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Abstract

In this paper we explore a proof theoretic approach to approximate reasoning about
weighted transition systems. We introduce generalized weighted transition systems (GTS)
as an extension of the classical notion of a weighted transition system by replacing exact
transition weights with intervals over non-negative real numbers. We define a modal logic
over GTSs that can reason about said intervals by taking operators known from probabilistic
logics and adjusting their interpretation for a weighted context. Semantically we can then
describe whether a transition with at least some weight or at most some weight can be
taken to a state satisfying some property. We show that our logic has the Hennesy-Milner
property, i.e. it is semantically invariant under an appropriate bisimulation relation.

As our main contribution we provide a sound and weak-complete axiomatization of our
logic. To achieve the completeness result we have used a common technique for modal and
Markovian logics involving the construction of a canonical model.

1 Introduction

Transition systems are often used to model concurrent and distributed systems. In particular,
weighted transition systems (WTSs) can be used to model the case where some resource is
involved, such as time, money, or energy. In practice, however, there is often some uncertainty
attached to the resource cost, whereas weights in a WTS are precise. Thus the model may be too
restrictive and unable to capture the uncertainties inherent in the domain that is being modeled.

A trend with increasing interest and potential is the notion of Cyber-Physical Systems (CPS)
which considers the integration of computation and the physical world. Sensor feedback affects
computation, and through machinery, computation can affect physical processes in the world.
The accuracy of measurements depends both on the quality of sensors, but also the environment
in which it senses. Not only does CPS operate in an unpredictable setting, system inputs from
sensor readings or human input are also inherently imprecise. This calls for models and logic
that can capture and reason with this uncertainty.

In this paper we explore a formalism which can be used for applications such as CPS, by
expanding the realm of weighted systems. The quantitative nature of weighted systems is well-
suited for the quantifiable inputs and sensor measurements of CPS, but their rigidity makes
them less well suited for the uncertainty inherent in CPSs. We propose an extension of weighted
systems, by introducing intervals on transitions instead of exact weight specifications. This
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allow us to model the imprecision introduced when gathering data from the world by making the
intervals wider for greater uncertainties and narrower for small uncertainties.

Specifically we propose a generalization of weighted transition systems termed generalized
weighted transitions systems (GTSs) where the classical notion of a transition relation is replaced
with a transition function, associating to each subset of the state space an interval which is to be
interpreted as the lower and upper bounds of transitioning into said set. Not only do intervals
allow more loosely specified models, it also allows GTSs to represent an abstraction of sets of
models of similar structure but different weights. This is another interesting aspect, namely the
opportunity for independent reasoning; if the general GTS satisfies a formula, then all WTS
instances it represents also satisfies the formula. Reality often relies on equipment of varying
quality: If a model is not satisfactory, a sensor with greater accuracy may be substituted. One
could imagine a model with intervals for varying precision. If the model satisfies the required
properties, we can choose the cheapest equipment with specifications with the interval ranges.
If the model does not satisfy the property, we tweak the intervals, and thus limit the amount of
potential WTS instantiations it constitutes, and so equipment usable.

We give a formal semantics for our logic and introduce a new kind of bisimulation, under
which our semantics is proven to be invariant. We also give an axiomatization of our logic that
we prove not only sound, but also weak-complete with relation to GTS semantics.

2 Related Work

Rooted in the need for reasoning about resource consuming or producing behaviour, various
logics have been developed and researched. Notably Larsen et al. [9] considers an infinite
state and infinite branching model with resources on states and transitions. They provide an
axiomatization for a weighted logic with state and transition modalities, and show both a weak
and strong completeness result of their axiomatization. To achieve their strong-completeness
result, they assume an infinitary rule similar to what is named the countable additivity rule used
by Goldblatt in [5].

Juhl et al. [7] consider what is known as weighted modal transition systems, a formalism that
can express optional and required behaviour. They associate transitions with intervals of weight
values allowed rather than a specific weight, also supporting the idea of a “loose” specification.
A refinement process of finding a common model among a number of models then eliminates
potential weights from intervals, resulting in a concrete set of allowed weights. Further they
use a variant of the well-known Computation Tree Logic with a constraint function that specify
restrictions on accumulated weights.

Looking to probabilistic systems, logics have been proposed with modalities with the operators
having semantics as for instance “ϕ holds with at least probability b”. The just stated example
is expressed as the formula wi(ϕ) ≥ b in [2]. Operators with similar semantics appear in [8], [10],
[13], [6] among others, reasoning about transition probabilities e.g. Lrϕ says that we can “reach
a state satisfying ϕ with a probability at least r”. While we shall adopt a syntactically similar
notation in this paper, the model they are interpreted over, and consequently the semantics, are
different.

To prove completeness, we use a similar technique and construction as in [8], [9]. In line with
other completeness results [5], [9], we rely on the assumption of Lindenbaum’s lemma 1. It is
also worth noting the work of [8] where they find a countable axiomatization, and applied the

1Lindenbaum’s lemma states that every consistent set of formulae can be extended to maximally-consistent
set. [12, Thm. 12]
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Rasiowa-Sikorski lemma 2, which directly imply the Lindenbaum property. This method is also
the used in [9] to show weak-completeness; however for their strong completeness result, they
have to assume the Lindenbaum property.

3 Preliminaries

In this section we introduce some notation and various concepts that will be used heavily through-
out this paper. Firstly, we denote by N the set of natural numbers. We let R denote the set of
real numbers and R≥0 the set of non-negative reals. In a similar manner we let Q denote the set
of all rational numbers and Q≥0 the set of non-negative rationals.

In the following section we define the notion of generalized weighted transition systems. In
order to do so we need the notion of an interval over the non-negative real numbers. Intuitively
an interval can be seen as defining the lower and upper bounds on the weights that can be used to
transition into some set of states. We will now formally define an interval and related operations.

Definition 1. An interval I ∈ R2
≥0 over the non-negative real numbers is a tuple 〈x, y〉 where

x ≤ y. The set of all such intervals including the empty set is denoted by I, i.e.

I = {〈x, y〉 ∈ R2
≥0 | x ≤ y} ∪ {∅}.

N

We now define special union and intersection operators that extend union and intersection
to intervals.

Definition 2. Let ] be an operation defined for any I ∈ 2I where sup{y | 〈x, y〉 ∈ I} ∈ R≥0 as

⊎
I∈I

I =

{
∅ if I = ∅
〈inf{x | 〈x, y〉 ∈ I}, sup{y | 〈x, y〉 ∈ I}〉 otherwise.

N

Definition 3. Let C be an operation defined for any I ∈ 2I as

x

I∈I
I =

 ∅ if
I = ∅ or
sup{x | 〈x, y〉 ∈ I} > inf{y | 〈x, y〉 ∈ I}

〈sup{x | 〈x, y〉 ∈ I}, inf{y | 〈x, y〉 ∈ I}〉 otherwise.

N

If ] (respectively C) is used on just two intervals 〈x1, y1〉 and 〈x2, y2〉, we will write this as
〈x1, y1〉 ] 〈x2, y2〉 (respectively 〈x1, y1〉 C 〈x2, y2〉).

We now define an ordering relation as a special type of set inclusion over two intervals.

Definition 4. Let F be a relation F: I× I which satisfies for all 〈x1, y1〉, 〈x2, y2〉 ∈ I,

〈x1, y1〉 F 〈x2, y2〉 iff x2 ≤ x1 and y1 ≤ y2,

and ∅ F I for any I ∈ I. N

2For any multimodal logic where the provability relation admits an axiomatization with only countable many
instances, the Rasiowa-Sikorski lemma states that any consistent formula is contained in a maximally-consistent
set of formulae. [8]
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Given two intervals I1, I2 we say that I1 is included in I2 iff I1 F I2.

Proposition 5. (I,],C,F) forms a lattice over I, with join and meet defined as ] and C
respectively, ordered by F.

Proof. We first prove that F is reflexive, antisymmetric, and transitive.

Reflexivity: For any 〈x, y〉 ∈ I, x ≤ x and y ≤ y, so 〈x, y〉 F 〈x, y〉, and for ∅ ∈ I, ∅ F ∅.

Antisymmetry: If I1 F I2 and I2 F I1, then xI1 = xI2 and yI1 = yI2 , so I1 = I2. If any of I1
and I2 are ∅, then they must both be ∅, so I1 = I2.

Transitivity: If I1 F I2 and I2 F I3, then xI1 ≤ xI2 ≤ xI3 and yI1 ≥ yI2 ≥ yI3 , so I1 F I3.
This also holds if any of the three are ∅.

Thus F is a partial order.

Next we prove that I1 CI2 is the greatest lower bound of I1 and I2. If I1 CI2 = ∅, then ∅ F I1
and ∅ F I2. If I1 C I2 = 〈x, y〉, then x ≥ xI1 , x ≥ xI2 , y ≤ yI1 , and y ≤ yI2 , so 〈x, y〉 F I1 and
〈x, y〉 F I2, so I1 C I2 is a lower bound.

Now assume there exists some I ∈ I such that I1 C I2 F I, I F I1, and I F I2. If I1 C I2 = ∅,
then max{xI1 , xI2} > min{yI1 , yI2}, and since I F I1 and I F I2, we get xI ≥ max{xI1 , xI2} and
min{yI1 , yI2} ≥ yI , but this implies that xI > yI , so I = ∅.

If I1 C I2 = 〈x, y〉, then xI2 ≥ xI ≥ max{xI1 , xI2}, which implies that either xI = xI1 = x
or xI = xI2 = x. Also yI2 ≤ yI ≤ min{yI1 , yI2}, which means that either yI = yI1 = y or
yI = yI2 = y. In any case, I = I1 C I2, so I1 C I2 is the greatest lower bound.

Now we prove that I1 ] I2 is the least upper bound of I1 and I2. If I1 ] I2 = ∅, then
I1 = I2 = ∅, so I1 F I1 ] I2 and I2 F I1 ] I2. If I1 ] I2 = 〈x, y〉, then x ≤ xI1 , x ≤ xI2 , y ≥ yI1 ,
and y ≥ yI2 , so I1 F 〈x, y〉 and I2 F 〈x, y〉. Hence I1 ] I2 is an upper bound on I1 and I2.

Now assume there exists some I ∈ I such that I2 F I F I1 ] I2. If I1 ] I2 = ∅, then
I = I1 = I2 = ∅. If I1 ] I2 = 〈x, y〉, then min{xI1 , xI2} ≥ xI ≥ xI2 which implies that either
x = xI1 = xI or x = xI2 = xI , and we also know that max{yI1 , yI2} ≤ yI ≤ yI2 , which means
either y = yI1 = yI or y = yI2 = yI . In any case, I = I1 ] I2, so I1 ] I2 is the least upper bound.

We conclude that (I,],C,F) is a lattice. �

We now proceed to prove that C is distributive over ] and that ] is distributive over C.

Proposition 6 (C and ] are distributive). Let B ⊆ 2I be a possibly infinite set of intervals and
a ∈ I an arbitrary interval such that a 6= ∅ and b 6= ∅ for every b ∈ B, then

(i) a C
(⊎
b∈B

b

)
=

⊎
b∈B

(
b C a

)
and

(ii) a ]
(x

b∈B
b

)
=

x

b∈B

(
b ] a

)
.

Proof. Let a = 〈xa, ya〉 , B = {b0 = 〈xb0 , yb0〉 , . . . , bi = 〈xbi , ybi〉 , . . . }, notationally we denote
arbitrary members of B as b = 〈xb, yb〉.
(i)

Using the definitions of ] and C, we can write out the left hand side of the equation, add
superfluous infimum and supremum, move out infimum and supremum and finally get the
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right hand side.

a C
(⊎
b∈B

b

)
=

〈
max{xa, inf

b∈B
{xb}},min{ya, sup

b∈B
{yb}}

〉
=

〈
max{ inf

b∈B
{xa}, inf

b∈B
{xb}},min{sup

b∈B
{ya}, sup

b∈B
{yb}}

〉
=

〈
inf
b∈B
{max{xa, xb}}, sup

b∈B
{min{ya, yb}},

〉
=

⊎
b∈B

(
a C b

)
.

(ii)
We show this in a similar fashion as for (i),

a ]
(x

b∈B
b

)
=

〈
min{xa, sup

b∈B
{xb}},max{ya, inf

b∈B
{yb}}

〉
=

〈
sup
b∈B
{min{xa, xb}}, inf

b∈B
{max{ya, yb}}

〉
=

x

b∈B

(
b ] a

)
.

�

4 Model

In this section we introduce the models studied in this paper as well as the notion of a bisimulation
relation, relating model states that that exhibit equivalent behavior. The models we address are
generalizations of weighted transition systems, where the classical notion of a transition relation
is replaced with a transition function, that assigns an interval to each subset of the state space.
First we recap the definition of a weighted transition system. A Weighted Transition System
(WTS) is an extension of regular transition systems, where transitions are labeled with real
numbers. Each state in a WTS is labeled with a subset of atomic propositions from the fixed
countable set AP. A WTS is formally defined in the following manner:

Definition 7. A Weighted Transition System (WTS) is a tuple M = (S,→, `), where

• S is a non-empty set of states,

• →⊆ S × R≥0 × S is the transition relation, and

• ` : S → 2AP is a labeling function mapping to each state a set of atomic propositions.

N

We now define the notion of generalized weighted transition systems (GTSs), using intervals
over real numbers as transition weights. The idea behind GTSs is that we can have transitions
from a single state to a set of states, and the weight of such a transition is given by an interval
rather than a single number. See Figure 1 for a visual representation of this. Intuitively, this
interval gives a bound on the lowest and the highest weight to reach any state in the target set
of states.

We can now define GTSs formally.
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s

t2

t1

t3

t4

〈1, 1〉

〈3, 4〉
〈6, 6〉

(a) Every transition to a state
has an interval associated to
it.

s

t2

t1

t3

t4

〈1, 6〉

〈1, 4〉 〈3, 6〉

(b) Taking a transition to a set
of two states changes the inter-
vals.

s

t2

t1

t3

t4

〈1, 6〉

(c) Taking a transition to a set
of three states also changes the
intervals.

Figure 1: Illustration of a GTS transition function, showing related states to s.

Definition 8. A Generalized Weighted Transition System (GTS) is a tuple G = (S, θ, `), where

(1) S is a non-empty set of states,

(2) θ : S → (2S → I) is a transition function satisfying the following conditions:

θ (s) (∅) = ∅,(I)

θ (s)

(⋃
i

Si

)
=
⊎
i

θ (s) (Si) , and(II)

θ (s)

(⋂
i

Si

)
6= ∅ =⇒ θ (s)

(⋂
i

Si

)
=

x

i

θ (s) (Si) .(III)

(3) ` : S → 2AP is a labeling function mapping to each state a set of atomic propositions.

N

We denote by G the set of all GTSs, and if θ (s) (T ) = 〈x, y〉, then we also write θ− (s) (T )
to denote x and θ+ (s) (T ) to denote y.

A consequence of the conditions imposed upon θ is that it is monotonic.

Lemma 9 (Monotonicity of θ). For arbitrary G = (S, θ, `) ∈ G, s ∈ S and S′, S′′ ⊆ 2S where
θ (s) (S′) 6= ∅ it holds that

S′′ ⊆ S′ implies θ (s) (S′′) F θ (s) (S′)

Proof. If S′′ = ∅ then by condition I of θ we know that θ (s) (S′′) = ∅ and therefore
θ (s) (S′′) F θ (s) (S′).

Suppose therefore that S′′ 6= ∅. Since S′′ ⊆ S′ it must be the case that S′′ = S′ ∩ S′′ and
therefore, by condition III of θ that θ (s) (S′′) = θ (s) (S′) C θ (s) (S′′). From Definition 3 we
know that

θ (s) (S′′) C θ (s) (S′) =
〈
max

{
θ− (s) (S′) , θ− (s) (S′′)

}
,min

{
θ+ (s) (S′) , θ+ (s) (S′′)

}〉
Since

θ− (s) (S′) ≤ max
{
θ− (s) (S′) , θ− (s) (S′′)

}
6



s

θ (s) (s′) = 〈0, 1〉

s′

0 · · · 0.999 . . .

t

θ (t) (t′) = 〈0, 1〉

t′

0 · · · 1

Figure 2: s ∼ t, but are not bisimilar in the classical sense.

and
min

{
θ+ (s) (S′) , θ+ (s) (S′′)

}
≤ θ+ (s) (S′) ,

we can therefore conclude θ (s) (S′′) F θ (s) (S′). �

As usual we would like some way of relating model states with equivalent behavior. To
this end we define the notion of a bisimulation relation. The notion of a bisimulation relation
presented here resembles probabilistic bisimulation [11] for Markov processes more than it does
the usual notion of a bisimulation relation for weighted systems. As our models do not have exact
weights on the transitions, we do not impose the classical Zig/Zag conditions[1] of a bisimulation
relation, but instead require that intervals be matched for any bisimulation class.

Definition 10. Given a GTS G = (S, θ, `), an equivalence relationR on S is called a bisimulation
relation iff sRt implies

• `(s) = `(t) and

• θ(s)(S′) = θ(t)(S′) for all equivalence classes S′ ∈ S/R.

N

Given a GTS G = (S, θ, `) and two states s, t ∈ S we say that s and t are bisimilar, written
s ∼ t, iff there exists a bisimulation relation R such that sRt. Bisimilarity, ∼, is the largest
bisimulation relation.

In Example 1 and Example 2 we show some of the ways in which our notion of bisimilarity
differs from the standard notion of bisimilarity.

Example 1. Consider the states s and t of the GTS depicted in Figure 2. Both s and t
have exactly one successor and the possible transition weights are bounded by the same interval
〈0, 1〉. However, s can only take transitions with weights arbitrarily close to but not including 1
whereas t can take a transition with the weight exactly 1. Thus s and t are clearly not bisimilar
in the classical sense where transitions weights are required to be matched exactly. As we, in this
paper, are dealing with approximations of weighted systems we are only interested in the intervals
bounding the possible transition weights being matched, and as such s and t are bisimilar in the
sense defined in this paper. �

Example 2. Consider the GTS depicted in Figure 3a. We see that s can take transitions with
weights in the interval 〈1, 2〉 to s′ and to s′′ in the interval 〈3, 4〉 where t can take transitions
with weights in the interval 〈1, 4〉 to t′. If we consider the set S′ = {s′, s′′, t′} a bisimulation
class, clearly s has no transitions strictly within the interval 〈2, 3〉 going to S′ whereas t′ can
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s

s′ s′′

〈1, 2〉 〈3, 4〉

t

t′

〈1, 4〉

(a) θ (s) (s′) = 〈1, 2〉, θ (s) (s′′) = 〈3, 4〉 and θ (t) (t′) = 〈1, 4〉

s

s′ s′′

〈1, 4〉
t

t′
〈1, 4〉

(b) θ (s) ({s′, s′′, t′}) = 〈1, 4〉 and θ (t) ({s′, s′′, t′}) = 〈1, 4〉

Figure 3: θ (s) ({s′, s′′, t′}) = θ (t) ({s′, s′′, t′})

take transitions with any weights in the interval 〈1, 4〉 to S′. Again, the models are not bisimilar
in the classical sense for weighted systems, but as depicted in Figure 3b the lower and upper
bounds on transitions going into S′ coincide and they are therefore bisimilar in the sense defined
in this paper. �

5 Logic

In this section we introduce a modal logic with semantics based on GTSs. Our aim is that our
logic should be able to capture the notion of bisimilar states as presented in the previous section,
and as such it must be able reason about the lower and upper bounds on transition weights. The
syntax of our logic and the intuitive meaning of the formulae is inspired by the work on Markov
processes in [10], but although our syntax is the same we present entirely different semantics.

Definition 11. The formulae of the logic L are induced by the abstract syntax

L : ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | Lrϕ |Mrϕ

where r ∈ Q≥0 and p ∈ AP. N

¬ and ∧ are the usual negation and conjunction operators, whereas Lr and Mr are modal
operators. Intuitively, Lrϕ means that with weight at least r we can take a transition to where
ϕ holds, and Mrϕ means that with weight at most r we can take a transition to where ϕ holds.
We now give the precise semantics using GTSs.

Definition 12. Given a GTS G = (S, θ, `), a state s ∈ S and a formula ϕ ∈ L, the satisfiability
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s

ϕ ψ

〈1, 4〉 〈7, 10〉

r

Figure 4: For any r < 1, Lrϕ and Lrψ does not imply Lr(ϕ ∧ ψ), as there may be no transition
to ϕ ∧ ψ. The ϕ and ψ ellipses illustrate sets of states satisfying ϕ and ψ.

relation |= is defined inductively by

G, s |= p iff p ∈ `(s),
G, s |= ¬ϕ iff it is not the case that G, s |= ϕ,
G, s |= ϕ ∧ ψ iff G, s |= ϕ and G, s |= ψ,
G, s |= Lrϕ iff θ(s)(JϕK) 6= ∅ and θ− (s) (JϕK) ≥ r,
G, s |= Mrϕ iff θ(s)(JϕK) 6= ∅ and θ+ (s) (JϕK) ≤ r.

where JϕK denotes the set of all GTS states that have the property ϕ, i.e.
JϕK = {s | ∃G = (S, θ, `) ∈ G s.t. s ∈ S and G, s |= ϕ}. N

If it is not the case that G, s |= ϕ, we write this as G, s 6|= ϕ. If G, s |= ϕ we say that s is a
model of ϕ. A formula is said to be satisfiable if it has at least one model, i.e. a formula ϕ ∈ L
is satisfiable iff JϕK 6= ∅. We say that ϕ is a validity and write |= ϕ if ¬ϕ is not satisfiable, i.e. ϕ
is valid iff J¬ϕK = ∅. In addition to the operators defined by the syntax of L, we also have the
following derived operators:

⊥ def
= ϕ ∧ ¬ϕ > def

= ¬⊥
ϕ ∨ ψ def

= ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ
def
= ¬ϕ ∨ ψ

Note that J⊥K = ∅ because it can not both be the case that G, s |= ϕ and G, s 6|= ϕ at the
same time.

The formula L0ϕ has special significance in our logic, as this formula means that it is possible
to take some transition to where ϕ holds. In fact, it follows in a straightforward manner from
the semantics that

G, s |= L0ϕ iff θ (s) (JϕK) 6= ∅.

Notice also that in general, the following schemes do not hold.

Lrϕ ∧ Lrψ → Lr(ϕ ∧ ψ)

Mrϕ ∧Mrψ →Mr(ϕ ∧ ψ)

The reason that they do not hold in general is that there may be no transition to where ϕ ∧ ψ
holds, i.e. ¬L0(ϕ ∧ ψ). This is illustrated in Figure 4. If we assume L0(ϕ ∧ ψ), then both the
schemes hold.

Next we wish to prove that our logic is invariant under bisimulation, which is also sometimes
known as the Hennessy-Milner property. This property is captured by the following theorem.

Theorem 13 (Bisimulation Invariance). Given a GTS G = (S, θ, `) and two states s, t ∈ S

s ∼ t iff [∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ ] .
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Proof. Let G = (S, θ, `) be a GTS and s, t ∈ S states. Suppose that s ∼ t. We will now show
that

∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ

by structural induction on ϕ. In each case we suppose that G, s |= ϕ and show that it must
also be the case that G, t |= ϕ. In each case symmetrical arguments can be made for the reverse
direction of the biconditional. Since s ∼ t we know that there exists a bisimulation relation
R ⊆ S × S such that sRt.

Case: ϕ = p
Since sRt we must have that `(s) = `(t) and thus G, t |= p.

Case: ϕ = ¬ψ
By the semantics of |= it cannot be the case that G, s |= ψ. Suppose towards a contradiction
that G, t |= ψ. Since sRt we have by symmetry of R that tRs and thus, by structural
induction, that G, s |= ψ. This contradicts our assumption that G, s |= ¬ψ and therefore it
cannot be the case that G, t |= ψ.

Case: ϕ = ψ ∧ ψ′
By the semantics of |= we must have that G, s |= ψ and G, s |= ψ′ which, by structural
induction, implies G, t |= ψ and G, t |= ψ′ and thus G, t |= ψ ∧ ψ′.

Case: ϕ = Lrψ
G, s |= Lrψ implies θ (s) (JψK) 6= ∅ and θ− (s) (JψK) ≥ r implying the existence of a state
s′ ∈ JψK such that θ− (s) ({s′}) ≥ θ− (s) (JψK) ≥ r. Since R is an equivalence relation we
must have s′Rs′ which implies the existence of an equivalence class S′ ⊆ JψK, S′ ∈ S/R
such that s′ ∈ S′. Because sRt we must have that θ (s) (S′) = θ (t) (S′) and therefore
θ (t) (S′) 6= ∅ implying θ (t) (JψK) 6= ∅.
Suppose towards a contradiction that θ− (t) (JψK) < r implying the existence of a state
t′ ∈ JψK such that θ− (t) (JψK) ≤ θ (t) ({t′}) < r. Because R is an equivalence relation we
must have t′Rt′ implying the existence of an equivalence class S′′ ⊆ JψK, S′′ ∈ S/R such
that t′ ∈ S′′. Since t′ ∈ S′′ we must have that θ− (t) (S′′) ≤ θ− (t) ({t′}) < r and because
sRt we have that θ (s) (S′′) = θ (t) (S′′) implying θ− (s) (JψK) < r which is a contradiction.

Case: ϕ = Mrψ
G, s |= Mrψ implies θ (s) (JψK) 6= ∅ and θ+ (s) (JψK) ≤ r implying the existence of a state
s′ ∈ JψK such that θ+ (s) ({s′}) ≤ θ+ (s) (JψK) ≤ r. Since R is an equivalence relation we
must have s′Rs′ which implies the existence of an equivalence class S′ ⊆ JψK, S′ ∈ S/R
such that s′ ∈ S′. Because sRt we must have that θ (s) (S′) = θ (t) (S′) and therefore
θ (t) (S′) 6= ∅ implying θ (t) (JψK) 6= ∅.
Suppose towards a contradiction that θ+ (t) (JψK) > r implying the existence of a state
t′ ∈ JψK such that θ+ (t) (JψK) ≥ θ (t) ({t′}) > r. Because R is an equivalence relation we
must have t′Rt′ implying the existence of an equivalence class S′′ ⊆ JψK, S′′ ∈ S/R such
that t′ ∈ S′′. Since t′ ∈ S′′ we must have that θ+ (t) (S′′) ≥ θ+ (t) ({t′}) > r and because
sRt we have that θ (s) (S′′) = θ (t) (S′′) implying θ+ (s) (JψK) > r which is a contradiction.

We have thus shown that

s ∼ t implies [∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ ] .

Now, suppose that
∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ.
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We will now show that s ∼ t. In order to do so, we define a relation on S and show that it is a
bisimulation relation. Consider the relation

R = {(s′, t′) | ∀ϕ ∈ L : G, s′ |= ϕ ⇐⇒ G, t′ |= ϕ}.

It is clear that R is an equivalence relation and (s, t) ∈ R. We will first show that `(s) = `(t).
Suppose towards a contradiction that `(s) 6= `(t), then there must exist p ∈ AP such that either
[ G, s |= p and G, t 6|= p ] or [ G, s 6|= p and G, t |= p ], which contradicts our assumption that

∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ.

What remains to show is that θ (s) (S′′) = θ (t) (S′′) for each equivalence class S′′ ∈ S/R.
We will first show that θ (s) (S′) 6= ∅ implies θ (t) (S′) 6= ∅ for all equivalence classes S′ ∈ S/R.

Suppose θ (s) (S′) 6= ∅ for some equivalence class S′ ∈ S/R.
Let LS′M = {ϕ ∈ L | ∃s′ ∈ S′ : G, s |= ϕ}, then S′ =

⋂
ϕ∈LS′M

JϕK. Since L is countable we can

enumerate the formulae in LS′M such that LS′M = {ϕ1, . . . , ϕk, . . .}. For i ∈ N we define ψ1 = ϕ1

and ψi = ψi−1 ∧ ϕ. We then have a decreasing sequence such that JψiK ⊇ Jψi+1K for any i ∈ N
and S′ = sup

i
JψiK. Now, either θ (t) (JψiK) 6= ∅ for any i ∈ N implying θ (t) (S′) 6= ∅ or there

exists some i ∈ N such that θ (t) (JψiK) = ∅ implying G, s |= L0ψi and G, t 6|= L0ψi contradicting
our assumption that

∀ϕ ∈ L : G, s |= ϕ ⇐⇒ G, t |= ϕ.

We thus conclude that θ (s) (S′) 6= ∅ implies θ (t) (S′) 6= ∅ for any equivalence class S′ ∈ S/R.
Symmetrical arguments show that also θ (t) (S′) 6= ∅ implies θ (s) (S′) 6= ∅. Suppose towards a
contradiction that there exists an equivalence class S′ ∈ S/R such that θ (s) (S′) 6= θ (t) (S′).
We have four cases to consider, namely θ− (s) (S′) < θ− (t) (S′), θ− (s) (S′) > θ− (t) (S′),
θ+ (s) (S′) < θ+ (t) (S′) and θ+ (s) (S′) > θ+ (t) (S′).
Case: θ− (s) (S′) < θ− (t) (S′)

θ− (s) (S′) < θ− (t) (S′) implies the existence of a formula ϕ ∈ LS′M and a rational number
q ∈ Q≥0 such that θ− (s) (S′) < q < θ− (t) (JϕK) ≤ θ− (t) (S′) implying G, s 6|= Lqϕ and
G, t |= Lqϕ which is a contradiction.

Case: θ− (s) (S′) < θ− (t) (S′)
θ− (s) (S′) > θ− (t) (S′) implies the existence of a formula ϕ ∈ LS′M and a rational number
q ∈ Q≥0 such that θ− (s) (S′) ≥ θ− (s) (JϕK) > q > θ− (t) (S′) implying G, s 6|= Lqϕ and
G, t |= Lqϕ which is a contradiction.

Case: θ+ (s) (S′) < θ+ (t) (S′)
θ+ (s) (S′) < θ+ (t) (S′) implies the existence of a formula ϕ ∈ LS′M and a rational number
q ∈ Q≥0 such that θ+ (s) (S′) < q < θ+ (t) (JϕK) ≤ θ− (t) (S′) implying G, s |= Mqϕ and
G, t 6|= Mqϕ which is a contradiction.

Case: θ+ (s) (S′) > θ+ (t) (S′)
θ+ (s) (S′) > θ+ (t) (S′) implies the existence of a formula ϕ ∈ LS′M and a rational number
q ∈ Q≥0 such that θ+ (s) (S′) ≥ θ+ (s) (JϕK) > q > θ− (t) (S′) implying G, s 6|= Mqϕ and
G, t |= Mqϕ which is a contradiction.

�

6 Metatheory

In this section we propose an axiomatization of our logic that we aim to prove not only sound,
but also weak-complete with relation to the GTS semantics.
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We first define the notion of filters on a lattice, which will be used in our axiomatization. By
ordering the formulae of our logic such that ϕ v ψ iff ` ϕ→ ψ, the partially ordered set (L,v)
becomes a lattice.

Definition 14. A non-empty subset F of L is called a filter on L iff

• ⊥ 6∈ F ,

• ϕ ∈ F and ` ϕ→ ψ implies ψ ∈ F , and

• ϕ ∈ F and ψ ∈ F implies ϕ ∧ ψ ∈ F .

N

We denote by F the set of all filters on L. The smallest filter containing a given formula
ϕ ∈ L is a principal filter. The principal filter for ϕ is given by the set {ψ ∈ L |` ϕ→ ψ} and is
denoted by ↑ ϕ. Given any filter F we write G, s |= F to mean that G, s |= ψ for all ψ ∈ F .

Definition 15. A filter F ∈ F is called an ultrafilter iff for all formulae ϕ ∈ L either ϕ ∈ F or
¬ϕ ∈ F . N

The ultrafilters on L correspond to the maximal consistent sets of L. We let U denote the
set of all ultrafilters.

6.1 Axiomatic System

Now let r, s ∈ Q≥0 and F be a filter. Then the deducibility relation `⊆ 2L × L is a classical
conjunctive deducibility relation, and is defined as the smallest relation which satisfies the axioms
of propositional logic in addition to the axioms given in Table 1 as well as the axioms D1-D5
from [4]. We will write ` ϕ to mean ∅ ` ϕ, and we say that a formula or a set of formulae is
consistent if it can not derive ⊥.

For the remainder of this text, for arbitrary sets of formulae Φ ∈ 2L¸ we write ϕ ` Φ to mean
that ϕ ` ψ for all ψ ∈ Φ, and we use VΦW to denote the set of formulae derivable from Φ, and
TΦU to denote the set of formulae forming Φ, i.e.

VΦW =

{
{⊥} if Φ = ∅
{ϕ ∈ L | Φ ` ϕ} otherwise,

TΦU =

{
{⊥} if Φ = ∅
{ϕ ∈ L | ϕ ` Φ} otherwise.

Axiom A1 captures the notion that since ⊥ is never satisfied, we can never take a transition to
where ⊥ holds. Axioms A2-A7′ describe the relationship between conjunction and disjunction,
whereas axioms A8 and A9 describe the relationship between Lr and Mr. Notice also that A9
and A2 together gives us that ¬L0ϕ implies ¬Lrϕ and ¬Mrϕ for any r ∈ Q≥0.

The axioms R1 and R1′ establish the Archimedean property for rational numbers, and
axioms R2 and R2′ give a sort of monotonicity for Lr and Mr. Axiom R3 says that if ψ follows
from ϕ, then if it is possible to take a transition to where ϕ holds, it is also possible to take a
transition to where ψ holds. The axiom R4 ensures that we can not have transition intervals
that are infinite.

The axioms R5 and R5′ state that for any consistent formula ϕ, the bounds on the of set of
formulae provable from ϕ must coincide with the bounds on the formulae that prove ϕ. Axioms
R6 and R6’ lift this property to filters.

We suspect that some of our axioms are not independent, such as R5 and R6, as well as
some of the axioms from A3-A7′, but since they are all sound, as we will prove next, this does
not pose a problem.

We now proceed to prove the soundness of each of the axioms in Table 1.
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(A1): ` ¬L0⊥
(A2): ` Lr+sϕ→ Lrϕ, s > 0
(A2′): `Mrϕ→Mr+sϕ, s > 0
(A3): ` Lrϕ ∧ Lsψ → Lmin{r,s}(ϕ ∨ ψ)
(A3′): `Mrϕ ∧Msψ →Mmax{r,s}(ϕ ∨ ψ)
(A4): ` ((Lrϕ) ∧ (Lsψ))→

(
L0 (ϕ ∧ ψ)→ Lmax{r,s} (ϕ ∧ ψ)

)
(A4′): ` ((Mrϕ) ∧ (Msψ))→

(
L0 (ϕ ∧ ψ)→Mmin{r,s} (ϕ ∧ ψ)

)
(A5): ` ((L0ϕ) ∧ (¬Lrϕ) ∧ (L0ψ) ∧ (¬Lsψ))→ ¬Lmax{r,s} (ϕ ∧ ψ)
(A5′): ` ((L0ϕ) ∧ (¬Mrϕ) ∧ (L0ψ) ∧ (¬Msψ))→ ¬Mmin{r,s} (ϕ ∧ ψ)
(A6): ` Lr(ϕ ∨ ψ)→ Lrϕ ∨ Lrψ
(A6′): `Mr(ϕ ∨ ψ)→Mrϕ ∨Mrψ
(A7): ` ¬L0ψ → (Lrϕ→ Lr(ϕ ∨ ψ))
(A7′): ` ¬L0ψ → (Mrϕ→Mr(ϕ ∨ ψ))
(A8): ` Lr+sϕ→ ¬Mrϕ, s > 0
(A9): `Mrϕ→ L0ϕ
(R1): {Lsϕ | s < r} ` Lrϕ
(R1′): {Msϕ | s > r} `Mrϕ
(R2): ` ϕ→ ψ =⇒ ` ((Lrψ) ∧ (L0ϕ))→ Lrϕ
(R2′): ` ϕ→ ψ =⇒ ` ((Msψ) ∧ (L0ϕ))→Msϕ
(R3): ` ϕ→ ψ =⇒ ` L0ϕ→ L0ψ
(R4): {¬Mrϕ | r ∈ Q≥0} ` ¬L0ϕ

(R5):
{ϕi | i ∈ N} ` ϕ ` ϕi+1 → ϕi ` ϕ→ ϕi

∴ {¬Lrϕi | i ∈ N} ` ¬Lr+sϕ
, s > 0

(R5′):
{ϕi | i ∈ N} ` ϕ ` ϕi+1 → ϕi ` ϕ→ ϕi

∴ {¬Mr+sϕi | i ∈ N} ` ¬Mrϕ
, s > 0

(R6): {Lr+sϕ | ϕ ` F} ∪ {¬Lrψ | F ` ψ} ` ⊥
(R6′): {Mr+sϕ | ϕ ` F} ∪ {¬Mrψ | F ` ψ} ` ⊥

Table 1: The axioms for our axiomatic system, where F is a filter and r, s ∈ Q≥0.
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Lemma 16 (Soundness).
` ϕ implies |= ϕ.

Proof. We now prove the soundness of each axiom in turn.

A1
In order for G, s |= ¬L0⊥ to hold, it must be the case that θ (s) (J⊥K) = ∅ or
θ− (s) (J⊥K) < 0. Since J⊥K = ∅, we immediately get θ (s) (J⊥K) = ∅, so G, s |= ¬L0⊥.

A2
Assume G, s |= Lr+xϕ where x > 0. Then θ (s) (JϕK) 6= ∅ and θ (s) (JϕK) ≥ r + x > r, so
θ (s) (JϕK) ≥ r and hence G, s |= Lrϕ.

A2′

Assume G, s |= Mrϕ. Then θ (s) (JϕK) 6= ∅ and θ (s) (JϕK) ≤ r < r + x, where x > 0. This
means that θ (s) (JϕK) ≤ r + x, so G, s |= Mr+xϕ.

A3
Suppose G, s |= Lxϕ ∧ Lyψ. Since G, s |= Lxϕ and G, s |= Lyψ, we know that
θ (s) (JϕK) 6= ∅ and θ (s) (JψK) 6= ∅, which implies that
θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK) ] θ (s) (JψK) 6= ∅. We also know that θ− (s) (JϕK) ≥ x and
θ− (s) (JψK) ≥ y, so θ− (s) (Jϕ ∨ ψK) = min{θ− (s) (ϕ) , θ− (s) (ψ)} ≥ min{x, y}, and hence
G, s |= Lmin{x,y}(ϕ ∨ ψ).

A3′

Suppose G, s |= Mxϕ ∧Myψ. Since G, s |= Mxϕ and G, s |= Myψ, we know that
θ (s) (JϕK) 6= ∅ and θ (s) (JψK) 6= ∅, which implies that
θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK) ] θ (s) (JψK) 6= ∅. We also know that θ+ (s) (JϕK) ≤ x and
θ+ (s) (JψK) ≤ y, so θ− (s) (Jϕ ∨ ψK) = max{θ− (s) (ϕ) , θ− (s) (ψ)} ≤ max{x, y}, and hence
G, s |= Lmax{x,y}(ϕ ∨ ψ).

A4
Suppose G, s |= (Lqϕ) ∧ (Lrψ) implying θ− (s) (JϕK) ≥ q and θ− (s) (JψK) ≥ r. We want
to show that G, s |= L0(ϕ ∧ ψ) → Lmax{q,r}(ϕ ∧ ψ). Suppose G, s |= L0(ϕ ∧ ψ) im-
plying that θ (s) (Jϕ ∧ ψK) 6= ∅. Since Jϕ ∧ ψK ⊆ JϕK and Jϕ ∧ ψK ⊆ JψK Lemma 9
yields that θ (s) (Jϕ ∧ ψK) F θ (s) (JϕK) and θ (s) (Jϕ ∧ ψK) F θ (s) (JψK) and therefore
θ− (s) (Jϕ ∧ ψK) ≥ max {θ− (s) (JϕK) , θ− (s) (JψK)} ≥ max{q, r} implying that
G, s |= Lmax{q,r}(ϕ ∧ ψ).

A4′

Suppose G, s |= (Mqϕ) ∧ (Mrψ) implying θ+ (s) (JϕK) ≤ q and θ+ (s) (JψK) ≤ r. We
want to show that G, s |= L0(ϕ ∧ ψ) → Mmin{q,r}(ϕ ∧ ψ). Suppose G, s |= L0(ϕ ∧ ψ)
implying that θ (s) (Jϕ ∧ ψK) 6= ∅. Since Jϕ ∧ ψK ⊆ JϕK and Jϕ ∧ ψK ⊆ JψK Lemma 9
yields that θ (s) (Jϕ ∧ ψK) F θ (s) (JϕK) and θ (s) (Jϕ ∧ ψK) F θ (s) (JψK) and therefore
θ+ (s) (Jϕ ∧ ψK) ≤ min {θ+ (s) (JϕK) , θ+ (s) (JψK)} ≤ min{q, r} implying that
G, s |= Mmin{q,r}(ϕ ∧ ψ).

A5
Suppose G, s |= (L0ϕ) ∧ (¬Lqϕ) ∧ (L0ψ) ∧ (¬Lrψ) implying G, s |= L0ϕ, G, s |= ¬Lqϕ,
G, s |= L0ψ and G, s |= ¬Lrψ. From G, s |= L0ϕ we know that θ (s) (JϕK) 6= ∅, from
G, s |= ¬Lqϕ that θ− (s) (JϕK) < q, from G, s |= L0ψ that θ (s) (JψK) 6= ∅ and from
G, s |= ¬Lrψ that θ− (s) (JψK) < r. It is trivial that θ (s) (Jϕ ∧ ψK) = ∅ implies
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G, s |= ¬Lmax{q,r}(ϕ ∧ ψ). Suppose θ (s) (Jϕ ∧ ψK) 6= ∅ and towards a contradiction that
G, s |= Lmax{q,r}(ϕ∧ψ) implying θ− (s) (Jϕ ∧ ψK) ≥ max{q, r}. Since Jϕ∧ψK = JϕK∩JψK and
θ (s) (Jϕ ∧ ψK) 6= ∅ we have by condition III of the transition function that θ (s) (Jϕ ∧ ψK) =
θ (s) (JϕK) C θ (s) (JψK) = 〈max{θ− (s) (JϕK) , θ− (s) (JψK)},min{θ+ (s) (JϕK) , θ+ (s) (JψK)}〉.
G, s |= Lmax{q,r}(ϕ∧ψ) therefore implies max{θ− (s) (JϕK) , θ− (s) (JψK)} ≥ max{q, r} which
is a contradiction and thus G, s |= ¬Lmax{q,r}(ϕ ∧ ψ).

A5′

Suppose G, s |= (L0ϕ) ∧ (¬Mqϕ) ∧ (L0ψ) ∧ (¬Mrψ) implying G, s |= L0ϕ, G, s |= ¬Mqϕ,
G, s |= L0ψ and G, s |= ¬Mrψ. From G, s |= L0ϕ we know that θ (s) (JϕK) 6= ∅, from
G, s |= ¬Lqϕ that θ− (s) (JϕK) > q, from G, s |= L0ψ that θ (s) (JψK) 6= ∅ and from
G, s |= ¬Lrψ that θ− (s) (JψK) > r. It is trivial that θ (s) (Jϕ ∧ ψK) = ∅ implies
G, s |= ¬Lmax{q,r}(ϕ ∧ ψ). Suppose θ (s) (Jϕ ∧ ψK) 6= ∅ and towards a contradiction that
G, s |= Mmin{q,r}(ϕ∧ψ) implying θ+ (s) (Jϕ ∧ ψK) ≤ min{q, r}. Since Jϕ∧ψK = JϕK∩JψK and
θ (s) (Jϕ ∧ ψK) 6= ∅ we have by condition III of the transition function that θ (s) (Jϕ ∧ ψK) =
θ (s) (JϕK) C θ (s) (JψK) = 〈max{θ− (s) (JϕK) , θ− (s) (JψK)},min{θ+ (s) (JϕK) , θ+ (s) (JψK)}〉.
G, s |= Mmin{q,r}(ϕ∧ψ) therefore implies min{θ+ (s) (JϕK) , θ+ (s) (JψK)} ≤ min{q, r} which
is a contradiction and thus G, s |= ¬Mmin{q,r}(ϕ ∧ ψ)

A6
Assume G, s |= Lr(ϕ ∨ ψ). Then θ (s) (Jϕ ∨ ψK) 6= ∅ and θ− (s) (Jϕ ∨ ψK) ≥ r. From the
first we get that θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK) ] θ (s) (JψK) 6= ∅, which means that at least
one of the two intervals are not the empty set. If only θ (s) (JϕK) 6= ∅, then θ− (s) (JϕK) ≥ r,
so G, s |= Lrϕ, and if only θ (s) (JϕK) 6= ∅, then θ− (s) (JψK) ≥ r, so G, s |= Lrψ. If both
θ (s) (JϕK) 6= ∅ and θ (s) (JψK) 6= ∅, then
θ− (s) (Jϕ ∨ ψK) = min{θ− (s) (JϕK) , θ− (s) (JψK)} ≥ r, so we have G, s |= Lrϕ and
G, s |= Lrψ.

A6′

Assume G, s |= Mr(ϕ ∨ ψ). Then θ (s) (Jϕ ∨ ψK) 6= ∅ and θ+ (s) (Jϕ ∨ ψK) ≤ r, which
implies that θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK) ] θ (s) (JψK) 6= ∅, so at least one of θ (s) (JϕK) and
θ (s) (JψK) must be different from the empty set. If only one of them is different from the
empty set, then either G, s |= Mrϕ or G, s |= Mrψ. If they are both different from the
empty set, then θ+ (s) (Jϕ ∨ ψK) = max{θ+ (s) (JϕK) , θ+ (s) (JψK)} ≤ r, so we have both
G, s |= Mrϕ and G, s |= Mrψ.

A7
Assume G, s |= ¬L0ψ. This means that θ (s) (JψK) = ∅. If G, s |= Lrϕ, then θ (s) (JϕK) 6= ∅
and θ− (s) (JϕK) ≥ r. Since θ (s) (JψK) = ∅, θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK), so G, s |= Lr(ϕ∨ψ).

A7′

AssumeG, s |= ¬L0ψ, which means that θ (s) (JψK) = ∅. IfG, s |= Mrϕ, then θ (s) (JϕK) 6= ∅
and θ+ (s) (JϕK) ≤ r, and since θ (s) (Jϕ ∨ ψK) = θ (s) (JϕK), this means that
G, s |= Mr(ϕ ∨ ψ).

A8
Suppose G, s |= Lr+sϕ where s > 0. This implies that θ− (s) (JϕK) ≥ r + s and
θ− (s) (JϕK) ≥ r + s > r as s > 0. This means that r < θ− (s) (JϕK) ≤ θ+ (s) (JϕK), so
θ+ (s) (JϕK) 6≤ r, and hence G, s 6|= Mrϕ.
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A9
Suppose G, s |= Mrϕ. This means that θ (s) (JϕK) 6= ∅, and since by definition
θ− (s) (JϕK) 6< 0, then θ− (s) (JϕK) ≥ 0, implying that G, s |= L0ϕ.

R1
Suppose G, s |= Lsϕ for any s < r and towards a contradiction that G, s 6|= Lrϕ. Because
G, s |= Lsϕ we know that θ (s) (ϕ) 6= ∅ and therefore G, s 6|= Lrϕ implies θ+ (s) (ϕ) < r.
There must exist a rational number t ∈ Q such that θ+ (s) (ϕ) < t < r. However, we
know that G, s |= Lsϕ for any s < r implying G, s |= Ltϕ contradicting θ+ (s) (ϕ) < t and
therefore G, s |= Lrϕ.

R1′

Suppose G, s |= Msϕ for any s > r and towards a contradiction that G, s 6|= Mrϕ. Because
G, s |= Msϕ we know that θ (s) (ϕ) 6= ∅ and therefore G, s 6|= Mrϕ implies θ+ (s) (ϕ) > r.
There must exist a rational number t ∈ Q such that θ+ (s) (ϕ) > t > r. However, we
know that G, s |= Msϕ for any s > r implying G, s |= Mtϕ contradicting θ+ (s) (ϕ) > t and
therefore G, s |= Mrϕ.

R2
Suppose ` ϕ → ψ and G, s |= Lrψ ∧ L0ϕ. From G, s |= L0ϕ we get θ (s) (JϕK) 6= ∅. Since
` ϕ→ ψ, we get that JϕK ⊆ JψK, which implies that JϕK ∩ JψK = JϕK. Hence,
θ− (s) (JϕK) = θ− (s) (JϕK ∩ JψK) = max{θ− (s) (JϕK) , θ− (s) (JψK)}.
So if θ− (s) (JϕK) ≥ θ− (s) (JψK), then θ− (s) (JϕK) ≥ θ− (s) (JψK) ≥ r, and
if θ− (s) (JϕK) ≤ θ− (s) (JψK), then θ− (s) (JϕK) = θ− (s) (JψK) ≥ r, so in any case
θ− (s) (JϕK) ≥ r. We conclude that G, s |= Lrϕ.

R2′

Suppose ` ϕ → ψ and G, s |= Mrψ ∧ L0ϕ. From G, s |= L0ϕ we get θ (s) (JϕK) 6= ∅. Since
` ϕ→ ψ, we get that JϕK ⊆ JψK, which implies that JϕK ∩ JψK = JϕK. Hence,
θ+ (s) (JϕK) = θ+ (s) (JϕK ∩ JψK) = min{θ+ (s) (JϕK) , θ+ (s) (JψK)}.
So if θ+ (s) (JϕK) ≤ θ+ (s) (JψK), then θ+ (s) (JϕK) ≤ θ+ (s) (JψK) ≤ r, and
if θ− (s) (JϕK) ≤ θ− (s) (JψK), then θ− (s) (JϕK) = θ− (s) (JψK) ≤ r, so in any case
θ− (s) (JϕK) ≤ r. We conclude that G, s |= Mrϕ.

R3
Suppose ` ϕ→ ψ and G, s |= L0ϕ. G, s |= ϕ→ ψ implies JϕK ∩ JψK = JϕK, and G, s |= L0ϕ
implies that θ (s) (JϕK) = θ (s) (JϕK ∩ JψK) = θ (s) (JϕK) C θ (s) (JψK) 6= ∅, so θ (s) (JψK) 6= ∅.
It can never be the case that θ (s) (JψK) < 0, so θ (s) (JψK) ≥ 0, and hence G, s |= L0ψ.

R4
Suppose G, s |= ¬Mrϕ for all r ∈ Q≥0. Then θ (s) (JϕK) = ∅ or θ+ (s) (JϕK) > r for all
r ∈ Q≥0. If θ (s) (JϕK) = ∅, then also G, s |= ¬L0ϕ. Otherwise, we get that θ+ (s) (JϕK) > r
for any r ∈ Q≥0, so θ+ (s) (JϕK) can not be a real number, and since intervals are a subset
of R2

≥0, it follows that θ (s) (JϕK) can not be an interval, so θ (s) (JϕK) = ∅, and hence
G, s |= ¬L0ϕ.

R5
Suppose arbitrary ϕ ∈ L and let Φ = {ϕ0, ϕ1, . . . }, s.t. ∀i,` ϕi+1 → ϕi and ∀i,` ϕ → ϕi
and suppose that if ∀ϕi ∈ Φ,G, s |= ϕi then G, s |= ϕ. Suppose that G, s |= ¬Lrϕi, for all
ϕi ∈ Φ, implying that either θ (s) (

⋂
iJϕiK) = ∅ or θ− (s) (

⋂
iJϕiK) < r.

Case θ (s) (
⋂
iJϕiK) = ∅
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Suppose towards a contradiction that θ (s) (JϕK) 6= ∅. Since by assumption ` ϕ→ ϕi
for any i ∈ N, we get that θ (s) (J

⋂
i ϕiK) 6= ∅, contradiction.

Case θ− (s) (
⋂
iJϕiK) < r

We now show that G, s |= ¬Lr+sϕ. To this end, suppose towards a contradiction that
s |= Lr+sϕ. s |= Lr+sϕ implies that θ (s) (JϕK) 6= ∅ and θ− (s) (JϕK) ≥ r + s.

θ− (s)

(⋂
i

JϕiK
)
< r < r + s ≤ θ− (s) (JϕK) .

Suppose arbitrary t ∈
⋂
iJϕiK, then by the premise that G, s |= ϕi for all ϕi ∈ Φ

implies G, s |= ϕ, we also have that t ∈ JϕK, thus JϕK =
⋂
iJϕiK. We then get the

contradiction by the following inequalities,

θ− (s) (JϕK) < r < r + s ≤ θ− (s) (JϕK) .

R5′

Suppose arbitrary ϕ ∈ L and let Φ = {ϕ0, ϕ1, . . . }, s.t. ∀i,` ϕi+1 → ϕi and ∀i,` ϕ → ϕi
and assume that if ∀ϕi ∈ Φ,G, s |= ϕi then G, s |= ϕ. Suppose that G, s |= ¬Mr+sϕi, for
all ϕi ∈ Φ, implying that either θ (s) (

⋂
iJϕiK) = ∅ or θ+ (s) (

⋂
iJϕiK) > r + s.

Case θ (s) (
⋂
iJϕiK) = ∅

Suppose towards a contradiction that θ (s) (JϕK) 6= ∅. Since by assumption ` ϕ→ ϕi
for any i ∈ N, we get that θ (s) (J

⋂
i ϕiK) 6= ∅, contradiction.

Case θ− (s) (
⋂
iJϕiK) < r

We now show that G, s |= ¬Mrϕ. To this end, suppose towards a contradiction that
s |= Mrϕ. s |= Mrϕ implies that θ (s) (JϕK) 6= ∅ and θ+ (s) (JϕK) ≤ r.

θ+ (s) (JϕK) ≤ r < r + s < θ+ (s)

(⋂
i

JϕiK
)
.

Suppose arbitrary t ∈
⋂
iJϕiK, then by the premise that if G, s |= ϕi for all ∀ϕi ∈ Φ

then G, s |= ϕ, we also have that t ∈ JϕK, thus JϕK =
⋂
iJϕiK. We then get the

contradiction by the following inequalities,

θ+ (s) (JϕK) ≤ r < r + s < θ+ (s) (JϕiK) .

R6
Assume G, s |= Lr+qϕ, q > 0, for all JϕK ⊆ JF K and G, s |= ¬Lrψ for all JψK ⊆ JF K.
This means that θ (s) (JϕK) 6= ∅ and θ− (s) (JϕK) ≥ r + q, and that θ (s) (JψK) = ∅ or
θ− (s) (JψK) < r. Observe that we can write the states satisfied by F as

JF K =
⋃

JϕK⊆JF K

JϕK =
⋂

JψK⊇JF K

JψK,

and that JϕK ⊆ JF K ⊆ JψK.

Since JϕK ⊆ JF K, we have by condition III of θ that

θ (s) (JϕK) = θ (s) (JϕK ∩ JF K) = θ (s) (JϕK) C θ (s) (JF K) 6= ∅,

which implies that θ (s) (JF K) 6= ∅ and also that θ (s) (JψK) 6= ∅ for all JψK ⊇ JF K.
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Now assume towards a contradiction that θ− (s) (JF K) < r + q. Then

θ− (s) (JF K) = θ− (s)

 ⋃
JϕK⊆JF K

JϕK

 = inf
JϕK⊆JF K

θ− (s) (JϕK) < r + q,

which means that there must exist some Jϕ′K ⊆ JF K such that θ− (s) (Jϕ′K) < r + q, but
this contradicts the fact that θ− (s) (ϕ) ≥ r + q for all JϕK ⊆ JF K.

Next assume towards a contradiction that θ− (s) (JF K) ≥ r + q. This means that

θ− (s) (JF K) = θ− (s)

 ⋂
JψK⊇JF K

JψK

 = sup
JψK⊇JF K

θ− (s) (JψK) ≥ r + q.

This implies that there must exist some Jψ′K ⊇ JF K such that θ− (s) (Jψ′K) ≥ r, which
contradicts that θ− (s) (JψK) < r for all JψK ⊇ JF K.

Either way we get a contradiction, so we conclude G, s |= ⊥.

R6′

Assume G, s |= Mr+qϕ where q > 0 for all JϕK ⊆ JF K and G, s |= Mrψ for all
JψK ⊇ JF K. This means that θ (s) (JϕK) 6= ∅ and θ (s) (JϕK) ≤ r+ q and that θ (s) (JψK) = ∅
or θ (s) (JψK) > r.

Reasoning as in R6, we get that θ (s) (JF K) 6= ∅ and θ (s) (JψK) 6= ∅ for all JψK ⊇ JF K.

Now assume towards a contradiction that θ+ (s) (JF K) > r + q. This means that

θ+ (s) (JF K) = θ+ (s)

 ⋃
JϕK⊆JF K

JϕK

 = sup
JϕK⊆JF K

θ+ (s) (JϕK) > r + q.

Then there must exist some Jϕ′K ⊆ JF K such that θ+ (s) (Jϕ′K) > r + q, but this is a
contradiction.

Assume towards a contradiction that θ+ (s) (JF K) ≤ r + q. Then

θ+ (s) (JF K) = θ+ (s)

 ⋂
JψK⊇JF K

 = inf
JψK⊇JF K

θ+ (s) (JψK) ≤ r + q,

which implies that there exists some Jψ′K ⊇ JF K such that θ+ (s) (Jψ′K) ≤ r, but this is a
contradiction.

We therefore conclude that G, s |= ⊥.

�

Note also that we can now easily see that our logic is non-compact, i.e. there exists an infinite
set Φ ⊆ L where each finite subset of Φ admits a model, but Φ does not. To see this, consider
the set

Φ = {¬Mrϕ | r ∈ Q≥0} ∪ {L0ϕ}.

Every finite subset of Φ admits a model, but Φ does not, since by axiom R4 we can derive ¬L0ϕ
and thus prove ⊥.
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6.2 Canonical Model Construction

With our axioms proven sound, we are now ready to show weak-completeness for our axiom-
atization. To this end, we use a canonical model construction based on maximal consistent
sets of formulae (ultrafilters). This approach has previously been used to show completeness of
Markovian logics [8] and for showing completeness of weighted modal logic with relation to WTS
semantics [9]. In the following section we present our canonical model construction together with
various lemmas showing that our construction abides the definition of a GTS.

We wish to construct a GTS with ultrafilters as states. This means that we need to construct
a transition function between ultrafilters, and we need to construct a labeling function for ultra-
filters. The construction proceeds as follows. We first construct a transition function between
ultrafilters and formulae, and using this transition function we then construct a transition func-
tion between ultrafilters and filters. Lastly, we use this transition function to construct the final
transition function between ultrafilters and sets of ultrafilters.

The following lemma tells us how to construct the transition functions from an ultrafilter to
a single formula.

Lemma 17. For arbitrary ultrafilter u ∈ U and formula ϕ ∈ L,

L0ϕ ∈ u implies sup{r | Lrϕ ∈ u} ≤ inf{s |Msϕ ∈ u}

Proof. We first argue that there exists some r, s ∈ Q≥0 such that Lrϕ ∈ u and Msϕ ∈ u, which
implies that the sets we are considering are non-empty. By assumption L0ϕ ∈ u. Suppose
towards a contradiction that for all s ∈ Q≥0, Msϕ 6∈ u implying, since u is an ultrafilter, that
for all s ∈ Q≥0, ¬Ms ∈ u, which by axiom R4 further implies that ¬L0ϕ ∈ u, which contradicts
our assumption that L0ϕ ∈ u.

Let x = sup{r | Lrϕ ∈ u} and y = inf{s | Msϕ ∈ u}. Suppose towards a contradiction that
x > y. Let q ∈ Q≥0 such that x ≥ q > y, then by axiom A2, Lqϕ ∈ u. Let s ∈ Q≥0 such that
x ≥ q > s ≥ y, then by axiom A2’, Msϕ ∈ u. But by axiom A8, we have that Lqϕ→ ¬Msϕ as
q > s, contradiction! �

Next we define the transition function from ultrafilters to formulae θL.

Definition 18. For arbitrary u ∈ U , ϕ ∈ L we define the transition function θL : U → [L → I]
as

θL (u) (ϕ) =

{
∅ if L0ϕ 6∈ u
〈sup{r | Lrϕ ∈ u}, inf{s |Msϕ ∈ u}〉 otherwise.

N

We now prove that this function satisfies a finite version of conditions I-III.

Lemma 19. For arbitrary u ∈ U , ϕ,ψ ∈ L it holds that

(i) θL (u) (⊥) = ∅,

(ii) θL (u) (ϕ ∨ ψ) = θL (u) (ϕ)
⊎
θL (u) (ψ), and

(iii) L0(ϕ ∧ ψ) ∈ u implies θL (u) (ϕ ∧ ψ) = θL (u) (ϕ)
p
θL (u) (ψ).

Proof. We shall now argue for (i), (ii) and (iii) in turn. Let u ∈ U be an ultrafilter and ϕ,ψ ∈ L
formulae.
(i) θL (u) (⊥) = ∅

By A1, ¬L0⊥ ∈ u, so L0⊥ /∈ u, which by Definition 18 implies that θ−L (u) (⊥) = ∅.
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(ii) θL (u) (ϕ ∨ ψ) = θL (u) (ϕ)
⊎
θL (u) (ψ)

Case θL (u) (ϕ ∨ ψ) = ∅ iff θL (u) (ϕ)
⊎
θL (u) (ψ) = ∅

( =⇒ )
Suppose that θL (u) (ϕ ∨ ψ) = ∅ and further towards a contradiction that
θL (u) (ϕ)

⊎
θL (u) (ψ) 6= ∅. Since θL (u) (ϕ ∨ ψ) = ∅ we have by Definition 18

that L0(ϕ ∨ ψ) 6∈ u and because θL (u) (ϕ)
⊎
θL (u) (ψ) 6= ∅ that θL (u) (ϕ) 6= ∅

or θL (u) (ψ) 6= ∅. Without loss of generality we assume that θL (u) (ϕ) 6= ∅, i.e.
L0ϕ ∈ u. Since ` ϕ→ (ϕ∨ψ) we have by axiom R3 that ` L0ϕ→ L0(ϕ∨ψ) and
thus L0(ϕ ∨ ψ) ∈ u which contradicts our assumption that θL (u) (ϕ ∨ ψ) = ∅.

(⇐= )
Suppose now that θL (u) (ϕ)

⊎
θL (u) (ψ) = ∅, i.e. θL (u) (ϕ) = ∅ and

θL (u) (ψ) = ∅. Suppose towards a contradiction that θL (u) (ϕ ∨ ψ) 6= ∅, i.e.
L0(ϕ∨ ψ) ∈ u. By axiom A6 ` L0(ϕ∨ ψ)→ L0ϕ∨L0ψ implying L0ϕ∨L0ψ ∈ u
which contradicts our assumption that θL (u) (ϕ) = ∅ and θL (u) (ψ) = ∅ and
therefore θL (u) (ϕ)

⊎
θL (u) (ψ) = ∅ implies θL (u) (ϕ ∨ ψ) = ∅.

Case θL (u) (ϕ ∨ ψ) = 〈x, y〉 iff θL (u) (ϕ)
⊎
θL (u) (ψ) = 〈x, y〉

As shown in the previous case,

θL (u) (ϕ ∨ ψ) 6= ∅ iff θL (u) (ϕ)
⊎
θL (u) (ψ) 6= ∅. (1)

Suppose that θL (u) (ϕ ∨ ψ) = 〈x∨, y∨〉, and θL (u) (ϕ)
⊎
θL (u) (ψ) = 〈x], y]〉.

We shall now argue that x∨ = x]. By Definition 18, x∨ = sup{r | Lr(ϕ ∨ ψ) ∈ u}.
By Definition 2 and Equation 1, either of the following cases holds

(i) θL (u) (ϕ) 6= ∅ and θL (u) (ψ) 6= ∅ or

(ii) θL (u) (ϕ) 6= ∅ and θL (u) (ψ) = ∅ or

(iii) θL (u) (ϕ) = ∅ and θL (u) (ψ) 6= ∅.
Case (i) θL (u) (ϕ) 6= ∅ and θL (u) (ψ) 6= ∅

Assume towards a contradiction that x∨ < x]. This means that there exists a
t ∈ Q≥0 such that x∨ < t < x] which implies that there exist formulae ϕ,ψ ∈ L
such that Lrϕ ∈ u and Lsψ ∈ u where min{r, s} > t. By axiom A3, Lrϕ ∈ u
and Lsψ ∈ u implies that Lmin{r,s}(ϕ ∨ ψ) ∈ u, which by axiom A2 implies that
Lt(ϕ ∨ ψ) ∈ u, but this contradicts that sup{r | Lr(ϕ ∨ ψ) ∈ u} < t.

Now assume towards a contradiction that x∨ > x]. This means that there
exists t ∈ Q≥0 such that x∨ > t > x]. If x∨ is rational, then Lx∨(ϕ ∨ ψ) ∈ u
because either it is part of the set which we take the supremum over, or it is the
limit of a sequence of rational numbers, in which case axiom R1 guarantees that
the limit point is also in the set. If x∨ is irrational, then there must exist some
q ∈ Q≥0 such that Lq(ϕ ∨ ψ) ∈ u and x∨ > q > t > x]. In any case, we can use
axiom A2 to conclude that Lt(ϕ∨ψ) ∈ u. Since θL (u) (ϕ) 6= ∅ and θL (u) (ψ) 6= ∅,
we know that L0ϕ ∈ u and L0ψ ∈ u. Since ϕ→ ϕ∨ψ and ψ → ϕ∨ψ, we can use
axiom R2 to get Ltϕ ∈ u and Ltψ ∈ u, which contradicts our assumption that
min{sup{r | Lrϕ ∈ u}, sup{r | Lrψ ∈ u}} < t.

Hence x∨ = x].
Case (ii) θL (u) (ϕ) 6= ∅ and θL (u) (ψ) = ∅

As θL (u) (ϕ) 6= ∅, let xϕ = sup{r | Lrϕ ∈ u}. Given that θL (u) (ψ) = ∅,
xϕ = x] = sup{r | Lrϕ ∈ u}. Since θL (u) (ψ) = ∅, ¬L0ψ ∈ u, and by axiom A2
this implies ¬Lrψ ∈ u for any r ∈ Q≥0. By axiom A6, we know that Lr(ϕ∨ψ) ∈ u
implies Lrϕ ∨ Lrψ ∈ u, but since Lrψ /∈ u, this implies Lrϕ ∈ u. By axiom A7
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we know that Lrϕ ∈ u implies Lr(ϕ∨ψ) ∈ u, so Lr(ϕ∨ψ) ∈ u iff Lrϕ ∈ u. Hence
x] = x∨.

Case (iii) θL (u) (ϕ) = ∅ and θL (u) (ψ) 6= ∅
Follows by similar arguments as in (ii).

We can argue that y∨ = y] in a similar fashion, using axioms A2′, A3′,A6′, A7′,
R1′, and R2′.

(iii) L0(ϕ ∧ ψ) ∈ u implies θL (u) (ϕ ∧ ψ) = θL (u) (ϕ)
p
θL (u) (ψ)

Suppose that L0(ϕ ∧ ψ) ∈ u which, by Definition 18, implies

θL (u) (ϕ ∧ ψ) = 〈sup{r | Lr(ϕ ∧ ψ) ∈ u}, inf{s |Ms(ϕ ∧ ψ) ∈ u}〉.

Since L0(ϕ ∧ ψ) ∈ u we have by axiom R3 that L0ϕ ∈ u and L0ψ ∈ u implying, by
Definition 18, that θL (u) (ϕ) 6= ∅ and θL (u) (ψ) 6= ∅. Let

〈xϕ, yϕ〉 = 〈sup{r | Lrϕ ∈ u}, inf{s |Msϕ ∈ u}〉 = θL (u) (ϕ) , and

〈xψ, yψ〉 = 〈sup{r | Lrψ ∈ u}, inf{s |Msψ ∈ u}〉 = θL (u) (ψ) .

We can now restate θL (u) (ϕ ∧ ψ) = θL (u) (ϕ)
p
θL (u) (ψ) as

〈sup{r | Lr(ϕ ∧ ψ) ∈ u}, inf{s |Ms(ϕ ∧ ψ) ∈ u}〉 = 〈max{xϕ, xψ},min{yϕ, yψ}〉.

We now show that sup{r | Lr(ϕ ∧ ψ) ∈ u} = max{xϕ, xψ}.
By axiom A4, we know that if Lrϕ ∈ u and Lsψ ∈ u, then Lmax{r,s}(ϕ ∧ ψ) ∈ u, so

sup{r | Lr(ϕ ∧ ψ) ∈ u} ≥ max{xϕ, xψ}. Assume towards a contradiction that
sup{r | Lr(ϕ ∧ ψ)} > max{xϕ, xψ}. Then there exists some t ∈ Q≥0 such that

sup{r | Lr(ϕ ∧ ψ) ∈ u} ≥ t > max{xϕ, xψ}.

By axiom A2, we know that Lt(ϕ ∧ ψ) ∈ u, and we know that Ltϕ /∈ u and Ltψ /∈ u,
so ¬Ltϕ ∈ u and ¬Ltψ ∈ u. Hence axiom A5 gives that ¬Lt(ϕ ∧ ψ) ∈ u, which is a
contradiction. We conclude that sup{r | Lr(ϕ ∧ ψ) ∈ u} = max{xϕ, xψ}.

For inf{s | Ms(ϕ ∧ ψ) ∈ u} = min{yϕ, yψ}, symmetrical arguments can be made using
axioms A2′, A4′, A5′, and A9.

�

Since we have infinitary rules in our logic, some infinite sets of formulae are equivalent to
a finite formula. The following lemma tells us that when we have such a formula ϕ that can
be described by an infinite set of formulae Φ, the transition function to ϕ is the same as the
intersection of all the transition functions to ψ ∈ Φ.

Lemma 20. Let Φ ⊆ L be an infinite set of formulae, u ∈ U an ultrafilter, and ϕ ∈ L a formula.
Then if Φ ` ϕ, ϕ ` Φ, and θL (u) (ϕ) 6= ∅, it holds that

θL (u) (ϕ) =
x

ψ∈Φ

θL (u) (ψ) .

Proof. Let u ∈ U , ϕ ∈ L and Φ ⊆ L such that Φ ` ϕ, ϕ ` Φ and θL (u) (ϕ) 6= ∅. Because L
is countable, we can enumerate the formulae of Φ such that Φ = {ϕ1, . . . , ϕk . . .}. We assume
that Φ is ordered in such a way that ` ϕi+1 → ϕi for any i ∈ N, i > 1. Observe that we
can impose such an ordering by letting for i ∈ N: ψ1 = ϕ1 and ψi = ψi−1 ∧ ϕ1 for any
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i > 1. Then Φ = {ψ1, . . . , ψk . . .} and ` ψi+1 → ψi for any i > 1. We have to show that
θL (u) (ϕ) =

p

i

θL (u) (ϕi), i.e.

sup{x|Lxϕ ∈ u} = sup
i

sup{y | Lyϕi ∈ u}

and
inf{x |Mxϕ ∈ u} = inf

i
inf{y |Myϕi ∈ u}.

We will first show that

sup{x|Lxϕ ∈ u} = sup
i

sup{y | Lyϕi ∈ u}.

Let sup{x|Lxϕ ∈ u} = xϕ and sup
i

sup{y | Lyϕi ∈ u} = yϕ. Since for any i we have that

` ϕ → ϕi, axiom R2 yields that ` Lyϕi ∧ L0ϕ → Lyϕ implying xϕ ≥ yϕ. Suppose towards a
contradiction that xϕ > yϕ implying the existence of rationals s, t ∈ Q≥0 such that
xϕ > t + s > t > yϕ. We must therefore have that Lt+sϕ ∈ u and for all i that ¬Ltϕi ∈ u. By
axiom R5 we have that {¬Ltϕi} ` ¬Lt+sϕ implying ¬Lt+sϕ ∈ u which since Lt+sϕ ∈ u is a
contradiction.

We now show that
inf{x |Mxϕ ∈ u} = inf

i
inf{y |Myϕi ∈ u}.

Let inf{x|Mxϕ ∈ u} = xϕ and inf
i

inf{y | Lyϕi ∈ u} = yϕ. Since for any i we have

that ` ϕ → ϕi, axiom R2′ yields that ` Myϕi ∧ L0ϕ → Myϕ implying xϕ ≤ yϕ. Suppose
towards a contradiction that xϕ < yϕ implying the existence of rationals s, t ∈ Q≥0 such that
xϕ < t < t+ s < yϕ. We must therefore have that Mtϕ ∈ u and for all i that ¬Mt+sϕi ∈ u. By
axiom R5′ we have that {¬Mtϕi} ` ¬Mt+sϕ implying ¬Mt+sϕ ∈ u which since Mt+sϕ ∈ u is a
contradiction. �

Now we extend the θL function to filters by defining θF .

Definition 21. For arbitrary u ∈ U , F ∈ (F ∪ {∅}) we define the transition function
θF : U → [(F ∪ {∅})→ I] as

θF (u) (F ) =
⊎

ϕ∈TFU

θL (u) (ϕ) .

N

The following lemma shows that we can actually define θF in two different, but equivalent
ways. It will be used when showing that θF satisfies condition III.

Lemma 22. For arbitrary u ∈ U , F ∈ {F ∪ {∅}} it holds that if θF (u) (F ) 6= ∅, then

θF (u) (F ) =
x

ψ∈VFW

θL (u) (ψ) .

Proof. Let u ∈ U and F ∈ F∪{∅}. It can not be the case that F = ∅, because then θF (u) (F ) = ∅,
which contradicts our assumption that θF (u) (F ) 6= ∅. Now,

θF (u) (F ) =
⊎

ϕ∈TFU

θL (u) (ϕ) 6= ∅,
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so there exists some ϕ ∈ TFU such that θL (u) (ϕ) 6= ∅, which implies that L0ϕ ∈ u. Since
` ϕ → ψ for any ψ ∈ VFW, we have by axiom R3 that L0ψ ∈ u, so θL (u) (ψ) 6= ∅ for any
ψ ∈ VFW, and hence

p
ψ∈VFW θL (u) (ψ) 6= ∅.

Now assume θF (u) (F ) =
⊎
ϕ∈TFU θL (u) (ϕ) = 〈xϕ, yϕ〉 and

p
ψ∈VFW θL (u) (ψ) = 〈xψ, yψ〉.

We first show that xϕ = xψ. Assume towards a contradiction that xϕ < xψ which implies that
there exists a t ∈ Q≥0 such that xϕ < t < xψ, Ltψ ∈ u for all ψ ∈ VFW, and ¬Ltϕ ∈ u for
all ϕ ∈ TFU. Since θF (u) (F ) =

⊎
ϕ∈TFU θL (u) (ϕ) 6= ∅, there must exist some ϕ′ ∈ TFU such

that θL (u) (ϕ′) 6= ∅, which implies that L0ϕ
′ ∈ u. Since ` ϕ′ → ψ, we get by axiom R2 that

Ltϕ ∈ u which contradicts that ¬Ltϕ ∈ u. Thus xϕ ≥ xψ. Assume towards a contradiction that
xϕ > xψ. Then there exists t, s ∈ Q≥0 where s > 0 such that xϕ > t+ s > t > xψ and ¬Ltψ ∈ u
for all ψ ∈ VFW and Lt+sϕ ∈ u for all ϕ ∈ TFU. By axiom R6, this is a contradiction, so we can
conclude that xϕ = xψ.

Assume towards a contradiction that yϕ < yψ. This implies that there exists t, s ∈ Q≥0 such
that yϕ < t < t + s < yψ and Mt+sϕ ∈ u for all ϕ ∈ TFU and ¬Mtψ ∈ u for all ψ ∈ VFW. By
axiom R6′, this is a contradiction. Assume towards a contradiction that yϕ > yψ, which implies
that there exists t ∈ Q≥0 such that yϕ > t > yψ and ¬Mtϕ for all ϕ ∈ TFU and Mtψ ∈ u for all
ψ ∈ VFW. Since we know that there exists some ϕ′ ∈ TFU such that L0ϕ

′ ∈ u, we can conclude
by axiom R2′ that Mtϕ

′ ∈ u, which is a contradiction. Hence yϕ = yψ. �

From the previous lemmas we get the following corollary which gives a relation between
formulae and their principal filters with the transition functions we have just defined.

Corollary 23. For arbitrary ultrafilter u ∈ U , if F =↑ ϕ and θF (u) (F ) 6= ∅, then
θF (u) (↑ ϕ) = θL (u) (ϕ).

Proof. Suppose arbitrary formula ϕ ∈ L and let F =↑ ϕ be its principal filter. Clearly, ↑ ϕ ` ϕ
and ϕ `↑ ϕ and so we apply Lemma 20 and Lemma 22 to get

θF (u) (↑ ϕ) =
x

ψ∈V↑ϕW

θL (u) (ψ) = θL (u) (ϕ) .

�

Next we prove that θF satisfies the conditions I-III.

Lemma 24. For any ultrafilter u ∈ U ,

(I) θF (u) (∅) = ∅,

(II) θF (u) (
⋃
i Fi) =

⊎
i θF (u) (Fi), and

(III) θF (u) (
⋂
i Fi) 6= ∅ implies θF (u) (

⋂
i Fi) =

p
i θF (u) (Fi).

Proof.

(I) θF (u) (∅) = θL (u) (⊥) = ∅.

(II) Starting from the definition of θF , we have that

θF (u)

(⋃
i

Fi

)
=

⊎
ϕ∈T

⋃
i FiU

θL (u) (ϕ)

=
⊎
i

⊎
ϕ∈TFiU

θL (u) (ϕ)

=
⊎
i

θF (u) (Fi) .
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2U F

I

f

θ(u)θ(u) ◦ f

Figure 5: Function composition of bijection f : 2U → F and θF .

(III) Assume θF (u) (
⋂
i Fi) 6= ∅. Then we can use Lemma 22 to obtain

θF (u)

(⋂
i

Fi

)
=

x

ϕ∈V
⋂
i FiW

θL (u) (ϕ)

=
x

i

x

ϕ∈VFiW

θL (u) (ϕ)

=
x

i

θF (u) (Fi) .

�

For defining the transition function for sets of ultrafilters, we use the Stone duality from
Boolean algebras to derive an isomorphism f between filters and sets of ultrafilters. Composing
this isomorphism with θF yields a function from the power set of ultrafilters into the set of
intervals I. Figure 5 illustrates this composition. In what follows, let f : 2U → F be the function
defined for any W ∈ 2U as

f(W ) =
⋂
v∈W

v.

then f−1 : F → 2U is defined for any F ∈ F as

f−1(F ) =
⋃

v∈U :F⊆v

{v}.

The function f satisfies the following properties:

f(
⋃
i

Wi) =
⋃
i

f(Wi)

and

f(
⋂
i

Wi) =
⋂
i

f(Wi).

Definition 25. For arbitrary u ∈ U , W ∈ 2U we define the transition function
θU : U →

[
2U → I

]
as

θU (u) (W ) = θF (u) (f(W )) .

N

Lastly we define the labelling function by looking at the atomic propositions in the ultrafilter.
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Definition 26. For any ultrafilter u ∈ U we define the labeling function `U : U → 2AP as

`U (u) = {p ∈ AP | p ∈ u}.

N

We are now in a position to construct the canonical model which is a GTS with ultrafilters
as states and prove that it is in fact a GTS.

Definition 27 (Canonical model). GU is the canonical model defined as GU = (U , θU , `U ). N

Theorem 28. GU is a GTS.

Proof. We must verify that GU satisfies the properties (1)-(3) of Definition 8.

(1) U is a non-empty set of states.

(2) By Lemma 17, we know that if L0ϕ /∈ u, then θ−L (u) (ϕ) ≤ θ+
L (u) (JϕK). Since by definition,

θU (u) (W ) = θF (u)

( ⋂
w∈W

w

)
=

x

w∈W

⊎
ϕ∈TwU

θL (u) (ϕ) ,

we thus have that θ−U (u) (W ) ≤ θ+
U (u) (W ), so θU does indeed map to I.

We have that θU (u) (∅) = θF (u) (∅) = ∅ by Lemma 24, thus satisfying condition I.

Now observe that

θU (u)

(⋃
i

Wi

)
= θF (u)

(
f

(⋃
i

Wi

))
= θF (u)

(⋃
i

f(Wi)

)
=
⊎
i

θF (u) (f(Wi)) =
⊎
i

θU (u) (Wi)

by Lemma 24, thus satisfying condition II.

Assume θU (u) (
⋂
iWi) 6= ∅. Then

θU (u)

(⋂
i

Wi

)
= θF (u)

(
f

(⋂
i

Wi

))
= θF (u)

(⋂
i

f(Wi)

)
=

x

i

θF (u) (f(Wi) =
x

i

θU (u) (Wi)

by Lemma 24, thus satisfying condition III.

(3) By Definition 26, `U is a labeling function.

Hence we can conclude that GU is indeed a GTS. �

6.3 Weak Completeness

Now that we have constructed the canonical model, we turn our attention to proving weak-
completeness. To do this, we first prove the so-called Truth Lemma, from which weak-completeness
follows easily.
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For any ultrafilter v, we enumerate the formulae of v by v = {ψv1 , ψv2 , ψv3 , . . . }. Given ϕ ∈ L,
define Sϕ as

Sϕ =

 ⋃
v∈JϕK

Jψvg(v)K

∣∣∣∣∣ g ∈ [JϕK→ N]

 .

Intuitively, each element of Sϕ is constructed by choosing, through the choice function g, a
formula from every ultrafilter in JϕK. Then we take the union of the states that satisfy each of
these formulae. From the definition of Sϕ, we conjecture that the set of ultrafilters obtained by
taking the intersection of all elements in Sϕ is the same as the set of ultrafilters obtained by
taking the union of all ultrafilters which have ↑ ϕ as a subset.

Conjecture 29.
⋂
S∈Sϕ

S = f−1 (↑ ϕ).

We now state a lemma that is essential for the proof of the Truth Lemma.

Lemma 30. For any ultrafilter u ∈ U and formula ϕ ∈ L, it holds that

θU (u) (JϕK) = θL (u) (ϕ) .

Proof. From the right-hand side of the equation we get,

θL (u) (ϕ) = θF (u) (↑ ϕ) Corollary 23

= θU (u)
(
f−1(↑ ϕ)

)
Definition 25

= θU (u)

(⋂
S∈S

S

)
Conjecture 29

=
x

S∈Sϕ

θU (u) (S) Definition 8, III
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From the left-hand side of the equation we get

θU (u) (JϕK) = θU (u)

 ⋃
v∈JϕK

{v}


=
⊎
v∈JϕK

θU (u) ({v}) Definition 8, II

=
⊎
v∈JϕK

θU (u)

⋂
ψ∈v

JψK


=
⊎
v∈JϕK

x

ψ∈v

θU (u) (JψK) Definition 8, III

=
⊎
v∈JϕK

x

i∈N
θU (u) (Jψvi K) Index v as v = {ψv0 , ψv1 , . . . }

=
x

g∈[JϕK→N]

⊎
v∈JϕK

θU (u)
(
Jψvg(v)K

)
Result by p. 48-49 [3]

=
x

g∈[JϕK→N]

θU (u)

 ⋃
v∈JϕK

Jψvg(v)K

 Definition 8, II

=
x

S∈Sϕ

θU (u) (S) By definition of Sϕ

and hence the right-hand side and the left-hand side of the equation are equal. �

We can now state and prove the Truth Lemma which states that each consistent formula ϕ
in an ultrafilter u has a model where u is a state that satisfies ϕ and vice versa.

Lemma 31 (Truth Lemma). For arbitrary u ∈ U and consistent ϕ ∈ L it holds that

GU , u |= ϕ iff ϕ ∈ u.

Proof. Let u ∈ U be an ultrafilter and ϕ ∈ L a consistent formula. We will now show that

GU , u |= ϕ iff ϕ ∈ u

by structural induction on ϕ.

Case: ϕ = p
By the semantics of |=, GU , u |= p iff p ∈ `U and by Definition 26, p ∈ `U (u) iff p ∈ u and
thus GU , u |= p iff p ∈ u.

Case: ϕ = ¬ψ
( =⇒ )

We want to show that GU , u |= ¬ψ implies ϕ 6∈ u. Suppose that GU , u |= ¬ψ and
suppose towards a contradiction that ¬ψ 6∈ u. Since u is an ultrafilter we must have
that ¬¬ψ ∈ u and thus ψ ∈ u which by induction implies GU , u |= ψ leading to a
contradiction.

(⇐= )
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We want to show that ¬ψ ∈ u implies GU , u |= ¬ψ. Suppose that ¬ψ ∈ u and suppose
towards a contradiction that U , u 6|= ¬ψ. By the semantics of |=, U , u 6|= ¬ψ implies
GU , u |= ¬¬ψ implying that GU , u |= ψ which, by induction, implies ψ ∈ u leading to
a contradiction.

Case: ϕ = ψ ∧ ψ′
By the semantics of |=, GU , u |= ψ ∧ ψ′ iff [GU , u |= ψ and GU , u |= ψ′] which is the case iff
[ψ ∈ u and ψ′ ∈ u] iff ψ ∧ ψ′ ∈ u.

Case: ϕ = Lrψ
By the semantics of |=, we have

GU , u |= Lrψ iff θ−U (u) (JψK) ≥ r,

and by Lemma 30 we have

θ−U (u) (JψK) ≥ r iff θ−L (u) (ψ) ≥ r.

Now we wish to show that θ−L (u) (ψ) ≥ r iff Lrψ ∈ u.
( =⇒ )

Let xψ = θ−L (u) (ψ) = sup{x | Lxψ ∈ u} ≥ r. If xψ is rational, then either Lxψψ ∈ u
or xψ is the limit of some sequence of rational numbers, which by R1 means that
Lxψψ ∈ u. Either way, using axiom A2, this means that Lrψ ∈ u. If xψ is irrational,
then we know that there exists q ∈ Q≥0 such that xψ > q > r and Lqψ ∈ u. Again
by using axiom A2 we thus get Lrψ ∈ u.

(⇐= )

If Lrψ ∈ u, then θ−L (u) (ψ) = sup{x | Lxψ ∈ u} ≥ r, because if sup{x | Lxψ ∈ u} < r
then all Lxψ ∈ u must satisfy x < r, but we know that Lrψ ∈ u and r 6< r, so this is
a contradiction.

We have thus shown that GU , u |= Lrψ iff Lrψ ∈ u.

Case: ϕ = Mrψ
By the semantics of |=, we have

GU , u |= Mrψ iff θ+
U (u) (JψK) ≤ r

and by Lemma 30 we have

θ+
U (u) (JψK) ≤ r iff θ+

L (u) (ψ) ≤ r,

Next we show that θ+
L (u) (ψ) ≤ r iff Mrψ ∈ u.

( =⇒ )

Let yψ = θ+
L (u) (ψ) = inf{y | Myψ ∈ u} ≤ r. If yψ is rational, then either Myψψ ∈ u

or yψ is the limit of some sequence of rational numbers in which case R1′ gives that
Myψψ ∈ u. This implies, by axiom A2′, that Mrψ ∈ u. If yψ is irrational, then there
exists q ∈ Q≥0 such that yψ < q < r and Mqψ ∈ u, and again A2′ then implies
Mrψ ∈ u.

(⇐= )

If Mrψ ∈ u, then it must be the case that θ+
L (u) (ψ) = inf{y |Myψ ∈ u} ≤ r, because

otherwise y > r for all y ∈ Q≥0 such that Myψ ∈ u, but we know that Mrψ ∈ u and
r 6> r.
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�

Theorem 32 (Weak Completeness). The axiomatic system defined in Subsection 6.1 is weakly
complete with respect to the semantics defined in Section 5, i.e.

|= ϕ implies ` ϕ.

Proof.
|= ϕ implies ` ϕ

is equivalent to
6` ϕ implies 6|= ϕ

which is equivalent to

the consistency of ¬ϕ implies the existence of a model for ¬ϕ,

and this is guaranteed by the Truth Lemma. �

7 Concluding Remarks

The first contribution of this paper is the, to the best of our knowledge, novel notion of generalized
weighted transition systems that, together with the accompanying modal logic, can be used for
approximate reasoning about weighted systems. Secondly, and mainly, we give an axiomatization,
and show it to be weak-complete. To this end we have adopted an established method based on a
canonical model representation, that has previously been used to show completeness of Markovian
logics and completeness of weighted modal logic with relation to WTS semantics. Thirdly we
have shown that the proposed logic is invariant under a suitable definition of bisimulation.

There are still many new things to explore regarding the proposed models and logic. In the
proof theoretic direction, it would be interesting to explore a strong-complete axiomatization
of the proposed logic, i.e. an axiomatization such that for any formula ϕ ∈ L and any set of
formulae Φ ⊆ L, Φ ` ϕ iff Φ |= ϕ. Since our logic is non-compact, strong-completeness does
not follow directly from weak-completeness. As mentioned, we suspect that not all the presented
axioms are independent, e.g. we suspect that the axioms R5 and R5′ might be provable from R6
and R6’. R5 and R5′ have uncountably many instances, so if they could be removed as axioms,
and instead be proved as results, this would leave us with an axiomatization with countably
many instances, and we could then invoke the Rasiowa-Sikorski lemma to prove Lindenbaum’s
lemma.

Another direction for future work could be looking into the inherent limitations imposed by
the transition function of our models. The conditions II and III poses some limitations on the
models we can represent within our framework. Consider the situation depicted in Figure 6a,
where the state spaces for the formulae ϕ and ψ are partitioned with regards to possible transition
weights. As θ (s) (JϕK ∩ JψK) 6= θ (s) (JϕK) C θ (s) (JψK), we cannot model this system within our
framework of GTSs. We can, however, model an approximation of systems, but as illustrated
in Figure 6b the bounds derived from the approximate model is an over-approximation of the
actual bounds. As such, the modeling formalism would have to be refined in order to give better
approximations, i.e. tighter bounds. Somewhat related to this point, it would also be interesting
to look into the precise relationship between WTSs and GTSs. Clearly, if we restrict intervals in
a GTS to be degenerate and only consider transitions to singleton sets of states, then we get a
WTS. Conversely, every WTS can be seen as a GTS by constructing intervals from the weights
on transitions in the WTS. One could investigate whether such a construction is necessarily
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ϕ ψ ϕ ψ

θ (s) (JϕK)

θ (s) (JψK)

θ (s) (JϕK) C θ (s) (JψK)

θ (s) (JϕK ∩ JψK)

(a) As θ (s) (JϕK ∩ JψK) 6= θ (s) (JϕK) C θ (s) (JψK), this is not a model in our formalism.

ϕ ψ

θ (s) (JϕK)

θ (s) (JψK)

θ (s) (JϕK) C θ (s) (JψK)

θ (s) (JϕK ∩ JψK)

(b) We can, however, model an approximation of the system

Figure 6: An example of the limitations of our models.
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unique, and whether, if we know some property holds for a GTS, we could then deduce that it
must also hold for some class of WTSs through the relationship between WTSs and GTSs.

A third possibility for future work is to give an algorithm for finding suitable values such that
a given property holds. More precisely, we would want an algorithm that given some property ϕ
can give us suitable r and s such that Lrϕ and Msϕ holds. Ideally, such an algorithm could give
the maximum value of r such that Lrϕ holds and the minimum value s such that Msϕ holds.
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