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Abstract:

At present, behavioral classification of malware is re-
alized by means of Antivirus generated labels. This
study investigates the inconsistencies associated with
current practices by using unsupervised learning on
malware behavior. Based on the problem isolation,
research was undertaken to determine how Antivirus
vendors label detected malware, as well as to raise
the problem of inconsistency in their labeling results.
A customized version of Cuckoo Sandbox was used
to collect actions from approximately 270,000 mal-
ware samples, and to create their behavioral profile
consisting of Passed and Failed API calls and their
respective Return Codes.
Evaluating the detection results of Antivirus vendors
on Completeness, Consistency and Correctness, and
based on the devised analysis, a temporary solution
was depicted, which involved performing a Majority
Vote between multiple vendors. A tokenized Lev-
ensthein ratio was used, in order to implement the
vote and determine the appropriate labels for eval-
uation. Following close examination of the limited
amount of options present in unsupervised Machine
Learning for Feature Selection and optimal number
of clusters, it was decided to make use of Principal
Component Analysis along with Gap Statistics. The
Self Organizing Map algorithm, preferred for clus-
tering the behavioral data, provided an innovative
approach for preserving the topological properties of
the higher dimensionality information present in the
malware dataset.
Upon evaluation of the Self Organizing Map clus-
terer, and taking into consideration the limited range
of tools provided by unsupervised learning, the study
showed shortcomings when relying on AV vendors for
labeling malware samples. This is an indication, that
no link exists between AV extracted type labels and
generated behavioral clusters. To solve this discrep-
ancy, a cluster-based classification is proposed, that
is able to accurately classify new mailicious software
using the clusters created with Self Organizing Map.





Preface

This Master Thesis has been written by group 1020, represented by a 4th semester student in the Net-
works & Distributed Systems masters program under the Department of Electronic Systems at Aalborg
University. The subject of the Master Thesis is “Clustering Analysis of Malware Behavior”. The thesis
has been carried out in the period: February, 1. to June, 3. 2015.

Reading Instructions

The report created during the project period is addressed to supervisors and other students. This report
presumes the reader to have a basic knowledge within the field of networking, programming and malware
analysis.

This report includes 7 Parts. It is built up by the following: Problem Analysis, Technical Analysis,
Design & Implementation, Results, Conclusion, References and Appendices. Included in this report is a
CD which contains all the material that has been used in this project. The report contains references in
the Harvard-method format which includes; [Surname, Year]. The reference points to a bibliography in
Chapter 9 and will include information about the source, author, year of release and appropriate URL.
The figures, tables and listings are numbered according to their location in the report, i.e. the chapter.
If the reference is not on the same page as what it refers to it will include page numbering to where it is
placed.

Abbreviations used throughout the report are included after the table of contents.
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Chapter 1
Introduction

Malware infections have been one of the main concerns in the security community for the past years. With

an increasing number of new malicious programs, Anti Virus (AV) vendors try to keep up with the trend

in order to protect an also increasing number of computer users. As detection is becoming more and more

complex due to the increased complexity of malicious code, a more advanced technique to detect and

combat these threats needs to be researched. Following this direction, researchers have shifted their focus

from traditional static based methods of detection [Sharif et al., 2008], [Moser et al., 2007] to more com-

plex, dynamic and automatized solutions based on collecting malware behavior traces [Egele et al., 2012],

[Ahmad et al., 2015], [Gorecki et al., 2011].

In our previous paper [Pirscoveanu et al., 2015], it has been attempted to solve the problem of classifying

the increasing number of malicious software that emerge each day. Collecting information from approxi-

mately 80.000 malware samples, the information was carefully analyzed using novel feature selection and

representation techniques. Using classification on the behavioral data, the study has shown that the im-

plemented system can indeed classify known malicious types with high accuracy taking a step forward in

the research of stopping infections using behavioral analysis. However, the method used, was dependent

on information collected from AV vendors and the success of the study relied more on the correctness of

the statically generated labels and assumed that there exists a link between static AV collected data and

behavioral data collected using dynamic methods.

Attempting to understand the importance of correct labeling of detected malware provided by AV com-

panies, a study made by [Mohaisen et al., 2014] has shown that there exist significant differences between

methods used. This can result in labeling inconsistencies that may prevent AV vendors from correctly

detecting new and updated malware or completely cleaning an infected machine. The labels represent,

in text, the type or family which define the intent, method of infection and other properties of the mal-

ware which can be of great importance when it comes to researching their behavior. One of the biggest

challenges when researching results from multiple AV vendors is, understanding the meaning of their

labels. Multiple companies have emerged in last few years where centralized databases are used to collect

labeling results from multiple vendors which have the goal of emphasizing the problem of uncorrelated

labeling techniques between different AV engines, see [VirusTotal, 2015], [Anubis, 2014]. This means that

AV vendors are focusing on detection more than on determining the properties of the malware, leading

to false positives as seen in Figure 1.1, where AV vendors tend to detect clean software as malicious

programs. The study has been done by [AV-TEST, 2015] on 410 new released samples.

This report will attempt to provide a solution to the problem described by means of another different

dynamic approach, without relying on the correctness of the static analysis provided by a single AV

3



Figure 1.1: Performance of AV Vendors.

program, but instead trying to determine a link between the two methods. Even though the previous

research has shown that behavioral similarities of each type can be seen and detected, the results mainly

relied on the accuracy of the static analysis provided by a single AV vendor. As code obfuscation and

polymorphism are common techniques for hiding the original code of the malicious software, the accuracy

of the static analysis will not provide the necessary reliability in order to perform accurate malware detec-

tion based on the labels provided by the AV programs. This can lead to false static analysis classifications

and therefore will affect the results of the classification when dealing with behavioral analysis.

Next chapter will summarize the work done for the previous report, presenting, in short, the system in use

followed by the Preliminary Analysis and Problem Statement. The Technical Analysis provides methods

of tackling the problem followed by the System Design and Implementation that describes how the system

is implemented provided the information and methods presented in the aforementioned sections.
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Chapter 2
Problem Isolation

This chapter contains detailed information, constraints and limitations to form a potentially improved

solution to the previous report using the information gathered from novel research. To better understand

the basis of this project, a short summary of the previous work will be presented to bring the reader up

to speed for the changes that will be introduced. This will include the previous problem statement, data

collection, evaluation, analysis approaches taken along with the results gathered. Furthermore, it will be

explained how AV companies label and detect malware presenting in detail new approaches of analyzing

malicious software behavior.

Finally, this chapter will include a motivation section that will be based on the problem isolation leading

to the problem statement. By the end of this chapter the following questions will be answered.

• What were the drawbacks of the previous work ?

• How to correctly capture the family and type ground truth using only behavioral information from

malware samples?

2.1 Summary of previous work

The motivation of our previous work, [Pirscoveanu et al., 2015], relied on classifying a large number of

increasing malware that emerge each day. In order to be able to keep up with the exponential increase,

a dynamic and automated approach was selected to work along side the static analysis. In short, static

analysis refers to reverse engineering the malicious code and finding patterns, while dynamic analysis

focuses on the behavioral information of a malicious program during its execution in a safe and contained

environment. After comparing the two approaches it was decided that dynamic analysis will provide

the automation and distribution capabilities needed to analyze the new malware at a rate close to the

increasing number.

A system has been designed that is able to collect, analyze and classify a large number of samples in

a short period of time using Cuckoo Sandbox controlling a fairly large number of Virtual Machines

while storing information in the Not Only Structured Query Language (NoSQL) Database Management

System (DBMS) MongoDB. In order to store the unstructured collected data, a non-relation database

was chosen to fulfill this task. Predicting the structure of the malware behavioral data can be a very time

consuming and complex operation, thus relational databases would have been an unacceptable choice

when the structure is not known. Variables like Application Programming Interface (API) calls, created

and accessed Registry keys, files and mutexes were chosen as features that should capture the behavioral

profile of the malicious software. The features were then used with a classification algorithm that would

classify malware samples to their appropriate type. Different representations of the features were created:

5



CHAPTER 2. PROBLEM ISOLATION

• Binary and Frequency representations of API calls.

• Counters of Files, Mutexes and Registry Keys.

• Sequence representation of API calls.

• Combinations between Frequency, Binary and Counters.

2.1.1 Methods

A unique technique of choosing the appropriate features based on their relevance has been depicted to

help reduce the large dimensions of the data. The relevance has been calculated by normalizing the

variance of the feature values evaluated on the whole sample set. This method was intended to keep the

features that better discriminate the malware types and discard those which are redundant or provide no

performance gain.

By carefully analyzing multiple supervised algorithms based on their performance on similar data sets,

it has been decided that Random Forests (RF) will be used along with labels from Avast. RF represents

a classification algorithm that constructs multiple decision trees and performs a majority vote on the

decision of every tree. Selected labels have been chosen based on the AVs that had the best detection

rate at the date of the scans along with a consistent labeling technique. Avast provided the project with

approximately 40,000 samples spread across four malware types consisting of Trojan, Adware, Potentially

Unwanted Program (PUP) and Rootkit.

2.1.2 Results

After using RF Machine Learning (ML) algorithm representing a supervised method with labels provided

by Avast, it has been seen that the Combination between Frequency, Binary and Counters representa-

tions, containing concatenated information, yielded the best results in terms of Precision, F1-Measure

and Area Under the Curve (AUC) values. These metrics represent the Receiver Operator Characteristics

(ROC), providing valuable information about the performance of the used classifier.

During analysis of the four most seen types consisting of Trojan, Adware, Rootkit and PUP, it has been

concluded that, even though high performance has been achieved, a better uniform distribution of the

samples should be used to reflect a fair performance evaluation. The Trojan samples covered over 70 %

of the samples, which meant that the classifier would probably classify a test malware as Trojan if it does

not hold any of the obvious features of Adware, Rootkit or PUP. The published paper is available in the

last pages of this report.

Even though the study has shown that the classifier had a fair predictive performance for the tested

data-set using AV labeled types, it has to be emphasized that the results are relative to the correctness

of the labels. As there is no proof of a link between the labeled information and the malware behavior

data, a different approach must be used in order to determine if similarities exist between the two, in

order for the classification to be valid.

2.1. SUMMARY OF PREVIOUS WORK 6



CHAPTER 2. PROBLEM ISOLATION

2.2 AntiVirus Programs

This section presents a short history of AV programs, along with their different methods of detection and

labeling. By the end of this section the downsides of using AV labels for research will be emphasized,

which by the end of the Chapter will represent the motivation of this project.

AV software have been around since early 1990s when the first malware has been identified. Since then, as

Internet access has expanded, malware infections have increased considerably and so did the AV industry.

Today there exist approximately 60 different AV programs that detect malware using different methods

[Wikipedia, 2015a]. This has led to inconsistency in labeling the detected malware and in some cases in

a large number of false positives as pointed out in [Mohaisen and Alrawi, 2014].

With this boom in the AV industry, different companies like AV-Test or AV-Comparatives have been

trying to provide crucial information to users by assessing AV performance on a ”real-world” virus

database, see [AV-Comparatives, 2015] and [AV-TEST, 2015]. Statistics like detection rate and False

Positive Rate (FPR), also seen in Figure 1.1 (p. 4) hold precious information about the quality of an AV

program. As an example, if a user relies on an AV program that has a low detection rate, the machine

he uses will be more prone to infection as the AV is unable to detect all malicious programs. Or, if

the AV has a high FPR, the user will receive false alarms about programs that are not affiliated in any

way with malicious activity. The discrepancies in the results of different AV vendors can be described

by the different methods of detection in use and their appropriate algorithm sensitivity used for finding

similarities between samples. These methods are described in the following subsections.

2.2.1 Detection

Malicious software has advanced in both complexity of coding and methods of obfuscation and poly-

morphism making the detection more and more complex in order to cover all possible use cases. As

technology evolved, the detection methods that AV vendors used have changed as well, improving their

accuracy for new-released malware. Methods currently used are:

• Signature Based - Most commonly used by AV vendors to fast detect known malicious software.

There exist two different signature-based methods:

– Hash Signatures are used by AV vendors to compare the hash of the file with known malware

hashed signatures. This provides a fast detection rate only if the malware exists in the AV

database or if the malware has not changed. AV vendors commonly use MD5 message-digest

algorithm that provides a very accurate result. For example if a single character is changed in

a file-name, the MD5 will return a totally different hash, see [Griffin et al., 2009].

– Byte Signatures represent a sequence of bytes that are present in executable files or data

streams. This method can accurately detect malware families by analyzing sequences in data

streams of an executable file [Kephart and Arnold, 1994].

• Heuristic Based - The method attempts to detect malware by simulating the run-time of the sus-

pected executable and determine its intent. This approach is useful when, for example, an updated
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version of a known malware is released and it is mostly used alongside signature based detection to

form a completed real-time protection in terms of known and new malware threats.

• Behavioral Based - A more advanced method of detection that requires the malware to run and

infect a machine in order to record its actions. Behavioral based detection is done in a confined

environment to prevent the spread of the malware. Information collected is usually used for classi-

fication or clustering of malware behavior [Bayer et al., 2009].

Modern AV programs use all of the above methods to provide a more complete solution to the customer

for a higher and more accurate detection of malware. AV vendors do not only detect malware but also

label them according to patterns seen when reverse engineering the executable. The following subsection

will describe the labeling techniques used by AV vendors.

2.2.2 Labeling

From an AV user point of view, the labels of a detected malicious sample are just names assigned to

dangerous software that may harm the integrity of the machine he uses. However from a researcher point

of view the labels contain crucial information about the malicious sample that can help solve problems

of detection using different methods. The labels provide information about the type, family, version,

method of detection and platform of the malware sample. AV companies mostly use their own naming

convention of detected malicious code. An attempt to make a common naming technique was made by

a company named CARO, called the CARO Naming Convention, see [FitzGerald, 2002], however only a

few AV vendors make use of it. Following paragraphs will describe the types and families present in the

generated AV labels.

Malware Types

Over the years multiple malware types have been seen executing different malicious actions. From simply

presenting the user unwanted content to completely taking over the machine and restricting access to it.

The known and most commonly seen malware types are:

Trojan Horse is presented as software that the user might find useful, just like any other legitimate

program. By opening the package, this malware releases other types of malware that will infect the

machine, including key-loggers, account stealers etc. Compared with Viruses and Worms, Trojans do not

replicate on their own but instead they require user interaction to do so. For this reason, this type is

one of the most dangerous out there as it is usually detected when it has already infected the machine

[Cisco, 2015].

Virus represents a malware type that can exhibit actions ranging from just showing random errors to

taking the system in a Denial of Service (DoS) state. The main difference between a Trojan and a Virus

represents the ability to self-replicate by becoming part of other legitimate software. These types are

commonly spread by sharing files, disks or e-mails to which the virus has attached on [Cisco, 2015].
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Adware represents one of the least dangerous types as its only purpose is to display ads to the user. In

order to provide the infected machine with ads that the user might be interested in, it logs information

like browser history, search engines history or history of installed programs. Depending of the severity of

the logging, Adware may be labeled by AV vendors as Spyware.

Spyware represents a type of malware which installs itself without the permission of the user. Used to

collect browsing history and tracking information it usually bundles with free software [Symantec, 2009].

AV vendors also name this type, PUP, just because of the bundling with freeware.

Worm represents a similar type as a Virus, being able to do the same amount of damage to an infected

machine. The main difference is represented by its independence from other software as it does not

require a host program to attach itself to. A worm usually infects its target via exploits or vulnerabilities

and it uses different transport protocols to spread and infect other machines [Cisco, 2015].

Bot represents a malware type that grants access of the infected machine to its master. This type can

spread using Backdoors opened on the target by a Virus or a Worm and it is mostly known for using

Internet Relay Chat (IRC) to communicate with its master. With multiple bots, Distributed Denial of

Service (DDoS) attacks can be initiated that could block the services of the target by overwhelming it

with requests.

Ransomware represents a more sparse type of malware that takes control of the graphical interface

and blocks the user from accessing its machine until a certain amount of money is paid. Most commonly,

these types infect their targets via Trojan Horse.

As can be seen from previous paragraphs, different types may exhibit different tasks. A correct labeling

of detected malware provides great insight about the methods of removing a malware from an already

infected machine. For example if a Trojan-Downloader has been detected, it is not enough to remove it

from the system and define the system as clean. It is crucial to look for other types of malware that this

type may have injected on the machine in order to make sure that the system is in fact malware-free.

This motivates the idea of correct labeling when detecting types to more accurately prevent or neutralize

infections. Thus, it is required to have a conventional naming scheme to generalize type labeling over all

AV vendors.

Malware Families

Malware Families often represent code similarities that might point to the same source code. As there are

infinite number of coding styles and ways of achieving the same goal, finding patterns between malware

with either Signatures (Hash or Byte) and Behavioral Analysis most probably denotes that the malware

is using the same source code as previously detected samples. Similarities can increase the detection rate

as it provides AV vendors with valuable signatures that may or may not change with an updated version

of the same malware. Examples of some of the well known malware families are:
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Zeus represents a Trojan-Bot which tries to steal confidential information like bank accounts and can

also contact a Command and Control (C&C) server. Most used method of collecting information was by

web-injecting fields which were asking for sensitive information. This particular malware was distributed

via spam e-mails and the number of infections, in 2010, reached millions [Symantec, 2014]. Numerous

replicas have been seen and detected as it is using a limited set of file-names like sdra64.exe or pdfupd.exe.

Hupigon is a malware family rated as critical by TrendMicro, see [TrendMicro, 2015]. This family

consists of backdoors or information stealing malicious software. It has been named accordingly to the

file names it creates on the infected machine. Variants may use the same pattern of naming files, thus

leading to the conclusion that they use the same source code.

2.2.3 Downsides

After describing some of malware types and families and understanding the risk they impose, a short

description of the downsides of using AV labels for providing the ground-truth on malware samples will

be presented.

For an AV user, a better AV program is described by a high detection rate and not by how correct are

the malicious samples labeled. However the research community makes use of the labels provided by AV

vendors and require their results to be as close as possible to the ground truth in order to successfully

use them in behavioral classification. The paper [Mohaisen and Alrawi, 2014] raises the concerns of

inconsistency and evaluates AV vendors in detail, based on four main characteristics:

• Completeness determines the detection rate of each AV vendor based on a test sample set.

• Correctness determines the correctness of the labels based on the types and family definitions.

• Consistency determines the level of similarity between labels provided by different AV vendors.

• Coverage is used to calculate how many AV vendors need to be used in order to maximize the

Completeness, Correctness and Consistency.

All of these metrics and their importance will be described in detail in the Technical Analysis part of the

report where AV vendors will be tested on the sample set provided by this project.

2.3 Machine Learning

Machine Learning represents the exploration of algorithms that learn from a data set. It is mainly used

in conjunction with Data Mining where Big Data can be automatically analyzed by a computer in a short

period of time. Using mathematics and statistics, ML algorithms are able to predict how future data will

look like given a set of known data.

In malware analysis terms, this discipline can be used to analyze a large amount of malware to keep up

with the growing amount of samples and infections each day. It can handle multiple amount of dimensions

and it finds patters in the information provided, being able to classify and cluster. These techniques are

also known as supervised and respectively unsupervised learning.
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2.3.1 Implications of previous work

Previous research exists in classifying and clustering malware behavior using various Machine Learning

algorithms in combination with different features and feature representations.

Previous work, see [Pirscoveanu et al., 2015], has mainly relied on supervised learning, using labels from

AV program Avast as the ground truth. This made it possible to configure the Random Forests algorithm

to learn the behavior of the malicious program using its labels in order to classify newly inserted malware

and match the learned behavioral patterns and similarities based on Windows API calls. [Hou et al., 2015]

try a different approach of clustering malware behavior using a cluster-oriented ensemble classifier on a

data-set collected from Comodo Cloud Security. The features selected were also based on general API

calls and the results were satisfactory, obtaining a 96% detection accuracy, outperforming the signature-

based detection techniques.

Overall there exist different approaches in classifying or clustering malware behavior using Machine

Learning. The choice between the two methods is based on the data-set at hand and at the same time if

correct classes are available.

2.3.2 Supervised versus Unsupervised learning

Supervised Machine Learning represents the task of learning from a labeled sample set. Usually the

algorithms are split into two main phases called: training and testing. The training phase represents

the learning part of the algorithm where each sample has a desired output. The algorithm learns from

the known data and it is then evaluated on the testing set, see [Kotsiantis et al., 2007].

Unsupervised Machine Learning represents the task of finding hidden groups in an unlabeled sample

set. As opposed to the Supervised ML, there is no method of evaluating the results of the solution

provided by the algorithm, see [Gentleman and Carey, 2008].

When comparing the two methods of learning combined with the discrepancy in AV labels, a problem

arises in terms of the correctness of learning in behavioral malware analysis. As different AV programs

have different methods and techniques of detecting and labeling malware, using supervised machine learn-

ing will yield results based on the labels provided which in the end can lead to an erroneous classification,

[Mohaisen and Alrawi, 2014]. On the other hand, unsupervised learning focuses only on the data set and

does not need any kind of labels or classes. Data provided by the features will be used to determine the

differences between clusters, and in the case of malware, the difference between their behavior.
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2.4 Motivation and Limitation

Motivation of this project relies on the discrepancies of obtaining the ground truth from labels provided

by AV vendors. It is believed that a better representation and discrimination of malware types and fami-

lies can be achieved using unsupervised learning without making use of classes. The resulting clusters can

then be labeled by analyzing malware samples that belong to a specific cluster or it can simply represent

a majority vote from multiple AV vendors. When doing so, the ML algorithm will generate clusters based

only on the provided data-set and on the properties it holds. Furthermore a comparison between the

created clusters and the number of distinct types or families extracted from AV vendors can be used for

evaluation to determine if a link exists between the two methods.

Additionally, supervised learning can be used along with the created clusters to classify new malware in

the corresponding cluster. The labels in use will be the ones generated by the clusters and not by AV

vendors, ensuring that the labels represent the behavior and not the other way around. The model can

then be regenerated every time a new sample is added, after a set period of time or after a set number

of new samples. This approach will ensure that the classification will always be run on the most recent

data available, providing the highest accuracy possible.

In order to analyze a large amount of samples, for this project it has been chosen to use Dynamic Analysis

collected from a Virtual Machine environment. The information will then be processed and passed to an

unsupervised ML algorithm that can accurately cluster malware behavior and compare the results with

labels extracted from multiple AV vendors.

The chapters that follow present a more technical approach of the topics listed below:

• Dynamic Analysis.

• AntiVirus labels.

• Unsupervised Machine Learning.

This chapter has presented a short description of previous work regarding classification of malware behav-

ior along with the problems encountered. It has also described how AV vendors label detected malicious

software along with challenges and potential solutions. A short discussion uncovered that unsupervised

machine learning performed on information collected from dynamic analysis of malware can form a po-

tential solution of accurately clustering malicious software types or families. The next chapter provides

the problem statement for this project together with additional questions that need to be answered in

the Technical Analysis Part of the report.
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Chapter 3
Problem

Based on information collected from Chapter 2 along with the motivation and limitation presented in

Section 2.4 (p. 12) it has been decided that Clustering can be a potential solution to correctly grouping

malware behavior using information collected by dynamic analysis. It is believed that the future system

can accurately extract and define the behavior of malware without making use of AV generated labels.

In order to find a solution to this problem the following problem statement must be tackled:

3.1 Problem Statement

How to cluster malware in order to discover similarities, using Machine Learning applied on behavioral

data generated using dynamic analysis?

3.1.1 Sub-problems

The following questions need to be answered in order to solve the problem statement:

1. Which features should be used?

2. Which feature representation should be used?

3. Which method of defining the number of clusters should be used ?

4. Which unsupervised ML algorithm should be used for clustering?

5. How to perform majority vote on unstructured AV labels ?

6. What kind of information will the clusters hold?

7. How can the clustering results be evaluated?

8. How will the unsupervised results be interpreted in comparison with the supervised results obtained

in previous project?

Next part will present the Design Rationale and Methods where the answer to the above questions will

be depicted. By the end of the part, an overview of the system will be presented, constrained by answers

to the sub-problems, which should solve the problem statement.
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Chapter 4
Design Rationale

This chapter provides answers to the different sub-problems illustrated in Section 3.1.1 (p. 13), leading

to a finalized version of the system design. In the beginning of this chapter, the physical architecture is

described based on the knowledge of the previous project and the improvements discussed in Chapter

2 and in Chapter 3. As no technical details have been discussed so far, the system architecture will be

based on the ideas specified in the previous chapters. This chapter is addressing potential solutions and

improvements to the previous project in terms of:

• Dynamic malware analysis using multiple Virtual Machines and created Data Structure.

• Malware samples.

• Selection of labels for evaluation.

• Features used to create the malware behavioral profile.

• Feature Extraction.

• Feature Representation.

A final system architecture is presented in the end of this chapter in Section 5.6 (p. 59).

4.1 Technical Overview of Previous Project

In order to better understand the choices that will be made in this chapter, a technical overview of the

previous project is presented to form the basis of the overall system.

The dynamic approach of analyzing malware required the system to have multiple secure and confined

environments that could host malware samples and capture their behavior. Assessing the performance

of the available environments a choice has been made to use Virtual Machines (VM) as they provided

fast state recovery, APIs to automatically control the guests and the customization support required by

the project. A client-server model has been used to construct the system architecture where a central

server would control the state of multiple Virtual Environments over a secure internal network. In order

to prevent the injected malware to access the Internet, InetSim was used to created dummy servers that

would emulate the most common protocols like : HTTP, HTTPS, DNS, IRC.

Furthermore, Cuckoo Sandbox has been used to control the state of the VMs and inject malware for

analysis. Distributon of the analysis setup has been achieved by modifying the source code of Cuckoo

such that it would tunnel VM commands using SSH.

The next section will describe the system architecture used in this project and will present the improve-

ments of choices made in previous work and presented in this section.

17



CHAPTER 4. DESIGN RATIONALE

4.2 System Architecture

This chapter provides an overview of the system architecture chosen for this project along with the

improvements introduced to the previous work, presented in Section 4.1 (p. 17). Figure 4.1 describes in

short the architecture of the system:

Figure 4.1: Physical system architecture based on knowledge from chapter 2.

The idea of the system has not been changed in comparison with the previous project where a centralized

server controlled the injection of malware samples in multiple Virtual Machines using a secure internal

network. A number of improvements, in terms of hardware, have been introduced to be able to cope with

a larger number of malicious samples.

Some of the limitations observed in previous runs have affected and limited the performance of the

analysis machines in use. The hardware that imposed limitations are:

1. Random Access Memory (RAM) provided a bottleneck in terms of the number of Virtual Machines

a Host can sustain. As the operating system in use, Windows 7, required a minimum of 512

MegaBytes (MB), the host could only sustain 4 machines at a time.

2. Hard-Drive Disk (HDD) provided a bottleneck in terms of both throughput and storage for the

hosts and also for the main analysis and storage machine.

In order to collect and analyze a set amount of samples in a short period of time, certain upgrades to

the analysis setup were necessary to compensate for the larger number. The hosts have been installed on

two Redundant Array of Independent Disks (RAID) 0 disks. The number of hosts has been increased to

ten and the number of Virtual Machines used on each host now varies from four to eight, summing up to

a total of 30 confined environments. The main analysis machine has also been introduced to three 750

GigaBytes (GB) RAID 0 disks for the database partition and three 2 TeraBytes (TB) RAID 0 disks for

the raw analysis data, providing faster access at the cost of redundancy.

As the number of components used in the system is fairly large, the following list provides the hardware

and software used based on decisions made in the Problem Isolation as well as decisions made in previous

project.

4.2. SYSTEM ARCHITECTURE 18



CHAPTER 4. DESIGN RATIONALE

• 10 machines in use.

– 9 hosts:

∗ Disks : Two Raid 0 HDDs.

∗ Operating System : Ubuntu LTS 12.04

∗ Virtual Environment : VirtualBox 4.3

∗ Two to eight guest Virtual Machines installed on each host.

– 1 server:

∗ Storage Disk : 4TB consisting of two 2TB Raid 0 HDDs.

∗ Database Disk : 2TB consisting of three 750GB Raid 0 HDDs.

∗ Operating System : Ubuntu LTS 14.04

∗ Database Management System : MongoDB v3.0.1

∗ Malware Analysis Tool : Modified Cuckoo Sandbox v1.2

∗ InetSIM:

· Iternet Emulation software.

· Custom configuration to respond with a default response based on requested protocol.

· DNS requests to microsoft.com return the correct IP.

· HTTP requests to ncsi.microsoft.com return correct response to make the OS believe

it is online.

• 30 guests:

– Operating System : Windows 7 Service Pack (SP) 1, Danish Version

– Disabled Firewall

– Disabled Microsoft Anti Virus

– Disabled UAC

– Pre-installed common programs from ninite.com

• Two Gigabit switches connecting the hosts with the server.

• 270,000 malware samples

– ≈ 190,000 new samples

– ≈ 80,000 reused malware samples from previous project, retrieved from virusshare.com

This section has presented an overview of the software in use along with the physical architecture of the

analysis setup. The following section will explain the Data Structure used, presenting the chosen Malware

Analysis Tool as well as the Database Management System.
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4.3 Data Structures

This section provides a short overview about the Analysis program used along with improvements made

to the data structure it provides.

4.3.1 Cuckoo Sandbox

Cuckoo Sandbox has been the open-source analysis program chosen in the last project as it has provided

the control interface for multiple VMs and the ability to legally customize its code to fulfill the scalability

needs. This project has continued using the software, updating it to version 1.2, containing improvements

in both performance and compression of data. After the update, the modifications done in last project

had to be reapplied, in order to control Virtual Machines over the network, by tunneling SSH commands.

Cuckoo Sandbox is responsible for injecting malicious software to a clean Virtual Environment and collect

its behavioral information, saving it for further use. After the analysis is finished, it is responsible for

restoring the infected machine to a previous clean state in order to be used for another infection with a

new sample. It has to be mentioned that, due to hardware space limitations, the malware is limited to

execute for at most 200 seconds after which it is killed and the analysis processes is terminated. However,

the execution time of each malware differs from a few seconds to more than three minutes. There are

three main reasons why the analysis process could terminate before schedule:

1. The sample detects that it is being monitored and it terminates to prevent analysis. A detailed

report on malware evasion techniques in Virtual Environments has been done by [Wueest, 2014]

where the results have shown that approximately 18% of malware detect the presence of a VM.

2. The injected malware might have a trigger-based behavior denoting that it will only execute if

certain conditions are met. Some malware may execute only at given dates or times, when the

infected machine is idle or if Internet connection is available, see [Brumley et al., 2008]. Other

examples are also related to human interaction where the malware will wait for mouse or keyboard

input before executing its intended actions, see [Wueest, 2014].

3. The executable in which the malcode is packed is not compatible with the OS installed on the guest

machine.

For the examples provided in items one and two of the above enumeration, an assumption is made in this

project that such malware will not execute more than 50 API calls resulting in a partial behavioral profile.

Example number three on the other hand represents a failed analysis where the malware was unable to

execute on the target machine due to incompatibility issues. Such a sample, with a failed analysis, is

always marked by Cuckoo with an error message implying that the analysis is incomplete and should

not be used for research. It should be noted that there exist a number of differences between the given

examples. As the first two would execute and create only a single process denoted by the executable and

at the same time have a small amount of API calls, the last example will create no processes and no

behavioral information will be available.

Next subsection will explain the modifications made to the output of Cuckoo in order to keep only relevant

information that will be used for this project to improve performance and reduce the analysis time.
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4.3.2 JSON Output

The output of Cuckoo is represented using one JavaScript Object Notation (JSON) file for each tested

malware sample. The JavaScript Object Notation represents a light-weight format that can contain nested

structures combining Strings, Integers, Booleans and single or multidimensional arrays. The values are

stored using name-value pairs that can contain universal data structures used by most programming lan-

guages, see [Crockford, 2013]. Cuckoo uses this format to output the behavioral data in a more structured

way that is at the same time easy to access and easy to understand. The output also contains static

analysis data, network traces, file information and Virus Total reports containing detection results for

approximately 57 AV vendors, [VirusTotal, 2015].

behavior
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arguments
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return
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summary
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target
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detected

result

Figure 4.2: JSON output of Cuckoo

Figure 4.2 presents a directory tree-like diagram that describes a sub-set of values present in the structure

of each JSON file provided by Cuckoo. As it is supposed to be unstructured, some information may or

may not be present. Furthermore, the structure is complex and contains multiple nested values. For

example in order to access the name and value arguments of an API call, four different lists need to be

opened for each API of each process of each sample. This provides a great loss in terms of performance

and time, as iterating through the database in previous project took approximately three hours. In order

to improve access times, the structure of the database has been rethought. Removing irrelevant infor-

mation like timestamps, various target information related to Cuckoo and information related to static

analysis, the structure has been reduced to the structure seen in Figure 4.3 (p. 22).
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Figure 4.3: End result of JSON modificaton

Detailing the diagram in Figure 4.3, the JSON files now contain the following information:

• Name object represents the file-name of the injected malware in the analysis system. It is mainly

used to keep track of the samples and extracted data. In some cases, the name also contains

information about the type or family of the malware. This information is now top-level and can be

accessed faster.

• The object process names contains a list of names denoting the created processes during the

analysis. These processes names are only related to the injected malware and are used to keep

track of the source of the API calls.

• The api object represents a list of API calls initiated by the malware. As timestamps and sequence

ids have been removed from the original objects, the calls are ordered in the correct sequence of

calling. It has to be mentioned that the number of items present in process names, denotes the

number of lists present in this object.

• status object represents a list of boolean values, true or false, keeping track of the status returns

of API calls. Each value in this object corresponds to the API call at the same position in the api

object.

• return codes object represents a list in close relation to the status object. If a True value is seen

as the status of a specific API, then the corresponding return code will be 0 represented by a 32bit

hex-decimal. If a False value is seen, the the return code will vary depending on the error. These

error codes can be converted to a human readable form using the Microsoft Developer page, see

[Microsoft, 2015a].

• The arg name and arg val objects are also correlated, sharing the same position in their list.

They provide passed information to a certain API, and represent the requests. From the value,

information like files, mutexes, DNS requests, registry keys can be extracted.

• The VirusTotal object contains detection results from 57 Anti-Virus programs along with their

appropriate labels. As compared with last project, where a limitation of Service API requests

prevented gathering label information for a good portion of samples, for this project, VirusTotal

has provided an unlimited academic API to fulfill the requirements of a large data-set.

Using this compressed JSON structure has allowed the project to advance at a faster rate, allowing

extraction of data in a matter of minutes instead of hours. Next subsection will shortly describe the

Database Management System that will store the JSON representations for fast retrieval.
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4.3.3 MongoDB

MongoDB has been the choice of DBMS for this project. As it can handle direct JSON inputs, it rep-

resents a fast solution for storing the behavioral information provided by Cuckoo. In comparison with

the previous project, the version has been updated to 3.0, containing improvements in both performance

and compression of data. MongoDB represents a unstructured query language database that is able to

save information in a binary format called Binary Script Object Notation (BSON), and perform complex

operations consisting of matches, projections, aggregations, etc [Chodorow and Dirolf, 2010].

This section has presented the Data Structures used in the project along with a short description of the

features that can be extracted using Cuckoo. The next section presents the malware samples that will

be injected to Cuckoo and stored in MongoDB for further analysis.

4.4 Malware Samples

This section will present a technical overview of the malware samples in use, types and families present

in the database and the changes introduced to the system to overcome the new challenges in choosing

the most appropriate labels.

The amount of samples used for Machine Learning can have a significant impact on the quality of the

results providing more diverse information that will eventually discriminate better between types or fami-

lies. In the previous project 80,000 samples have been used from which only approximately 40,000, spread

over 5 types, had enough information to be used in classification. The samples have been gathered from

ViruShare, and are available at [VirusShare, 2014].

In this project the amount of samples have increased considerably to approximately 270,000, combining

the data-set used in previous project with 190,000 new samples, accounting for as much as 36 types giving

the opportunity to cover a more broad spectrum of malware behaviors. The large number of samples

could be a possible solution to uniformly gather information from a set amount of samples thus resolving

the downside concluded in previous project and described in Section 2.1 (p. 5). The new samples have

been gathered from VX Heavens website before it was shut down. The database is still available at

[VXHeavens, 2010].

A temporary list of types has been extracted from the labels generated using a unified method of static

analysis that came with the samples in use. The labeling has been done by the creators of the malware

before submitting them to VX Heavens. The list of types and families, seen in Table 4.1 and Table 4.2,

will be used as reference, to select a subset of samples in order to avoid a bottleneck in computational

power. As this project represents a student thesis, computational performance is limited by the available

hardware.
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Type Samples Type Samples

Backdoor 51459 Trojan-Dropper 8193

Trojan 46143 Trojan-Banker 6986

Trojan-Downloader 44410 Worm 6152

Trojan-GameThief 29050 Email-Worm 3315

Virus 26941 Rootkit 3210

Trojan-PSW 16889 Trojan-Clicker 2844

Trojan-Spy 11748

Table 4.1: Number of samples for 13 most seen types in the sample set.

Family Samples Family Samples

Agent 32012 Banker 5816

OnLineGames 26329 Banload 5255

Hupingon 16472 Zlob 4695

Delf 10024 Obfuscated 4242

Small 8996 Buzus 4010

VB 8517 Autorun 3766

Magnia 7160

Table 4.2: Number of samples for 13 most seen families in the sample set.

4.4.1 Malware Types and Families

As mentioned in Section 2.2.3 (p. 10), there exists an inconsistency in the labels presented by AV programs.

A more detailed and technical explanation will be depicted, and a decision will be made on which labels

should be used in order to achieve the best predictive performance when using the data in an ML

algorithm. The following subsections will describe in detail the Completeness, Correctness, Consistency

and Coverage metrics used to evaluate the AV vendors.

Completeness

The completeness metric refers to the detection rate of each AV. As different methods use specific pa-

rameters to detect malicious code, differences between the number of infections detected vary from AV

to AV. To illustrate this difference, Figure 4.4 presents the number of detected samples for each AV. It

has to be mentioned that the scans have been performed using VirusTotal API on the date of analysis.

This information might change with time, as AV vendors update their signatures on a daily basis, thus

making it possible to detect more malware [Gashi et al., 2013].

From a malware sample set of approximately 270,000 samples, no AV has a detection rate of 95% or more.

Big AV vendors like Symantec and Microsoft fail to detect ≈ 80.000 samples , which reflects to 29% of

the total samples. With a large number of users that rely on the services provided by these vendors, a

detection rate of 71% will leave the users vulnerable to infection from undetected malware. This provides

an even stronger incentive to provide a system that can dynamically detect malicious software with a
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high detection rate.

Figure 4.4: Detection rate for tested AVs on the current sample set.

Correctness

The correctness metric describes samples that have been correctly labeled. As this project does not rely

on classification, the correctness of the labels is only useful to name the clusters after they have been

created and to evaluate the differences between information from labels and the information generated

using dynamic analysis. In comparison with the other metrics, this cannot be verified as it requires

extensive static analysis on each sample.

Consistency

The consistency metric describes the similarities in labeling between multiple different AV vendors. As

with the completeness metric, consistency is mostly defined by the methods used when analyzing the

malicious code. To illustrate the differences in labeling, Table 4.3 presents different labels generated by

AV vendors on the same sample. To fully understand the extent of the problem, the sample chosen has

been detected by 90 % of all AV vendors.

By analyzing Table 4.3, it can be concluded that an automated method of extracting labels of each AV

vendor represents a very time consuming task as they mostly use custom naming conventions. Some

of the AV vendors, for example Microsoft, follow the CARO naming convention. This naming scheme

provides easy access to the information provided by the label, using consistent naming for malware types,

families and versions. The CARO scheme is represented by the syntax seen in Code snippet 4.1.
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AV Label

MicroWorld-eScan Adware.Generic.299810

BitDefender Adware.Generic.299810

McAfee Generic.dx!F4AB65EB9C32

Zillya Dropper.Agent.Win32.116628

K7GW Trojan ( 0001140e1 )

Symantec Trojan.Zlob

TotalDefense Win32/Runbot.A

Avast Win32:Oliga [Trj]

Kaspersky Trojan-Dropper.Win32.Agent.bhbp

Microsoft Trojan:Win32/Adept.B

Ad-Aware Adware.Generic.299810

Comodo TrojWare.Win32.TrojanDropper.Agent.527360

VIPRE Trojan.Crypt.Zcrypt (v)

AntiVir TR/Drop.Agent.52736

McAfee-GW-Edition Heuristic.LooksLike.Win32.Suspicious.C

Kingsoft Win32.Hack.Unknown.(kcloud)

SUPERAntiSpyware Trojan.Agent/Gen

GData Adware.Generic.299810

Panda Generic Trojan

ESET-NOD32 Win32/Agent.NOU

Fortinet PossibleThreat

Table 4.3: Example of inconsistency in AV labeling on the same sample.

Code snippet 4.1: CARO Naming Convention

1 <malware_type >://<platform >/<family_name >.<group_name >

where,

• malware type represents the type of the malicious software as presented in Section 2.2.2 (p. 8).

• platform represents the targeted machine platform. This could be DOS, Win32, Win64 etc.

• family name represents the family of the malicious software as presented in Section 2.2.2 (p. 9).

If all AV vendors would use such a naming convention, then performance analysis between different ven-

dors can easily be performed. However, such convention is not used and therefore a different approach

must be found in order to extract types from multiple AV vendors for further analysis.

With that being said, the main focus is shifted to manipulating the full label provided by each AV.

There exist a significant number of algorithms that are able to determine the consistency between words,

being able to find patterns and similarities using complex and time consuming calculations between each

character and their position in the word. Some of the most common algorithms are:
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1. Hamming Distance - calculates the number of substitutions required in order to convert a word

to another word. Hamming algorithm requires the two words to have the same length and the

consistency between the words varies from one, representing the maximum value thus maximum

similarity, to zero representing no similarity, see [Hamming, 1950].

2. Levenshtein Distance - calculates the number of substitutions needed to convert one word to another

with no limitation to its length. This algorithm represents a faster approach trading off accuracy

for performance, see [Hirschberg, 1997].

3. Ratcliff and Obershelp Algorithm - a more accurate algorithm of calculating the consistency with

a trade off in terms of complexity and run-time, see [Ratcliff and Metzener, 1988].

The presented algorithms have been tested on the labels provided by the sample set of 270,000 malware,

in terms of complexity, computational speed and their ability of computing string similarity with different

lengths. Complexity is defined by how many actions are required to reach the final result and is directly

correlated with the Computational Speed. The results after testing the three algorithms can bee seen in

Table 4.4. It has to be mentioned that the Compuational Speed is based on the number of samples used

for this project and the values may change if a different sample-set is used.

Properties Hamming Distance Levenshtein Ratcliff

Complexity O(n) O(n ∗m) O(n2)

Computational Speed N/A 30m over 10h

Adaptive Length 7 X X

Table 4.4: String similarity methods.

It can be denoted that the choice is mainly dependent on the run-time and defined by the number of

labels used for comparison. The Levenshtein distance algorithm has a complexity of O(n ∗m) defined

by the length of the two strings, while the Ratcliff algorithm has a complexity of O(n2). The differences

between the two methods can be directly denote in the run-time, where the difference is significant. While

Hamming Distance has a linear complexity, it cannot be used to calculate the similarities as it requires

strings of the same length. With that being said, Levenshtein distance has been chosen to perform simi-

larity measures between labels.

By looking at Table 4.3, it can be seen that some labels contain parts that have meaning only to the

party that has created the labels. This information can be considered irrelevant and does not need to be

taken into consideration when calculating the consistency. Thus, the labels are split into tokens taking

as delimiter non alphanumeric characters like dots, commas, lines or semicolons. Each token is then

compared with other tokens from labels of the same sample, adding the label to a counting vote if it

matches with a certain probability. This ensures that every AV is assigned the same weight in the vote.

In the end the label with the most votes is selected to be the majority vote for the sample.
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Coverage

This metric describes, based on the above presented metrics, how many AV vendors are required to max-

imize Completeness, Correctness and Consistency in order to provide the most accurate detection rate

and labels. The coverage and the decision imposed by this metric can yield different results depending

on the sample set in use.

Following the four metrics used to analyze the performance of AV programs a temporary solution is

necessary in order to efficiently and correctly evaluate malware types or families. Note the emphasis put

on temporary, as this will provide a solution for this project and not a general solution that can be

used by AV programs. Fulfilling the requirements of the analysis metrics, as concluded in the cited paper

[Mohaisen and Alrawi, 2014], the AV companies need to share analysis data and use a unified method of

labeling that best describes every malicious sample detected.

In order to provide a temporary solution based on the four presented metrics, it has been decided that

the clusters resulting from the ML algorithm selected in this project, will be named by running a major-

ity vote between AV vendors using a tokenized Levanshtein distance algorithm. Furthermore, Microsoft

labels will also be used for evaluation as the AV uses an easy to parse naming convention and at the same

time it has the lowest False Positive rate in comparison with other vendors, see [AV-TEST, 2015].

This section has presented a technical overview of malware samples in use and the changes introduced

to the system to overcome the new challenges in choosing the best labels. Next section will present,

in detail, the parameters that can be extracted from Cuckoo providing information of the relevancy to

malicious actions.

4.5 Features

This section includes detailed information about the features extracted from the analysis system. Defin-

ing common meaning to the information provided by Cuckoo from the collection of behavioral data, a

decision will be made on which features will construct a better behavioral profile for each malware based

on their meaning.

Cuckoo produces several metrics which provide different information in both meaning (purpose) and

level of detail. Features are extracted from MongoDB after it has been populated with the behavioral

information using the JSON format presented in Section 4.3.2 (p. 21). The behavioral JSON object con-

tains information of the created processes with the corresponding API calls and a summary of uniquely

accessed/created/modified files, mutexes and registry keys. More data can be extracted from the net-

work traces which includes Domain Name Service (DNS), HyperText Transfer Protocol (HTTP), IRC, etc.

Next subsections describe each feature to determine their use in defining the malware behavior profile.
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4.5.1 API

Microsoft Operating System (OS) provides several ways to interact with the system in order to make

interaction and exchanging information a simple task for programs and applications. Even though this

makes the task of connecting and using features of the OS easy, it also provides easy access hackers to

do so as well by using malicious software to take control or gain sensitive information from the infected

machine. The API calls are split in multiple categories, see [Wikipedia, 2015c] and [Microsoft, 2006]:

1. Base Services - interaction capabilities with devices, file system, processes and threads.

2. Advanced Service - interaction and access to Registry, Services, and user accounts.

3. Common Control Library - provides advanced control and interaction capabilities for status bars,

progress bars and tabs.

4. User Interface - capability of creating and interacting with windows, buttons and scroll-bars.

5. Network Services - access to creating/modifying and controlling network aspects of the machine.

As the number of malware has increased with the number of Internet connected users, Microsoft has

introduced in its latest versions of Windows OS a technology called User Account Control (UAC). This

improvement required the Administrator of the machine to approve the run-time of an untrusted software

before the OS gives it access to the most sensitive API calls, see [Microsoft, 2015b].

Even though, when introduced, UAC has prevented a large number of malware to execute and spread,

this technique requires human interaction. This means that every single user must have knowledge about

the usage of UAC in order to prevent infections. A study has shown that approximately 59 % of Windows

users will disable their UAC functionality while, out of the ones who don’t, 21 % have answered wrong in

the UAC prompt thus allowing infection, see [Motiee et al., 2010]. Setting the human factor aside, zero-

day malware are able to bypass the the UAC prevention technique. This makes it more and more relevant

to detect and prevent malicious code from running on users Personal Computer (PC) by running the code

in a confined environment and decide, based on the actions it does, how can it affect the infected machine.

As APIs define the interaction between software and OS, each call must provide additional information

about the task it wants to do. This information is passed to the OS via arguments. If, for example, the

software does not have enough privileges to run a certain command or task, the API call will fail and

will provide the software with a coded response explaining the failed call. In previous project, the API

calls have been extracted if they were executed, neglecting the succeeded or failed status returned by the

Operating System. Going a level of detail deeper into the problem, in this project, the status of the API

call along with the return code provided by the Operating System if the call has failed, will be collected

and analyzed carefully. By using the full list of error codes provided by Microsoft, a correlation between

a failed API call and the reason of failure will be extracted to possibly construct the behavior profile of

the malicious software.

The complete list of the 157 seen API calls during the collection of behavioral data can be found in

Appendix C (p. 115). Furthermore the list of seen API calls has been split into two main categories:

Passed, see Appendix D (p. 116) and Failed, see Appendix E (p. 117). The 137 Return Codes related to
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the Failed API calls can be found in Appendix F (p. 118). It has to be noted that the Return Code of

all Passed APIs is denoted by a hexidecimal value of 0x00000000 which has not been added to the list

as it would have interfered with the same return code of a Failed API call, denoting a delay imposed by

the OS.

4.5.2 Files

Information extracted from Cuckoo related to files accessed/created/modified can be of a great impor-

tance to detect and determine the type of the malicious software.

The file extensions or headers, even though customizable, can provide crucial information about the

purpose of created or dropped files. A strong relation between the file parameters and API calls exists

when library files or Dynamic Link Library (DLL) are imported. These files denote the API calls to

which the program that imported them has access to. Similar functionality is also provided by other

file extensions like Object Linking and Embedding Control Extension (OCX) and Driver (DRV) files.

These file extensions are packed like DLL files however they contain functions for User Interface (UI) and

respectively hardware drivers that can be used by the importing software, see [Wikipedia, 2008].

However taking into consideration that the number of possibilities in naming a file is very large, this

parameter will most probably not be considered to be part of any features representation regarding type

or family clustering. This might be used, as in previous project, as a counter to determine the number

of files that have been accessed/created or modified on a per sample basis.

4.5.3 Mutexes

The term Mutual Exclusive (Mutex) object is used as a locking mechanism to share access of system

resources, just like a semaphore object. Usually used by legitimate software to control which thread or

process accesses the information, it can also be used by malicious software to prevent infection of an

already infected system with the same malicious code, see [Wikipedia, 2005a].

For detection and analysis purposes, mutexes can be seen as traces of installed and running software,

either clean or malicious. Detection can easily be done based on the naming of the mutexes. The name

represents the connection to a specific process thus identification can be done by searching for random

and unusual mutant names that represent a high probability of infection. Crucial information can be

extracted from mutexes, referred to information accessed by the infected process and is closely related to

family detection.

4.5.4 Registry Keys

Registry keys represents the Windows database containing kernel, devices, services, user interface and

third party options. Information like System Identification (ID) or third party serial numbers can be

extracted via exploits used by malware. Thus, this feature can be characterized as very sensitive data,

see [Wikipedia, 2005b]. The format of the registry key is defined as a key-value pair, just like the
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JSON format. Different keys have different meanings and can contain other key-value pairs inside. The

full list of connotations regarding Registry keys can be found on the Microsoft Developer page, see

[Microsoft, 2008d].

A link can be made between the type of the malicious program and the information it accesses or modifies

from the registry keys. For example, Ransomware, will modify the registry keys of Microsoft OS user

interface to prevent the user from controlling the machine if he does not pay a set amount of money.

On the other hand, malware families, can be depicted from the semantics of the registry keys it crates.

This means that same families will most probably use same wording or a random sequence of letters of a

certain length. This can be detected by Machine Learning algorithms by possibly creating features based

on the length of the keys stored.

4.5.5 Internet Traffic

Internet traffic, from a multitude of protocols, can provide malware with ways of controlling the infected

machine or was of sending sensitive information to a bad-intended third party.

HTTP protocol is most commonly used by Adware to provide information collected from Registry keys

and Cookie type of files. This way it provides information about interests and recently searched terms

used to obtain ads that the user of the PC would be interested in. On the other hand, IRC protocol, can

be used to provide control of the infected PC to its bot master. Infected machines can then be used as

zombies to maybe contribute to a DDoS.

By analyzing the activity of Internet traffic from different kind of protocols it would be possible to

determine the type of malware. On the other hand, families can be distinguished from DNS requests,

from similarities in the location of the domain registrar or from the country origin of the IP addresses

linked with the requested domains. As mentioned before, this represents a more semantic approach that

would probably point to the same source code and inevitability to the same family. Cuckoo provides an

overview of the DNS requests made by the malware along with the appropriate IP addresses which is

done separately from the server.

4.5.6 Choice of Features

This subsection will provide a short conclusion on how the presented Features can contribute at defining

the malware type or family.

Overall API Calls, Files, Mutexes and Registry keys provide crucial information to help detect and de-

termine the type of the malicious software. This information can be used through out the project to

construct features to be used in an unsupervised ML algorithm.

On the other hand Files, Mutexes, Registry keys and DNS requests along with the corresponding IP

responses provide crucial information in determining the family of the malware using a semantic ap-

proach. The features created can be used in an unsupervised ML algorithm to construct and determine
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the clusters representing different malware families.

The next section will provide methods for extracting the selected features in order to guarantee the

quality of the extracted data.

4.6 Feature Extraction

This section provides an insight about different extraction methods, and the challenges they impose, of

features presented in Section 4.5 (p. 28). By the end of the section a decision will be made that will

define the set of features to be used in Machine Learning.

Previous work has relied on creating a white list by running a clean or benign file through the analysis

setup and record actions of the Operating System. This implied removing any traces of files, mutexes,

registry keys or DNS requests from the malware behavioral data that was also seen during the execution

of a clean file. As the idea sounded promising and it yielded a large decrease in the number of files, it has

been used for previous project. The idea behind Feature Extraction will now follow and trace API calls

of each process generated by the malicious software and will ignore any information given by the Virtual

Machine that it has been ran on.

There are two main methods of extracting the behavioral data for the injected malware:

1. Snapshot Comparison - this method relies on changes recorded by the Virtual Machine from the

moment it has been restored, and the malware samples injected, until the analysis has finished.

This implies that files, registry keys that have been modified in any way by any service or process

running on the system will be recorded. Such a method presents a lot of noise as the malicious

actions are mixed with the clean system actions making it hard to accurately analyze the behavior of

the intended malware. Noise can be reduced by running a clean analysis and removing any actions

that are common to both the clean and infected system. The clean analysis refers to running the

Virtual Machine without injecting any malware and collecting the actions of the Operating System.

This information is provided by Cuckoo under the dropped and static objects.

2. API Traces - this method relies on API calls recorded during the malware execution. API traces

cannot be recorded over the whole system, instead it requires a target Process ID (PID) from which

it will record the actions. If the target PID forks or creates a new process, the tracer will record

its API calls as well. At a first glance, this method provides better information, with less noise, in

comparison with the previous method as it can extended to child processes that the main process

creates.

In order to chose the best method of extracting and filtering data, some comparative properties are taken

into consideration like, Complexity, Computation speed and Quality of data.

4.6. FEATURE EXTRACTION 32



CHAPTER 4. DESIGN RATIONALE

Complexity

Complexity refers to the amount of information required to use one of the methods. Snapshot comparison

requires no external information and can be achieved only by comparing the behavioral information

between the infected and clean state of the Virtual Machine. Filtering can be done by simply creating

a regular expression or by iterating through all values in order to remove or keep certain behavioral

information. On the other hand, analyzing the API traces requires previous knowledge of each API

action, thus resulting in a more complex action to achieve. The complexity of using API traces increases

even more with time, as Operating Systems introduce newer API calls with newer versions.

Computational speed

Computational speed refers to the approximate amount of time, or actions, required for the method

to achieve the Feature Extraction. Both methods rely on lists that need to be compared with the

malicious behavioral and require approximately the same amount of iterations to perform extraction.

The computational speed is fairly important in malware analysis as the system aims to analyze a large

amount of samples in a short period of time. Increasing the amount of iterations will drastically increase

the extraction time for large amount of malware samples.

Quality of data

Quality of data refers to the correctness of the collected data. Quality of the data is assumed to be high

where noisy information is not present and it is assumed to be low otherwise. The Snapshot comparison

method cannot guarantee the quality of data as certain system operations are running at a certain interval

or time. This means that noisy information is bound to be present in this method of Feature Extraction.

On the other hand, information extracted using API traces relies on carefully extracting files, mutexes,

registry keys from the parameters and arguments of the appropriate API call. As the API traces are

available for the malicious process itself and its childs, the information collected is guaranteed to not have

any noise from the Operating System actions.

Requirements Snapshot Comparison API Traces

Complexity X 7

Computational Speed X X

Quality of data 7 X

Table 4.5: Filtering methods comparison

Table 4.5 presents the pros and cons of the extraction methods, shown in a more compact and under-

standable way. The API trace method provides an increase in Quality of data without increasing the

Computation Speed but at the cost of Complexity. This provides an incentive to use this method instead

of the previously used method with white-listing.
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4.6.1 Extracting Files

Filtering files from API traces requires knowledge about API calls that provide developers means of

accessing files on the machine. The full list of API calls that meet this requirement can be found on

Microsoft Developer website, under File Management Functions, see [Microsoft, 2008a].

As explained in the API section of the report, each call requires at least one input argument to provide

information like location, name and privileges. These arguments can be extracted from the API call,

allowing the collection of files that have been accessed, created, modified or deleted. Running filtering

based on the information presented has yielded the following results, as seen in Figure 4.5. The API

calls OpenFile, OpenFileEx, CreateFile, CopyFileEx have been explicitly used in combination with the

FileName argument to extract the name of the files. The name of the files can be found on the x axis,

while on the y axis the occurrence of that particular file is presented over all samples. Denoted with red

are the occurrences of files filtered with API traces, while with green are represented the occurrences of

files filtered with Snapshot Comparison.

Figure 4.5: Bar chart of 20 most seen files using both methods.

4.6.2 Extracting Mutexes

Filtering mutexes requires information about the API calls that allow management of mutants. The full

list of such API calls can be found on the Microsoft Developer website, see [Microsoft, 2008b]

As with the files, the API call for creating and controlling a mutant require input arguments from which

the name can be extracted. Running filtering based on the information presented yielded the following

results, as seen in Figure 4.6. The API calls OpenMutex, CreateMutex and CreateMutexEx have been
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explicitly used in combination with the Name argument to extract the name of the mutex. The name of

the mutex can be found on the x axis, while the y axis holds the occurrences of a particular mutex over

all samples. To denote the differences between the two filtering methods, green represents the Snapshot

comparison while red represents filtering using API traces. It can be noticed the number of mutants

extracted using Snapshot Comparison is equal to zero. As Mutexes represent objects and not ”physical”

files or database entries, they cannot be extracted by comparing two states of the Machine. Such task

can be done by performing a memory dump of the system after the malware has finished executing. Due

to the limited HDD space available for this project it has been decided to not enable the memory dump

feature available with the Virtual Environment software in use.

Figure 4.6: Barchart of 20 most seen mutexes using both methods.

4.6.3 Extracting Registry

Extracting Registry keys represents a more complex task than Files and Mutexes. Registry keys are

usually divided in different sections, thus different arguments must be extracted from two different API

calls to form the full path of a Registry key. The full list of API calls related to Registry Functions can

be found on the Microsoft Developer page, see [Microsoft, 2008c]. The first step is to look for API calls

that define the start location of the Registry, and it can have the following values:

1. RegOpenUserClassesRoot - Retrieves a handle for HKEY CLASSES ROOT key for a specified

user on the machine.

2. RegOpenCurrentUser - Retrieves a handle for HKEY CURRENT USER key for the current

user.

3. RegLoadKey - Retrieves a subkey from either HKEY USERS or HKEY LOCAL MACHINE.
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By combining the information extracted from the above API with the argument represented by SubKey,

the full path of the registry key can be determined. In Figure 4.7, the x axis contains the registry key

paths while the y axis contains the occurrences over all samples.

Figure 4.7: Barchart of 20 most seen registry keys using both methods.

Table 4.6 presents in the form of a table, the total number of distinct files, mutexes and Registry keys

collected and filtered. It can be denoted that the number of distinct files is larger than using Snapshot

Comparison. This can be explained by the fact that the API traces also include failed attempts. Overall

the larger number of files suggests that collecting this feature using API traces will include information

that was attempted but not recorded on the system. Mutexes, as described in previous sections, repre-

sents objects that control the sharing of access for processes. Compared with Files and Mutexes they do

not represent physical objects that can be denoted from comparing two states of the Virtual Machine.

The number of Registry keys has considerably been lowered by approximately 76%.

Properties Snapshot Comparison API Traces

Files 1,682,715 1,754,176

Mutexes - 31,398

Registry 351,658 79,882

Table 4.6: Table of distinct features seen using both methods.

Due to the high amount of distinct values present in all of the collected features, it has been decided that

only API calls will be used as features. The number of distinct API calls represents a finite number of

possibilities and contain fair amount of information which also include the actions done with the presented

features from Files, Mutexes and Registry Keys. Next section will describe the feature representation of
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the API calls that will be used in unsupervised Machine Learning.

4.7 Feature Representation

This section covers the representations of the extracted features in Section 4.6 (p. 32) in order to be

used for Unsupervised Learning. As the number of API representations described by successful, failed

and their corresponding return codes, is relatively large, the data must be presented in a compact form

without losing any potential discrimination between types.

The best solution, as used in previous project, would be to present the collected features in the form of a

Binary or Frequency matrix, where information is denoted by numerical values. The next subsections will

describe, in detail, how the matrices are created, and how they correlate with the collected behavioral

data.

4.7.1 Binary Representation

The binary representation technique attempts to describe a certain feature by a simple 0 and 1 value.

This provides limited but important information about each sample, giving an insight about its actions.

Furthermore, as discussed in previous chapters, Successful and Failed API calls will be used, for each

sample, to attempt a correct clustering of malware types. In order to describe the built Binary matrix

representation for the API features, Equation 4.1 is presented as an example.

APIbin =



API1 API2 ··· APIn

S1 1 1 · · · 0

S2 1 1 · · · 1
...

...
...

. . .
...

Sm 1 0 · · · 1

 [·] (4.1)

Figure 4.8: Binary Representation of API calls.

For each sample, a Binary representation is shown, describing if a certain API has been called or not

during the analysis. The API calls are described on the horizontal axis and the number of samples are

listed on the vertical axis. Rows with all values equal to 0 are not present as they represent samples that

had no API calls. Such samples were not taken into consideration as it denotes that the injected program

had performed no actions on the machine, as described in Section 4.3 (p. 20).

4.7.2 Frequency Representation

The frequency representation technique aims at providing a more detailed description about the chosen

features. In comparison with the Binary representation it is also counting the number of occurrences of

each API call. If a feature is not seen, then the number remains set to 0, otherwise it increments by one
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ending up with the total number of calls. To illustrate the foundation of this representation, Equation 4.2

is presented as an example.

APIfreq =



API1 API2 ··· APIn

S1 677 43 · · · 0

S2 4 8785 · · · 51
...

...
...

. . .
...

Sm 414 27 · · · 7397

 [·] (4.2)

Figure 4.9: Frequency Representation of API calls.

The values on the horizontal axis represent the number of occurrences for each API, while the values

on the vertical axis represent each sample used. The Frequency matrix will be used, in this project, for

representing the number of occurrences of Successful and Failed API calls, along with the corresponding

error codes.

4.7.3 Sequence Representation

The sequence representation will take into account the order in which the APIs are called. Compared to

previous project, current representation will include the whole spectrum of seen APIs by only allowing

distinct values to be part of the representation. To improve performance of algorithms running this

representation, the API values have been converted to numeric values. For example API OpenKeyEx is

present in the full list of APIs at a certain index. The value of the index will be used to represent the API

instead of the actual value. Equation 4.3 illustrates the contents of the representation described above:

APIfreq =



SEQ1 SEQ2 ··· SEQ157

S1 22 52 · · · 21

S2 24 84 · · · −1
...

...
...

. . .
...

Sm 1 3 · · · 122

 [·] (4.3)

Figure 4.10: Sequence Representation of API calls.

As previous representations, the vertical axis represents the samples while the horizontal axis represented,

in this case, the sequence number limited to the total count of distinct APIs seen in the current database.

If samples do not utilize all 157 API calls then the remaining sequence columns that have not been filled

will contain a value of -1 . This value has been chosen such that it will not interfere with any programming

languages that will be used in future sections.

However, as it is believed that the Sequence of events performed by the malicious software depends

mainly on the implementation of the malware and it can better describe families rather than types. This
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representation will not be included if the evaluation of the clustering algorithm will be done on types.

4.7.4 Combining Representations

In order to use all of the presented feature representations, a combined representation is introduced where

all of previous features are concatenated to a single matrix. This is simply done by merging the values of

each representation to the corresponding samples. Equation 4.4 describes how the Combination matrix

is represented.

Combination =



Passed1 ··· Passed157 Failed1 ··· Failed157 RC1 ··· RC137

S1 22 · · · 3 21 · · · 2664 35 · · · 533

S2 52 · · · 21 224 · · · 123 45 · · · 346
...

...
. . .

...
...

. . .
...

...
. . .

...

Sm 52 · · · 21 224 · · · 123 45 · · · 346

 [·] (4.4)

Figure 4.11: Frequency combination of API calls and Return Codes.

In order to better understand the contents of the combined matrix seen in Equation 4.4, it is split in

three parts where each row represents the representation of a single malware sample.

1. Columns 1 to 157 represent the Frequency of the 157 Passed API calls.

2. Columns 158 to 315 represent the Frequency of the 157 Failed API calls.

3. Columns 316 to 453 represent the Frequency of the 137 Return Codes.

As the number of features in the combination representation is fairly large, feature selection needs to

applied to reduce the number of dimensions. This is done by removing the non-relevant features or

combining the relevant ones using various methods which will be presented in the following section.

39 4.7. FEATURE REPRESENTATION



CHAPTER 4. DESIGN RATIONALE

INTENTIONALLY LEFT BLANK

4.7. FEATURE REPRESENTATION 40



Chapter 5
Clustering & Evaluation

This chapter will include decisions made with regard to Machine Learning algorithms in order to chose

the best suitable methods that should correctly cluster malware behavior and evaluate its results. The

chapter has been split in four main sections:

• Feature Selection in Section 5.1.

• Number of Clusters in Section 5.2 (p. 45).

• Unsupervised Machine Learning in Section 5.4 (p. 51).

• Evaluation Techniques in Section 5.5 (p. 56).

5.1 Feature Selection

This section will provide information about selecting the correct features with respect to their statistical

and mathematical importance. The selection will be made from a list of algorithms available in WEKA,

by assessing them in terms of performance and capabilities given the data set used for this project.

Feature selection represents the extraction process of a subset from the original feature list, that can better

discriminate the data. This implies that the irrelevant and redundant features will be prone to removal

as they hold no relevant information that can improve the models predictive performance. The benefits

of using a Feature Selection algorithm before constructing the predictive model are, [Wikipedia, 2015b]:

• improved clustering/training duration.

• improved discrimination.

• increased understanding of data.

Feature selection algorithms are combining techniques of searching for the appropriate feature subset with

evaluation techniques that have the goal of assigning scores or rankings to the selection as illustrated in

Figure 5.1, see [Guyon and Elisseeff, 2003].

Selection of features in Unsupervised Learning represents an important problem due to absence of labels

as pointed out in [Roth and Lange, 2003]. In order to more precisely select a subset of features, the use

of labels, extracted by the Majority Vote between AV vendors in Section 4.4.1 (p. 25) and Microsoft

labels, will be able to provide the best solution for better discriminating between malware types or

families and thus will be used as comparison. Nevertheless, both supervised and unsupervised feature

selection methods will be taken into consideration in the following subsections, after which the best suited

algorithm will be chosen.
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Figure 5.1: Ranking example for selecting features based on threshold(yellow line).

5.1.1 Principal Component Analysis

Principal Component Analysis (PCA) has the main purpose of reducing the dimensionality of the data

by combining features and creating new features called principal components based on variance or co-

variance, see [Abdi and Williams, 2010]. As it keeps the subset of features that are accountable for the

highest variance it can also be used as feature selection. This method is closely related to the one used in

the previous project where features with the highest normalized data were kept while the other ones were

discarded. PCA simply uses linear algebra to compute and determine the components with the highest

variance, see [Jolliffe, 2002]. The steps below are followed:

1. The whole d-dimension data-set is taken. If classes exist, they are ignored.

2. Compute the mean of each column representing the features.

3. Compute the co-variance matrix of the data set.

4. Determine the eighenvectors and corresponding eigenvalues using the means and co-variance matrix.

5. Decreasingly sort the eighenvectors by their eigenvalues.

6. Select the n largest eighenvectors representing the principal components.

An evaluation method can be used as a last step to provide scores to the sorted features. As the score

will most probably be a value between 0 and 1, the selection can be made using a defined threshold. To

summarize, PCA is able to find relevant structures from the original feature set, and discard features

that don’t have a great impact on a future decision.

5.1.2 Information Gain Selection

The Information Gain Selection evaluates and selects the appropriate features by measuring their informa-

tion gain with respect to the class of each sample. Mostly used for building decision trees, it investigates
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possible solutions that reach a certain state as fast as possible. These states are denoted as classes thus

the use of labels is required in order for this method to work.

The Information Gain is closely related to Entropy. Entropy measure reflects the uncertainty within a

data set X using the following formula, see [Kent, 1983]:

H(X) = −
∑
s∈S

p(s) ∗ log2 (p(s)) (5.1)

where

• X represents the data set.

• S represents the classes.

• p(s)represents the marginal probability density function for the random variable S.

A value of 0 represent no uncertainty in the data which is relevant in the case of using only one class.

Information gain can then be calculated by subtracting the uncertainty on a split done for a certain

feature from the uncertainty seen over all samples and features. The following equation describes how

information gain is calculated for each feature:

IG(A,S) = H(S)−
∑
t∈T

H(S|t) (5.2)

where,

• IG(A,S) represents the information gain by using feature A.

• H(S given t) represents the uncertainty or entropy for feature t using class S.

• H(S) represents the uncertainty for the class S.

After calculating the information gain for all features, a ranking system can then be generated based

on the values in order to describe the most relevant features. Values close to 1 refer to features which

always have an impact when classifying the data while a value of 0 represents no impact. Based on the

information provided it can be concluded that classes have a great role in selecting the best features

which makes the Information Gain unusable for unsupervised learning and clustering where classes are

not available.

In order to compare the presented methods, Table 5.1 and Table 5.2 present the results in terms of number

of features selected. Informational Gain has been tested on all three representations with majority vote

classes, Microsoft classes and top five Microsoft classes. Furthermore, a 10-fold has also been applied to

retrieve a more accurate feature selection. PCA on the other hand, has been tested on all representations

with respect to variance and co-variance. All features have been selected using the Ranker algorithm

with a threshold of zero representing no information gain. The sample set or classes column defines the

subset of samples on which the feature selection has been applied and it is defined as follows:

• Majority classes refers to the labels generated via majority vote from multiple AV vendors as

described in Section 4.4.1 (p. 25).
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• Microsoft classes refers to the labels extracted from Microsoft as described in Section 4.4.1 (p. 28).

• Microsoft 5 types refers to the five most seen types in the sample set according to Microsoft AV.

This represents a subset of the full samples only containing the selected five classes.

• Full samples set refers to complete analysis sample set. Also can be described as the super set of

the analysis.

• 5 types, coincides with the Microsoft 5 types representing the subset containing the top five detected

labels by Microsoft AV. The main difference between these sets is denoted by the absence of classes,

being only used in PCA.

Method Feature Set Classes Starting Features Resulting Features

Information Gain

Failed API

Majority 157 104

Microsoft 157 99

Microsoft 5 types 157 104

Passed API

Majority 157 140

Microsoft 157 138

Microsoft 5 types 157 143

Return Codes

Majority 137 67

Microsoft 137 67

Microsoft 5 types 137 84

Table 5.1: Information Gain : Feature Selection comparison

Method Feature Set Sample Set Starting Features Resulting Features

Variance PCA

Failed API
Full 157 117

5 Types 157 115

Passed API
Full 157 115

5 Types 157 116

Return Codes
Full 137 115

5 Types 137 114

Co-variance PCA

Failed API
Full 157 12

5 Types 157 12

Passed API
Full 157 18

5 Types 157 17

Return Codes
Full 137 3

5 Types 137 3

Table 5.2: Principal Component Analysis : Feature Selection comparison

A significant increase in the number of features selected can be denoted in the variance PCA method

in comparison with the Information Gain. This denotes that a large number of features, have values

that vary over each sample making it possible to discriminate between groups. As described in Sec-

tion 4.7 (p. 37), the selected features from all three Feature Representations will be combined to form a
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Combination matrix that will be used in both finding the number of clusters and unsupervised learning.

A decision has been made to make use of the co-variance PCA selected features as it represents the

lowest number of features that can describe the data-set. It is assumed that the information within is

enough to discriminate between types as they will contain both variance and co-variance information

with respect to other samples or features from the same sample. It has to be mentioned that the features

are now represented by the Principal Components that do not hold the frequency but instead they hold

relationships between the frequency of features.

This section has described supervised and unsupervised methods of selecting features, where a decision

has been made to use co-variance PCA. The following section will provide multiple approaches on how

to select the number of clusters given the Combination representation denoted in this section.

5.2 Number of Clusters

This section will presented different methods of finding the appropriate number of clusters to be used in

an unsupervised Machine Learning algorithm. The resulting number of features can be used in algorithms

that require such an input or as an evaluation metric for algorithms that automatically find the number

of clusters.

The decision of the number of clusters to be used on a data-set is the most frequent problem in clustering.

This problem is also referred as finding k, corresponding to algorithms like k-means. The simplest ap-

proach for applying unsupervised machine learning is to use algorithms that do not require a set number

of clusters. Such examples are Density-Based Spatial Clustering of Applications with Noise (DBSCAN),

Ordering points to identify the clustering structure (OPTICS) or Expectation-Maximization (EM) al-

gorithms. However, this section aims at finding methods that can define the number of cluster before

applying ML on the selected features in order to evaluate the selection made on the malware data-set.

There are multiple methods that try to find the best amount of clusters required by the data-set, however

only two have been chosen for review as they provide good performance for large number of samples.

Other methods, like the Silhouette measure, have been also tested but due to the large data-set in use

for this project they have not been used.

1. Elbow Method.

2. Gap Statistics.

Following subsections will describe the cluster selection methods and evaluate them based on ease of

implementation in order to be used in a clustering algorithm.

5.2.1 Elbow Method

The Elbow method represents one of the simplest ways of trying to achieve the best number of clusters by

examining the variance as a function of the number of clusters. As many other methods, it requires the

use of a clustering algorithm, like k-means, to perform clustering and return the amount of variance each
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cluster produces. It is expected that after the correct number of clusters reaches the marginal gain, the

percentage will decrease or will increase at a much smaller rate than with less clusters [Thorndike, 1953].

In order to calculate the variance, Euclidean Distance is used to determine the distance between two

points. The resulting calculation will represent a 2-dimensional vector containing information about

inter and intra cluster similarities. In other words, will contain information about a point and the sim-

ilarities with points inside the same cluster along with similarities with points belonging to different

clusters. In Equation 5.3 the formula for calculating the intra cluster similarity for all points can be

depicted.

Dk =
∑

xi∈Ck

∑
xj∈Ck

||xi − xj ||2 =
∑

xi∈Ck

∑
xj∈Ck

((xj − µ)− (xi − µ))2 = 2n
∑

xi∈Ck

(xi − µ)2 (5.3)

where,

• Ck represents the cluster k.

• x represents some point in cluster Ck.

• Dk intra cluster sum of cluster k.

• n denotes the number of samples in cluster k.

Equation 5.3 has determined that the intra cluster difference between points is denoted by the squared

difference between each point of the cluster and the mean. The final D, representing the distance measure

will contain a matrix of the summed distances between the points and the center of cluster. However as

the clusters may contain different number of samples, the distance matrix must be normalized. This will

reflect a fair calculation for each sample and it is done using Equation 5.4.

EK =
K∑
k=1

1

2n
Dk (5.4)

where,

• EK - Explained Variance using K number of clusters.

• Dk - Euclidian Distance matrix for cluster k.

Explained variance variable EK now contains a single value which denotes the metric of evaluation

using K number of clusters. The Elbow method should iterate through a range of clusters in order to

determine the optimal solution. It is expected that the explained variance should drop at a fast pace until

it reaches the optimal solution, after which the values should decrease slower than before. To exemplify,

Figure 5.2 (p. 47) presents the elbow method applied on the current data set. It can be seen that the

results are ambiguous and no information can be easily extracted without setting some threshold of the

decreasing slope which requires prior information about the optimal solution. Thus, other methods need

to be researched that can automate the process of selecting k, representing the number of clusters.
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Figure 5.2: Explained Variance for multiple number of clusters.

5.2.2 Gap Statistics

Gap statistics represents a continuation of the Elbow Method, presented in [Tibshirani et al., 2001]. The

idea behind this approach is to find a standardized comparison method between the log-likelihood of the

data and a null reference. The null reference can be described as a random distribution with no obvious

number of cluster, random. The estimation of the number of clusters is represented by the lowest logEK

in comparison with the null reference curve. The Gap statistic is calculated using Equation 5.5.

Gapn(k) = E∗n{logEk} − logEk (5.5)

where,

• EK represents the Explained Variance for K clusters, also seen in the Elbow Method, Equation 5.4.

• En represents the reference distribution.

From this equation the optimal number of clusters can be extracted and it is defined as being the smallest

k where the gap statistic of the previous value is larger then the gap statistic of the current value, see

Equation 5.6. Furthermore Figure 5.3 (p. 48) represents the results of the implemented method for the

data set in use where it can be seen that the Gap Statistic provides an automated and unambiguous way

of selecting the appropriate number of clusters.

K = argmin∀kGap(k) ≥ Gap(k + 1)− sk+1 (5.6)

where,

• K represents the selected number of clusters.

• k represents the current number of clusters for which gap statistic is calculated.

• sk represents the simulation error of the reference distribution.
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Figure 5.3: Gap Statistic for multiple number of clusters.

Comparing the two presented methods, the Gap Statistic has been chosen to define the number of

clusters for future use in an unsupervised algorithm as it provides the project with an implementable

way of solving this common problem. This section has presented a few methods of selecting k and in

the following section, unsupervised algorithms will be analyzed and selected in order to choose the most

appropriate method of clustering malware behavior.

5.3 Unsupervised Machine Learning

This section will describe the approach used in this project for applying unsupervised Machine Learning

(ML) on the data. The goal of this approach is to find hidden structures or groups of data. It does so by

using measures of similarity that are usually calculated using Euclidian distance.

There exist a large variety of clustering algorithms that aim at generating groups from the input data-set

as accurately as possible. Different types of clustering algorithms can be distinguished by the methods

used and can be classified as follows:

• Based on similarity or distance measure between input points. This method represents one of the

traditional approaches and can be seen in k-means.

• Probabilistic where the sample set is assumed to be generated by some distribution. The Gaussian

Mixture Model (GMM) is an example of such probabilistic method which is based on the EM

algorithm.

• Hierarchical. This method can be further split into Agglomerative and Divisive.

Out of these, only three algorithms have been considered, k-means, EM and SOM, with respect to accu-

racy and performance under large data-sets that expand over a high amount of dimensions represented

by the features, see [Abbas, 2007]. Their use expand not only in malware analysis but in many other
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fields like: medicine, computer vision, etc.

In the following subsection, the three selected algorithms will be briefly explained after which a decision

will be made. The selected algorithm will be used to cluster malware behavior and evaluate the results

using the Majority Vote and Microsoft labels.

5.3.1 Clustering Algorithms

This subsection will now briefly explain the considered ML algorithms in this project after which one will

be chosen and described in detail in Section 5.4 (p. 51).

k-means

The kmean algorithm is directly based on an article published by Hartigan, see [Hartigan and Wong, 1979].

The k-means clustering method aims at minimizing the average squared distance between points that are

part of the same cluster. Given k, denoting the number of clusters, X denoting the data points and V

denoting the set of centers, k-means algorithm does the following:

• Randomly select k cluster centers.

• Calculate the distance between each data point Xi and cluster center V .

• Assign the data point to the cluster center whose distance from the center is minimum of all other

cluster centers.

• Re-calculate new cluster centers V .

• Re-calculate the distance between each data point and the newly obtained centers from step 4.

• If algorithm has converged stop, otherwise repeat from step 3.

The algorithm is easy to understand and performs clustering at a faster rate in comparison with other

complex clustering algorithms. However, it does require to have a data set with well separated points

to return an accurate grouping of the data. As there is no indication of such separation in the malware

data, k-means is not guaranteed to be the best possible solution in clustering malware types or families.

It also has to be mentioned that the results can be different with each run of the algorithm as the initial

step of the kmeans algorithm depends on selecting a random location for each center. This problem can

be resolved by controlling the randomness using a pseudo-random seed by selecting the centers from a

known sequence of numbers. The kmeans implementation that uses seeds to select the centers is called

kmeans++ and can lower the complexity of the algorithm, see [Arthur and Vassilvitskii, 2007].
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Self-Organizing Map

The Self-Organizing Map (SOM) algorithm is based on the book published by Professor Teuvo Kohonen,

see [Kohonen, 1989]. SOM was developed as a competitive learning algorithm, part of Neural Networks

that contains a hidden layer. The algorithm has two phases: Learning phase and Prediction phase. The

prediction phase works just like a classification algorithm where new data points are assigned to clusters

generated in the Learning phase of the algorithm. The steps are:

1. Create the map using a predefined grid size of n by m. There will be n ∗ m number of nodes.

Dimensionality of the data is non-linearly reduced to fit the grid size.

2. Initialize the weight of each node.

3. Choose a random input vector and present it to the map.

4. Find Best Matching Unit (BMU). The distance between the input vector and the weight of each

node is calculated to determine the BMU.

5. Calculate the radius of the neighbors around the found BMU. With each iteration, the neighborhood

size should decrease.

6. Modify the node weight such that its properties are closer to the BMU. The nodes further away

from the BMU are slightly changed in comparison with the nodes closer to the BMU.

7. Exit if algorithm has converged, otherwise repeat from step 3.

EM Algorithm

The EM algorithm focuses on assigning a probability distribution to each sample, defining the clusters it

belongs to. Just like DBSCAN, this method can select automatically the number of clusters it believes

the data holds using a log-likelihood averaged over a 10-fold validation. These steps are as follows :

1. The starting number of clusters is manually set or will start from 1.

2. The data in randomly and evenly split into 10 folds.

3. Expectation and Maximization steps are applied on every created fold [Do and Batzoglou, 2008].

4. Log-likelihood is averaged over the 10 results.

5. Select number of clusters if the log-likelihood has stopped increasing otherwise increase number of

clusters by 1 and go to step 2.

To conclude the listing of various unsupervised machine learning algorithms, the Self Organizing Map has

been chosen to cluster the malicious behavior. The choice was made based on [Bação et al., 2005] which

states that the input space is better explored by the Self Organizing Map. To consolidate his claims,

he has compared kmeans with SOM on four different data-sets where SOM has outperformed kmeans in

every aspect in terms of Structural Error, Class Error, Standard Deviation Error and Quadratic Error as

Table 5.3 shows based on the IRIS data-set.
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Algorithm QuadraticErr Std(Qerr) ClassErr StructErr

SOM 86.67 0.33 9.22 0

k-means 91.35 25.76 15.23 18

Table 5.3: Tests done on IRIS data-set by [Bação et al., 2005].

5.4 Chosen Algorithm

This section will go into more detail about the chosen algorithm. As decided in previous section, the

algorithm that will be used to cluster the malware behavior data is Self Organizing Map. Each step

of the algorithm will be depicted in detail, comparing the methods with other clustering algorithms.

Furthermore a graphical illustration will be presented to better understand the shape and purpose of

each created cluster.

5.4.1 SOM Overview

Self Organizing Map algorithm for multi-dimensional data relies on projections to a grid that keeps the

topology of the original space. The idea behind this algorithm is closely related to kmeans where clusters

are created based on some centroids. In this case the centroids are defined by the number of nodes which

are inter-connected using a weight vector. Because of the weighting of the edges the problem can be seen

as an elastic net that takes the shape of the data.

As SOM is trained iteratively, the vectors are chosen one by one from the input space. The distance

between the input vector and each created node on the grid is calculated based on their weights. This

becomes a minimization problem with the objective function depending on the Euclidean distance, from

which the minimum is selected representing the BMU. Furthermore the weight of the nodes are updated

after finding the appropriate BMU, and the nodes are moved closer to the projected vector. The further

the nodes are from the BMU the lesser the weighted update becomes, or the lesser they move towards

the BMU.

This iteration continues until the map converges and no updates are seen. The clustering ends by creating

a radius around close nodes giving the total number of clusters for a particular data-set. It has to be

mentioned that results differ from grid size to grid size, thus an appropriate grid size has to be used in

order to reflect the maximum number of clusters. For example, if a grid size of 2 by 2 is set, this limits

the SOM algorithm to a maximum of four clusters, as the number of nodes is also four. As the grid size

increases, the number of clusters will converge as the nodes will move closer to their appropriate BMUs.

However the usual results in terms of number of clusters is mainly defined by the grid size.

Figure 5.4 depicts a very high level design of the Self Organizing Map. Given the sample set, SOM

projects it to a predefined grid of size n by m and then it forms clusters based on grouped nodes. Next

subsections will explain in detail all the steps and properties of the Self Organizing Map and how are

they contributing to solving the clustering problem at hand.
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Figure 5.4: Steps describing the Self Organizing Map

5.4.2 Dimensionality Reduction

As stated before, SOM relies on reducing the dimensions of the data to one or two dimensions. First

comparison can be made with Principal Component Analysis which represents the most commonly used

method of reducing dimensionality in unsupervised learning. PCA aims at transforming the sample space

into a lower-dimension space that is linearly uncorrelated. This method might be successful for data-sets

where clusters can be distinguished linearly, however, the uncertainty and randomness in the analysis of

malware behavior make this task close to impossible. Thus a more robust and accurate dimensionality

reduction technique is required that can keep the properties of the input sample space and at the same

time doing so in a non-linear way.

Even though SOM transforms the input space into a two-dimensional space, the weight of the nodes will

still have the same dimensionality of each input vector. This is defined as

I =



X1

X2

...

...

Xi


=⇒Wj =



Wj1

Wj2

...

...

Wji


(5.7)

where,

• I represents the Input Vector or a single sample.

• W represents the Weight Vector.

• i represents the number of dimensions of the the selected sample. This can be interpreted as the

number of features.

• j represents the node corresponding to the SOM grid.

This methods provides a great advantage when dealing with malware analysis as no crucial information is

lost during the task of dimesionality reduction. An example of SOMs method for dimensionality reduction
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can be depicted from Figure 5.5, where input vectors x1 and x2 update the weights of all nodes based on

their features.

Figure 5.5: Dimensionality reduction example

5.4.3 Best Matching Unit

After each input vector has been projected to the SOM grid, the Best Matching Unit or BMU is deter-

mined representing the winning node or neuron. The BMU will directly affect the shape of the map, as

neighboring nodes will move closer to it by updating their weight vectors.

The BMU is calculated using the Euclidean Distance between the input vector and the weight vector of

each node. The BMU of each input vector represents the minimum distance to one of the nodes, thus it

is described as a minimization problem. The Euclidean Distance, for this problem, is described as follows

E =

√√√√i=n∑
i=0

(Xi −Wi)2 (5.8)

where,

• X represents the current input vector.

• W represents one of the nodes.

It has to be mentioned that the above equation has to be done for all the nodes in the map. After the

distances have been calculated, the BMU is define as the input vector that has the minimum distance to

one of the nodes, as described in Equation 5.9.

BMU = argmin∀nEn (5.9)
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where,

• En is the Euclidean distance of node n for the current input vector.

Figure 5.6: Graph form after weights have changed based on selected BMU

When selected, each BMU will have a radius, defining its neighbors, see Equation 5.10. The initial value

of the radius will include almost all nodes of the map. As the algorithm progresses, this radius will decay

denoting that the number of updated nodes will get smaller. This implies that the number of samples in

use could define a partitioning of the map that would better describe the data-set. The decaying rate of

the radius along with the modification of the nodes weights are controlled by a variable called learning

rate which is described in the next subsection.

σ(t) = σ(0) · e−
t
λ (5.10)

where,

• σ(t) represents the radius of the neighborhood at time t.

• σ(0) represents the radius of the neighborhood at time 0. Initial condition covering almost all nodes

of the map.

• t represents the current iteration.

• λ represents a time constant defined in Equation 5.12.

5.4.4 Learning Rate

The Learning rate as explained in [Stefanovič and Kurasova, 2011] has the purpose of minimizing the

changes done to the weights of the nodes and radius of BMUs as iterations increase. This means that,

as times goes on, BMUs have less effect on the nodes, giving the algorithm less time to converge, but at
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the same time, define a more specific partition of the data as the radius shrinks and the neighbors of the

BMUs will decrease.

The learning rate is a function of time and could be of different types:

• Linear.

• Inverse-of-time.

• Power series.

• Heuristics.

Each method introduces a different learning rate decay however, for simplicity, this project will only use

the linear one. Thus the learning rate will decay linearly over time given a set number of iterations as

shown in Equation 5.11.

L(t) = L(0)− e
t
λ (5.11)

where

• L(t) represent the learning rate at time t.

• L(0) represents the learning rate at time 0. Also known as the initial condition.

• t represents the current time or iteration.

• λ represents a time constant defined by the properties of the map.

The time constant used in the calculation of the learning rate relies on the total number of iterations

along with the radius of the map, see Equation 5.12.

λ =
numberOfIterations

mapRadius
(5.12)

5.4.5 Clustering

After all iterations have finished and the algorithm has converged, clustering is possible based on the

instances and their respective BMUs. It has to be mentioned that the grid size of the Self Organizing

Map has an effect of the number of clusters. Given a small grid size the projection will be done in a

more restrained space, not allowing the representation to grow. It can be discussed that a smaller grid

size can give a more general representation of the data while a bigger grid size can capture more detail

by creating a larger number of clusters.

Self Organizing Map, used alone. will generated the same number of clusters as the number of created

nodes. If a larger grid size is used, that exceeds the expectation for the number of clusters, nodes created

by SOM can be used as input to another clusterer that will group the nodes and not the input vectors

as seen in Figure 5.7 (p. 56). However, this project will focus on using only SOM with a fair number of

nodes that would not require a second clusterer for grouping.
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Figure 5.7: Steps describing the Self Organizing Map.

This section has covered the details of the unsupervised ML algorithm Self Organizing Map. The next

section will present the methods of evaluation for the output of this algorithm.

5.5 Evaluation Techniques

In order to provide a measure of how good the unsupervised algorithm has clustered the provided in-

stances, different methods are taken into consideration. In comparison with the methods used in last

project, unsupervised learning provides a much smaller set of tools that can be used for evaluation. This

section will describe how the clusters are labeled and how those labels are evaluated.

5.5.1 Cluster Labeling

Cluster labeling, in unsupervised learning, is done by a majority vote between the instances of a cluster.

Table 5.4 illustrates how each cluster is labeled. It has to be mentioned that the correctness of the labels

will greatly affect the metrics used to evaluate the classifier.

XXXXXXXXXXXLabels
Cluster

C1 - Trojan C2 - Backdoor C3 - Adware C4 - ?

Trojan 40000 3000 2000 200

Backdoor 20000 4000 3000 1000

Adware 2000 3000 50 0

Table 5.4: Assignment of Clusters labels
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First of all, it can be denoted that clusters are labeled based on the number of instances seen with a

particular label. In this example, as Trojan instances are more present in cluster one than any other

types, the cluster is assigned the Trojan label. It can also be noticed that each label can only be assigned

to one cluster. If there are more clusters than labels, then the instances falling in the unlabeled cluster

will automatically be evaluated as incorrectly classified instances, as defined in Section 5.5.3. Cluster

three on the other hand, represents the worst case scenario where, the cluster is named based on the class

with the lowest number of labels as the other classes have already been used to name other clusters.

5.5.2 Evaluation Matrix

An Evaluation matrix is used to graphically describe the results of clustering after the created clusters

have been labeled. In this project it will be used to analyze which labels had a chance at labeling a certain

cluster as well as observing how the labels are spread across multiple clusters. It has to be mentioned

that the Evaluation matrix cannot be used to calculate metrics like True Positive, False Positive, True

Negative or False Negative as the correctness of the labels is not known and at the same time the number

of cluster could be different from the number of labels. Comparing with supervised learning where, labels

are assumed to be the truth of the training data, in unsupervised learning the data is defined to be the

ground truth. One can assume that evaluation matrix can be used for evaluating the classes and not the

clustering algorithm.

An example of an evaluation matrix is presented in Table 5.5, based on a subset of labels used in this

project.

XXXXXXXXXXXLabels
Cluster

Trojan Backdoor Cluster 3

Trojan 40000 3000 10000

Backdoor 20000 4000 200

Table 5.5: Evaluation matrix

The table described the labels of instances in the columns while, for the rows, it represents the as-

signed cluster of the instance. The naming of the clusters is done by majority vote as described in

Section 5.5.1 (p. 56). This matrix will be used to analyze the contents of the clusters based on the

provided labels from Microsoft or Majority Vote. It will provide an idea on the differences between the

information stored in the behavioral data of the clusters and the labels retrieved from different AV vendors.

5.5.3 Incorrect Classification

Incorrect classification metric is presented as a percentage defined by incorrect labels inside clusters. This

is calculated after the majority vote has taken place and it can be denoted in Equation 5.13 from the
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evaluation matrix presented in Section 5.5.2 (p. 57).

Incorrect = IncorrectClassified/TotalSamples (5.13)

where,

• IncorrectClassified represents the number of instances that are not in a cluster with the same label.

• TotalSamples represents the total number of instances in the data-set.

5.5.4 K correctness

This evaluation metric will be used to determine if the number of clusters selected with the method

chosen in Section 5.2 (p. 45) is correct with respect to the AV labels used. Based on the information

provided by AV labels, the number of malware types is known beforehand. This number must match

with the number of selected cluster in order to determine if there is a link between the two methods.

Gap Statistics results will be evaluated based on the number of distinct type labels extracted from AV

labels. The number of classes seen in both labeling techniques are seen in Table 5.6.

AV Number of Types

Microsoft 5

Majority Vote 8

Table 5.6: Number of types.

This section has presented the evaluation methods for the chosen unsupervised algorithm. The section

will present a summary of the choices made in this project.
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5.6 Summary of Chapters 4 & 5

This section provides a short summary of the choices made in Chapter 4 and Chapter 5. By the end of

this section the final system architecture will be presented and will be used in Part III for implementing

the system.

Based on the sub-problems presented in Section 3.1 (p. 13) the following answers have been identified:

1. Which features should be used?

In Section 4.6 (p. 32) it has been decided to use API calls along with their appropriate Return

Codes. Furthermore API calls have been split into Passed and Failed API calls.

2. Which feature representation should be used?

In Section 4.7 (p. 37) it has been decided that the Frequency representation should be used.

3. How to perform majority vote on unstructured AV labels?

In Section 4.4 (p. 23) it has been decided that Levansthtein distance on AV labels should be used

as majority vote to select the most appropriate label

4. Which method of defining the number of clusters should be used?

In Section 5.2 (p. 45) it has been decided that the gap statistic will provide the information needed

to select the appropriate number of clusters given a data-set.

5. Which unsupervised ML algorithm should be used for clustering?

In Section 5.3 (p. 48) it has been decided that Self Organizing Map should be able to successfully

cluster the collected malware behavior data.

Based on the decisions made in Chapter 4 and Chapter 5 the final system architecture has been created

where Cuckoo Sandbox will analyzed the behavior of malware and store the information in MongoDB.

After features are extracted, selected and represented in a Combination Matrix form they are passed to

the Self Organizing Map algorithm to created appropriate clusters. The following Chapter represents the

implementation of the system that is based on the final system architecture depicted in this chapter and

presented in Figure 5.8.

Figure 5.8: Final System architecture built on the decisions made in Chapter 4 and Chapter 5.
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Chapter 6
System Design & Implementation

This chapter tackles the problems of implementing the design proposed for this project. A short descrip-

tion of the programming language will be introduced followed by detailed explanation of the implemented

modules of the system.

6.1 Programming Language

This section will present the requirements in terms of Pre-Processing, Data Storage, API, Wrappers,

Machine Learning and Documentation from which a programming language will be chosen to provide

the coding environment for this project. The comparison is made between the most commonly used

languages: Java and Python. To motivated the selection of the two, Python represents a straight-forward

language that is easy to understand and community driven while Java represents a solid platform that

is used to power most of today’s hardware and software, including the ML toolbox used for this project,

WEKA.

Following subsections will go in details about the requirements imposed by selections made in the Tech-

nical analysis part of the report, presenting the advantages and disadvantages of using one of the two

Objected Oriented programming languages for implementation.

6.1.1 Pre-Processing and Data Storage

As presented in Section 4.3 (p. 20), the data collected from Cuckoo and the data storage of the selected

DBMS follow the JSON structure. Thus, it is essential to choose a programming language that can

easily manipulate this structure with low system requirements. As JSON represents a lightweight for-

mat it is supported by mostly all programming languages. Java makes use the JSONParser function

of the external class json-simple to convert JSON formatted string representations to key-pair objects.

Python on the other hand provides libraries that can manipulate JSON via its native dictionary data

structure. It support nested structures, allowing multiple object types to be stored within. The main

difference between the two languages for this requirement is that Java requires explicit type casting when

retrieving information from the data structure while Python can automatically remember the type stored.

In order to process the data, it might be required to transfer information from one module to another.

As the system is intended to run in a flow, or separately, it is essential for the chosen programming

language to be able to easily transfer data between modules. Python provides such a capability by using

a library called pickle, which represents a fast and efficient way of serializing and de-serializing objects.

This refers to saving the object to an external file, converting in to a stream of bytes. Java, C# and many

other languages also have support for serialization however they do not provide a plug-and-play solution
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like the pickle library in Python. The same difference can be noticed here between Java and Python

when de-serializing data where Java requires explicit casting of the object type stored while Python will

automatically remember the stored type.

Given that most of data is represented as strings, it is important for the programming language to be

able to support fast string manipulation. The majority of the Object-Oriented programming languages

like Java, Python, Perl etc, provide easy to use string manipulation functions that can perform complex

tasks. Python for example converts any series of characters to Unicode, which represents a consistent

encoding and it is defined as a computing industry standard. Same functionality can be achieved using

Java as it also provides a large number of native functions that ca trim, split, convert to upper or lower

case and extracted sub-strings.

6.1.2 API and Wrappers

Support for executing external programs is a requirement for the program language that will be selected,

granting the possibility to execute, from each module, queries to MongoDB and WEKA toolbox.

Python has the possibility of executing external programs through its native library subprocess. It creates

a child process with which it can interact during its execution, providing the possibility of running it

in parallel. This allows the modules that will be implemented to control WEKA via command-line and

interact with it if needed. MongoDB provides a library called pymongo which connects to the DBMS

allowing it to query the database directly from the module. The output of the query is directly translated

to native Python data structure making the access to the output an easy task.

Java also has the possibility of executing external programs using the native class Runtime, however as

WEKA is written using this programming language it can execute the functions without creating a pro-

cess. This provides a great advantage over Python as the functions of WEKA could be directly imported

in the modules. MongoDB provides a Java Driver for connecting and executing queries but it does not

represent a plug-and-play solution in comparison with Python.

6.1.3 ML libraries

The need of ML libraries within the selected programming language provides a great advantage in terms of

run-time and complexity. Being able to utilize Machine Learning algorithms, feature selection algorithms,

label encoding and data visualization techniques using native data structures of the selected programming

language removes the need of utilizing different files and storage alternatives as done in previous project.

Java, as mentioned before, does not need such external libraries as it can directly make use of the functions

provided by WEKA. On the other hand, Python Community provides a large number of libraries that

can perform the aforementioned actions. The Machine Learning Python library scikit-learn [Scikit, 2015],

combines the utility from three other libraries, and it is able to efficiently perform classification, clustering,

visualization and dimensionality reduction:
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• SciPy - library for mathematics, science, and engineering along with some functions for ML clus-

tering found in scipy.cluster. See [Jones et al., 01 ] for more information about the library.

• NumPy - library containing a vast number of tools for manipulating large multi-dimensional arrays,

linear algebra and more, [NumPy, 2015].

• MatplotLib - the library provides an easy way of visualizing data, making it able, if possible, to

determine patterns. It also provides functions to create confusion matrices, hit maps and cluster

maps required for the Self Organizing Map algorithm.

6.1.4 Documentation

Both programming languages provide solid and well-defined documentations for each class or library in

use. The documentation provides detailed information of how the functions can be used, what the func-

tions are achieving and what are the required parameters along with a structure of their outputs.

Requirements Java Python

Pre-Processing X X

Data Storage 7 X

API and Wrappers - X

ML libraries X X

Documentation X X

Table 6.1: Filtering methods comparison

Summing up all the capabilities of the compared programming languages in this section, Python has been

chosen to implement the modules required for this project mostly due to its native data structures that

make the accessing and storing of data an easy task. This section has provided information about the

programming language used for this project, next section will include an overview of the implemented

modules along with an overall flowchart of the system.

6.2 System Design

This section will introduce the modules designed and implemented for this project. Each module will

be presented in terms of required input and expected output. By the end of this section, the overall

flowchart will be presented which defines the flow of the system.

6.2.1 Requirements

Malware Analysis module defines the first module of the system where the malware samples are

injected to clean Virtual Environments in order to be analyzed. The module should be able to correctly

control the analysis queue, pre-process the JSON output and populate the database following the speci-

fications presented in Section 4.3 (p. 20). As the system is not designed for detection, the input samples

need to be malicious.
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Labeling module is responsible for correctly extracting labels from various AV vendors as well as for

computing the Majority Vote labels from all AVs using tokenized Levensthein distance as presented in

Section 4.4.1 (p. 25). Its expected output is to correctly update the database with the extracted labels

for easier access during Feature Extraction.

Feature Extraction module is responsible for correctly extracting features from the data provided by

Cuckoo and stored in MongoDB. The input of the module needs to follow the specifications of the Data

Structure presented in Section 4.3 (p. 20). Based on the decisions made in the Technical Analysis part of

the report, its expected output is represented by three matrices containing the frequency of Passed and

Failed APIs along with their appropriate Return Code frequencies as presented in Section 4.7 (p. 37).

Feature selection module is responsible for correctly selecting the most appropriate features that

can better characterize the behavior of the malware based on variance and co-variance as described in

Section 5.1 (p. 41). Its input is represented by the output of the Feature Extraction module and the

expected output is represented by a Combination matrix that contains the best suited features following

the specifications presented in Section 4.7 (p. 37).

Number of clusters module is responsible for finding the optimal number of clusters given the

data-set from the output of the Feature Selection module following the specifications presented in Sec-

tion 5.2 (p. 45). Its output is represented by a single number, defined as the optimal number of clusters,

that can then be applied in the Machine Learning module or used for evaluation purposes.

Machine Learning module is responsible for correctly applying Self Organizing Map on the data-set

provided by the Feature Selection Module as presented in Section 5.4 (p. 51). The output, consisting

of the created clusters in ARFF format, will then be merged with the output of the Number of clusters

module in order to be evaluated in the Results part of the report.

In this subsection the modules that will be implemented have been presented in terms of required input

and expected output. The flowchart of the system can be depicted in Figure 6.1. It has to be mentioned

that the system has been designed to work in a flow and different modules cannot be run stand-alone

unless previous modules have been executed beforehand. It can be denoted that the output of the Number

of Clusters module is split as it has more than one purpose:

• As input to ML algorithms that require to manually set the number of clusters.

• For evaluation of ML algorithms that automatically determine the number of clusters.
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6.2.2 Overall Flowchart

Figure 6.1: Overall flow chart of the system.

This section presented the requirements of the system along with an overall flowchart describing the

order in which the modules are called and executed. Next sections will go into the details of each module,

defining the main idea of the design along with the most important parts of the implementation code.

6.3 Malware Analysis Module

This section will describe the design and implementation of the Malware Analysis Module. This module

is accountable for controlling VMs, injecting malware samples for analysis, populating and manipulating

the MongoDB DBMS with the behavioral data. It relies mainly on the modified version of Cuckoo

Sandbox, inserting its results in MongoDB. The following flow chart, presented in Figure 6.2 describes

the flow of events for this module.

Figure 6.2: Flowchart for Malware Analysis Module

Cuckoo Sandbox represents the open-source program used for analyzing software in a fast and efficient

way. Each malware sample is read from the disk and added to Cuckoo queue, which then assigns it to a

free, uninfected Virtual Machine for analysis. Due to the high number of VMs in use, the processing of

results and creation of the JSON files are not done in parallel, instead Cuckoo has been configured to wait

until all samples have been injected. This has been done by setting a value of false to the process result

variable in Cuckoos configuration file as seen in Code snippet 6.1.

6.3. MALWARE ANALYSIS MODULE 66



CHAPTER 6. SYSTEM DESIGN & IMPLEMENTATION

Code snippet 6.1: Cuckoo configuration

1 # Enable processing of results within the main cuckoo process.

2 # This is the default behavior but can be switched off for setups that

3 # require high stability and process the results in a separate task.

4 process_results = off

After the results of the analysis have been collected, Cuckoos processing module will incrementally process

the results and create one JSON for each and every sample. Due to software limitations imposed by the

selected DBMS, all imported JSON files must have a size smaller or equal to 16MB. In order to fulfill the

requirements for more samples, each JSON file has been modified by removing unnecessary characters

like new line, spaces or tab characters. This process is done by the minification sub-module which makes

use of the JavaScript node called json-minify. Example of minification can be see in Code snippet 6.2.

As the number of samples has greatly increased from the previous project, the process has been threaded

to make use of all possible cores provided by the server.

Code snippet 6.2: Minification thread example

1 #!/bin/bash

2 # Query SQL queue

3 list=$(mysql -u root -p123 -e "SELECT id from malware.tasks WHERE status=’reported’ LIMIT

$limit OFFSET $offset")

4 # for each task in the result

5 for split in $list

6 do

7 reportID=$split

8 # remove redundant information. ∼ 50% reduction in size
9 json-minify path/to/malware/json > /path/to/malware/minified 2>&1

10 done

After all the JSON files have been minified, they are ready to be imported to MongoDB for analysis. Be-

fore import, all files are verified in order to meet the 16MB requirement. If they exceed this software limit,

the samples are discarded to prevent any errors during the import process. The samples are imported to

the collection analysis of the database cuckoofull using the bash script seen in Code snippet 6.3

Code snippet 6.3: MongoDB import of minified JSON files

1 #!/bin/bash

2 # Query SQL queue

3 list=$(mysql -u root -p123 -e "SELECT id from malware.tasks WHERE status=’reported’")

4 for split in $list

5 do

6 # import JSON to DB cuckoofull and collection analysis

7 mongoimport --host 172.26.12.229:27017 -d cuckoofull -c analysis --file /path/to/jsons/

$split.json

8 done
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MongoDB Before starting behavior analysis of the samples, pre-processing of the collected data will

be done to remove any unnecessary information, as described in Section 4.3.2 (p. 21). In order to do

so, a new collection has been created following the data structure presented in Figure 4.3 (p. 22). The

pre-processing consists of the following actions:

1. Collect only relevant information from the behavior of the malware.

2. Remove samples with zero processes created.

3. Remove samples with zero API calls.

In order to extract only the relevant information, an aggregation command has been issued in MongoDB

to project the relevant data matching the samples that do not have an empty process or API list. The

command can be seen in Code snippet 6.4.

Code snippet 6.4: MongoDB aggregation

1 db.analysis.aggregate([

2 {$project : {"virus" : "$target.file.name", // project only needed information

3 "info" : "$behavior.processes.process_name",

4 "api" : "$behavior.processes.calls.api",

5 "category" : "$behavior.processes.calls.category",

6 "status" : "$behavior.processes.calls.status" ,

7 "return_code" : "$behavior.processes.calls.return" ,

8 "name" : "$behavior.processes.calls.arguments.name" ,

9 "value" : "$behavior.processes.calls.arguments.value"}

10 },

11 {$match : {"info" : {$ne : [ ]}}}, // remove samples with zero processes

12 {$match : {"api" : {$ne : [ ]}}}, // remove samples with zero API calls

13 {$out : "APIradu"}], // output to new collection

14 {allowDiskUse : true}) // allow use of HDD for memory extensive queries

The modified version of Cuckoo along with MongoDB configuration, minification and analysis bash scripts

can be found on the CD in ..\Code\MalwareAnalysisModule\ path.

This section has presented how the malicious software is analyzed and imported to the database, preparing

the data for the next module representing the Labeling Module.

6.4 Labeling Module

This module is responsible for correctly extracting relevant AV labels from the detection results provided

by VirusTotal for each sample. As discussed in Section 4.4 (p. 23), there exists inconsistency in the AV

labeling of malicious software and a temporary solution has been found by extracting the labels based on

a Majority Vote from multiple AV vendors. This module is based on the flowchart presented in Figure 6.3.
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Figure 6.3: Flow chart for the Labeling Module

In order to analyze the labels provided by VirusTotal, the scan results for all AV vendors have been

extracted and saved to a pickle serialized object. This has started by creating a list of all unique AVs

available in the analysis, see Code snippet 6.5.

Code snippet 6.5: Extract list of AV vendors from database

1 # query db and retrieve the first sample

2 # from analysis collection

3 query = db.analysis.find_one()

4 # Create a list of AV vendors

5 listOfAV = list(query[’virustotal’][’scans’].keys())

6 # Number of AV vendors

7 leng = len(listOfAV)

The created list of AV programs will be used as header information for defining the correct index of each

label. The index is then used to insert the appropriate labels for each sample and prepare the data for the

Majority Vote process as well as for Microsoft label extraction. Code for the process of saving the labels

to a serialized item will not be shown in this section, however it can be found in Appendix A (p. 112).

The resulting file is also made available on the CD in the ..\Data\ folder.

After the pickle file has been created, the module iterates through all samples and performs the following

tasks:

• Extract Microsoft results:

– Split result of each sample based on CARO notation seen in Code snippet 4.1.

– Extract the type of the malware from the split.

• Perform majority vote from all AV vendors:

– Run Levanshtine ratio calculation and perform vote.

– Extract type from the winning label.

The index of the Microsoft results is defined from the list of AV programs extracted in Code snippet 6.5.

This index is used to extract the appropriate label. In order to extract the type of the malware, as

detected by Microsoft, the results is split by the semicolon : character. As defined by CARO, the type of

the malware represents the first word in the label, thus after the split, this information can be extracted

from index zero.

The Levenshtein similarity ratio is implemented using a tokenizer, splitting the label in multiple words

and comparing their similarity with another tokenized label from a different AV program. To better
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understand this process, a simple example is depicted in Code snippet 6.6. The code makes use of a

Python library called fuzzywuzzy which was first implemented to match different sport events over the

Internet. As the intended action for this project matched the goals of the external library, it has been

used successfully to denote similarities between different AV labeling techniques. The ratio threshold has

been set to 50%, denoting that at least half of the label, assuming either type of family, matches with

other labels.

Code snippet 6.6: Tokenized Levenshtein distance ratio.

1 <<< from fuzzywuzzy import fuzz

2 <<< import Levenshtein

3 <<< Levenshtein.ratio("Trojan Win32","Win32 Trojan")

4 >>> 0.5

5 <<< fuzz.token_set_ratio("Trojan Win32", "Win32 Trojan")

6 >>> 100

The majority vote has been implemented as a Counter object, updated each time the ratio has been met.

In order to improve the run-time of this module, the iterations have been cut in half. It has been done

so by adding both labels to the Counter if the ratio is above the threshold keeping in mind that the ratio

between label 1 and label 2 is exactly the same as the ratio between label 2 and label 1. In order to extract

the types, a list of the eight most common malware types has been generated which has been compare

with the winner of the Majority vote. If one if the types in the generated list represented a substring of

the label, then that type was assigned to the sample. This implementation has been chosen due to the

problem of inconsistency in the labeling techniques. As most of the AV vendors do not follow the CARO

syntax, extracting particular information would have been a very time consuming task. To exemplify the

majority vote process, Code snippet 6.7 depicts the most important parts of the vote implementation.

Code snippet 6.7: Majority Vote and type extraction

1 i = data[’labels’][vv] # labels of current sample vv

2 for j in range(0, len(data[’detected’][vv])): # AV iteration

3 for jj in range(j, len(data[’detected’][vv])): # second AV iteration

4 if not i[j] == i[jj] and not i[j] == ’’: # make sure is not same AV

5 if similar(i[j],i[jj]): # Tokenized Levenshtein Ratio

6 templist.append(i[j]) # If true add both to vote

7 templist.append(i[jj])

8 # select most voted label

9 for k,c in Counter(templist).most_common(1):

10 # add result to list

11 labels[vv] = k

After both Microsoft types and Majority Vote types have been extracted, they are inserted in MongoDB

under the labels object for each sample. The collection containing all the behavior information is queried

and through every iteration the samples are updated with both labels. In order to speed the process, the

loop updating the database has been made thread ready, being able to update multiple samples at the

same time, depending on the hardware capabilities. The update part of the database can be depicted in

Code snippet 6.8.

Code snippet 6.8: Database update with Microsoft and Majority labels.
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1 def dbThread(value,mIndex,majority ,microsoft ,pbar,db):

2 # check if labels object is already in db

3 if "labels" in value:

4 return

5 sampleNR = majority[’samples’].index(value[’virus’])

6 # Majority vote type

7 maj = majority[’label’][sampleNR]

8 # Microsoft type

9 ms = microsoft[’labels’][sampleNR][mIndex].split(’:’)[0].lower()

10

11 # Update database based on ObjectID with correct labels

12 db.APIradu.update({ ’_id’ : value[’_id’]},{’$set’: {’labels’: {’majority’: maj, ’

microsoft’: ms }}})

13

14 for value in query:

15 # Select free thread from pool and start the update process

16 pool.apply_async(dbThread(value,mIndex,majority ,microsoft ,pbar,db))

The Python function used for extracting labels from Microsoft, Levenshtein Majority Vote and fuzzywuzzy

can be found on the CD in ..\Code\LabelingModule\ path.

This section has presented the design and implementation of the Majority vote. Next section will present

the design and implementation of the feature extraction to be used for unsupervised learning.

6.5 Feature Extraction Module

This section includes the design and implementation of the Feature Extraction Module, where the behavior

of the malicious software is extracted from the database and translated into machine learning readable

format. The module follows a series of actions that is represented as a flow shown in Figure 6.4.

Figure 6.4: Flow chart for the Feature Extraction Module

To briefly explain the process, features are extracted from the database based on the requirements and

limitations imposed by the previous sections and then stored into WEKA data-set file structure. The
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execution time of this module varies from a few minutes to hours depending on the sample set in use.

In order to minimize the run-time of this module, the extraction is done in multiple threads where the

hardware supports it. The process starts by querying the database to retrieve all the samples available in

the modified behavioral structure. Each results from the query is then analyzed extracting the features

using the representation explained in Section 4.7 (p. 37). After all samples have been analyzed, the

results are then saved into a WEKA readable format. The following subsections will explain detail how

the process has been implemented

6.5.1 Extraction

The extraction method will be explained at a per sample level of detail. The methods and functions

described in this subsections are applied on each sample retrieved from the database, in the end forming

a multi-dimensional matrix consisting of:

1. Features represented by the columns of the matrix.

2. Samples represented by the rows of the matrix.

Each feature representation will have a predefined length depending on the number of distinct values

seen over all samples. Thus, for the sample set used in this project, the Failed and Passed API calls will

represent 157 distinct features each while the Return codes will represent a total number of 137 features.

For each entry of the behavioral data, the features are extracted in parallel to minimize the number of

iterations.

The process is started by simply initializing the each row, representing the sample, with the appropriate

number of features as seen in Code snippet 6.9

Code snippet 6.9: Row initialization for each sample

1 # Failed,Passed API and Return Codes

2 # initialization

3 failed = [0] * (len(apiList))

4 passed = [0] * (len(apiList))

5 freturn = [0] * (len(returnList))

The number of processes is then depicted from the processes list as described in Section 4.3 (p. 20).

Iterating through each API from all extracted processes the frequency of the Failed, Passed APIs and

Return Codes is computed and stored at the appropriate index. This process can be seen in Code

snippet 6.10. Labels are also extracted, however no computations are needed as the previous module

has stored all labels in a static location. These are extracted by simply accessing the labels object with

Microsfot and Majority keys.
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Code snippet 6.10: Feature Extraction

1 for i in range(0, nrOfProcesses):

2 nrOfAPIs = len(x[’api’][i])

3

4 for j in range(0, nrOfAPIs):

5 if x[’status’][i][j] == True:

6 passed[apiList.index(x[’api’][i][j])] += 1

7 elif x[’status’][i][j] == False:

8 failed[apiList.index(x[’api’][i][j])] += 1

9 freturn[returnList.index(x[’return_code’][i][j])] += 1

10

11 totalSum = sum(failed) + sum(passed)

12 if totalSum < 50 and skipLowAPI:

13 pbar.maxval = pbar.maxval - 1

14 return

15

16 FailedList.append(failed)

17 PassedList.append(passed)

18 FrequencyReturn.append(freturn)

In order to prevent corrupt behavioral data, samples that have less than 50 API calls, denoted by the

sum of failed with passed APIs, will be excluded from the representation. Assuming that no malicious

action can be done with less than 50 API calls, the excluded samples contain no information that can

help the ML algorithm to better discriminate the types.

6.5.2 Storing

After all samples have been extracted and added to the temporary matrix, the data must be converted

to a WEKA readable form. WEKA uses the ARFF data structure for reading sample sets which follows

the syntax of a regular Comma Separated Values (CSV) file along with headers denoting the meaning

of each column. To perform the conversion, the project makes use of the Python library liac-arff, which

is able to write and read to/from ARFF formatted files. Each feature representation is stored in their

appropriate ARFF file as presented in Code snippet 6.11.

Code snippet 6.11: Saving to ARFF

1 # Call to dumpArff which makes use

2 # of the liac-arff library

3 dumpArff(’Representations/passedThreaded.arff’,

4 PassedList ,

5 relation="PassedAPI",

6 names=list(map(’Passed_{0}’.format, apiList))

7 )

In order to distinguish between failed and passed API calls, the feature names have been modified to

include the name of the representation that they belong to. The full code for the dumpArff function can

be found in the Appendix B (p. 114).
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The Feature Extraction Python implemented module,for both multi and single threaded extraction, can

be found on the attached CD in ..\Code\FeatureExtractionModule\ path.

This section has described the Feature Extraction module where the behavioral data has been extracted

following the specification in Section 4.7 (p. 37). Next section will present the design and implementation

of the Feature Selection method.

6.6 Feature Selection Module

This section presents the design and implementation of the features selection module. It makes use of

two different sub-modules in order to keep the Python implementation as simple as possible. The flow of

this module is presented in Figure 6.5.

Figure 6.5: Flow chart for the Feature Selection Module

The input of this module represents the output of the Feature Extraction module. Each feature repre-

sentation, denoted by the Failed API calls, Passed API calls, and Return Codes will pass through a filter

for selecting the most relevant features based on their values. As discussed in Section 5.1 (p. 41), PCA

was the method of choice for selecting the appropriate features based on their variance or co-variance.

Both feature selection results will be saved to a final ARFF file denoted as combinationVariance.arff and

respectively combinationCovariane.arff.

The module makes use of WEKA feature selection module that is called from Python using the subprocess

library. As the size of each feature representation is significantly large, multi-threading could potentially

exhaust the server memory thus, in order to prevent any unwanted errors, the module executes a single

feature selection action at a time. The module executes a bash script that accepts as input a single

feature representation and saves the temporary output, as seen in Code snippet 6.12.
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Code snippet 6.12: Bash script for PCA feature extraction

1 #!/bin/bash

2

3 # arff input file

4 input=$1

5 # arff output file

6 output=$2

7 # Options for PCA. Used to pass co-variance option

8 options="$3"

9

10 # Executa command-line WEKA with

11 # a heap size of 6GB

12 java -Xmx6g -cp /home/user/weka-3-7-12/weka.jar

13 weka.filters.supervised.attribute.AttributeSelection -E "weka.attributeSelection.

PrincipalComponents

14 -R 0.95 -A 1 $options"

15 -S "weka.attributeSelection.Ranker -T 0 -N -1"

16 -i $input -o $output

where,

• weka.attribute.Selection.PrincipalComponents represents the WEKA method for PCA.

– -R 0.95 represents the amount of variance of co-variance to be chosen in dimensionality reduc-

tion.

– -A 1 represents the number of features to combine. As the module does feature selection,

combining features will end in a dimensionality reduction.

– -C represents the centering options that will enable PCA to be computed based on co-variance

instead of variance.

• weka.attributeSelection.Ranker represents the WEKA method of assigning weights to the selected

features.

– -T 0 represents the threshold of the Ranker method. It is set to zero to keep all the features

that can help the ML algorithm to better distinguish between types.

– -N -1 represents the number of features to keep. It is set to -1 to keep all the features that are

above the threshold. If a number is set, for example 10, then this method will keep the first

ten features with the highest statistical probability of better defining the types.

After each representation is passed through the PCA filter, the resulted selected features are then com-

bined into a Combination representation for both variance and co-varianced based PCA. This submodule

also uses WEKA and can the code can be seen in Code snippet 6.13.
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Code snippet 6.13: Merging submodule of selected features

1 #!/bin/bash

2

3 # input path 1

4 input1=$1

5 # input path 2

6 input2=$2

7 # output path of merged instances

8 output=$3

9

10 java -Xmx6g -cp /home/user/weka-3-7-12/weka.jar

11 weka.core.Instances merge

12 $input1 $input2 > $output

WEKA function merge has a limit of only two inputs. As the Feature Selection module has three

representations to merge, this action is split in two as follows:

1. Merge select Failed API with selected Passed API and output to a temporary ARFF file.

2. Merge the temporary ARFF file with the selected Return Codes and output to the combination

representation of selected features.

3. (Optional) Remove the temporary ARFF file to save space.

4. (Optional) Merge the combination representation with labels for evaluation.

The Python functions along with the bash scripts used for Selecting Features can be found on the CD in

..\Code\FeatureSelectionModule\ path.

This section has presented the design and implementation of the Feature Selection Module. Next section

will describe how the number of clusters is computed from the combination representation.

6.7 Number of clusters Module

This section describes the design and implementation of the Number of Clusters module, responsible to

find the most appropriate number of clusters given a certain data-set. As the features extracted will be

used to train an unsupervised algorithm, classes are not available to define the number of clusters that can

be seen in the data-set. Thus, based on the data, this module will determine the optimal number of clus-

ters using different mathematical and statistics formulas. In Figure 6.6 the flow of this module is depicted.

Figure 6.6: Flow chart for the Number of clusters Module
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Previous discussion seen in Section 5.2 (p. 45) has determined that the best suitable method for select-

ing K would be using the Gap Statistic. In comparison with other methods, the Gap Statistic can be

automatized to detected the number of clusters. To do so, a random distribution is used to compare its

log likelihood with the log likelihood of the data by increasing the number of clusters. It is assumed that

the values will increase until a break point after which the values will start decreasing. The correspond-

ing number of clusters where the break point occurs is defined to be the optimal K for the data-set at hand.

In order to implement this module, the use of scikit-learn, numpy and scipy libraries is essential

for creating the random distribution as well as for computing the log-likelihood of clusters using multi-

threaded kmeans++. The values of the reference distribution are bound by the minimum and maximum

values seen in the the actual data, as seen in Code snippet 6.14. The implementation is based on the

work presented in [Vejdemo-Johansson, 2013].

Code snippet 6.14: Generating a random distribution

1 # Create reference distribution

2 shape = data.shape

3 tops = data.max(axis=0)

4 bots = data.min(axis=0)

5 dists = scipy.matrix(scipy.diag(tops-bots))

6 rands = scipy.random.random_sample(size=(shape[0],shape[1],1))

After the random distribution has been generated, the module will loop through a range of clusters. The

log likelihood is calculated for both data-sets and gap statistic is calculated using the equation depicted in

Section 5.2 (p. 45). The module stores all values in a list, comparing the currently calculated value with

the previous one in order to decide if the loop continues or breaks. The resulting value of K will be used

for evaluation purposes or for assigning the number of clusters with algorithms that require such an input.

The implementation of the Gap statistic can be seen in Code snippet 6.15,[Vejdemo-Johansson, 2013].

Code snippet 6.15: Gap Statistic calculation for a range of K

1 for k in maxK:

2 # Cluster the data with k clusters

3 (kmc,kml) = k_means(data, k, init=’k-means++’, n_jobs=8)

4 # calculate dispersion matrix for each cluster for the data-set

5 disp = sum([dst(data[m,:],kmc[kml[m],:]) for m in range(shape[0])])

6 # Cluster the reference with k clusters

7 (kmc,kml) = k_means(rands[:,:,0], k, init=’k-means++’,n_jobs=8)

8 # calculate dispersion matrix for each cluster in reference data-set

9 refdisp = sum([dst(rands[m,:,0],kmc[kml[m],:]) for m in range(shape[0])])

10 # calculate Gap Statistic based on the values got from data and refdisp

11 gaps[k] = scipy.log(refdisp)-scipy.log(disp)-np.std(refdisp)

The implementation of the Python Gap Statistics can be found on the CD in ..\Code\NumberOfClustersModule\
path.
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This section has presented the design and implementation of the module that is selecting the appropriate

number of clusters. Next section will focus on the design and implementation of the Machine Learning

module.

6.8 Unsupervised Learning Module

The section presents the design and implementation of the Unsupervised Machine Learning module where

the output of previous modules is used the train a selected algorithm and evaluate its results based on

some predefined labels. This module follows the flow of Figure 6.7.

Figure 6.7: Flow chart for the Feature Selection Module

This module relies on the output presented by the Feature Selection module as well as on the output of

the Labeling Module. The ARFF file containing the features is passed to SOM algorithm in WEKA and

the file containing the labels is used for evaluation after the clustering has been done. Code snippet 6.16

exemplifies the code used for this module.

Code snippet 6.16: Call function for SOM algorithm

1 #!/bin/bash

2

3 java -Xmx14g -cp /home/user/weka-3-7-12/weka.jar weka.Run SelfOrganizingMap

4 -L 1.0 -O 2000 -C 1000 -H $height -W $width -c last

5 -t $input > $output

where,

• -L represents the learning rate of the algorithm.

• -O 2000 represents the number of ordering epochs. Also can be defined as number of iterations.

• -C 1000 represents the number of calculation iterations.

• -H x -W y represents the grid size of x by y. This number has been set as it represents a fair grid

size given the number of existing malware types. It gives the opportunity to observe in detail how

each cluster relates to its clusters.

• -c last represents the class index. WEKA supports numeric indexes or the first and last defined as

the first and respectively last index.

The output of the algorithm consists of the following information:
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• Cluster names based on the provided classes.

• Incorrectly classified instances based on the majority vote in previous point.

• Evaluation matrix defining the instances assigned to each created cluster.

The code for calling Self Organizing Map from WEKA within Python can be found on the CD in

..\Code\MachineLearningModule\ path. There exist two bash scripts that evaluate and output the

sample set with the extracted clusters as classes for future classification use.

The information provided by this module will be used in Chapter 7 to analyze and evaluate the per-

formance of the used algorithm. This chapter firstly discussed the choice of programming language and

provided an overall flowchart of the programming modules available in the system. The design and

implementation of each module has been explained in detail in Section 6.3 (p. 66), Section 6.4 (p. 68),

Section 6.5 (p. 71), Section 6.6 (p. 74) and Section 6.7 (p. 76). Note that the code and result files for

each module are fully available on the attached CD.
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Chapter 7
Evaluation

This chpater will present the results of the evaluation done on clusters generated using Self Organizing

Map. A comparison will be done between the resulted number of clusters from both SOM and Gap

Statistics, and the number of distinct types, Majority or Microsoft, extracted from the data-set. The

intent of this evaluation is to observe the differences seen between labels, Gap Statistics and the chosen

algorithm in order to determine if a link exists between the collected behavioral data and labels created

using static analysis. The chapter is split accordingly in three sections denoting the Label Evaluation in

Section 7.1 (p. 83), Feature Contribution in Section 7.2 (p. 87) and SOM Evaluation in Section 7.3 (p. 88).

In order to fairly evaluate the extracted data, the ARFF files have been limited to contain a uniformly

distributed number of samples in terms of Microsoft labeling. Table 7.1 presents the values seen for the

five most common types used with this representation.

Type Number of Samples

Clean 52777

Trojan 35227

Backdoor 24056

Trojan Downloader 23543

Trojan PWS 20550

Table 7.1: Filtering methods comparison

The Majority Vote will include the same sub-set of sample seen in the Microsoft labeling, however the

distribution is not uniform, where approximately three fourths of the samples being part of the Trojan

class. Table 7.2 presents the value seen for the Majority Vote. It has to be mentioned that even though

the labels differ, the sample-sets contain the same behavioral data. It is known that the non-uniformity

of the data might indeed return more favorable results however, the intent of this evaluation was to

compare the two labeling techniques and determine if the behavioral data contains information about AV

extracted malware types.

From the start, the number of distinct labels can be seen between Microsoft and Majority labels. However,

the evaluation focuses on defining the differences between these labeling techniques and the number of

clusters that can be achieved using:

• Gap Statistics selected in Section 5.1 (p. 41).

• Self Organizing Map selected in Section 5.4 (p. 51).
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Type Number of Samples

Trojan 124559

Backdoor 18716

Adware 8253

Malware 2172

Worm 1620

Virus 645

Rootkit 181

Spyware 7

Table 7.2: Filtering methods comparison

7.1 Label Evaluation

The Gap Statistic is used estimate the number of clusters that corresponds to the data-set in use. It

uses a reference distribution with no obvious number of clusters and calculates the log-likelihood using a

range of clusters. As this method uses kmeans++ to cluster and evaluate the log-likelihood, its results

are expected to differ from SOM algorithm. Comparing the two based on how the clusters are created, k-

means++ uses centroids that cannot always take the shape of the data while SOM generates the clusters

based on geometrical calculations, being able to better fold on the input vectors. Due to this limitation

of kmeans++, the clusterer is more prone to noise. After running the experiment on all four feature

representations, the results can be seen in Figure 7.1.

Figure 7.1: Gap statistics for multiple number of clusters using 4 different feature representations.

From the Gap Statistic results, it can be seen that the log-likelihood does not reach a maximum value

point in neither one of the feature representations. Instead the values keep increasing up to 20 clusters

where the experiment has stopped due to long running times. The algorithm has chosen to use 14 clusters

based on the Combination representation where there exists a slight decrease in the likelihood between

cluster 14 and 15. This suggests that 14 clusters better define the data-set in comparison with 15 clusters.
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As described in previous paragraph, the Gap Statistic makes use of kmeans++ to determine the log-

likelihood of the data falling into a range of clusters, representing a linear discrimination and thus lim-

iting the shape of the clusters. On the other hand SOM projects the data to a two-dimensional space

while maintaining the properties of the high-dimensional data, allowing the clusters to take any shape,

depending on the values they contain. As both Gap Statistics and SOM do not make use of the labels

presented in Table 7.1 and Table 7.2 for determining the clusters, they will be used for comparison with

already known data. After running the experiment for determining the number of clusters, the results

can be seen in Table 7.3.

Method Options Clusters

Microsoft N/A 5

Majority N/A 8

Gap Statistics N/A 14

SOM 2x2 4

SOM 1x5 5

SOM 3x3 9

SOM 4x4 16

Table 7.3: Results of number of clusters using Gap Statistic and different configurations of SOM.

Results from Table 7.3 are based on the statistics calculated on 33 co-variance chosen features as they

provide the best suitable solution in terms of run-time. Analyzing the results, none of the methods seem

to provide the same information as the labels extracted from the data. The number of clusters selected

by Gap Statistic suggests that the behavior of the sampled malicious software can be grouped in many

more clusters than suggested by both Microsoft and Majority labels. Furthermore, the SOM clusterer

seems to define the number of clusters equal to the size of the grid. The evaluation of clusters for SOM

has stopped at the grid size of 4x4 due to long running times of the algorithm. The current grid size has

clustered the provided data-set in approximately 24 hours. The 5x5 grid size has been also attempted

however the clusterer did not converge after two days and thus the analysis was not continued.

In order to understand the extent of selecting the optimal number of clusters when dealing with mali-

cious software, a side-by-side comparison is presented in Figure 7.2 (p. 85) between the well-defined IRIS

data-set and the current data-set used in this project. It has to be noted that the figure presents the

data-sets in a 2-Dimensional form, transformed using PCA.
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Figure 7.2: Comparison between IRIS and Malware datasets.

The difference between the two sample sets is visible directly from the graphs. The IRIS example has

three well-separated groups of values that can be easily recognized by both SOM and Gap Statistics. This

is mostly due to the large inter-cluster distances and small intra cluster distances, making this data-set

the best case scenario for every clustering algorithm. Observing the subset of the malware behavior graph

and comparing it to the IRIS graph, it can be noticed that there is no obvious grouping that can be done.

Any intra or inter-cluster statistics will yield information that is ambiguous for most clustering algorithm

and this can be seen in the calculations of the Gap Statistics.
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Based on the malware data-set in use, Gap Statistic calculates the number of clusters to be 14 due to

the drop in the log-likelihood between cluster 15 and 14, as seen in Figure 7.1 (p. 83). This value has

been chose even though the values continue to increase after cluster 15. As maybe this does not provide

the appropriate number of clusters, it can be denoted that there is a significant difference between the

number of labels provided by both Majority vote and Microsoft compared with the number of clusters

evaluated by Gap Statistics. As a reference distribution is used where it is assumed that the number if

clusters represents the number of points, the log-likelihood of the clustered data will increase suggesting

that the appropriate number has not yet been reached.

In order to choose the best suitable option for SOM algorithm, the clustering results have been evaluated

based on both labeling techniques. The grid sizes of the Self Organizing Map that have performed better

in correctly assigning labels to the created clusters will be selected for further analysis. It has to be noted

that, the percentage presented in Table 7.4 illustrates the dissimilarity of the clustered data with the

labels provided from various AV vendors where a lower value is preferred, see Section 5.5 (p. 56). This

can be used to determine if the generated clusters match the extracted AV labels.

Method Options Clusters
Incorrectly Clustered Instances

Majority Microsoft

Kmeans++ N/A 5 43.5195% 69.4005%

Kmeans++ N/A 8 44.4987% 73.1257%

Kmeans++ N/A 14 45.1224% 73.3319%

Kmeans++ N/A 16 45.9152% 73.0008%

SOM 2x2 4 21.1472% 65.3255%

SOM 1x5 5 21.2569 % 66.8441%

SOM 2x4 8 29.4634% 69.4325%

SOM 2x7 14 30.1255% 70.2223%

SOM 4x4 16 30.4701% 71.8578%

Table 7.4: Clustering Methods Compared.

Table 7.4 provides information about how labels fit the generated clusters when using kmeans++ and

Self Organizing Map. The grid sizes and the number of clusters chosen for evaluation are based on the

distinct number of types seen in both Microsoft and Majority labels, Gap Statistics and a fair assumption

for the grid sizes that closely match the determined values for a two-dimensional map. The incorrectly

clustered instances are presented for both Microsoft and Majority Vote labels in order to determine if

there is a link between them and the created clusters.

Following the results it can be denoted that kmeans++ created behavioral clusters do not match the

information extracted from labels. On the other hand Self Organizing Map seems to better define the

clusters, observing an increase in correctly classified clusters by approximately 25%. As previously dis-

cussed, this can be due to the fact that the projection created on the two-dimensional map succeeds at

preserving the topological properties of the selected features.
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As SOM provides better accuracy based on the Majority labels, the Evaluation matrix and the created

map will be analyzed in detail. The goal of the evaluation represents an attempt at understanding what

the clusters hold and how closely are they related with AV extracted types. Next section will evaluate

the contribution of selected features in correctly clustering the data.

7.2 Feature Contribution

This section aims at providing information about which features can better describe the Majority labels

extracted using Levensthein distance from multiple AV vendors. The following tests will go through all

feature representations that were selected using co-variance PCA. A range of grid sizes will be tested after

which the best ones will be selected in order to be analyzed in detail. The results can be seen in Table 7.5.

`````````````̀Features
SOM Options

2x2 2x4 3x3

Failed API 33.6561% 33.8341% 32.9094%

Passed API 20.8789% 25.3533% 25.6454%

Return Codes 32.1217% 34.4720% 35.1104%

Combination 21.1472% 29.4634% 30.4701%

Table 7.5: Incorrectly classified instances for multiple feature representations.

From Table 7.5, it can be seen that the Passed API features provide the best accuracy when evaluated

on the Majority Vote. The information within the Passed API representation contains the frequency of

calls that have succeeded on the infected machine. Even though the accuracy of the evaluation done on

this representation represents the best result for all tested grid sizes of SOM, a more detailed behavioral

representation is preferred. As most of the malicious programs do not have information about the con-

tents of the infected machine, a large number of API calls are initiated to exhaustively search the infected

machine. This will lead to a large number of Failed API calls along with their respective Return Codes.

The focus of the Combination matrix is to include all actions of the malware, either if the actions have

succeeded or not.

The combination representation contains a better description of the malware behavior and, even though

its accuracy is below the one of Passed API, the created clusters are better defined. Confirming this on

a 2x2 grid size, the following information is denoted:

• Passed APIs create 4 unbalanced clusters where approximately 99.5% of the instance fall into a

single cluster. The other three clusters hold the rest of 0.5% of the data. As most of the samples

are labeled as Trojan, the evaluation algorithm assigns the Trojan label to the clusters containing

most of the instances. This results in higher correctly classified instances due to the unbalanced

distribution of types.
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• The Combination representation also creates 4 clusters where approximately 90% of the instances

fall into a single cluster. The rest of the instances are evenly spread among the other three clusters.

As with the Passed API, the accuracy of the evaluation is mostly define by the Trojan.

Following the above remarks it can be concluded that the combination representation tends to describe a

more detailed cluster assignment as it contains more information about the behavior of the malware. In

order to better analyze the clusters, in the next section, the combination representation has been chosen

to further inspect the assignment of clusters for a various number of grid sizes.

7.3 Algorithm Evaluation

This section presents the clustering results from SOM evaluated on the Combination of features selected

in previous section. Different options of the clustering algorithm will be discussed in terms of cluster

distribution created by the map, as well as in terms of the Evaluation matrix. By the end of this section,

it will be decided if it is sufficient to use labels provided by AV vendors in order to assign types to

behavioral data or if other methods should be researched. Furthermore a cluster-based classification will

be tested to demonstrate the accuracy increase of classifying using well-defined classes that are built

from the behavioral data and not provided by AV vendors. The following subsections will go through the

options of the Self Organizing Map using 33 PCA features based on co-variance.
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Figure 7.3: Visualization of clusters on a 2x2 grid.
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The 2x2 SOM algorithm generates four clusters based on the behavioral data. The evaluation done on

the Majority Vote labels shows a 79% correct assignment. The Trojan type is mainly responsible for the

high percentage as it represents the majority of the samples. Even though this type represents a broad

spectrum of malware, it can also contain other malware inside. However due to the project limitations in

terms of virtualization and Internet access, these sub-types may or may not be present in the behavioral

data and thus already introducing a gap between the labels and collected data. Spyware, Rootkit, Virus

and Worm represent the bottom-line in terms of samples, from the Majority Vote. Their definition from

Section 2.2.2 (p. 8) suggests that based on their intended actions they will exhibit different behaviors.

The results shown in Table 7.6 show that there is no discrimination between these types and Trojan

where almost all instances are assigned to the aforementioned cluster.

However, by analyzing the created SOM map, it achieves the shape of global malware distribution, where

approximately 71% of malware are Trojans, 16% are Viruses, 8% Worms and the rest 1%, representing

other malicious software, see [BullGuard, 2015]. This assumption cannot be verified unless extensive

analysis is done on each created cluster.

This leads to the conclusion that the information stored in the clusters created by the SOM algorithm

using 2x2 grid on the feature combination does not contain the types of malware extracted from the

AV vendors. The Trojan instances are mostly the ones which spread in different groups along with a

small portion of Adware and Backdoor instances. It can be seen that generated clusters do not follow

distribution of the Majority Vote nor Microsoft labels. Due to the small grid size it can be assumed that

the clusters contain a generalized description of the malware behavior based on the selected features.

Future research must be done for each cluster in order to determine what malicious actions the samples

within are taking. The 2x2 SOM has also been evaluated on labels using families. The results can be

seen in appendix G (p. 119).

XXXXXXXXXXXLabels
Cluster

C1 - N C2 - W C3 - B C4 - T

Trojan 432 749 391 122987

Backdoor 1 43 140 18532

Adware 30 0 15 8238

Malware 0 1 3 2168

Worm 1 4 10 1605

Virus 0 0 0 645

Rootkit 0 0 3 178

Spyware 0 0 0 7

Table 7.6: Evaluation matrix for 2x2 SOM grid on Majority Labels.

89 7.3. ALGORITHM EVALUATION



CHAPTER 7. EVALUATION

7.3.2 1 by 5 Grid
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Figure 7.4: Visualization of clusters on a 1x5 grid.

The 1x5 SOM grid size has generated five clusters based on the behavioral data and matches the number

of distinct types seen in the Microsoft labeling. By observing Figure 7.4 and analyzing Table 7.7 it can

be denoted that the majority of instances assigned to a single cluster has not changed in a significant way

in comparison with the 2x2 grid. Comparing the two evaluation matrices it can be seen that 237 samples

from the Trojan cluster have been assigned to the newly created cluster. A possible explanation could

be that, as a new node has been introduced, the 237 samples have chosen it as their BMU and modified

its weight, moving it away from the node defining cluster number four containing most of the instances.

Based on the evaluation, and assuming that the labels are correct, the behavior clusters do not define the

extracted AV types of the malware as they do not match neither of the distributions seen in Microsoft

or Majority vote labeling techniques. However it can be seen that as the number of nodes is increasing,

the cluster containing the majority of the samples is divining in smaller groups resulting in a better

discrimination of the behavior data by the SOM algorithm.

XXXXXXXXXXXLabels
Cluster

C1 - N C2 - A C3 - W C4 - T C4 - B

Trojan 432 237 748 122751 391

Backdoor 1 17 43 18515 140

Adware 0 35 0 8203 15

Malware 0 4 1 2164 3

Worm 1 2 4 1603 10

Virus 0 1 0 644 0

Rootkit 0 1 0 177 3

Spyware 0 0 0 7 0

Table 7.7: Evaluation matrix for 1x5 SOM grid on Majority Labels.
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7.3.3 2 by 4 Grid
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Figure 7.5: Visualization of clusters on a 2x4 grid.

The 2x4 SOM algorithm generates eight clusters based on the presented behavioral data and matches

the number of distinct types present in the Majority Vote. The evaluation done on these labels shows

an accuracy of 71%. Comparing with the previous representation on a 2x2 grid, the results seem to

have the same shape, where the instances are mostly assigned to the Trojan cluster, with a decrease

of approximately 30,000 samples. However as the algorithm is non-deterministic it is believed that the

created maps cannot be directly correlated in terms of the location of the clusters. This is due to the

fact that the weights of the nodes are randomized and no pseudo-random algorithm is applied in order

to assign the same starting weights for different runs. Even though based on Figure 7.5, the shape of the

map follows the same pattern, it can be noticed that different groups tend to emerge from the previously

created clusters. Table 7.8 sustains the idea by observing the values of cluster six, where a small portion of

Trojan, Backdoor and Adware are assigned to it. Nevertheless the malicious types consisting of Spyware

and Rootkit still fall in the Trojan majority cluster, even though their definitions state that they perform

unique tasks that should discriminate them from other types, as described in Section 2.2.2 (p. 8). On

the other hand, Virus and Worm have split to different clusters denoting that a more detailed clustering

is done with this chosen grid size and differences in behavior can be better discriminated.

As more clusters have been created it is safe to assume the this grid size can cluster the behavior of

malware in a more detailed manner. Even with this increase in the level of detail, the information within

these clusters do not seem to hold the AV defined types of the malware. It can be discussed that the

values seen for the selected 33 features are close together making the discrimination between similar

groups a hard task to achieve.
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XXXXXXXXXXXLabels
Cluster

C1 - N C2 - W C3 - M C4 - T C5 - N C6 - A C7 - B C8 - N

Trojan 701 126 236 109573 406 12608 391 518

Backdoor 42 4 17 17995 1 494 140 23

Adware 0 0 35 7774 0 415 15 14

Malware 1 2 4 2092 0 69 3 1

Worm 4 13 2 1471 0 115 10 5

Virus 0 0 1 513 0 131 0 0

Rootkit 0 0 1 174 0 3 3 0

Spyware 0 0 0 7 0 0 0 0

Table 7.8: Evaluation matrix for 2x4 SOM grid on Majority Labels.

7.3.4 4 by 4 Grid

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

4 4 4 4 4 4 4 4 4 4 4 14141414141414141414141414144 4 4 4 4 1414141414148 2 2 2
4 4 4 4 4 4 4 4 4 4 4 14141414141414141414141414144 4 4 4 4 1414141414148 2 2 2
4 4 4 4 4 4 4 4 4 4 4 141414141414141414144 4 4 4 4 4 4 4 4 1414141414148 2 2 2
4 4 4 4 4 4 4 4 4 4 4 4 141414141414144 4 4 4 4 4 4 4 4 4 4 141414141414148 8 8
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 14141414141414141414
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 124 4 4 4 4 4 4 4 4 4 4 4 141414141414144 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1212124 4 4 4 4 4 4 4 4 4 4 1414141414144 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 121212124 4 4 4 4 4 4 4 4 4 4 14141414144 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 12121212124 4 4 4 4 4 4 4 4 4 4 141414144 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 121212124 4 4 4 4 4 4 4 4 4 4 1414144 4 4 4
4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 120 0 4 4 4 4 4 4 4 4 4 4 4 144 4 4 4 4
4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6
4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 6 6
4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 6 1010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 6 101010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 10101010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 6 10101010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1212126 6 101010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12121212126 101010
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12121212126 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121212126 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 121212126 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 3 3
11110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 3 3
1111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15150 0 0 6 6 6 3
1111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151515150 6 6 6 6 6
111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15151515156 6 6 6 6
11111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15151515156 6 6 6 6
11111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151515156 6 6 6 6
11111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1515156 6 6 6 6
11111111111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 6 6 6 6
7 7 11111111110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 6 6 6
7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 6 6 6
7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 6 6
7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 9 9 9 0 6
7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 1313
7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 9 9 9 9 1313
7 7 7 7 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 1313
7 7 7 7 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 1313

Figure 7.6: Visualization of clusters on a 4x4 grid.
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The 4x4 SOM algorithm generates 16 clusters based on the presented behavioral data and represents

a close match to the Gap Statistics calculation. The evaluation done on the Majority Vote shows an

accuracy of 69% representing the lowest value in comparison with previously tested grid sizes. However

the difference between previous tested grid sizes is not that noticeable given the fact that the number

of clusters has doubled. Even though it is clear that the accuracy of the evaluation tends to decrease

as the number of clusters increases, the amount of information that can be extracted from the mal-

ware behavior increases considerably. The cluster previously containing a large number of Trojans, is

now split into multiple clusters containing similar behaviors based on the selected features. The Trojan

accuracy has dropped but at the same time, the accuracy of Backdoor has increased. Due to the num-

ber of clusters, the evaluation matrix seen in Table 7.9, contains only the 8 most important clusters to

evaluate. The full evaluation matrix for this grid size has been included in Appendix H (p. 120). The

number of instances tend to split from the cluster holding the majority of samples. This denotes that,

for this grid size, the behavior of the malware is defined in more detail allowing for new clusters to emerge.

XXXXXXXXXXXLabels
Cluster

C1 - N C2 - A · · · C5 - B · · · C13 - T · · ·

Trojan 381 21384 · · · 1406 · · · 97210 · · ·
Backdoor 1 462 · · · 239 · · · 17542 · · ·
Adware 0 2237 · · · 19 · · · 5889 · · ·
Malware 0 150 · · · 20 · · · 1976 · · ·
Worm 0 146 · · · 23 · · · 1390 · · ·
Virus 0 297 · · · 1 · · · 343 · · ·

Rootkit 0 5 · · · 0 · · · 170 · · ·
Spyware 0 2 · · · 0 · · · 5 · · ·

Table 7.9: Evaluation matrix for 4x4 SOM grid on Majority Labels.

It is believed that as the grid size increases, more small groups will emerge from the Trojan cluster as

the SOM algorithm will be able to define the behavior in more detail. Overall it can be concluded that

the selected features do not exhibit the behavior of types as defined by Microsoft or by the Majority

Vote done on multiple AV vendors. It can be discussed that classifications based on AV labels, done in

previous research papers cannot be validated based on the results shown in this paper. Even though, in

some cases, high accuracy can be achieved, the algorithm was forced to learn the structures of behavioral

data from static generated labels that present no similarities.

This section has described the evaluation done on multiple SOM grid sizes. The next section will introduce

the idea of cluster-based classification, where, using a proof of concept, it is shown how the accuracy of

classification can achieve high discriminating performance if the labels are built from the behavioral data.
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7.4 Cluster-based Classification

Concluded in previous section, the generated clusters do not exhibit the behavior of AV generated malware

types but they still contain information about some behavior of the malicious software. This section

proposes a new technique of classification based on clusters created using Self Organizing Map. The

clustering techniques used can improve the analysis of malware behavior by clustering the data based on

similar behavior. Samples from the created clusters can then be further analyzed to understand their

purpose by exploring patterns of selected features for each generated cluster. If such definitions can be

created, the clustering done in this project can have great implications when classification is applied. The

steps for improving classification using clustering can be described as follows

1. Extract features describing the behavior of the malicious program as presented in Section 2.2.2 (p. 8).

2. Cluster the data selecting a grid size based on the required level of detail. A smaller grid size

will result in more general clusters while an increase in the grid size will result in capturing more

detailed clusters as concluded in Section 7.3 (p. 88).

3. Analyze each created cluster and assign labels based on the information they contain. This could

potentially improve the performance of malware analyzing in terms of time required to statically

analyze samples.

4. Train a supervised algorithm using the data and labels generated from the created clusters.

5. Classify new malware based on their behavior and assign appropriate classes.

6. Repeat step 5 for a determine number of samples. Regenerate the clusters by going to step 2 after

a defined period of time or after a defined number of samples.

In order to exemplify such a technique and demonstrate the increase in accuracy based on the collected

behavioral data, a short example will be presented where the data-set using Microsoft Labels will be

trained using Random Forests and evaluated based on a train/test split. As it is out of the scope in

this project to determine the best classification algorithm and its options, Random Forests with 160

trees will be used as the Machine Learning algorithm based on the research done in our previous work,

[Pirscoveanu et al., 2015]. The evaluation techniques for classification methods differ from the ones used

for clustering. Thus, the AUC value, F1-Measure, Precision, Recall, True Positive and Negative rates

along with confusion matrices, as described in [Pirscoveanu et al., 2015], will be used to determine the

level of improvement between using classification on the labels provided by AV vendors and labels provided

by clustering the behavioral data.

Microsoft Classification

In order to perform classification and evaluate the results, the data-set using Microsoft labels has been

evenly split into 66% training and 34% testing, where both subsets contain a fair number of samples from

each label. After the split, the training set is used to construct the model using RF algorithm with 160

trees and the testing set is used to evaluate the classifier. The first classification test results can be seen

in Figure 7.7.

7.4. CLUSTER-BASED CLASSIFICATION 94



CHAPTER 7. EVALUATION

Clean Trojan Backdoor T Downloader PSW

Condition

C
le

a
n

T
ro

ja
n

B
a
ck

d
o
o
r

T
 D

o
w

n
lo

a
d
e
r

P
S
W

P
re

d
ic

te
d

14372 2515 590 528 218

2227 7732 549 899 1379

636 603 6598 266 284

744 530 236 6061 136

221 432 206 206 4924 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.7: Confusion matrix using Microsoft Labels classification

The diagonal of the Confusion matrix defines the number of True Positives, the rows define the False

Positives and the columns the False Negatives. Even though the samples are uniformly distributed

based on Microsoft Labeling it can be seen that the algorithm fails to capture the behavior based on

the provided AV labels. Trojan represents the worst classification with more than 7,000 FPs and FNs

which represents approximately 50% classification accuracy. Other types are better classified however,

the Clean type represents samples that have not been detected as malware. As discussed at the beginning

of the project, Microsoft has a detection rate of 80%, which forces the classification to be incorrect given

that all the samples are known to be malicious programs. The evaluation results can be seen in Table 7.10.

A few problems that may occur when classifying types using labels denoted from static analysis and

behavioral data collected using dynamic analysis could be:

• Similar values denoted from the behavioral data can have different labels forcing the classification

to randomize its choice if a decisive vote cannot be made.

• Labels could be created using different properties of the data which could not be compatible with

the behavioral data, as concluded in Section 7.3 (p. 88).
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PPPPPPPPPClass
Eval.

TP Rate FP Rate Precision Recall F-Measure ROC Area

clean 0.790 0.110 0.789 0.790 0.789 0.937

trojan 0.655 0.122 0.605 0.655 0.629 0.896

backdoor 0.807 0.040 0.787 0.807 0.797 0.965

trojandownloader 0.761 0.036 0.786 0.761 0.774 0.955

pws 0.709 0.023 0.822 0.709 0.762 0.967

Weighted Avg. 0.748 0.080 0.751 0.748 0.749 0.939

Table 7.10: Evaluation done on Classifying based on Microsoft Labels.

Evaluating in more detail the results of the classification seen in Table 7.10 it can be observed that the

values of the False Positives if fairly large consolidating the statements made in previous paragraph. Even

with high values of FPR and low values of Precision the AUC values suggests that there is a fair discrimi-

nation between types which somehow contradicts the large number of false positives seen in the evaluation.

Defining that it might not be the best approach to classify behavioral data using AV generated malware

types, the project proposes a cluster-based classification approach where the labels of the classification

are define by the clusters created. Figure 7.8 presents the confusion matrix of the classification done

using RF on the created clusters using SOM algorithm on a 1x5 grid size. The classes have been named

accordingly to the cluster assigned in the unsupervised learning.
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Figure 7.8: Confusion matrix using cluster-based classification on 5 clusters
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It can bee seen that even though most of the class have very low samples in comparison with class number

four, they are correctly classified with very low or no FPs and FNs. This claim is backed up by Table 7.11

where it can be seen that the classifier performs close to perfection in every aspect. It can be discussed

that if a larger grid size of SOM was used when classifying the clusters, the classification would perform

even better as the clusters would describe a more detailed representation of the behavior. This denotes

that supervised algorithms can correctly classify data with low samples if the labels are correctly defined.

The only challenge that this approach provides is the lack of created class information, which denotes

that further research must be done in order to determine the meaning of each cluster. The purpose

of the malware assigned to a particular class can be extracted by carefully analyzing the features that

contributed to creating the cluster.

PPPPPPPPPClass
Eval.

TP Rate FP Rate Precision Recall F-Measure ROC Area

cluster1 1.000 0.000 1.000 1.000 1.000 1.000

cluster2 0.996 0.000 0.997 0.996 0.997 1.000

cluster3 0.976 0.000 0.996 0.976 0.986 1.000

cluster4 1.000 0.004 0.999 1.000 1.000 1.000

cluster5 1.000 0.000 1.000 1.000 1.000 1.000

Weighted Avg. 0.999 0.004 0.999 0.999 0.999 1.000

Table 7.11: Evaluation done on cluster-based classification.

This section has presented the proposed approach of cluster based classification where it has been shown,

using proof-of-concept that classifications done on cluster created classes can better discriminate between

similar groups. The next section will present the discussions that may arise from using this approach.

Before starting a discussion on ways that the project can improve the clustering of malware behavior, a

short summary of the conclusions depicted in this chapter are listed below:

• The number of clusters resulted from Gap Statistics and different grid sizes of Self Organizing Map

suggested that there is no link between the labels generated by AV vendors and the groups created

by the unsupervised Machine Learning algorithms.

• The information withing the Combination matrix provides a more detailed representation of mal-

ware behavior despite the lower accuracy when evaluated using Self Organizing Map on Majority

Vote labels.

• After evaluating the labels using various SOM grid sizes it has been concluded that no link is present

between the AV generated labels and the behavioral data. However, the SOM algorithm is able to

distinguish between different malware behaviors as the number of nodes used increases.

• Having decided that no link exists between AV labels and malware behavioral data, the project

has proposed a cluster-based classification approach where labels are generated based on created

clusters. It has been concluded that classification can be improved if the classes are well defined

and describe the data.
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7.5 Discussion

This sections contains discussions to highlighted problems in the Evaluation Chapter. Furthermore, it

will be discussed how the project can be improved in future-work by presenting a complete behavioral

based system that can detect and group malware using only behavioral data.

It can be discussed that based on the results depicted in this chapter, the clusters do not discriminate

between malicious types provided by AV vendors possibly due to:

• Selected Features - other feature representations should be researched that may better describe

the types. A potential solution emerges by manually selecting the features that might contribute

to grouping behavior based on the types following their definition presented in Section 2.2.2 (p. 8).

• Limitations imposed by the project in terms of Internet connectivity and virtualization. As many

malicious types require an active Internet connection to perform their intended task, this behavioral

data was not present in this project but may have been present if the malware infected a real-world

machine with full Internet access.

• Behavioral data collected by running the malware in a secure environment may be different from

the data used by AV vendors to label the detected samples. As 18% of malicious software detect

that are being executed in a contained environment, see [Wueest, 2014], it can be discussed that

their behavior may change, resulting in different information collected from behavioral analysis.

The clusters created by Self Organizing Map contain behavioral data that need to be further analyzed in

order to determine what kind of information they contain. Upon further researching the cluster contents,

cluster-based classification can then be applied to classify new malware samples. The evaluation of the

cluster-based classification should present improved accuracy over classification using AV labels. This can

be explained by the fact that the classes were created based on the data and the classification algorithm

will have high predictive power as the classes are well separated.

Determined from the long running times, a multi-threaded implementation of SOM might be a better

solution to be able to further tweak its parameters, use significantly larger grid sizes and at the same

time meet the requirements of analyzing a large number of malware samples in a short period of time.

Future work should as well test other implementations of SOM:

• LVQ-SOM - where the closest BMU positively updates its weights, just like the tested SOM, however

other nodes will negatively update their weights. These changes will have a significant impact on

creation of clusters as the winning node will move closer to the input vector while other node will

move away from it, allowing better discrimination between similar groups of behavioral data.

• Batch-SOM - represents another implementation of SOM where all input vectors are presented to

the map before the updating step begins and not incrementally as it has been used in this project.

Furthermore it can be discussed that clustering malware behavior represents an important piece in the

battle with malicious software. It can be used after detection and before classification as described in

Figure 7.9.
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Figure 7.9: Proposed system for future work.

Figure 7.9 can be split in three main parts:

1. Detection - is denoted in the diagram as a yes or no decision. It can be implemented using either

a binary classification or as a two cluster unsupervised learning algorithm. For classification a

database of cleanware is needed along with their behavioral information. For unsupervised learning,

the approach is a bit more difficult as the correct features must be selected in order to make the

binary decision between two clusters as accurate as possible.

2. Clustering - It is dependent on a database of known malware along with their respective behavioral

data in order to cluster and create an input for the classification algorithm. This module was

implemented and evaluated in this project.

3. Classifcation - Requires the input of the clustering algorithm and its purpose is to use the infor-

mation provided by the clustering algorithm to evaluate and assigns labels to new malware at a

much faster rate.

This section has presented the discussion part of the project where potential improvements for future

work have been addressed. Furthermore, a unique detection and labeling system has been proposed that

could potentially keep up with the exponential increase of malware infections.
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Chapter 8
Conclusion

In this project, the problem of classification using inconsistent labels has been addressed based on the

results gathered from previous work [Pirscoveanu et al., 2015]. Observing the differences in detection

and False Positive Rates that differ between AV vendors, the importance of correct labeling when dealing

with malicious infections has been researched. While analyzing the already known malware types, it

has been noted that different malicious software have a large range of purposes and different infection

techniques that may not always be detected using the common static analysis tools. Along with the

problem of an increasing amount of malware each day, the need for an automated system that can cope

with the increasing number of malware, while at the same time grouping similar malware, has been

identified. The advantages of the latter are to prevent infections, or clean an already infected system

with the appropriate method without making use of AV generated labels. Having already decided that

the malware behavior data will be generated from a dynamic based analysis using Cuckoo and multiple

virtualized environments, the following problem statement was formed:

How to cluster malware behavior in order to discover similarities, using Machine Learning applied on

behavioral data generated using dynamic analysis?

Having collected behavioral data and detection labels from approximately 270,000 malware samples, AV

vendors were evaluated on Completeness, Consistency and Correctness criteria. Based on the very low

False Positive Rate and the use of CARO naming convention, Microsoft was selected as the provider of

labels for evaluation. Furthermore, a Majority Vote between all vendors using a tokenized Levenshtein

ratio was also to evaluate and determine the similarities between groups generated via unsupervised

learning. Passed and Failed API calls along with their respective return codes were used to generate the

behavioral profile of each malicious sample after which they were represented in matrix form, by their

associated frequency. Given that the number of features was fairly large, multiple feature selection meth-

ods were analyzed. This analysis resulted in a co-variance based PCA to be chosen. The Gap Statistics

method was selected for computing the number of clusters with the Self Organizing Map as preference

for clustering the selected features. This provides an innovative way of preserving topological properties

of higher dimensional data into a two dimensional elastic grid.

The results were split into optimal number of clusters, feature and algorithm evaluations that have shown

interesting results in terms of consistency and created groups. The optimal number of clusters based on

the evaluated data-set has shown no similarities with the number of different AV generated types present

in the extracted labels. The Combination matrix used for evaluation of the SOM algorithm results, was

selected based on the information that the features may hold. By ranging the grid size of the created

map, the results were evaluated in terms of similarity of clusters with type labels from the Majority vote,

as well as based on the information extracted from the visualization of the map. It has been concluded
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that the created groups do not match the type labels presented by the AV vendors, but instead they

hold behavioral information that, with future research, may determine important information about the

intentions of the malware.

It may be interesting in future studies to examine the use of different feature representation for creating

the behavioral profile of the malware, as this could lead to better groups generated by the clusterer.

Furthermore, implementing a multi-threaded variant of Self Organizing Map may result in exploring the

accuracy of much larger grid sizes that should define a better delimitation between malware behavior

groups.

Even though the evaluation has returned negative results in terms of similarities between the behavioral

data of the clusters and the extracted labels, an initial proposal of a cluster-based classification system

was introduced. This method mainly relies on creating classes from collected behavioral data, which can

be used in a classification algorithm that will perform as intended. This provides a starting point for

future classification work that will use cluster created labels from dynamically collected data instead of

labels provided by the AV vendors.
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Appendix A
Detection Rate Code

Code snippet A.1: Extracting AV results to PKL serialized file

1 def getDetectionRate(db, limit=2):

2

3 pushLog("Starting Extraction of AV labels. Limit %s" % limit)

4 customLog("Starting Extraction of AV labels. Limit %s" % limit)

5

6 start_time = datetime.now()

7 temp = db.analysis.find_one()

8

9 detected = list()

10 labels = list()

11 samples = list()

12

13

14 listOfAV = list(temp[’virustotal’][’scans’].keys())

15 leng = len(listOfAV)

16

17 AVquery = db.analysis.find().limit(limit)

18

19 pbar = initProgress("Extracting AV: ", AVquery.count(True))

20 d = 0

21

22 for item in AVquery:

23

24 tmpDetected = [False] * leng

25 tmpLabels = [""] * leng

26

27 for ii in range(0, len(listOfAV)):

28 try:

29 if item[’virustotal’][’scans’][listOfAV[ii]][’detected’] == True :

30 tmpDetected[ii] = True

31 tmpLabels[ii] = str(item[’virustotal’][’scans’][listOfAV[ii]][’result’])

32 #tmpDetected[ii] = item[’virustotal’][’scans’][listOfAV[ii]][’detected’]

33 #tmpLabels[ii] = item[’virustotal’][’scans’][listOfAV[ii]][’result’]

34 except:

35 tmpDetected[ii] = False

36 tmpLabels[ii] = ""

37 sample = str(item[’target’][’file’][’name’])

38

39 detected.append(tmpDetected)

40 labels.append(tmpLabels)

41 samples.append(sample)

42
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43 #print detected

44 #print labels

45 #print samples

46

47 pbar.update(d+1)

48 d += 1

49

50 end_time = datetime.now()

51 pushLog("Finished Extracting AV labels. " + str(AVquery.count(True)) + " done in " + ’{}

’.format(end_time - start_time))

52 customLog("Finished Extracting AV labels. " + str(AVquery.count(True)) + " done in " + ’

{}’.format(end_time - start_time))

53

54 try:

55

56 AVMat = dict()

57 AVMat[’samples’] = samples

58 AVMat[’detected’] = detected

59 AVMat[’labels’] = labels

60 AVMat[’AV’] = listOfAV

61

62 customLog(’Saving AV results to \’Representations/AVDetection.pkl\’’)

63 with open(’AVDetection.pkl’, ’wb’) as handle:

64 pickle.dump(AVMat, handle)

65

66 #mat4py.savemat(’Representations/AVDetection.mat’, AVMat)

67 print ’Saved’

68

69 pushLog("Saved data to PKL file")

70 except Exception as e:

71 pushLog("Failed to save data to PKL file." + str(e))

72 print e

113



Appendix B
ARFF Exporter

Code snippet B.1: ARFF export with and without nominal classes.

1 def dumpArff(filez, dataz,relation ,names):

2 f = open(filez, ’wb’)

3 data = dict()

4 data[’data’] = dataz

5 attrList = [0] * len(names)

6 for x in range(0, len(names)):

7 attrList[x] = (names[x] , u’NUMERIC’)

8 data[’attributes’] = attrList

9 data[’relation’] = relation

10 arff.dump(data, f)

11 f.close()

12

13 def dumpArffNominal(filez,dataz,relation,names,nom):

14 f = open(filez, ’wb’)

15 data = dict()

16 data[’data’] = dataz

17 attrList = [(u’class’ , list(nom))]

18 print attrList

19 data[’attributes’] = attrList

20 data[’relation’] = relation

21 arff.dump(data, f)

22 f.close()
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Appendix C
Complete API List

API Name Occurences API Name Occurences API Name Occurences

NtOpenKeyEx 123,803,970 DeleteFileA 1,349,497 NtDeleteKey 52,316

NtQueryValueKey 112,343,218 CreateThread 1,249,805 NtSuspendThread 50,233

LdrGetProcedureAddress 101,506,006 RegDeleteValueW 1,231,172 accept 47,631

GetSystemMetrics 86,133,172 NtEnumerateValueKey 1,025,003 InternetOpenUrlA 47,110

NtQueryKey 56,187,107 select 943,001 GetAddrInfoW 46,803

RegCloseKey 53,520,491 WriteConsoleA 665,686 InternetReadFile 43,933

RegOpenKeyExW 49,033,928 ReadProcessMemory 658,348 NtSetContextThread 38,304

RegQueryValueExA 30,247,859 ExitThread 635,374 recvfrom 37,216

NtQueryInformationFile 25,025,170 NtSetValueKey 610,604 CreateRemoteThread 36,980

RegQueryValueExW 24,425,249 WriteProcessMemory 580,392 ShellExecuteExW 35,902

NtDelayExecution 23,578,113 NtResumeThread 563,264 NtCreateNamedPipeFile 33,554

NtSetInformationFile 21,445,399 recv 506,197 WSASocketW 30,961

NtReadFile 21,293,746 socket 521,827 InternetConnectA 24,965

NtCreateFile 21,146,694 NtOpenDirectoryObject 497,575 StartServiceA 24,400

LdrLoadDll 18,424,469 connect 482,762 HttpOpenRequestA 23,487

RegOpenKeyExA 18,178,123 DeleteFileW 480,097 HttpSendRequestA 23,239

NtReadVirtualMemory 16,452,136 closesocket 463,183 NtWriteVirtualMemory 22,770

NtEnumerateKey 15,479,888 anomaly 440,898 InternetOpenUrlW 20,619

NtOpenFile 14,993,385 VirtualProtectEx 434,606 CreateServiceA 18,901

ZwMapViewOfSection 13,923,072 RegDeleteValueA 432,631 InternetConnectW 18,723

NtDeviceIoControlFile 13,671,481 ExitProcess 430,560 HttpOpenRequestW 18,651

NtOpenKey 13,377,187 setsockopt 380,427 HttpSendRequestW 18,584

FindWindowA 13,324,162 FindWindowExW 367,097 sendto 17,740

FindFirstFileExW 12,355,900 ioctlsocket 315,134 MoveFileWithProgressW 14,330

NtOpenMutant 11,131,074 CopyFileA 314,629 CopyFileW 12,812

LdrGetDllHandle 10,949,922 gethostbyname 311,989 listen 12,051

NtWriteFile 10,479,331 OpenSCManagerA 278,519 WSASend 11,050

RegEnumValueW 9,494,396 WSAStartup 275,992 RegDeleteKeyW 9,898

NtQueryDirectoryFile 8,905,546 OpenServiceA 268,999 RemoveDirectoryW 5,440

NtCreateSection 6,677,562 send 266,092 NtSaveKey 4,890

GetCursorPos 6,332,962 OpenSCManagerW 262,838 NtTerminateProcess 4,633

NtFreeVirtualMemory 5,863,378 RegDeleteKeyA 257,889 NtTerminateThread 4,284

NtProtectVirtualMemory 4,699,861 OpenServiceW 253,816 StartServiceW 2,452

FindWindowExA 4,448,321 NtOpenThread 211,568 CopyFileExW 1,977

RegSetValueExA 4,004,339 RegQueryInfoKeyA 210,412 WSASocketA 1,966

RegCreateKeyExW 3,511,255 SetWindowsHookExW 207,362 system 1,638

RegEnumKeyW 3,334,958 getaddrinfo 198,370 DeleteService 1,495

NtOpenSection 3,064,300 NtCreateThreadEx 161,894 DnsQuery A 1,129

CreateDirectoryW 2,899,609 InternetCloseHandle 155,073 ExitWindowsEx 783

RegCreateKeyExA 2,786,542 bind 147,790 WSARecvFrom 434

CreateProcessInternalW 2,517,711 RemoveDirectoryA 130,098 CreateDirectoryExW 395

RegEnumValueA 2,491,840 UnhookWindowsHookEx 110,979 NtDeleteValueKey 338

RegEnumKeyExA 2,323,743 LookupPrivilegeValueW 107,869 CreateServiceW 306

NtCreateKey 2,200,170 SetWindowsHookExA 96,978 FindFirstFileExA 282

FindWindowW 1,912,765 URLDownloadToFileW 89,130 RtlCreateUserThread 205

RegSetValueExW 1,858,380 WSARecv 84,858 InternetWriteFile 148

WriteConsoleW 1,817,077 shutdown 73,446 NtLoadKey 77

RegEnumKeyExW 1,676,315 NtGetContextThread 72,976 WSASendTo 59

DeviceIoControl 1,634,702 InternetOpenA 70,145 NtMakeTemporaryObject 57

RegQueryInfoKeyW 1,479,221 ControlService 63,210 NtQueryMultipleValueKey 43

NtCreateMutant 1,479,090 InternetOpenW 53,564 NtSaveKeyEx 16
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Passed API List

API Name Occurences API Name Occurences API Name Occurences

LdrGetProcedureAddress 100,617,968 ExitThread 635,374 CreateRemoteThread 29,138

GetSystemMetrics 86,133,172 DeleteFileA 613,862 NtSuspendThread 28,405

NtQueryKey 54,509,185 NtSetValueKey 610,362 URLDownloadToFileW 26,986

NtQueryValueKey 47,218,656 WriteProcessMemory 561,311 recvfrom 25,896

RegCloseKey 47,110,126 NtResumeThread 559,937 InternetConnectA 24,074

NtOpenKeyEx 44,528,796 ReadProcessMemory 527,199 HttpOpenRequestA 22,799

RegOpenKeyExW 27,219,780 socket 521,811 NtWriteVirtualMemory 22,735

NtDelayExecution 23,578,113 NtOpenDirectoryObject 497,575 ShellExecuteExW 19,593

NtSetInformationFile 21,406,873 CreateProcessInternalW 475,746 shutdown 18,724

NtReadFile 20,645,451 recv 459,896 InternetConnectW 18,682

NtCreateFile 18,658,372 closesocket 444,933 HttpOpenRequestW 18,651

LdrLoadDll 17,898,802 anomaly 440,898 sendto 17,672

NtQueryInformationFile 17,308,131 VirtualProtectEx 431,079 CreateServiceA 17,003

NtReadVirtualMemory 16,451,461 ExitProcess 430,560 StartServiceA 14,677

RegOpenKeyExA 15,473,157 setsockopt 377,506 InternetReadFile 11,569

RegQueryValueExA 15,148,061 ioctlsocket 313,836 MoveFileWithProgressW 11,257

NtEnumerateKey 14,242,601 gethostbyname 310,106 WSASend 11,049

ZwMapViewOfSection 13,821,942 OpenSCManagerA 278,517 CopyFileW 9,935

FindFirstFileExW 12,355,900 WSAStartup 275,969 RemoveDirectoryA 9,292

NtOpenKey 11,409,990 OpenSCManagerW 262,831 listen 6,292

NtWriteFile 10,400,296 OpenServiceW 247,610 RegDeleteValueA 5,132

NtOpenFile 9,909,508 send 247,146 NtSaveKey 4,888

LdrGetDllHandle 9,203,419 FindWindowA 219,741 ControlService 4,693

RegEnumValueW 9,066,952 OpenServiceA 214,051 RemoveDirectoryW 4,299

RegQueryValueExW 8,000,332 NtOpenThread 210,536 NtTerminateThread 3,037

NtCreateSection 6,664,476 RegQueryInfoKeyA 207,957 RegDeleteKeyW 2,960

NtQueryDirectoryFile 6,563,411 SetWindowsHookExW 207,361 NtTerminateProcess 2,897

GetCursorPos 6,332,962 FindWindowExW 198,590 WSASocketA 1,966

NtDeviceIoControlFile 6,317,501 getaddrinfo 162,474 CopyFileExW 1,663

NtFreeVirtualMemory 5,801,849 FindWindowW 162,058 StartServiceW 1,658

NtProtectVirtualMemory 4,114,030 NtCreateThreadEx 160,692 system 1,638

RegSetValueExA 3,980,099 InternetCloseHandle 143,024 DnsQuery A 1,030

RegCreateKeyExW 3,511,034 bind 134,005 DeleteService 969

RegEnumKeyW 2,946,500 CreateDirectoryW 123,384 HttpSendRequestW 400

RegCreateKeyExA 2,780,508 CopyFileA 108,360 CreateDirectoryExW 388

NtCreateKey 2,179,170 LookupPrivilegeValueW 107,724 CreateServiceW 293

NtOpenSection 2,013,254 DeleteFileW 95,744 FindFirstFileExA 282

RegSetValueExW 1,857,952 SetWindowsHookExA 95,090 accept 254

RegEnumKeyExA 1,824,804 RegDeleteValueW 94,810 NtDeleteValueKey 218

WriteConsoleW 1,817,077 InternetOpenA 70,101 RtlCreateUserThread 205

RegEnumKeyExW 1,562,106 connect 63,726 InternetWriteFile 148

RegEnumValueA 1,548,660 WSARecv 54,148 WSARecvFrom 84

RegQueryInfoKeyW 1,479,023 InternetOpenW 53,563 NtLoadKey 75

NtCreateMutant 1,476,677 NtDeleteKey 51,626 WSASendTo 59

DeviceIoControl 1,456,921 NtGetContextThread 48,880 NtMakeTemporaryObject 54

FindWindowExA 1,291,115 GetAddrInfoW 46,740 NtQueryMultipleValueKey 29

NtOpenMutant 1,273,191 UnhookWindowsHookEx 42,886 NtSaveKeyEx 10

CreateThread 1,247,037 RegDeleteKeyA 40,796 NtDeleteFile 9

NtEnumerateValueKey 987,772 NtSetContextThread 38,039 NtCreateUserProcess 5

select 920,992 NtCreateNamedPipeFile 33,553 InternetOpenUrlA 4

WriteConsoleA 665,686 WSASocketW 30,961 NtCreateProcess 2
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Failed API List

API Name Occurences API Name Occurences API Name Occurences

NtOpenKeyEx 79,275,174 accept 47,377 HttpOpenRequestA 688

NtQueryValueKey 65,124,562 InternetOpenUrlA 47,106 NtReadVirtualMemory 675

RegOpenKeyExW 21,814,148 recv 46,301 DeleteService 526

RegQueryValueExW 16,424,917 NtSetInformationFile 38,526 RegSetValueExW 428

RegQueryValueExA 15,099,798 NtEnumerateValueKey 37,231 WSARecvFrom 350

FindWindowA 13,104,421 getaddrinfo 35,896 CopyFileExW 314

NtOpenMutant 9,857,883 InternetReadFile 32,364 NtSetContextThread 265

NtQueryInformationFile 7,717,039 WSARecv 30,710 NtSetValueKey 242

NtDeviceIoControlFile 7,353,980 RegSetValueExA 24,240 RegCreateKeyExW 221

RegCloseKey 6,410,365 NtGetContextThread 24,096 RegQueryInfoKeyW 198

NtOpenFile 5,083,877 HttpSendRequestA 23,238 LookupPrivilegeValueW 145

FindWindowExA 3,157,206 select 22,009 NtDeleteValueKey 120

CreateDirectoryW 2,776,225 NtSuspendThread 21,828 DnsQuery A 99

RegOpenKeyExA 2,704,966 NtCreateKey 21,000 sendto 68

NtCreateFile 2,488,322 InternetOpenUrlW 20,619 GetAddrInfoW 63

NtQueryDirectoryFile 2,342,135 WriteProcessMemory 19,081 InternetOpenA 44

CreateProcessInternalW 2,041,965 send 18,946 InternetConnectW 41

NtOpenKey 1,967,197 closesocket 18,250 NtWriteVirtualMemory 35

FindWindowW 1,750,707 HttpSendRequestW 18,184 WSAStartup 23

LdrGetDllHandle 1,746,503 ShellExecuteExW 16,309 socket 16

NtQueryKey 1,677,922 bind 13,785 NtQueryMultipleValueKey 14

NtEnumerateKey 1,237,287 NtCreateSection 13,086 CreateServiceW 13

RegDeleteValueW 1,136,362 InternetCloseHandle 12,049 CreateDirectoryExW 7

NtOpenSection 1,051,046 recvfrom 11,320 OpenSCManagerW 7

RegEnumValueA 943,180 StartServiceA 9,723 NtSaveKeyEx 6

LdrGetProcedureAddress 888,038 CreateRemoteThread 7,842 NtMakeTemporaryObject 3

DeleteFileA 735,635 RegDeleteKeyW 6,938 TransmitFile 3

NtReadFile 648,295 OpenServiceW 6,206 NtLoadKey 2

NtProtectVirtualMemory 585,831 RegCreateKeyExA 6,034 NtSaveKey 2

LdrLoadDll 525,667 listen 5,759 OpenSCManagerA 2

RegEnumKeyExA 498,939 VirtualProtectEx 3,527 WSASend 1

RegDeleteValueA 427,499 NtResumeThread 3,327 NtCreateNamedPipeFile 1

RegEnumValueW 427,444 MoveFileWithProgressW 3,073 NtDeleteFile 1

connect 419,036 setsockopt 2,921 SetWindowsHookExW 1

RegEnumKeyW 388,458 CopyFileW 2,877 InternetOpenW 1

DeleteFileW 384,353 CreateThread 2,768

RegDeleteKeyA 217,093 RegQueryInfoKeyA 2,455

CopyFileA 206,269 NtCreateMutant 2,413

DeviceIoControl 177,781 CreateServiceA 1,898

FindWindowExW 168,507 SetWindowsHookExA 1,888

ReadProcessMemory 131,149 gethostbyname 1,883

RemoveDirectoryA 120,806 NtTerminateProcess 1,736

RegEnumKeyExW 114,209 ioctlsocket 1,298

ZwMapViewOfSection 101,130 NtTerminateThread 1,247

NtWriteFile 79,035 NtCreateThreadEx 1,202

UnhookWindowsHookEx 68,093 RemoveDirectoryW 1,141

URLDownloadToFileW 62,144 NtOpenThread 1,032

NtFreeVirtualMemory 61,529 InternetConnectA 891

ControlService 58,517 StartServiceW 794

OpenServiceA 54,948 ExitWindowsEx 783

shutdown 54,722 NtDeleteKey 690
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Failed API Return Codes List

Return Code Occurences Return Code Occurences

STATUS OBJECT NAME NOT FOUND 159,645,148 STATUS BAD NETWORK NAME 1,018

STATUS WAIT 2 57,588,792 STATUS INVALID PARAMETER 3 1,013

STATUS WAIT 0 25,172,618 STATUS INVALID PARAMETER 2 1,010

STATUS OBJECT TYPE MISMATCH 7,677,093 STATUS INVALID CID 960

0x00000006 7,041,718 0x800c0005 928

STATUS INVALID PARAMETER 3,330,110 STATUS PIPE BROKEN 807

STATUS FILE IS A DIRECTORY 2,912,852 STATUS THREAD IS TERMINATING 777

STATUS NOT FOUND 2,741,337 STATUS OBJECT PATH SYNTAX BAD 614

STATUS BUFFER OVERFLOW 2,644,070 0x800c0004 607

STATUS DLL NOT FOUND 2,253,822 0x800c0007 559

STATUS NO MORE FILES 2,234,140 STATUS UNSUCCESSFUL 551

STATUS PENDING 1,852,968 0x00002afc 534

STATUS BUFFER TOO SMALL 1,678,133 STATUS PARTIAL COPY 509

STATUS NO MORE ENTRIES 1,274,075 0xc0010019 495

0xffffffff 692,869 STATUS CANNOT DELETE 490

STATUS END OF FILE 561,050 STATUS INVALID USER BUFFER 473

STATUS INVALID PAGE PROTECTION 559,705 STATUS DATATYPE MISALIGNMENT 444

STATUS ENTRYPOINT NOT FOUND 541,572 STATUS INVALID DEVICE REQUEST 431

STATUS OBJECT PATH NOT FOUND 464,263 STATUS NOT IMPLEMENTED 429

STATUS INVALID HANDLE 378,056 STATUS INVALID FILE FOR SECTION 357

STATUS ACCESS DENIED 312,494 STATUS MAPPED FILE SIZE ZERO 313

STATUS OBJECT NAME COLLISION 221,508 STATUS OBJECT PATH INVALID 228

STATUS OBJECT NAME INVALID 149,403 STATUS SECTION PROTECTION 192

0x00000005 122,219 STATUS INVALID INFO CLASS 185

STATUS NO SUCH FILE 108,003 STATUS UNABLE TO FREE VM 167

0x800c0008 54,125 STATUS INVALID IMAGE WIN 64 147

STATUS ACCESS VIOLATION 49,965 STATUS BREAKPOINT 132

STATUS PROCEDURE NOT FOUND 45,967 STATUS ACCOUNT RESTRICTION 113

STATUS SHARING VIOLATION 39,084 0x800c0006 113

STATUS INVALID PARAMETER 4 36,703 STATUS BAD NETWORK PATH 97

0x00002af9 35,407 0x80070057 91

0x000000ea 24,349 0x00002558 89

STATUS NO MEDIA IN DEVICE 24,232 STATUS NETWORK UNREACHABLE 87

STATUS MEMORY NOT ALLOCATED 17,249 0x80004005 74

0x00000057 15,605 STATUS PIPE CLOSING 67

STATUS NOT A DIRECTORY 15,256 STATUS IN PAGE ERROR 58

STATUS INVALID IMAGE NOT MZ 12,229 STATUS INVALID IMAGE WIN 16 57

STATUS FREE VM NOT AT BASE 9,870 0x000003f2 49

STATUS PIPE EMPTY 6,604 STATUS INVALID CONNECTION 46

0x800c000d 5,633 0xc0010006 45

STATUS PIPE NOT AVAILABLE 5,506 STATUS SECTION TOO BIG 37

STATUS DEVICE NOT READY 3,265 STATUS PRIVILEGED INSTRUCTION 31

STATUS INVALID ADDRESS COMPONENT 2,853 STATUS INVALID SYSTEM SERVICE 29

STATUS UNABLE TO DELETE SECTION 2,592 STATUS SINGLE STEP 24

STATUS DLL INIT FAILED 2,493 0x0000276c 23

0x000000a1 2,149 STATUS PRIVILEGE NOT HELD 23

STATUS PROCESS IS TERMINATING 1,730 STATUS ILLEGAL INSTRUCTION 22

STATUS DELETE PENDING 1,690 STATUS DISK FULL 20

STATUS INVALID IMAGE FORMAT 1,637 STATUS DUPLICATE OBJECTID 19

STATUS ORDINAL NOT FOUND 1,593 STATUS SXS ASSEMBLY NOT FOUND 19

STATUS CONFLICTING ADDRESSES 1,222 0x00002afb 18
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Appendix G
SOM Family Evaluation

XXXXXXXXXXXLabels
Cluster

1 2 3 4

Hupigon 146 406 115 7529

Zlob 98 292 105 4964

Small 121 348 83 4646

IframeRef 2 2412 1 2541

Table G.1: Evaluation matrix for 2x2 SOM grid on Microsoft Families.

XXXXXXXXXXXLabels
Cluster

1 2 3 4 5 6

Hupigon 65 427 22 7592 42 48

Zlob 45 298 20 5011 43 42

Small 47 373 12 4700 25 41

IframeRef 3 2070 0 2883 0 0

Frethog 35 337 22 4453 37 34

OnLineGames 42 285 7 4068 25 29

Table G.2: Evaluation matrix for 2x3 SOM grid on Microsoft Families.
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Appendix H
SOM 4x4 Type Evaluation
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Table H.1: Evaluation matrix for 4x4 SOM grid on Majority Labels.
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Abstract—Malicious software has become a major threat to
modern society, not only due to the increased complexity of the
malware itself but also due to the exponential increase of new
malware each day. This study tackles the problem of analyzing
and classifying a high amount of malware in a scalable and
automatized manner. We have developed a distributed malware
testing environment by extending Cuckoo Sandbox, that was used
to test an extensive number of malware samples and trace their
behavioral data. The extracted data was used for the development
of a novel type classification approach based on supervised
machine learning. The proposed classification approach employs a
novel combination of features that achieves a high classification
rate with weighted average AUC value of 0.98 using Random
Forests classifier. The approach has been extensively tested on a
total of 42,000 malware samples. Based on the above results it is
believed that the developed system can be used to pre-filter novel
from known malware in a future malware analysis system.

Keywords: Malware, type-classification, dynamic analysis,
scalability, Cuckoo sandbox, Random Forests, API call, feature
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February 25, 2015

I. INTRODUCTION

The trend of the Internet usage has grown exponentially
in the past years as modern society is becoming more and
more dependent on global communication. At the same
time, the Internet is increasingly used by criminals and, a
large black market has emerged where hackers or others
with criminal intent can purchase malware or use malicious
services for a renting fee. This provides a strong incentive
for the the hackers to modify and increase the complexity of
the malicious code in order to improve the obfuscation and
decrease the chances of being detected by anti-virus programs.
This leads to multiple forks or new implementations of the
the same type of malicious software, that can propagate out
of control. Based on AV-Test, approximately 390,000 new
malware samples are registered every day, which gives rise to
the problem of processing the huge amount of unstructured
data obtained from malware analysis [2]. This makes it
challenging for anti-virus vendors to detect zero-day attacks
and release updates in a reasonable time-frame to prevent
infection and propagation.

Meeting this problem, researchers and anti-virus vendors
seek towards finding a faster alternative method of detection

that can overcome the limitations imposed by static analysis,
which is the classical approach. Analyzing the malicious
code can yield inaccurate information when polymorphic,
metamorphic and obfuscating methods are used. When
aforementioned methods are applied the complexity increases
even more, thus it will be hard to determine which type of
malware it is. An alternative to the approach presented, is
performing dynamic analysis on the behavior of the malicious
software which can also be a troublesome task when having
to analyze an extensive and increasing number of new
malware. Due to these problems it is therefore favorable
to develop a scalable setup where several malware can be
dynamically analyzed in parallel. A large amount of malware
samples have been utilized compared to past researched
articles for this study. Having a large sample-set adds up
to the predictive power and reliability of the built classifier
which provides satisfactory results. In this study, a system
has been developed which could be used as a pre-filtering
application, where all known types can be sorted from the
novel malware. This leaves the opportunity to skip static
analysis on known malware and focus only on analyzing
the novel malware, thus drastically increasing the detection
and analysis rate of anti-virus programs. New malware that
arise each day are believed to be mostly modified versions
of previous malware, using sophisticated reproduction
techniques. Stating this, it is assumed in this study, that
malware, even though it is new, can exhibit similar behavior
as earlier versions from a dynamic analysis point of view. [12]

This study is based on a university report written by this
group in [3]. In section II the background and discussion
about improvements of related work are presented, followed
by the methodology in section III proposing a solution for
the problems presented in the introduction. Finally the results
and conclusion will be presented in section IV and section V
respectively.

II. RELATED WORK

When classifying malware types it is essential to find
parameters that can distinguish between their behavior, where
commonly used parameters on Windows platforms are the
Windows API calls. The reason that these are commonly
used is that they include a solid and understandable form of
behavioral information since an API call states an exact action
performed on the computer, e.g. creation, access, modifica-



tion and deletion of files or registry keys. In [10] they use
hooking of the system services and creation or modification
of files. Additionally they use logs from various API calls to
differentiate malware from cleanware as well as performing
malware family classification. They include a sample set of
1,368 malware and 456 cleanware where they use a frequency
representation of the features. The limitation, also emphasized
in their future work, is that they need to expand their sample
set and explore new features. In [16] they made a scalable
approach using the API names and their input arguments,
after which they applied feature selection techniques to reduce
the number of features for a binary classifier that includes
the separation of malware and cleanware. The features used
in their setup are limited to features related to the API
system calls during run-time. Here they have a sample set
of 826 malware and 385 cleanware. Additionally they apply
a frequency representation, as the research mentioned before
in [10], but also include a binary representation. Furthermore
in [5], they use CWsandbox, which applies a technique called
APIhooking to catch the behavior of the malware, but in this
paper they strive to classify malware into known families.
They here use a total sample set of 10,072 malware and
utilize a frequency representation of their features. In terms
of automatic analysis, [6] has created a framework able to
perform thousands of tests on malware binaries each day. Here
they use a sample set of 3,133 malware and use a sequence
representation of their features, which here are the Windows
API calls applied for both clustering and classification. To
understand how API calls are used by malicious programs, [8]
have made a grouping of features in relation to their purpose,
which can be helpful to understand the malware behavior. In
terms of classification approaches, a wide range of machine
learning algorithms are used such as J48, Random Forests and
Support Vector Machine. The weakness of the related work is
the limited amount of samples used to build their classifier.
Furthermore this study propose a feature representation that
combines several of the aforementioned representations to
achieve a greater behavioral picture of the malware.

Given that the labels for malware types are provided by
anti-virus vendors and based on the related work, it is found
that supervised machine learning is a valid choice for this
study. Based on a dataset generated from around 80,000
malware samples, a feature selection has been performed after
analyzing the data. In the mentioned research articles, API
calls are the mainly used parameter for creating features.
In this study several parameters were chosen as features in
addition to API calls. The additional parameters are: mu-
texes, registry keys/files accessed and DNS-requests. In the
related work, different feature representations were used, i.e.
sequence, binary and frequency. The contribution of this study
is the unique combination of different feature representations
and parameters that also apply feature reduction strategies.
Furthermore our study includes a great amount of malware
samples and behavioral data collected using our setup. This
allows a solid basis when training the model since it includes
a larger behavioral picture of the malware. Finally, we rely on
Random Forests classifier to perform the classification of the
malware types, as a capable ensemble classifier also used by
related work [10], [16].

III. METHODOLOGY

This section will go through the methodology applied in the
development of this study. This includes: Dynamic analysis,
supervised machine learning, data generation, data extraction
and classification.

A. Dynamic Analysis

As mentioned earlier, large amount of malware are injected
into the Internet every day, which makes it more and more
suitable to use a dynamic approach in contrast to static
analysis. Dynamic analysis is performed in such a way that
malware is executed in a sandbox environment in which it is
assumed that malware believes it is on a normal machine. Here,
all actions performed at run-time, are recorded and saved in a
database. This is different from the classical signature-based
approach also used in the context of static analysis that is
commonly applied by anti-virus vendors. In this study, Cuckoo
Sandbox has been chosen as the sandbox environment in which
the malware will be injected, see [4]. Since Cuckoo is open
source, it allows to openly modify the software, which means
it is possible to change the code to fit the needs of this study.
One of the requirements is to make the system distributed and
scalable, such that it can be controlled from one central unit
and new virtual machines or physical machines can easily be
added in order to improve the efficiency of the overall analysis.

B. Supervised Machine Learning

Using dynamic analysis to gather behavioral data, it is pos-
sible to perform malware type classification using supervised
machine learning. We have chosen Random Forests with 160
trees, which is a decision tree based algorithm that makes
use of random sub-sampling, or tree bagging, of the sample
space that are then used to create a tree for each subset [7].
Individual decision making is utilized at each tree for each
classification of malware, where the results are then averaged.
This prevents the possibility of over-fitting, as variance of the
classification model decreases when averaged over a suitable
amount of trees. In this study the machine learning tool WEKA
has been used, which can be run through java-based GUI or
directly in the terminal [15].

In Figure 1 an overview of the system is depicted as a
flowchart. It includes modules for each of the groups: Data
Generation, Data Extraction and Malware Classification. Each
group will be explained in the following subsections.

Data Generation

Begin: Malware 
Classification

Cuckoo 
Sandbox

InetSim

MongoDB

Type 
Extraction 

(ML Labels)

Feature 
Representation

Filtering 
(Parameters)

Feature 
Reduction

Weka:
Random 
Forests

Data Extraction

Malware Classification

End: Malware 
Classification

Fig. 1. Overall system flow.



C. Data Generation

The data generation consists of generating malware anal-
ysis reports from the execution of approximately 80,000 mal-
ware samples downloaded from Virus Share [13]. To perform
the analysis in a secure, scalable and distributed environment,
a customized system has been set up.

The designed system consists of a modified version of
Cuckoo Sandbox [4] which permits to perform a faster
analysis based on parallel computing. It is a distributed
virtual environment composed of 13 personalized guests and
a control unit. In order to simulate a real environment, the
malware is executed within a personalized installation of
Microsoft Windows 7 operating system. Some commonly
used software are installed (Skype, Flash, Adobe Reader,
etc.) along with a batch script that simulates web activity.
The modifications made permit to obtain a distributed system
which is also scalable, making it possible to easily add or
remove virtual machines. Moreover, it has been noticed that
during their execution, some malware intended to connect
to the Internet. This raised security requirements related to
potential malicious traffic activity. The challenge has been
to emulate a realistic environment without allowing any
malware to communicate with a third party. To complete the
security needs, a confined environment has been built. We
configured InetSim, an Internet emulator, so that it responds
to the malware requests and deceive the operating system into
perceiving that it is online [11], [9]. On the other hand, the
internal system configuration permits to avoid the corruption
of the analysis environment. This is why the virtual machines
and their hosts are running on two different operating systems.
To enhance security, all the commands are sent from the
control unit to the hosts using Secure Shell.

Finally, the collected data, consisting of recorded malware
actions, is stored using the DataBase Management System, i.e.
MongoDB. This type of DBMS is particularly useful in dealing
with a large database that includes unstructured data which is
the case in this study.

D. Data Extraction

The data extraction consists in keeping the most pertinent
information to be used in a machine learning algorithm. First,
the reports provided by Cuckoo give a wide set of information
about the malware behavior, namely: DNS requests, Accessed
Files, Mutexes, Registry Keys and Windows API’s. To be sure
that this information is only related to malicious activity, a
white list is created to clean the data from the non malicious
activity. It consists in recording the user’s activity simulated
by a batch script that executes programs and browse the web.
Afterwards this behavioral data is removed from the malware
analysis reports.

Parameters Before filtering After filtering Percentage Decrease
DNS (all levels) 2,000 1,986 0.7 %

DNS (TLD & 2-LD) 1,549 1,543 0.39 %
Accessed Files 673,554 18,322 97.28 %

Mutexes 11,287 9,875 12.51 %
Registry Keys 164,979 94,505 42.71 %

TABLE I. SUMMARY OF FILTERING RESULTS.

Table I lists the different parameters that have been filtered
from the analysis. One can see that no filtering is applied on
the API calls since they are logged based on the process ID
of the malware.

Dealing with the great amount of unstructured data
from the performed dynamic analysis, it gives rise to the
problem of selecting features that precisely distinguish the
types. In this study, a big effort has been put into primarily
analyzing the behavioral data given by the API calls as in
[10], [16], [5], [6] and [8]. Each API call corresponds to
a specific action performed on the system that permits to
characterize the malware behavior which is the reason why it
has been decided to choose the API as the main parameter.
Nevertheless, we have chosen to use the other parameters to
play a complementary role in the malware classification.

The second step consists in labeling the samples to be
used in supervised machine learning. Once the analysis is
done, Cuckoo Sandbox provides a report that includes a list of
anti-virus programs along with the corresponding labels. The
challenge is to find the anti-virus program that gives both the
best detection rate and the most precise labeling. Given these
requirements, VirusTotal, [14], provided labels for around
52,000 samples based on detection from Avast [1]. From the
sample set, four different types were detected, represented by
42,000 suitable samples for classification, namely:

Trojan: includes another hidden program which performs
malicious activity in the background.

Potentially Unwanted Program: is usually downloaded to-
gether with a freeware program without the user’s consent,
e.g. toolbars, search engines and games.

Adware: aims at displaying commercials based on the user’s
information.

Rootkit: has the capability to obfuscate information like run-
ning processes or network connections on an infected system.

E. Malware Classification

This section will go through the Feature Representation
and Feature Reduction that are the two preliminary steps
before using WEKA toolbox to both perform classification and
measure the predictive performances of the training model.

1) Feature Representation: The built features tend to give
a meaning to the chosen parameters. The total number of
151 different API calls are the main features, whereas com-
plementary information is derived from the other parameters.
The features are gathered within a matrix where each row
represents a malware sample and each column gives the cor-
responding value of a specific feature. These are the different
representations:

Sequence: For each sample the course of the 200 first API
calls during the malware execution, is used. This number has
been chosen to obtain a reasonable matrix size. Besides, the
initial sequence of API calls has been modified to improve
the matching between malware that have similar patterns. The
interest of this modification is illustrated in Figure 2.
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Fig. 2. Sequence Modification.

Since the initial sequence size has been limited to 200 API
calls, it is likely that the repetition of the same API hides
patterns that are out of the scope. Thus, to retrieve eventual
hidden similarities, the sequence is modified so that it gives the
succession of actions performed without taking care of their
frequency. It is done by removing the repetition of the same
API called in a row.

Frequency: This matrix is composed of 151 columns corre-
sponding to the set of API calls. The frequency of each API
call is calculated from the malware analysis.

Counters: This matrix is composed of 8 columns which
corresponds to the count of the 8 following parameters: DNS
request (all levels), DNS request (TLD and 2-LD), Accessed
Files (including 3 file extensions), Mutexes and Registry Keys.

2) Feature Reduction: In order to perform efficient large
scale analysis by combining different behavioral features,
two dimensionality reduction methods are used. The first one
is applied on the sequence matrix and consists in reducing
the initial sequence length by observing the impact on the
classification’s performance. Here, we have kept 40 features
since we found that it contains substantial information to
classify malware types. In addition, it has been chosen to
combine the frequency of the 151 API calls into bins of the
same category inspired from [8]. Thus, 24 bins are created
and can be grouped into 7 categories (Registry Management,
Windows Services, Processes etc).

The challenge of the feature reduction is to minimize the
number of features without loosing the performance of the
classification. The individual reduction of features aims at
limiting the final number of features within the combination
matrix.

Sequence Frequency Counters

Modified Sequence

Modified Sequence Frequency Bins Counters

200 features 151 features 8 features

200 features

40 features 24 features 4 features

Feature Reduction

Feature 
Combination

Fig. 3. Construction of the combination matrix.

Figure 3 shows the transformations performed to build a
matrix which is a combination of the different features. The
model conceptually gives a more and more general information
about the malware behavior. It is noticeable that the sequence
is modified and reduced so that the new sequence gives the

course of the 40 first actions without repetitions performed
during the malware analysis. Afterwards, the frequency of
the bins gives the occurrence of the 151 API calls grouped
by type, during run-time. Finally, the counters provide the
most general information since they give the occurrence of
the complementary parameters but without indication of the
action performed.

IV. RESULTS AND DISCUSSION

The classifier is configured through a development and
training phase, after which it is tested, producing results that
will be evaluated in this study. The total number of samples
being used for the training and testing phase are 42,068
samples, from which 67 % represents the training set and the
remaining 33 % represents the testing set. In the following,
the development and training phases will be presented, along
with the results of the classification.

A. Development and Training

The development phase is used to decide the number of
trees that should be used in the Random Forests algorithm.
Here, 160 trees were chosen to provide a good balance between
improved results and computational time. The results for the
development phase were evaluated using the training set with
10-fold cross-validation. After deciding the parameters for the
RF algorithm, a training phase was used to construct the
model used to classify the four different types of malware
presented in section III. The training phase also had a second
purpose, namely to choose the feature representation that
should be used to configure the classifier, since multiple
representations have been examined in this study. The Area
Under the Curve (AUC value) and F-measure are provided by
a 10-fold cross-validation for different feature representations.
These are trained with a different number of features whereas
an objective choice was made based on the results to construct
a matrix by combining multiple feature representations. Based
on the results, the combined feature representation was chosen,
as it gave the best AUC value and F-measure compared to the
other representations examined. The combination will include
the 40 first distinct API calls, 24 frequency bins and 4 counters
namely the count of distinct mutexes, files, registry keys and
all levels of the DNS.

B. Results

The results from the testing phase will be presented in
the form of a table with the most important available metrics,
together with ROC curves and a confusion matrix. In Table II
the True Positive Rate (TPR), False Positive Rate (FPR),
Precision, F-measure and AUC value can be found for each
class/type. To summarize the results from the table, ROC
curves can be found in Figure 4 and a confusion matrix in
Figure 5. Below, each class will be analyzed based on the
results found in Table II, Figure 4 and Figure 5.

1) Trojan: Based on the results, the classifier revealed
the best performance for this type of malware, which also
can be due to the fact that it has the largest amount of
samples compared to the other three types examined. With the
classifiers high precision and F-measure of respectively 0.961
and 0.960, it shows promising classification results for this



type. This conclusion is also supported by the high AUC value
of 0.989. Looking at the ROC curve in Figure 4, it can be seen
to be well behaving and steep, leading to a high discriminative
power. Looking at the confusion matrix in Figure 5 it can be
seen that the classifier has a potential problem to distinguish
Trojan from Adware. It should be noticed that the number of
FNs is small compared to the number of Trojan samples.

2) Potential Unwanted Programs - PUP: The classifier
shows a good classification performance for PUP in compar-
ison with Trojan. Looking at Table II, the precision and F-
measure are 0.939 and 0.850 respectively. These values are
lower than the results for Trojan, but overall the performance of
the classifier is still satisfactory. The lower F-measure is caused
be the TPR, which is lower than the precision. Looking at the
ROC curve it is seen to be well behaving, but not as steep as
Trojan. This is expected from the results of the table, however
PUP has an AUC of 0.978, which is considered satisfactory.
Presenting the confusion matrix in Figure 5, it can be noticed
that the classifier mostly confuses PUP with Adware, having
672 FNs.

3) Adware: Before the test, some behavioral similarities
were expected between Adware, Trojan and PUP, since these
malicious programs infiltrate the infected machine using com-
mon methods, however with a different end goal. The precision
and F-Measure of Adware, seen in Table II have the lowest
value of all tested types due to the large number of FPs which
also results in an FPR of 0.085 and a number FNs that push the
TPR to 0.858. The AUC value is 0.955 which is also the lowest
of all four types. By looking at the ROC curve in Figure 4,
even though it is far beyond the theoretical ROC curve of a
random classifier (blue dashed line), more information might
be needed to be able to better discriminate this type. The
confusion matrix in Figure 5 generated by the classifier, shows
that a large portion of the Adware samples have been correctly
classified but with approximately one forth of the samples
being classified as PUP or Trojan. PUPs can be classified as
Adware depending on the severity of the logging or content
presented to the user, however due to the large sample size of
Trojan in comparison with other types, the TNs remain very
high thus the FPs’ number is shadowed by the TNs resulting
in a low FPR.

4) Rootkit: It represents one of the most distinct malware
types in comparison with Trojan, Adware and PUP. The action
it performs on the infected PC should present a behavioral
pattern that can easily be distinguished as it tries to mask
itself inside system components. Even though the number
of samples in training and testing is significantly lower than
other types, its unique behavior resulted in a precision of
0.947 which represents the second highest value of all tested
types. However the F-measure has a value of 0.862, which
is due to the lower TPR. The FPR has a value close to 0
due to the large number of TNs and a low value of 8 for
the FPs. The FNs of Rootkit represent a large number in
comparison to the low number of samples resulting in a lower
TPR, which affected the F-measure. The ROC curve presents
a high discriminative power in comparison with the other
presented types with an AUC value of 0.970, which is closer
to the values of the types that have a more dominant number
of samples.

5) Summary of results: The weighted average calculated of
all types reveals a high discriminative power of the classifier in
terms of the AUC value. As discussed before, the FPR becomes
low since the TNs are much larger in contrast to the FPs. The
weighted average of the F-measure shows less discriminative
power as PUP and Rootkit types have a high number of FNs in
comparison with the number of samples. Overall the classifier
has a satisfactory performance with an AUC value close to the
theoretical maximum and an F-measure just below 0.9.

Class TPR FPR Precision F-measure AUC
Trojan 0.959 0.052 0.961 0.960 0.989
PUP 0.777 0.015 0.939 0.850 0.978

Adware 0.858 0.085 0.693 0.767 0.955
Rootkit 0.791 0.001 0.947 0.862 0.970

Weighted Avg. 0.896 0.049 0.907 0.898 0.980

TABLE II. RESULTS OF TESTING PHASE.
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C. Discussion

This section elaborates on the obtained results assessing if
the results for the particular malware type are good enough to
be used in a future system that can pre-filter newly registered



malware samples. It should be noticed that future work will
be devoted to optimize the classifier such that a pre-filtering
system can be developed to identify novel malware samples
and sort out legacy malware that have minor changes.

Trojan - The problem of having a small number of Trojan
samples classified as Adware can be caused by the fact that
some of the Adware samples actually are Trojans, which have
been used to install the Adware while running the experiment.
With this small amount of FPs the classifier still performs
satisfactory for Trojan and it can in fact be used as pre-filtering
for this type.

PUP - Has a definition that may include other types. It
could be classified as Adware depending on the amount of
content presented to the user. From the analysis of the results
a certain amount was classified as Adware. This problem can
be caused by the fact that Adware and PUPs are similar, since
PUPs are just a less severe case of Adware, making a common
behavior possible. The classifier performs well for this type of
malware and it is possible to use it as pre-filtering.

Adware - Similarities between the behavior of Adware and
PUP shown by the classifier might be an incentive to retrieve
even more detailed information about API calls. The classifier
for this type performs fairly good, but needs to be improved
before it can be used as pre-filtering with satisfactory results.
It was found that the label of Adware from Avast was unclear
and too generic, which could explain the results. This problem
can be solved by a more clear and categorized definition of
this type.

Rootkit - The classifier performs well regardless of the
low amount of samples, which could be because of its distinct
behavior. Therefore this classifier can be used as pre-filtering,
but in order to ensure a good performance, more samples
should be used to train the model.

Using the system as a pre-filter - Based on the individual
and weighted average results, it can be concluded that the sys-
tem created can be used in part of a pre-filtering application. It
will work by rejecting malware as novel, when the malware can
not be classified as any type with a high enough probability.
The results for the individual types are satisfactory for every
type except Adware, which is the only type that pulls down
the performance if looking at the weighted average results.

D. Future Research

In order to improve the presented classification of malware
types, future research must done to a achieve an even better
discrimination. Having a uniform distribution of all malware
types can improve the results of the classifier by assigning the
same weight on all samples instead of favoring Trojan due the
clear advantage in samples size. This will affect the classifier
by having a fair distribution in the TNs for each type and
assigning the statistics for TPR and TNR over an uniform
number of samples. In this particular case, the number of
FNs, FPs and TPs should not shadowed by a large number of
TNs. That being said, a more detailed approach in building
the API features can be taken by looking at the arguments
passed during the API calls. This could give a more detailed
view of the malicious behavior expressed by the samples.

The accuracy of the pre-filtering system can be improved
by theoretically having behavior information for all existing
types, thus allowing the detection of novel malicious software
by using a probability threshold.

V. CONCLUSION

This study proposes a novel malware classification
approach developed in order to provide an accurate
classification of malware types within the dynamic analysis of
malware. It relies on a novel set of features that successfully
capture differences in the behavior of malware types. Starting
from the estimation made by AV-Test where approximately
390,000 new malware are released every day, the proposed
malware analysis approach aims to provide a pre-filtering
solution to this problem in order to distinguish novel
malicious software, that has significantly different behavior
from malware known by the classifier. Having three main
modules: Data Generation, Data Extraction and Malware
Classification, this study provides a fast, distributed and
secure method of analyzing malware with high predictive
performance.

The combination of features from approximately 80,000
samples consists of: 24 API Frequency Bins, 40 Modified Se-
quence and four Counters collected using a modified version of
Cuckoo Sandbox. The combination of behavioral information
proved to be very detailed allowing us to detect the correct
types after passing it through Random Forests algorithm with
160 trees. The weighted average results gathered using the
novel feature representation, are very satisfactory. Having a
steep Receiver Operator Curve, an Area Under the Curve of
0.98 (close to the theoretical maximum), a precision of 0.9
and an F-measure of 0.898, the classifier has proven to have a
high discriminative and predictive power, which can be used
to filter novel from know malware.
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