
Modelling Java Card Applications
With Defensive Measures In

UPPAAL

SW10 Project

Group DES108F15

Department of Computer Science

Aalborg University

June 2 2015

Department of Computer Science

Aalborg University

Selma Lagerlöfs Vej 300

Telephone: +45 9940 9940

Telefax: +45 9940 9798

http://cs.aau.dk

Title:

Modelling Java Card Applications With
Defensive Measures In UPPAAL

Theme:

Distributed Embedded Systems

Project period:

P10, Spring Term 2015

Project group:

DES108F15

Participants:

Anders Kaastrup Vinther
Jakob Jørgensen

Supervisors:

René Rydhof Hansen
Mads Christian Olesen

Circulation: 5

Page count: 73

Appendix count and type: 2, Model
Parser, Instructions of the Operational
Semantics

Finished on June 2nd 2015

Synopsis:

Cosmic rays and their impact on circuits have

inspired attackers to use bit�ip attacks to

make arbitrary jumps in program execution.

Some of the defensive mechanisms currently

available to Java Cards to avoid this kind of

attack have inherent vulnerabilities, it is one

such defensive strategy this report will focus

on, because it is currently used within the

industry. The report demonstrates how UP-

PAAL can be a strong ally for program anal-

ysis. To reduce the work-burden, programs

are based on the operational semantics de-

�ned in [18]. This makes it necessary to cre-

ate a toolchain consisting of a program gener-

ator that generates programs which employs

this defensive strategy, a model parser that

reads programs and outputs .xml models for

use with UPPAAL.

The report content is freely available, but publication (with source), only after agreement

with the authors.

Preface

This report has been written by two students from the Department of Computer
Science at Cassiopeia, Aalborg University for the 10th semester Master's Thesis
project.

Working with a language based closely on Java bytecode, we decided to
model Java Card applications, but more speci�cally what would happen to them
if a single event upset (bit�ip) a�ected the program counter. Speci�cally how
this would a�ect the control �ow, and if the security measures in the program
would be able to catch the event during execution. This model represents a
single event upset where an attacker that did either not have the know-how or
equipment to create a speci�c path through the program, but would be capable
of deciding when the single event upset should take place.

Having created a model it could be used to determine whether or not UP-
PAAL would be a suitable tool for developers to evaluate their programs.

Enclosed with this report is a CD containing some of the �les used in the
project, speci�cally the source .pdf �les that we were able to download. For
website sources see the links in the bibliography. The report as was printed and
delivered at the study o�ce is also part of this CD in .pdf format. Finally, the
program code written during this semester is on the CD and most importantly,
the compiled .exe �les along with some examples that can be tried. To recompile
the parser you will need the boost library installed with C++[5].

We would like to thank Rene Rydhof Hansen and Mads Christian Olesen
equally for their extremely capable help as counselors throughout this semester.

5 of 73

Signatures:

Anders Vinther

Jakob Jørgensen

7 of 73

Contents

1 Introduction 11

1.1 The Project in Context . 12

1.1.1 Software Based Protection 12

1.2 The Defensive Strategy . 12

1.2.1 A Bank Example . 13

1.2.2 Attacking The Application 15

1.2.3 Java Implementation . 16

1.3 Initiating Problem . 18

1.3.1 Problem De�nition . 19

2 Preliminary Knowledge 21

2.1 Control Flow Graphs . 21

2.2 Bit Flip Attacks . 22

2.3 The Model-Checker: UPPAAL 23

2.3.1 UPPAAL: SMC . 23

2.4 Java Card Virtual Machine Architecture 24

3 Modelling a Java Card Application Control Flow 27

3.1 The Example Program . 27

3.1.1 Control Flow In Uppaal 28

3.1.2 Control Flow In UPPAAL With Modeled Attacks 28

3.1.3 Control Flow In UPPAAL-SMC With Modeled Attacks . 29

3.2 Modelling Programs . 35

3.2.1 Modelling Start and End of Execution 35

3.2.2 Modelling Bad Bit�ips . 35

3.2.3 The Timing of a Bit�ip 36

3.2.4 The Number of Bit�ip Attacks 36

3.2.5 Success Criteria of a Bit�ip Attack 36

4 Modelling Java Card Defense Mechanisms 37

4.1 Protective Measure . 37

4.2 Optimization of methods using Instructions 40

9 of 73

5 Program Analysis with UPPAAL 43

5.1 Tool Description . 43
5.1.1 Program Generator . 43
5.1.2 Model Parser . 47

5.2 Queries and Evaluation . 51
5.2.1 Balancing . 51
5.2.2 Execution Flow . 51
5.2.3 Distribution . 52

6 Re�ection 57

6.1 Toolchain Evaluation . 57
6.1.1 Model Parser . 57
6.1.2 Program Generator . 58

6.2 Alternative UPPAAL Models . 59
6.2.1 TIGA and Stratego . 59
6.2.2 Preliminary Results . 60

6.3 Changes to the Model . 60
6.4 Conclusion . 61

Bibliography 64

I Appendices 65

A Model Parser 67

B Instructions of the Operational Semantics 69

Chapter 1

Introduction

For as long as there has been electric memory in computing, there has been soft
errors. A soft error is an error caused by cosmic rays, that strikes an electronic
device just right, and causes some sort of erroneous behavior as result. These
rays, as the name suggests, originate from space. The e�ects of this kind of
erroneous behavior is entirely unpredictable however. This means that there is
a potential for dramatic negative consequences to the program executing on the
victimized device. For example, soft errors might corrupt calculations within the
program, they might also cause the program to simply skip instructions being
executed on the program. Hard errors on the other hand are much more severe
in the sense that they corrupt hardware permanently. For example, memory
cells can be corrupted by a hard error, caused by a similar kind of cosmic ray. A
program using this device's corrupted memory cell will produce strange results
permanently[17].

Ultimately, these are entirely unpredictable and undesirable errors. However
given that the rays comes from outer space and is part of what is known as
background radiation, it might be appealing to assume that this kind of error is
so unlikely, that it just might not occur on non-spaceship electronics. Looking
at soft and hard errors exclusively, it is true that it is an unlikely, but not
impossible phenomenon[17]. However there exists an entire �eld of attack based
around this phenomenon, which means that it is something malicious end-users
can exploit and take a more sophisticated approach to.

In fact, because circuits are inherently vulnerable to energy particles, there
exists a number of di�erent styles of bit�ip attacks, as shown in [6, 14, 18].
It is this area of attack this report is concerned with. The following chapter
will therefore give a further introduction to the problem environment as well
as manifesting the end goal. Furthermore, the chapter will give an overview of
where this report continues, from the previous [18].

11 of 73

1.1 The Project in Context

The project is concerned with the Java Card technology with a relation toward
the aforementioned notion of soft and hard errors and bit�ip attacks - otherwise
known as Single Event Upsets. In this report the term bit�ip attack simply
refers to an error caused by a malicious end user by way of introducing hard or
soft errors to the Java Card circuit through a laser or other energy-ray emitting
device.

The Java Smart Card is a kind of smart card which employs the Java Virtual
Machine on a much smaller scale - namely as a smart card. There are certain
hardware restrictions on this di�erent platform, which means that it is not the
full Java Virtual Machine that exists within this space, rather it is a subset of
those instructions as described in [18, 15]. Certain defensive strategies are em-
ployed on Java Smart Cards to capture Single Event Upsets. What interests us
the most, are the software based initiatives to improve Virtual Machine integrity,
as opposed to improving hardware with various sensors, or simply building the
chips in materials that is more resistant to energy particles [14, 17, 11]. For
more information about the Java Card technology see [18, 15].

1.1.1 Software Based Protection

In this report we will generalize software based protection and see it as falling
into either of two categories. Either the virtual machine is expanded in such a
way that it becomes more self-aware, or certain code practices are upheld within
a program to ensure the program is secure. The �rst category means that the
virtual machine must be expanded with extra bytecode instructions that can
detect when malicious behavior occurs, or similar but 'secure' instructions are
executed. Either way, the virtual machine becomes smarter, and is in charge
of ensuring its own security properties. There are two ways to employ safety
features in this category. Either the virtual machine knows what bytecode
instructions to execute, secure ones or insecure ones, depending on its own
execution context, or a programmer has added �ags to the program, that helps
the virtual machine di�erentiate between secure and insecure blocks of code[3].

In the second category, already existing language constructs are employed, to
achieve much the same goal. The key di�erence here is that this category of de-
fensive mechanisms does not require an expanded virtual machine. This means
that the application is easily more portable between Java Cards, as opposed to
requiring a very speci�c virtual machine model[1].

1.2 The Defensive Strategy

The defensive strategy that was chosen to be analyzed for this project, is a
method of protection that is used within the industry. The main procedure
to take into account from [1], is the �agging process. The entire solution pro-
posed in [1] consists of developer-written �ags, a pre-processer, control-�ow

12 of 73

graph analysis and more. However, these aspects are of little relevance to this
project, because we will only be concerned with what is actually visible within
a program's execution �ow and what should be modeled as part of a program's
control-�ow graph. Incidentally, this makes only the �agging process interesting
to us.

Developers set �ags during their program's execution, which de�nes to the
virtual machine, what is the expected control �ow. When execution passes
through a �agged zone, a counter is incremented, which is then later compared
to some static/hardcoded value - this can be considered a check point. A mis-
match between this incremented value and the static value, will then de�ne to
the virtual machine what is legal and illegal behavior. Essentially program ar-
eas will have their own unique identi�er, and a simple if-check comparing this
unique identi�er, with a static value will determine whether the control-�ow
has executed normally or some of it has been skipped. The strategy's goal is to
capture changes in the control �ow caused by a malicious end user.

1.2.1 A Bank Example

Consider for example a bank application that employs this defensive strategy.
As an illustration of the example, see Figure 1.1. Squares signi�es standard
ATM Control Flow, with the ruby-shapes signifying the safety mechanisms from
Section 1.2. Whether or not this is a realistic representation of the mechanisms
in an ATM is irrelevant, the example should simply illustrate the general premise
of this defensive strategy.

When program execution is about to reach a 'secure' block of code, the
counter value is incremented to some value. In other words, a �ag signifying
a secure block of code is about to happen is set. This is shown in Increment

Counter. Throughout the execution of this secure block, this value might be
incremented multiple times, until �nally a checkpoint is reached. After the �rst
incrementation a Validate Card step is reached. This step is assumed to ensure
that it is the correct kind of card that has been inserted into the ATM. After
that, the Increment Counter state is reached and counter at this point holds
the integer value 3. Validate PIN is assumed to take user input and validate
whether it was the correct number, or not. Finally, the Check Value state is
reached, here the counter is compared to a static value, and a branching will
occur based on the boolean result. The Security Exception is thrown by the
defensive mechanism, which will ultimately terminate applet execution.

13 of 73

Figure 1.1: ATM Example.

14 of 73

1.2.2 Attacking The Application

There exists two kinds of control-�ow in the system illustrated in Figure 1.1.
The �rst control �ow is the control �ow that the bankers wants the user to have
and is what is on display in the �gure, but there is also another control �ow that
has not been shown. This control �ow is what the hacker wants. As illustrated
in Figure 1.2 the dotted lines show the transitions through the system that
allows the hacker to withdraw cash, by escaping or evading entirely the security
mechanisms written by the developers. This is known as a control �ow attack.
It is achievable by manipulating the PC-register on the smart card with some
external force[10].

Figure 1.2: ATM Example with Bit�ip Opportunities.

This is the kind of attack that the defensive strategy in Section 1.2 will
try to stop. However, by adding this defense-speci�c code (incrementation,
validation/checking and exceptions) the logical observation would be that the
application has grown larger in terms of instruction space, and therefore there

15 of 73

is a larger area to target with this kind of control �ow attack. The dynamics at
play are similar to the combined attacks explained in [18, 12], where instead of
program-lines as is the case in Section 1.2, the objects created simply take up
more space in memory to make the target easier to hit.

1.2.3 Java Implementation

The following shows two examples in pseudo code of how the defensive strategy
can be implemented in Java. The �rst example is the example that we have seen
used in the industry Listing 1.1. The other example is shown in Listing 1.2, and
is our adaptation of the model as will be modeled throughout this report. Notice
that each class is equipped with a counter variable. This is the variable that
is manipulated as illustrated in Figure 1.2. The importance in this example is
when the counter is incremented. The counter is incremented in both paths true
and false in an if-statement, and every check statement has the opportunity of
throwing a security exception. If the counter does not match the speci�c value,
a control �ow attack has been committed.

Listing 1.1: Object oriented implementation in Java.� �
1 public class Example

2 {
3 public static int counter = 0 ;
4 /*
5 . More Var iab le Dec l a ra t i on s
6 */
7

8 public static void main (String [] args)
9 {
10 counter = 0 ;
11 vc = validateCard () ;
12 checkCounter (1) ;
13 vp = validatePin (input) ;
14 if (vc && vp)
15 {
16 checkCounter (2)
17 makeWithdrawal () ;
18 }
19 }
20

21 // ATM example
22 private static void makeWithdrawal ()
23 {
24 /*
25 . User p r i v i l e g e s given , make withdrawal
26 */
27 }
28

16 of 73

29 private static boolean validateCard ()
30 {
31 if (card is proper)
32 {
33 incrementCounter () ;
34 return true ;
35 }
36 else

37 {
38 incrementCounter () ;
39 return false ;
40 }
41 }
42

43 private static boolean validatePin (int input)
44 {
45 if (pin is correct)
46 {
47 incrementCounter () ;
48 return true ;
49 }
50 else

51 {
52 incrementCounter () ;
53 return false ;
54 }
55 }
56

57 // Counter s p e c i f i c code
58 private static void checkCounter (int value)
59 {
60 if (counter != value)
61 {
62 throw new security exception () ;
63 }
64 }
65

66 private static void incrementCounter ()
67 {
68 counter++;
69 }
70

71 private static void incrementCounter (int value)
72 {
73 counter += value ;
74 }
75 }� �

17 of 73

Listing 1.2: The implementation in our models.� �
1 public class Example

2 {
3 public static int counter = 0 ;
4 /*
5 . More Var iab le Dec l a ra t i on s
6 */
7

8 public static void main (String [] args)
9 {
10 counter = 2 ;
11 if (card == "visa")
12 {
13 counter ;
14 if (counter == 1)
15 {
16 if (pin == 4242)
17 {
18 counter ;
19 if (counter == 0)
20 {
21 /*
22 . Withdraw money
23 */
24 }
25 else

26 {
27 throw security exception () ;
28 }
29 }
30 }
31 else

32 {
33 throw security exception () ;
34 }
35 }
36 }
37 }� �

Because we are only concerned with singular methods, the defensive mecha-
nism will be modeled as in Listing 1.2. This is to avoid function calls, and keep
the counter manipulation strictly as statements.

1.3 Initiating Problem

As described in [18] and in Section 1.1 there are di�erent strategies to use
when it comes to securing the integrity of a Java Card Applet. The strategy
of interest is the method based on [1] and explained in Section 1.2, because it

18 of 73

potentially opens up other avenues of insecurity, that are interesting to explore.
Ultimately, developers seeking to increase the degree of security in their applets,
that employs this method, might wind up making their application insecure as
result, illustrated in Figure 1.2.

1.3.1 Problem De�nition

This report will provide a method for analyzing the security properties of Java
Card applications that employs this speci�c defensive strategy. The proposed
solution is UPPAAL SMC, which will be used in combination with a toolchain
that consists of a model parser and Java Card program generator based on
bytecode instructions from [18].

19 of 73

20 of 73

Chapter 2

Preliminary Knowledge

Because this report carries on from where [18] left o�, this chapter will give an
overview of the preliminary knowledge that is necessary to fully understand this
report. The chapter should be seen as an analysis on a few but important topics
required to understanding the solution proposed in this report.

2.1 Control Flow Graphs

Control Flow Graphs (CFG) are used in computer science to illustrate the exe-
cution �ow of programs or methods. It is up to the modeller to determine what
each individual vertex in such a graph represents. The following Figure 2.1
illustrates the control �ow of a simple while-loop construct

Figure 2.1: A While-loop Construct.

In this report a vertex corresponds to a bytecode instruction from the opera-
tional semantics de�ned in [18]. The program in Listing 2.1 has a corresponding
control �ow graph illustrated in Figure 2.2.

21 of 73

Listing 2.1: A Small Addition Program.� �
0 load 0
1 load 1
2 math+

3 return� �
The numbers to the left of Listing 2.1 corresponds to the assumed PC-register

value of each instruction. This is a generalization because not all bytecode
instructions are exactly 1 byte long - this is typically dependent on the number
of operands (located on the operand stack), a bytecode instruction takes.

Figure 2.2: Addition Program.

2.2 Bit Flip Attacks

A bit�ip attack is a type of single-event upset where a bit is forced to change its
logical state from zero to one (or the other way around). A Multi-Event Upset
refers to the same thing happening to several bits at the same time. Bit�ips
are possibly caused and are often associated with cosmic rays, variations in the
clock signal and the supply voltage[10, 17, 11].

A variation of this has been proven viable against smart cards, writing on
the EEPROM using probing needles[2]. The following is a de�nition of what is
a control �ow attack, and therefor the focus of this attack.

� Control �ow attack: In the Java Card Environment the Program Counter
is a register in charge of pointing to which line of code is being executed.
The base idea is that alterations on the PC makes it possible for the at-
tacker to make jumps in the control �ow. This changes which program
instruction is being executed. By doing this, it is possible to bypass secu-
rity checkpoints in an application. On a model (control �ow graph) this
can be simulated by adding edges between vertices, as seen in the example
at Section 3.1.2.

22 of 73

2.3 The Model-Checker: UPPAAL

UPPAAL at its core is a modelchecking tool based around timed automata. The
variations of UPPAAL all make use of the same core, which includes the .xml

storage system used to de�ne and save automata, but also the timed core. This
means that models in standard UPPAAL are also usable in other variations of
UPPAAL, however not necessarily vice versa (in the case of UPPAAL SMC it
works both ways).

Because UPPAAL models timed automata, the concept of clocks and time
is important to all models. Time has to be modelled in some shape or form in
any give model. Time is not relevant to the concept of this report's proposed
solution however. For this reason, most states are �agged as urgent which
simply means that time units are not allowed to pass while in a state with this
�ag. Essentially it means that UPPAAL has to take a transition out of the state
as soon as the state has been entered.

UPPAAL has a strong veri�cation engine based around a language known
as timed computation tree logic (TCTL). The language that UPPAAL employs
is simply described as a query language however, and it is this term that will
be used throughout this report [4].

The veri�cation engine calculates the boolean value of a query. This query
language will allow a user to ask di�erent questions about their model in the
range of reachability based properties. For example; Is it possible to reach a
given state under certain conditions? It is possible to have the property's truth
value illustrated with a diagnostic trace. This illustrates the path for the user
to further the understanding of the model as well as the query [4].

2.3.1 UPPAAL: SMC

SMC is a Statistical Model Checking tool based on UPPAAL. SMC is built
into later versions of UPPAAL by default and is thus no longer an independent
tool [9]. UPPAAL SMC supports statistical analysis on di�erent queries. For
example, it is possible to query a model based around UPPAAL SMC, what
is the probability of some condition being satis�ed. To achieve this, UPPAAL
SMC is dependent on probability weights on di�erent edges, the modeller should
therefor have a reasonable understanding of what is the likelihood of a given
edge to be chosen, otherwise the probabilities will not necessarily correspond
to the real-world. UPPAAL SMC enables further �exibility in terms of UP-
PAAL's non-determinism. Like TIGA, UPPAAL SMC's query language has
been expanded to capture these extra statistical opportunities [9]. The below
highlights some of the key-features of UPPAAL SMC, for the full list of features,
see: [9].

Con�dence Intervals and Hypothesis Testing

One of the most notable additions to the query language with UPPAAL SMC
in regards to this project, is the probability functionality. Pr is a keyword that

23 of 73

when used in the context of testing a property, tests the model in a necessary
amount of runs, until a desired con�dence level has been reached. The mathe-
matics behind it is known as con�dence interval testing, it is known simply as
hypothesis testing in UPPAAL SMC. The output of running a Pr-based query
on a property is a probabilistic interval, that some property will hold. UPPAAL
SMC tries to get a con�dence level of 95% on this probability interval.

Piecing this information together, the correct understanding of this interval
is that 95% of the time, the true probability exists within this probabilistic
interval. There will be cases where the interval is larger or smaller, which is
why the intervals change for each run. However, the changes are rarely drastic
enough to make the result meaningless in this context. Basically, though the
interval will change, there is a 95% chance that this new interval will still contain
the true probabilistic value.

Hypothesis testing is bounded in UPPAAL SMC, either bounded by time
via clocks, or bounded by a set number discrete steps in the model. Executing
such a query will allow an analyst to make statements about the probabilistic
distribution in regards to this bounded value [9].

Diagrams and Simulations

Hypothesis testing is not the only addition to the UPPAAL SMC query lan-
guage, there are other additions as well. One especially is of interest, namely
simulate, which like hypothesis testing is bounded. Essentially it allows a user
to test their model across a speci�c number of simulations. The bounding may
either be discrete steps in the model, or time. Finally, simulate can test many
di�erent state-based properties in a model, each state property being comma
separated.

In UPPAAL SMC every query can reveal its statistical distribution via dia-
grams, giving a user opportunities to further their understanding of their own
models as well as their queries by having the results visualized.

2.4 Java Card Virtual Machine Architecture

There are two kinds of Java Cards as described in [18]. One of the versions
is a version for the future, where there is a signi�cant boost to the platform's
hardware capabilities. This report however focuses on contemporary Java Cards,
based on version 2.

The hardware speci�cations can be seen in Table 2.1. The capabilities of a
Java Card based on its hardware is limited with little space on RAM (runtime
data), ROM (operating system) and EEPROM (application packages).

Furthermore the virtual machine lacks certain program constructs, such as
threading[16].

Figure 2.3 displays the runtime data area of the Java Card Virtual Machine
(JCVM). PC is the Program Counter, one exists for every thread and it is
a register containing the address of the instruction currently being executed

24 of 73

CPU: 8/16-bit
RAM: 2kb
ROM: 48-64kb
EEPROM: 8-32kb
I/O Interface: Serial
Transfer Rate: 9.6-30kb/s
Duplex: Full

Table 2.1: Traditional Smart Card Hardware[13].

Figure 2.3: The Runtime Data Area of the JCVM, based on [18].

and a return address, as the JCVM on traditional java cards does not support
multi-threading, only one PC exists.

The method area stores the code for methods and constructors, along with
�eld and method data and the run time constant pool. The run-time represen-
tation of the constant pool is speci�c to the class currently being executed, it
contains things such as numeric literals and �eld references.

The heap is where all class instances and arrays are allocated. The frame
stack holds the frames of every method that has been called but has not �nished
its execution yet, with the most recent one being on top.

Each frame contains things necessary to a method, an operand stack, a local
variable array, and a reference to the constant pool of the class that the method
belongs to.

Operand stacks are used to temporarily store the values that instructions
need during execution, while the local variable array store values for later
use[16].

25 of 73

26 of 73

Chapter 3

Modelling a Java Card

Application Control Flow

The following chapter will explain by way of a manual example, how a Java Card
application's control �ow can be modeled as a state machine. The example will
be based on the operational semantics as formalized in [18]. This operational
semantics is based on a JCVM-like language, so while there are some di�erences,
they should prove negligible in regards to understanding the example. The
operational semantics has the advantage of being formally de�ned in a way the
bytecode instructions in the Java Card Virtual Machine speci�cation is not.

3.1 The Example Program

Consider a small application whose purpose is to function like an ATM. Two pin
codes are loaded and compared as integers, one of these is user input, whereas
the other is a prede�ned integer on the card. In case the numbers are equal, the
application would return one for true, otherwise the program returns zero, for
false. Though not modelled in the below Listing 3.1, in case the comparison is
true, the rest of the program should call some kind of log-in mechanism which
gives the user privileges to make a monetary withdrawal. On the other hand, if
the two numbers are not the same the app should terminate.

The �ow of instructions is shown in Listing 3.1.

27 of 73

Listing 3.1: Example ATM Program.� �
0 load 1
1 load 2
2 cmp= 5
3 push 0
4 return

5 push 1
6 return� �
3.1.1 Control Flow In Uppaal

Figure 3.1 displays the control �ow of the example in Listing 3.1, as modeled
in UPPAAL. In this particular model each vertex represents an instruction in
Listing 3.1, and the edges represent the normal control �ow between the instruc-
tions. Tied together they display the possible execution �ows of this method.
The method starts in vertex zero and will �nish in vertex 'end' where the method
return has either returned 'one' from vertex six or returned 'zero' from vertex
four. After this happens there is no further �ow through the method. The ex-
ample bears some resemblance to what was introduced in Figure 1.1. Since the
method has an if-statement the model also has a split at vertex two, going to
either vertices three or �ve. This is the comparison instruction from Listing 3.1.

Because UPPAAL is created to model timed automata, it is possible for
execution to halt on any given vertex. To avoid this, all vertices are marked as
urgent to ensure that a transition must be taken [4].

This models regular execution of a method. However, the model is not
yet entirely complete because malicious execution �ow has not yet been taken
into account. Recall that malicious execution �ow is when the model takes the
possibility of control �ow attacks into account, as described in Section 2.2 and
shown in Figure 1.2. This is displayed in the following part of the example.

3.1.2 Control Flow In UPPAAL With Modeled Attacks

Figure 3.2 displays the control �ow of example code, augmented with the possi-
bility of bit�ips to a PC. For simplicity the PC in this one example is only four
bits. The process of modeling bit�ips is done simply by remembering that the
vertex name shows the line of code it represents. The PC points to these lines
of code being executed. The easiest example to understand this, is �ipping on
PC zero. Zero is binary encoded as: (0 0 0 0). Moving from the �rst to the
last bit, an attack here can result in a jump in executions from zero to one (0
0 0 1), two (0 0 1 0), four (0 1 0 0) and eight (1 0 0 0). Eight however,
is an instruction that is not part of the current instruction space and must be
handled in a special way, for now it is simply ignored. These possible jumps are
marked on the model as edges between the vertexes. Note that these attacks
are not possible from edges where execution of a method or program ends, like

28 of 73

return instructions. This is because attacks are modeled as happening after the
instruction has been executed.

We can use this model to show where the code is vulnerable to this particular
form of control �ow attacks. Security measures are not of much value if they
can be bypassed without execution after all.

Modelling the Attacker

The attacker is modeled in Figure 3.3, it is shown as a range of choices of where
the bit�ip is going to take place. The model of the method waits to start its
execution until after this choice has been made. This is simulated by listening
for a channel broadcast between the start vertex and the �rst instruction vertex.

Every edge from an instruction vertex is protected with guards to make sure
that if an attack is supposed to happen there it cannot continue along normal
control �ow. If the attack is not to take place the bit �ip edges cannot be taken
because of this guard. These measures should ensure that it is equally likely for
all vertices to be attacked. Updating the 'x' value at the time of the attack will
assure that the attack only happens once, in case of loops in the model.

The example will now continue with an adaption to UPPAAL SMC.

3.1.3 Control Flow In UPPAAL-SMC With Modeled At-

tacks

The example model is expanded with UPPAAL branch-points, the model can
be seen in Figure 3.4. Branchpoints are the small circles next to an instruc-
tion in the �gure. These smaller circles should not be confused with normal
instructions. Branchpoints are used by UPPAAL-SMC to add more compli-
cated non-determinism to a model. It allows us to weight outgoing edges from
a branchpoint, determining whether or not one edge is more likely to be chosen
over others. Since we do not have any statistical data to determine the likeliness
of one bit being �ipped over the other, every edge is weighted '1' which gives
each edge a 1/8 chance of being chosen (n/8 where n attacks can go to 'end'
from di�erent bit�ips to the same vertex).

Modeling programs in this fashion allows us to model an attacker who is
capable of deciding which instruction he wants to attack from, but unable to
pinpoint exactly which bit he �ips. Using the built-in veri�er in UPPAAL we
can determine the probability of an attacker being able to launch a successful
attack.

Because the attacker does not have control over which bit he �ips, there is
the chance of him landing on a program counter that points outside the scope
of the method (PC 'zero' through 'six' in the example). Landing outside the
scope of the method should result in the program crashing and thus the edges
that do this points to the BadFlip vertex in the model. For now the chance
of this happening is the only thing that prevents an attacker from successfully
subverting the control �ow. This also means that there is a chance of successful

29 of 73

subversion, to compare against the same model with the countermeasures de-
scribed in Section 1.2. The example will be expanded in Chapter 4 with this
defensive mechanism.

30 of 73

Figure 3.1: ATM example modeled in UPPAAL.

31 of 73

Figure 3.2: UPPAAL model with attack edges.

32 of 73

Figure 3.3: The attacker model.

33 of 73

Figure 3.4: UPPAAL-SMC model with attack edges.

34 of 73

3.2 Modelling Programs

The following section will go into further details with what design decisions were
made in choosing how to model programs in UPPAAL.

3.2.1 Modelling Start and End of Execution

To address an issue in the way we have chosen to model the attacker, it is
necessary to create an 'arti�cial' hook-in into the model. This corresponds with
the assumed program environment as shown in Figure 1.1, in the sense that
program execution exists before and after the method that we analyse.

Essentially this is a state that can only be left by making a synchronization
with the attacker on the only outgoing edge. This state is passed prior to
entering the state of the �rst bytecode instruction in the program. This start
state has been modelled as start. Finally, end of normal execution through the
program has been modelled as end. This state is simply a way of concluding a
correctly executed program where a bit�ip has not occurred.

However, it is also possible to reach end of execution when a bit�ip has
occurred. This is what state undetected means, a bit�ip has occured, it was
not caught by the defensive measures introduced in Section 1.2, and end of
execution has been met. Incidentally the detected state, is a state that is
reachable only when a bit�ip has occurred, and the defensive mechanisms has
correctly acknowledged the attack.

3.2.2 Modelling Bad Bit�ips

The maximum number of bytecode instruction states achievable in an 8-bit
program is 256 (unsigned assumed). For this reason programs being modelled
must only be 256 bytecode instructions long. This is a limit that has been set by
us, to correctly model the number of bad bit�ip transitions that may occur in
a program. This limit also re�ects exactly the limit on the amount of methods
a Java Card applet may contain in a single class. Be advised however a Java
Card package may contain up to 255 classes (not 256), each containing up to
256 methods[15].

A logical observation would then be, that if a program uses exactly 256
bytecode instruction states, each bit�ip is guaranteed to hit another bytecode
instruction - this corresponds with the notion of the bigger the target, the
greater the odds of hitting something [12]. Should the program being modelled
be shorter than the 256 bytecode instructions however, not all bit�ip attacks
leads to a bytecode instruction - but the PC register would still compute a valid
value. In this case, a bad bit�ip has occurred - a bit�ip that is legal, but hits
no correct bytecode instruction in a program. This attack will lead to badflip

instead, as symbol for the unde�ned program behavior that occurs.
For illustrative purposes however, this is not modelled in the standard UP-

PAAL �gures shown in this report and the SMC models' attack edges are
weighted di�erently to compensate.

35 of 73

3.2.3 The Timing of a Bit�ip

There are three ways to interpret, when a bit�ip occurs. Does it occur before
entering a given instruction state, does it occur during bytecode instruction
execution or does it occur after entering a given instruction state. If the bit�ip
occurs before entering a given instruction state, it is simply meant that the
bit�ip edge can be chosen, before the bytecode instruction is executed.

If a bit�ip may occur during bytecode instruction execution, it is meant that
the PC may be manipulated during the execution of a bytecode instruction.

If a bit�ip may only occur after entering an instruction state, it is meant
that the bit�ip occurs when the program state is about to be left for another,
and thus the bytecode instruction in the state, has already been executed.

The choice of interpretation we have made in this report, is that the bytecode
instructions will run atomically. For this reason all bit�ips that occur, must
occur after the bytecode instruction in a given state has already been executed.

3.2.4 The Number of Bit�ip Attacks

As can be seen by the models introduced in Chapter 3, only one bit�ip attack
per program execution has been modelled. This is because of the observation
that the defensive strategy in Section 1.2 does not seek to defend against higher-
order bit�ip attacks (multiple upsets), so testing the strategy against this kind
of attack is not a correct observation of its defensive additions to a program.

3.2.5 Success Criteria of a Bit�ip Attack

We have de�ned a succesful bit�ip attack to be any bit�ip transition chosen.
To us, we do not discriminate if an attack ends up in a desirable position or an
undesirable position - a succesful attack is one that changes the ordinary control
�ow of a system in some way.

36 of 73

Chapter 4

Modelling Java Card Defense

Mechanisms

This chapter will model the defensive strategy that has been described in Sec-
tion 1.2. This method of protection in particular is interesting, because it makes
changes to the control �ow graph of an application. There is a number of nec-
essary changes to the operational semantic that must be done, to be able to
implement the defensive strategy in these models. These changes will be shown
in this chapter. The conclusion of this chapter is a new model implementing
these security features.

4.1 Protective Measure

This section introduces the control �ow of a program that employs validation
by way of counters. A counter is either incremented or decremented and then
compared against an expected value at certain points. See Section 1.2 for an
explanation of this defensive strategy.

The example from the past chapter is the base, however as seen in Listing 4.1
the method has changed. The counter is passed with the method as a variable.
The counter is decremented once at lines �ve through eight of Listing 4.1. As
before, it is being compared against zero in lines nine through eleven, which
is a prede�ned expected value to check against. The comparison is made with
zero to open up to the possibility of optimization later, reducing the number of
vertices needed, as explained in Section 4.2.

Adding these countermeasures also requires the introduction of two new end-
states, which is the vertex 'detected' and the vertex 'undetected' as described in
Section 3.2.1. These new endpoints allow us to distinguish between control �ow
attacks that have been caught before the program �nishes its execution and
those who successfully slip past these security measures. When determining
the e�ectiveness of these countermeasures, the likelihood of a protected model
ending in the vertex 'undetected' should be compared with the likelihood of

37 of 73

the unprotected model ending in the 'end' vertex. The end-state 'end' remains
to catch those runs of the model who run to completion without reaching the
vertex where the attack was supposed to happen.

Listing 4.1: The bytecode for the unoptimized example.� �
0 load 1
1 load 2
2 cmp= 9
3 push 0
4 return

5 load 3
6 push 1
7 math−
8 store 3
9 push 0
10 load 3
11 cmp= 13
12 exception

13 push 1
14 return� �

38 of 73

Figure 4.1: Unoptimized SMC Model.

39 of 73

4.2 Optimization of methods using Instructions

Having many instructions in a method may weaken its degree of security as
described in Section 3.2.2. Essentially, more instructions in a program leaves less
room to bit�ip into a program state, that leads to a program crash (badflip).

This becomes a problem for our instruction set, because the correct im-
plementation of this defensive strategy uses instructions that exists in the real
JCML, but does not exist in our language. It is however possible for us to model
it, but doing so would require loading the variables needed, and using math to
decrement them and using store to save this variable change. Suddenly the
decrement instruction in the JCML becomes 4-instructions long in our seman-
tics. This is an incorrect representation of something that can potentially make
the program more vulnerable. For this reason, it has been decided to introduce
more instructions into the language we have constructed in order to reduce the
number of instructions needed to perform certain high level tasks. The tasks
we look to optimize are those needed to perform the security measures, that is
to increment on a variable and to check if the variable has the expected value.

The instructions 'inc' and 'zcmp' have been de�ned based on the existing
instructions 'iinc' and 'if<condition>' from the JCML the instructions. 'inc'
takes a known variable and increases or decreases its value using a constant
value, while 'zcmp' takes takes a value from the stack and sees if it is equal,
lesser than or greater than zero. Finally 'exception' kills the execution of the
program, it is a pseudo end state responsible for ending an illegal control �ow
when caught, but in it of itself does not possess any logic or rules.

Performing incrementing and comparing are four and three instruction re-
spectively, but with the inclusion of these new instructions it can now be done
with one and two instructions instead. When applied to the example method
we can see how it shrinks down in Figure 4.2.

New Instructions inc and zcmp

inc is an instruction responsible for incrementing or decrementing a variable
stored on the Local Variable Array. The instruction requires an Index value to
select what Variable is being changed and a value to represent how much the
Variable is being changed.

[inc]

instructionAt(m,PC) = inc i v

P ` 〈H, 〈m,PC,OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, OS, L[i 7→ L[i] + v]〉 :: FS〉

zcmp is an instruction responsible for comparing a value to Zero. Like a
normal compare the instruction requires a Branch line number for method to
jump through if the comparison returns true. If the comparison returns false it
just increments the PC normally. In either case the value is popped from the
Stack.

[zcmp 1]

40 of 73

instructionAt(m,PC) = zcmp./ Br

P ` 〈H, 〈m,PC, v :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,Br,OS,L〉 :: FS〉

Where v ./ 0
and ./ ∈ {<,>,≥,≤,=, 6=}

[zcmp 2]

instructionAt(m,PC) = zcmp./ Br

P ` 〈H, 〈m,PC, v :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, OS, L〉 :: FS〉

Where v not ./ 0
and ./ ∈ {<,>,≥,≤,=, 6=}

41 of 73

Figure 4.2: Optimized SMC Model.

42 of 73

Chapter 5

Program Analysis with

UPPAAL

The work focus so far has been to make it possible to model a method in
UPPAAL in a way that shows: a method's control �ow, how performing a
bit�ip can a�ect that control �ow, and how counters can be used to detect and
end illegal control �ows made by bit�ips. This chapter will show how UPPAAL
can be used to conduct program analysis.

5.1 Tool Description

There is no resource online from which we can extract programs that employs
our JCVM language as de�ned in [18], and modeling programs in UPPAAL has
proved to be time consuming process.

Because of this, two tools were created to do the preliminary work.
The two tools that were created are a code generator and a model parser.

5.1.1 Program Generator

The code generator combines modules of byte code instructions into methods
that can be modeled later. The code modules contain also contains the tokens
'label', 'cntdec' and 'cntcheck'. The tokens are needed by the parser to apply
attributes to the vertices. Labels are used to assign edges between a 'goto'
instruction and its target, 'cntdec' assign which vertex should decrement the
counter, and 'cntcheck' shows which compare should have guards to check the
count.

After the method has been generated by putting together a series of code
modules, it is then balanced, to make sure that all possible paths through the
method contains the same number of decrements to the counter.

The tool then makes three copies of the method: One �eshes out the counter-
measures by following the tokens with the instructions they need to have to per-

43 of 73

form the assigned task. The token 'cntstart' is added to the top of the method,
complemented with the number of count decrements a path, is added to the start
of the method along with an 'inc' to instantiate the counter in the method. The
second method removes the tokens, except label, but adds 'NOP' instructions
(�No OPeration�) where the countermeasure instructions would have been. The
last version simply has the tokens removed, again except label tokens.

Note that the code generator is programmed to take a maximum depth.
Maximum depth is the maximum number of layers a formation can add to the
code. For instance the noReturn formation with a max depth of �ve can at
most expand the code with �instVar instVar 'math' 'store' noReturn� �ve times
before it is forced to chose �instVar instVar 'math' 'store' � to stop adding more
layers. This feature was added to give a rough control over how big a method
can be, even if the size will still be largely random.

The formation rules that the tool uses to create the methods can be seen in
Table 5.1. All the code is saved in text documents.

The algorithm responsible for balancing the code before can be seen in List-
ing 5.1. For the code to be balanced, all paths through a method must reach
the same number of decrements to the counter before ending. A path is de-
�ned the succession of instructions that is reached throughout the execution
of a method and there are potentially many unique paths through a method
as, as compares will result in di�erent instructions being reached depending on
whether the comparison is true or false.

In order to assure that all paths are balanced the algorithm will recreate all
possible paths though the method. This starts with a single path at the start of
the method. When the path reaches a compare, a new path is created from the
existing path, it has the same history as its parent but continues down the true
branch where the parent will go down the false branch. The paths will continue,
being produced whenever a new compare is reached, until it reaches the end of
the method, where it will register the number of decrements it has encountered
and return.

If there are paths that have encountered more decrements than other paths,
the algorithm will balance itself by adding decrements to the end of paths who
come out short.

There is a weakness with the algorithm in its current form, it cannot handle
instances where multiple paths end at the same point, but have encountered
a di�erent number of decrements. It can currently only handle cases where
paths of a distinct number of decrements do not reconnect. However, the code
generator does not generate methods where this would be a problem as it is not
possible with the formation rules.

Listing 5.1: The pseudocode outlining the method used to balance.� �
0 Preparation :
1 Create a queue .
2 Create a ' Path ' Containing

3 A count , for the number of cntdecs in the flows path , in←↩

44 of 73

Code::= ('cntstart' 'inc' || 'NOP' || ' ') withReturn

ifblock::= instVar 'label#2' instVar instVar 'cmp label#1' withReturn

'label#1' noReturn 'goto label#2' ||

instVar instVar 'cmp label#1' cntdec 'label#2'

withReturn 'label#1' cntdec noReturn 'goto label#2' ||

instVar instVar 'cmp label#1' cntdec withReturn

'label#2' withReturn label#1 cntdec noReturn 'goto label#2'||

instVar instVar 'cmp label#1' cntdec withReturn

'label#1' cntdec withReturn

noReturn::= instVar instVar 'math' 'store' ||

instVar instVar 'math' 'store' noReturn

withReturn::= cntcheck 'return' ||

instVar instVar 'math' 'store' withReturn ||

ifblock

cntdec::= ('cntcheck' 'inc' || 'NOP' || ' ')

cntcheck::= ('load' 'cntcheck' 'zcmp label#1' 'exception' 'label#1' ||

'NOP' 'NOP' 'NOP' || ' ')

instVar::= 'load' || 'push'

Table 5.1: Formation rules for the code generator.

45 of 73

the at zero ,
4 A line count at zero (the first line) ,
5 An empty list history of previously visited ' cmp ' ←↩

instructions ,
6 A reference to the code being checked .
7

8 Step One :
9 Is the queue empty? If not :
10 Dequeue the top Path and examine the instruction it is ←↩

at in step Two .
11

12 If it is :
13 Continue to step Three .
14

15 Step Two :
16 Is the instruction ' cntdec ' ? If so :
17 Increment the count and the line count . Add the updated ←↩

Path to the queue .
18

19 Is the the instruction a goto? If so :
20 Update the Path ' s line number to be that which the goto '←↩

s target label is at . Add the updated Path to the ←↩
queue .

21

22 Is the instruction a compare ? If so :
23 Has that particular compare been visited before? If so :
24 Add the compare instruction to the history list .
25 Create a new Path by copying the current one .
26 Update the new Path ' s line number to be that of the ←↩

label that marks the start of the true branch . Add←↩
the path to the queue .

27 Update the (original) flow unit to go down the false ←↩
branch and add it to the queue .

28

29 Is the instruction a ' cntcheck ' ? If so :
30 This is the end of a flow units path , append the path ' s ←↩

count to the cntcheck ' s line of code .
31

32 Is the instruction ' anything else ' ? If so :
33 Increment the line count .
34

35 Is the flow units current count higher than the global max←↩
count? If so :

36 Update the global max count .
37

38 Continue from step one .
39

40 Step Three :
41 For every line in the code being checked , does the line ←↩

contain a count appended to it? If so :

46 of 73

42 Is the count smaller than the global maximum ? If so :
43 Add new lines with the token ' cntdec ' before the line ←↩

with the count appended .
44 Remove all appended counts from that line .� �

5.1.2 Model Parser

The parser reads the generated programs from a .txt format, and generates an
UPPAAL-ready XML document. This document is essentially the model. The
instructions of the program are translated to vertices and the parser creates the
edges between them based on the control �ow established by the instructions.
Potential bit�ips are calculated and connected to instructions or the bad�ip
state by the parser. Special rules associated with the counter measures are
added to vertices that follow the related tokens, in the form of guards and
updates. These special rules include guards to limit movement around count
checks, and updates to simulate the count being decremented.

For a full overview of the parser, see Appendix A and Figure A.1.

Figure 5.1: Program Flow of the Parser.

For the purpose of better understanding of the mechanisms in each step, each
�gure illustrates by way of plain-text and a �ow chart the algorithmic approach
behind them. Not all �ags are described in the �gures, for example the x !=

<constant �ag, because it is a property that every edge has so it would not
make sense to show. Only the important portions of the algorithms have been
highlighted in the following �gures.

Figure 5.1 illustrates the program �ow of the Model Parser. The main thing
to understand from this �gure is that the parser goes through three-steps for each
program �le, with each step contributing something to the CFG of the program.
The �rst step is illustrated in Figure 5.2, and simply creates the necessary UP-
PAAL states. This includes the end-states badflip, undetected, detected

and end. The second step consists of two steps as illustrated in Figure 5.4. The
�rst step (2a) is responsible for connecting states with edges, including edges

47 of 73

between bytecode instructions and the relevant end-states. This step is followed
by a miniature step. This step (2b) is responsible for connecting the remaining
edges from a comparison's true-branch to the remaining program instructions.
This is also a step wherein goto's are connected to the correct bytecode in-
structions in the CFG. The �nal step is illustrated in Figure 5.3 here bit�ip
transitions are connected to the correct bytecode instruction states, as well as
the badflip state.

Program Details

The parser was written in C++, which means that a ready to use executable �le
can be produced. The parser behaves reasonably in terms of performance as well
when generating models, even though as illustrated in the �gures, many passes
over the same program-�le is conducted. The program however as designed
as a proof of concept rather than an o�-the-shelf solution to be used by the
industry at large, and as such the 'prettiness' of the models was something that
was not prioritized, neither was the program's design both in regards to object
orientation but also exception handling. For the parser to work it is necessary
to keep the parser.exe in a folder with two subfolders, uppaal_program and
uppaal_parsed. Furthermore, the command prompt should only be used with
the intended input. The Parser can construct UPPAAL, UPPAAL SMC and UPPAAL

TIGA models of the same program(s).

48 of 73

Figure 5.2: Step 1, Generate States.

Figure 5.3: Step 3, Generate Bit�ip Transitions.

49 of 73

(a) Step 2a: Generate Standard Transitions.

(b) Step 2b: Add Remain-
ing Label Transitions.

Figure 5.4: Step 2, Generate Transitions.

50 of 73

5.2 Queries and Evaluation

The following section will describe some of the ways that UPPAAL allow us
to analyze our models. We have decided to conduct experiments within three
branches, namely Balancing, Execution Flow and Distribution.

5.2.1 Balancing

The balance-test is performed by bypassing the attacker so that no attack is
performed on the model and then using the queries �E <> Program.detected�
and �E <> Program.undetected� to see if it is possible to end a run in end-
states normally reserved to attacks.

To bypass the attacker, the parser (in SMC and UPPAAL) guards the edge
to the branchpoint with a variable testbalance, and produces a new edge from
start to send that does not manipulate x, this transition is also guarded. It
is then possible in declarations to decide what 'mode' to run the model in,
assigning 0 to testbalance (as is the default setting), means that the model
will run 'normally'. Assigning 1 to testbalance means that the attacker will
be bypassed and it can then be used for balance testing models. This can be
seen in Figure 5.5.

In cases where the model is imbalanced, UPPAAL can generate a trace that
shows exactly what path is imbalanced. The query �E <> Program.detected�
is used in this example. This trace is a sequence of instructions that need to
happen for the run to end in the detected end state. The developer is then able
to follow the imbalanced sequence and compare it to the bytecode instructions
in order to discover the problem.

This method was used to discover a bug in the implementation of the balanc-
ing algorithm of the code generator. After generating the code and during the
balancing step the program would inject count decrements one step too early in
the raw code. On rare occasions where a count check would immediately follow
a label, the injected count decrements would land before the label, and would
not correct the imbalanced path but would rather alter a di�erent one, if any.
This error has been corrected, the e�ect it had and the trace that UPPAAL
generated can be seen in Figure 5.6 where line 27 is placed before the label
and becomes dead code that is never accessed, rather than being after the label
where it would have balanced the path.

This goes to show that UPPAAL can be used for path balance testing as
well.

5.2.2 Execution Flow

Execution Flow tests in this report tests reachability and trace based properties
in each model. What is interesting to know in this regard, is up to the analyst
of course, however to start us o� we will ask certain queries about the integrity
of a program. For illustrative purposes we will use the model in Figure 4.2.

51 of 73

Figure 5.5: Circumventing the attacker to check the model balance.

Bypassing Protective Measures

A query that will allow us to test whether it is possible to bypass the defense
mechanism in instruction 7, can be asked by E<>optimizedSMC.undetected.
This property is satis�ed, by performing a bit�ip transition in zero to end
up in state four. This is a fairly sterile test-case though in the sense that
this kind of analysis does not take into account the chance of hitting a wrong
state. This query can thus be expanded, and instead it is possible to ask
what is the probability, that this state is reached. This kind of result is pro-
duced as a con�dence interval as described in Section 2.3.1. This query is:
Pr[<=50](<>optimizedSMC.undetected). The result shows that with 95%,
the probabilistic value of reaching undetected is somewhere between 18% and
28%.

5.2.3 Distribution

For balanced models, the developer can use UPPAAL to determine how much
security is a�orded to the method he has programmed. Security is de�ned as
the countermeasures added to the method, and how likely they are to detect
an attack. To determine this UPPAAL can be used to display how a series of
runs are distributed along the end points, based on the model randomly chosen
attacks and where the attacks reach. To know where the runs end the edges
to every end-point in the model has updates a value 's'. When the run reaches
detected, s becomes 1, in undetected s becomes 2, in badflip s is 3, and in

52 of 73

Figure 5.6: The misplaced count decrement.

53 of 73

end s becomes 4.

� 'Detected' is the number of runs that make an attack and is caught the
counter measures, not applicable for NOP- and Unprotected versions.

� 'Undetected' is the number of times where an attack has happened, and
is not detected by any counter measures.

� 'BadFlip' is the number of times an attack is attempted but the PC lands
out of bounds.

� 'end' is the number of times a run completes without performing an attack,
this occurs when a run chooses a path down one branch of a compare, and
the attack was supposed to happen at the other branch.

The query�E[⇐ 50; 20000](max : s)� is then used to �nd the distribution of
the runs. The query returns the evaluation of twenty-thousand simulated runs
with a time bound of �fty. This is illustrated in Figure 5.7 where the query
displays how many times a run ended with a given value for 's'.

Figure 5.7: Query results as displayed in UPPAAL, where s values represent 1:
Detected, 2: Undetected, 3: Bad Flip, 4: End.

To exemplify how the developer could determine this we have generated �ve
methods with the code generator. There are three versions of each method:
Unprotected is the method with no counter measures, while protected is the
method with countermeasures. The NOP version is an unprotected method
created by replacing all countermeasure instructions in the protected version
with 'No Operation' instructions - this gives us a program of equal length with
the protected version. The Table 5.2 shows the results of the distribution queries
on the di�erent models. While averaging the method versions on end shows that
between 7.26% and 65.5% of the runs end without performing an attack, the

54 of 73

result of the query also shows that adding the counter measures reduces the
number of undetected attacks at an average of 35.34% when compared to the
NOP version.

This shows us that there is an impact in adding counter measures to a
program. It appears that counter-measures takes runs from undetected, but
also quite possibly end or badflip. Unfortunately, because of the way the
current model works, it is not possible to estimate how much of an impact
counter measures have, it is only possible to say that there is an impact.

Name Line Count Detected Undetected BadFlip End
1-Unprotected 33 N/A 10306 8115 1579
1-Protected 38 1256 9671 7671 1402
1-NOP Version 38 N/A 10505 8115 1380
2-Unprotected 70 N/A 8212 3714 8074
2-Protected 78 3131 5742 3670 7457
2-NOP Version 78 N/A 8723 3798 7479
3-Unprotected 91 N/A 6490 2690 10820
3-Protected 102 1911 5126 2413 10550
3-NOP Version 102 N/A 6771 2658 10571
4-Unprotected 151 N/A 9123 2380 8497
4-Protected 166 4814 4703 2097 8386
4-NOP Version 166 N/A 9302 2247 8451
5-Unprotected 162 N/A 5673 1459 12868
5-Protected 202 3415 2506 830 13249
5-NOP Version 202 N/A 5801 1026 13173

Table 5.2: The distribution of runs on the example methods.

Using the query the developer is capable of determining if the introduction
of countermeasures to the method are e�ective. Alternatively they can compare
versions of the same method, where the countermeasures are placed di�erently,
to determine which implementation of the counters provide the method with the
highest likelihood of detecting an attack to the control �ow. It is interesting to
note that even from the small number of tested programs, there is an apparent
correlation between the number of attacks that are foiled by ending in �bad�ip�
and the size of the method. The number of runs ending in �bad�ip� decreases
as the number of lines increase.

55 of 73

56 of 73

Chapter 6

Re�ection

The following chapter will re�ect on the project. The chapter will consist of a
future work portion, which will highlight how the toolchain might change or be
used in the future. A look at the modelling technique chosen for this project will
also be discussed. The last part of the chapter will be a conclusion, that seeks to
conclude on the project based on the problem de�nition given in Section 1.3.1.

6.1 Toolchain Evaluation

The following section will evaluate the toolchain that was programmed through-
out this semester and seek to highlight areas of improvement. The program
generator was a necessary step in creating programs that were not made by
hand, however beyond this project it is di�cult to see its use in the future, this
will be explained in the following.

6.1.1 Model Parser

The next step for the model parser, is a re-implementation to �ush out bugs and
produce a more e�cient program-design. There are errors that we are aware
of, but have chosen not to �x, because these bugs does not at all impact the
output that is the UPPAAL ready control �ow graph. Furthermore, it would
be interesting to make the necessary tweaks to be able to support the full Java
Card Machine Language. As of right now the model parser may only parse
programs written in our operational semantics.

In their current form the model parser and the program generator should
simply be considered a proof-of-concept that illustrates how simple mediation
software is able to transform program-code into UPPAAL models. The parser
currently supports three UPPAAL versions (UPPAAL, UPPAAL SMC and UP-
PAAL TIGA) but this is also an area that could be expanded, and with proper
re-implementation, could be a task not too challenging. On a side-note we
discovered that UPPAAL Stratego is fully supported with our models, this is

57 of 73

because the coding conventions of UPPAAL in later models seems to align,
whereas TIGA is clearly an older version that does not support new .xml fea-
tures - so it is not a necessary given that dramatic changes to the output of
the parser has to be made. This is because the parser outputs .xml models for
UPPAAL's latest edition (4.1.19)[4].

The parser is reasonably scalable as is, but proper use of Object Oriented
design would make this task easier and more �exible.

Parser Scalability

Should the parser have to be scaled up to the full JCVML, the task would
not be infeasible. This is because general rules for each vertex can easily be
established. At the correct level of abstraction, the di�erence between store

and load is non-existent at least from a control �ow graph perspective. The
tricky parts for the parser, is correctly connecting jumps in branches. There
are many more jump statements and if-statements in the full language however,
and a degree of abstraction between these overlapping instructions as suggested
in our operational semantics could be used with the same bene�ts.

Changes to the Model

As suggested in Section 6.3, to be able to model the impact of a guaranteed
bit�ip in the model, the parser will need to work di�erently. A solution we
would propose is that the parser builds a tree data structure of instructions,
as opposed to reading line-after-line as is. With this design it will become a
more trivial task to know, which instructions is found in each branch. When a
comparison instruction is then encountered, it is simply a matter of traversing
the tree following the comparison statement, and construct a guard based on
the instruction names as illustrated in Figure 6.1.

6.1.2 Program Generator

The program generator was a tool of necessity written to construct programs
that employed the defensive mechanism described throughout this report. This
is because we do not have access to a codebase to draw from, so to be able
to construct our own programs was the only solution to be able to conduct
experiments of reasonable size and objectivity. There are issues though with
this approach, for example it is possible that the programs, because of the small
language in the semantics, are very much the same - if not semantically, then
control �ow graph wise at least. Furthermore, the ways in which we place
the defensive mechanisms in the programs generated is not based on any best
practices available within the industry, rather they are placed algorithmically,
based on examples from [1].

58 of 73

6.2 Alternative UPPAAL Models

Instead of having conducted this analysis in SMC, another approach could have
been to use UPPAAL Stratego and UPPAAL TIGA. UPPAAL Stratego is a
fairly new version (�rst released in April 2015[7]) of UPPAAL which combines
SMC's �exible nondeterminism, with TIGA - essentially making it possible to
create more complicated games than in just TIGA. TIGA is a strong tool for
synthesizing and visualizing strategies in timed game automata. The following
section will go into details with these two UPPAAL versions and describe their
use for this project.

6.2.1 TIGA and Stratego

A big di�erence between TIGA and Stratego is that Stratego makes sacri�ces
when it comes to visualizing the strategies that has been synthesized in a model,
which is where TIGA comes into its own from an analytical point of view.
In return however, Stratego allows for more complex models, by combining
UPPAAL SMC and its probability weighting as well as query language, with
Stratego's own, this is something TIGA does not allow. Essentially, a UPPAAL
SMC model may be used directly within Stratego, whereas a SMC model must
be entirely re-written, to �t with TIGA.

Strategy Synthesis and Further Analysis

In Stratego, strategies can be assigned a special variable by expanding TIGA's
strategy syntax. A practical example could be: strategy S = control:

A<>Program.undetected, in which case the winning condition is reaching the
undetected state in Program1. This strategy can be utilized with UPPAAL SMC
however, for example with: Pr[<=2](<>Program.four) under S, in which case
the query seeks to know the con�dence interval with which the undetected

state can be reached from state four. If a similar query is asked in TIGA
control: A<>Program.undetected, the output if satis�ed, is a path in the UP-
PAAL simulator which illustrates the necessary transitions to satisfy the query.
Furthermore a strategy can be given through the command prompt application
accompanying TIGA, that shows the optimal transitions to satisfy the query, in
every state - both things Stratego cannot do[8].

Synthesizing strategies in the way of TIGA and the simulator is quite in-
teresting, because TIGA is able to show which states lead to the query being
satis�ed. If the query control: A<>Program.undetected cannot be satis�ed in
one of our models, it means that there is no guaranteed winning strategy to
always reach this state. If it can be satis�ed however, the diagnostic trace will
reveal which path allows this, and potentially uncover points of weakness in the
model that could be remodelled, or simply removed from the control �ow.

1During strategy synthesis, the computer takes on the role of the attacker (bit�ip transi-
tions), and the user is the defender (program)

59 of 73

6.2.2 Preliminary Results

Unfortunately for this project, we were not able to fully utilize TIGA (due to
time constraints) or Stratego (discovered the tool too late in development).

The preliminary results we found, were based on an ad-hoc program analysis
approach after running queries of the kind mentioned in TIGA with the query:
control: A<>Program.undetected. Each model generated by the program
generator produced simply one �ow with which it was possible to always en-
ter either the undetected state in a model. The program was changed to try
and eliminate this weakness, and though TIGA suggested that now no winning
strategies existed, testing the same model in SMC proved that it was indeed
still possible to enter the undetected state, albeit less likely. UPPAAL SMC is
not an optimal 'adversary' that makes optimal choices in every state, rather the
stochastic approach of SMC means that as could be expected some runs will
always reach the undetected state so long as there is a transition that leads to
it.

Furthermore, this decrease in likelihood could come from numerous factors,
for example that the program simply became smaller - recall that in theory a
smaller program makes it more likely to make a bad bit�ip transition because
the target is smaller. Alternatively, perhaps the approach worked, and we were
on to something. Or �nally, perhaps the statistics that were drawn from this
model were simply lucky to suggest a trend - or perhaps the generated program
is at fault. It is too early to say, but it leaves room for further and more
structured analysis in the future.

6.3 Changes to the Model

In the current model, there is a subtle problem with the end state. It is a state
that is reachable when no bit�ip attack has been made. To be able to model the
outcome of a guaranteed bit�ip attack, we came up with two potential solutions.
The �rst was to create a path from end to zero to force the model to produce
one or more runs. Unfortunately this produces a phenomenon known as zeno
behavior, which can be considered to be sort of a livelock (in UPPAAL zeno
behaviour means that an arbitrary number of transitions can be taken in 0 time
units).

The problem this introduces is that the model can in�nitely loop, and will be
rejected by UPPAAL (because of its inherent zeno detection) - so this solution
is unfortunately not valid.

The alternative solution however, is a bit more complicated, and in the
current version of the parser cannot easily be implemented (which is why it
was not done). The solution will however solve the problem, and guarantee
that a bit�ip occurs, in every run. This solution seeks to make the creation of
comparison vertices and edges more complicated. This solution is illustrated
in Figure 6.1.

The edges that deviate from the current model, are the branching edges. As

60 of 73

Figure 6.1: The future model.

Figure 6.1 shows, it is necessary to know the state-names of all future states
in each branch, to be able to correctly funnel a path toward the state it must
bit�ip from. This makes the guards outgoing from the �rst state (zero), the
most complex. After that, for each branch, the guards would become less and
less complex. On normal edges (edge between four and �ve in Figure 6.1), the
current x!=<current state rule will su�ce.

6.4 Conclusion

The report has shown how it is possible to model Java Card applications in
UPPAAL. A parser was written as proof of concept to show that this task can
also be automatized. Because there does not exist any programs that is based
upon operational semantics de�ned in [18], we wrote programs ourselves to work
with the parser - this process was also automatized. Put together, we showed
how it is possible to analyze a program of this kind.

It would seem that an attacker faces many challenges, when they try to
tamper with the control �ow of such an application. Assuming the card does
not break when it is struck by the energy particles of a laser, the energy particles
will also need to strike the circuit in such a way that something meaningful can
come out of it. As we have shown in this report, the odds of making a bit�ip,
that does absolutely nothing (bit�ips that goes to badflip) is higher for small
programs, than bigger programs. This illustrates the notion of the bigger the
target, the easier to hit [12]. A good coding practice for Java Card Applications
and in general good object oriented design, is therefore to keep methods small.
In case a bit�ip attack would then occur, the odds of making a bad bit�ip is
increased.

As described in Section 6.3, there is an issue with the current model in the
sense that not every run leads to an end state, where a bit�ip has been made. In
the current model however it is possible to benchmark how many of these runs
simply goes to end. In an unscienti�c way, this state could potentially model

61 of 73

the runs which caused damage to the circuit and broke it. It is important to
note that it is not a given that the way of modeling programs as suggested in
Section 6.3, is a realistic approach - in fact it might be too pessimistic with the
succesrate of a bit�ip attack.

62 of 73

Bibliography

[1] Mehdi-Laurent Akkar, Louis Goubin, and Olivier Ly. Automatic Integration
of Counter-Measures Against Fault Injection Attacks. URL: http://www.
labri.fr/perso/ly/publications/cfed.pdf, 2003.

[2] Hagai Bar-El. Known attacks against smart cards.
http://www.discretix.com/white-papers/known-attacks-against-
smartcards/.

[3] Guillaume Barbu, Philippe Andouard, and Christophe Giraud. Dynamic
Fault Injection Countermeasure, 2013. See Repository for PDF source.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. Uppaal tutorial.
See repository for PDF source.

[5] Boost. Boost Library Website. URL: http://www.boost.org/, 2015.

[6] Guillaume Bou�ard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Com-
bined software and hardware attacks on the java card control �ow. Smart
Card Research and Advanced Applications: 10th IFIP WG 8.8/11.2 Inter-
national Conference, CARDIS 2011, Leuven, Belgium, September 14-16,
2011, Revised Selected Papers, pages 283�296, 2011. See Repository for
PDF source.

[7] Alexandre David, Peter Gjøl Jensen, Kim G. Larsen, Marius Miku£ionis,
and Jakob Haahr Taankvist. Stratego Homepage. URL: http://people.cs.
aau.dk/~marius/stratego/index.html, 2015.

[8] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Miku-
cionis, and Jakob Haahr Taankvist. Uppaal stratego. In Tools and Algo-
rithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings, pages 206�211, 2015.

[9] Alexandre David, Kim G. Larsen, Axel Legay, Marius Miku£ionis, and
Danny Bøgsted Poulsen. Uppaal smc tutorial. International Journal on
Software Tools for Technology Transfer, pages 1�19, 2015. See Repository
for PDF source.

63 of 73

http://www.labri.fr/perso/ly/publications/cfed.pdf
http://www.labri.fr/perso/ly/publications/cfed.pdf
http://www.boost.org/
http://people.cs.aau.dk/~marius/stratego/index.html
http://people.cs.aau.dk/~marius/stratego/index.html

[10] Bar-El H., Discretix Technol. Ltd Rehovot Israel, Choukri H., Naccache
D., Tunstall Michael, and Whelan C. The sorcerer's apprentice guide to
fault attacks. Proceedings of the IEEE, 94(2):370 � 382, Feb 2006.

[11] Allan. H. Johnston. Scaling and technology issues for soft error rates.
Presented at the 4th Annual Research Conference on Reliability, Stanford
University, October 2000, pages 1�9, 2000. See Repository for PDF source.

[12] Julien Lancia. Java card combined attacks with localization-agnostic fault
injection. Smart Card Research and Advanced Applications: 11th Interna-
tional Conference, CARDIS 2012, Graz, Austria, November 28-30, 2012,
Revised Selected Papers, pages 31�45, 2013. See Repository for PDF source.

[13] Sun Microsystems. The Java Card 3 Platform, August 2008. http://www.

oracle.com/technetwork/java/javacard3-whitepaper-149761.pdf.

[14] Wojciech Mostowski and Erik Poll. Malicious code on java card smartcards:
Attacks and countermeasures. 8th IFIP WG 8.8/11.2 International Con-
ference, CARDIS 2008, London, UK, September 8-11, 2008. Proceedings,
pages 1�16, 2008. See Repository for PDF source.

[15] Oracle. Java Card 3: Classic Functionality Gets a Connectiv-
ity Boost, 2009. http://www.oracle.com/technetwork/articles/javase/

javacard3-142122.html.

[16] Oracle. Java Card 2.2.1 Platform, Virtual Machine Speci�cation, October
2003. See repository for PDF source.

[17] Tezzaron Semiconductor. Soft Errors in Electronic Memory � A White
Paper, January 2004.

[18] Anders Vinther and Jakob Jørgensen. Operational Semantics of a JCVM
Language. URL: http://projekter.aau.dk/projekter/da/studentthesis/

operational-semantics-of-a-jcvm-language(1a79dc0e-7f16-4dde-b97f-d929bb3c0f17)

.html, 2014. See repository for PDF source.

64 of 73

http://www.oracle.com/technetwork/java/javacard3-whitepaper-149761.pdf
http://www.oracle.com/technetwork/java/javacard3-whitepaper-149761.pdf
http://www.oracle.com/technetwork/articles/javase/javacard3-142122.html
http://www.oracle.com/technetwork/articles/javase/javacard3-142122.html
http://projekter.aau.dk/projekter/da/studentthesis/operational-semantics-of-a-jcvm-language(1a79dc0e-7f16-4dde-b97f-d929bb3c0f17).html
http://projekter.aau.dk/projekter/da/studentthesis/operational-semantics-of-a-jcvm-language(1a79dc0e-7f16-4dde-b97f-d929bb3c0f17).html
http://projekter.aau.dk/projekter/da/studentthesis/operational-semantics-of-a-jcvm-language(1a79dc0e-7f16-4dde-b97f-d929bb3c0f17).html

Part I

Appendices

65 of 73

Appendix A

Model Parser

67 of 73

F
ig
u
re

A
.1
:
F
u
ll
O
v
erv

iew
o
f
th
e
P
a
rser.

68 of 73

Appendix B

Instructions of the

Operational Semantics

This paper uses many instructions that have been de�ned in [18]. The rules de-
�ne the transition from one con�guration of a program P as shown: P ` 〈H , 〈m,PC , v :: OS ,L〉 :: FS 〉.
The transition itself requires some conditions to be true before the old con�gu-
ration can be changed to the result of the instructions execution.
[name]

Conditions

P ` ConfigurationbeforeExecution⇒ ConfigurationafterExecution

The rules are cited from [18].

pop removes a value from the Operand Stack of the current method's Frame.
It requires that there is a value on the Operand Stack. The method a�ects only
the Operand Stack and the PC of the current Frame.

[pop]

instructionAt(m,PC) = pop

P ` 〈H, 〈m,PC, v0 :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, OS, L〉 :: FS〉

push adds the accompanying byte value to the Operand Stack of the current
method's Frame.

[push]

instructionAt(m,PC) = push v0
P ` 〈H, 〈m,PC,OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, v0 :: OS,L〉 :: FS〉

Math is a simpli�cation of all mathematical instructions. It a�ects the cur-
rent Method Frame and requires two values that are not object references to be
pushed onto the Operand Stack.

Both values are popped from the Operand Stack and math is performed on

69 of 73

them. After that, the result is pushed back onto the Operand Stack and the PC
is incremented.

[math]

instructionAt(m,PC) = math♦
P ` 〈H, 〈m,PC, v0 :: v1 :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, v :: OS,L〉 :: FS〉

Where v = v1♦v and ♦ ∈ {+,−, ·,÷}

cmp is the instruction that compares two values relative to some logic sym-
bol. Because this expression can either be true or false there are two transitions
for this instruction. The instruction requires an accommodating byte that is
the branching value as well as two values on the Operand Stack (the values to
compare). It only a�ects the current method Frame.

Version 1 is the transition where the comparison evaluates to true. Both
values are popped from the Operand Stack and compared, since they are true
the PC is set to be the branch value.

Version 2 is the transition where the comparison evaluates to false. Both
values are popped from the Operand Stack and compared, since they are not
equal to each other, the PC is incremented to move past the cmp instruction.

[cmp 1]

instructionAt(m,PC) = cmp./ Br

P ` 〈H, 〈m,PC, v0 :: v1 :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,Br,OS,L〉 :: FS〉

Where v0 ./ v1
and ./ ∈ {<,>,≥,≤,=, 6=}

[cmp 2]

instructionAt(m,PC) = cmp./ Br

P ` 〈H, 〈m,PC, v0 :: v1 :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, OS, L〉 :: FS〉

Where v0 not ./ v1
and ./ ∈ {<,>,≥,≤,=, 6=}

goto changes the PC value of the current method frame to that of the byte
that accompanied the instruction.

[goto]

instructionAt(m,PC) = goto PC ′

P ` 〈H, 〈m,PC,OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC ′, OS, L〉 :: FS〉

load loads a value from the local variable array. It requires an accompanying
byte representing the index where the required value is located. The instruction
only a�ects the current method Frame.

70 of 73

The instruction loads the value from the Local Variable Array at the index
location and pushes it onto the Operand Stack. The PC is then incremented.

[load]

instructionAt(m,PC) = load i

P ` 〈H, 〈m,PC,OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, v :: OS,L〉 :: FS〉

Where v = L[i]

store stores values in the Local Variable Array. It only a�ects the current
method's Frame and requires two things to be executed successfully. First, the
Operand Stack has to contain a value at the top. Second, the instruction has
to be complemented with a second byte, referred to here as i for index.

The instruction pops the value from the operand and stores it in the Local
Variable Array on the index location.

[store]

instructionAt(m,PC) = store i

P ` 〈H, 〈m,PC, v :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, OS, L[i 7→ v]〉 :: FS〉

return �nishes the current method and returns to the method that invoked it.
There are two Variants, one for when the method returns a value and another
for when it doesn't. It a�ects both the current method's Frame (top of the
Frame Stack) and the invoking method's Frame (below the current Frame on
the Frame Stack). The instruction that returns a value requires one to be on
top of the Operand Stack of the current method's Frame.

In variant one the value is popped from the Operand Stack of the current
method's Frame before that Frame is popped from the Frame Stack. The integer
is then pushed to the Operand Stack of the invoking method, the invoking
method is now the current method, and its PC is incremented. This instruction
also exists for short and reference values. Variant two is the same, but without
the value moving between frames.

[return1]

instructionAt(m,PC) = return

P ` 〈H, 〈m,PC, v :: OS,L〉 :: 〈m′, PC ′, OS′, L′〉 :: FS〉 ⇒
〈H, 〈m′, PC ′ + 1, v :: OS′, L′〉 :: FS〉

[return2]

instructionAt(m,PC) = return

P ` 〈H, 〈m,PC,OS,L〉 :: 〈m′, PC ′, OS′, L′〉 :: FS〉 ⇒
〈H, 〈m′, PC ′ + 1, OS′, L′〉 :: FS〉

new creates new objects and a�ects the current method's Frame and the
Heap. It requires the instruction to be complemented by a class reference. It is
a reference to the class that is to be instantiated into a new Object.

71 of 73

The instruction uses the information from the Class to create an Object on
the Heap, the instance values are set to their default values. An object reference
is pushed to the Operand Stack and the PC is incremented.

[new]

instructionAt(m,PC) = new cr

P ` 〈H, 〈m,PC,OS,L〉 :: FS〉 ⇒ 〈H ′, 〈m,PC + 1, vObjRef :: OS,L〉 :: FS〉

Where cr ∈ ClassRef , vObjRef ∈ ObjRef , vObjRef /∈ domain(H),
mathitH ′ = H[vObjRef 7→ o], o ∈ Object, o.ClassRef = cr

get�eld gets the �eld values of an Object. It requires the instruction to be
complemented with a FieldRef that points to a speci�c �eld of a Class. The
instruction also requires an object reference on the Operand Stack that points to
the part of the Heap containing the Object. The instruction a�ects the current
method's Frame and reads from the Heap.

The instruction pops the object reference and the index from the Operand
Stack and instead pushes the requested Field value to the Operand Stack and
increments PC.

[getfield]

instructionAt(m,PC) = getfield fref , o = H (vObjRef), value = o.Field(fref)

P ` 〈H, 〈m,PC, vObjRef :: OS,L〉 :: FS〉 ⇒ 〈H, 〈m,PC + 1, value :: OS,L〉 :: FS〉

Where vObjRef ∈ ObjRef , fref ∈ FieldRef , vObjRef 6= Null

put�eld functions in the same manner as the get�eld instruction, but with
some variation. The Operand Stack must contain a value beneath the object
reference. That value is popped from the Operand Stack with the reference,
and put into the object's �eld and the PC is incremented.

[putfield]

instructionAt(m,PC) = putfield fref ,
o = H (vObjRef), o′ = o[Field 7→ o.Field [fref 7→ v]],

H ′ = H [vobjRef 7→ o′]

P ` 〈H, 〈m,PC, vobjRef :: v :: OS,L〉 :: FS〉 ⇒
〈H ′, 〈m,PC + 1, OS, L〉 :: FS〉

Where vObjRef ∈ ObjRef , fref ∈ FieldRef , o ∈ Object , vObjRef 6= Null

invokevirtual is an instruction that allows methods to call other methods. It
requires the instruction to be complemented by a Method Signature and that
the current method has an object reference on top of the Operand Stack. Any
arguments passed to the method are beneath the object reference on the stack.
It a�ects the current method's Frame and the Frame Stack.

The Method Signature refers to the speci�c method being invoked. A new
Frame is made to accompany the new method which is pushed onto the Frame

72 of 73

Stack. The new method becomes the current method while the previous is
referred to as the invoking method. The object reference and the arguments
have been popped from the invoking method Operand Stack and loaded onto
the current method Frame's Local Variable Array, the object reference goes in
index 0, the �rst argument in index 1 and subsequent arguments in subsequent
indexes. The Object reference refers to the instance on which the method is
being invoked, the arguments are the parameters of the method.

Super(cl) = Class⊥{
where cl = (Name, F ield, Class⊥,Method, Program) ∈ Class

MethodLookup(ms, cl) =
m if m ∈ cl.Method,ms = m.MethodSignature

undefined if cl = java.lang.Object
MethodLookup(ms, Super(cl)) otherwise

[invokevirtual]

instructionAt(m,PC) = invokevirtual ms, m ′ = MethodLookup(ms, cl),
n = |ms.Value|

P ` 〈H, 〈m,PC, vobjRef :: arg1 :: arg2 :: ... :: argn :: OS,L〉 :: FS〉 ⇒
〈H, 〈m′, 0, ε, [0 7→ vObjRef , 1 7→ arg1, 2 7→ arg2, ..., n 7→ argn]〉 ::
〈m,PC,OS,L〉 :: FS〉

Where ms ∈ MethodSignature, cl ∈ Class, o = H (vobjRef), cl = o.Class,

73 of 73

	Table of Contents
	Introduction
	The Project in Context
	Software Based Protection

	The Defensive Strategy
	A Bank Example
	Attacking The Application
	Java Implementation

	Initiating Problem
	Problem Definition

	Preliminary Knowledge
	Control Flow Graphs
	Bit Flip Attacks
	The Model-Checker: UPPAAL
	UPPAAL: SMC

	Java Card Virtual Machine Architecture

	Modelling a Java Card Application Control Flow
	The Example Program
	Control Flow In Uppaal
	Control Flow In UPPAAL With Modeled Attacks
	Control Flow In UPPAAL-SMC With Modeled Attacks

	Modelling Programs
	Modelling Start and End of Execution
	Modelling Bad Bitflips
	The Timing of a Bitflip
	The Number of Bitflip Attacks
	Success Criteria of a Bitflip Attack

	Modelling Java Card Defense Mechanisms
	Protective Measure
	Optimization of methods using Instructions

	Program Analysis with UPPAAL
	Tool Description
	Program Generator
	Model Parser

	Queries and Evaluation
	Balancing
	Execution Flow
	Distribution

	Reflection
	Toolchain Evaluation
	Model Parser
	Program Generator

	Alternative UPPAAL Models
	TIGA and Stratego
	Preliminary Results

	Changes to the Model
	Conclusion

	Bibliography
	I Appendices
	Model Parser
	Instructions of the Operational Semantics

