
AALBORG UNIVERSITY - COPENHAGEN

Dynamic surface rendering of water in liquid

and solid states in real-time application

by

Georgi Anastasov and Svetla Tomova

A thesis submitted in fulfillment of the requirements for the degree of

M.Sc. Medialogy

Copenhagen – Denmark

28 May 2015

Aalborg University Copenhagen

Semester: MED10
Title:
“Dynamic surface rendering of water
in liquid and solid state in real-time
application”

Project Period:
Feb. 2015 - May 2015

Semester Theme:
Master Thesis

Supervisor(s):
Georgios Triantafyllidis

Project group no.:

Members:
Svetla Tomova
<stomov13@student.aau.dk>

Georgi Anastasov
<ganast13@student.aau.dk>

Copies: 3
Pages: 93
Finished: 27.05.2015

Aalborg University Copenhagen
A.C. Meyers Vænge

2450 København SV, Denmark

Semester Coordinator:
Stefania Serafin

Secretary:

Lisbeth Nykjær
Phone: (+45) 9940 2470 | Email: lny@create.aau.dk |
Aalborg University | Frederikskaj 12, 1st floor | 2450

Copenhagen SV

Abstract:
Real time applications are being popular theme in
many disciplines. As the age of technology allows
more and more alternatives, we investigated one
particular domain from the computer graphics –
water simulation. Our implementation is based on
modern techniques, widely used in games computer
graphics, from basic texturing to advanced run-time
reflections and bump mapping. We produced a
sophisticated result with extensions to the common
surface water rendering, by including additional
features – run-time interaction with the surface
water rendering, based on texture injection. Our
proposed simulation model is divided into three
main sections – visuals representing the rendering of
the water, physics simulating the water to object
coupling, and finally interaction of objects or input to
water. The results showed significantly positive
outcome about the last one, where an interaction
texture was rendered and used inside the
visualization of the water to create water ripple
effects – widely investigated area.

Copyright © This report and/or appended material may not be partly or completely published or copied without prior
written approval from the authors. Neither may the contents be used for commercial purposes without this written approval.

https://mail.aau.dk/owa/redir.aspx?C=iBp-nj11Lk-QqgnvwpyI-JwV-JaQX9IIhSAJVL4yDB48IJ9QEUPOYk10HRbmnRIRFuBkrWlfF-E.&URL=mailto%3alny%40create.aau.dk

Acknowledgments

We would like to express our appreciation to our supervisor, Georgios Triantafyllidis assistance
professor in Department Architecture, Design and Media Technology AAU-Copenhagen, for his
guidance, assistance and supervision.

Contents

List of Figures... 1

Acronyms ... 2

Preface .. 3

1. Introduction .. 4

2. Previous work ... 5

2.1 General analysis ... 5

2.1.1 History of water rending in computer graphics .. 5

2.1.2 Application of computer generated water .. 6

2.1.3 General approaches in water simulation .. 8

2.1.4 Computer graphic pipeline (basic overview) ... 11

2.1.5 Importance of optimization .. 15

2.2 Low level of analysis .. 15

2.2.1 Visuals ... 15

2.2.2 Physics .. 17

2.2.3 Interaction .. 18

3. Methods and Techniques .. 18

3.1 Reflection .. 18

3.1.1. Cube map reflection .. 18

3.1.2. Scene reflection ... 20

3.2 Refraction .. 22

3.2.1 Clipping plane refraction ... 22

3.2.2 Cube map refraction ... 22

3.3 Chromatic Dispersion ... 23

3.4 Clipping algorithms ... 24

3.5 Fresnel effect .. 27

3.6 Flow map ... 28

3.7 Light ... 31

3.7.1 Light sources .. 32

3.7.2 Light categorization .. 33

3.7.3 Bump Lighting model ... 37

3.8 Vertex displacement.. 38

3.9 Physical models .. 39

3.10 Interaction ... 40

3.10.1 Object-to-water ... 40

4. Prerequisites ... 42

4.1 Concept origin .. 42

4.2 Requirements ... 42

4.3 Tools ... 43

4.4 Settings .. 43

5. Implementation .. 45

5.1 Surface water rendering ... 45

5.1.1 Reflection.. 45

5.1.2 Refraction ... 48

5.1.3 Fresnel effect.. 49

5.1.4 Normal mapping .. 51

5.1.5 Lighting model ... 54

5.2 Additional Visual effects ... 59

5.2.1 Translucent light ... 59

5.2.2 Fog ... 60

5.2.3 Edge blending .. 61

5.2.4 Vertex displacement ... 62

5.2.5 Ice transition .. 64

5.3 Physics ... 68

5.3.1 Buoyancy .. 69

5.3.2 Stream force ... 71

5.4 Shading tree .. 72

6. Testing .. 73

6.1. Test design .. 73

6.2. Expectations ... 74

6.3. Results ... 75

7. Discussion .. 78

8. Conclusions .. 81

9. Future work ... 82

10. References .. 83

11. Appendix ... 85

11.1. Water shader code ... 85

11.2. Water reflection code .. 88

11.3. Water physics code .. 89

11.4. Water Interaction code .. 90

11.5. Collected performance data ... 91

1 | P a g e

List of Figures
2.1. Surface water rendering 5

2.2. Particle based water simulation 6

2.3. Eulerian grid-based water simulation 6

2.4. Lagrangian non-grid based water

simulation ... 7

2.5. Heighfield water simulation scheme 8

2.6. Basic computer geometry 9

2.7. General CG pipeline 10

2.8. Scheme of data transformations 11

3.1. Scheme of the process of cube map

reflection ... 16

3.2. Illustrating the reflection vector 16

3.3. Cube map reflection rendering 17

3.4. Vector scheme of scene reflection 18

3.5. Illustration of scene refraction 19

3.6. Vector scheme of cube map refraction 20

3.7. Vector scheme of chromatic dispersion .. 21

3.8. Water additional FX 21

3.9. Semantics of the stencil buffer 22

3.10. Standard frustum volume definition 23

3.11. Oblique frustum volume definition 23

3.12. Orthographic frustum volume

Definition ... 24

3.13. Vector definition of Fresnel effect 24

3.14. Illustration of the process of texture

mapping ... 25

3.15. Looping function for flow mapping 26

3.16. Flow map directions 27

3.17. Linear interpolation 27

3.18. Multidimensional data interpolation 28

3.19. Light computation model 29

3.20. CG environment light types 30

3.21. Smoothness light types 31

3.22. Lambert reflection .. 31

3.23. Half-Lambert reflectance 32

3.24. Blinn-Phong shading 33

3.25. Vertex and pixel light computation 33

3.26. Realistic and Non-realistic light 34

3.27. Bump lighting model 34

3.28. Vector scheme of bump light 35

3.29. Vertex displacement 35

3.30. Forces affecting the object 36

3.31. Cube approximation 37

3.32. Object to water interaction 38

4.1. Three component flow 39

4.2. Terrain plan .. 41

4.3. Heightfield map and terrain rendering ... 41

5.1. Illustration of the process of reflection ... 44

5.2. Reflection results image 45

5.3. Illustration of the refraction process 46

5.4. Refraction coordinates 46

5.5. Simple Fresnel debug and results 47

5.6. Schilick’s Fresnel debug and results 48

5.7. Flow map generation 49

5.8. Flow field vector generation 49

5.9. Perturbing UVs with flow map 51

5.10. Final result of the flow distortion 51

5.11. Normal extraction from texture 53

5.12. Ambient lighting .. 54

5.13. Diffuse lighting ... 55

5.14. Specular lighting .. 56

5.15. Translucent diffuse 56

5.16. Fog debugging .. 58

5.17. Edge blending vector scheme 59

5.18. Edge blending debugging 59

5.19. Visual representation of sine waves 60

5.20. Vertex displacement 60

5.21. Snow blend .. 61

5.22. Ice forming .. 62

5.23. Ice thickness ... 63

5.24. Capturing the interaction texture 64

5.25. Interaction texture .. 64

5.26. Vector field changes based on texture 65

5.27. Interaction texture debugging 65

5.28. Cube approximation of 2D circle............... 66

5.29. Force application points 68

5.30. Stream force direction 68

5.31. Shading tree .. 69

5.32. Code design structure 69

2 | P a g e

Acronyms

CG – computer generated

RTC – real-time computation

VR – virtual reality

RT – real time

FX – effects

VFX – visual effects

API - application programming interface

GPU – graphical processing unit

CPU – central processing unit

HCI – human-computer interaction

GL – graphics library

DoF – depth of field

3 | P a g e

Preface

During our internship, we face numerous problems and one of them was creating
computer graphic water. This particular problem attracted out attention and we
decided to find a solution, regarding computer games and virtual environments.

In this thesis, we will be focusing on developing a dynamic surface rendering of
water liquid and solid states in real-time application. The main purpose of the writing
was to solve one of the problems that we are interested in and develop our skills further
as well as create a demo that we can continue working on afterwards. We wanted to
experiment with a number of techniques with the possibility of either find an
optimization or general new technique as well as define a full scope of water render in
real time computed applications.

The design and development of the water simulation was made by Georgi Anastasov
and Svetla Tomova, during the spring of 2015 in Aalborg University, Copenhagen. The
submission contains a writing paper and CD with all working files and serves the purpose
of MS Thesis project.

4 | P a g e

Dynamic surface rendering of water in liquid and solid

state in real-time application

Georgi Anastasov

MS in Medialogy, Computer Graphics

AAU Copenhagen Denmark

ganast13@student.aau.dk

Svetla Tomova

MS in Medialogy, Computer Graphics

AAU Copenhagen Denmark

stomov13@student.aau.dk

Abstract

Real time applications are being popular theme

in many disciplines. As the age of technology

allows more and more alternatives, we

investigated one particular domain from the

computer graphics – water simulation. Our

implementation is based on modern techniques,

widely used in games computer graphics, from

basic texturing to advanced run-time reflections

and bump mapping. We produced a

sophisticated result with extensions to the

common surface water rendering, by including

additional features – run-time interaction with

the surface water rendering, based on texture

injection. Our proposed simulation model is

divided into three main sections – visuals

representing the rendering of the water, physics

simulating the water to object coupling, and

finally interaction of objects or input to water.

The results showed significantly positive

outcome about the last one, where an

interaction texture was rendered and used

inside the visualization of the water to create

water ripple effects – widely investigated area.

Categories and Subject Descriptors

I.6. [Computing Methodologies] – simulation

and modeling

J.5. [Computer Applications] – arts, fine and

performing

General Terms

Simulation, Experimentation, Animation

Keywords

water, surface rendering, visuals, interaction,

physics, texture, shading, ice

1. Introduction

Water in real life is immense and unpredictable and hard to explain. That is why it
always has been an interesting topic in the field of games and virtual environment. All
kinds of water characteristics as well as different methods and techniques, has to be
considered when modeling and rendering water in CG world. Starting from the color of
the water and followed by the flow of the liquid, reflection and refraction and etc.

This thesis serves to present the development of dynamic, realistic water surface
rendering, using Unity3D platform. The focus of the simulation is to create real-time
water liquid and its transformation into solid surface - ice. For the development of a
realistic simulation of water, we relied on three component visuals, physics and
interaction. It is important to be said that the three elements, are not equally valuable
as interaction and physics take a smaller role in this project.

5 | P a g e

The problem addressed in this project, is to model and render realistic liquid and
ice surface in real-time, using visuals and physics, combined with a small part of
interaction intending to engage observer`s attention to a certain point.

2. Previous work

In this section will be split into three sub-sections. The first one will explain the meaning
and use of CG water as well as the most common techniques in general. The next sub-
section called Low level of analysis serves to present the key features in computer
graphics, for water modeling and rendering, organized according to their purpose:
visual, physics and interaction. Followed by the High level analysis sub-section where all
these features are further analyzed.

2.1 General analysis

2.1.1 History of water rending in computer graphics

Computer graphic history started back in 1950 but the term “computer graphics”
was entered by William Fetter in 1960 [1] to describe new design methods. Since
then, the field of computer graphics was widely enlarged. Moreover, CG water or
fluid simulation has become a valuable part of it.

The history of computer graphic water began with just a simple low quality blue
and white texture representing 2D water and it was widely used in Nintendo games.
Later on this technique was further developed in order to be added transparency to
the water. In the 80s, computer graphics were popularized by the increasing need of
them in films such as “Star Wars” and others. This period was marked as the golden
era of videogames, the interest in computer graphics like water and fluids increased
significantly. For creating CG water, more realistic particle systems were introduced
by William T. Reeves [2] for creating 2D fluid water and simple water effects. After
short period of time and a few scientific achievements in the field, computer graphic
water was able to be presented as a 3D object. In the 90s, the computer graphics
became more popular than ever as there were finally close to photorealistic. They
were highly needed in games, films and multimedia. Film like “The Prince of Egypt”
used computer graphics to present the parting of Red Sea. Another great example of
all time, is “Titanic”, which proved how important are the CG effects for the overall
appearance and immersion. Improving the realistic simulation of 3D water, in 2000s,
computer graphics for water rendering in films like “Finding Nemo” and “Ice Age”
reached new levels and achieved a huge success. Another film that brought
computer graphic for water simulation to the next level, was “Perfect Storm” where

6 | P a g e

all kinds of water effects were involved. Using fluid dynamic system a stormy ocean
and huge waves were created. [3]

Nowadays, water in games and films has been evolved impressively and achieve
realistic fluid dynamics. Water in computer graphics come a long way from the single
blue texture presenting 2D water to these days when we have the knowledge and
technologies to create photorealistic water for films or real-time water for games.

2.1.2 Application of computer generated water

In the century of technology and media development more and more developers are
struggling to implement different aspects from the reality into their work, whereas
this applies for everything that we can naturally see, feel or even smell, and the
extreme advance in computer graphics in the past couple of decades serves as a
proof of that. Computer graphic water is no exclusion. Whether it is for movies,
games, virtual environments or even more research-oriented use, a proper model is
usually sought to serve its desired purpose.

CG objects are the core elements when one is designing media settings. In
games, there is usually a limited world that the player can explore, therefore a more
natural and sophisticated way is needed to boundary and describe the
predetermined rules of the game or simply the part with the limitations of this
virtual world – either a short fence [4], a high mountain or in the scenario of this
writing an endless CG ocean/water. In the terminology of game development this
type of restrictions to the game world is commonly known as the term “invisible
wall” [5]. In the case of using a large body of water as a boundary can have its pros
and cons – surely the user would not like the idea to be unable to interact with the
water body leading to lowering the immersion of the player as immersion and
interaction go hand by hand, but on the contrary the “endless” water could serve as
infinite area, again as stated above – a more natural way to put a boundary to a so
called open world or a virtual world where the user can move freely [6]. However,
immersion and interactivity are playing major role in games, therefore every
element from the environment needs proper feedback model. If the CG water does
not react to a user input or vice versa, that could lead to lack of immersion. In order
to have that both-ways reaction, the rendered water needs to be constructed as
much possible as in real life. When the difference between the real life and virtual
simulation is down to minimal value, we could then acknowledge that a high level of
immersion is accomplished and the CG content is “perceived as real”[7]. This leads
the development of the computer graphic water to a new level, one that requires
more care to the details, but nonetheless creates different problematic areas.
Usually when it comes to creating a CG model, a research is carried in order to
define these problematic areas – Where does the model is being used? What
purpose does it server? and so forth.

7 | P a g e

Unfortunately, not all problematic areas are solved in a realistic approach, when
it comes to games, as there are computational issues when developing CG content.
This is a result of the hardware limitations and usually creating a realistic water
simulation in games is hard to achieve, therefore most of its “sub” problematic areas
are usually “faked”, which we will discuss further in the research. There are two
major groups of simulations – on one hand there is real time computing, where the
data is acquired, processed and affected result is returned “sufficiently quickly” [8]
and on the other there is the pre-computed model, where all of the previous
mentioned stages are calculated before the “materialization of the results”[9].
Games are partially falling under the RTC category, since they sometimes make use
of pre-computation (ex. In-game Cinematic), while computer augmented movies are
entirely from the second category. Therefore, when addressing the issue of creating
CG content in terms of movie industry there are a lot more opportunities and the
end results can have exact model of behavior as it would be in real life. The use of
computer graphics for water modeling and rendering in movies, requires a sufficient
amount of data and a realistic model approach or modeling technique, usually
described using a certain number of physically correct formulas and laws, resulting
in a simulation that could not be easily differed from reality, as expected from the
viewers to perceive. We will mention some of these physical methods later, as they
can find their usage inside RTC water simulation.

Virtual environments, in the sense of virtual reality (shortly VR), are another up
going trend. The idea behind one being able to interact and place himself inside a CG
environment, can be traced almost a century ago [10], but the approach towards the
topic became much more realistic in the past few decades also known as the
computer graphics revolution [11]. The use of virtually created water could have
huge potential, for example – a sightseeing of the Niagara Fall, or even a virtual walk
on the surface of Europa (one of the Jupiter’s closest moons, known to have mainly
an icy water crust). Although the idea could lead to great results, the tools are
limited, as VR requires the use of RTC. We could easily characterize the virtual
environment issues to be the same as the ones marked in game development and
games in general. The only difference is the outcome of the product, as the last
one’s purpose is to bring a certain level of joy/fun etc., while the other one could be
potentially used in many different areas, for example - advertising, sightseeing, or
even with a research purpose. One such example from the time of this writing is
introduced by Nvidia (a leader in graphical processing units, shortly GPUs,
manufacturer) where researchers showcased a new integrated calculation of
bouncing/ambient lighting, calculated in real time [12], that served as part of a CG
reconstruction of the events from July 1969, when Niels Armstrong landed on the
Moon surface. Thus having the ability to simulate RTC water can also have its
application in research and scientific areas, with the ability to see and extract
knowledge or results at run time.

8 | P a g e

2.1.3 General approaches in water simulation

Water simulation, in both RTC and pre-computational approach, is handled by
various ways, depending on the desired results. This again, as mentioned earlier, is
restricted by the limits of the hardware. We categorize most of the possible
solutions of animating water regarding the computational requirements.

 Surface water

First approach is as we refer to it as surface water. This type of simulation is the
fastest one, as it is a simulation done onto a 2D surface plane that can be both
used in 2D and 3D space. Surface water simulations allow fast computation of
the geometry. This general approach of using a single plane geometry, that holds
the visualization of water, is vastly used even nowadays in top title games such
as “Crysis”, “Borderlands”, “Elder Scrolls V: Skyrim” and etc. Commonly surface
water simulation is referred as procedural water, where no physics are applied,
rather a constant model of movement is implemented, either texture movement
(tilling and offset) or per vertex movement. Although its simplicity, this method
of water simulation can easily be enhanced by combining the 2D water
representation with advanced methods of texture handling (which we will
discuss later in this writing) resulting into extremely realistic simulations of water
bodies, see Figure 2.1.

Figure 2.1.: Surface water rendering - On the left is a simple rendering of a plane with
texture; on the right is enhanced version of water surface in a popular FPS game “FarCry”.

 Fluid water

A much more realistic results can be accomplished, at the cost of computational time,
by using a technique, which involves a third dimension, simply said a volume water.
There a few different sub categories, when developing volumetric water simulation, but
the general approach is to answer the question – how is the fluid and its movement
represented. In the previous technique the water was represented by a 2D surface

9 | P a g e

plane with vertex or pixel movement, while in the volume scenario we need something
that will hold the data of each water volume consistency, regarding our consideration of
what is under the water surface – mass, velocity etc. In computer graphics this is usually
approached in two different ways, namely Eulerian grid-based simulation and
Langrangian particle-based simulation [13], see Figure 2.2. The difference between the
two mentioned models, is that in the Eulerian one, we are assigning values of fluidity
and movement based on specific position in a grid world space through which the fluid
passes, while the Lagrangian model keeps track of these values for each fluid particle,
while that particle passes through the world space [14].

Figure 2.2.: Particle-based water simulation -
the volume of the water is also taken into consideration.

As the name implies, the first volumetric technique is model [15], where the
simulation space for the fluid, is divided into small grid cells, each one of which
plays the role of a data container and all of these containers combined together
are defining a parametric flow field. The most common issue with this type of
simulation is that empty grid cells are computed as well. There are a few
optimizations to this approach, which are mainly affecting the key feature in the
simulation – the grid. The following grid types can be implemented in grid-based
simulation:

- Fixed grid cells [16] – the space is equally divided and each cell contains
parametric information used for animating the water, see Figure 2.3.a).

- Adaptable and tall grid cells [17] – are both based on discarding amount
of computation, by not combining cells in areas of the grid, where the
animation of the water is either active or less than a threshold value , see
Figure 2.3.b).

Figure 2.3.: Eulerian grid-based water simulation - a) Illustration of fixed grid cells on the left; b) Illustration of

adoptable grid cells on the right;

10 | P a g e

The second type of volumetric simulation stated above is the particle based
water simulation also characterize as Lagrangian model [15]. This is generally
more realistic approach, as the physical calculations are done for each water
particle, thus simulation more “lifelike” movement of the water volume, again at
the cost of even more computational time. The last can be said to be the main
technical restriction in use for RTC applications. The idea behind is that each
particle has its influence onto the rest of the particle mass and the amount of
that influence categorizes few distinct ways of accomplishing the simulation:

- Particles without inner-interaction – most common simulation because of
its simplicity, as the particles do not interact with each other, or in other
words with no collision between the particles and no particle influence
forces, for example attraction particle force [18]. This is vastly used in
computer graphics for creating visual FX, as the computational time is
considerably lesser than the other cases. Considering the topic of this
writing, this type of simulation can be used for creating supporting water
FX like water splashes and water foam, Figure 2.4.a).

- Particles with inner-interaction – oppositely to the previous type of
simulation, this one is much more heavy on the computational criterion,
as all possible inner forces are consider when calculations are applied, for
example collision, attraction force, spring force [18] and etc., Figure
2.4.b). This type of simulation is usually used in pre-computational
approach and for research and scientific purposes.

- Other particle simulations – there are a few more ways to simulate
fluidity, namely smoothed-particle hydrodynamics (SPH), Lattice
Boltzmann method but they are beyond the scope of this paper.

Figure 2.4.: Lagrangian non-grid based water simulation - a) particles without inner interaction being emit on

the left b) particles with inner interaction influencing each other on the right.

 Height field water

This general approach for simulating water is considerably useful, because of its
simplicity. The water volume is presented by number of cubes with different
heights, calculated either by a certain formula [19] or by extracting values from a
height map, as seen in Figure 2.5. Height field water is usually used when
physically correct simulation is needed, with regards to object-to-water

11 | P a g e

interaction and vice versa – for example a boat that creates distortion wave
ripples in the water. However there are two main problematic areas with this
type of water simulation:

- Breaking waves – since the idea is to control height field values using an
output value from a formula, meaning that for each cube point P with
coordinates (x,y) we have only one height value [20] leading to inability
to create split geometry or in water simulation context breaking wave.

- Number of cubes – when it comes to simulating large bodies of water,
this method becomes quite ineffective, as calculations on the height field
distortion is applied to the whole field, unless the simulation area is
restricted [21].

Figure 2.5.: Heightfield water simulation scheme - Illustration of wave formation using height field values.

2.1.4 Computer graphic pipeline (basic overview)

 Geometry structures

Simulation, in the sense of visualization and animation of CG content, can be
executed by a set of stages commonly known as the computer graphics pipeline.
In order to fully understand how we can accomplish our goals we need to have
common knowledge about what are the basic elements and structures that we
can operate with. As a simple summarize, we can assume that computer
graphics are entirely based on math and mathematical principals, which are
transferring numerical representation into visual. In order to achieve that we
need basic geometrical form to describe those visual representations, namely
points, lines and areas, more commonly known in computer graphics context as,
respectively, vertices, segments and faces(see Figure 2.6):

- Vertex – a data container, or a structure, that contains information about
position in either 2D or 3D space and some other additional parametric
values [22] - for example Normal, Tangent, Texture coordinate and etc.

- Segment – the enclosed space between two vertices

12 | P a g e

- Face – a polygonal geometry structure, build from more than 2 segments

In computer graphics these structures are used to form the shape of the
models, or in other words the geometrical presentation of the model. Usually
faces are divided into the smallest possible polygons – formed by triangles, as
the triangle is equilibrium geometry, meaning that no matter what we do (move,
rotate, scale or even skew) the inner sum of the angles will always be 180⁰, and
also because triangles are basic geometry created by the use of 3 non-collinear
points, which in Euclidean geometry defines a unique plane or in our case unique
triangle.

Figure 2.6.: Basic computer geometry, namely triangle,
described by the three basic elements in CG – vertex, segment and face.

 Computer Graphics Pipeline

Assuming that a model is being created, the data of this model is being handled
by the so called graphics engine, which on its own turn is based on some low
level programming language. Most common one is the OpenGL, standing for
Open Graphics Library – an extension of the popular programming language
C/C++ that used for rendering 2D and 3D vector graphics [23]. The application
programming interface (API) is used to access and execute algorithm instructions
on the GPU. The main idea of the GPUs is to handle multiple tasks at the same
time (parallel processing), focusing mainly on the hardware-accelerated
rendering output. In order achieve that output, the model’s geometry data is
being passed between the following stages [24] (note that not all stages are
included, but only the most notable ones), see Figure 2.7:

- CPU to GPU – a list of all the vertices, defining the model’s geometry, is
passed from the CPU to be process by the GPU;

- GPU to Vertex program – a set of instructions from the API allowing the
programming manipulation of each vertex;

- Vertex program to Primitive Assembly – triangulation of the geometry
based on index list passed from the model’s data, simply creating
wireframe representation of the model out of the vertices position;

- Assembled primitives to Rasterization – mapping the assembled
primitives to the screen pixels also known as interpolating the pixel data,
that each triangle covers;

13 | P a g e

- Rasterized image to Fragment program – a set of instructions from the
API allowing the programming manipulation of each fragment (covered
pixel);

- Fragmented image to Testing – testing applied based on buffer testing,
for example depth testing (if an object is covered/in-front of another
object), or transparency blending

- Tested fragment to frame buffer – data is finally passed into a frame
buffer, used in sequential rendering on the screen. Meaning that while
one rendered image is on the screen, another one, named frame buffer,
is being filled with the final fragment outputs and when that process is
finished, the two render frames are swapped [25

Figure 2.7.: General CG pipeline - a) consecutive stages on the left side and b) on the right side - graphical
explanation of the main stages

As seen from above, the two programmable joints in the CG pipeline are the
vertex and the fragment program, usually referred to as Shader program, or
simply a Shader, which allows the developer to manipulate both the vertex’s
input/output as well as the fragment’s final output color. This is allowance was
brought in the first years of the 21st century and it had a truly noticeable impact
on the graphics hardware, transforming it from fixed to programmable [26]. The

Frame Buffer

Testing

Fragment Program

Primitive Assembly

Vertex Program

GPU

CPU

14 | P a g e

programmability is consisted of applying changes to the output rendering, for
example applying tint color or texture color (fragment operation) or calculating
light affection of the model (could be both vertex and the fragment operation).

 Data transformations and coordinate systems

As mentioned earlier, the model’s data is being passed through out a number of
stages and that transfer is accomplished by the use of mathematical
transformations. If a point in 3D space is presented by P <x, y, z> we can define
different spaces and transform that point in relation to those spaces using matrix
multiplications. A simple example of this can be observed in a robot arm
kinematics, where the robot’s main processing unit needs to know where all of
the arm’s joints are relatively to a common space, while each individual part can
have its own “local” space [27]. The same thing applies for the computer
graphics transformations and the following multiplications are applied to
transform the vertices from their local position into the screen space [26], see
Figure 2.8:

- Model transformation – from local space (position of model’s vertices
relatively to the model’s origin) to world space (where all models are
positioned relatively to one global origin)

- View transformation – from world space to camera space (where all
objects are positioned relatively to the camera origin/position)

- Projection transformation – from camera to clip space (a geometrically
defined space, named frustum, that defines what is viewed by the
camera; geometry outside that space is clipped)

- Perspective transformation – from clip space to normalized device space,
simply applying perspective division.

- Viewport transformation – from normalized device space to
window/screen space (mapping perspective geometry to screen pixels)

Figure 2.8.: Scheme of the data transformation from Local space to Window space

Object

Space

World

Space

View

Space

Clip

Space

Normalized

Device Space

Screen

Space

15 | P a g e

2.1.5 Importance of optimization

As mentioned earlier, there are two ways of computing the data, reminding for
convenience – RTC and pre-computation. In order to achieve a significantly good
results when working with RTC we need to have optimized model of the simulation.
This is regarding how thing are being implemented – for example an equation for
light calculations can be implemented on both per vertex and per fragment stage.
The difference is that if a triangle has only 3 vertices (formula calculations will be
executed 3 times), it can have thousands of fragments on the screen (formula
calculations will be executed thousands of times). Although that, modern GPUs have
sufficiently enough processing power, to handle those kind of heavy calculations. To
sum up the implementations and enhancements of the water animation and VFX
done inside either one of the Shader program parts is a matter of choice between
efficiency (vertex implementation) and aesthetics (fragment implementation).

2.2 Low level of analysis

This part of the research aims to study computer graphics for water simulation
focusing on the three main subdivisions – visuals, physics and interaction in order to
analyze the elements that each one of them includes for realistic further simulation
of water.

2.2.1 Visuals

Water in general doesn’t have a color, but lakes, seas and oceans appears to have a
blue color as it reflects the color of the sky. This appears to be one of the theories.
Another explanation of why ocean looks blue is because the red, yellow and orange
lights absorb more strongly that the blue light. [28] Meaning that, most of the light
that is scattered and reflected back, is blue. Sometimes the water can have a green
color because of the sediment or the plant around it. Like rivers appears to be green
as the environment around plays an essential role in the formation of the color.

For creating more realistic CG water, adding transparency to the water is
beneficial. Transparency could be explained as how easily the light can pass thought
the surface. [29] In general, the transparency of the water depends on the amount
to particles in the water. In other words, the water will be more transparent when it
has less particles in it. For instance, the reason why the plants grow in shallow areas,
around the coast, is because the light can penetrate thought the water and reach
the plants. Regarding the proper simulation of water along the coast, coastal
blending should be added. It includes blending of the water color and proper wave
distribution of the waves.

Wondering how the wavelengths of light interact with the environment and the
surfaces, reflection is one of the terms that has to be considered. It is based on
physics of the light when the light bounces of a surface and the human eye reacts to

16 | P a g e

that event. [30]For specular reflection, the law says that the angle at which the light
hit the surface, at the same one it will be reflected. For realistic feeling and better
immersion of the observer, reflection is extremely important feature of water
surfaces.

Another essential term in that field is the refraction. When the light passes
through the surface, resulting in a bent light beams, and everything that is inside the
liquid and also reflecting light (no need to have mirroring effect) has a distortion in
the visual representation. [31]Refraction is explained as light travels with different
speed, regarding different materials. Also includes Chromatic Dispersion when colors
are refracted with different angle based on their wave length.

The amount of light reflected and refracted based on the viewing angle is
described by the so called Fresnel effect. Observing from above, it is hard to see
much of the reflected light but from around your eye level, you will be able to see
much more reflected and refracted light. [32] Addressed to the Fresnel effect and
transparency properties is the depth of water. It is a visual explanation of the liquids
density.

Regarding the underwater simulation and coloring, light plays an essential role
for realistic computer graphic water. The water absorbs light differently from lowest
to highest energy - starting with the red, orange, yellow, green, blue and violet. The
same way is used for absorption of light underwater. The penetration of the light
depends on the depth. Also objects underwater appear to the observer to be closer
and larger because the refraction under water is greater than the one in the air. [33]
Other part of the underwater simulation, are caustics. Caustics are the projection of
the refracted light from a refractive surface to another one. In computer graphics
the focus of caustics usually falls on the aesthetics, not on the physics.

When talking about water visual effects, water spray and foam has to be
mentioned. Water spray and foam are details of the water surface, usually
describing the motion of the water and the air captured in bubbles, floating onto the
water surface. The water foam depends on the many circumstances like the wind
and waves. The foam should appear after the peaks of the waves and disappear over
time. The water foam is formed by numerous bubbles sticking to each other. They
are essential for the realism of water simulation. Water bubbles are formed when
air churned in the water surface by the motion of the waves. That is why they
usually appear in the upper part of the water surface. [34] For simulation of highly
photorealistic water bubbles, it is valuable to know that depending on the weather,
bubbles appear differently. For instance, when the sun is shining a close look on the
bubbles on top of the water foam will show that all kinds of the spectrum light could
be seen in the water bubble.

When analyzing the visual water properties, transformation from liquid to solid
body includes describing the state when the water turns into ice. At certain

17 | P a g e

temperature (freezing point) water becomes a solid body – ice. Depending on the
presence or absence of air bubbles in the frozen object, the ice could look more
white in the middle or transparent, respectively. In the environment ice appears in
different forms depending on numerous factors affecting it. Ice on lakes forms a thin
layer on top of the water surface like an ice crust and then spreads downwards. On
rivers, formation of ice is considerable harder because of the moving water surface.
Then a thin layer above the water could appear increasing its width around the coast
as the water there is moving slowly. Similar to the river, the ice in the ocean could
appear in the form of a drift ice floating in the water or ice bergs.

2.2.2 Physics

The water physics is about the interaction of the water with the world, its behavior
and component-wise explanation. Physics is about the matter construction, its
motion and the variables describing these states.

One major topic regarding water physics is called buoyancy. It is an upward
force exerted by a fluid that opposes the weight of an immersed object, which is
part of the calculation of how objects are floating in fluid environment. Depending
on the mass of the object it will sink, float or stay neutralized. [35] Meaning that if
the upward buoyant force if greater than the weight of the object it will float, if the
opposite happen it will sink. When the object and the water have the same density,
it will be neutral.

Other physics property is viscosity – a measure of the fluid resistance to
deformation, also explained as “thickness”. Different fluids have different viscosity.
While water have lower viscosity and makes bigger splashes, honey have the
opposite properties are splashes are considerably smaller. Water surface behavior
describes the motion of viscous fluids from using just simple sine wave to more
advanced ones like Navier-Stokes equations.

In the sense of analyzing fluid`s motion and changes, it had to be mentioned the
term force field. It describes the inner interaction of the water particles on a lower
level of chemistry, in the case of motion, how the react in-between and how that
reaction changes the whole mass, mostly used for computational fluids.

In computer graphics effects like water ripples are valuable for the overall
realism and immersion of the observer. Therefore, physical explanation is needed.
Water ripples are formed when the weight of the object “displaces” part of the
water from its equilibrium and recoils back up. That is followed by the spreading
circle water ripples, expanding by size over the water surface. In other words, water
ripples is how the water responds to contact/interact with objects.

Regarding the water states, water can turn to solid object or gas depending on
the temperature. When water passes on its freezing point, transformation from
water to ice occurs starting with a formation of layer of ice, where the thickness of

18 | P a g e

the layer depends on different factors like water movement, temperature and etc.
Upon freezing, ice expands its mass as water crystalizes into hexagonal form,
containing more space than the liquid. [36] This is the reason why iceberg can float.
Regarding rivers, they are not expanding when freezing as the quantity of the water
coming, decreases. On the other hand, when water boils, water starts to evaporate
rapidly and the water mass reduce.

2.2.3 Interaction

Interacting with a CG objects is based on mainly two things – the properties of that
object and the freedom imbedded by the code. For example if we have a 3D mesh of
a cube, possible interactions based on its properties would be: motion (translation,
rotation, scaling) or changing color, texture etc. Furthermore, other interactions
imbedded could be playing with the topography of the object – extruding polygons,
deleting edges etc. This process of interaction is accompanied by two main stages –
first one is user`s interaction towards the object and second stage – its respond to
this interaction back to the observer by informational feedback (visual, sound, tactile
etc.).

When object of interaction is water, each one of the described above water
properties (physical or visual) can be used for interaction between the user and the
CG water. The main purpose of interaction is to immerse the user by using his
emotion and desires.

3. Methods and Techniques

3.1 Reflection

Acquiring information of the world around an object in 3D space can be quite
difficult task, but at the same time it will most certainly give a high impression of
details and realism. There are a few ways to reflect the world into the overall color
output when rendering an object.

3.1.1. Cube map reflection

This is probably the most inexpensive way of achieving reflection, regarding
computational time. It was proposed in mid 1990s [37] and the idea behind, is to use
reflection vector field that would generate spherical UV coordinates [38] for
performing texture mapping. This process is also known as environment mapping
[39]. The method can be divided into two stages, pre computational and RTC. The
first one includes a generation of the cube map (a 360⁰ image, which is then

19 | P a g e

sampled into six separate textures that can form a cube; this is done in order to
perform optimization as a cube can be constructed by the use of 6 quads, or 12
triangles, while a sphere would require much higher number of faces). (see Figure
3.1) The edges of the cube map are then smoothed out in order to have smooth
transition between face to face. As regarding the RTC, a calculation of the reflection
vector using Equation 3.1, is performed so that run-time environmental mapping is
induced.

Figure 3.1.: Scheme of the process of cube reflection, using the camera ray vector onto the normal vector in order to find the
reflected ray and the pixel see by the camera ray.

In order to calculate the reflection vector we need to perform ray tracing (see
Figure 3.2). First we project the induced camera ray vector onto the surface normal
vector , Equation (3.1). Based on assumptions like head-to-tail method for vector
estimations, Equation (3.2), and the fact that the dot product of two perpendicular
vectors is equal to zero, Equation (3.3):

Figure 3.2.: Illustrating the reflection vector - the process of ray tracing by projecting vector I onto the normal vector N.

 (3.1)

 (3.2)

 | | | | () (3.3)

20 | P a g e

We can then substitute the variables and we find the scaling factor of that is
used to define as well as itself:

| | | | ()

Since the inverse reflection vector has the same projection onto we can
again substitute and get our final formula that presents the reflection vector using
and , Equation (3.4):

 ()

 ()

 () (3.4)

Although this type of reflection is widely used even nowadays, it has some
downsides and the most noticeable one is the fact that the reflection does not take
into consideration objects that inside the scene, meaning that the reflection is only
restricted to what the cube map holds as texture colors, see Figure 3.3.Therefore
this type of reflection is categorized as pre computed reflection.

Figure 3.3.: Cube map reflection rendering - a) A simple rendering of a plane with Cube map Reflection on the left;
b): Early version of the water used in the popular RPG game Elder Scrolls IV: Oblivion on the right.

3.1.2. Scene reflection

A much more sophisticated approach that produces higher “lifelike” results is
achieved when everything in the scene is reflected back into the surface, of course
at the cost of considerably higher computational time, since everything that will be
reflected needs to be computed at run-time. In order to achieve this effect, we need
to have something that will secure us run-time input of the reflected image color

21 | P a g e

value [40] or in other words a second camera view point [41]. This basic idea is that
we will reflect everything around the water plane and will return the captured
values back into the water surface [43], see Figure 3.4.

Figure 3.4.: Vector scheme of scene reflection - using second camera view point to capture everything above the water plane
that has to be reflected.

If we consider a ray casted from the camera view point , which is at height
above the water surface, we can reflect around the surface () to find the
direction of the reflection vector . Reflecting point around axis is quite simple but
in our case we need to solve a much more complicated problem, since the
simulation is taking place in 3D space, where all the combinations of translation,
rotation and scale should be considered. In computer graphics all of this is packed in
matrices and matrix multiplications (usually to solve vertex transformations) but in
this case we need to calculate the so called reflection matrix that will “transform”
our camera position into exact reflected one around the water plane. This can be
done using the Householder reflection [44] formula, Equation 3.5, where is the
reflection matrix, is the identity matrix and is the three dimensional
normal vector of the reflection plane.

 (3.5)

In order to get the normal vector we need to look into the definition of the plane
– in Euclidian geometry a plane can be described by a number of ways – for example
by three non-collinear points or a line and a point also non-collinear. If we are to
describe a plane mathematically with an equation (point-normal equation of a plane
[45]) where (), Equation 3.6:

 (3.6)

We can now substitute and calculate our reflection matrix, Equation 3.7:

 [

] [

]

22 | P a g e

 [

] (3.7)

There is, however, one small issue with this type of reflection. Everything
captured by the reflection view point will be rendered, which could lead to possible
occlusions (Figure 3.4). To prevent this we need to discard the rendering of
everything below the water plane, or in other words we need to clip all the
geometry.

3.2 Refraction

The physical event that occurs when we see reflection is explained in nature, by the light
that bounces off of the reflection surface. But not all the light gets reflected – some of it
passes through the surface – phenomena known as refraction. In computer graphics we can
easily achieve this effect by working a solution with transparency, but this will not provide
us with the power to affect what is seen underwater and will simply result a blending color.
However, there are a few methods to achieve refraction:

3.2.1 Clipping plane refraction

As mentioned in the previous section, we can use rendering of the scene to create
reflection. We can execute the same algorithm, but this time without
creating/changing/reflecting the camera position. We can simply use the current render
frame and clip everything that is above the water and store this color information in a
texture that will later be projected onto the water plane [46]. This is one of the most
convenient and popular ways of executing run-time refraction, see Figure 3.5.

Figure 3.5.: Illustration of scene refraction using second camera view point (vector V) to capture everything under the water

3.2.2 Cube map refraction

As the name implies, this is pre-computed approach where, logically corresponding
technique described in cube map reflection is used. We perform a cube map texel

23 | P a g e

lookup[46] and we map its color information to the corresponding fragment. Again we
need to calculate the corresponding refraction vector so we can define proper UV set-up for
performing this lookup. Using the Snell’s Law, which states that when light passes from one
material to another (assuming they have different density) the light’s direction changes,
resulting in a refracted light/image or in computer graphics context – fragment color. Given
the Snell’s Law Equation 3.8, it describes how the incoming view ray is refracted/changed,
when passing through a border between materials with refraction indices and , into
refracted vector , see Figure 3.6:

 (3.8)

Figure 3.6.: Vector scheme of cube map refraction, where is air and - water.

3.3 Chromatic Dispersion

A side phenomena/effect that occurs when light passes through the water surface, is the so
called chromatic dispersion (from optics, different wave frequencies have different phase
velocities). As Snell’s Law is also applicable to velocities this leads to light colors being
refracted at a different angle when passing through the refractive media [47]. Since in
computer graphics our final output is displayed on a screen matrix composed by RGB LEDs,
if one is to simulate a dispersion effect, only the refractive indices of Red/Green/Blue are
needed and refraction image needs to be calculated once for each color channel using the
corresponding refractive index, see Figure 3.7.

24 | P a g e

Figure 3.7.: Vector scheme of chromatic dispersion, where TR, TG and TB represent the refractive indices of the tree color channels - RGB.

Extensions of the chromatic dispersion are the caustics and the Crepuscular rays (Figure
3.8), again explained by the refraction of light. When light waves are refracted there is a
chance that at a certain place where light is projected (after refraction), the light rays can
create a concentration area of light. Creating caustics in RTC is challenging task, which is
beyond the scope of this project and it is usually preferred to be faked, rather accurately
simulated, as it requires considerably high amount of operational memory. As regarding the
crepuscular rays, more commonly known as “god rays” in game development [48], they are
a result of high contrast between light and environment and are usually used in games to
enhance the realism of the environment as playing part of simulating the impression of
volumetric light (which can sometimes be seen when the observer is situated underwater
and the light scatters in the water depth).

Figure 3.8.: Water additional FX: a) Image of water caustics made by Alastair Aitchison, on the left side. b) Image of crepuscular rays in
water for improving the realism in games, on the right side. Image is made by Frank Kane

3.4 Clipping algorithms

To perform the more sophisticated methods described in the previous two sections, namely
RTC reflection and refraction, we need to clip some of the geometry. Generally, the process
of discarding fragments (not rendering them) can be achieved by having a certain test that

https://alastaira.wordpress.com/

25 | P a g e

those fragments are tested against and if the testing returns a “pass” value the fragment is
rendered on the screen, else it is not. The most common test is the depth test, with which
opaque objects are drown on top of each other.

Another useful test used for discarding fragments is the stencil test that makes use of
the stencil buffer. As some other buffers used during the computer graphics pipeline, this
one usually contains one integer value within the range of 0-255 for each pixel to be
rendered [49]. The value can then be used for comparison testing of whether the fragment
drawn belongs to the water or not, assuming that the water plane itself has written a
reference value for all of its rendered fragments [50] (see Figure 3.9).

Figure 3.9.: Semantics of the stencil buffer – each rendered fragment can write/read a value inside the stencil buffer

Nevertheless, using the stencil testing could be quite an efficient way, as the stencil
testing only calling one additional function – comparison between integers. However, there
is even more simplified approach that only changes one of the stages inside the graphics
pipeline – applying a transformation to the projection space [51]. The projection space is
defined by the camera frustum in order to apply clipping of geometry that is not “seen” by
the camera, thus the definition of the camera frustum is a volume space, in which only
geometry that is inside that volume will be rendered on the screen, else discarded (or
clipped in case of being partially inside). Frustum volume is usually a truncated pyramid,
which can be characterized in a few different ways, by a corresponding set of parameters
[52] (also used later for forming the projection matrix):

 Standard perspective projection

It uses , which is the field of view angle in direction; the distance from the

camera space origin to the near clipping plane; the distance from the camera space
origin to the far clipping plane; aspect ratio of the near clipping plane, as shown in
Figure 3.10.

26 | P a g e

Figure 3.10.: Standard frustum volume definition - a) On the left - Illustration of the near and far clipping plane, forming the frustum.
b) On the right, illustration of the angle specifying the field of view

 Oblique perspective projection

It uses the same distances and from the previous set of parameters, but this time
the near clipping plane and its relation to the far clipping plane is not described by the
 and , but rather with specific coordinates of the near clipping plane, namely

(right), (left), (top) and (bottom), as seen in Figure 3.11.

Figure 3.11.: Oblique frustum volume definition – using the four points with coordinates based on

 Orthographic projection

The same as the previous one, except this time the frustum space is a box rather than a
truncated pyramid (leading to no perspective changes when perspective division is
applied later in the graphics pipeline, which is beyond the scope of this project).

In the scenario of creating (both reflection and refraction) for water the clipping can
be achieved by setting up the projection frustum to do the clipping of the unnecessary
items (logically underwater for reflection, above water for refraction) as described in
[51]. Since the water is represented by a plane, the changes to the projection frustum
should be so that the near clipping plane matches the water plane, see Figure 3.12.

27 | P a g e

Figure 3.12.: Orthographic frustum volume definition – projection applies no perspective division

3.5 Fresnel effect

When light reaches a boundary between two materials is either reflected or refracted, thus
the amount of both reflected and refracted light is given by the Fresnel effect equations. In
the case of computer graphics, the amount of reflected image color fragments seen in
respect to the refracted ones, based on the viewing angle [53]. In other words, the Fresnel
term provides the reflection-refraction light ratio and simply explains the effect that no
reflection is seen when looking straight down, towards the water surface, and logically no
refraction when the eye horizontal line matches the water surface, described as “simplified
or approximated solution” as seen in Figure 3.13. [54]

Figure 3.13.: Vector definition of Fresnel effect when Reflection is 0 and Refraction maximum and vice versa.

Having a completely realistic model that explains the calculation of the Fresnel
equations is including all of the properties of waves. For example, polarization of waves
used to define the reflectance coefficient of materials - but this will not be researched in
this paper. Despite that, there is a method that does “a realistic compromise” to that
physically accurate model known as Schlick’s approximation [55], Equation 3.9 and Equation
3.10, lately described and used in [56], with the main difference from the previous “simple
solution” that Schlick’s approximation (Equation 3.9) takes into consideration not only the
angle but also the refraction indices of the two media:

 () () () (3.9)

28 | P a g e

 (

)

 (3.10)

, where is the angle between the camera viewing position and the half-angle
between the incoming light and reflected light (thus , where is the normal of the
surface); and are the corresponding refraction indices of the two materials; is the
reflectance when light is coming parallel to the water surface (in other words, when viewing
straight downwards, or parallel to the water surface normal).

3.6 Flow map

As described earlier in section “Fluid water”, there are two approaches towards simulating
water – either with a surface (procedural water) or a particle based simulation. The later
one allows more realistic implementation of real-life events, since each individual particle
can be accessed and proper physical behavior can be applied to it. When the motion of a
fluid is to be simulated, commonly referred to as Computational Fluid Dynamics (CFD), a
model that describes the motions is needed. In most cases that model is described by
Navier-Stokes equations – an equation with multivariable functions, so that it can lead to
calculating multiple equations that derive from the main one (partial differential equation –
PDE). Solving the Navier-Stokes equations, make use of fluid properties like density of the
fluid (), pressure (()), velocity of the fluid for each particle

 and etc. All these properties would lead to inducing a realistic simulation model

of the fluid.

In the core of creating dynamics of the fluid is the movement, partially described as a
velocity field. In the case of surface water there are two main areas that dynamics can be
implemented – the vertex movement and the fragment movement. The last one is mainly
deriving from the assumption that each fragment can be either scaled of offset. In
computer graphics when a mapping between UV coordinate and texture element (texel) is
applied, there is ability to either stretch or translate the mapping, as seen in Figure 3.14.

Figure 3.14.: Illustration of a) b) the process of texture mapping, c) translation of the mapping by x, where x is the distance between the
UV coordinates and d) scaling by s.

Initial ideas and implementations were done via procedural texture animation [57],
commonly known in computer graphics context as scrolling texture, where the UV mapping
applied to a model is such, that all the texels are animated. Or more properly said, all the
corresponding () are translated over time, visually resulting in a directional scrolling
texture. However, this technique brings not so realistic results as all texels are moving in

29 | P a g e

one direction. The technique that creates higher realistic visualization of individually moved
pixels is called Flow visualization [58]. Flow visualizations take consideration of advection –
a velocity (flow) field that basically describes the fluid’s motion mathematically using
vectors (vector field). The carried/ translated value is called scalar field – in the case of
texture mapping, that would be the color value of the corresponding texel without applying
advection. Simplified explanation is that a fragment can be translated or scaled in reference
to an input velocity field. Considering Equation 3.11, point (u, v) is a point from the
surface, then can be transformed via the velocity field () over a period of time delay
 into point = (), where () is a mathematical representation of the flow field
[58]:

 ()

 (()) (3.11)

However, there are two main concerns with this technique. The flow mapping is done
into a finite area (the UV coordinate space of the model). Meaning that the movement of
the fragments will end at some point, where there is no flow field data to continue the flow
mapping. When no flow mapping is implemented, texture UV mapping is usually done via
either repeating the UV coordinates or clamping the last known pixel value and as
mentioned in [58] the same can be applied here – either extrapolate the velocity field
outside R, or continue with the last know velocity value. The corresponding advected texel
value has the same problem since we do not know the color value outside . The standard
solution [58] is to use a looping movement defined by a periodic function, for example
 (). Using periodic functions like () or () could lead to non-linear visual results
(slower animation at both ends of the period, in oppose to faster animation during mid-
period). The use of linear functions would give constant flow/advection when solving the
extrapolation problem, also called Smoothly Interpolating Layers [59], see Figure 3.15.

Figure 3.15.: Looping function for flow mapping - Interpolating layers by changing the opacities of the two layers.

Since the entire method is implemented for enhancing surface renderings and makes
use only of textures and texture mapping, the technique is divided into two stages:

 Preparation stage

Generating of the flow vector field is done prior the animation, in order to artistically
determine the flow animation direction, based on terrain referencing or static obstacles
in the water. Generating a flow vector field requires to create data field , containing all

30 | P a g e

velocities (), thus we need a memory container to hold that information. In the
sense of working with data, textures are represented by their width and height
properties forming a texel grid, whereas for each texel a float4 value is created, holding
the corresponding value for each RGBA texture channel. Therefore, for creating a flow
vector field, the first two channels can be used, as shown in Figure 3.16. If we consider
that vector () , where () represented flow texture, then
 .

Figure 3.16.: Flow map directions - using only the red and the green channels, or their corresponding float values r and g.

There are a number of external software tools that can be used for creating proper
flow field textures, for example Houdini [Reference], but the main principle behind all of
them is to interpolate color values based on created vector field in respect to
orientation in the RG color space. Color and other values passed from the vertex shader
to the fragment shader, are usually linearly interpolated, using a weight property
 , that specifies the percentage of value and value that is being used to fill
in the missing values in-between and in Equation 3.12, (see Figure 3.17).

 () (3.12)

Figure 3.17.: Linear interpolation - If , the interpolated value would return full weight on , opposite to resulting in full
weight on

It is important to note that, in order for the linear interpolation to produce color
image, a set of at least three vectors need to be created exactly the same time as in
rendering a triangle on the screen, in order for the interpolation to give values for texels
in an area, rather on a line. (see Figure 3.18 a)). In the scenario of linearly interpolating

31 | P a g e

data inside a triangle – the weight of the triangle is used, which is beyond the scope of
this project.

Another more convenient approach towards interpolating data, resulting in even

more proper final output image, used as vector field, is the use of bicubic interpolation
(see Figure 3.18 b)). It will take into consideration all the values from all the advection
vectors and will produce a smooth continuous interpolation between their colors. Here
vector’s color means the RG values corresponding to the vector’s x/y-axis orientation.
The area or the surface, where the data can be interpolated, using bicubic
interpolation, can be presented by Equation 2.13. It is used to smooth out neighboring
linear interpolations (which number is (cubic)).

 () ∑ ∑

 (3.13)

Figure 3.18.: Multidimensional Data Interpolation - a) Illustration presenting bilinear interpolation and b) bicubic on the right.

 RTC stage

The generated flow map can be implemented in the fragment shader in order to produce

moving flowing UVs, which can be used for animation of desired coordinates. An example is

a simple water texture or more advanced – normal maps, later used and described in light

calculations.

3.7 Light

In computer graphics light has a similar meaning to the light in real-life – it allows things to
be seen or not, as well as it creates shadows. Note that in computer graphics light and
shadows are different topics. Simulating light can, like anything else connected with

32 | P a g e

computer generated content, be either RTC or pre-computed. (see Figure 3.19) The last one
is usually used when creating virtual lit scenes for movies or animations, as it allows building
the light model upon light properties like light photon tracking and other more complicated
physical attributes, resulting in a high-precision model, of course at the cost of great
computational time needed, therefore this type of lighting simulation is not used in real-
time applications. In contrast, RTC simulation model is entirely used in real-time
applications, and sometimes also in pre-computed for creating fast prototypes. RTC light
takes into consideration a small fraction of light properties enough for explaining light in a
fast computational design. These properties are later used within the shading process of the
objects, inside the CG environment, to create a no entirely accurate light model. Internally,
there are many differences between the two types of simulating light, but generally the
output of a RTC light is sophisticated enough to create high believability impression in the
user.

Figure 3.19.: Light computation models - a) RTC lighting simulation on the left and b) pre-computer lightning simulation on the right.

3.7.1 Light sources

The computer generated environment can be lit. It can be a number of different types of
lights, usually in RTC is used directional, spot and omni. Each type of virtual light has a
meaningful explanation and usage. There are, however, a few common properties used
across all light simulations, namely intensity of the light, color of the light and position in
world space. Apart from these, each individual type of light has some specific
characteristics:

 Directional light

As the name implies this type of light is only consisting of one directional vector and
the objects that receive light are hit equally throughout their light exposed surfaces.
Meaning that, the light has no fall-off when creating shadows or in the context of
light simulation – attenuation [60]. Light is produced by a light source and usually in
RTC it has infinite distance from the scene. Directional lights are often used to
substitute sun light. (see Figure 3.20 a))

 Spot light
Oppositely to the directional light, this type is a geometrical explained light, meaning
that the light starts from the light source and forms a cone. The radios of the cone

33 | P a g e

can be used as attenuation parameter - the unequally distribute light in the lighting
model [60] (falloff based on distance from the center of the cone base). It is usually
used to create focus lights in scenes, for example car headlights. (see Figure 3.20 b))

 Omni light

Omni light or more commonly known as point light, is such that light starts from the
lighting source and is spread equally outwards in all directions. [60]This type of light
can also make use of attenuation (falloff based on distance from the lighting source).
It is usually used to create dynamic environmental lights – for example a torch-light.
(see Figure 3.20 c))

Figure 3.20.: CG environment light types - a) Directional light; b) Spot light; c) Point (Omni) light.

3.7.2 Light categorization

When proper type of light is placed in the scene, it is not directly used to illuminate the
computer generated models inside the scene. The approach is to instruct the models how
to receive light in their rendering process – more commonly referred to as shading.
Applying shading, on its hand, leads to the development of lighting models, as mentioned
earlier, which are responsible for changes that will occur in the final output, based on
parameters taken from the light and its computation. Lighting models can be categorized
based on different parameters:

 Smoothness – based on the interpolation between the different triangles in a model
we can define the following shading models, Figure 3.21:
- Flat shading – when no interpolation is applied, resulting in the use of the

triangle’s normal, in order to calculate the color change that would be applied to
the final output. In other words, the entire triangle will be rendered with only
one color. This type of shading is usually used when fast computational times are
required (for example, edit mode in used inside 3D software packages)

- Gouraud shading – when a simplified interpolation is applied only for the color
fragments, forming the triangle. The shading changes the color only at the vertex
level, meaning that the light is computed, based on the each vertex normal and
the light direction.

34 | P a g e

- Phong shading – the same as Gouraud shading, except this time the vertex
normals are also interpolated, in order to create interpolated data for each
fragment, later used to calculate the shading changes applied to the final color
output.

Figure 3.21.: Smoothness light types – flat model on the left; Gouraud in the middle; Phong on the right

 Reflectance – It is based on the surface property of how light is reflected from the
surface.
- Lambert – when the reflected light only includes diffuse reflecting light or the

shading applied, only based on how much the surface is looking towards the
light, resulting in an evenly reflected light in all directions. In real life, this type of
reflectance is called “matte”, meaning that there is no bright (specular) spot. If
we consider Equation 3.14, where direction is representation of the light rays
coming from the light source, and to be the normal vector, pointing
perpendicularly out of a surface , we can then estimate the angle of light falling
onto the surface. Simply said, how much the surface is rotated towards the light
direction, as seen in Figure 3.22 (note that and are normalized, since only
their direction is compared):

Figure 3.22.: Lambert Reflectance – only the surface normal and the light direction vectors are considered

 | || | (3.14)

The result from the dot product is referred to as diffuse factor . If we
consider to be the color of the fragment based on either texture element or
texture element and so other color changes, and to be the color of the

35 | P a g e

light, the final color output of the fragments, in the boundary of the surface is
given by Formula 3.15:

 (3.15)

- Half-lambert – this is an extended shading model proposed and integrated by
Valve. Since the returns a value , the polygons of the model not
facing the light can end up having too darker tone changes, leading to the
impression of a flat surface. As seen in Equation 3.16, the diffuse factor is

scaled by ⁄ and squared in order to move the return value of ,

resulting in more soft shading changes in the final output, see Figure 3.23.

 () (3.16)

Figure 3.23.: Half-Lambert Reflectance – mid tones are enhanced

- Blinn-Phong - an extension to the Phong shading is to add specular reflection, or
the brightest spot on top of the lit object, usually used to explain the shininess of
the objects. In computer graphics, the term specular is used to explain the visual
phenomena of perfectly reflected from the object’s surface light into the
viewer’s eyes. In order to calculate the specular color, we need to reflected light
ray and compare its direction to the viewer’s direction , as seen in Figure

3.24. If we take the resulted specular reflection on the power of , we
can increase the amount of specularity. can be found using the reflection

formula in Section 3.1 Reflection in this paper. Let be the specular factor, and
 be the specular reflection.

 () (3.17)

 ()

 (3.18)

 (3.19)

 () (3.20)

36 | P a g e

Figure 3.24.: Blinn Phong shading – includes not only diffuse reflection but also specularity

 Computation - as mentioned earlier, light computation can be either implemented
on per vertex or per pixel lights. (see Figure 3.25) The difference is that, the later
one would require considerable higher computational time, yet it would yield better
results.
- Vertex light
- Pixel light

Figure 3.25.: Vertex and Pixel light computation - the first image illustrates Point lighting: one the left per vertex and on the right per
pixel. The same is illustrated on the second image, regarding the Directional lighting.

 Realism – all light models can also be classified according to how close they are from
reality, see Figure 3.26.
- Photorealistic – for example Phong or Blinn-Phong
- Non-photorealistic – cartoon shading, where a distinct line is seen between

objects lit and unlit parts, or no smooth shading.

37 | P a g e

Figure 3.26.: Realistic (on the left) and Non-realistic (on the right) light shading.

3.7.3 Bump Lighting model

Apart from the described lighting models above, there are other ones, rather more
complicated, but producing higher results. One particular one involves a technique called
bump mapping, widely used to substitute high polygonal models with low resolution ones,
where the information of the high polygonal model convex and concaves are stored in a
texture. This texture is referred to as a bump (normal) map, from which normals per pixel
are extracted in order to substitute the interpolated normal, created in the computer
graphics pipeline, see Figure 3.27:

Figure 3.27.: Bump light model – without (on the left) and with (on the right) normal map

Using this technique can allow adding details to the rendering without actual
computation of geometry, needed to define these details. The extraction of the custom
normals from a texture is again done using channel information, used to recreate normals
direction. Thus each individual pixel normal needs decoding, meaning that each component
of the normal vector direction needs to be computed. Considering Equation 2.21, where
texture holds normal directions

 , we can extract two of the channels to

define the and , while the can be found assuming that is normalized direction,

meaning its length is equal to :

√

 (3.21)

Since we are transforming the originally interpolated normal into a custom (extracted)
one, we also need to apply a transformation multiplication. Generally, the first
transformation stage, described in section “Data transformations and coordinate systems”,

38 | P a g e

states a transformation from local (model) space to world space. The same thing happens to
the normal vectors. The local space of the normals is described by three main components,
namely the normal itself , the tangent to the surface, from where the normal originates
and the binormal direction is perpendicular both to the normal and the tangent. Using
 and , we can then transform each custom normal from local to world space and use
them in calculating a bump light model, see Figure 3.28.

Figure 3.28.: Vector scheme of bump light – computing the reconstructed normal inside the normal vector space

3.8 Vertex displacement

In the section “Flow”, we described a technique for translating pixels based on reference
texture, defining a flow vector field. However, in order to enhance the water simulation,
another dimension of movement/animation can be included. Animating fragments can have
good results, but the rendered output (in the case of surface water) will still be flat
geometry. In order to deal with this, a vertex displacement can be applied. As for animating
vertices, it can be either high or low costly, regarding computational time. The workload can
also be computed by either the CPU (vertex position changes before rendering) or the GPU
(vertex position changes inside the vertex shader).

There are a number of ways to implement a vertex displacement. In most cases,
regarding surface water, the vertex animation is procedural. The simplest solution is to use
looping, for example sine wave, as seen in Figure 3.29. More complex model can be created
by adding sine waves with different amplitude resulting in a variation [19]. Other more
complex approaches [61] are connected with the use of tessellation or Fast-Fourier
Transformation (FFT), which are beyond the scope of this project.

Figure 3.29.: Vertex displacement - L is the wavelength, S is the amplitude and A is the height of the wave.

39 | P a g e

3.9 Physical models

In computer generated environments not only the rendering is important. Object
interaction plays major role in shaping the overall immersion. Here by object interaction is
meant the physical events that take place during the simulation. The most common physical
event in games for example is the collision and the collision detection, based on a boundary
boxes. More advanced physical events involve implementing physical behaviors to the
objects in the world, resulting in an explanation of how objects can interact when collision
between them occurs. Therefore, a physical model needs to be included to define the
water-to-object interaction, or in other words – water physical model. Once more, the
amount of difference between CG physical model with lifelike one, is at the cost of
computational time.

There are a number of forces that a fluid exerts on an object interacting with the water.
The first, and probably most obvious one, is the stream force , meaning that objects
coupling with the water inherits the velocity created from the water particles. Friction also
occurs whenever objects interact (in the case of water physics, friction is referred to as
water drag). Lift force is a complex part of fluid physics, perpendicular to the flow
direction . (see Figure 3.30) Some of these forces are usually ignored in computer
simulations for surface water. However, the next force acting upon objects intersecting with
water is playing important role, since it provides strong visual cue – buoyancy [62].

Figure 3.30: Forces affecting the object – buoyancy, gravity, drag and fluid stream

Buoyancy force describes the behavior of why objects float and is based on Archimedes’
principle that the buoyancy is equal to the weight of displaced fluid. If we consider to be

the density of the fluid, to be the gravitational force and as the volume of the
submerged part of the object inside the fluid, the buoyancy can be given by the Formula
3.22:

 (3.22)

40 | P a g e

Unfortunately, this type of force calculation is not integrating any relevance to the
geometrical form of the object. If we consider a cube to be the smallest geometry form that
forces can be equally applied to its sides, we can then use an approximation [62] of the
geometry model. One such approximation is the algorithm of the Marching cubes [63], used
to describe geometry by discrete volume grid (cube grid). Another explanation, deriving
from the marching cubes, is the Cuberille Approach [64], in which the geometry to be
rendered is transformed into “blocky” surface. Thus, dividing the model geometry into
cubes, usually referred to as voxels, (which is only part of the margin cube algorithm, full
one will not be used or explained) will allow applying forces per cube, leading to more
realistic results at the cost of more computational time, see Figure 3.31.

Figure 3.31.: Cube approximation – by dividing the object into cubes (voxels) and applying forces per cube.

3.10 Interaction

As described in the previous Section 3.9 “Physical models”, water is affecting the objects by
virtue of physical model. But in real world interaction is based on action and a responsive
reaction. Therefore, we classify the reaction of the water when objects enter it as object-to-
water interaction. Here we can also see a double meaning in the word “object”. We can
consider interaction to occur when objects within the scene interact with the water, but we
can also logically perceive the same situation within the field of Human-Computer
Interaction, where the user can interact directly with the CG water via a controller (simplest
example is a mouse, but more advanced ones can also be used – gesture interaction).
Further in this section we will address the first case as “object-to-water” and the second as
“user interaction”.

3.10.1 Object-to-water

This topic can be seen in a few different ways, depending on the output reaction of the
objects, included in the interaction (object and water surface). It can either be object-to-
fluid interaction, fluid-to-object or both ways at the same time [65]. We already discussed
fluid-to-object interaction in the section “Physics”, since this is more oriented to what
happens with the object when it enters the water. In this section we will investigate what
can be the reaction of the water itself.

41 | P a g e

The event in real-life, when a ball hits a water volume is described visually as water
being displaced in a matter of water splashes, foam and ripples. In computer graphics, on
the other hand, simulating these events could be high costly, regarding computational time.
If we are to target RTC, a more fake approach needs to be considered. Usually splashes and
foam are easily simulated using particle systems without inner interaction, see section
“Fluid water”. As regards ripples, situation is a bit more complicated. One possible solution
is again using a particle system (emitting particles parallel to the water surface) with
animated texture being plugged inside the particle rendering, but this could lead to a
number of other issues. A more sophisticated approach is to implement grid interaction
based on height field water [66]. The main concept is to create water distortion, based on
calculating position of the mesh vertices. If we consider the surface of the water to
represented as 2D array , where each element in this array is a vertex position from
the surface, the height field can then also be represented by this array. Therefore, position
from the grid can be analogically referred to as a height while the change of the column’s
height over time is the vertical velocity. Assuming that a change in the height occurs, based
on that change at frame , we can predict the height of the water at every point for the
frame [67]. However, there are two general problematic areas when simulating water
ripples. The first one is connected with the fact that there is one height value per vertex,
resulting in the inability to create broken surface or in the context of water simulation –
breaking wave. The second general problem is that in order for the simulation to work, it
needs to iterate throughout all the vertices. Thus, the grid size (or the area of simulation) is
of great importance – higher grid size, results in higher computational time. There are
existing solutions for these problems [68], but they are beyond the scope of this writing.

Water ripples is challenging task. It is worth mentioning that it can be implemented in
both the CPU and GPU. There is ,however, even more simple way of achieving interaction,
which is partially described in the Line integral convolution technique, used to visualize the
motion of a fluid using texture advection [69] (relatively close to the flow mapping
explained in section “Flow map”). The interaction with the texture advection is explained as
using “dye injection texture” [70], which is combined together with the advection texture in
order to form the advection step, used to translate the corresponding UV position, when
mapping is applied later on, see Figure 3.34.

Figure 3.32.: Object to water interaction – based on combining current texture with additional texture

42 | P a g e

4. Prerequisites

In this section we will list things that will be taken into consideration during the implementation
process.

4.1 Concept origin

In the following sections we will implement a number of techniques in order to create water
surface rendering with respect to physics, visual and some basic scene interaction that can
later be used in the context of real-time applications, such as games or virtual
environments. Our focus falls onto the visual aspect of the implementation, as our main
interest field in computer graphics. To further complicate the simulation model, we also
wanted to create a transition of water states between liquid and solid state. Our main
interest in conveying this dynamic RTC animation is in respond to the fact that we couldn’t
find any noticeable models of such animation. In most cases, water simulation or ice
simulation are investigated separately, or otherwise – with no respect towards RTC
applications. The initial problematic area, namely water simulation originated during our
previous semester internship in DADIU (The National Academy of Digital Interactive
Entertainment), where we had to create 2D water simulation for a side-scrolling game. Our
proposal is to categorize water simulation in RTC application in respect to a three
component model flow, namely visuals, physics, interaction, as seen in Figure 4.1, in which
each individual component has unique role in the final composition for creating water
simulation.

Figure 4.1: Three component flow

4.2 Requirements

As described earlier in Section 3. Methods and Techniques, when designing a model, that
will be executed in real-time, the most important aspect of it is responsiveness time as part
of the HCI. This project involves creation of CG content, part from HCI. In order to have
proper simulation model, we need to make sure our model is accurately following few of
Dholakia’s six “critical components” [71] when creating interactivity (in our case HCI),

Three component flow

Visuals

Physics

Interaction

43 | P a g e

namely responsiveness, real time interactions. The rest of the components are not involved
as requirements.

 Responsiveness

Responsiveness describes the communication as an act of sending and receiving
message, or in other words, when an action is applied onto the product, what would the
response be. A lack of response could lead to bad design. In computer generated
space/application, common example is the “frozen” screen, where basically nothing
happens if no user control is applied, resulting in decreased immersion. Regarding the
product of this paper, this is related to the constant animation of RTC water.

 Real time interactions

It refers to how fast a communication is elicited. As mentioned earlier, RTC techniques
are optimized versions of pre-computational. Still the time needed for the RTC is of
essence. In computer graphics, each frame rendering can be measured in
(milliseconds), thus the frames rendered per second (FPS) is a measurement used to
define the communication time in the simulation. Delays or simply said lower FPS value,
could lead to undesirable effects.

Based on the above statements and assumptions we have made, we are interested
in achieving results that would satisfy the following prerequisites:

- High frame rate (FPS), resulting in smooth simulation.
- Computation focus on the GPU, rather the CPU, meaning that we implement

most (if not all) the techniques to be calculated mainly the GPU.
- The final model should consist of techniques from all the three major categories

that we described earlier, namely visuals, physics and interaction in order to
output full-scale simulation.

- Proper showcasing of the implementation results, inside either a game or virtual
environment.

- Sophisticated level of optimization.

4.3 Tools

All implementations will be done inside Unity3D v5.0.0f4 as a graphical and programming
environment with the use of Nvidia CG language and C#. We also make use of few external
tools for image editing used to prepare some of the textures, used inside the graphical
processing. World Machine is used for creating terrain environment. A freeware ALGO Flow
Field Editor is used to create flow maps using linearly interpolated vector field.

4.4 Settings

We are deploying a scene/virtual CG environment, where we showcase the use of surface
water we developed. The environment is populated with a terrain, with a predefined

44 | P a g e

landscape. Throughout the terrain, a river passes – main element of the simulation. To
produce meaningful screenshots in the following chapter, we make use of checker-board
textured spheres, used as distinctive geometry for visual cue and testing of elements like
reflection in the water, refraction and etc. The final image output is enhanced by a few
image corrections, included in the Unity3D GL – color correction, DoF (depth of field). We
have also implemented a few GUI controls to control the simulation – position of the sun,
rotation of the camera and buttons for restarting scene events (for example floating
sphere).

Figure 4.2.: Terrain plan - generating the terrain using World Machine engine.

Figure 4.3.: High field map (on the left) and terrain rendering (on the right side)

45 | P a g e

5. Implementation

5.1 Surface water rendering

The following sections will describe set of techniques, used in order to create as realistic as
possible simulation of surface water, whereas each individual technique has its own
purposeful meaning.

5.1.1 Reflection

From the options described the research part of this writing, we defined that the best
solution is the use of RTC reflections that include scene objects being reflected. RTC
reflection is divided into two stages – first obtaining the reflection image and secondly
applying that image inside the surface rendering. Both stages are implemented in a specific
Unity3D function – OnWillRenderObject() – called when the object is going to be rendered
(assuming that this object is our reflective surface). In order to do this, we need to execute
the following recipe (here reflection plane is used as a substance to the water plane in a
more meaningful context):

i. Create a reflection camera that will render the reflected image at run-time, given in
Listing 5.1. In order to optimize the process, the reflection camera is used only for
creating the reflection image and then it is passed into a cache variable which can
later be discarded.

1. Camera CreateReflectionCamera(Camera main)

2. {

3. Camera reflCamera = mCameras[main] as Camera;

4. if (!reflCamera)

5. {

6. GameObject go = new GameObject , typeof(Camera), typeof(Skybox), ("Water Reflecion Camera"

7. typeof(FlareLayer));

8. reflCamera = go.GetComponent<Camera>();

9. reflCamera.enabled = false;

10. reflCamera.transform.position = main.transform.position;

11. reflCamera.transform.rotation = main.transform.rotation;

12. go.hideFlags = HideFlags.HideAndDontSave;

13. mCameras[main] = reflCamera;

14. }

15. return reflCamera;

16. }

Listing 5.1.: Reflection camera.

We need to make sure that the reflection camera has the exact same properties
as the main camera, so that all elements and layers rendered by the main camera
are also visible to the reflection camera, given in Listing 5.2.

46 | P a g e

1. void CopyCameraProperties(Camera source, Camera dest)

2. {

3. if (dest == null)

4. {

5. return;

6. }

7. if (source.clearFlags == CameraClearFlags.Skybox)

8. {

9. Skybox mainSky = source.GetComponent<Skybox>();

10. Skybox reflectedSky = dest.GetComponent<Skybox>();

11. if (!mainSky || !reflectedSky.material)

12. {

13. mainSky.enabled = false;

14. }

15. else

16. {

17. mainSky.enabled = true;

18. mainSky.material = reflectedSky.material;

19. }

20. }

21. dest.clearFlags = source.clearFlags;

22. dest.backgroundColor = source.backgroundColor;

23. dest.farClipPlane = source.farClipPlane;

24. dest.nearClipPlane = source.nearClipPlane;

25. dest.orthographic = source.orthographic;

26. dest.fieldOfView = source.fieldOfView;

27. dest.aspect = source.aspect;

28. dest.orthographicSize = source.orthographicSize;

29. }

Listing 5.2.: Main camera properties same as for the reflection camera.

ii. Define the reflection plane geometry, point-normal mathematical representation
using the reflection plane’s normal and the origin of that normal (for a surface
geometry, is the world position), given in Listing 5.3. Transform both and into
camera space in order to recalculate the oblique projection matrix of the reflection
camera (transform the water surface as a clipping near plane)

1. Vector4 CameraSpacePlane(Camera cam, Vector3 pos, Vector3 normal, float sideSign)

2. {

3. Vector3 offsetPos = pos + normal * clipPlaneOffset;

4. Matrix4x4 currentViewMatrix = cam.worldToCameraMatrix;

5. Vector3 clipPlanePos = currentViewMatrix.MultiplyPoint(offsetPos);

6. Vector3 clipPlaneNormal = currentViewMatrix.MultiplyVector(normal).normalized * sideSign;

7. return new Vector4(clipPlaneNormal.x, clipPlaneNormal.y, clipPlaneNormal.z, -

8. Vector3.Dot(clipPlanePos, clipPlaneNormal));

9. }

 Listing 5.3.: Define the reflection plane inside the camera view space

iii. Transform the projection matrix of the reflection camera, using a reflection matrix
around the reflection plane, to get the mirror rendered projection. Here add a small
change to the reflection matrix, explained in Section 3.1 Reflection. In computer
graphics, as mentioned earlier, vertices are transformed between different spaces,
but these spaces are all connected, or more grammatically correct – they are affine
spaces. This means that, in order to have translation, scaling and rotation or any
other linear transformation matrix, we need it to be 4x4 affine matrix, while points
are being represented by a 4D vector - , or homogeneous

47 | P a g e

coordinates – for point =1, for transformation matrices w (see
Equation 5.1).

 [

] (5.1)

iv. Transform the position of the reflection camera around the reflection plane, using
the reflection matrix.

v. Rotate the reflection camera around its local view direction.
vi. Invert the culling order of all geometry in order to inverse the shading, since the

produced image is a reflection and light is calculated based on normals of the
triangles. By inverting the culling order, we basically flip the normals into their
reflected ones.

vii. Render to texture
viii. Return the culling to its normal state for the next render frame of the main camera.

ix. Send the rendered reflection image data to the shader, handling the water surface
rendering.

x. Generate UV-coordinates inside the shader for the reflection texture. Since the
produced reflection image (see Figure 5.1 and Figure 5.2) is a rendered frame of
scene, (can also be called screen capture) we need to overlay it/project it onto the
screen, where the water surface is rendered.

Figure 5.1.: Illustration of the process of reflection.

48 | P a g e

Figure 5.2.: Reflection results image - on the top – image of the scene without reflection. Below, on the left side is an image
captured from the reflection camera and on the right side is the final result.

5.1.2 Refraction

Handing the refraction can be achieved in just the same way as the reflection, but that lead
some problems we noticed with the shadow mapping. If we apply the previous technique,
meaning that everything above the reflection plane that is cutout by the transformed
oblique projection matrix, will not throw shadows underwater (since it is entirely or partially
not rendered),as seen in Figure 5.3. Therefore, we decided to make use of Unity3D built in
function GrabPass – a CG extension method that renders everything that is on the screen
and stores it in a texture, without the need of additional cameras or rendering textures. The
resulted image data is then sent to the following Pass () of the shader, responsible for the
rendering.(see Figure 5.4) Use the same coordinate projection as the one in reflection will
yield a result of no actual change in the final rendering, but it will provide us with masked
fragment data of what is seen under the water surface – later used with distortion of the
water.

49 | P a g e

Figure 5.3.: Illustration of the refraction process.

Figure 5.4.: Refraction coordinates - a) Scene showing (by using checkboard) where the refraction will be implemented (using GrabPass),
on the left side and b) Scene with the refraction applied.

5.1.3 Fresnel effect

As mentioned earlier, the Fresnel effect gives the ratio between how much of the light is
reflected and how much is refracted. Using the same logic, we need to define how much of
the reflected image data is going to be seen over the refracted image data. This technique is
called color blending and is based on linearly interpolate between two sets of data, based
on a reference weight value – in our case that is the Fresnel factor. In order to calculate the
Fresnel factor, we used both scenarios mentioned in Section 3.2 Refraction – the simplified
Fresnel factor and Schlick’s approximation.

 Simplified Fresnel Factor

It requires, as inputs, the view direction and normal direction (see Equation 5.2). We
need to make sure that both of them are in the same space and also both are
normalized (length = 1). We can extract normals from the vertex input structure, which
results in normal vectors in local/model space. After transforming them into world
space, by multiplying with a Model2World matrix, we get interpolated world normals

50 | P a g e

(Listing 5.4, codeline 12). As for the view vector – its ray start is defined by the position
of the view and its end - by the position of the viewed fragment (in case we are
implementing the Fresnel equation factor inside the fragment shader) both in world
space (Listing 5.4, codeline 13). Results can be seen in Figure 5.5.

 () () (5.2)

1. vert()

2. {

3. ...

4. o.posWorld = mul(_Object2World, i.vertex);

5. o.normalWorld = normalize(mul(float4(i.normal,),_World2Object).xyz); 0.0

6. ...

7. }

8. frag()

9. {

10. ...

11. // FRESNEL - Simplified

12. float3 nDir = normalize(i.normalWorld);

13. float3 vDir = normalize(_WorldSpaceCameraPos - i.posWorld.xyz);

14. float fresnelFactor = dot(vDir,nDir)*_FresnelCorrection;

15. float4 fresnelColor = lerp(refl, refr, fresnelFactor);

16. ...

17. }

Listing 5.4.: Fresnel effect, using Simplified Fresnel factor.

Figure 5.5.: Simple Fresnel debug and results - a) On the left - Illustration of the Fresnel effect, where the green color represents the
refraction and in red is the reflection, calculated by using the Simplified Fresnel factor. b) On the right – the final result.

 Schilick’s approximation

To calculate the Fresnel factor, we need to have the refraction indices of both medians –
water and air (see Equation 5.3). Using the formulas from Section 3.2 Refraction
(repeated here for convenience)(see Listing 5.5), we get the following results (Equation
4.4)(see Figure 5.6) :

51 | P a g e

 (

)

 (

)

 (5.3)

 () () () (()) (5.4)

1. frag()

2. {

3. ...

4. // FRESNEL - Schilick's approximation

5. float fresnelFactor1 = + *pow(-(dot(nDir,vDir)),); 0.02f 0.98f 1 5

6. float4 fresnelColor1 = lerp(refr, refl,fresnelFactor1);

7. ...

8. }

 Listing 5.5: Fresnel effect, using Schilick`s approximation.

Figure 5.6: Schilick’s approximated Fresnel debug and results - a) On the left - Illustration of the Fresnel effect, where the green color
represents the refraction and in red is the reflection, calculated by using the Schilick`s approximation. b) On the right – the final

result.

Both Fresnel factor equations fulfill the task of creating a ration between reflected
and refracted image data, whereas the first one provides more artistically enhanced
version, while the second one is more nature accurately.

5.1.4 Normal mapping

This technique is used to create small details like waves as well as some distortion to the
previously generated reflection and refraction image data sets. More importantly, the water
waves are the only visual cue that serves as proof of water being in a motion state.
Therefore, the flow vector field technique has to be implemented on per normal map basis,
meaning that we need to create flowing normal field.

 Flow map generation

Generation of the flow field is a pre-computational stage, where we took a render image
of the landscape, see Figure 5.7. Based on that image, we then created a vector field

52 | P a g e

inside a free flow generator external tool that linearly interpolated color values between
the vectors inside that field.

Figure 5.7: Flow map generation - The first image presents the place where the flow map will be created, while the second one
illustrates the vector field on that same place. The last image shows the final result of the flow map.

Vector fields are functions that assign a vector to a point in space, considering that
we our target is a texture image that will hold the flow field data, the equation of 2D
vector field is given by:

 () (5.5)

The external tool we used, allows to predefine the direction of the vectors and does
not take into consideration their magnitude, thus they are either with length equal to
(normalized) or . After all vectors are placed manually, they are being transformed into
the RG color space, from where values for each individual channel, respectively R and G
is calculated, knowing the exact direction of the vectors, as shown in Figure 5.8.

Figure 5.8: Flow field vector generation - a) Image of flow texture space on the left side. b) Image of the interpolation between the
colors in RG color space.

Since the color channels of the flow texture can hold information in the interval
 and we use all directional flow texture, where means no
movement, or velocity equal to zero, we need to map the color values into range

53 | P a g e

 . If we consider vector , each channel is scaled by 2 and shifted
by -1:

The next stage, in using a flow texture, is to create a shifting phase, or in other
words define the loop algorithm, used to translate a pixel along the vector field (see
Figure 5.9):

1. Define a phase, based on linear function - , or how long should one loop
take before restarting again. We can also add some offset to the phase as well,
creating difference in the time when a pixel starts translating, for this we use a
noise texture – phase, given in Listing 5.6, code line 5.

2. Create two shifting/offset values, based on the vector flow texture –
offset1/offset2, given in Listing 5.6, codeline 6, 7.

3. Map the normal texture with the model’s uv set and offset that uv set with the
first shifting value from the previous step – Layer1 (Listing 5.6, codeline 9)

 ()

4. Perform previous step, this time with the second shifting value – Layer2 (Listing
5.6, codeline 11)

5. Define the weight of linear interpolation between the two normal textures, and
since we are using time as a linear function (which grows constantly), we can get
the fraction of it. This allows us to know how much opacity should be taken into
consideration since a fraction is in the interval () – opacity (Listing 5.6,
codeline 13)

 1. // BUMP/FLOW DISTORTION - WATER

2. float2 flowDir = tex2D(_FlowMap, -i.uv).rg * 2 - 1;

3. flowDir *= _Translocation;

4. float noise = tex2D(_NoiseMap, i.uv).r;

5. float phase = _Time.y/_Cycle + noise.r * 0.1;

6. float2 offset1 = float2(flowDir.x,-flowDir.y) * frac(phase + 0.5f);

7. float2 offset2 = float2(flowDir.x,-flowDir.y) * frac(phase);

8. float interaction = tex2D(_BlobTex, i.uv).r ;

9. float4 layer1 = (tex2D(_BumpMap,i.uv.xy * _BumpMap_ST.xy +_BumpMap_ST.wz +

10. offset1*(1-interaction)));

11. float4 layer2 = (tex2D(_BumpMap,i.uv.xy * _BumpMap_ST.xy +_BumpMap_ST.wz +

12. offset2*(1-interaction)));

13. float opacity = frac(phase);

14. if(opacity > 0.5f)

15. opacity = 2 * (1 - opacity);

16. else

17. opacity = 2 * opacity;

18. ...

19. float4 encodedNormalWater = lerp(layer1,layer2,opacity);

 Listing 5.6: Fragment code for creating a flow.

54 | P a g e

Figure 5.9: Perturbing UVs with flow map - a) Image of place of the flow, presented by checkerboard, on the left side. b) Image of
the flow distortion, on the right side.

The created distortion can then be used to perturb the uv coordinates used for
mapping the reflection and refraction images, allowing us to have distorted by image
data formed via the animation of pixels inside the pre-defined vector field, see Figure
5.10.

Figure 5.10: Final result of the flow distortion.

5.1.5 Lighting model

Since we are creating surface water, meaning that the model’s geometry is a flat plane, thus
there is no shadow casting geometry. The only way to simulate lights and shadows is to use
the normal map. As explained in the Section 5.1.4 Surface water rendering - Normal map,
we make use of a normal map texture, from where we can extract normal directions based
on pixel color values from the texture. The reconstructed normal vectors have to be
transformed into world space.

55 | P a g e

For each vertex we can get its normal and tangent from the CPU as part from the
vertex input structure. Based on them, we can then calculated the binormal . All
these 3 vectors are forming Unity3D specific local surface coordinate system for every
surface point, which is used to interpolate the normal values when passed from the vertex
shader to the fragment shader. All three vectors have to be computed in world space, since
we want to relate the normal vector to other objects inside the world space – in this case
the light position. Transforming a normal from one space to another is done by
multiplication with a transpose inverse matrix - () , because after transforming
both the surface and its normal, should stay orthogonal to each other. Considering surface
 , normal vector transformed with matrix () and vector transformed with
 :

Inner product : () (())

Transpose () : (())

Transpose (()) :

Inverse ()

Identity matrix applies no transformation to a vectors:

As regards the tangent , its describing a direction between index followed vertices,
thus is transformed using the object-to-world matrix , see Listing 5.7(same one used for the
vertices themselves). Using both and in normal space, we can then easily calculate .

1. vert()

2. {

3. ...

4. o.normalWorld = normalize(mul(float4(i.normal,0),_World2Object).xyz);

5. o.tangentWorld = normalize(mul(_Object2World, float4(i.tangent.xyz,0)).xyz);

6. o.binormalWorld = normalize(cross(o.normalWorld, o.tangentWorld) * i.tangent.w);

7. ...

8. }

Listing 5.7: Normal space – computing the normal, tangent and binormal per vertex basis

 Using the normal, tangent and binormal in world space we can then form a matrix that
is used to map each extracted normal vector from the normal texture to the corresponding
interpolated normal, because the three vectors are axes of subspaces.

 [

]

56 | P a g e

Figure 5.11: Normal extraction from texture - a) Image of normal map, on the left; b) Illustration of the Normal, Tangent, Binormal and
Transformed normal

If we consider normal with values in the alpha channel and
green channel , we first map them from to since normal vectors show

the facing direction of a surface. Based on the values and , we calculate

√ . Having all of the components of the newly formed normal vector, we can

now transform it using the matrix described above.

1. frag()

2. {

3. // NORMAL MAP DECODING

4. ...

5. float4 encodedNormal = lerp(layer1,layer2,opacity);

6. float3 localCoordsNormal = float3(2*encodedNormal.a - 1,2*encodedNormal.g - 1, 0.0);

7. localCoordsNormal.z = sqrt(1 - pow(localCoordsNormal.x,2) - pow(localCoordsNormal.y,2));

8. float3x3 local2WorldNormalMatrix = float3x3(i.tangentWorld,i.binormalWorld,i.normalWorld);

9. float3 normalDirBump = normalize(mul(localCoordsNormal, local2WorldNormalMatrix));

10. ...

11. }

 Listing 5.8: Reconstructing normal vectors based on normal map

As mentioned earlier, light computation makes use of a set of parameters based on the
desired light model. For example position of the light in world space, direction of the light,
view direction, surface normal and etc. We will divide the light model into a few sections for
convenience, namely ambient lighting, diffuse lighting, specular lighting and translucent
lighting, each serving its own purpose. We also make use of only one directional light in the
scene for simplicity, representing the sun.

 Ambient light

This is a fixed color value that affects all objects in the scene and usually is dictated
inside the editor, thus we get that color value via Unity3D built in function, given in
Listing 5.9.(see Figure 5.12)

57 | P a g e

 1. // Ambient

2. float3 ambientLighting = UNITY_LIGHTMODEL_AMBIENT.rgb * fresnelColor.rgb;

 Listing 5.9: - Ambient lighting.

Figure 5.12: Ambient lighting.

 Diffuse light

The geometry of the water will interpolate normal vectors that are parallel to each
other, as the geometry is forming a flat surface. Thus, calculating the diffuse factor
will give the same value for all rendered fragments, unless we use the previously
reconstructed normal vectors, extracted from the normal map and compared with the
light direction. We apply both of these calculations – first one giving us a “flat” diffuse
factor and the second one – “bumped” diffuse factor, given in Listing 5.10 (see Figure
5.13). We then lerp between these factors, based on how much diffuse reflectance we
want to have in the water – giving more artistic control, or how intense the self-
shadowing of the waves should be. We also apply the Valve’s Half-Lambert diffuse
reflection to further smooth out the diffuse shading.

 [()]

 1. //Diffuse

2. float diffuseFactor = max(0,dot(nDir, lightDir));

3. float diffuseFactorBump = max(0,dot(normalDirBump, lightDir));

4. diffuseFactor = lerp(diffuseFactor,diffuseFactorBump,_BumpShadowAmplitude);

5. diffuseFactor = diffuseFactor * 0.5 + 0.5;

6. float3 diffuseLighting = _LightColor0.rgb * fresnelColor.rgb * diffuseFactor;

 Listing 5.10: Diffuse lighting.

58 | P a g e

Figure 5.13: Diffuse lighting - the top two images – flat diffuse lighting, on the left and bumped diffuse lighting, on the right.
Regarding the two imaged above – Half-Lambert diffuse lighting, on the left and the final image, on the right.

 Specular light

The brightest spots in the water are basically the tips of the waves. This means that this
light calculation will rely entirely on the extracted normal vectors from the normal map,
given in Listing 5.11. As described earlier, this is the focused light, reflected in the
viewer’s eye, thus we need the following arguments: view direction, light direction and
normal vector (around which light will be reflected). Again, we make use of the flat
shading of the surface geometry, against the bumped one, resulting in more smooth
transition of the specular light, based on where most of reflected light rays are focused
on a flat geometry, see Figure 5.14.

 ()

 ()

 ()

 1. // Specular

2. float specularBumpFactor = pow(max(,dot(reflect(-lightDir, 0

3. normalDirBump),vDir)),_Sharpness);

4. float specularInterpolatedFactor = pow(max(0,dot(reflect(-lightDir,

5. nDir),vDir)),_Shininess);

6. float3 specularLighting = * _SpecColor.rgb * (fresnelColor.a) * _LightColor0.rgb

7. (lerp(specularBumpFactor,specularInterpolatedFactor,0.3));

 Listing 5.11: Specular lighting.

59 | P a g e

Figure 5.14: Specular lighting - the first image presents the flat specular lighting, second one- the bumped specular lighting and
the last one is the final specular lighting.

5.2 Additional Visual effects

5.2.1 Translucent light

Additional lighting used to define sub-surface scattered light, or how light is refracted inside
the volume of an object. Since we have flat geometry, the translucent light can help us with
making the water able to render properly when the surface is not facing the light direction
at all, or when the diffuse factor is equal to zero. This allows us to have rendering property
for the water, in case the environment is set to be at night, thus the translucent light is
given by Equation 5.6.(see Figure 5.15) The only difference is that we get the inverse normal
direction, opposite to the diffuse light factor, see Listing 5.12. We add this as an extra
feature with possibility of future work on it (see feature work section for further details).

 () (5.6)

 1. // Translucent Diffuse

2. float translucentFactor = max(0,dot(lightDir, - nDir));

3. float3 translucentDiffuseLighting = _LightColor0.rgb * _DiffuseTranslucentColor.rgb *

4. translucentFactor;

Listing 5.12: Translucent diffuse.

Figure 5.15: Translucent diffuse.

60 | P a g e

5.2.2 Fog

In order for the shading to include build in options inside Unity3D, like fog for instance, we
need to specify how this shading is added on top of our results. Simply said, fog in computer
graphics is connected with spatial decrease/interpolation in the color values towards a
specific color value, based on reference value (calculated via a so called fog equation [72]. In
the previous images, our scene was using the squared exponential fog equation:

 ()

 (5.7)

, where is the exponent; distance in world space and is the fog attenuation/density
(defined through the editor), see Equation 5.7. The only unknown is the distance. We can
either solve it with hardcoded value or we can make use of the fragment projection
distance from the camera. The second choice is much easier to use, but sufficiently harder
(explanatory). When a vertex is transformed from local/model space to projection space
using the combined matrix MVP (model/view/projection), it ends up being projected onto
the near clipping plane, inside the clip space, given in Listing 5.13. Therefore, its forth vector
component , or the 4th dimension will contain information how was the vertex
transformed from the previous space (homogeneous coordinates), thus:

1. vert()

2. {

3. ...

4. o.pos = mul(, i.vertex); UNITY_MATRIX_MVP

5. ...

6. }

7. frag()

8. {

9. ...

10. // FOG

11. float eyeZ = i.pos.w;

12. float fogFactor = /exp(pow(abs(eyeZ)*_FogDensity,)); 1 2

13. finalColor = lerp(_FogColor,finalColor,fogFactor);

14. ...

15. }

 Listing 5.13: Fog.

61 | P a g e

Figure 5.16: Fog debugging - the first image shows the fog effect on the water surface. In the second image, is presented the fog in the
whole scene, matching with the first image. The final result of the scene is shown on the last image.

5.2.3 Edge blending

To further enhance the rendering of the surface, we also use another blending technique
that lowers the alpha value of the final output color of the water surface, based on the
depth of the pixels. This technique makes use of the depth texture – a rendering stored
inside a depth buffer. Unity3D allows us access to this buffer, from where we can extract
two types of data sets:

 Linear01Depth - providing values within the range [0, 1], based on the position of
the rendered fragment inside the clipping space (between near and far clipping
planes).

 LinearEyeDepth – providing values between the camera position and the rendered
fragment, using world space units.

Our final goal is to mask fragments from the water surface that are significantly closer to
the rendered fragment behind (the shoreline formed by the terrain) and reduce the alpha
value of these fragments. In order to preserve the shoreline fragments, (which are rendered
behind/under the water surface) we need to prevent the water fragments from writing to
the depth buffer (used for depth testing). After that we need a difference between the
world depth inside the depth buffer and the position of the current fragment. Since the
result is in world space units, we can saturate the results back into range [0,1] and pass a
controlling/editable argument for the saturation, given in Listing 5.14, in order to customize
the amount of difference between the two compared fragments (the one from the depth
buffer and the water fragment), see Figure 5.17 and Figure 5.18.

62 | P a g e

Figure 5.17: Edge blending vector scheme – fragment A is not written in the depth buffer in order to compare and blend it with B.

 1. // EDGE BLENDING

2. float depth = tex2Dproj(, i.reflUV).r; _CameraDepthTexture

3. depth = LinearEyeDepth(depth);

4. float eyeZ = i.pos.w;

5. float dist = abs(eyeZ - depth);

6. float edgeBlend = saturate(_Fade*dist);

Listing 5.14: Edge blending.

Figure 5.18: Edge blending debugging - First image – scene without edge blending, second image – only the edge blending and third one –
the final result.

5.2.4 Vertex displacement

We implemented a simple vertex displacement based on adding sine waves (Fast Fourier
Transform – FFT) and a displacement texture, as seen in Figure 5.19, (given in Listing 5.15).
The idea is to calculate a sin value every frame and pass that value to the vertex shader,

63 | P a g e

then perform a lookup for the displacement texture channels to give variance to each sine
wave direction, see Figure 5.20.

Figure 5.19: Visual representation of adding sin waves (FFT), image taken from
http://music.columbia.edu/cmc/musicandcomputers/chapter3/03_03.php

 () ()

 () () ()

 1. // Z-Vertex Displacement

2. float3 dTex = tex2Dlod(_DispTex, float4(i.vertex.xy + _DispTex_ST.wz*_Time.y, ,)).xyz; 0 0

3. float d = (dTex.r * _ChannelFactor.x + dTex.g * _ChannelFactor.y + dTex.b *

4. _ChannelFactor.z);

5. i.vertex.xyz = i.vertex.xyz + i.normal * d * _DisplacementAmount;

Listing 5.15: Vertex displacement.

Figure 5.20: Vertex displacement - On the left : displacement ; On the right: displacement , images taken from the Unity3D
shader properties panel inside the editor mode, using spherical geometry in order to give better representation of the vertex

displacement.

64 | P a g e

5.2.5 Ice transition

The last visual part is connected with the transition between the water states. We are
limited with only the geometry we have, and since we are creating surface water, we are
restricted to only simulating the effect, rather than the cause of it. In other words, we can
only implement behavior of the water that transitions between the two states – liquid and
solid. In order to achieve this effect, we need to have observation of what needs to happen.
In reality, the freezing of a river is divided into a few stages [73], explained physically by
changes that happen to the water liquid. The water transitions between states of crystals,
through a thick layer of formed ice plates. Then a border of ice is formed along the river
bank. Since the water height in that area is lower, thus the velocity is also lower. The final
stage of the water is when a solid layer of ice is formed on top of the water. Another event,
usually observed when water freezes, is the increase of size, but regarding rivers or lakes
the effect observed is opposite, because they water flow decreases. We took all these
effects into their most basic form and implemented them as well as possibility to control
the event at some key points (for example -the water level decrease).

To form a water transition we first need to produce the final stage of the frozen water
and afterwards interpolate between the two states of the water using a control value. The
ice color is formed by an image mapped to the UV coordinates of the water plane. We then
use alpha blended value used from a pre-computed texture handling the spread of the ice –
from the shore, towards the inner part of the river (Figure 5.21). We apply this technique
twice, where the second iteration is used with lower saturation value, resulting in more
smoothed image (Figure 5.22) (Listing 5.16). Blue tint is multiplied with the second iteration,
since it plays the role of a thick layer ice cover (the refractive index of the blue light is the
greatest one from the RGB light).

Figure 5.21: Snow blending - a) Snow color; b) Pre-defined ice region; c) Alpha blended image; d) Saturated image.

65 | P a g e

Figure 5.22: Ice forming - 20 times smaller saturation, resulting in more smoothed distribution. Final color is multiplied by a bluish value.

 1. // SNOW & ICE

 2. // First iteration

3. float4 snow = tex2D(_SnowTex, i.uv.xy * _SnowTex_ST.xy + _SnowTex_ST.wz);

4. snow.a = tex2D(_SnowBlend, -i.uv.xy).r;

5. snow.a += (_BlendAmount * -); 2 1

6. snow.a = saturate((snow.a * _EdgeSharpness - (_EdgeSharpness -) *)*_Thickness); 1 0.5

7. // Second iteration

8. // same uv, but edge sharpness is lower to apply blurriness

9. float4 ice = tex2D(_SnowTex, i.uv.xy * _SnowTex_ST.xy + _SnowTex_ST.wz);

10. ice.a = tex2D(_SnowBlend, -i.uv.xy).r;

11. ice.a += (_BlendAmount * -); 2 1

12. ice.a = saturate((ice.a * _EdgeSharpness/ - (_EdgeSharpness/20 -) *)*_Thickness); 20 1 0.5

13. ice.rgb *=_IceColor.rgb;

14. // Final texture color

15. float4 finalIce;

16. finalIce = lerp(snow,ice, -snow.a); 1

 Listing 5.16: Snow & Ice.

To enhance the produced color value, we also use a second normal map for the ice.
The ice normal map is used for producing different shading/lighting output. (Listing 5.17)

 1. // NORMAL MAP DECODING

2. float4 encodedNormalIce = tex2D(_SnowBump, i.uv.xy * _SnowBump_ST.xy + _SnowBump_ST.wz);

3. float4 encodedNormalWater = lerp(layer1,layer2,opacity);

4. float4 encodedNormal = lerp(encodedNormalWater, encodedNormalIce, _Thickness);

 Listing 5.17: Normal map decoding.

The final ice color is calculated based on a controlling value in the interval [0, 1], where
zero means water is in liquid state and one means water is in frozen state. This controlling
value is used to interpolate between the normal maps, as well as it control a Y-axis
displacement in the vertex shader, resulting a negative translation of the vertices, forming
the plane along that axes (frozen water level decreases, as it freezes). (Listing 5.18)

66 | P a g e

1. vert()

2. {

3. ...

4. o.pos = mul(UNITY_MATRIX_MVP, i.vertex - float4(0.0, _Thickness*0.2, 0.0, 0.0));

5. ...

6. }

 Listing 5.18: Vertex displacement before transforming it in clip space

Figure 5.23: Ice thickness - in ascending order with values:

Object to water interaction – as explained earlier in Section 3.11 - Water to object
interaction, when objects enter the water, they apply influence to it. Since our water is
defined by a water plane geometry, the distortion that objects can create inside the
geometry of the water is either applied on the pixels or the vertices. We decided to
implement the first type by using another render texture. The following steps were
followed to produce an image, we called “interaction texture”, since it holds all the
information about objects interacting with the water. The interaction texture was captured
by another camera placed inside the scene, as seen in Figure 5.24, via the following the set
of steps:

 Interaction camera – a camera with orthogonal projection is placed right above the
scene geometry, so that it renders the entire water plane.

 Interaction fragments – each object interacting with holds a quad object with
texture, representing approximated geometry projection from the interaction
camera onto the water plane.

 Render to texture – results in a cubic texture (width and height pixel resolution are
values equal to).

 Texture-to-shader – the resulted texture is then sent inside the shader to distort the
vector field, used for the flow map, thus resulting in distortion of the animation of
the pixels.

67 | P a g e

Figure 5.24: Illustration of the process of capturing the interaction texture.

Figure 5.25: Interaction texture - only three spheres in the water, on the left,, resulting in rendering three quads holding
approximated geometry projection of the spheres, on the right.

The rendered texture is send inside the fragment shader and mapped to the UV
coordinates of the water plane, but only one channel is used. Consider texel ()
 and , being the vector from the flow vector texture, and
 . Then all black texels (values equal to zero) will have no impact on the flow map,
while ever colorful texel (values not equal to zero) will impact the flow map linearly,
transforming the corresponding vector inside the flow vector field , example can be seen in
(Figure 5.26).

 ()

 () {

68 | P a g e

1. float interaction = tex2D(_BlobTex, i.uv).r ;

2. float4 layer1 = (tex2D(_BumpMap,i.uv.xy * _BumpMap_ST.xy +_BumpMap_ST.wz +

3. offset1*(-interaction))); 1

4. float4 layer2 = (tex2D(_BumpMap,i.uv.xy * _BumpMap_ST.xy +_BumpMap_ST.wz +

5. offset2*(-interaction))); 1

 Listing 5.19: Adding the interaction texture inside the computation of the flow map perturbance

Figure 5.26: Vector field changes based on texture - a) Vector field () ; b) Texture image holding values in the range [0,1]; c)

multiplication of the vector field with the image.

Figure 5.27: Interaction texture debugging - a) flow vector field coordinates created by the RG channels from a flow map; b) same vectors
multiplied with the interaction texture; c) the final rendering of the water surface including all techniques.

5.3 Physics

For implementing all physics we use the build in physics engine of Unity3D, in order to
simulate the inverse interaction – water to object. Each object gets detected by the physics
engine when it has colliding and rigid body components, automatically adding properties
like mass, gravity force, drag force and collision detection. The only missing ones to create
close to real-life physics simulation are the buoyancy and the water stream force.

69 | P a g e

5.3.1 Buoyancy

We use the cube approximation technique described in the Section 3.9 Physical Models.
Each object, affected by this type of force, needs pre-computational cube approximation, in
order to create local points from the model space and then apply forces to these points. To
approximate geometry, we use the boundaries of the object as a coordinate space. We then
divide each axel of this space times, resulting a total number of approximation cubes
equal to . To proper distribute the cubes, before any approximation cube (voxel for short
notation) is created, the object is placed at world or parent object space coordinates (0, 0)
and rotated to Euler angles (0, 0, 0). The final output is only the centers of these cubes,
because we only need the center of the cube, where we are going to apply all forces, see
Figure 5.28 and Listing 5.20.

If we consider an object with geometry bounds, respectively and ,
and also point () is a point inside the space defined by the geometry bounds, then
can be found by Equation 5.8, where is also a center of one of the voxels:

 () () (5.8)

, where is the size of the bounds and is the current iteration (assuming that the cubes
are being created from the center of the bounds in outward direction).

Figure 5.28: Cube approximation of a 2D circle - same algorithm will work for 3D shape as well.

70 | P a g e

1. private List<Vector3> CubeApproximiation()

2. {

3. int totalNumberCubes = slicesPerAxis ^ ; 3

4. var cubeCenters = new List<Vector3>(totalNumberCubes);

5. var bounds = myCollider.bounds;

6. for (int iterationsX = ; iterationsX < slicesPerAxis; iterationsX++) 0

7. {

8. for (int iterationsY = ; iterationsY < slicesPerAxis; iterationsY++) 0

9. {

10. for (int iterationsZ = ; iterationsZ < slicesPerAxis; iterationsZ++) 0

11. {

12. float x = bounds.min.x + (bounds.size.x / slicesPerAxis) *

13. (+ iterationsX); 0.5f

14. float y = bounds.min.y + (bounds.size.y / slicesPerAxis) *

15. (+ iterationsY); 0.5f

16. float z = bounds.min.z + (bounds.size.z / slicesPerAxis) *

17. (+ iterationsZ); 0.5f

18. var p = transform.InverseTransformPoint(new Vector3(x, y, z));

19. cubeCenters.Add(p);

20. }

21. }

22. }

23. return cubeCenters;

24. }

Listing 5.20: Method that creates a list of voxel centers, based on cube approximation.

After we find all voxel centers, we need to compile the buoyancy. In order to do that, we
need to specify object’s density per instance, because the Unity3D physics engine does not
provide us with that property. As regards the volume, we can calculate it from the density
Equation 5.9. The buoyancy we have calculated is for the entire object, thus we need to
divide the value by the number of voxels in order to get the amount of force equally
distributed in local space for each voxel. Here by local we mean only that part of the
buoyancy that takes into consideration the direction of the force. This stage of the
calculations is pre-computed as well (implemented in the Start() method), given in Listing
5.21.

 (5.9)

1. float volume = myRigidBody.mass / objectDensity;

2. float buoyancy0 = WATER_DENSITY * Mathf.Abs(Physics.gravity.y) * volume;

3. localBuoyancy0 = new Vector3(0, buoyancy0 , 0) / voxels.Count;

 Listing 5.21: Calculating additional properties per object

The actual apply of the full buoyancy force is implemented inside the looping function,
called once per frame – FixedUpdate(), because we want this force to be true whenever the
object is in contact with the water. The algorithm iterates through all the voxel centers
(Figure 5.29) and calculates the full buoyancy force. Taking into consideration the distance
between the water level and the position of the current iterated voxel center, provides us
with a value of how much the current approximated cube is inside the water (in the case of

71 | P a g e

3D space – how much below the water surface, or based on comparison between the Y-axel
position)

.

Figure 5.29: Force application points

5.3.2 Stream force

In order to apply velocity changes on the objects inside the river, we need a way to access
the information that creates that river flow – in our scenario this is the flow texture.
Therefore, we need a method that can extract values from the flow texture, similarly to the
flow map technique used on the GPU. For each object affected by the stream force, we cast
a ray from the center of it towards an invisible layer, where only one plane is rendered.
Using the same size as the water plane and a shading model that excludes all lighting, but
maps only the flow texture to the models UV coordinates. The RaycastHit struct in Unity3D
can hold information of the casted ray, and more particularly the coordinates of where the
ray hit a collider – in our case this is the flow texture plane. Based on these coordinates and
the flow texture itself, we can extract the color values from the flow texture, just like we did
in the flow map technique. Using these color values, we created a vector that holds the
information of how the stream is flowing. Thus, we apply it as direction multiplied by a
water force magnitude value (see Figure 5.30). All of the above statements were also
implemented inside the FixedUpdate() function.

 () ()

Figure 5.30: Stream force direction - extracting values from the flow map in order to apply stream force to the water flow.

72 | P a g e

5.4 Shading tree

In this section we will present the final output of what we accomplished in a simplified way –

using tree structure. This type of presentation is widely used for presenting shader programs –

shading tree (Figure 5.31). It will give a basic overview of what we accomplished, in respect to

the visuals and interaction (since we are implementing the interaction on camera-rendering

basis). As regarding the physics, we will also display the steps inside a code design structure

tree that will include only the most important functions used – see Figure 5.32.

Figure 5.31: Shading tree

Figure 5.32: Code design structure tree

73 | P a g e

6. Testing

6.1. Test design

The origin of our work is divided into three sections, namely visuals, interaction and physics.
The first two are implemented on the GPU while the last runs on the CPU. Therefore, we
need to do a performance testing that will give us precise data to evaluate. Since the main
criterion, used for comparison, is the computational time, we will not be using Unity3D’s
FPS, since this characteristic involves not only the rendering time, but also the processing of
everything included in the scene. To measure the time, needed for our water to render, we
will use deep profiling inside the Profiler tool of Unity3D – sections GPU and CPU. The
results will be displayed in milliseconds . To have accurate results, we also use a number
of iterations taken from each measurement and then the average is taken as input. If we
consider 6 iterations with interval of 30 frames, this would result in observing 180
consecutive frames, or three seconds of animation with target FPS=60. Another importance,
taken into consideration, is that Unity3D profiling tool provides labeling of the processes
only for the CPU, meaning that we have no clear information about the GPU skinning – we
only get results about Opaque, Transparent geometry processing and other types of
graphical events, computed on the GPU. To deal with this, we discard (remove from scene)
any other type of data that will be processed by the GPU, leaving only the water shading
inside the scene. Also to check the retrieved data, we will perform 2 independent
measurements of the data (later referred to as First Run and Second Run) and compare it in
a T-test for significance of the results.

We divide the test into two stages. In the first part we will measure computational time
of each individual implemented technique when it is included inside the overall
computational time against when it is not. (see Chart 6.1) We expect this to provide us with
knowledge of how expensive are different techniques, regarding computational time and
more importantly what can be further optimized/expanded based on the results, or in other
words what is the impact of each individual effect to the overall. Apart from the
computational time, we also include the number of mathematical instructions inside the
vertex and the fragment shader, needed to produce the current observation effect using
DirectX11’s 3D graphics API – d3d11.dll. This statistical measurement is provided by the
compiled version of the shader program.

74 | P a g e

Chart 6.1: Comparison of turned on and off effects, measuring computational time of each technique individually.

The second stage of the testing takes into consideration each individual effect and
compares it against the following parameters:

 Number of objects affected – will provide us with data about the impact of having
large number of objects. This is extremely important for the interaction texture, as
well as reflection and refraction.

 Water plane geometry grid size – the change of the amount of vertices. This is
important for testing the z-displacement.

The testing is carried on mobile PC with Intel® Core™ i7-4500U CPU and GeForce GT
750M with 4GB of memory (1000MHz,128Bit), 384 Shading units, 32 texture mapping units,
7.6GPixel/s, 30GTexel/s.

6.2. Expectations

Prior to testing, our predictions are purely based on the amount of computation
instructions given inside the corresponding programs. Most of the visual effects are
implemented inside the fragment shader (formulas for Fresnel, view direction, light
direction and etc.), which we think will produce significant computational requirements.
The most computationally demanding features should be the ones that use extra rendering
of the scene, namely – reflection, refraction and interaction. Regarding the CPU processes,

Current FX
Off

On

Res. Quality

Rend. Quality

Rendering 1

Rendering 2

Rendering 3

75 | P a g e

computing rigid bodies is not that heavy, although the process of applying forces to a
number of cubes, results in a looping calculation inside an update function (also looping
once per frame). Having a large number of objects interacting with the water, (interaction
texture) should not have any impact on this feature computational time, as its output will
always be just an extra texture sent to the shading process of the water.

6.3. Results

The following Table 6.1 shows the statistical evidence that the collected data is reliable,
based on the fact that there is no difference between the two observation trials. Any
evaluation can be based on that proof. All t-test are carried using a paired samples
(assuming that the data collection comes from one place). We also use a standard
significance probability value .

Table 6.1: T-test 1

The rest of all statistical tables can be found in the Appendix Section. For simplicity of
the writing, herein we will only include the results of each individual T-test performed,
considering every VFX in the rendering of the water simulation, see Table 6.2.

Point of view:

Considering:

Goal:

H0:

H1:

α value:

First Run Second Run

5.569 5.629

0.008 0.006

5 5

4

-1.067

0.173

2.132

p(T<=t) one tail

t Critical one-tail

Step 4: Test conclusion

Because the p-value of 0.173 > α, we reject H1. The statistical

evidence does not suggest that there is any statistically

significant difference between the two trials - First Run and

Second Run

Mean

Variance

Observations

degree of freedom

t Stat

Step 2: Significance

Step 3: Test calculations

Using Paired two-sample T-test, because the data is mined

under the same circumstances, twice (same computer)

The data is reliable, not affected by system changes

The data is not reliable, affected by system changes

0.05

We want to confirm that the measured data is reliable

T-Test Nr. ONE

The case when all visual features of the water simulation are

turned on

Run hypothesis test to provide statistical evidence to detemine

the reliability of the data collected

Step 1: Hypothesis list

76 | P a g e

Table 6.2: Individual T-test for every VX feature.

Based on the previous data validation, we can now assume that every group of frames
we take (and moreover their average), would be statistically correct and can be used to
make evaluations, based on that set of data. For this purpose, we will use the average
values of both sets of data combined, regarding the computational time, measured in
milliseconds (Table 6.3).

Table 6.3: Average computational time.

The next data, we have collected, was based on the compiled version of the shader program
used for the rendering, namely vertex and fragment mathematical instructions count as
well as number of textures used (Table 6.4).

Reflection

Refraction

Fresnel

Flowmap

Light

Fog

Ice

Z-displacement

Edge blend No

0.468

0.051

No

No

No

No

No

No

No

No

0.180

0.451

0.387

0.051

0.139

0.200

T-test

(α=0.05)
Significance (p-value)

Significant

difference

Excluded

feature

0.219

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Average Computational Time (µs)

all ON

Reflection OFF

Refraction OFF

Fresnel OFF

Flowmap OFF

Light OFF

Fog OFF

Ice OFF

Z-displacement OFF

Edgeblend OFF

77 | P a g e

Table 6.4: vertex and fragment instruction/texture count

The second test, described in the test design was taken throughout the same data
validation procedure as in the previous/first test. Therefore, each measurement was
performed twice and t-tested in the same logical approach (Table 6.5), regarding grid size
(Table 6.6).

Table 6.5: T-test for validating the data taken with different water grid-size

Table 6.6: Avarage computational time based on grid size.

Observation vert instructions frag instructions vert tex frag tex

ALL FX ON 39 121 2 12

No REFL 39 119 2 11

No REFR 39 119 2 11

No Fresnel 39 102 2 8

No Flowmap 39 103 2 8

No Light 39 69 2 11

No Fog 39 113 2 12

No Ice 39 77 2 5

No Z-disp 34 121 0 12

No Edge 39 107 2 11

10x10

16x16

32x32

64x64

128x128 0.063 No

0.435 No

0.091 No

0.241 No

T-test

(α=0.05)
Grid Size Significance (p-value)

Significant

difference

0.173 No

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

10x10
(Unity3D)

16x16 32x32 64x64 128x128

Average Computational Time (µs)
based on grid size

78 | P a g e

Regarding the last measurement, namely objects in the scene (affected by the full physical
model we implemented), we took the average measurement of the rendering time of the
water, the objects and the reflection independently from each other and we compared
them, as seen in Table 6.7.

Table 6.7: Measuring separate tasks – water rendering, opaque objects rendering, reflection image rendering

7. Discussion

Throughout the development of this project, we managed to experiment with a number of
techniques. We will iterate throughout all of them based on the results we gathered in the
previous section.

 Reflection – this is probably one of the most complex feature when simulating water, as
it takes a great number of functions to accomplish (mostly on the CPU), as well as
creating a second rendering of the scene with a different point of view. Having a second
camera to render, means that the RTC reflection is depended on the number of objects
in the scene, more precisely – the vertex and poly count. Despite that, the reflection
image (in real-time) produces a high level of realism in the water rendering at the cost
of a steady computational time (Table 6.7 – reflection rendering). RTC reflection has less
to do with the actual shader program, as it only sends a single 2D texture data to be
included inside the fragment color, requiring a small fraction of mathematical functions
(Table 6.4 – fragment instructions). Having a real-time reflection in modern applications

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 object 3 objects 10 objects 50 objects

water rendering

object rendering

reflection rendering

79 | P a g e

is not impossible, based on the fact that the computational time needed to produce that
type of reflection is considerably small – around (Table 6.7-reflection rendering)

 Refraction – as mentioned earlier there are a few concepts, when creating refraction
and the one we used is significantly expensive – requiring around to compute. It
again produces just a single image data that is used inside the computation of the
fragment color. We have only tested the scenario of using a grabpass texture, provided
by Unity3D. Therefore, we cannot conclude which method for refraction will yield best
results, regarding performance. Based on our findings, we can assume that this
approach is providing significant and stable result. We have noticed one small problem,
connected more with the visual cue – objects on top of the water also get captured
inside the GrabPass image. For this reason, their color is also taken inside the refraction
computation, leading to appearance of artifacts. What we found interesting is that using
GrabPass, allows us to preserve the shadows, thrown from objects above the water
surface.

 Fresnel effect – the considerable decrease of computational time seen in Table 6.3 is
due to the fact that the Fresnel effect takes into consideration the view direction and
interpolated normal vectors, meaning that obtaining/computing these values per pixel
entry requires significant computational time – approximately . Using different
formula for computing the Fresnel effect yields different results, depending on the
needs (either more realistic or more artistic). In any case, computing the Fresnel effect
should be implemented per fragment basis, as the above stated variables connected
with its computation, are also used for the light computation. Thus, there is no need to
compute them twice (once inside the vertex shader and secondly in the fragment
shader). Disabling the Fresnel computation, reduces the mathematical instructions with
around 1/6 from the total count, which based on all shader implemented calculations is
within normal boundaries.

 Flow map – the results from Table 6.3 shows that excluding the flow map technique
from being computed, reduces the overall computational time by only . With
around the same number of mathematical instructions as the Fresnel effect, (around 20)
the use of this technique shows significantly good computational requirements. It is
based on the assumption that it is used for perturbing the main visual cue of the water –
forming visual movement of the water waves and fluids. Our initial expectations were
not met, as the algorithm of computing the flow mapping makes use of high number of
textures and especially an if-statement, which is computationally unwise solution, when
parallel processing is applied.

 Light – computing the light requires a great amount of mathematical calculations as
seen from Table 6.4 – around ½ from the total amount of the count. Despite that, light
computation doesn’t have any significant impact on the overall computational time –
less than . We assume this is due to the fact that computing light has nothing to do
with using external data (textures) unless bump map is used. In our case, the bump map
is computed inside the flow map technique. We should also consider the fact that our
model makes uses of significantly more math instructions than normally a light model
would use, as we produce two light calculations – one for flat surface and one for
bumped surface, producing more artistic results.

80 | P a g e

 Fog – just like light computation, fog computation does not use any external input,
rather a set of simple mathematical instructions – around 1/12 from the total amount,
leading to almost no difference in the overall computational time, when turned off.

 Ice – results in Table 6.3 and 6.4 indicate that this feature requires significant amount of
computational time – around , using almost half of the total amount of textures and
instructions used inside the fragment shader. This is due to the fact that we used a
blurred and smoothed transition between 2 stages of rendering the ice and snow cover,
when the water freezes. Reducing the number of used textures, (texture packing using
texture channels) should reduce the computational time. We should also consider the
fact that the ice computation includes the use of second normal map (different one
from the water normal map).

 Z-displacement – this feature has almost no impact on the GPU computational time, due
to the fact that its value is only being passed from the CPU and used inside the vertex
shader to translate the current model position of each vertex based on that value. The
reduction in the number of textures, used in Table 6.4, is due to the use of an image
data to randomize the passed between the CPU and GPU value.

 Edge blending – using edge blending shows a small reduction in the computational time
in Table 6.3. As up till now, everything rendered on the screen is entirely opaque, with
zero transparence (even the refraction technique does not use transparency). Having
edge blending requires the assumption that the fragment behind the current one is still
held somewhere in the memory, resulting in having 2 sets of information per fragment.
Despite that, this technique has significant output, regarding visual cueing.

Aside from the algorithms for rendering the water plane, we also measured external
factors, affecting the final output indirectly. Table 6.6 shows us results when we increased the
grid size, resulting in having higher amount of vertices to process. As far as this is concerned,
we believe that the amount of difference we received in the data (especially when using a 128
by 128 grid) is due to the amount of information passed from the vertex shader to the fragment
shader. In other words, more vertices mean more data to be interpolated between. At current
stage this cannot be optimized at all, as each set of data is used for specific purpose. However,
all of the images in this writing were produced using the Unity3D built-in 3D plane (grid 10x10),
which lead to significantly good results. Having higher grid is unnessecery, unless we want to
have more per-vertex operations. One such use is connected with the z-displacement, since it
operates by applying transformation of each vertex. Thus, higher grid is equal to more
distinguishable waves.

The second “external” testing provided us with important data about the interaction of
objects with the water. As mentioned earlier, this technique can end with extreme amount of
computational power required. But as we see in Table 6.7, having higher amount of objects
inside the scene has almost no impact on the computation of the water. The reflection
rendering has just a small increase, due to the fact that is a render texture – higher count of
objects rendered is equal to having higher amount of vertices to process. As regarding of the
decrease of the water rendering time, this can be explained simply by the fact that less

81 | P a g e

fragments from the water surface are being computed, due to the depth testing (the opaque
objects are covering portions of the water).

8. Conclusions

Our results indicated that producing a model of water simulation that relies on the flow
between visuals, physics and interaction can be achieved at significantly low computational
costs, allowing extra features to be added. We included one such, namely a transition of the
water states. Although it is more a visual simulation that can be executed at run-time, rather
than an actual life-like model, we think that even better and more optimized results can be
achieved in further investigation. We reached our goals of achieving high FPS value in a scene,
where water simulation was elicited, based on a number of techniques – reflection, refraction,
flow mapping and etc.

While other researches are focusing solely on a specific part of water simulation, we induced a
proposal for a flow between three different topics, namely visuals, physics and interaction. We
produced a final output based on a combination between these three key areas and even
further expanded the results by including the transition between water liquid and solid state.
The simplified solution we introduced in this paper can be utilized mainly inside gaming
applications or virtual environments, but we believe that a higher precision model can be
accomplished and used even for scientific purposes and simulations.

82 | P a g e

9. Future work

There is a set of areas that can be potentially optimized in order to increase the performance
even further. Also, some ideas were brought into consideration during the design process, but
were left out due to complexity. We will include this as a list of bullet points that can be further
worked onto:

 General optimization – currently we did not invest any significant time into lowering the
precision of the float variables, as well as ways to reduce math instructions.

 Optimization of the ice transition by reducing the number of textures mappings used,
could lead to much better results. Another algorithm for blurring the transition of the
water states should be used, rather than performing the same operation twice with
different arguments, as it is currently.

 Pack normal textures for ice and water into one texture, rather than using two
independent – using two channels per texture will provide enough data to reconstruct
the normals for each individual normal texture.

 Use real-time object data for creating the interaction texture – currently each
interaction with the water object has a decal representation, rendered inside the
interaction texture, rather that we can use projection of each object onto the
interaction plane and then use that data as interaction texture.

 Spray and Foam – additional FX used to create even higher impression of realism when
objects collide with the water surface.

 Liquid interaction – up to this point, we assumed that only solid objects can interact
with the water. If we consider an object that moves through space and it also applies
pixel drawing along that path, we can then use the rendered output in combination with
the interaction texture, resulting in a simulation of liquid being spilled inside the water
surface. We find this as quite a challenging and at the same time interesting problem.

 Tessellation – make full use of d3d11 library by including the tessellation shader to
produce more geometry at run time for better z-displacement waves and proper
shadow-light mapping. This would bring the results of this paper to much higher level.

 Underwater – rendering of the water when the camera position is below the water
surface plane. This would include the need of another set of techniques to be included –
for example different depths of field of the camera below and above the water and
other more complex methods.

 Post processing the most light glancing places of the water waves using star filter
technique (an extension of the bloom technique) that can produce extreme life-like
visual cues.

83 | P a g e

10. References

[1] Larsson,Thomas. (2002-03-13). “Scientific Foundations of
Computer Graphics”, Department of Computer
Engineering, Mälardalen University Sweden MRTC
Report, ISSN 1404-3041 ISRN MDH-MRTC-67/2002-1-SE.

[2] Kore, Dhruv; Gonzalez, Giancarlo; Sum, Jenny; Professor
Forbes, Angus “Introduction to Computer Graphics”. Fluid
simulation

[3] Golder, Dave. (2011-10-04). “CGI Visual FX: Great Leaps
Forward”, article

[4] Wong, David (2007-12-10). "A Gamer's
Manifesto". Cracked.com. Retrieved 2014-11-18.

[5] Thorn, Alan (2009-06-23). Cross Platform Game
Development. Jones & Bartlett Publishers.
p. 251. ISBN 0763782815.

[6] Harris, John (2007-09-26). "Game Design Essentials: 20
Open World Games - Air Fortress". Gamasutra.
Retrieved 2008-08-02.

[7] Wissmath, B, Weibel, D., & Groner, R. (2009). Dubbing or
Subtitling? Effects on Spatial Presence, Transportation,
Flow, and Enjoyment. Journal of Media Psychology 21 (3),
114-125.

[8] Martin, James (1965). Programming Real-time Computer
Systems. Englewood Cliffs, NJ: Prentice-Hall Inc.
p. 4.ISBN 013-730507-9.

[9] Jiawei Han; Micheline Kamber (2011-06-09). Data
Mining: Concepts and Techniques. Elsevier.
p. 159. ISBN 978-0-12-381480-7

[10] "Pygmalion's Spectacles". Project Gutenberg

[11] CGW, “CG-Revolution” (2012-10), Issue 6, Vol.35

[12] Caulfield, Brian. (2014-09-18). “How Our Maxwell GPUs
Debunked the Apollo 11 Conspiracy Theory”

[13] BRIDSON, R. 2009. “Fluid Simulation For Computer
Graphics”. A.K Peters.

[14] Batchelor, G.K. (1973), “An introduction to fluid dynamics”,
Cambridge University Press, pp. 71–73.

[15] Braley, Colin. “Fluid Simulation for Computer Graphics: A
Tutorial in Grid Based and Particle Based Methods”

[16] M. J. Gourlay. (2009). “Fluid simulation for video games
“(part 1-15)

[17] Chentanez, N. and Muller, M. (2011). “Real-time eulerian
water simulation using a restricted tall cell grid," in ACM
Transactions on Graphics (TOG), vol. 30, p. 82, ACM.

[18] Buchholz, J. (2008). “Matlab Particles 2.1”

[19] Finch, M. (2004) “GPU Gems: Chapter 1. Effective Water
Simulation from Physical Models”, NVIDIA Corporation

[20] Müller-Fischer, Matthias. (2008) “Fast Water Simulation
for Games. Using Height Fields.“ GDC

[21] Cords, H. (2009) “Real-Time Open water environments
with interacting objects”, Eurographics Workshop on
Natural Phenomena

[22] Christen, Martin. (2009-01-26). "Clockworkcoders
Tutorials: Vertex Attributes". Khronos Group.

[23] https://www.opengl.org/wiki/Main_Page

[24] Cg programming 2012
http://en.wikibooks.org/wiki/Cg_Programming/Program
mable_Graphics_Pipeline

[25] OpenGL official page 2013, “Swap Intervals”
https://www.opengl.org/wiki/Swap_Interval

[26] Fernando, R. (2005). “The Cg Tutorial – the definitive
guide to programmable real-time graphics”, NVidia
Corporation

[27] “Kinematic Analysis”.
http://en.wikipedia.org/wiki/Inverse_kinematics

[28] Why does the ocean appear blue? Is it because it reflects
the color of the sky?”(1999-10-21). Scientific American.

[29] “Water Transparency” RMB Environmental Laboratories,
Inc., article

[30] Lekner, John (1987). Theory of Reflection, of
Electromagnetic and Particle Waves.
Springer. ISBN 9789024734184.

[31] "Shoaling, Refraction, and Diffraction of Waves".
University of Delaware Center for Applied Coastal
Research. Retrieved 2009-07-23.

[32] Birn, Jeremy. “Digital Lighting & Rendering”

[33] Gietler, Scott. (2013). “Underwater Lighting
Fundamentals”

[34] Young, Jim. “Bubbles, Foam and Ocean Spray”

[35] What is Buoyancy?”(2008) MIT Sea Grant College
Massachusetts Institute of Technology

[36] Muldrew, Ken. (1997). “The Freezing Process”.

[37] Voorhies, D. (1994), “Reflection Vector Shading
Hardware”, SIGGRAPH, ACM Press

[38] Blinn, Jim and Newell, Martin. (1976). “Texture and
Reflection in Computer Generated Images”.
Communications of the ACM, Vol.19, No. 10, pp. 542−547.

[39] Greene, Ned. (1986-11). “Environment Mapping and Other
Applications of World Projections”. IEEE Computer
Graphics and Applications, Vol. 6, No. 11, pp. 21−30.

[40] Grootjans, Riemer. “3D Series 4: Advanced Terrain”,
http://www.riemers.net/

[41] Belyaev, V. (2003). “Real-time simulation of water
surface”, GraphiCon Conference pp.131-138

[43] Sousa T., (2005)“GPU Gems 2: Generic Refraction
Simulation” NVIDIA Corporation, pp. 295-305

[44] Wikipedia, “Householder transformation”

[45] A. Howard. (1994). Elementary Linear Algebra (7th ed.),
John Wiley & Sons, p. 155

[46] Sousa T., (2005)“GPU Gems 2: Generic Refraction
Simulation” NVIDIA Corporation, pp. 295-305

http://www.cracked.com/article_15748_a-gamers-manifesto.html
http://www.cracked.com/article_15748_a-gamers-manifesto.html
http://en.wikipedia.org/wiki/Cracked.com
http://books.google.nl/books?id=g0ulkmK5NWEC&dq=invisible+wall+game&source=gbs_navlinks_s
http://books.google.nl/books?id=g0ulkmK5NWEC&dq=invisible+wall+game&source=gbs_navlinks_s
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0763782815
http://www.gamasutra.com/view/feature/1902/game_design_essentials_20_open_.php
http://www.gamasutra.com/view/feature/1902/game_design_essentials_20_open_.php
http://en.wikipedia.org/wiki/Gamasutra
http://books.google.com/books/about/Programming_real_time_computer_systems.html?id=LgpKodW460oC
http://books.google.com/books/about/Programming_real_time_computer_systems.html?id=LgpKodW460oC
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/013-730507-9
http://books.google.com/books?id=pQws07tdpjoC&pg=PA159
http://books.google.com/books?id=pQws07tdpjoC&pg=PA159
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-12-381480-7
http://www.gutenberg.org/ebooks/22893
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/attributes.php
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/attributes.php
http://en.wikipedia.org/wiki/Khronos_Group
https://www.opengl.org/wiki/Main_Page
http://en.wikibooks.org/wiki/Cg_Programming/Programmable_Graphics_Pipeline
http://en.wikibooks.org/wiki/Cg_Programming/Programmable_Graphics_Pipeline
https://www.opengl.org/wiki/Swap_Interval
http://en.wikipedia.org/wiki/Inverse_kinematics
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9789024734184
http://www.coastal.udel.edu/ngs/waves.html
http://www.riemers.net/

84 | P a g e

[47] Wikipedia “Dispersion (optics)”
http://en.wikipedia.org/wiki/Dispersion_%28optics%29

[48] K. Mitchell. “GPU Gems 3: Volumetric Light Scattering as a
Post-Process”,

[49] Wikipedia “Stencil buffer”

[50] Unity Documentation 2015, “ShaderLab Syntax: Stencil”,
Unity Technologies, http://docs.unity3d.com/Manual/SL-
Stencil.html

[51] Lengyel, E. (2005) “Oblique View Frustrum Depth
Projection and Clipping”, Journal of Game Development,
Vol. 1, No. 2, Charles River Media, pp 5-16

[52] Wikibooks (2012) “CG programing: Computing the
projection Matrix”,
http://en.wikibooks.org/wiki/Cg_Programming/Vertex_
Transformations

[53] Birn, J. (2013) “Digital Lighting & Rendering (3rd Edition)”

[54] Grootjans, R. “3D Series 4: Advanced Terrain”,
http://www.riemers.net/

[55] Schlick, C. (1994) “An inexpensive BRDF Model for
Physically-based Rendering”, Computer Graphics forum 13
: 233

[56] Wolfgang, F. “ShaderX2: Shader Programming Tips & Trics
with DirectX 9”

[57] Gomez, Miguel. (2000)"Interactive Simulation of Water
Surfaces" in "Game Programming Gems", ed. Mark
DeLoura. Charles River Media, p 187-199

[58] Max N., Becker B. (1995). “Flow visualization using moving
textures”, Proceeding of the ICASW/LaRC Symposium on
Visualizing Time-varying Data, 77-87

[59] Vlachos, A. (2010) “Advances in Real_time Rendering in 3D
Graphics and Games”, Parts I and II, SIGGRAPH

[60] Bell, John & Johnson, Andy. (2005) “Lightning and
Shading”.

[61] F.Kane (2014), “3D Water Effects”,
http://gamasutra.com/

[62] Wikipedia “Buoyancy”
http://en.wikipedia.org/wiki/Buoyancy

[63] Lorensen, W. (1987), “Marching Cubes: A high resolution
3D surface construction algorithm”, In Computer Graphics,
Vol.21 Nr.4

[64] Baerentzen, J. “Isosurface polygonization”
http://www2.compute.dtu.dk/~janba/

[65] Carlson M., Mucha P. and Turk G. (2004). “Rigid fluid:
animating the interplay between rigid bodies and fluid," in
ACM Transactions on Graphics (TOG), vol. 23, p. 377{384,
ACM.

[66] Muller-Fisher, M. (2008), “Fast Water Simulation for
Games Using Height Fields”, Games Developers Conference
2008

[67] Elias, H. “2D Water”,
http://freespace.virgin.net/hugo.elias/graphics/x_water.
htm

[68] Xiong, Y. (2013), “Fast and stable simulation of virtual
water scenes with interactions”, Virtual Reality 17, p. 77-
88

[69] Laramee, R. (2006), “Texture Advection on Stream
Surfaces: A novel hybrid visualization applied to CFD
Simulation Results”, Eurographics 20012

[70] Wijk, V. (2002), “Image based flow visualization”, ACM
Transactions on Grpahics 21, p. 745-754

[71] Dholakia, R. “Interactivity and revisits to websites: a
theoretical framework”

[72] Craitoiu, S. (2014). “Create a fog shader”, in2gpu.com

[73] New Hampshire Lakes Association (2011). “Why do rivers
take longer to freeze than lakes?” www.nhlakes.org

http://en.wikipedia.org/wiki/Dispersion_%28optics%29
http://docs.unity3d.com/Manual/SL-Stencil.html
http://docs.unity3d.com/Manual/SL-Stencil.html
http://en.wikibooks.org/wiki/Cg_Programming/Vertex_Transformations
http://en.wikibooks.org/wiki/Cg_Programming/Vertex_Transformations
http://www.riemers.net/
http://gamasutra.com/
http://en.wikipedia.org/wiki/Buoyancy
http://www2.compute.dtu.dk/~janba/
http://freespace.virgin.net/hugo.elias/graphics/x_water.htm
http://freespace.virgin.net/hugo.elias/graphics/x_water.htm
http://www.nhlakes.org/

85 | P a g e

11. Appendix

11.1. Water shader code

 Inspector controlling parameters

 Vertex input/output structure declaration

86 | P a g e

 Vertex program

 Fragment program

87 | P a g e

88 | P a g e

11.2. Water reflection code

89 | P a g e

11.3. Water physics code

90 | P a g e

11.4. Water Interaction code

91 | P a g e

11.5. Collected performance data
 Turning on/off individual features

 Changing grid-size of the water surface

1 2 3 4 5 6

All FX ON

1st run RTC (µs) 5.624 5.496 5.601 5.543 5.491 5.713

2nd run RTC (µs) 5.818 5.671 5.571 5.519 5.708 5.674

No REFL

1st run RTC (µs) 5.533 5.447 5.447 5.544 5.615 5.503

2nd run RTC (µs) 5.412 5.53 5.369 5.616 5.359 5.414

No REFR

1st run RTC (µs) 4.905 4.639 4.724 4.703 4.702 4.693

2nd run RTC (µs) 4.519 4.654 4.727 4.727 4.671 4.798

No Fresnel

1st run RTC (µs) 3.393 3.313 3.403 3.382 3.391 3.618

2nd run RTC (µs) 3.39 3.718 3.417 3.399 3.316 3.33

No Flowmap

1st run RTC (µs) 4.312 4.352 4.302 4.319 4.298 4.391

2nd run RTC (µs) 4.382 4.456 4.32 4.226 4.341 4.25

No Light

1st run RTC (µs) 4.952 4.852 4.936 4.858 4.91 4.877

2nd run RTC (µs) 4.857 4.806 4.784 4.832 4.864 4.875

No Fog

1st run RTC (µs) 5.514 5.588 5.58 5.486 5.493 5.588

2nd run RTC (µs) 5.555 5.56 5.548 5.643 5.708 5.596

No Ice

1st run RTC (µs) 2.723 2.812 2.796 2.814 2.779 2.73

2nd run RTC (µs) 2.752 2.757 2.768 2.772 2.813 2.742

No Z-move

1st run RTC (µs) 5.604 5.502 5.604 5.513 5.782 5.606

2nd run RTC (µs) 5.58 5.59 5.697 5.566 5.544 5.584

NO Edge blend

1st run RTC (µs) 5.346 5.389 5.504 5.303 5.342 5.308

2nd run RTC (µs) 5.332 5.169 5.335 5.279 5.263 5.328

Iteration
Inclusion

Grid Size average

7.195 7.067 7.172 7.114 7.062 7.284

7.389 7.242 7.142 7.09 7.279 7.245

9.937 9.930 10.170 9.951 9.936 10.127

10.515 10.767 10.754 9.613 9.514 9.705

9.945 9.922 10.425 10.224 10.738 10.392

10.063 10.043 9.968 10.117 10.169 10.353

11.377 10.876 10.975 10.745 10.968 10.960

11.376 11.289 10.830 11.352 10.859 10.816

18.700 18.559 18.387 18.427 18.709 18.241

18.721 18.905 18.822 18.983 18.381 18.990
128x128

4.959

7.190

10.077

10.197

11.035

18.652 7.436

1.571

4.603

4.756

64x64

32x32

16x16

10x10

(Unity3D)

92 | P a g e

 T-tests for validating information

ALL FX ON - no signif diff NO REFLECTION - no signif diff

5.624 5.818 5.533 5.412

Mean 5.569 5.629 Mean 5.511 5.458

Variance 0.008 0.006 Variance 0.005 0.012

Observations 5 5 Observations 5 5

Pearson Correlation -0.059 Pearson Correlation -0.115

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 4

t Stat -1.067 t Stat 0.862

P(T<=t) one-tail 0.173 P(T<=t) one-tail 0.219

t Critical one-tail 2.132 t Critical one-tail 2.132

P(T<=t) two-tail 0.346 P(T<=t) two-tail 0.437

t Critical two-tail 2.776 t Critical two-tail 2.776

NO REFRACTION - no signif diff Fresnel - no signif diff

4.905 4.519 3.393 3.39

Mean 4.692 4.715 Mean 3.421 3.436

Variance 0.001 0.003 Variance 0.013 0.027

Observations 5 5 Observations 5 5

Pearson Correlation 0.470 Pearson Correlation -0.609

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 4

t Stat -1.032 t Stat -0.130

P(T<=t) one-tail 0.180 P(T<=t) one-tail 0.451

t Critical one-tail 2.132 t Critical one-tail 2.132

P(T<=t) two-tail 0.360 P(T<=t) two-tail 0.903

t Critical two-tail 2.776 t Critical two-tail 2.776

Flow map - no signif diff Light - no signif diff

4.312 4.382 4.952 4.857

Mean 4.332 4.319 Mean 4.887 4.832

Variance 0.002 0.008 Variance 0.001 0.001

Observations 5 5 Observations 5 5

Pearson Correlation -0.064 Pearson Correlation -0.208

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 4

t Stat 0.306 t Stat 2.116

P(T<=t) one-tail 0.387 P(T<=t) one-tail 0.051

t Critical one-tail 2.132 t Critical one-tail 2.132

P(T<=t) two-tail 0.775 P(T<=t) two-tail 0.102

t Critical two-tail 2.776 t Critical two-tail 2.776

Fog - no signif diff Ice - no signif diff

5.514 5.555 2.723 2.752

Mean 5.547 5.611 Mean 2.786 2.77

Variance 0.003 0.004 Variance 0.001 7E-04

Observations 5 5 Observations 5 5

Pearson Correlation -0.866 Pearson Correlation 0.264

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 4

t Stat -1.252 t Stat 0.942

P(T<=t) one-tail 0.139 P(T<=t) one-tail 0.2

t Critical one-tail 2.132 t Critical one-tail 2.132

P(T<=t) two-tail 0.279 P(T<=t) two-tail 0.399

t Critical two-tail 2.776 t Critical two-tail 2.776

Z-displacement - no signif diff Edge blend - no signif diff

5.604 5.58 5.346 5.332

Mean 5.601 5.596 Mean 5.369 5.275

Variance 0.013 0.003 Variance 0.007 0.004

Observations 5 5 Observations 5 5

Pearson Correlation -0.224 Pearson Correlation 0.127

Hypothesized Mean Difference 0 Hypothesized Mean Difference 0

df 4 df 4

t Stat 0.084 t Stat 2.121

P(T<=t) one-tail 0.468 P(T<=t) one-tail 0.051

t Critical one-tail 2.132 t Critical one-tail 2.132

P(T<=t) two-tail 0.937 P(T<=t) two-tail 0.101

t Critical two-tail 2.776 t Critical two-tail 2.776

93 | P a g e

 Measuring separate renderings

Sphere num. water spheres reflection

4.597 2.825 1.379

4.606 2.811 1.353

4.568 3.074 1.499

4.666 2.823 1.351

4.769 2.922 1.338

4.768 2.803 1.397

average 4.662 2.876 1.386

4.35 2.933 1.314

4.328 2.771 1.322

4.393 2.934 1.354

4.367 2.787 1.294

4.367 2.778 1.378

4.504 2.935 1.271

average 4.385 2.856 1.322

4.347 2.923 1.357

4.231 2.909 1.318

4.174 2.81 1.346

4.266 2.873 1.331

4.2 2.871 1.324

4.348 3.081 1.374

average 4.261 2.911 1.342

4.306 3.505 1.639

4.505 4.252 1.493

4.106 3.546 1.503

4.286 3.619 1.491

4.227 4.042 1.267

4.481 3.538 1.37

average 4.319 3.750 1.461

10

50

Rendering

3

1

