive is seen. For some reason the drone starts
to drift to the left. This causes a rapid translation in the tracked points. The classifier
mistakes this translation as an obstacle.

Figure 6.13: Example of a false positive.

In figure 6.13 a screen-shot is shown where a false positive is detected. It is clearly seen
that a lot of points, even though they are not on the same plane, is classified with a
steep slope.

Center region

In two of the tests a false positive have been registered in the center region. To find
out the reason for this, the scales leading up to the misclassification are investigated. In
figure 6.14 the scene where the misclassification happens is shown. In figure 6.15 the 30
scales leading up the misclassification are shown.

82

CHAPTER 6. RESULTS

Figure 6.14: The misclassified center
region.

0 5 10 15 20 25 30
1

1.05

1.1

1.15

Samples
Sc
al
e

Extracted scales

Figure 6.15: The misclassified center region.

From the scales it is clearly seen that errors occurs in the estimates in the scale in sample
28 and 29. By implementing a threshold that the scales cannot be above these sorts of
errors could potentially be removed.

False negatives
False negatives are only seen in the left and right region classifier. The problem arises
when too few corners are tracked when the drone approaches the obstacle. This will lead
to the clustering of the points failing as the distance between the points is above the
threshold specified. Normally new points would be added, however these points needs
to be tracked for a minimum of 30 frames before they can be used to calculate a slope.
In figure 6.16 an example of this problem is shown from pillar 4 test 2.

Figure 6.16: Example of a false negative.

In the figure it is seen that the single trajectories on the obstacle is drawn in red, which
means that they have a steep slope, but because of the few amount of points they are
not clustered correctly leading to a false classification.

83

7 Conclusion

In this project two systems, to aid indoor UAV flight, have been developed and tested.
A visual odometry system has been developed which is capable of estimating horizontal
motion as well as rotations around the vertical axis. The system has been tested by
implementing the proposed method on a platform, which can simulate UAV flight. The
output from the system has been compared with ground truth data in order to analyze
the precision of the system. The mean absolute error have been found to be 0.1589cm per
sample when the platform if hovering. When motion is introduced the error increases
to 0.371cm per sample. The largest error in the estimate is seen when rotations are
introduced. For the test with both rotation and translation the error was found to be
0.546cm per sample. With only rotation and no movement the error was found to be
0.452cm per sample. For the rotation the mean absolute error is found to be 0.044◦
for the hoover test. For the tests with rotation the error varies from 0.125◦ to 0.194◦.
The purpose of the visual odometry system was to reveal what kind of precision could
be achieved using two cheap cameras. The results section have revealed that motions
can definitely be estimated using the proposed method, whether or not the accuracy is
high enough will be determined by the platform and the specific use case, in which the
system is implemented on. Furthermore the project has revealed which parameters will
affect the precision of the system. This is important as it will be help determining which
hardware to use for such a system.

As well as a visual odometry system, an obstacle avoidance system has been developed.
In order to detect obstacles in front of the camera, as well as to the sides of the camera,
two different classifiers have been developed. One for the left and right region and one for
the center region of the image. The system has been implemented on an Ar.Drone 2 in
order to test the performance of the system. A total of 82 data sets have been collected
from three different scenarios. 26 sets containing an obstacle in the left or right region,
26 sets containing an obstacle in the center region and 30 sets with no obstacle. For the
left and right region classifier the total true positive rate reaches 78.3% and the obstacles
are detected at a mean distance of 2.70m. The center region classifier reaches a rate
of 100% true positives, and the obstacles are detected at a mean distance of 1.6m. 30
tests are carried out to determine the rate of false positives. For the left and right region
classifier the total false positive rate is 20%. For the center region the false positive rate
is 6.67%. With more time and more data sets it is believed that better results could
be reached by investigating the thresholds in the two classifiers. The purpose of the
obstacle avoidance system was to develop a system that would make is possible for an
UAV to detect obstacles and avoid them. The tests have shown that it is possible to

84

CHAPTER 7. CONCLUSION

detect obstacles in time for an Ar.Drone to avoid them. Whether or not this method
would work on any other platform will be dependent on the UAVs ability to stop. The
result section have revealed at which distances the method is able to detect obstacles
from, using the Ar.Drone as a platform. If another platform is used the distance may be
different, and the parameters controlling the algorithm would also have to be altered.

85

8 Discussion

This chapter will be discussing the implemented methods and the results from the tests.
The discussion chapter is divided into three main sections, which are visual odometry,
obstacle avoidance, and finally a perspectivation is presented where the possible future
use of the technology is discussed.

8.1 Visual Odometry
In this section a discussion of the visual odometry system will be presented. The discus-
sion will be about considerations for further work, and about which considerations are
important if the system is to be implemented on an UAV.

Trajectory without rotation
The tests showed that the rotation estimation resulted in errors that lead to large errors
in the estimated trajectories. It is believed that the trajectories can be estimated with a
much lower error rate if the rotation is known from another sensor. This could be from
a magnetometer, which is capable of detecting the magnetic north direction. To see how
well the system can generate trajectories with a more precise estimation of rotations, a
test is carried out where the rotation is substituted with the one from the ground truth
data. In figure 8.1 the trajectory generated from this test is shown. The test data is
from the test with no rotations and only translation as described in section 5.1.2.

86

CHAPTER 8. DISCUSSION

200 400 600 800

0

200

400

cm

−100 0 100 200 300
−50

0

50

100

150

200

250

300

350

cm

cm

Trajectory

200 400 600 800
−20

0

20

Samples

D
eg
re
ss

200 400 600 800
−100

0

100

200

300

cm

Individual estimates

Figure 8.1: Translation test trajectory result. Blue: Ground truth Red: Trajectory calcu-
lated with estimated rotation Green: Trajectory calculated with ground truth rotation

From the figure it is seen that the trajectory is estimated with a higher precision when
omitting the rotation estimate. It is also seen that the x-axis is almost perfect throughout
the trajectory where the y-axis is a bit too low. A reason for this could be that the focal
length in pixels is not estimated correctly leading to a scale error in the y-axis. This leads
to the assumption that the trajectory can be used to determine the position of the UAV
within smaller periods of time. However it is still seen that some error is present when
calculating the trajectory. To be able to estimate the UAVs position precisely indoor, it
would have to be coupled with another system. A solution could be to put some known
markers on the floor around the room the UAV will navigate. If the position of these
markers are known then the trajectory could be corrected each time the UAV detects
one of these markers. The visual odometry system could then be used to determine the
position between these markers. Such a system would allow the UAV to navigate indoors
only using cameras.

87

8.1. VISUAL ODOMETRY

Fusion with other sensors
It would be interesting to see how the system would perform if the data was fused with
another sensor. As this system is meant to be implemented on an UAV it would be
natural to fuse the data with that of the IMU on board the UAV. By doing so some of
the spikes that leads to errors in the trajectory could possibly be removed.

Further testing
To get a better understanding of how the system would perform, further testing is needed.
A test setup on an actual UAV would be preferred. Furthermore some of the probable
error causes should be fixed. This means two synchronized cameras, a higher frame rate
and a more precise distance sensor. As the platform was manually moved around in
the laboratory the height difference in the data sets are not varying much. It would
be interesting to investigate how the system would perform when variations in height
occurs.

Implementation in real system
From the tests of the method, important considerations have been revealed. The planes
the UAV flies over and under must contain extractable features for the motion estimation
to function properly. The frame rate of the cameras are essential for the precision of the
per sample results. A well-lit area is important as low light scenes are harder to track
compared to well lit scenes. This is due to the lack of contrast that will make it difficult
to find corner points. It has also been found that it will be beneficial to use cameras with
a trigger so that both cameras can be synchronized, if the motion is to be fused with
other sensor data, it is also essential that the other sensor can be synchronized with the
cameras.

88

CHAPTER 8. DISCUSSION

8.2 Obstacle avoidance
In this section a discussion of the obstacle avoidance system will be presented.

Alternative left and right region classifier
From the results it is seen that the left and right region classifier generates all the
occurrences of false negatives, and a large part of the false positives. This is mainly due
to the fact that the UAV used to test the system cannot fly entirely straight. Fewer errors
are seen in the center region as this classifier method works independently of translations
in the frame and only used the scale between the points. It would be interesting to try
and adapt this translation independent center method, into an alternative classifier for
the left and right region. By doing so it is believed that the error rates could be drastically
improved.

Stabilized camera
As mentioned translations caused by movement of the UAV causes errors. It would
be interesting to gather some test data from an UAV with a camera stabilizer. Larger
UAVs are commonly equipped with a camera gimbal. A camera gimbal is essentially 3
motors connected to an IMU. When the UAV rotates, the motors will counter act these
rotations, which results in a very steady image. In the test implementation a rotation of
the image in one of the axes is implemented. A gimbal would stabilize the image in all
3 axes.

Alternate center classification threshold
From the test of the center region classifier it is seen that not a single obstacle have
been missed. This leads to a sensitivity of 100%. As a few false positives have been
observed the precision is lower than the sensitivity. This could be an indication of a too
low threshold in the center classifier. This problem is illustrated in figure 8.2.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Score

Sa
m
pl
es

Figure 8.2: Classifier threshold. Blue: No obstacle. Red: Obstacle. Green: Threshold.

The above plot is generated from fictional data to illustrate the problem. It would be
interesting to analyze the actual distribution of scores for all the gathered data. This
way a more informed decision about the threshold could be taken. At this point the
threshold have been set by trial and error from a few initial data sets.

89

8.2. OBSTACLE AVOIDANCE

Implementation real system
From the tests of the proposed method, some important requirements to the platform
has been revealed. The tests showed that the left and right region classifier has some
problems when the platform is not able to fly straight without rotations and translations.
This means that either the platforms need to be able to fly straight or the camera needs
to be mounted on a gimbal for stabilization. It is noted that this problem only affects
the left and right region and not the ability to detect obstacles in front of the camera.
The lowest distance at which an obstacle has been detected is 0.95m. This leads to the
requirement that the UAV has to be able to stop in less than 0.95m. It is noted that
the distance at which the method is able to detect obstacles may vary if another camera,
with another frame rate is chosen.

90

CHAPTER 8. DISCUSSION

8.3 Perspectivation
In this project two systems to help UAVs fly indoor have been developed. These systems
alone are not enough to allow indoor UAV flight all together. However these systems can
be a vital part of how the UAVs can be moved from their current environment outdoors,
into indoor environments. By using cameras and computer vision it is believed that the
UAVs will be able to fly autonomous in more or less all areas where human currently can
remote control them. By equipping the UAVs with cameras they have the ability to see
as we humans can, which means they will be able to perform the tasks that we humans
can based on our vision. It is the believe of the author that computer vision in general
will be the key factor in moving the UAVs from a remote controlled camera, which is
essentially what UAVs are today, to the next step where UAVs can automatically make
decisions. The two developed systems are not only usable indoors, but also outdoors.
A lot of larger companies are experimenting with UAVs for delivering packets. For this
to become a reality the UAVs must be able to find their way to a defined address. It is
impossible for the UAV to know what is between its current location and destination.
Therefore the UAVs must be able to make decisions about obstacles and route in real-
time based on what they see. When UAVs fly in the middle of larger buildings it can
be difficult to get a good GPS signal. Therefore the visual odometry system can help
an UAV in periods where the GPS signal is lost. It is believed by the author that UAVs
will be able to carry out a lot of the tasks that humans today are involved in, and in
the near future it is believed that it will be a common sight to see an autonomous UAV
without a person in the other end.

91

Bibliography

[1] Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using
on-board processing, 2011.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[3] Dr. Gary Rost Bradski and Adrian Kaehler. Learning Opencv, 1st Edition. O’Reilly
Media, Inc., first edition, 2008.

[4] Jason Campbell, Rahul Sukthankar, Illah Nourbakhsh, and Aroon Pahwa. A robust
visual odometry and precipice detection system using consumergrade monocular
vision. In in Proceedings of the 2005 IEEE International Conference on Robotics
and Automation ICRA 2005, pages 3421–3427, 2005.

[5] Elan Dubrofsky. Homography Estimation. Master’s thesis, THE UNIVERSITY OF
BRITISH COLUMBIA„ Vancouver, 2007.

[6] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion.
In Proceedings of the 13th Scandinavian Conference on Image Analysis, SCIA’03,
pages 363–370, Berlin, Heidelberg, 2003. Springer-Verlag.

[7] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

[8] Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc.
of Fourth Alvey Vision Conference, pages 147–151, 1988.

[9] Tomáš Krajník, Vojtěch Vonásek, Daniel Fišer, and Jan Faigl. AR-Drone as a Plat-
form for Robotic Research and Education. In Research and Education in Robotics:
EUROBOT 2011, Heidelberg, 2011. Springer.

[10] Logitech. Logitech homepage http://www.logitech.com/en-gb/product/
hd-webcam-c310.

[11] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004.

92

http://www.logitech.com/en-gb/product/hd-webcam-c310
http://www.logitech.com/en-gb/product/hd-webcam-c310

BIBLIOGRAPHY

[12] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San Francisco, CA,
USA, 1981. Morgan Kaufmann Publishers Inc.

[13] Maxbotix. Maxbotix homepage http://www.maxbotix.com/Ultrasonic_
Sensors/MB1320.htm.

[14] Annalisa Milella and Roland Siegwart. Stereo-based ego-motion estimation using
pixel tracking and iterative closest point. 2006.

[15] Tomoyuki Mori and Sebastian Scherer. First results in detecting and avoiding frontal
obstacles from a monocular camera for micro unmanned aerial vehicles. In ICRA,
pages 1750–1757. IEEE, 2013.

[16] David Nistér. An efficient solution to the five-point relative pose problem. IEEE
Trans. Pattern Anal. Mach. Intell., 26(6):756–777, June 2004.

[17] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. pages 652–659,
2004.

[18] OpenCV. Opencv homepage http://opencv.org.

[19] OptiTrack. Motive product homepage http://www.optitrack.com/products/
motive/.

[20] Parrot. Ardrone product homepage http://ardrone2.parrot.com/.

[21] D Scaramuzza and R Siegwart. Appearance-guided monocular omnidirectional vi-
sual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, October
2008. Special Issue on Visual SLAM.

[22] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
Robot. Automat. Mag., 18(4):80–92, 2011.

[23] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[24] SICT. Study regulation for vgis 1.-4. semester http://www.sict.aau.dk/
digitalAssets/36/36173_vision_graphics_interactive_systems_godkendt.
pdf. Downloaded 2013-09-20.

[25] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings of the International Work-
shop on Vision Algorithms: Theory and Practice, ICCV ’99, pages 298–372, London,
UK, UK, 2000. Springer-Verlag.

[26] S Zingg, D Scaramuzza, S Weiss, and R Siegwart. Mav navigation through indoor
corridors using optical flow. In Proc. of The IEEE International Conference on
Robotics and Automation (ICRA), May 2010.

93

http://www.maxbotix.com/Ultrasonic_Sensors/MB1320.htm
http://www.maxbotix.com/Ultrasonic_Sensors/MB1320.htm
http://opencv.org
http://www.optitrack.com/products/motive/
http://www.optitrack.com/products/motive/
http://ardrone2.parrot.com/
http://www.sict.aau.dk/digitalAssets/36/36173_vision_graphics_interactive_systems_godkendt.pdf
http://www.sict.aau.dk/digitalAssets/36/36173_vision_graphics_interactive_systems_godkendt.pdf
http://www.sict.aau.dk/digitalAssets/36/36173_vision_graphics_interactive_systems_godkendt.pdf

BIBLIOGRAPHY

[27] Ferit Üzer. Camera motion blur and its effect on feature detectors. Master’s thesis,
Middle east techincal university, 2010.

94

A Alternative center obstacle
classification

The purpose of this appendix is to describe an alternative method that was initially used
to detect scale in the center region of the obstacle avoidance classifier. The idea behind
this method was as in the final method to extract the scaling factor between frames. In
the final method the homography matrix is used to determine scale and is extracted from
all tracked points in the center region. The initial approach was to cluster trajectories
based on euclidean distance and estimate the scale between each group of two points.
The first three steps of the pipeline, image acquisition, feature extraction and feature
detection are the same as described in the system composition section 3.2. Therefore
only the classification step of this method will be described.

For each point its nearest neighbor is found that is not already grouped with another
points. For each of these groups of two points the scale between them over the last 30
frames is calculated. In figure A.1 an example of the grouped point are shown. The
grouped points are connected by a line. The points and the line connecting them is
colored depending on their scale. Red corresponds to a high scale and blue corresponds
to a low score.

Figure A.1: Example clustered points.

For the method to work groups lying on the obstacle should be more red than groups

A:1

lying on the background. From the figure it is seen that there is no coherence between
the color of the groups and the surface they lie on. It is believed that the scale between
the frames is so small that the noise from the feature detection is so large that it is
impossible to classify the scales. For this reason the other method using the homography
is used. As this approach uses more points to estimate the scale, the system becomes
more resistant to noise.

A:2

B Obstacle detection from extrinsic
parameters

The purpose of this appendix is to describe an alternative method to detect obstacles
but ultimately was discarded as the results was deemed unusable. The idea behind this
method is to take advantage of the fact that the Ar.Drone has a IMU available where
motion and rotations can be extracted from. The first three steps of the pipeline, image
acquisition, feature extraction and feature detection are the same as described in the
system composition section 3.2. Therefore only the classification step of this method will
be described.

Classification
The classification step is responsible for determining whether or not obstacles are present
in the scene. Different from the chosen method this alternative method will be classifying
the entire image as one instead of dividing the frame into sections. Ultimately this
method would be able to classify all the tracked trajectories as obstacles or non obstacles.

The method is based on the idea of extracting extrinsic parameters from the IMU of the
drone. As the velocity and the rotations are sent from the drone these can be used
to calculate the extrinsic matrix. The velocity can be mapped to a distance using the
sample time. First each point is mapped to world coordinated by multiplying with the
inverse camera matrix, this is shown in equation B.1.

pw = K−1p

pw = Point in world, K = Camera matrix
(B.1)

The point is normalized by dividing with the z component of the vector. In the next
step the coordinate is multiplied with the extrinsic parameter matrix. This is seen in
equation B.2.

pr = KEpw

pr = Point after rotation and translation, K = Camera Matrix, E = Extrinsic paramters
(B.2)

B:1

The Extrinsic parameters are found using equation B.3.

E =
[
R T

]
R =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

cos(β) 0 −sin(β)
0 1 0

sin(β) 0 cos(β)

 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

 , T =
(
Tx Ty Tz

)T
α = Pitch angle, β = Yaw angle, γ = Roll angle

(B.3)
To validate how far away an object is the point pr is compared with the one tracked
using Lucas-Kanade. In figure B.1 an example of the calculated points for motion of 10
samples is shown.

Figure B.1: Example of the calculated points.

After some initial testing with this method it was discarded as the information from the
IMU proved to be too imprecise to estimate the extrinsic parameters.

B:2

	1 Introduction
	1.1 The scenario
	1.2 Position estimation
	1.3 Obstacle avoidance

	2 Analysis
	2.1 Visual odometry
	2.1.1 Initial tests

	2.2 Obstacle avoidance
	2.2.1 Monocular methods
	2.2.2 Stereo based methods
	2.2.3 Initial tests

	2.3 Problem statement

	3 System Composition
	3.1 Visual odometry
	3.1.1 Pipeline
	3.1.2 Image acquisition
	3.1.3 Feature extraction
	3.1.4 Feature matching
	3.1.5 Motion estimation

	3.2 Obstacle avoidance
	3.2.1 Pipeline
	3.2.2 Image acquisition
	3.2.3 Feature extraction + Feature matching
	3.2.4 Classification

	4 System Implementation
	4.1 OpenCV
	4.2 Calibration
	4.3 Visual odometry
	4.3.1 Hardware
	4.3.2 Flow

	4.4 Obstacle avoidance
	4.4.1 Hardware
	4.4.2 Flow

	5 Tests
	5.1 Visual odometry
	5.1.1 The test setup
	5.1.2 Test scenarios

	5.2 Obstacle avoidance
	5.2.1 The test setup
	5.2.2 Test scenarios

	6 Results
	6.1 Visual odometry
	6.1.1 Per sample results
	6.1.2 Trajectory results
	6.1.3 Error causes

	6.2 Obstacle avoidance
	6.2.1 Uncluttered scenario
	6.2.2 Cluttered scenario
	6.2.3 Open space scenario
	6.2.4 Error causes

	7 Conclusion
	8 Discussion
	8.1 Visual Odometry
	8.2 Obstacle avoidance
	8.3 Perspectivation

	Bibliography
	A Alternative center obstacle classification
	B Obstacle detection from extrinsic parameters

