
A Low Energy Realizable
Model for Linear Phase Filtering

- A block processing technique -

Master Thesis
Troels Bastholm

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg



Copyright c© Aalborg University 2012



Department of Electronic Systems
Fredrik Bajers Vej 7
DK-9220 Aalborg Ø

http://es.aau.dk

Title:
A Low Energy Realizable Model for Lin-
ear Phase Filtering

Theme:
Signal Processing

Project Period:
Fall Semester 2014

Project Group:
Group 1078

Participant(s):
Troels Bastholm

Supervisor(s):
Peter Koch

Copies: 2

Page Numbers: 79

Date of Completion:
April 13, 2015

Abstract:

This master thesis covers an analysis
and design of a forward-backward fil-
tering model to achieve linear phase.
The model is realized by the use of a
block processing technique. An analyti-
cal derivation of the model is carried out
and described in details. Further the
model is analyzed to conclude how the
exact amplitude response of the model
should be found. The model is evalu-
ated against a Folded FIR filter which
is seen as a reference filter. It is further
found that the more narrow the tran-
sition band is bigger the advantages to
the forward-backward filtering model is
in terms of mathematical operations.
Fixed-point filters for both methods
were found such both filters comply
with the same amplitude specification.
RTL designs of the two models were de-
veloped in order to be able to estimate
the energy consumption. It was found
that the energy consumption could be
lowered by 25 % with the use of the
forward-backward filtering model.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

http://es.aau.dk




Contents

Preface ix

1 Introduction 1
1.1 Digital Filter Design Basics . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Phase Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Zero phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Linear Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Non-linear Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Non-causal Forward-backward Filtering . . . . . . . . . . . . . . . . . 6
1.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Hardware Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Filter Structures 11
2.1 Realizable Model of Forward-Backward Filtering . . . . . . . . . . . . 11

2.1.1 IIR truncator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Forward-Backward filtering model . . . . . . . . . . . . . . . . 14

2.2 Structure of Reference filter . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Model Analysis 23
3.1 Mathematical Operations per Sample . . . . . . . . . . . . . . . . . . 23

3.1.1 Forward-Backward filtering model . . . . . . . . . . . . . . . . 23
3.1.2 Reference filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Comparison based on filter order . . . . . . . . . . . . . . . . . 24

3.2 Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Floating-Point Simulation . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Numerical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Zero Input Limit Cycle Oscillation . . . . . . . . . . . . . . . . . . . . 32
3.4 Amplitude Response Discussion . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Phase Response Discussion . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Group Delay Considerations . . . . . . . . . . . . . . . . . . . . . . . . 38

v



vi Contents

4 Fixed-Point Filter Design and Simulation 41
4.1 Design Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Filter Design for the Forward-Backward Filtering Model . . . . . . . . 42

4.2.1 Fixed-Point Simulation of Forward Backward Filtering Model . 43
4.3 Design of Reference Filter . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Fixed Point Simulation of The Reference filter . . . . . . . . . 45

5 System Design 47
5.1 Design Constraints and Abstractions Levels . . . . . . . . . . . . . . . 47
5.2 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Processor Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Forward-Backward Filtering Model . . . . . . . . . . . . . . . . 51
5.3.2 Reference Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Energy Consumption Estimation . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 63
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

A Complexity Test 67

B Simulation of Model in Matlab 69
B.1 Floating-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C Design of Filters using Matlab 71
C.1 Fixed-Point Filter for the FBF Model . . . . . . . . . . . . . . . . . . 71
C.2 Reference Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D Impulse Response and Block Length Considerations 75

E Implementation of bidirectional Shift Register in VHDL 77

F Logic Elements 79



Contents vii

List of Acronyms
ADC Analog to Digital Converter

ASAP As-Soon-As-Possible

ASIC Application Specific Integrated Circuit

DFG Data Flow Graph

DSP Digital Signal Processing

DTFT Discrete Time Fourier Transform

DFT Discrete Fourier Transform

FBF Forward-Backward Filtering

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSMD Final State Machine with Data path

FU Functional Unit

IIR Infinite Impulse Response

LIFO Last In First Out

LE Logic Elements

LTI Linear Time-Invariant

PG Precedence Graph

RAM Random-Access Memory

RTL Register Transfer Level

SFG Signal-Flow Graph

SNR Signal to Noise Ratio

VHDL VHSIC Hardware Description Language



viii Contents



Preface

This is the master thesis of Troels Bastholm, Signal Processing and Computing group
14GR1078 at Aalborg University.

Throughout the report chapters, sections, figures, tables are referenced by type
and then the number, e.g. figure 3 in chapter 2 is referenced “figure 2.3”. Equations
are referenced likewise with a parenthesis, e.g. equation 3 chapter 2 is referenced
“equation 2.3”. Citations are in IEEE style, e.g. [7, p. 102] refers to source number
7 in the reference list page 102.

All software developed in this project along with an electronic copy of the report is
available on the attached appendix-CD. The developed simulations are implemented
in Matlab, and require the fixed-point designer package. The VHDL code can be
synthesized in the Altera Quartus II design suite. A referenced to code on the
appendix-CD is done with stating the path on the CD as e.g. this reference to the
matlab folder ./Matlab.

The author would like to give a special thanks to Peter Koch for supervision and
inputs during the project.

Aalborg University, April 13, 2015

Troels Bastholm
<tbasth09@student.aau.dk>

ix

./Matlab


x Preface



Chapter 1

Introduction

Digital Signal Processing (DSP) is today applied in a wide range of applications
within science and engineering. These applications are more and more often battery
powered devices making energy consumption is a critical parameter. In many of these
applications, linear phase filters are used. These filters are designed as Finite Impulse
Response (FIR) filters, which consumes more than Infinite Impulse Response (IIR)
filters. The reason to use a FIR filter is because a causal IIR filter is unable to
have a linear phase [8, p. 236]. This is a very complex problem and recent studies
have shown how an IIR filter can be designed to have approximately linear phase by
using different optimization methods, [7, 6, 12]. Each method implies different filter
constraints to the amplitude response and they all share that they only approximate
a linear phase.

In this project a real time implementation with the use of IIR filters with no
constraints to the frequency response is designed and can replace any linear phase FIR
filter. To achieve linear phase with any IIR filter, a filtering method called forward-
backward filtering can be applied. The method is also known as bidirectional filtering
or zero phase filtering, but in this project always mentioned as Forward-Backward
Filtering (FBF). In [11] a method suggests how to implement FBF with the use of
IIR filters by using block processing, which will be mentioned as the FBF model. The
project will evaluate the FBF model against a FIR filter as a reference. Both filter’s
fixed point implementations have to comply with the same amplitude specification.
Following objectives define the scope of this project.

Objectives:
1. Analyzing the FBF model proposed by [11].

2. Design a realizable fixed point systems of the FBF model, and the reference
filter which is a FIR filter.

3. Compare FBF model by the use of IIR filters with the reference filter to deter-
mine in which cases the FBF model consumes less energy when implemented
on a fixed-point platform, and how much energy that can be saved.

1



2 Chapter 1. Introduction

This project does not consider any specific application, but is a study on how to
implement a low power linear phase filter. For the rest of this chapter the parameters
in filter design will be clarified and the relevant theory of linear phase filtering is
described. Then, in section 1.3 FBF is discussed in theory and in terms of its
frequency response.

1.1 Digital Filter Design Basics
The following section gives a brief introduction of digital filter design and the pa-
rameters. A digital filter extracts the relevant information of a signal. It is done by
feeding the input x[n] sample by sample to a filter, generating the output y[n]. The
filter has modified the information of the input according to the filter specifications
which also results in a phase shift. The core of this project is to design a linear phase
filter which uses as little energy as possible. Since no application is connected to the
project, a case-study of an low-pass filter is considered. When designing a low-pass
filter, the cut-off frequency is used to construct the ideal frequency response, D(ω).
This frequency response is approximated by the transfer function H(ω) with is found
for an IIR or FIR filter. A digital filter is always periodic for every 2π radians of
the variable ω, and the frequency region is usually defined from [−π, π]. A filter
with only real coefficients has a frequency response, which is conjugate-symmetric
meaning that D∗(ω) = D(−ω). If a filter have conjugate-symmetric frequency re-
sponse, it is sufficient to define the positive frequencies. In a simple case study an
ideal low-pass filter with zero phase has the following frequency response:

D(ω) =
{

1, |ω| < ωc
0, ωc < |ω| < π

(1.1)

where ωc is the cut-off frequency, and is corresponding to the transition between one
and zero in the ideal amplitude response of the low-pass filter. The ideal frequency
response from equation (1.1) is plotted in figure 1.1, and it is clear to see the sharp
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Figure 1.1: Ideal frequency response for a low-pass filter D(ω).
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Figure 1.2: The figure shows the design template with parameters for a one sided amplitude
response of a low-pass filter.[8, p. 230]

cut-off edge. An approximation of this transfer function in discrete time can be de-
signed using a digital filter. To design this approximation different design methods
are available. These design methods use some constraints to fit the amplitude re-
sponse of the filters transfer function. These design constraints can be seen in figure
1.2. The design constraints for the three bands in a low-pass filter are defined as
following:

• The passband has a bandwidth ωp. This is the frequency range where the
needed information is located. Maximum passband ripple δp defines how much
the filter can diverge from the desired gain in the passband region.

• The transition has a bandwidth of ωs − ωp. The ideal cut-off characteristic is
unrealizable but the transition band specifies where the attenuation should be
changed between passband ripple and stopband attenuation. Cut-off frequency
ωc is the -3 dB point in amplitude response and this point is normally between
ωp and ωs depending on the size of the ripple in the filter.

• The stopband has a bandwidth of π − ωs. This is the frequency range where
no information is neither wanted nor needed. Stopband attenuation δs defines
the maximum stopband attenuation.

These constraints are used and have to be taken into account when a filter is designed.
A filter which is suitable for the design template in figure 1.2 has a transfer function
H(ω). The next objective is to fit either a FIR or an IIR filter design into the
template. Normally the design method within the chosen filter type with lowest
order filter is desired in order to have the lowest number of mathematical operations.
The description in this sections is based on the material in [8].

These design methods only consider the specification of the amplitude response
and have no constraints on the phase response. This is the traditional method to



4 Chapter 1. Introduction

design a filter which complies to the required specifications, but if some constraints
also are made on the phase, these should be considered in the design phase as well.
There are three types of phase response. Linear phase, non-linear phase and zero
phase. The following subsections will describe these characteristics in further details.

1.2 Phase Response
As previous mentioned, a filter can have three types of phase responses. One example
of each of these types are listed in figure 1.3, including impulse response, phase re-
sponse and pulse response. A phase response determines the phase shift at frequency
ω from the input to the output of a transfer function. The phase response is defined
as the argument of the frequency response.

θ(ω) = arg H(ejω) = arctan

(
=(H(ejω))
<(H(ejω))

)
, |ω| < π (1.2)

The phase shift in radians is given by θ(ω) in equation (1.2), where H(ejω) is the
Frequency response. The derivative of θ(ω) is the slope of the function and will
describe the group delay of the transfer function. [10, p.257]

τgd(ω) = −dθ(ω)
dω (1.3)

These functions will have different characteristics depending on the transfer function
and will be described further in the following.

1.2.1 Zero phase

As the name implies a filter with zero phase introduces zero shift, which also gives
it a constant group delay of zero. As seen in figure 1.3a it requires a symmetric
impulse response around sample of index number zero. A filter with this kind of
impulse response is impossible to implement in a real-time system since it is non-
causal. A non-causal system’s output depends on future input and can therefore
only be applied with post processing filters. If a zero phase system is applied as
post processing the phase response will be as in figure 1.3b. The pulse response in
figure 1.3c display what happens when a signal takes a positive step followed after
50 samples by a negative step. It should be noted that for a zero phase filter with a
symmetric impulse response, the rising edge is equal to the time revered falling edge.

1.2.2 Linear Phase

A filter is said to have linear phase when all frequency components have the same
group delay. This results in a phase response like the one showed in figure 1.3e. A
linear phase response is achieved by having a filter with an even or odd symmetric
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Figure 1.3: Impulse response, phase response and pulse response are shown with an example of
each type of filter; zero phase, linear phase and non-linear phase. The impulse response for zero
phase has a rectangular windows applied for sample number [-25; 25] and the linear phase impulse
response has a rectangular window applied for sample number [0; 50]. The non-linear phase impulse
response has an identical window applied as the linear, with a non-symmetric around sample index
number 25. [14, p. 329].
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impulse response, even symmetry is seen in figure 1.3d and is identical to figure
1.3a with the exception that time has been shifted, so all non-zero values are on the
positive side of time zero. This method gives the same edges as on the zero phase
pulse response, but shifted with the same number of samples as the impulse response.
This is shown in figure 1.3f. Comparing linear phase system with zero phase system,
it is possible to see that zero phase system is a special case of linear phase system.
A filter with these characteristics can be implemented as a FIR filter, if the system
is causal as in this example.

1.2.3 Non-linear Phase

Non-linear phase is achieved when the group delay is no longer constant over the
frequency. An example of how a non-symmetric impulse response of a non-linear
phase system is showed in figure 1.3g. This makes the phase response non-linear
as showed in figure 1.3h where the line is no longer straight, and at last the pulse
response in figure 1.3i, and it is not symmetric as the previous. Both FIR and IIR
filters can result in these characteristics.

The description in this sections is based on the material in [14, p. 328]

1.3 Non-causal Forward-backward Filtering
A method to achieve zero phase is the FBF process. Forward-backward filtering
consist of a cascade with two identical filters and time reversals. Since the process
consist of time reversal processes, it is non-causal and can only be applied on finite
number of samples as post processing. In figure 1.4 a block diagram for the filtering

Time 
reversal

H(e jω )
Time 

reversal
H(e jω )

a[n] b[n] c[n]x[n] y[n]

H*(e jω )

Figure 1.4: Block diagram of the FBF processes, where a[n] and y[n] is equal to x[-n] and c[-n]
respectively, and H(ejω) is identical filters.

process is shown. To get an idea of the performance of this filter, the transfer
function is derived. By use of the time reversal property of the Discrete Time Fourier
Transform (DTFT) then if x[n] DT F T====⇒ X(ejω), then x[−n] DT F T====⇒ X∗(ejω). Then we
can derive following:



1.4. Problem statement 7

A(ejω) = X∗(ejω) (1.4)
B(ejω) = A(ejω)H(ejω) = X∗(ejω)H(ejω) (1.5)
C(ejω) = B∗(ejω) = X(ejω)H∗(ejω) (1.6)
Y (ejω) = C(ejω)H(ejω) = X(ejω)H∗(ejω)H(ejω) (1.7)
Y (ejω)
X(ejω) = H∗(ejω)H(ejω) (1.8)

In equation (1.8) the transfer function for FBF is given which is the effective transfer
function Heff (ejω) of the processes from the input x[n] to the output y[n] seen in
figure 1.4. A complex number multiplied by its own complex conjugate always results
in a real number, thus

Heff (ejω) = H∗(ejω)H(ejω) = |H(ejω)|2 (1.9)

As it can be seen in equation (1.9) the effective frequency response of FBF equals
the squared amplitude response of the used filters. The squared amplitude response
yields the double gain in dB due to logarithmic calculation rules. In the design
process the amplitude response |H(ejω)| should therefore only have half the gain
required of the effective amplitude response Heff (ejω). The effective frequency re-
sponse describes input/output relation for FBF. This method can be applied with
the use of any Linear Time-Invariant (LTI) filter, and no more restrictions is added
to the design method.

1.4 Problem statement
Above the non-causal FBF was defined. This method can be applied with a block
processing method as [11] proposes, which is called the FBF model. This model
claims to have a lower number of multiplications when performing linear phase fil-
tering than an ordinary FIR filter. The focus during this project will be to analyze
the FBF model that is using a block-wise filtering approach. The target of the project
will be to se how much energy can be saved by using this method. As mentioned
above, the FBF model is evaluated against a reference filter that will be a FIR filter.

In order to create an overview of the project the A3 model is shown in figure 1.5.
The model describes a general approach where the three steps visualize the design
process. In the application circle some specifications are given. These specifications
can be mapped to any algorithm that comply with the given design specifications.
Each of the Algorithms can then be mapped on to a architecture which can execute
the algorithm. The three design spaces describe the A3 model. In figure 1.5 it can be
seen that one set of specifications is mapped onto two different algorithms. In this
project these two algorithms is the FBF model and the reference filter. These two
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Linear Phase

Filter

FBF
FIR

Application Algorithm

Architecture

Figure 1.5: The A3 model describing the mapping from Application to Architecture.

algorithms can be mapped in various ways to a fixed-point platform. It is generally
known as a one-to-many mapping but for this project the mapping will be conducted
by considering energy consumption in the mapping process. This means that the
result will be two implementations that can be evaluated against each other in terms
of the energy consumption.

1.4.1 Hardware Basis

The target platform for the two implementations will be an Altera Cyclone II 2C35
FPGA [5]. This platform includes 35 embedded 18-bit multipliers that can be used
for testing the implementation. The target would be to map the final result to an
Application Specific Integrated Circuit (ASIC) but the with the FPGA it is possible
to describe the implementation in terms of logic elements. The Field Programmable
Gate Array (FPGA) contains 33216 Logic Elements (LE)s or also known as logic
cells, but Altera mentions them as LEs. Each LE can be programmed to perform the
needed 1 bit operation to achieve the Register Transfer Level (RTL) specification that
is designed in the implementation. Sine no application is connected to the project,
it is chosen to use the constraints from the Analog to Digital Converter (ADC) on
the Altera DE2 kit and the 50 MHz oscillator. For the ADC it is chosen to use the
44.1 kHz sample rate which is a typical sample rate for music.
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1.5 Thesis Outline
This section aims to give a clear overview of the project structure.

Chapter 2:

Description of the FBF model and an in-depth analytic derivation of the FBF
model, including simple examples that clarifies the theory. Afterwards the
reference filter is defined.

Chapter 3:

An analysis of the FBF model in terms of number of required mathematical
operations. Further a verification of the frequency response is discussed and it
is concluded how to determine the block length for the FBF model.

Chapter 4:

To design the reference filter coefficients and the IIR filter coefficients for use
in FBF model a design template is found on base of the knowledge gained in
chapter 3. The filter coefficients are found and the SNR to the two models are
found.

Chapter 5:

In this chapter the model is mapped onto a RTL design by using precedence
graphs where the scheduling is specified. Both models are defined such that
all needed registers and their executing frequency is known. This information
is used to give an estimate of energy consumption of each model which then is
compared.
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Chapter 2

Filter Structures

Before going into details about the filter design for the real-time implementations of
the two filters, some more knowledge on the FBF method is needed. This chapter
aims to give an introduction to a realizable model of the FBF method with the use
of IIR filters by [11]. This realizable model gives some inherent drawbacks to the
frequency response as compared to the post processing method described section 1.3.
These side effects will be described in the following.

2.1 Realizable Model of Forward-Backward Filtering

The realizable model of FBF proposed by [11] is a block-wise implementation. The
block-wise implementation have a block length L, and each block is filtered by an IIR
filter. In theory an IIR filter have, as the name implies, an infinite impulse response.
In this case the filter will be implemented on a fixed-point platform resulting in a
finite word length for coefficients, state variables, and input/output. This results in
a finite impulse response since the impulse response at some point will decay to a
value less than the precision chosen for the fixed-point system. When the impulse
response decays to a value less than the fixed-point precision, the output will be
truncated to zero. Unfortunately this is not always the case since fixed-point IIR
filters can suffer from what is known as zero input limit cycles, which is explained
further in section 3.3. At this point the length of this impulse response of the IIR
filters is said to be finite and defined as length L. To describe a block diagram for
this implementation, the system needs to be derived analytically. This is done in the
next two sections where an IIR truncator is derived analytically in the first section
and the Forward-backward filtering model in the second.

2.1.1 IIR truncator

Before going into the derivation of the FBF model, the overlap-add method needs to
be described, since it is a key element for the final system. The overlap-add method
is based on filters of finite responses and, based on previous discussion, the method

11
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is used with IIR filters. The method is used to develop an IIR truncator in figure
2.2, which is a basic element in the final model in figure 2.9. The input for the
overlap-add method is divided into K blocks and definition of the input signal x[n]
in block number k will be defined as follows:

x[n] :=
∞∑

k=0
xk[n] (2.1)

xk[n] :=
{
x[n] kL ≤ n ≤ (k + 1)L− 1
0 otherwise

(2.2)

In equation (2.1) and (2.2) x[n] is now defined in block of data. The previous defini-
tion can be used to describe the block-wise input xk[n], as seen in figure 2.1. Since

0 1 2 3 4 5 6 7 8 9
0

0.5

1
a. Input x[n]

0 2 4 6 8
0

0.5

1

b. First input block x
k
[n]

0 2 4 6 8
0

0.5

1

c. Second input block x
k+1

[n]

Figure 2.1: Example of using equation (2.2) with a block length of L=5 samples. The plots have
sample number n on the x-axis and amplitude on the y-axis.

the impulse response have length L, a convolution of input xk[n] with the impulse
response h[n], will result in a corresponding output section of length less than or
equal to 2L− 1. Equation (2.3) defines the standard convolution of a finite impulse
response filter. With use of the additivity property of the superposition principle,
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equation (2.4) defines the contribution from each of the blocks [10, p. 18].

y[n] =
n∑

m=n−L

x[m]h[n−m] (2.3)

y[n] =
kL−1∑

m=n−L+1
xk−1[m]h[n−m] +

n∑
m=kL

xk[m]h[n−m] (2.4)

y[n] = yk−1,tail[n] + yk,lead[n] (2.5)
yk[n] = yk,tail[n] + yk,lead[n] (2.6)

Equation (2.5) describes the same as equation (2.4) just with a shorter notation for
further use. Furthermore, equation (2.5) specifies the "Leading response" denoted
yk,lead[n] and the "Tailing response" denoted with yk,tail[n]. Equation (2.6) describes
the output of one single input block filtered in the system, while equation (2.5)
describes the output for one block of data fed to the input. A block diagram rep-

H(z)

H(z)

x[n] y[n]

L

L

+

RSTTOP

RSTBOT

Figure 2.2: Block diagram of overlap-add IIR truncator, where H(z) is identical filters with finite
impulse response of length less than or equal to L. The gates will switch for every L samples and
shown in BOT position. [11]

resenting equation (2.5) can be seen in figure 2.2. The block diagram shows that
the input is split into blocks of length L, which are filtered separately and combined
into one output. H(z) are identical filters with an impulse response of length less
than or equal to L. If identical IIR filters and infinite word length is used for this
structure, the impulse will be infinite. If the impulse response of such IIR filter is

RSTBOT

RSTTOP

Switch TOPBOTBOT TOP

Figure 2.3: Timing diagram for overlap-add IIR truncator in figure 2.2. Switch refers to how x[n]
is fed to either the top filter or the bottom filter. [11]
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truncated by resetting all internal registers after L samples of zero inputs, the filter
will no longer behave as an LTI filter. This is why it is important that the filter do
not suffer from zero input limit cycles and has a finite impulse response. The switch
change every L samples according to the timing diagram in figure 2.3. A convolution
for an input block of length L and an impulse response of length L, equals a output
of 2L-1 samples. This leaves 1 sample period to reset the filter before one new input
block is processed in the filter. The timing to reset the filters is shown in figure
2.3. To give an idea of how the block diagram in figure 2.2 is working, an example

0 1 2 3 4 5
0

0.5

1

c.
 
Impulse response of the filter

h[n]

0 5 10 15
0

0.5

1

a. Output y
k
[n]

Leading response

Tailing response

0 5 10 15
0

0.5

1

b. Output of filter y
k+1

[n]

Leading

Tailing

0 5 10 15
0

0.5

1
d. Output of IIR truncator

Figure 2.4: Example of using equation (2.5) with a block length of L=5 samples. The plots have
sample number n on the x-axis and amplitude on the y-axis. The signals in a and b are c convoluted
with the signals in figure 2.1, while the signal in d is a and b added together.

in figure 2.4 shows a filter on an input signal from figure 2.1 which has length 2L.
The input blocks from figure 2.1b and 2.1c respectively have been convoluted with
the impulse response in figure 2.4c and the output is shown in figure 2.4a and 2.4b
respectively. Each signal is shown in two different colors, indicating whether it is
the leading response or the tailing response. Each signal is added together and the
output can be seen in figure 2.4d.

2.1.2 Forward-Backward filtering model

The overlap-add IIR truncator can also be modified and used to realize the FBF
model simply by introducing a time delay. To describe how the final block diagram
is developed, an analytically derivation is needed. Each input block xk[n] needs to
be time reversed and defined as ak[n] later a signal bk[n] is block-wise time reversed
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to ck[n] as seen in equation (2.7) and (2.7) respectively.

n′ =(2k + 1)L− 1− n
ak[n] = xk[n′] (2.7)
ck[n] = bk[n′] (2.8)

This definition is a non-causal process, since the last value for a block is moved to the
first within the same block. The process will be realized as a Last In First Out (LIFO)
buffer such n′ = (2k+ 2)L− 1−n, which introduces a delay to all samples and make
it a causal process. In figure 2.5 the blue line shows the timing of the non-causal

k 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[n] x[1] x[2] x[3] x[4] x[5]

a[n] x[5] x[4] x[3] x[2] x[1]

a[n] x[5] x[4] x[3] x[2] x[1]

c[n] x[1] x[2] x[3] x[5] x[5]

c[n] x[1] x[2] x[3] x[4] x[5]

Figure 2.5: Timing schedule for xk[n], ak[n] and ck[n] with a block length L equal 5 where the blue
timing of bk[n] is used in the analytic derivation and the green timing b[n] is one which is possible
to realize. Same procedure regards ck[n], and the timing diagram is based on that bk[n] = ak[n].
The individual columns represent consecutive time to sample number n.

process and the green shows the timing of the causal. In this analytic derivation the
causal process, would make the notation of block number k non-transparent later
on. In order to keep it as simple as possible, the non-causal process is used for the
analytic derivation. In figure 2.5 it can also be seen that the total delay which is
ignored equals 2L samples.

The non-causal filtering shown in equation (2.9) is what is wanted to realize, but
due to the non-causality it is not possible. By block-wise time reversing the input as
in equation (2.7), the order of x[n] is no longer contiguous when described by a[n].
This leads to what is stated in equation (2.10), where two convolutions are needed
to multiply the same indexes as seen in figure 2.6. The trick in equation (2.10)
also makes it possible to use forward filtering recursive filters again. A problem in
equation (2.10) is the fact that it is still non-causal. In equation (2.11) a 2L sample
delay has been added, such that all samples needed for the calculation is less than
or equal to sample number n.

c[n] = x[n] ∗ h[−n] (2.9)
b[n] = ak[n] ∗ h[n] + ak+1[n+ 2L] ∗ h[n] (2.10)

b[n− 2L]⇒ b[n] = ak−2[n− 2L] ∗ h[n] + ak−1[n] ∗ h[n] (2.11)
b[n] = bk−2,lead[n− 2L] + bk−1,tail[n] (2.12)

Figure 2.6 shows an example of how one output is computed. The non-causal con-
volution in equation (2.9) is shown in figure 2.6a. This shows which indexes that
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are needed to be multiplied and added together for n=3. The leading convolution
(ak−2,lead[n−2L]∗h[n]) in equation (2.11) is shown in figure 2.6b, which also is known
as the tailing response. The tailing convolution (ak−1,tail[n] ∗h[n]) is shown in figure
2.6c. The result of adding the leading response together with the tailing response

-4 -2 0 2 4 6 8 10 12 14
0

0.5

1
a. Non-causal filtering of input

-4 -2 0 2 4 6 8 10 12 14
0

0.5

1
b. Generation of leading response

-4 -2 0 2 4 6 8 10 12 14
0

0.5

1
c. Generation of tailing response

-4 -2 0 2 4 6 8 10 12 14
0

0.5

1
d. Sumation of leading and tailing response

b[n]

Figure 2.6: This is an example based on the same input as in figure 2.1 and the used filter from
figure 2.4c. The non-causal filtering input in figure a is an example of filtering x[n] ∗ h[−n], and in
this example n=3. In figure b and c is an example of equation (2.9) and the block number k=2, L=5
and n=11. Figure c pictures the 2L sample delay that was introduced in equation (2.11), to make
the function causal.

is shown in figure 2.6d where it also is possible to se how the delay introduced in
equation (2.11) moves the result. On the base of the convolution for the overlap-add
IIR truncator in equation (2.4), a similar equation to (2.11) for the time reversed
and filtered sequence (b[n]) is derived.

b[n] =
kL−1∑

m=n−L+1
ak−1[m]h[n−m] +

n∑
m=kL

ak−2[m− 2L]h[n−m] (2.13)

b[n] = bk−1,tail[n] + bk−2,lead[n− 2L] (2.14)
bk[n] = bk,lead[n] + bk,tail[n] (2.15)

In equation (2.14) the leading response and the tailing response is specified in the
same manner as previous. Studying equation (2.13), it is possible to see that when
n=kL the result of the tailing response bk−1,tail[n+ 2L] will always equal zero. This
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is the sample period where the filter is resetting all values to zero as seen in the
overlap-add IIR truncator. In the example in figure 2.7 it is clear to see that the
last tailing response equals zero. Figure 2.7a and 2.7b shows the result of a signal
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a. Output of filter 1 b
k-2

[n]

Leading

Tailing
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b. Output of filter 2 b
k-1

[n]

Leading

Tailing
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0
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1
c. Signal of b[n]
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0.5

1
d. Output of time reversed filtering c[n]

Figure 2.7: The result of the convolution in figure 2.6b and 2.6c is plotted in figure a and b. In
figure c these are added together where the colors from each contribution are kept, such the leading
and tailing responses can be traced back to figure a and b. In figure d the block-wise time reversal
from equation (2.8) is applied on the signal b[n].

length of 2L samples being convoluted with the two identical filters and combined
according to equation (2.14) in figure 2.7c. In 2.7d the signal is block-wise time
reversed and identical to what was seen for the Overlap-add IIR truncator in figure
2.4d. For reader convince equation (2.11) is restated in equation (2.16) to derive the
time reversed signal of b[n].

b[n] = ak−2[n− 2L] ∗ h[n] + ak−1[n] ∗ h[n] (2.16)
b[n] = xk−2[n′ − 2L] ∗ h[n] + xk−1[n′] ∗ h[n] (2.17)
c[n] = xk−2[n− 2L] ∗ h[−n] + xk−1[n− 2L] ∗ h[−n] (2.18)
c[n] = x[n− 2L] ∗ h[−n] (2.19)

The result in equation (2.19) shows that the reverse filtering of x[n] simply delayed
by 2L samples is achieved. An assumption to the derivation was that the block-wise
time reversal is processed with no delay. In figure 2.5 it is concluded that these two
block-wise time reversals of length L contributes together with a 2L sample delay.
This delay and the 2L sample delay that was seen in equation (2.19) gives a total of
4L sample delay. The frequency response for the ideal delay hid[n] where nd = 4L,
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as it is described in [10, p. 204]

hid[n] = δ[n− nd] (2.20)
Hid(ejω) = e−jωnd ⇒ e−jω4L (2.21)
θid(ejω) = −ωnd ⇒ −ω4L, |ω| ≤ π (2.22)

Adding this ideal delay to the complex conjugate filter, the model will introduce the
following frequency response for the system.

H∗(ejω)e−jω4L (2.23)

In figure 2.8 a block diagram of the analytic derivation is shown. This block diagram

Block-wise
Time

Reversal

H(z)

H(z)

Block-wise
Time

Reversal

Z-2L

+
a[n]x[n] b[n] c[n]

L

L
L

LRSTTOP

RSTBOT

Figure 2.8: A block diagram for a block-wise implementation of reverse filtering of the filter H(ejω),
where the length of the impulse response is less than or equal to L. The block-wise time reversal
is of length L corresponds to LIFO buffer with L samples. H(z) are identical filters which are reset
according to the timing diagram in figure 2.3.

follows the same timing as the IIR truncator shown in figure 2.3. This block diagram
can be put in cascade with a standard forward filtering IIR filter with the same
specification as the one in the reverse filtering part, as seen in figure 2.9. This adds a
convolution to equation (2.19) as seen in equation (2.24) and the frequency response
changes to what is shown in equation (2.25).

y[n] = h[n] ∗ c[n] (2.24)
HF BF (ejω) = H(ejω)H∗(ejω)e−jω4L (2.25)
HF BF (ejω) = |H(ejω)|2e−jω4L (2.26)
|HF BF (ejω)| = |H(ejω)|2 (2.27)

In equation (2.26) it can be seen that the phase response of the filter H(ejω) do not
comply with any phase response to the overall frequency response HF BF (ejω), hence
this part of the equation is purely real. The phase response only originates from
the delay which is expressed as the exponential part e−jω4L, which contributes with
a linear phase. The group delay of the transfer function will then depend on L as
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follows:

θF BF (ω) = arg |H(ejω)|2e−jω4L = arg e−jω4L = −ω4L, |ω| ≤ π (2.28)

τgd,F BF (ω) = −dθF BF (ω)
dω = 4L (2.29)

As seen above in equation (2.28) the filter will contribute with a constant group
delay. The slope of the phase response is decided by the length of L, since the group
delay is found to be τgd,F BF = 4L. Since this is in terms of a normalized filter with
a sample rate of 1 Hz this means the normalized filter have 4L seconds group delay.
The final block diagram can be seen in figure 2.9 and the only difference between

Block-wise
Time

Reversal

H(z)

H(z)

H(z)
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Time
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a[n]x[n] b[n] c[n] y[n]

L

L
L

LRSTTOP

RSTBOT

Figure 2.9: Block diagram for block-wise implementation of FBF. The diagram is based on the
same assumptions as figure 2.8. [11]

that and figure 2.8 is that a forward filtering has been cascaded. All filters are IIR
filters. The algorithm for an IIR filter is given by the following.

y[n] =
K∑

i=0
bix[n− i]−

K∑
i=1

aiy[n− i] (2.30)

In equation 2.30 it is assumed that a0 = 1 and that the order of the feed-forward
filter is the same as the order of feed-backward filter.

X

X
x[n]

Z - 1

+

y[n]
b0

+

Z - 1

X

X

Z - 1

+

Z - 1

X

X

Z - 1

+

Z - 1

X

b1

b2

b3

-a1

-a2

-a3

Figure 2.10: Data Flow Graph of a standard IIR filter with order K=3.
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The filters are going to be implemented on a fixed-point platform where the
dynamic range is lower than floating point, and a direct form 1 IIR filter has been
chosen. In figure 2.10 a Data Flow Graph (DFG) of a direct form 1 filter of order K
can be seen.

2.2 Structure of Reference filter
The reference filter is a linear phase FIR filter with symmetric coefficients. A FIR
filter operates as a convolution since the FIR filters coefficient describe its impulse
response. The equation for a FIR filter is given as:

y[n] =
K∑

k=0
h[n]x[n− k] (2.31)

where x[n] is the input, y[n] is the filtered output, h[n] is the impulse response of
the filter and K corresponds to the order of the filter. In figure 2.11 the equation is
converted into a DFG. As mentioned in section 1.2.2 a linear phase FIR filter has
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+

X

x[n]

b0 b1

Z - 1

+

Z - 1

+

Z - 1

+

Z - 1

+

Z - 1

+

Z - 1

+

Z - 1

+
y[n]

X b2X b3X b4X b5X b6X b8Xb7X

Figure 2.11: Data flow graph of a standard FIR filter with order K=8.

symmetric coefficients and depending on whether the filter has an odd or even order
equation (2.31) can be rewritten as following:

y[n] =
(K−1)/2∑

k=0
h[n](x[n− k] + x[n−K + k]) (odd order) (2.32)

y[n] =
K/2−1∑

k=0
(h[n](x[n− k] + x[n−K + k])) + h

[
K

2

]
x

[
n− K

2

]
(even order)

(2.33)

In equation (2.32) and (2.33), the impulse response h[n] is symmetric and again K
corresponds to the order off the filter. As it can be seen the number of multiplications
is brought down to approximate the half by rewriting the equation. A DFG of
equation (2.33) can be seen in figure 2.12. A DFG for the odd order folded FIR filter
looks almost the same, just with a minor change in the delay-line. This folded FIR
filter structure is a well-known strategy for implementing linear phase filters, and
therefore seen as a good reference to measure the FBF model against.
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Figure 2.12: Data flow graph of an even order Folded FIR filter structure.
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Chapter 3

Model Analysis

In this chapter it is evaluated when the FBF model start to take advantage in terms
of a lower number of mathematical operations per sample. Further, a simulator of the
FBF model is introduced, and to verify this simulator in a floating-point scenario the
IIR filters in the FBF model is changed to finite length filters. Later the simulator is
transformed to a fixed-point simulator using 2’s compliments number representation
where some different approaches have been used to verify the amplitude response
and the phase response of the FBF model.

3.1 Mathematical Operations per Sample
In a real-time system a filter typically needs to process one sample through the filter
to deliver one sample on the output, and the processing have to be finished before
a new sample arrives. This means that the problem size will be fixed once the filter
is designed, because this will specify the filter type and order. In this section the
computational complexity will be evaluated based on mathematical operations per
input sample. This is carried out since it is assumed that power consumption scales
linear with the number of mathematical operations. In this section control overhead
not is considered and it is assumed that a multiplication requires the same power
as an addition. This is a very rough assumption, but is what we assume for this
chapter.

3.1.1 Forward-Backward filtering model

The FBF model, which was designed in section 2.1, is evaluated here. Studying
figure 2.9 for the FBF model and equation (2.30) it is possible to see that 3 identical
filters and one adder is needed. The filters are specified as being Direct form 1 IIR
filters with an order of K, and the problem size per sample of the FBF model can be
stated as the following function.

FBFops(K) = #filters(#mul + #add) = 3(2K + 1 + 2K) + 1 = 12K + 4 (3.1)

23
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The equation clearly shows that the function is linear, and it can be observed that
problem size increase by 12 mathematical operation per unit increase in filter order.

3.1.2 Reference filter

The reference filter, which was designed in section 2.2, is evaluated here. First, some
considerations on the odd order filter case, where an even number of coefficients is
given, which was shown in equation (2.32). For the folded FIR filter of even or odd
order the number of mathematical operations is then defined as follows:

FIRops(K) = #mul + #add =
{

K+1
2 +K = 3

2K + 1
2 if K is odd

K
2 +K + 1 = 3

2K + 1 if K is even (3.2)

Looking at the odd or the even part as individual functions in equation (3.2) we are
able to conclude that they are linear functions as the FBF model. This reference FIR
filter structure has a positive linear slope equal to 3

2 as the increase of mathematical
operations per order increase.

3.1.3 Comparison based on filter order

After reading the two previous subsections one could easily think that the reference
filter always is going to have the fewest mathematical operations, since the FBF
model is having a slope of 12 and the slope of the reference filter is 3

2 . But one
fact that has not been considered yet, is that the FBF model is using recursive
filters, which meets a certain amplitude response by a much lower order. First some
considerations for the general case where there is no thoughts given on how the filter
order maps to a amplitude response specification. This makes it possible to see when
either the reference filter or the FBF model should be used, when the considerations
only is based on the number of mathematical operations. In figure 3.1 it is possible to

110 Number of 

mathematical 

operations

FBFops(K)

FIRops(K)

0 10 20 30 50 60 70 80 72 3 4 5 6 8

1 7 13 19 25 31 37 43 49 55 61 67

1 90

Figure 3.1: The black line has an interval of [0;110] number of mathematical operations. The
blue marks the mathematical operations needed to process the K’th order IIR filters used in the
FBF model. Like-wise the red marks shows the number of mathematical operations for a K’th order
folded FIR filter.

compare each of the filter designs against each other. Remember that it is assumed
that the energy consumption is linear with the number of mathematical operations.
Furthermore the control overhead is not considered either. An example could be
that a 61th order FIR filter is needed but a 4th order IIR filter is needed to the FBF
model to achieve the same amplitude response requirements. Using this information
in figure 3.1 it can be seen that the FBF model has a lower number of mathematical
operations per sample, and might therefore have a lower energy consumption than
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the reference filter. Remember that it is the squared amplitude response of the IIR
filter according to section 1.3 that should be evaluated to the design specification.
Each amplitude response specification will lead to different filter orders for the two
methods. The line in figure 3.1 can therefore be used as a guideline to figure out
whether the FBF model is usable in the specific case.

The general case is set and evaluated according to the use of mathematical op-
erations. Since there is no general guideline between a filter order and a design
specification, a low-pass filter case is studied in appendix A where the transition
band moves from wide to narrow. The specifications from table A.1 in appendix A
is shown in figure 3.2 for reader convenience. The stopband frequency is stepping in
100 steps from a stopband frequency of 0.8ω to a stopband frequency of 0.11ω. This
will force a more and more narrow transition band and thereby higher orders filter.
It is also taken into account that the IIR filter only needs to have half the gain as
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Figure 3.2: Random chosen design specification from table A.1, where ωs moves in 100 steps from
0.8 to 0.11ω

explained in section 1.3. In appendix A an explanation of all the details on how the
test is carried out is given. A simplified explanation of the test is as follows. Filter
design parameters is set for the first case with 0.8ω as stopband frequency and filter
order for both methods is found. The filter orders are found by using Matlab filter
design package for Parks-McClellan optimal FIR filter as the reference filter. For
the FBF model the lowest order elliptic IIR filters are found and used. These design
methods have been chosen since they aim to give the lowest filter order. The Parks-
McClellan optimal FIR filter design is found to be used by other Matlab functions
that aims to find the lowest order FIR filter [9]. The elliptic IIR filter has ripple
both in the passband and the stopband, and a narrow transition [13, p. 35]. These
filter orders are then processed in equation (3.2) or (3.1), depending on which case
there is calculated. The stopband frequency is now updated to be 1/100(0.8− 0.1)ω
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Figure 3.3: The plot shows the number of required mathematical operations which is needed to
process the two implementations per sample.

closer to 0.1ω, and the filter order is found again. In figure 3.3 it is clear to see that a
wide transition band results in a low order filter and for this case the reference filter
will have the fewest mathematical operation. For the filter design with the narrow
transition band it is clear to see that the FBF model is having the lowest number
of mathematical operations. By looking at the plot both methods seem to have an
exponential decreasing behavior but the reference filter seems to have a higher ex-
ponential value. The last point of the folded FIR is far outside the plot, because it
haves 734 mathematical operations. This is more than the 76 mathematical opera-
tions that the FBF model is requiring for the same amplitude response. The example
is based on a rough estimate, but it is clearly seen when the FBF model are taking
benefit of using IIR filters.

3.2 Model Simulation
A simulation of the FBF model from section 2.1 has been conducted and explained in
appendix B. The model can be processed in two different cases due to the restriction
of the block length L.

• A floating-point precision coefficients and signal values example with a non-
linear phase FIR filter with a maximum order of L-1. A L-1 order FIR filter
will have a impulse response of length L, such that the restriction of block
length L is met. This is shown in section 3.2.1, and the purpose of this is to
show that the model is performing as intended, as long as the restriction for
the block length is met.

• A fixed-point precision coefficients and signal values example with a IIR filter.
After analyzing the numerical aspects when implementing the FBF model in
fixed point, section 3.4 discusses evaluation of the amplitude response.

The relation between these two cases gives rise to a discussion that will be carried
out during the rest of this chapter. The floating-point evaluation aims to validate
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the simulation against the theory, and the fixed-point aims to show the size of the
error when the FBF model is executed under fixed-point constraints.

3.2.1 Floating-Point Simulation

To verify that the FBF model is functioning as intended, a test case has been de-
signed. This test case have to comply with the restriction for the impulse response
length for the filters in the FBF model. To secure that the used filters in the FBF
model have non-linear phase a random low-pass IIR filter has been designed. How-
ever, a problem with an IIR filter in floating-point precision is the impulse response
length is infinitely long. Instead the L length impulse response of an IIR filter is then
used as coefficients to a FIR filter, to ensure that the filter has non-linear phase and
a finite impulse response. The coefficients is determined as

btest[n] =
K∑

i=0
biδ[n− i]−

K∑
i=1

aibtest[n− i], n = [0..L] (3.3)

These coefficients btest[n] are then used in a FIR filter in the floating-point simulation
of FBF model that have been described in appendix B. The FBF model is then fed
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Figure 3.4: Phase response for the ideal phase response and the phase response of the FBF model.
The simulation is done for 3 different lengths of L; 50, 100 and 150. The FBF model is almost
exactly on top of the ideal phase response, which is why they are not visible.

with an impulse to create the impulse response for the FBF model. The frequency
response of the FBF model will then be the Discrete Fourier Transform (DFT) of the
impulse response. In figure 3.4 the ideal phase response is almost exactly underneath
the phase response of the FBF model. To make it more clear the error signal of
the simulation has been found and shown in figure 3.5. As it can be seen the y-
axis is small and it is assumed that the error occurs due to missing precision in
the calculations of the frequency response. However, the non-linear filters in the
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Figure 3.5: Absolute error of the simulated phase response for the FBF model with the use of
non-linear phase FIR filters. The simulation is done for 3 different lengths of L; 50, 100 and 150.

FBF model produces an almost linear phase response as result. The code for this
simulation can found on the appendix-CD ./Matlab/FiniteImpulseEksample.m

3.2.2 Numerical Aspects

As mentioned above, the target platform has fixed-point precision. Fixed-point pre-
cision leads to quantization of signal data and coefficients which is meet by rounding
or truncation, such a binary description in 2’s compliment is possible. As mentioned
above, it has been chosen to use direct-form 1 IIR filters in the FBF model. This
removes the possibility of transforming the IIR filters to cascaded second order sec-
tions, which in many cases is applied on fixed-point IIR filters with an order higher
than 2. If second order filters were used, it would change the equation for the op-
erations per sample in section 3.1.3. This section is based on materiel in [10]. The
binary precision is described by the Q number format.

Coefficients Quantization

Quantization of coefficients is typically done by using the rounding method, and
this introduces an error to the coefficients. This error will change size depending on
the chosen binary precision, and this error will change the frequency response. The
definition for quantizing the a and b coefficients to an IIR filter can be seen below.

a, b ∼= Qr[a, b] = â, b̂ (3.4)

Evaluating these quantized coefficients on the unit circle will define the new frequency
response. This is a iterative process, since this new frequency response still have to
comply with the initial specification. A discussion on how the actual amplitude
response is found is given later in section 3.4.

./Matlab/FiniteImpulseEksample.m
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Scaling

In scaling 3 common methods exist, maximum value scaling, sinus scaling, or variance
scaling. Since no application is connected to the project, such that a conclusion could
be determined through the applications restrictions, variance scaling has been chosen
to be used. The variance scaling factor is given as follows.

s2 ≤ 1∑∞
n=−∞|hk[n]|2

(3.5)

s ≤
√

1∑∞
n=−∞|hk[n]|2

(3.6)

The impulse response to the kth node in the filter is defined as hk[n]. The kth node
is defined by the critical point where overflow is not allowed. For the direct form
1 IIR filter the only critical point is on the output value. The scaling is applied

X
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+

y[n]b0

+

Z - 1

X
b1 -a1

++X
x[n] s

Figure 3.6: Scaling coefficient multiplied on
the input value of a first order Direct form 1
IIR filter.
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Figure 3.7: Scaling coefficient multiplied on
the feed-forward coefficients of a first order
Direct form 1 IIR filter.

to each of the individual filters in the FBF model. Instead of multiplying the scale
factor on the input as in figure 3.6 the scale factor can be multiplied with the feed-
forward coefficients as in figure 3.7. This secures that no extra multipliers for the
implementation is needed.

Signal Quantization and Signal to Noise Ratio

For fixed-point platforms signal quantization is usually performed by truncating the
variables. This method does not require any processing as e.g. the rounding method
would do. A truncation simply keeps the most significant bits. A fixed-point imple-
mentation needs quantization since a multiplication of two Q.15 variables will result
in a Q.30 result with 2 sign bits. This result can then be truncated to the Q.15
format by left shifting the result once and keeping the 15 most significant bits. In
digital filters the multiplication is often followed by an addition with another result
of a multiplication. This means that the Q.30 binary precision can be kept in the
addition and wait with the truncation to after the final addition. This lowers the
quantization error. The quantization error is seen as a wide-sense stationary white-
noise process and has a uniform distribution of amplitudes over the quantization
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interval. Each quantizer is uncorrelated with the input and all other quantization
noise sources. The error for a truncation is defined in following interval.

−2−(N−1) < e[n] ≤ 0 (3.7)

where N is the word length. Since the error can be seen as described, the mean and
variance is defined as the following.

me = −2−(N−1)

2 (3.8)

σ2
e = (0− (−2−(N−1)))2

12 = 2−2(N−1)

12 (3.9)

When the variance for the system is found it can be used to determine the Signal to
Noise Ratio (SNR) for the system.

SNR =
σ2

y

σ2
e

(3.10)

where σ2
y is the variance of the output. Since we want to scale the output to use the

dynamic range from [-1;1[ we can calculate the variance for this as well

σ2
y = (maxy −miny)2

12 = (1− (−1))2

12 = 1
3 (3.11)

For this project it is interesting to know the SNR for the FBF model and the reference
filter. At this point the representation of the SNR will be found based on filters with
N-bit multiplier and 2N-bit adders. As it can be seen in figure 3.8 this lead to one
quantizer that is affecting the signal in the reference filter. This quantization is
on the output and the SNR can therefore be calculated based on the variance of
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y[n]=y[n]+efir[n]
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Figure 3.8: Data flow graph of the reference filter where the noise source is added which occur
when the output is truncated.
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one quantization error directly such σ2
e = σ2

efir
. The reference filter will have the

following SNR.

SNRref =
σ2

y

σ2
efir

= 4
2−2(N−1) (3.12)

The FBF model is more complicated since each filter generates noise, and this noise
is filtered in the last filter. As seen in the previous chapter the direct form 1 IIR
filter structure was chosen for the filters in the FBF model. An example of the FBF
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Figure 3.9: The error that occurs by the truncation noise is added in the model, where all switches
and delays are removed.

model with identical first order direct form 1 IIR filters is seen in figure 3.9. In this
example the buffers and the switches have been removed since they do not affect the
statistical noise contributions. In a direct form 1 IIR filter the quantization error
will occur where the feedback is added together with feed forward. The variance of
noise from each of the individual identical IIR filters is then given by

σ2
f1 = σ2

e1

∞∑
n=0
|hef [n]|2, where (3.13)

Hef (z) = 1
1− a2 (3.14)

As it can be seen in equation 3.13 a new impulse response hef [n] occur. The impulse
response hef [n] is the impulse response from the point that the noise e1[n] occur in
the individual filter to the output of the individual filter. The error on the output
f [n] is caused by the truncation error e[n] in the individual filters. These errors are
combined in the summation and the noise variances are therefore additive. Since it
is 3 identical filters the variances are identical as well.

σ2
e1 = σ2

e2 = σ2
e3 (3.15)

σ2
f1 = σ2

f2 = σ2
f3 (3.16)
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This also means that the noise variance σ2
f1

that each of the identical filters contribute
with is identical. In figure 3.10 it can be seen that an error is added directly to the
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Figure 3.10: The error which is generated by e1 and e2 is here described by e4. The first two filter
is removed since our concern is the error on the output.

input at the filter. This e4[n] is the error that the two filters on the left side in figure
3.9 generates. Since the noise sources are considered as white-noise and independent
the variances are additive and defined as follows

σ2
e4 = σ2

f1 + σ2
f2 = 2σ2

f1 = 2σ2
f2 (3.17)

The noise-variance that originates from the input can then be calculated as below.

σ2
f4 = σ2

e4

∞∑
n=0
|h[n]|2 (3.18)

where h[n] is the impulse response of the filter. This means that the noise of the
output from the contribution can be calculated. These two variances are to be added
together to calculate the total variance of the noise.

σ2
F BF = σ2

f4 + σ2
f3 (3.19)

σ2
F BF = σ2

e4

∞∑
n=0
|h[n]|2 + σ2

e3

∞∑
n=0
|hef [n]|2 (3.20)

σ2
F BF = 2σ2

e2

∞∑
n=0
|hef [n]|2

∞∑
n=0
|h[n]|2 + σ2

e2

∞∑
n=0
|hef [n]|2 (3.21)

The total variance σ2
f can than be compared with the variance of the output to

calculated the SNR.

SNRF BF =
σ2

y

σ2
F BF

(3.22)

With this formula the SNR can then be computed for the FBF model when the
precision is known.

3.3 Zero Input Limit Cycle Oscillation
As previous mentioned in section 2.1 the assumption for using IIR filters in the FBF
model was the fact, that the impulse response of the an IIR filter will decay to a
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value less than the precision used for the fixed-point platform, and hereby the output
could be truncated to zero. Unfortunately this is not always the case on a fixed-point
platform since the output can oscillate infinitely, due to quantization of signal values.
For signal values the common quantization methods is truncation, since it requires
no additional logic to perform. Quantization can make a recursive filter suffer from
what is known as zero input limit cycle oscillations. Zero input limit cycle oscillations
is difficult to show in any general sense, but is better described by an example. A
recursive filter with following difference equation is used as an example.

y[n] = 5
8y[n− 1] + x[n] (3.23)

The recursive filter is chosen to be implemented as in figure 3.11. This changes the
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^
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8

4

Figure 3.11: Data flow graph of equation (3.24).

recursive filters difference equation to the one in equation (3.24) which suffers form
zero input limit cycle when using truncation.

ŷ[n] = Qt

[5
8 ŷ[n− 1]

]
+ x[n] (3.24)

Coefficient, input and output variables is chose to be 4 bit and Qt is a 4 bit quantizer
conducted by truncation. Applying an input x1[n] = −0.5δ[n] or x2[n] = 0.5δ[n] on

sample number [n] 0 1 2 3 4 5 6
Input x1[n] -0.5 0 0 0 0 0 0
Before truncation y1[n] -0.5 -0.31 -0.23 -0.16 -0.16 -0.16 -0.16
After truncation ŷ1[n] -0.5 -0.38 -0.25 -0.25 -0.25 -0.25 -0.25
Input x2[n] 0.5 0 0 0 0 0 0
Before truncation y2[n] 0.5 0.31 0.16 0.8 0 0 0
After truncation ŷ2[n] 0.5 0.25 0.13 0 0 0 0

Table 3.1: This shows the input/output values in two cases where of zero input limit cycle occurs
in one of the cases. The individual columns represent consecutive time to sample number n.

the recursive filter in equation (3.23) can be seen in table 3.1 and figure 3.12 and the
script for this can be found on the appendix-CD ./Matlab/LimitCycleExample.m.

./Matlab/LimitCycleExample.m
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Figure 3.12: Plot of output for ŷ[n] from Table 3.1 in both types of input.

It can clearly be seen that the output ŷ1[n] keeps being in a steady-state at -0.25 since
it keeps getting truncated to this value as long the input is exactly zero. This happens
since truncation is a quantization method that always round against negative infinity.
Looking at the positive impulse x2[n] = 0.5δ[n] it can be seen that output is truncated
to zero after 3 samples. This meanw that the same recursive structure can make
some signal end in a zero input limit cycle while other may avoid it. Further, each
recursive structure will generate each their type of zero input limit cycle oscillation
when using truncation as the quantization. If the quantization method was changed
to e.g. rounding the zero input limit cycle response might change again, but for low
power implementations truncation is often chosen as discussed earlier.

When zero input limit cycle oscillations occur the filter might no longer fulfill the
stability requirement:

n=∞∑
∞
|h[n]| < P (3.25)

The stability requirement in equation (3.25) tells that the sum of the absolute impulse
response must be below a certain upper boundary P. Theory can be found on how to
design IIR filters which do not suffer from zero input limit cycle but this is not seen
as the focus for the project. Instead we assume that there will be a non-zero signal
applied to the input at all times. In that case the system will only generate a zero
input limit cycle oscillation in the reverse filtering part, if the length of the block is
too long or the signal variation is low. The effect of zero input limit cycle oscillation
is unwanted. Therefore it is important that the Block length is no longer than the
actual impulse response for the final system.

3.4 Amplitude Response Discussion
In this section it is discussed how the amplitude response of the FBF model is found.
Lets recall equation (2.27) showing the derived amplitude response from section 2.1.2.

|ĤF BF (ejω)| = |Ĥ(ejω)|2 (3.26)

Equation (3.26) tells that the used filters results in the squared amplitude response
for the FBF model, but this is based on following. It was initially assumed that
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when the output of the filter was below the used resolution the output would be
zero, and the infinite impulse response filter in that case would be finite due to
missing precision. But as it was illustrated in the zero input limit cycle oscillation
example in section 3.3, this is not always the case. Before discussing the fixed-point
effects of this system a small analysis of the FBF model with quantized coefficients
using floating-point variables is carried out.

The effect of changing L is not possible to see in the standard method to calculate
the frequency response. If the reverse filtering IIR filter is named Hrev, the forward
filtering IIR filter Hfor and the block length L following can be derived.

ĤF BF (ω) = Ĥ∗rev(ω)Ĥfor(ω)e−jω4L (3.27)
|ĤF BF (ω)| = |Ĥ∗rev(ω)Ĥfor(ω)|, where (3.28)

Ĥrev[n] =
L∑

n=0
ĥ[n]e−jωn

This will clearly conflict with the original fact that the amplitude response is the
squared amplitude response. As equation (3.28) states the time reversed impulse
response is truncated after L samples. The problem when the length of L is truncated,
is the fact that the model no longer is LTI. It is no longer LTI since the response
will change depending on when for instance an impulse enters. It happens if the
impulse enters in the start or the end of a block such the reverse filtering will give
different lengths of impulse responses. In figure 3.13 the impulse and the impulse
response is shown when it arrives at two different samples in the block. Figure 3.13a
shows the impulse response arrive as the first sample in a block. This creates the
shortest possible impulse response with L samples to the output of the time reversed
filtering part. Figure 3.13d shows the impulse arrives as the last sample in the block.
This creates the longest possible impulse response of 2L-1 samples. Comparing figure
3.13c and 3.13f it can be seen that the impulse response will have a different length
depending on where in the block the impulse appeared. The biggest possible error to
the FBF model must then be found to the impulse response for a impulse entering
as the first sample in a block. Using the simulator from section 3.2.1 an impulse can
be applied to the first sample in a block and an impulse response ĥF BF of the FBF
model can be generated.

|ĤF BF (ω,L)| = |DFT (ĥF BF [n])| (3.29)

Hence the amplitude response can be found for the system by calculating the DFT
of the impulse response.

Another method to choose the block length is proposed in [11, p. 2431]. Introduc-
ing impulse response that is truncated after L samples, the error that we introduce
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Figure 3.13: Illustration of an impulse applied to the reverse filtering part of the FBF model where
an IIR filter is used. the block length L is set to 16 to make it easy to see that the impulse response
is different for the two cases. In the first case in figure a, b, and c the the impulse is set for sample
0. In the other case the impulse is set for sample 15.

can then be defined as:

ĤError(ω) =
∞∑

n=L

ĥ[n]e−jωn (3.30)

|ĤError(ω)| =
∞∑

n=L

|ĥ[n]||e−jωn| =
∞∑

n=L

|ĥ[n]| ≤ ε(L) (3.31)

The maximum error to the amplitude response of the time reversed filter in the
FBF model can be defined as in equation (3.31). According to [11] this maximum
error is defined as the pass-band ripple δp or the size of the allowed stopband δs,
depending on which is smaller. But theoretically this truncation of the signal in the
reverse filtering is adding ripple to the amplitude response of the FBF model. In

Normalized Frequency  (π rad/sample)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-0.5

0

0.5 |Ĥiir(z)
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Figure 3.14: The squared amplitude response of an IIR filter. The dashed lines mark the possible
errors by using the method given in equation (3.31).

figure 3.14 an example of a squared amplitude response |Ĥiir(z)|2 is shown and the
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pass-band ripple δp yields the smallest error. Fitting L according to equation (3.31)
such it complies with δp the amplitude response of the FBF model will be within the
dashed borders in the figure. A method to secure that a design complies with the
design parameter will then be to define the maximum band-pass ripple as 1/3δp to
each of the IIR filters |Ĥiir(z)|. This will secure the amplitude response to comply
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Figure 3.15: To secure the amplitude response to comply with the overall amplitude specification.

with the amplitude requirements. This method needs more narrow filter design and
is therefore not seen as an optimal choice. For this project we will examine the
amplitude response by applying an impulse response for the first sample in a block
to the simulator as explained earlier in this section. If the block size is lowered it will
lower the need for temporary variables but also the group delay since this is bounded
to the block size.

Since the model only generate a linear phase response due to the effects of fixed-
point numbers representation the correct phase response cannot be determine derived
in the floating point simulator.

3.5 Phase Response Discussion
Until now the group delay has only been verified based on the theory in chapter 2
and by determining a non-linear phase FIR filter and using it for the floating point
model as seen in section 3.2.1. But how is the phase error measured when using IIR
filters? And how does the phase response react if the block length is made smaller?

Previously in this discussion the amplitude response of the FBF model was cal-
culated for a low-pass filter. This means that we need precision for all bands which
we have in an all-pass filter. Therefore a random all-pass filter has been designed
and implemented in fixed point with 16 bit precision. The block length L is found
by investigating the length of the impulse response before it enters a zero input limit
cycle oscillation. This filter is then used in the FBF model to create a new impulse
response. The Phase response of this impulse response is then subtracted from the
theoretical as it is done in section 3.2.1. The absolute error of this is found and
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Figure 3.16: Absolute error of the phase for a all-pass IIR filter used in the FBF model with 16-bit
fixed-point arithmetic. By visually inspecting the impulse response, The block length L was found
to be 62 before entering zero input limit cycle oscillation.

shown in figure 3.16.
In the previous test case with the amplitude response we tried to only use the

half block size. The same trick is now applied to this test case with the all-pass filter.
In figure 3.17 the test we see the result of this scenario. The maximum error has not
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Figure 3.17: Absolute error of the phase for a all-pass IIR filter used in the FBF model with 16-bit
fixed-point arithmetic. Block length of 31 samples was used.

changed more than from 0.0025 to 0.0029. This test can be found as a Matlab script
on the appendix-CD ./Matlab/PhaseErrAllpass.m.

3.6 Group Delay Considerations
In section 2.1.2 it was assumed that all filters were able to consume and produce
one output per sample to the FBF model. But some further considerations can be
made on the time reversed section and the related LIFO buffers. If it is assumed that
infinite computing power is available, it is possible to lower the group delay. The
group delay was defined by the 2L delay line in the model and the 2 LIFOs in the
system that together made a 4L sample group delay to the FBF model. Studying

./Matlab/PhaseErrAllpass.m
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k 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[n] x[1] x[2] x[3] x[4] x[5]
a[n] x[5] x[4] x[3] x[2] x[1]
c[n] x[1] x[2] x[3] x[4] x[5]

All samples ready to be processed in time n=5

If all samples is processed within 1 samlpe time then the result c[n] is ready L samples earlier

Figure 3.18: Timing schedule for x[n], a[n] and c[n] with a block length L equal 5. The timing
diagram is based on that bk[n] = ak[n]. The individual columns represent consecutive time to sample
number n.

figure 3.18 and knowing the relation between x[n] and a[n] is the LIFO buffer, it can
be seen that all samples from the first block are ready to be processed when sample
number n=5 has arrived. If a[6− 10] is processed when they are available at sample

k 0 0 0 0 0 1 1 1 1 1

n 1 2 3 4 5 6 7 8 9 10

x[n] x[1] x[2] x[3] x[4] x[5]

a[n] x[1-5]

c[n] x[1] x[2] x[3] x[4] x[5]

Figure 3.19: Timing schedule for xk[n], ak[n] and ck[n] with a block length L equal 5. The fast
computation of ak[n] used to generate ck[n] faster. The individual columns represent consecutive
time to sample number n.

time n=5, the result for x[1] is ready in c[6] instead of c[11]. This can be seen in
figure 3.19 that the group delay that originates from the LIFO registers now has been
reduced by L samples. This also means that the needed number of registers can go
down if hardware sharing is utilized. In figure 3.20 the two time reversal blocks that
was seen in chapter 2 have been reduced to one. When L samples have shifted in the
buffer the data can be processed in the red areal without waiting for new samples
since the next is ready in the buffer. The result is shifted in on the right side and a
new sample is ready right away on the left side. The blue area is still processing 1
sample per input sample on x[n]. This means that the throughput for the model is
identical but the group delay has changed.

If no constraints are given to the group delay and this is made larger again, some
other observations can be made. If the block size L is made larger than what L
originally was chosen to be, the tailing filter can be turned off such the mathematical
operations for this filter is no longer needed. In figure 3.21 scenario A is the case
that is documented in chapter 2, where Htop and Hbot are describing the two identical
filters in the time reversed section. It can be seen that the Htop and Hbot alternately
are computing the leading and tailing response. The block length for the used filters
is found to 50 samples. This makes the filters active at all times. Scenario B illustrate
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Figure 3.20: Revised model of the FBF model that takes advanteg of the observation in figure
3.19.
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Figure 3.21: Output of the two filters in the time reversed section illustrated as blocks. The sample
line represent consecutive time to sample number n

a block length is set to 100 samples but the used filters are still the same as in scenario
A. This means that the tailing filter can be shutdown after 50 samples. This length
will be defined as J samples. As it can be seen in figure 3.21 the tailing filter can be
shutdown 50 % of the time. The cost of utilizing this is larger buffers and the larger
group delay mentioned above.



Chapter 4

Fixed-Point Filter Design and
Simulation

In the following chapter, requirements which both the reference filter and the FBF
model have to fulfill are presented. The reference filter is a linear phase FIR filter
and the FBF model is realized using a suitable IIR filter. Throughout the chapter
these filters will be simulated as if they were running on a fixed point platform, to
make sure that the requirements are met.

4.1 Design Templates
A template simply specifies which requirements a final design of a filter has to com-
ply with. Since this project does not rely on any application, all specifications will
be specified on a normalized frequency scale. This template defines the amplitude
response requirements, for a low-pass filter template. Based on the knowledge which

Low-pass Filter
Bandpass Ripple [dB] 0.5
Bandstop Attenuation [dB] 60
Transition band [ω] 0.05
Passband frequency [ωp] 0.1

Table 4.1: Filter design parameters for each of the four templates.

was gained section 3.1.3 some design parameters were chosen. The stopband fre-
quency is to be 0.15ω since it can be seen that the FBF model will have fewer
mathematical operations per sample for a low-pass filter with this amplitude spec-
ification. The design template is then given as it can be seen on figure 4.1. These
design parameters for the amplitude response is used to design filters for the FBF
model and the reference filter.
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Figure 4.1: A plot of the filter design parameters in table 4.1.

4.2 Filter Design for the Forward-Backward Filtering
Model

As seen in section 2.1.2 the model consist of 3 identical filters. As seen above these
filters do only need half the attenuation for the overall model. It has been chosen
to use elliptic IIR filter design for the 3 identical filters in the FBF model. This
filter type allows a narrow transitions band since the filter allows ripple in both the
transition- and pass-band [14, p. 602]. The filters are designed using the Matlab de-
sign function since the design process is not the scope of the project. After validating
the quantized coefficients the filters quantization noise will be found. The require-
ments in table 4.1 led to a 4th order elliptic IIR filter Hiir(ω) that complies with
the half ripple and stopband attenuation. The upper boundary scale factor is found
according to equation (4.2). If this upper boundary scale factor is multiplied directly
on the feed-forward coefficients, and the coefficients are rounded up when quantized
for the 2’s compliment notation to the fixed-point platform, it will no longer fulfill
equation (4.1).

s ≤
√

1∑∞
n=−∞|hiir[n]|2

(4.1)

s =

⌊√
1∑∞

n=−∞|hiir[n]|2 · 2
17
⌋

217 = 3.024 (4.2)

Qr[s · b] = b̂upd (4.3)

supd = 1 ≤
√

1∑∞
n=−∞|ĥiir,upd[n]|2

= 1.0001 (4.4)

It has been chosen to calculated the scale factor as in equation (4.2) such that
the value is close to the boundary. After multiplying this scale factor to the feed-
forward coefficients and quantizing all coefficients by rounding, equation (4.1) can
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be calculated again as seen in equation (4.4). The scale factor s is now set to 1
such we can conclude whether the scaled filter have a proper scaling according to
variance scaling. It can be seen that the scaled filter Ĥiir,upd(ω) still complies with
the boundary. In the rest of the report the scaled and quantized filter will have
transfer function Ĥiir(ω).

4.2.1 Fixed-Point Simulation of Forward Backward Filtering Model

As mentioned 18-bit multipliers are available on the FPGA, these are intended to
be used in full for the IIR filters. This sets the restriction that the coefficients for
the filter cannot be described by no more than 18-bit. As seen in appendix C a
fixed-point 4th order IIR filter has been designed for the simulator from appendix B.
The amplitude response of the elliptic IIR filter is shown in figure 4.2, with both the
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Figure 4.2: Amplitude response for low-pass 4th order IIR filter where the grey shows the template
and the red marks the required parameters for IIR filter used in the FBF model. The filter HIIR(z)
is the result of the floating pint filter design coefficients, while ĤIIR(z) is the scaled and quantized
coefficients.

full precision coefficients and the scaled and quantized coefficients. The amplitude
response of the scaled and quantized filter coefficients are normalized by the scaling
factor, such it is possible to compare the two designs according to the requirements.
The squared amplitude response shows that the overall amplitude response for the
FBF model complies with design template in figure 4.1. The SNR is then found by
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using equation (3.22) that was derived for the FBF model in section 3.2.2.
∞∑

n=0
|hiir[n]|2 = 0.999 (4.5)

∞∑
n=0
|hiir,ef [n]|2 = 6370.2 (4.6)

σ2
e2 = 2−2(N−1)

12 = 2−2·17

12 = 4.8506 · 10−12 (4.7)

σ2
F BF = 2σ2

e2

∞∑
n=0
|hef [n]|2

∞∑
n=0
|h[n]|2 + σ2

e2

∞∑
n=0
|hef [n]|2 (4.8)

SNRF BF = 20log10(
σ2

y

σ2
F BF

) = 301.9dB (4.9)

As it can be seen the SNR-value is approximately -302dB. This error is an expression
for the error in compare to the infinite precision calculation of data that has been
filtered in the filter. Often signals originates from a sampled analog signal. When a
analog signal is sampled to a digital signal in an 18-bit ADC the SNR the is defined
as 6.02dB per bit for a uniform distribution. This result in a SNR of 18bit ·6.02dB

bit =
108.36dB. This means that if the input signal exist from a ADC the noise that the
filter generates will be lower than the noise that already exist in the signal.

The block length effect that was discussed for the amplitude response is now
applied. First the block length L was solved by using the method proposed by [11]
shown in equation (3.31). That resulted in a block length of 111 samples. Processing
amplitude response of the FBF model as discussed in section 3.4 lead to the result
that is seen in figure 4.3. The block length is afterwards iteratively made smaller to
examine how short the block length can be and the amplitude response still complies
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Figure 4.3: The filter ĤIIR(z) is the quantized, scaled and squared amplitude response from figure
4.2. The Black and red marks the DFT of the impulse response generated by the FBF model
simulator in floating point.
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with the specification. This block length was found to be 97 samples as it also can
be seen in figure 4.3. It is also important that the block length is not made too
long. This might result in zero input limit oscillation added to the signal. Appendix
D shows the impulse response of the IIR filters that is designed in the section. A
Matlab script generating the results in this section can be found on the appendix-CD

./Matlab/FinalFPLPFBF.m

4.3 Design of Reference Filter
In this section the coefficients for the reference filter which is a folded FIR will be
found. These coefficients are found by using the Parks-McClellan optimal FIR filter
design function in Matlab. The scaling is performed by variance scaling as also
was done to feed-forward coefficients in the direct form 1 IIR filters. The scaling
parameter for the FIR filter Href (ω) is found.

s =

⌊√
1∑∞

n=−∞|href [n]|2 · 2
14
⌋

214 = 2.997 (4.10)

supd = 1 ≤
√

1∑∞
n=−∞|ĥref,upd[n]|2

= 1.000001 (4.11)

The transfer function to the new scaled and quantized reference filter coefficients will
be denoted Ĥref (ω).

4.3.1 Fixed Point Simulation of The Reference filter

In this section the linear phase FIR filters will be designed such that they meet
the design template from section 4.1. The coefficients are quantized to a 18-bit
wordlength. In appendix C a fixed-point 89th order FIR filter has been designed for
the simulator. The amplitude response of the filter is shown in figure 4.4. It can
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Figure 4.4: Amplitude response of the 89th order FIR filter.

./Matlab/FinalFPLPFBF.m
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be seen that the quantized filter is almost on top of the filer with the full precision
coefficients. Again the frequency response of the scaled and quantized coefficients is
normalized by the scaling factor to compare it to the non-scaled and quantized and
the requirements. Another important concern is of course that the filter has linear
phase. The coefficients are found to be symmetric thus the phase response should
be linear. In figure 4.5 The phase response is shown. As it can be seen the phase is
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Figure 4.5: Phase response of the FIR filter.

linear until it moves into the stopband. At this point the phase starts to jump by
π radians, which we ascribe to incorrectness of the phase evaluation of the filter in
Matlab. It is verified that the filter coefficients are symmetric.

The SNR of this filter is found by using the same methods as for the FBF model.
The variance of the output divided by the variance of the noise on the output. In
this filter only one quantization exists directly on the output as seen in section 3.2.2.
This quantization leads to the variance in equation (4.12).

σ2
ref = σ2

e2 = 2−2(N−1)

12 (4.12)

SNRref = 20log10

(
σ2

y

σ2
ref

)
= 499dB (4.13)

This also means that a higher SNR than the FBF model is achieved as seen in
equation (4.13). A Matlab script generating the results in this section can be found
on the appendix-CD ./Matlab/FinalDFIRLP.m

./Matlab/FinalDFIRLP.m


Chapter 5

System Design

In this chapter the FBF model and the reference filter is mapped from algorithm
to architecture. The designed will be given as a RTL design for both models. This
process is conducted by following some initial considerations for energy consumption.
Theory in this chapter is based on [4].

5.1 Design Constraints and Abstractions Levels
In order to keep the synthesis process of the two algorithms in a structured manner,
the methodology used is clarified in this section. In figure 5.1 the Y-chart is shown.
The three axes represent the three aspect in every design, which again is divided into
four abstraction levels. The behavioral aspect describes the system in terms of I/O

RTL

CPU, RAM

Logic

Transistor

System

Algorithem
Gates

Transistor

Transistor

Module

Floorplan

Chips

Behavior
(function)

Structure
(Netlist)

Physical
(Layout)

Figure 5.1: The figure shows what i known as the Y-chart, and the three axis describe the three
aspect in every design.[4, p. 3]
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relation, typically given by a function. The structure defines the system in terms of
hardware and how they are connected. The physical aspect defines the size, shape,
physical placement, and connections. The four abstraction layers generally represent
the System, Processor, Logic, and Circuit layer. Each layer can then be defined
at each aspect. Different methodologies are available to move through the Y-chart.
In this case the Platform is known to be an FPGA, and synthesis of the system
layer from System to CPU, RAM is therefore already accomplished. Knowing the
hardware the next step is the synthesis of the processor layer from Algorithm to RTL
description. For this project this is conducted by synthesizing the algorithm in the
following order. First a Precedence Graph (PG) is constructed from the DFG. Time
is introduced to the PG in order do cycle-accurate scheduling. First task is to bind
the variables in the PG to different registers, and second the operations are bounded
to the Functional Unit (FU)s such as a multiplier or an adder. The registers and
FUs are then connected in a structure such the PG can be processed as scheduled.
Afterwards a controller is conducted in order to execute the scheduling defined in the
PG. This can be a recursive process since one can discover more optimized schemes
in the synthesis process, which means that one could need to move back and start
over. All considerations for this synthesis are made with energy savings as the main
goal.

5.2 Cost Function
Mapping from an algorithm to an architecture is a one-to-many solutions task. Each
solution will have different use of area, power, precision and time. Each of these
parameters are put together in what is known as the cost function. The cost function
is a tool to find the optimal solution when performing this mapping. Typically
some constraints are set for the timing and the architecture. The goal is then to
minimize the cost with the constraints that are set. In this project the two models
are implemented using as low energy as possible. At this point a few constraints to
the some parameters in the cost function are set.

• It was chosen in the design phase of the filters to use the full 18-bit precision
of the embedded multipliers on Altera FPGA board.

• The time is limited to the time interval between two incoming samples from
the ADC given by tsamp = 1

fsamp
, where fsamp is the sample rate for the input

signal.

• There have been given no boundaries to the area, but the project is limited to
use no more than the 35 embedded multiplies in the FPGA. The FPGA also
have 33216 LEs to create the architecture that will be design and presented
during this chapter.

• For this project energy consumption is the parameter to minimize. Since energy
consumption is power integrated over time, the power is a focus parameter as
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well. The power usage is given by the following equation for the dynamic
related power consumption in transitions.

P = CLV
2

ddfclk (5.1)

Where CL is the capacitance, Vdd is the supply voltage, and fclk is the system
clock frequency.[1, p. 130] But the power is not constant, since it relies on
which and how many FUs that are processing at any given time.

Mapping an algorithm to an architecture is an one-to-many solutions task. Depend-
ing on the number of FUs that are chosen to be assigned, the algorithm can be
processed with a different amount of clock-cycles. When the amount of FUs goes up
the processing time most likely go down due to use of the possible inherent paral-
lelism. A trade-off between processing time and the area consumption needs to be
found. Using the boundaries from the cost function, a solution needs to be found
as shown in figure 5.2. For this project we want to suggest a design with the lowest

Area

Time

Area

Time

Processed 
sequential

Full utilization of 
inherent 

parallelism

Solution space

Figure 5.2: The trade-off between the use of area and time to process an algorithm on an archi-
tecture.

possible energy consumption. Considering above solution space, some conclusions to
the implementation can already be made. If it is chosen to reuse hardware, some
logic need to control which inputs are selected and which register is selected for the
result. This addition of control logic will lead to an increase of energy consumption.
By the given limitations a conclusion to minimizing the cost function, will be to
implement as a one-to-one mapping or as close to that as possible. A one-to-one
mapping means that the operations on the DFG are assigned to the registers and
FUs in the same structure.

5.2.1 Supply voltage

For this project it is assumed that the used logic, is working at its critical rise time
trise or fall time tfall, when operating at 50 MHz. An FPGA can work with much
higher frequencies but since the goal is an ASIC design it is assumed that the FUs
that are used, have a critical rise or fall time at 50 MHz when operating af 1.2 V.
Since voltage is a squared parameter to the power usage in equation (5.1), it is a
very useful parameter to lower in order to get lower energy consumption. When the
voltage is lowered the rise and fall time is changed approximately according to the
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following equation. [1, p. 127]

trise ≈ k
1
Vdd

(5.2)

where k is a value which depend on the used hardware. It is assumed that constant
k is causing the critical rise or fall time. For this project we assume that it has been
possible to lower the voltage to 1V before the electronics simply started to deliver
wrong results on the output. When lowering the voltage the system clock frequency
lowers according to

fclk,new = fclk,old

1
Vdd,new

1
Vdd,old

= 50 1
1.2 = 41.67MHz (5.3)

With lower voltage the maximum clock frequency is now found to be 41.67 MHz.
The voltage is now lowered such that a lower energy consumption is achieved. Both
the FBF model and the reference filter will be implemented with this new system
clock frequency assigned reassigned to fclk. With this lower frequency the power
usage per sample has been lowered according to following.

1− C · V 2
dd.new

C · V 2
dd.old

= 1− V 2
dd.new

V 2
dd.old

= 0.306 (5.4)

This results in a 30% lower energy consumption per clock pulse to the same amount
of hardware. Now that the system clock frequency has changed, the number of cycles
that are available per sample from the ADC has also changed. The ADC is running
at 44.1 kHz and the time between sample is given by tsamp.

tsamp · fclk = #OfClocksPerSample =
{

1133 fclk = 50MHz
944 fclk = 41, 67MHz (5.5)

The new system clock frequency means that less cycles are available to process each
sample from the ADC. It will be evaluated whether it is possible to implement the
systems with the new lower clock frequency.

5.3 Processor Synthesis
In this section the two models will go through the synthesis in processor layer that
was discussed in section 5.1. As stated earlier the goal is to have as low energy
consumption as possible with hardware that is available in the FPGA, which has
restricted the layout to 35 multipliers and 33216 LEs. In section 5.2 we clarified that
a one-to-one mapping will be an optimal solution when synthesizing a low energy
solution. The two models are going to be designed as an Final State Machine with
Data path (FSMD) such the details for the system is known for registers and FUs.
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Figure 5.3: Final State Machine with Data path.

This is done in order to know all necessary details such that an estimate for energy
consumption can be made. In figure 5.3 a FSMD is shown, where the data path
is constructed first and the control logic to control this data path is constructed
afterwards, according to the processing synthesis described above.

5.3.1 Forward-Backward Filtering Model

The first step in the synthesis process is to construct a PG. When constructing a
PG of the FBF model one can easily construct a one-to-one mapping of the DFG as
previously concluded. Since it requires 3 IIR filters of 4th order and each filter then
needs 9 multipliers, a total of 27 multipliers would be needed in case of a one-to-one
mapping. Since 35 multipliers is available this could be considered. If the model is
considered further some important conclusion can be made in order to save energy.
As i can be seen in figure 2.9 that shows the FBF model, one of the time reversed
filtering filters is at all times receiving a zero input. A zero multiplied by any number
will at all times result in a zero output from a given multiplication. Since a direct
form 1 IIR filter structure has been chosen, it means that all feed-forward coefficients
and the additions of these can be turned off when 5 zero inputs are received at the
input to the filter that generates the tailing response. This means that only the
recursive part of the DFG has to be processed from sample 6 to sample J in each
block when the signal turns into a zero value signal. For a hardware shared solution
a Signal-Flow Graph (SFG) often is carried out at this point in order to know the
processing order. In this design process where a one-to-one mapping is conducted
this part is left out and three PGs are made with knowledge from the DFG of the
Direct form 1 IIR filter in figure 2.10.

In figure 2.9 in section 2.1.2, which shows the FBF model, the filters are alter-
nately processing the zero value input signal. For this implementation it has been
chosen to do otherwise. It has been chosen to use an IIR filter which process the
leading response at all times and use another IIR filter which process the tailing re-
sponse at all times. In order to keep an overview of the system a PG has been made
for each of the filters in the model. In the PG each state needs a control signal from
the control path to execute, and each state corresponds to one clock cycle. This also
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Figure 5.4: Precedence graph of Leading IIR filter, where the result needs to be saved in the 2L
sample FIFO buffer. Some of the states have three names since this PG is running along side the
PG in figure 5.5. No matter which of the three sub-state are active the operations in this PG are
executed.

means that the used multipliers are assumed to be able to execute within 1 clock
cycle. In figure 5.4 a PG for the leading filter structure is shown. The PG shows the
leading filter which is a 4th order direct form 1 IIR filter. The PG is carried out in a
As-Soon-As-Possible (ASAP), utilizing all inherent parallelism. This is done due to
the fact that each operation will have each their dedicated FU. In figure 5.5 a PG is
shown for the structure of the filter that generates the tailing response. It can be seen
that four different colors now are introduced. The black marks that it is active in all
scenarios. The blue shows the PG for the first 5 samples in a block length, and the
red shows the PG from sample 6 to sample J in the block. The purple shows the case
where the filter that generates the tailing response is off, and the leading response is
fed directly to the LIFO. When organizing the processing like this the previous inputs
and outputs from the filter that generates leading response needs to be shifted to
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Figure 5.5: Precedence graph of tailing IIR filter including the additional adder that appear in the
model. Notice that a[n] will always be zero in the filter that generates the tailing response.
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the filter that generates the tailing response. The last adder in both scenarios is the
adder that originates from the model where the output from the buffer and output
from the filter that generates the tailing response is added together. After this result
b[n] is computed and needs to be time reversed to generate c[n] such it can be filtered
in the forward filtering filter. The PG to the forward filtering IIR filter is shown in

c[n] c[n-1] c[n-2] c[n-3] c[n-4]b0 b1 b2 b3 b4 y[n-1] y[n-2] y[n-3] y[n-4]a1 a2 a3 a4
P0

X XX X X X XX X

+ + + +

+

+

+

+

y[n]

State #

MS1

MS2

MS3

MS4

MS5

P1 P2 P3 P4 P8 P7 P6 P5C0 C1 C2 C3 C4 C8 C7 C6 C5

P14P15P16P17P13P12P11P10P9

P18 P19

P22

P24

P21 P20

P23

P8

Figure 5.6: Precedence graph of Forward filtering IIR filter

figure 5.6. The PG is similar to the PG for the leading response filter but input and
output values have different names. All intermediate variables have been defined in
the PGs. These variables are mapped into registers with the given name. The RTL
design of the data path has then been designed with the knowledge gained in the
PGs. The RTL design can be seen in figure 5.7. In the figure it can be seen that
the proposal to use one LIFO buffer as discussed in section 3.6 is carried out. With
this approach the register shifting of used data is optimal, since all registers are used
at all times. The LIFO is going to be designed as 18 bidirectional shift registers of
length L. This makes possible to shift in new inputs x[n], but also shifting in results
from the time reverse section. An example of two bidirectional shif registers of 3 bit,
is shown in figure 5.8. This means that a 2 bit variable can be push or pulled from
both left and right, depending on whether the mode input is set for shifting right or
left. For this FBF model the example is extended such that a 18-bit variable can be
pushed and pulled from an L long shift register. This makes it possible to use this as
the time reversal block. The little example has been implemented in appendix E and
it can be seen in figure E.1 that the VHSIC Hardware Description Language (VHDL)
code generates the RTL structure seen in figure 5.8. For further clarification of the
bidirectional shift registers the VHDL-code in appendix E describe the functionality
as well.
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Figure 5.7: RTL level structure of the data path to the FBF model.

Control Path

The purpose of the control path is to execute the registers and control the selector
signals to the multiplexers. In the synthesis process of the control path for this
FBF model it has been chosen to design a conceptual state machine for clarification
purpose, before going in to the details. It is important to keep things as simple as
possible in order to keep the overview. The conceptual state machine can be seen in
figure 5.9. Having this state diagram, it is possible to define when each of the states
from the PGs of the FBF model has to be executed. In figure 5.10 a Moore machine
has been defined. The main state machine is shown to the left while the sub-states
are shown to the right which will be executed if the final sample of a block length is
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Figure 5.8: Example of a bidirectional shift register with a length of 3 bit and in parallel such that
a 2 bit variable can be push or pulled from both left and right. Clear and clock signals has been left
out in order simplify the figure.
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Figure 5.9: Conceptual state machine for the FBF model.
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Figure 5.10: State machine for the FBF model with reference to the individual states in the PGs.
Left state machine is the Main State (MS) machine, and the right state machine shows the Sub-State
(SS) in MS6.

reached. The most energy efficient filter with linear phase is the wanted out come.
Therefore, taking advantage of the block length considerations in section 3.6 it is now
possible to derive how long it is possible to design the block length. From above it
is known that 944 clock cycles are available per input sample. The first 5 cycles are
used by the first 5 main states, leaving 939 cycles for the time reversed section. From
the PGs it is seen that 5 states or clock cycles is required to compute one sample in
the time reversed section. This means that we can derive the maximum block length
for the architecture.

L =
⌊#avilable_cycles

#cycles/sample

⌋
=
⌊939

5

⌋
= 187 (5.6)

The maximum block length L is then found to be 187 samples. In section 4.2.1 where
the fixed point filter coefficients were designed it was found that the minimum block
length is found to be 97 samples. This length is then defined as J=97 samples, and
the control unit then need to be defined. A regular program counter could have been
used to design the control unit but this would require a state register for each state
in the L length block and suitable sub-states. Therefore another logic structure has
been developed, that can describe each step in the model by its state registers. In
figure 5.11 a next state logic and state logic are combined. The L-bit shift register
is a simpler counter which shifts in 1 bit from the left side every time the clock pin
is active. When this shift register is filled with ones, the register is reset, and the
last bit in the register is called Lmax. Main state 1 (MS1) is activated when fsamp

shifts to high and the system clock rises. fsamp is the "ready" signal from the input
device, such as a ADC. This one high bit will shift through the main state register
until it reaches MS5. The output of the main state shift register (MS5) is fed to an
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Figure 5.11: Control logic and state registers for the control unit to FBF model.

AND-gate together with Lmax. If both are logic high the sub-state machine will then
start circle in the sub-states until Lmax is logic high again. A design of output logic
that delivers control signals can now be defined on the basis of these state registers.
It is not possible to define the amount of used logic in the tool used to estimate the
energy consumption the additional logic is not defined further.

5.3.2 Reference Filter

The methods that are used in the synthesis process of reference filter are the same
that were used to carry out the data path for the FBF model. As it was seen in
section 2.2 the reference filter is a folded FIR filter. In section 4.3.1 it was found
that a 89th order FIR filter would fit the specification. The PG and the RTL level
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Figure 5.12: Part of precedence graph for a 89th order folded FIR filter, with ASAP scheduling.
The blue number states how many variables there are needed to be added together.
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diagram will be big. Therefore the figure will only illustrate some of the actual PG
and the RTL is showing a smaller example that shows the important considerations.
In figure 5.12 the PG of the folded FIR filter is shown partly. It is important to
notice that all multiplications are in state number 2. The blue number shows the
remaining variables that needs to get added together. The PG is given by scheduling
in ASAP but this is not possible since only 35 multipliers are available and 45 are
required to do so. Therefore 10 multiplications are needed to be scheduled to state
number 2. In figure 5.13 the PG that shows this scenario is illustrated. Even though
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Figure 5.14: Example of the RTL level diagram for the folded FIR filter structure. This example
is showing an 11th order folded FIR filter.
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10 multiplications is delayed by one clock cycle the operations finishes within the
same number of states. The variable names have not been allocated on the arc in
the figure in order to map them to an RTL level since it is not possible to show
the whole illustration. Instead this is illustrated by an example with 4 multipliers
for a 11th order folded FIR filter. In figure 5.14 the example of filter is shown on
the RTL abstraction level. It can be seen that each of the shared multipliers needs
2 multiplexers and a demultiplexer. This example is extended for the actual RTL
design.

Control Path

For the FIR filter the control path is a more straight forward. The 8 states have to
run once every time a new sample arrives. Due to the high number of parameters
it is here chosen to make a conceptual state machine describing the states. The
conceptual state machine can be seen in figure 5.15, and the regular state machine
in figure 5.16. This state machine is made as one single logic shift register where the
logic high value from fsamp is shifted in. This high bit will then shift through the

GO==1

S2: Multiply the first 35 coefficients.

S3: Multiply the remaining 10 coefficients and sum 
pairs of the available 35 results together

S1: Add the ”folded” input register together 
according to the DFG

S4: Sum pairs of the available 28 results together

S5: Sum pairs of the available 14 results together

S6: Sum pairs of the available 7 results together

S7: Sum pairs of the available 4 results together

S8: Sum the two remaining results together

Figure 5.15: Conceptual state machine for
the folded FIR filter.

S0
S1 S2

S3

S4

S7

S5

S6

S8

Figure 5.16: State machine for the folded FIR
filter.
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8-bit shift register. The shift register can be seen in figure 5.17.

States register
clk

fclk

fsamp S1 S8S2

Figure 5.17: State register for the folded FIR filter.

5.4 Energy Consumption Estimation
In this section an power consumption estimate of the two models is carried out. This
is done by using Altera PowerPlay Early Power Estimator [3]. This is a tool where
it is possible to specify the used LEs and the controls signals to a given design. The
frequency these LEs is executed at is specified together with the percentage of toggle
in the signal. Toggle is an expression for the randomness in the signal.

In this project it has been chosen to set the toggle to 40 % at the input signal.
In the FBF model the signal is filtered twice and therefore the output of the time
reversed filtering section will have a lower toggle percent. It is chosen to use 10 %
toggle for the forward filtering filter. Same amount of toggle is specified for half of
the bidirectional shift register (BSR). A clock signal shift logic level every sample
will have a toggle percentage at 100 %. The input sample rate was specified above
to be 44.1 kHz. In table 5.1 all parameters to the Altera PowerPlay Early Power
Estimator are listed. The result in the table is specifying the number of events per
sample. E.g. the filter that creates the leading response in the time reversed section
has 9 multipliers, and these are executed every time a new sample arrives. The filter
that creates the tailing response has a variation in the number of multiplier, adders,
and registers since it changes according the number of sample in the block. Therefore
an average per sample of these has been calculated. E.g. the number of execution of
registers in the filter that generates the tailing response is calculated as below.

#ofLEs = #Executed_registers
Block_length ·Wordlength (5.7)

= 12 · 5 + 11 · J
187 · 18 = 6.02 · 18 = 108.5→ 109 (5.8)

This means that in average 109 LEs per sample are activated in the filter that
generates the tailing response.

A LE can be programmed to different modes. One of them is Arithmetic Mode
and the functioning logic is shown in appendix F. A LE in Arithmetic Mode consists
of a full adder and a flip-flop. But in the Altera PowerPlay Early Power Estimator
it is not possible to specify whether the LE is purely used as a register or as a full
adder and register. This also means no extra power consumption is added due to
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Model Type Section executed/sample # of LEs Toggle
FBF model: Multipliers: Leading 9 40%

Tailing 3 40%
Forward 9 10%

Adders: Leading 8
Tailing 3
Forward 8

Registers: Leading 25 450 40%
Tailing 6.02 109 40%
Forward 25 450 10%
BSR1 187 3366 40%
BSR2 187 3366 10%
2L Buffer 374 6732 10%

Control: 12 (bit) 12 100%
Folded FIR Multipliers: 45 40%

Adders: 85
Registers: 226 4068 40%
Control: 8 (bit) 8 100%

Table 5.1: Specification of the number of times that the units are executed per input sample. J
was found to be 97 samples and the block length is set to be 187 samples.

use of adders. The multipliers are specified separately together with frequency and
the amount of toggle. Looking at table 5.1 it is seen that the FBF model requires
in average 19 additions per input sample while the folded FIR needs 85 additions
per input sample. This might give some percentage higher to the folded FIR than
the FBF model, but this it is not possible to add in the Altera PowerPlay Early
Power Estimator. The Altera PowerPlay Early Power Estimator calculates average
power consumption on the base of the used frequencies and therefore this will scale
linearly with the energy consumption. It is possible to specify the amount of LE
where only the logic are programmed to be used of an LE. In order to know this
number for both systems it would require a synthesis of the system in the Altera
software. During the work with the Altera PowerPlay Early Power Estimator it was
discovered that registers in the FBF model led to a higher power consumption than
initially thought. Therefore the power consumption is found for the FBF model i
two cases as seen in table 5.2. FBF model 1 is where L = 187 samples and J = 97
samples and FBF model 2 is where L=J=97 samples. This reduces the number of
shift registers and this saves more power than turning of the 4 remaining multipliers
and attached adders, that are turned on from sample J to sample L in FBF model
1. All information from table 5.1 has been typed into the Altera PowerPlay Early
Power Estimator, and the result is shown in table 5.2. The Altera PowerPlay Early
Power Estimator files can be found on the appendix-CD ./Altera/Estimation.

./Altera/Estimation
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Folded FIR FBF model 1 FBF model 2
Logic 0,099 0.160 0.095
Multiplier 0,050 0.015 0.018
Clock 0,001 0.001 0.001
TOTAL 0.150 0.176 0.114
Relative Percentage 100% 117.3% 74.6%

Table 5.2: Power usage from Altera PowerPlay Early Power Estimator. All results are listed in
Watt.

It is now clear that it is possible to design a linear phase filter with a lower power
consumption. After having derived the results in table 5.2 can be seen that the FBF
model where the block length L is specified as chosen smallest impulse response J,
the power consumption is lowered from 0.15 W in the Folded FIR filter to 0.114 W
in the FBF model. This has saved approximately 25%. As discussed earlier this is
the average power consumption and the relative saved energy consumption will be
equal.
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Conclusion

The purpose of this project is to define a realizable filter model with linear phase
that was less energy consuming than a well-known FIR filter. FIR filters with linear
phase are often realized as a folded FIR filter. This was found as a suitable reference
filter. This reference filter was then evaluated against the FBF model which is a
block processing model with cascaded IIR filters that outputs linear phase, due to
the effects of fixed-point precision. During the analysis and design of the two models,
several results were achieved regarding the three objectives, which are restated in the
following.

Objectives:

1. Analyzing the FBF model proposed by [11].

2. Design a realizable fixed point systems of the FBF model, and the reference
filter which is a FIR filter.

3. Compare FBF model by the use of IIR filters with the reference filter to deter-
mine in which cases the FBF model consumes less energy when implemented
on a fixed-point platform, and how much energy that can be saved.

Objective 1 From the FBF model proposed by [11], an analytic derivation of the
model was conducted in chapter 2. The FBF model was simulated in chapter 3 and
verified to have a linear phase response. Further the amplitude response of the model
was found in an appropriate matter. This was conducted by calculating the DFT
of the impulse response to the FBF model when the impulse was set to be the first
sample in a block. Further it was found that the phase response kept a linear phase
even though the block length was cut in half. By utilizing fast processing it has been
found that the group delay can be lowered from four block lengths to three block
lengths.
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Objective 2 For both models filters in fixed-point representation were designed in
chapter 4 to fir a desired design template. A 4th order IIR filter was found suitable for
the FBF model, and was fixed-point filter was used in simulator that was developed.
The filter order of the reference filter was found to be a 89th order FIR filter.

Objective 3 A low-pass filter test case where the transition band was made smaller
and smaller was carried out in order to determine when the FBF model has a lower
number of mathematical operations than the reference filter. With the information it
was concluded, that as the transition band narrows the more appropriate would it be
to implement the FBF model. In chapter 5 RTL design of both models were carried
out. By using Altera PowerPlay Early Power Estimator tool, the implementation of
the FBF model was found to be approximately 25% less energy consumption.

6.1 Future work
Future progress could be to design the FBF model even more energy efficient than
shown. Since the filter that generates the leading response in the time reversed
section is reset every new block length, this filter can be step-wise turned on. Like-
wise for the tailing filter, the filter can be step-wise turned off for the feed-forward
part. This adds even more sub-states to the state machine, which also makes the
output logic more complex.

In future work could also consist of programming it in VHDL code such the
actual energy consumption can be measured. In such case it would be interesting to
investigate the two proposed FBF models but also comparing with an implementation
using Random-Access Memory (RAM) instead of shift registers.
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Appendix A

Complexity Test

This appendix will describe how the filter order increases while step-wise making the
transition band more narrow for a low-pass filter design specification. In table A.1

Low-pass filter specifications
Bandpass Ripple [dB] 1
Bandstop Attenuation [dB] 60
Passband frequency [ωp] 0.1
Stopband frequency [ωs] 0.11-0.8

Table A.1: Tested filter design specification with varying stopband frequency.

some randomly chosen low-pass filter design parameters are given. As it can be seen
the stopband frequency (ωs) is starting at 0.8ω and in 100 step move linearly to 0.11ω.
This makes the stop band of a size between 0.11ω − 0.8ω as seen in figure A.1. The
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Figure A.1: Random chosen design specification from table A.1, where move ωs in 100 steps from
0.8 to 0.11 ω
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reference filter and the forward-backward filtering have to comply with this design
specification. In section 1.3 it is clarified that only the haft gain is required in the
IIR filter, and this leads to a design specifications for the IIR filter design. These two

Low-pass filter specifications
Bandpass Ripple [dB] 0.5
Bandstop Attenuation [dB] 30
Passband frequency [ωp] 0.1
Stopband frequency [ωs] 0.11-0.8

Table A.2: Tested filter design specification with varying stopband frequency for the IIR filter
design.

design specifications are plotted in figure A.2, and it is clear to see that the stop band
has less attenuation but the ripple is more narrow for the IIR filter design. These
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Figure A.2: Random chosen design specification from table A.1, where move ωs in 100 steps from
0.8 to 0.11ω

design parameters are used in in a Matlab minimum order filter design function, and
this will return the minimum order of the filter to the give design parameters. To
determine the order for the IIR filter a function the finds the minimum order for
elliptic filters is used. For the FIR filter a function which determine the optimal
order of the Parks-McClellan FIR filter which is used. Since this only is a estimator
1 % more attenuation is added to the stop such that the filter will comply with the
specification for all filter orders. These filter orders are then computed in equation
(3.1) and (3.2) depending on whether it is the IIR or the FIR filter. The result of
this is seen in figure 3.3 in section 3.1.3. The scrip for this test can be found on the
appendix-CD ./Matlab/FIRvsFBF.m

./Matlab/FIRvsFBF.m


Appendix B

Simulation of Model in Matlab

In this appendix the simulation model is explained in detail.

B.1 Floating-Point Simulation
Based on the knowledge gained in section 2.1 a Matlab simulation has been designed.
This Matlab simulation is based on a block processing method, instead of the sample
by sample technique that a realizable model is using. The simulation in listing B.1
follows these steps:

1. In line 14 equation (2.7) is processed in to a block ak[n]

2. In line 15 block ak[n] is filtered and saved in block bk[n]

3. In line 16-18 all bk[n] block’s is summed together 3 block’s ahead compared to
the input. These 3 blocks originate from the first block time reversal and the
2L sample delay from equation (2.11).

4. In line 21 b[n] is time reversed into c[n] according to equation (2.8) plus a L
sample delay.

5. Finally a standard filtering process is performed in line 23 on the output c[n]
to acheive the output y[n]

The Matlab simulation is seen below in listing B.1.

1 function [ Y ] = lpiirfilt (X, a, b, Bl)
2 % lpiirfilt Summary of this function goes here
3 % Inputparameters :
4 % X = input
5 % a, b = coefficients for IIR filter
6 % Bl = Block length
7

8 N = length (X);
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9 Xa = zeros ( floor(N/Bl)+1,Bl+Bl); %a[n]
10 Xb = zeros (1,N+Bl); %b[n]
11 Xc = zeros (1, length (X+2* Bl)); %c[n]
12 Y = zeros (1, length (X+2* Bl)); %y[n]
13 for ii = 1: floor(N/Bl -1)
14 Xa(ii ,:) = [flip(X((ii -1)*Bl +1: ii*Bl)) zeros (1,Bl)]; % LIFO
15 Temp(ii ,:) = filter (b,a,Xa(ii ,:)); % filter with tail
16 Xb((ii +1)*Bl +1:( ii +2)*Bl) = Temp(ii ,Bl +1: end)+Xb((ii +1)*Bl +1:...
17 (ii +2)*Bl); % add leading respose to previous tail
18 Xb((ii +2)*Bl +1:( ii +3)*Bl) = Temp(ii ,1: Bl); % save new tail
19 end;
20 for ii = 1: floor( length (X)/Bl -2)
21 Xc(ii*Bl +1:( ii +1)*Bl) = flip(Xb((ii -1)*Bl +1: ii*Bl)); % LIFO
22 end;
23 Y = filter (b,a,Xc); % forward filtering IIR filter
24 end;

Listing B.1: Info of fixed-point object in Matlab.

The simulation model is tested in section 3.2.1.

B.2 Fixed-Point Simulation
The model in the previous section is changed into a fixed point simulator by us-
ing Matlabs "Fixed-Point Designer" package. All intermediate parameters X, Xa,
Xb, Xc, Xd and Y are changed to fixed point objects and the filters are specified
to use fixed-point arithmetic where it is possible to decide precision of variables,
coefficient, input/output, multiplier and accumulator. It is a method to secure
that all variables are described by the correct precision and quantized in the in-
tended manner. The fixed-point simulation model can be found on the appendix-CD

./Matlab/lpiirfiltQuanXbit.m

./Matlab/lpiirfiltQuanXbit.m


Appendix C

Design of Filters using Matlab

In this appendix the filters for the FBF model and the reference filter are designed in
Matlabs fixed-point designer. The tool is used since is gives a great overview of the
ongoing design of the fixed-point filter. The restriction from the template in section
4.1 is defined as following for the Matlab script.

1 rp = 0.50; % Passband ripple
2 rs = 60; % Stopband attenuation
3 Fs = 2; % Sampling frequency
4 f = [0.1 0.15]; % Cutoff frequencies
5 a = [1 0]; % Desired amplitudes

These parameters are used in the design functions that design the filters for the FBF
model and the reference filter.

C.1 Fixed-Point Filter for the FBF Model
To design the an elliptic IIR filter it is needed to determine the minimum filter order.

1 [ellip_n ,Wn] = ellipord (f(1) , f(2) , rp/2, rs /2);

The filter order is used to derive the filter coefficients.
1 [ellip_b , ellip_a ] = ellip(ellip_n , rp/2, rs/2, f(1));

The filter coefficients are then applied in a direct form 1 IIR filter object.
1 Hdf1 = dfilt.df1(ellip_b , ellip_a )

Hdf1 is now a filter design object that can be used to filter the signals. Before
turning the coefficients into fixed-point precision we multiply the the scale factor to
the feed-forward coefficient or numerator as matlab names these coefficients.

1 s = floor(sqrt (1/ sum(abs( filter (ellip_b ,ellip_a , ...
2 [1 zeros (1 ,5000) ])).^2)) *2^17) /2^17
3 Hdf1. Numerator = s* ellip_b
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72 Appendix C. Design of Filters using Matlab

The filter object is then changed to use fixed-point arithmetic by using following
command

1 Hdf1. Arithmetic = ’fixed ’;

After this parameter is set it is possible to specify the precision on each of the
internal variables of the filter. Since we want to use the 18-bit Multipliers i it chosen
to use these 18-bit for the FBF model, and a parameter called wordlength = 18 is
defined to specify this. As it can be seen i some of the denominator values (feedback

Numerator: Denominator:
0.0941 1
-0.2735 -3.4334
0.3772 4.5382
-0.2735 -2.7249
0.0941 0.6263

Table C.1: Coefficients for the IIR filter to the FBF Model.

coefficients) is larger than 1. This means that the dynamic range of the coefficients
needs to have at least 3 bits to describe the integer value. In Matlab we need to
specify the word length including the sign bit and we need to define how many bits
are used to describe the fraction. Since we have chosen to use 18 bit word length,
the feedback coefficients need 1 bit for the sign value and 3 bits for the integer which
leaves 14 bits for the fraction part. All other values are defined as 18 bit word length
and 17 bit fraction. The rounding mode is defined as ”floor” meaning that it uses
truncation. The overflow mode is specified as wrap, which means that the signal
values can ”Wrap − Around” the dynamic range. This also means that the only
place that overflow should be considered is on the output for the Direct form 1 IIR
filter. This means that when we have specified all internal variables we will see the
information of the fixed-point filter object in Matlab as in listing C.1.

1 Discrete -Time IIR Filter (real)
2 -------------------------------
3 Filter Structure : Direct -Form I
4 Numerator Length : 5
5 Denominator Length : 5
6 Stable : Yes
7 Linear Phase : No
8 Arithmetic : fixed
9 Numerator : s18 ,17 -> [-1 1)

10 Denominator : s18 ,14 -> [-8 8)
11 Input : s18 ,17 -> [-1 1)
12 Output : s18 ,17 -> [-1 1)
13 Numerator Prod : s36 ,35 -> [-1 1)
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14 Denominator Prod : s36 ,35 -> [-1 1)
15 Numerator Accum : s36 ,35 -> [-1 1)
16 Denominator Accum : s36 ,35 -> [-1 1)
17 Round Mode : floor
18 Overflow Mode : wrap
19 Cast Before Sum : true

Listing C.1: Info of fixed-point IIR filter object in Matlab.

This filter object can than be used in the simulator of the FBF model that was
described in appendix B.

C.2 Reference Filter
Almost the same procedure is used on the reference filter. For the simulation purpose
the filter is not implemented as a folded FIR filter, since this makes no change to the
results. First we determine the needed order of the Parks-McClellan FIR filter, as it
is done in listing C.2 line 1 and 2. On line 3 the coefficients are found and in line 4
they are stored in the filter object Hdfir.

1 dev_pm = [(10^( rp /20) -1) /(10^( rp /20) +1) 10^( -( rs *1.01) /20) ];
2 [N_fir_pm , fo , ao , w] = firpmord (f,a,dev_pm ,Fs);
3 FIR_b_PM = firpm(N_fir_pm , fo , ao , w);
4 Hdfir = dfilt.dffir( FIR_b_PM )

Listing C.2: FIR filter object

We specify the over flow and round mode as we did it earlier on the IIR filter. All
internal variables are defined as we did earlier as well, by having on sign bit and one
minus word size as the fraction. The fixed-point filter object information in Matlab
is shown in listing C.3.
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1 Discrete -Time FIR Filter (real)
2 -------------------------------
3 Filter Structure : Direct -Form FIR
4 Filter Length : 89
5 Stable : Yes
6 Linear Phase : Yes (Type 1)
7 Arithmetic : fixed
8 Numerator : s18 ,17 -> [-1 1)
9 Input : s18 ,17 -> [-1 1)

10 Filter Internals : Specify Precision
11 Output : s18 ,17 -> [-1 1)
12 Product : s36 ,35 -> [-1 1)
13 Accumulator : s36 ,35 -> [-1 1)
14 Round Mode : floor
15 Overflow Mode : wrap

Listing C.3: Info of fixed-point FIR filter object in Matlab.



Appendix D

Impulse Response and Block
Length Considerations

The Argument that is the ground stone of the FBF model is the theory of that an
IIR filter implemented on a fixed-point platform has a finite impulse response. The
impulse response of the IIR filter that was designed for the FBF model in section 4.2.1
is shown here. Figure D.1 shows the impulse response when the filter is evaluated
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Figure D.1: Impulse response of IIR filter when evaluated on a floating point system.

in floating point and figure D.2 shows the impulse response when it is evaluated in
fixed-point arithmetic. For the floating-point case the impulse response goes against
zero, but the the fixed-point thing look more different. It can be seen that it enters
a zero input oscillation after approximately 150 samples. Another concern could be
if the variance of the input is too small, the time reversed filtering might contribute
with zero input limit cycle oscillation to the output contentiously.
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Figure D.2: Impulse response of IIR filter when evaluated on a fixed-point system.



Appendix E

Implementation of bidirectional
Shift Register in VHDL

In VHDL the understanding of the bidirectional shift registers are much simpler to
describe. One could write VHDL code that described the exact logic that was shown
in figure 5.8, and get the correct design, but even simpler VHDL code is possible to
write. A small VHDL program has been written and are available on the appendix-
CD ./BSR/BidirectShift.vhd and the important lines are here in Listing E.1
shown, and the resulting RTL level figure generated in Altera Quartus II shown in
E.1.

1 elsif ( rising_edge ( CLOCK_50 ) and mode = ’1’) then
2 R_out (0) <= temp0 (0);
3 R_out (1) <= temp1 (0);
4 temp0 ((L -1) DOWNTO 1) <= temp0 ((L -2) DOWNTO 0);
5 temp1 ((L -1) DOWNTO 1) <= temp1 ((L -2) DOWNTO 0);
6 temp0 (0) <= L_in (0);
7 temp1 (0) <= L_in (1);
8 elsif ( rising_edge ( CLOCK_50 ) and mode = ’0’) then
9 L_out (0) <= temp0(L -1);

10 L_out (1) <= temp1(L -1);
11 temp0 ((L -2) DOWNTO 0) <= temp0 ((L -1) DOWNTO 1);
12 temp1 ((L -2) DOWNTO 0) <= temp1 ((L -1) DOWNTO 1);
13 temp0(L -1) <= R_in (0);
14 temp1(L -1) <= R_in (1);
15 end if;

Listing E.1: BSR.

In Listing E.1 L describes the block length, L_in/L_out describes the left I/O, and
R_in/R_out describes the right I/O.
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chapter.



Appendix F

Logic Elements

An Altera FPGA consists of LEs where the structures change between the device
families. LEs typically consist of a flip-flop and some logic, that can be programmed
to different functionalities. In an Altera Cyclone II Architecture the LE can be
programmed to different modes.[2] One mode is called Arithmetic Mode and the
mode is shown in figure F.1. This mode programs the logic to be a full adder. This
means the adder is a part of the logic element that also contains a flip as seen in
figure F.1.
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Figure F.1: logic element of an Altera Cyclone II FPGA in Arithmetic Mode. [2]
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