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Abstract 
When processing the retrieved multiphase fluid from the wells, the many types of equipment used 
consume a great amount of energy during the separation of oil, gas and water. Specific oil and gas 
export quality has to be met before the products can be exported to the consumer. Achieving the 
export quality and minimising the power consumption is a complex system to predict.  

This projects deal with an approach were Design of Experiment and Response Surface 
Methodology has been used in order to create a regression model of a given HYSYS separation 
simulation, with five independent high influence variables, which can predict a global minimum 
with export constraints applied. An optimisation algorithm was created in the programming 
language Python and it was verified to perform well inside the experimental training set. The 
optimisation model was found suitable to future industry usage, in order to find the lowest possible 
power consumption and still maintaining the strictly demanded export quality constraints.   

In the extension of the optimisation model, the HYSYS separation simulation was used to 
determine a regression model, estimating the central process equipment used, based on the variety 
of the flow rates for oil, gas and water. This set the foundation for a Monte Carlo model, which 
predict the total topside weight by using correlation factors. All contributions in the Monte Carlo 
model are independent randomly picked, within a normal distribution uncertainty applied to all 
aspects in the model. The model is intended to be used in future early phase projects for a less time 
consuming and more precise result, than the methods used at the moment.  
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Preface 
This bachelor thesis was written in the fall of 2014 by Kasper Rønn Rasmussen, enrolled in the 
thermal processes and combustion study program, within sustainable energy technologies at 
Aalborg University Esbjerg. 
The project is in made in co-operation with Ramboll Oil & Gas, a multi-disciplinary engineering 
consultancy company and is based on the work done during the internship in the process department 
from may until end October. A special thanks to Ramboll Oil & Gas and the process department for 
providing the opportunity and guidance of this study. 
Referencing to the bibliography, which is found in the back of the report on page 57, are enclosed in 
brackets as (x). The number inside the bracket corresponds to the reference number in the 
bibliography. Figures without reference are self-made.  
For improved understanding of the methods used, it is advised to read the referred procedure 
appendices, starting at page 58. Most abbreviations are explained in the text when occurring, but 
some are only explained in the abbreviation list at page 3.  
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Abbreviations 
 

Abbreviation Meaning 
LP Low Pressure 
IP Intermediate Pressure 
TEG Tri Ethylene Glycol 
LT Low Temperature 
NGL Natural Gas Liquids 
ppm Part per Million 
BS&W Basic Sediment and Water 
HHV  Higher Heating Value 
RVP Reid Vapour Pressure 
SG Specific Gravity 
CCD Central Composite Design 
RSM Response Surface Methodology 
DOE  Design of Experiment 
MEL Master Equipment List 
PFD Process Flow Diagram 
CSV-file Comma Separated Values file 
HC Hydrocarbon 
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Introduction 
Due to the large quantity of energy consuming process equipment placed on offshore production 
platforms it is necessary to optimise the process facility in order to minimize the energy 
consumption. Oil and gas separation is a complex process, where lots of factors interact making it 
difficult to separate effects and distinguish trends. The oil and gas export qualities are to meet 
certain demands before being sent through pipelines to the on-shore refineries and in the end 
received by the consumer. The process department in Ramboll Oil & Gas uses HYSYS to model 
and optimise central process equipment in projects for their clients. HYSYS is a comprehensive 
process modelling system used by the world’s leading oil & gas producers, refineries and 
engineering companies to optimise process design and operations from Aspen Technology, Inc..  

The absolute minimum energy consumption, when constrained by the export quality demands, is 
still definitively to be found. It would be interesting to find the best composition of variable values 
in the process assembly to achieve the lowest possible energy consumption and still preserving the 
oil and gas export quality. 

In connection with modelling and sizing estimates of process equipment in early phase studies, 
uncertainties of 30 to 50 % is applied to each piece of equipment and to the total weight. The 
interaction between the 200+ item uncertainties is not taking into account. Adding this aspect to 
modelling would indeed be relevant and it all leads to the following initiating problem: 

How can the oil and gas separation be optimised more effectively and can the optimisation for the 
equipment be used to give better and more accurate weight estimations? 

Ramboll is multi-disciplinary engineering, design and consultancy company who provides 
knowledge based solutions within construction, transportation, environment, energy, oil & gas, 
telecom and management consulting. Ramboll was founded in 1945 as the Rambøll & Hannemann 
partnership in Copenhagen, and has since then expanded to an international corporation employing 
12.500 specialist. Ramboll has nearly 200 offices worldwide represented in 21 countries. Their five 
values are absolute and form the foundation of the company – Empathy, Enjoyment, Empowerment, 
Insight and Integrity. Combined, they constitute a unique point of reference in all their decisions 
and actions.  

Ramboll has many years of experience as a consulting company in the oil and gas industry and it 
started with their comprehensive work in the Danish part of the North see, which now also is 
applied internationally. Ramboll’s oil and gas experts take care of the entire project – from the 
initial feasibility studies about structural design, safety systems and environmental assessments to 
commissioning, adjustment and final decommissioning. Projects are completed by a high quality 
standard with great focus on safety and environmental interest, along with a principle of sustainable 
development. Ramboll’s expertise is within piping, projecting of platforms, environment and 
maintenance. The biggest clients for Ramboll Oil & Gas are Maersk Oil, Statoil, Dong Energy, 
Nord Stream, Qatar Petroleum and EU. 
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A collaboration between Ramboll Oil & Gas’ process department in Esbjerg and Kasper Rønn 
Rasmussen, student of sustainable energy technology at Aalborg University Esbjerg, has been set up 
on the basis of the internship that took place from 1st of May through October 2014 to research the 
described issues.   
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1 Background 
In this chapter the basic knowledge about oil and gas separation and Ramboll’s weight estimation 
methods is described and analysed. Optimisation methods for possible use are reviewed.   

1.1 Oil and Gas Separation 
The multiphase fluid from the wells, which consist of crude oil, gas, condensates, water and various 
contaminants, is separated into desirable fractions and treated by the process equipment to deliver 
stabilised marketable products. Facilities to test products and clean waste products such as produced 
water are also present components of the process. An example of the main equipment of the 
process, shown in Figure 1-2 page 9, will be described in this section. Other designs of process flow 
diagram, PFD, can be possible depending on the design criteria’s and objectives for the production. 

1.1.1 Separators 
The first three main separators are gravity separators, in this case with a horizontal orientation. The 
multiphase fluid enters the 1st stage separator with a pressure of 30-35 barg. A choke valve carries 
out a possible reduction of the pressure between the well and separator. The separated water is lead 
out at the bottom of the vessel to the produced water treatment unit along with water separated from 
the 2nd and 3rd stage separators. The gas is lead out in the top and the oil to the 2nd stage separator. 
The pressure is now reduced to about 10 barg. Again the gas is lead out through the top in the 2nd 
stage separator and the oil is forwarded to the 3rd stage separator where the pressure is from 0-2 
barg. The oil is lead through the metering station and then exported by pipes or stored in tanks. The 
purpose of the pressure reduction in several stages is to achieve maximum oil recovery and stabilize 
the oil and gas, and separate water. A large sudden pressure reduction in a single separator will 
cause a quick vaporisation, which leads to instabilities and safety hazards.   

 

Figure 1-1: Sketch of a typical gravity separator (1). 
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Figure 1-2: Process Flow Diagram, PFD, of an oil & gas separation and treatment process. 
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The retention time in a gravity separator, shown in Figure 1-1 page 8, is typically 5 minutes 
according to GPSA, Gas Processors Suppliers Association (2). This time allows the gas to bubble 
out, water to settle at the bottom and the oil to be taken out in the middle. At the inlet there is a 
baffle slug catcher. Slugs are large gas bubbles and liquid plugs, and the effect of this reduced by 
the catcher. Between the water and oil outlet is the weir plate located. It has the function of keeping 
the settled heavier water separated in bottom, so the lighter oil can skim over the plate and be lead 
out. The oil and water outlet is equipped with a vortex breaker to reduce disturbance on the liquid. 
Any vortex formation is broken to ensure that only separated liquid is tapped of and not mixed with 
the unwanted liquid. Similarly the gas outlet is equipped with demisters, where filters will remove 
liquid droplets in the gas. 

1.1.2 Gas Treatment and Compression 
The gas from the 3rd stage separator is sent to the LP1 compressor. Before entering the compressor 
the gas is cooled by a heat exchanger and passes through the LP1 scrubber in order to remove 
liquid. The lower the temperature of the gas, the less energy will be used to compress the gas for a 
given final pressure. When exiting the LP1 compressor the gas is mixed with the gas from the 2nd 
stage separator, along with the excess gas from the NGL splitter, before being cooled and passed 
through the LP2 scrubber and compressor. The gas is compressed up to approximately 30 barg by 
the LP2 compressor. The LP2 outlet gas is now mixed with the gas from the 1st stage separator 
before it is cooled. It is then forwarded to the IP scrubber and leaves the IP compressor at a pressure 
of approximately 50 barg. The LP and IP compressors are often centrifugal compressors driven by 
an electrical motor. Larger compressors are turbine driven. 

Before the gas enters the glycol contactor, also called TEG, it goes through the glycol cooler and 
scrubber. A glycol contactor is an absorber where the gas gets absorbed in the glycol. The glycol is 
boiled so the water evaporates.  

1.1.3 Heat Exchangers 
The dry gas that leaves the glycol contactor enters first a gas-gas heat exchanger as the heating 
medium, leaves it and then enters a gas-condensate heat exchanger also as the heating medium. It 
then enters the expander inlet scrubber to extract condensate. The gas is lead out through the top to 
the expander-compressor, which are an expander and a compressor driven on the same axis. A large 
amount of the energy can therefore be recovered. After the gas has been expanded it is applied to 
the LT separator, and the gas now enters the gas-gas heat exchanger as the cooling medium before 
being compressed, cooled and then lead to the metering station. The condensate extracted from the 
LT separator is used as cooling medium for the gas-condensate heat exchanger before being 
forwarded to the NGL splitter along with the condensate from the expander inlet scrubber. 

Tube and shell heat exchangers are most often to be used, but also plate heat exchanger is used at 
low pressure operating conditions.  

1.1.4 NGL Splitter 
NGLs are valuable by-products of natural gas processing. NGLs are sold separately and consist of 
ethane, propane, butane, iso-butane and natural gasoline. They are used at on-shore oil refineries or 
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petrochemical plants as sources of energy and for enhancing oil recovery in oil wells. It is a 
challenge to export it as a by-product off-shore because of the requirement of extra infrastructure 
on-shore. 

The splitter is separating the lighter components at the top and heavier component in the bottom. 
The reboiler attached is used as an item to control the export oil and gas qualities by separating 
further lighter components. 

1.1.5 Produced Water Treatment 
Environmental legislation in most countries is strict and in the North-East Atlantic the OSPAR 
convention protects the marine environment. For produced water disposal the platform has to 
comply with the OSPAR Recommendation 2001/1 for the Management of Produced Water from 
Offshore Installations (3). It emphasizes that produced water discharged into sea should not contain 
a higher amount of oil than 30 mg/l, corresponding to 30 ppm. Figure 1-3 shows a simple produced 
water system.  

 

Figure 1-3: Typical water treatment system (1). 

The produced water from the separators first goes through a sand cyclone, if sand is present, which 
removes most of sand. Before the sand is discharged it is washed clean. Then the water enters the 
hydrocyclone, both cyclones are technology based on high centrifugal forces and the difference 
between the specific gravity of oil and water, causing the lighter oil to separate from the heavier 
water and solids. The produced water is injected tangentially under pressure. The speed then 
increases because of the conical shape of the cyclone as the diameter narrows. Heavier solids and 
water moves in a vortex near the wall towards the exit, whereas the lighter oil will move in a 
secondary vortex in the center of the cyclone towards the inlet. A typical hydrocyclone unit consists 
of 70 – 80 hydrocyclone liners. Each liner is based on the above described hydrocyclone principle. 
To achieve the desired optimal flow through the hydrocyclone unit, liners can be replaced by 
dummies, which block the flow to give a higher flow in the remaining liners. The water is at last 
collected in the water de-gassing drum. Here the remaining gas will slowly rise to the surface and 
attract oil droplet to surface by flotation. The surface oil is drained and the produced water is ready 
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to be discharged into sea. Oil recovered in the system is often recycled back to the 3rd stage 
separator.  

1.2 Oil and Gas Export Quality 
Oil and gas is measured very accurate, before it is sent off the platform into pipes or tank on ships 
for treatment at the refineries. The measuring takes place at an oil metering station and at a gas 
metering station. The oil and gas has to fulfil certain export demands qualities.  

1.2.1 Metering Stations 
There are several purposes of the metering stations. At first it is the direct billing of the sold 
products – oil, condensate and gas. There is a high focus on the metering from multiple participants, 
i.e. the operator and the partners in the license off the production field. Also billing of hydrocarbons 
taxes are conducted at the metering stations. These metering stations are designed according to 
NORSOK standards (4). 

The oil metering station operates most commonly by turbine meters with dual pulse outputs. The 
metering is split into several runs depending on the flow to cover the full range with sufficient 
accuracy. From measuring volume, number of pulses, pressure and temperature the flow computer 
provides accurate flow measurements using formulas from industry standards. Typically an 
accuracy of +/- 0.3 % is achieved (1). The gas metering station measures by an ultrasonic meters or 
orifice meters. The pressure differential is measured over the orifice plates along with pressure, 
temperature, and mass. Ultrasonic meters work by sending beams across the path and measure the 
Doppler Effect. Several gas metering stations is provided with equipment for measurement of 
hydrocarbon, HC, dew point, H2S concentration, specific gravity and a chromatograph to determine 
the gas composition. An accuracy of +/- 1.0 % is achieved (1).  

1.2.2 Achieving Export Quality Specifications 
The export of oil and gas has certain specifications that need to be retained, shown in Table 1-1. 
The specifications may act as constraints and can be difficult or even impossible to comply with 
simultaneously. 

Dry export gas specifications 
Wobbe index (max/min) 50.8  / 55.8 MJ/Nm3 
HHV value (max/min) 40.2 / 46.0 MJ/Nm3 
Specific gravity (min/max) 0.55 / 0.70 - 
H2S content (max) 5 Mg/Nm3 
CO2 content (max) 2.5 Mole % 
O2 content (max) 0.1 Mole % 
Water dew point (max) -8 °C @ 70 bar 
HC dew point (max) -2 °C @ 70 bar 

Export oil specifications 
Methane content 

Max. RVP 12 psia Ethane content 
Propane content 
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Butane content 
Produced water content (max) 2.5 Vol. % 
BS&W (max) 2.5 Vol. % 

Table 1-1: Oil & Gas export specifications (5). 

RVP, Reid Vapour Pressure, is a process used in the petroleum industry to measure the volatility of 
petroleum crude oil, gasoline and other petroleum products. The RVP value has to be at a certain 
level to make sure the oil does not create bobbles and boils in the pipe lines. Too high RVP values 
causes too much steam. To make sure the gas does not condensate in the pipeline, the dew point 
cannot be higher than -2 degrees Celsius. The gas also has to satisfy the HHV and Wobbe index 
limits. 

When designing a process facility all these factors are investigated for the expected production rates 
to find out which specification can be meet in a HYSYS simulation. It is then decided where to 
focus lies for the production according to the oil and gas quality.  

1.3 Optimisation Methods 
Possible optimisation techniques for setting the variable values at a level in the process so a 
minimum of power consumed, and the oil and gas export quality demands are meet at the same 
time, are described in this section. The basis for the methods is according to a HYSYS simulation of 
a given oil and gas separation process.  

1.3.1 Manual Adjustment – Trial and Error 
When adjusting the equipment variables manually by trial and error to achieve a specific export 
quality the interaction effects of the variables are not taking into account. This method will also 
result in many simulations or experiments for even a few independent variables.  

It is possible to get a rather good result by this method. Through trial and error, experiences are 
achieved on which variable/variables causes the most impact in order to minimise the power 
consumption for the HYSYS simulation. Even if achievement of a good result from many trails and 
simulations, it is not certain that the global optimum is found.   

1.3.2 HYSYS Built in Optimiser 
In HYSYS there is a built in optimisation tool, where it is possible to minimise or maximise a 
chosen parameter in the entire process simulation. Constraint functions can be applied to the 
optimisation so any desired possible case can be investigated. This is shown in Figure 1-4, where 
the wanted objective function to be optimised is the A1 cell and the constraint functions below. To 
the right in the B cells wanted values for the constraint functions is given.    
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Figure 1-4: Screen shot of HYSYS built in optimisation tool.  

The simulation is then proceeding with these settings and a result to the objective function is given.  

A list of the variable values for the given case is then given by the optimisation tool, seen in Figure 
1-5. 

 

Figure 1-5: Variable values given by the optimisation case – HYSYS screenshot. 

The data in the two figures will not further be described. This is only intended for information about 
the HYSYS built in optimisation tool. 

1.3.3 Design of Experiment and Response Surface Methodology 
Applying boundaries to the independent variables will narrow the amount of possible settings, but it 
still gives a tremendous number of experiment combinations, which then will require almost an 
unmanageable amount of time to complete for a hand full of variables. Therefor a more intelligent 
and systematic method is needed that decreases the number of experiments – Design of Experiment, 
DOE. 
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Two fundamental types of variables are present in DOE, i.e. factors and responses, shown 
graphically in Figure 1-6. Responses are the objective of the experiment or properties that reveal if 
the system behaves in a healthy or unhealthy manner. The factors are tools for manipulating the 
system, since they apply an influence on the system.     

 

Figure 1-6: Factor and responses overview (6). 

DOE is used to find the optimum conditions in industrial research, development and production. As 
the name indicates, DOE is dedicated for applications where systems are studied by running, in an 
educated way, a series of similar test. The objects of study are complex products and processes, 
defined with a multitude of independent variables, which usually interact in the effects on certain 
dependent parameters. The main advantage of using DOE in test series lie in the massive reduction 
in the number of necessary experiments for a specific study. This benefit is possible by keeping the 
focus only on detected main effects, and is enhanced by taking in consideration of the interactions 
appearing between the studied parameters.  

The experiments are laid out in symmetrical fashion around the standard reference experiment. 
Hence, the standard reference experiment is usually called the center-point. For example 
experiments that consist of 5 variables and has a center point set to mid-level within their respective 
chosen range. The experiment then becomes a 5 factor 3 level experiment – low, mid and high 
level. If a full factorial experimental design is to be studied it would result in 35 = 243 experiments. 
By choosing a face-centered central composite design, CCD, the number of experiments can be 
significantly reduced.  

 

Figure 1-7: Three level three factor face centered composite design (7). 
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Figure 1-7 page 15 shows, a) Points in factorial portion of the design, b) Points in axial, star, 
portion of the design and c) the factorial and axial portions to give the CCD with center point. A 
total of 46 different experiments are to be carried out, including 4 recommended replicates or 
control points usually at the center. The low level is assigned with -1, the high level +1 and the 
center point 0 for a given value for each independent variable in their respective range. A 
simulation plan is the created based on the number of variables and levels. For a 5 factor 3 level 
experiment the simulations are as in Table 1-2. 

Sim. # X1 X2 X3 X4 X5 Point 
1 0 0 0 0 0 Center 
2 -1 -1 -1 -1 -1 Factorial 
3 1 -1 -1 -1 -1 Factorial 
4 -1 1 -1 -1 -1 Factorial 
5 1 1 -1 -1 -1 Factorial 
6 -1 -1 1 -1 -1 Factorial 
7 1 -1 1 -1 -1 Factorial 
8 -1 1 1 -1 -1 Factorial 
9 1 1 1 -1 -1 Factorial 
10 -1 -1 -1 1 -1 Factorial 
11 1 -1 -1 1 -1 Factorial 
12 -1 1 -1 1 -1 Factorial 
13 1 1 -1 1 -1 Factorial 
14 -1 -1 1 1 -1 Factorial 
15 1 -1 1 1 -1 Factorial 
16 0 0 0 0 0 Center 
17 -1 1 1 1 -1 Factorial 
18 1 1 1 1 -1 Factorial 
19 -1 -1 -1 -1 1 Factorial 
20 1 -1 -1 -1 1 Factorial 
21 -1 1 -1 -1 1 Factorial 
22 1 1 -1 -1 1 Factorial 
23 -1 -1 1 -1 1 Factorial 
24 1 -1 1 -1 1 Factorial 
25 -1 1 1 -1 1 Factorial 
26 1 1 1 -1 1 Factorial 
27 -1 -1 -1 1 1 Factorial 
28 1 -1 -1 1 1 Factorial 
29 -1 1 -1 1 1 Factorial 
30 1 1 -1 1 1 Factorial 
31 -1 -1 1 1 1 Factorial 
32 1 -1 1 1 1 Factorial 
33 -1 1 1 1 1 Factorial 
34 1 1 1 1 1 Factorial 
35 0 0 0 0 0 Center 
36 -1 0 0 0 0 Axial 
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37 1 0 0 0 0 Axial 
38 0 -1 0 0 0 Axial 
39 0 1 0 0 0 Axial 
40 0 0 -1 0 0 Axial 
41 0 0 1 0 0 Axial 
42 0 0 0 -1 0 Axial 
43 0 0 0 1 0 Axial 
44 0 0 0 0 -1 Axial 
45 0 0 0 0 1 Axial 
46 0 0 0 0 0 Center 

Table 1-2: CCD simulation plan for 5 factorial 3 level experiment. 

The number of simulation is significantly reduced, 46 runs, compared to a full factorial simulation 
plan of 243 runs. After completion of the experimental plan the responses data must be analysed in 
order to find out which factors influence the responses. This is usually done by fitting a polynomial 
model to the data. The general second order response surface model can expressed as (8): 

 
ܻ ൌ ଴ߚ ൅෍ߚ௜ ௜ܺ

௞

௜ୀଵ

൅෍ߚ௜௜

௞

௜ୀଵ
௜ܺ௜
ଶ ൅෍෍ߚ௜௝ ௜ܺ ௝ܺ

௞

௝ୀଶ௜ழ

 

 

[1]

Y is the investigated response. X’s the independent variables. By linear regression analysis the β0 
constant term and the coefficient, β’s, can be estimated. It often turns out that some of the effects, 
usually second-order terms, are statistically insignificant and can be excluded from the model by 
either step-wise linear regression or a criterion based strategy.  

Response Surface Methodology, RSM, can be thought of as a process consisting of the following 
steps: 

1. Generate a DOE probing the expected parameter space (constraints in independent variables 
– physical, practical etc.). 

2. Perform the corresponding simulations/experiments. 
3. For each dependent variable, Yi, generate a linear regression model as function of 

independent variables, Xj’s. 
4. Check for linear regression assumption violations, lack-of-fit etc. 

(Normal residuals, “random residuals”, outliers with influence etc.). 
5. Perform regression model selection (repeat 3-5) 
6. Validate models outside training set 
7. Optimise 

 

The models that will be created are approximations, which simplify the study of the reality. 100 % 
perfection will never be achieved by a model, but can still be very useful.   
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1.4 Weight Estimations 
In early phase studies, uncertainties are applied to estimates for dimension and weight. It is given to 
each piece of equipment by the involved engineering disciplines. The estimates are calculated by 
specific design criteria, i.e. flow rates, pressures, temperatures, medium to be processed and power 
demands. Principles on how to indicate a better combined uncertainty is described in this section. 

1.4.1 Equipment Estimations 
When sizing most process equipment in feasibility and concept studies, uncertainties is applied to 
the estimates. The uncertainty is typically about +/- 30-50 % depending on the detail level of the 
project phase. Several methods are used for equipment sizing. Ramboll has their own Estimation 
Manual, which is a correlation of data from known offshore installations and experiences. In the 
manual it is possible to look up weight and size for a various type of equipment depending on 
certain design parameters. The sizing is also done by spread sheets, where known data is applied to 
calculate size and weight and by collecting data from multiple vendors in order to create scaling 
factors or correlations. All equipment sized is listed in a Master Equipment List, MEL, with known 
data for the design criteria, dimension and weight. The total weight is given with another 
uncertainty of +/- 10-30 %. To achieve a total weight for a topside structure including all necessary 
engineering disciplines, the work process could be divided into two approaches, as seen in Figure 
1-8. The path chosen is depending on the project phase, which decides the level of detail. 

 

Figure 1-8: Work flow diagram. 
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In the early project phases, screening and feasibility, the process equipment sizing can set the 
foundation for correlations factors based on known off-shore installation for the relation between 
the process weight and piping, electrical/instrument and structural. In a higher level of feasibility 
study or concept study, each engineering discipline will create a detailed MEL with design 
specification and equipment sizing for each type of equipment used in their respective field of work.      

Oil, gas and water flow rates uncertainties are also present in a given reservoir. The most likely 
possibility is chosen through thorough analysis as the design criteria and is used for designing and 
sizing the equipment. The combination of equipment estimations, flow rates and factors applied can 
give a total weight estimate for an entire topside production platform.     

1.4.2 Error Propagation 
A method of describing the combined uncertainty and giving a more precise estimate when dealing 
with multiple variable uncertainties is by using error propagation. It is defined as the effects on a 
function by the uncertainties from variables and is designed to provide an accurate measurement of 
the uncertainty. 

The method now used for the total weight in a MEL is by adding the uncertainty, depending on the 
project phase, to the total combined equipment weight as a worst case and can be described as: 

ொ௅ݐ݄ܹ݃݅݁   ൌ ൫ܽ௪௘௜௚௛௧ ൅ ܾ௪௘௜௚௛௧ ൅ ܿ௪௘௜௚௛௧ …൅ ݊௪௘௜௚௛௧൯ ∙ ሺ1

൅
௣௘௥௖௘௡௧௔௚௘ݕݐ݊݅ܽݐݎܷ݁ܿ݊

100
ሻ

[2]

 
The calculated weight for each piece of equipment a, b, c… etc. with uncertainties δa, δb, δc,… etc. 
is desired to be combined into the quantity Q with uncertainty δQ. In order to calculate δQ, the total 
span of the uncertainty must be taken into account, i.e. from the lowest to the highest possible value 
for each quantity. This is due to the normal distribution of an uncertainty, which is an important 
statistical data distribution pattern occurring in many natural phenomena such as height, blood 
pressure, lengths of objects produced by machines etc. (9). Normally a normal distributed 
uncertainty represents 68% possibility (1 and -1 standard deviation), which means that the 
uncertainty is 16% likely (from 1 and -1 to 3 and -3 standard deviation) to be of value outside the 
range bounded by a +/- δa. See Figure 1-9 page 20 for further graphical details. 
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Figure 1-9: Normal distribution graphed as a bell curve with standard deviation percentages (9). 

Standard deviation, σ, is controlling the spread of the normal distribution. A small standard 
deviation gives a more concentrated data set and bell curve. The value at the peak is called the 
mean. By approaching the uncertainties as normal distributed the combined uncertainty δQ, where 
the uncertainties depend on each other is:   

ܳߜ  ൌ ඥሺܽߜሻଶ ൅ ሺܾߜሻଶ ൅ ሺܿߜሻଶ …൅ ሺ݊ߜሻଶ 
 

[3]

The uncertainties add in quadrature, i.e. the square root of the sum of squares. (10) 

1.4.3 Monte Carlo Method 
In order to compile the multiple aspects with their respective uncertainties and get a mathematical 
approximation of the outcome, total weight, Monte Carlo Simulation has to be applied. Monte Carlo 
is a problem solving technique to approximate the probability of outcomes by running a series of 
simulations, which rely on repeated random sampling to obtain a numerical result. The method was 
named after the city Monaco, where a primary attraction is casinos.  
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2 Problem Delimitation and Definition 
Through the analysis issues concerning oil & gas separation, weight estimations and their respective 
optimisation possibilities is described. The further work will not contain a deriving of the error 
propagation formula, equation [3], and neither a higher detail level of the equipment description in 
the PFD. The problem definition is on behalf of the analysis and delimitation of the problem chosen 
to be: 

Can the energy consumption of a hypothetical HYSYS process simulation be minimised and is it 
possible to create a model which can estimate the total weight of a production platform? 

Furthermore the following goals and methods to be used are set for the project: 

 By a DOE and RSM approach, create a model possible for Ramboll to use for optimisation of a 
HYSYS simulation in future projects. 

 Design and create a combined weight estimations Excel sheet, which uses Ramboll’s estimation 
methods to give a total weight estimate of the central process equipment, based on data from 
HYSYS simulations. 

 The combined weight estimation sheet is intended to set the basis for the total weight of 
production topside, which depends on uncertainties and factors. 

 Intelligent and easy access data processing software is needed in order to apply DOE and RSM 
to the large amount data and perform Monte Carlo simulations.  
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3 Solutions and Modelling 
This chapter consist of 2 sections. One concerns process optimisation of central process equipment 
simulated in HYSYS, by a DOE and RSM approach. The other about improvement of weight 
estimation methods and creating a model that estimates the total topside weight by using Monte 
Carlo simulations.  

3.1 Process Optimisation 
A HYSYS simulation of an oil and gas separation process is intended to be optimised. The purpose 
of the optimisation is to consume the lowest possible power and at the same time fulfil given export 
quality demands.      

3.1.1 Experimental Setup 
In the HYSYS simulation five variable factors, which is known to have an impact to the desired 
responses, is chosen to be included in the experiment. 

The five major independent variable factors examined in this experiment are: 
 X1 - Pressure after the expander 

 X2 - Temperature reboiler 

 X3 - Pressure 3rd stage separator 

 X4 - Pressure after booster 

 X5 - TEG inlet temperature 
 
Objective responses: 

 Y1 – Gas export quality (Multiple) 

 Y2 – Oil export, RVP 

 Y3 – Total power consumption 
 
The PFD shown in Figure 3-1 on page 23 indicates where the variables, X1 to X5, and objectives, 
Y1 to Y3, are located in the process. 
 
Applying a DOE and RSM approach to the setup, the five variables results in a 5 factor 3 level 
experiment. The experiment plan described on page 17 in Table 1-2 can therefore be implemented.  

Variable → 
 
 

P after 
expander 
[bar] 

T 
reboiler 
[Celsius]

P 3. stage 
separator 
[bar] 

P after 
booster 
[bar]  

TEG 
inlet T 
[Celsius] 

High (+1) 45 35 2.5 95 35 
Mid (0) 35 25 2.3 90 30 
Low (-1) 25 15 2.1 85 25 

Table 3-1: DOE variable low, mid and high level values. 

Table 3-1 shows the chosen value range for each of the five variables with low (-1), mid (0) and 
high (+1) indicators.  
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Figure 3-1: PFD of HYSYS simulation process assembly with indicators for variables and objectives.
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The values are applied in the experiment plan where -1, 0 and +1 is indicated and each variable 
value combination is simulated in HYSYS one by one. The objective results are noted. 
Specifications for the objective responses are: 
 

 Wobbe index [MJ/m3]   

 SG  [rel_to_air] 

 HHV  [MJ/m3] 

 HC dew point [C] 

 Power  [kW] 

 RVP  [psia] 

 NGL  [kg/h] 
 
The experimental results from each simulation are listed in Table 3-2. 

Simulation 
no. 

Wobbe SG HHV Dew Power RVP NGL 

1 56.56 0.663 43.64 -22.89 8670 14.71 2379.758
2 55.85 0.6419 42.39 -37.37 10130 16.41 2803.044
3 56.88 0.6724 44.17 -17.38 8439 13.82 2169.874
4 55.84 0.6417 42.38 -37.46 10160 15.95 2702.104
5 56.86 0.6718 44.16 -17.55 8453 13.44 2092.44
6 55.82 0.641 42.33 -38 9012 17.32 2973.121
7 56.82 0.6707 44.09 -18.09 7591 14.83 2354.133
8 55.83 0.6416 42.37 -37.81 9158 17.15 2947.571
9 56.81 0.6704 44.07 -18.2 7605 14.41 2230.665
10 55.62 0.6354 42 -42.69 11440 16.72 2862.628
11 56.55 0.6626 43.61 -22.34 9550 15.06 2455.664
12 55.64 0.6358 42.03 -42.32 11600 16.23 2758.642
13 56.55 0.6625 43.61 -22.37 9577 14.51 2334.314
14 55.63 0.6357 42.02 -42.57 10190 17.9 3101.522
15 56.51 0.6613 43.53 -23.11 8478 16.01 2621.408
16 56.52 0.6618 43.57 -23.45 8629 14.52 2334.442
17 55.58 0.6341 41.92 -43.04 10070 17.25 2857.83
18 56.53 0.662 43.57 -22.73 8553 15.67 2563.984
19 56.54 0.6623 43.6 -23.97 9127 13.76 2198.805
20 57.68 0.6965 45.62 -4.154 7643 11.32 1613.457
21 56.52 0.6617 43.56 -24.24 9143 13.35 2108.059
22 57.67 0.6963 45.6 -4.198 7660 11.07 1563.388
23 56.44 0.6593 43.42 -25.55 8300 14.88 2412.122
24 57.58 0.6933 45.43 -5.428 7017 12.53 1836.089
25 56.42 0.6589 43.39 -25.64 8307 14.5 2339.432
26 57.58 0.6933 45.43 -5.346 7025 12.24 1779.434
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27 56.26 0.6541 43.11 -28.6 10120 14.49 2372.166
28 57.3 0.6851 44.94 -9.965 8372 12.54 1886.848
29 56.27 0.6544 43.13 -28.39 10180 14.01 2268.746
30 57.28 0.6842 44.89 -10.22 8398 12.14 1807.463
31 56.17 0.6515 42.95 -30.42 9184 15.95 2671.94
32 57.17 0.6805 44.67 -12.6 7592 13.88 2148.688
33 56.17 0.6514 42.95 -30.4 9232 15.41 2559.392
34 57.14 0.6803 44.66 -12.15 7620 13.44 2054.316
35 56.52 0.6617 43.56 -23.43 8602 14.52 2331.488
36 56.03 0.6474 42.71 -33.17 9569 15.72 2635.426
37 57.05 0.6775 44.49 -14.08 7960 13.46 2073.842
38 56.52 0.6618 43.56 -23.46 8597 14.68 2361.171
39 56.52 0.6617 43.56 -23.45 8640 14.29 2287.376
40 56.52 0.6617 43.56 -23.4 9108 13.95 2219.807
41 56.53 0.6619 43.57 -23.44 8275 15.32 2499.151
42 56.71 0.6673 43.89 -20.54 8261 14.19 2267.329
43 56.39 0.6577 43.32 -25.55 9068 14.84 2418.469
44 56.17 0.6515 42.95 -29.76 9137 15.86 2641.978
45 56.92 0.6735 44.25 -16.84 8249 13.6 2127.423
46 56.51 0.6613 43.53 -23.67 8615 14.52 2332.33

Table 3-2: Experimental results for the seven objective responses. 

A step by step guide on how the HYSYS simulations are executed and how the results are achieved 
is given in Appendix 1.1 – HYSYS Experiment Procedure. 

The goal is to be able to create a linear regression model for each objective, which can be used to 
predict the variable values in different cases and at the same time minimise the power consumption 
for the separation process. Two main cases are set up for investigation – one focusing on the gas 
export and one for the oil export. 

Case 1 Case 2 

Minimise power when: Minimise power when: 

HC dew point ≤ -2 [C] HC dew point ≤ -2 [C] 
Wobbe index ≤ 58.2 [MJ/m3] 

HHV ≤ 46 [MJ/m3] RVP ≤ 12 [psia] 

SG ≤ 0.7 [rel_to_air] 
Table 3-3: Overview of desired optimisation cases. 

 

3.1.2 Data Processing 
Intelligent and easy accessible calculation software is needed to handle and process the large 
amount of data from the simulations. Through supervision from the Ramboll supervisor, Python 
programming language was chosen. Python is a free distributed add-on and there are several options 
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for the environmental development interface. In this case Spyder was used, it has advanced editing, 
interactive testing, debugging and introspection features. 

The data is listed in an Excel CSV-file to simplify the document format, so no disturbances occur 
when retrieving the data from the file in the program. The simulation combination values are listed 
with their respective results in columns. Before starting to create the code for the linear regression 
models, the needed libraries and scientific packages are included or imported in the beginning of the 
code script. In order to create the regression models in Python, the module statsmodels is used 
among other. It gives an overview of the importance, by P > | t |, of the coefficients for each 
possible variable and their interactions. Several coefficients can be excluded from the models, since 
they have no or an insignificant influence. A method called backward elimination. An example of 
the HHV regression model is given in Figure 3-2 and Figure 3-3. Figure 3-2  shows, in the blue 
box, the start conditions for the model with coefficients for every possible variable, variable 
interactions and second order terms.  

 

Figure 3-2: HHV Ordinary Least Squares regression model - all term included. 

After removing insignificant terms one by one with values for P > | t | higher than 0.05, represented 
in the green box, in order to make sure the model is not giving misleading results.  Figure 3-3 shows 
the remaining terms and their coefficients after the backward elimination. The adjusted R-squared 
value has also been increased, which indicates an improved model. 
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Figure 3-3: Final HVV Ordinary Least Squares regression model result. 

A procedure description of every step in the HHV regression model example is given in Appendix 
1.2 – Python Regression Model Procedure.  

The HHV model with respect to the five variables from Table 3-1 page 22, X1 to X5, is formed: 

ܸܪܪ  ൌ 0.1551 ∙ ܺ1 ൅ 0.7386 ∙ ܺ3 െ 0.2107 ∙ ܺ4 ൅ 0.2821 ∙ ܺ5
െ 0.0011 ∙ ܺ1 ∙ ܺ4 ൅ 0.0011 ∙ ܺ1 ∙ ܺ5 െ 0.0344 ∙ ܺ3
∙ ܺ5 െ 0.0014 ∙ ܺ4 ∙ ܺ5 ൅ 0.0013 ∙ ܺ4 ∙ ܺ4 ൅ 44.6248 

[4] 

 

Each regression model for the objective responses has been created through this procedure. The 
Python code script can be found in Appendix 1.3 – Entire Python Code Script.  

3.1.3 Model Improvement and Verification 
Each model for the objective responses has to be verified in order to implement them in 
optimisation case 1 and 2 and to determine their reliability. Several methods are used to check if the 
model fits.  

Python provides the opportunity to create a variety of statistical plots that indicates outliers, which 
indicates where mistakes could be located and if they have any influence on the model. The HHV 
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model is for an example checked by plotting the predicted values up against data set simulated in 
HYSYS, see Figure 3-4. For a good model fit the dots should form a linear line, which is does.  

 

Figure 3-4: HHV model predicted vs. HYSYS simulated values. 

If a point obviously lies outside the linear line, further investigation of the model could be 
necessary. Several plots are suitable to check possible outliers. The residual vs. fitted values plot in 
Figure 3-5 page 29 show the points from the HYSYS simulations. Residuals are used to control the 
models adaptation of the data. A large residual indicates a bad adaptation of the model to a data 
point. The spread of the data points should look like they are randomly placed, but should also be 
symmetric vertically about 0 and indicate a normalised distribution. In this plot one should look for 
non-constant variance and nonlinearity, which would indicate that some change in model is 
necessary (11). A good fit will result in a more or less linear line across the scatter. When taking the 
very low residual values at the y-axis in consideration for Figure 3-5, the regression model 
represented by the blue line, is good fit and showing a linear line.    

These plots among a few others were applied to each model and the outliers present investigated. 
For some plots, outliers are indicated by a number. This number represents the simulation number 
from the CSV-file. These simulations were then reviewed to see if the data was entered probably. If 
so, the combination for the given simulation can be executed again to compare the entered values. It 
resulted in location of a few mistakes. Some simulations had to be done again, where the simulation 
results varied from the first entered. The most significant mistake was a wrong placement of a 
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decimal separator. The regression model creation had to be repeated after applying the correction to 
the CSV-file, which gave a more accurate result. 

 

Figure 3-5: Residual vs. fitted values plot of the HHV model. 

To verify the model further values for variables that have not been used in the experiment is applied 
both in each of the Python regression models and HYSYS for comparison. Levels that lie in 
between the mid-level and high/low level (+0.5 & -0.5) and outside the experimented range (+1.5 & 
-1.5) are compared. 

Python/HYSYS variable values = (40, 30, 2.4, 92.5, 32.5) 

Python results: HYSYS results: Error % Error # 
diff. 

Wobbe: 57.20 Wobbe: 56.83 -0.65 -0.37 

SG: 0.6758 SG: 0.6709 -0.7287 -0.0049 

HHV: 43.87 HHV: 44.1 0.52 0.23 

Dew: -17.65 Dew: -17.61 -0.25 0.04 

RVP: 13.91 RVP: 13.78 -0.93 -0.13 

NGL: 2195.5 NGL: 2147.2 -2.20 -48.25 

Power: 8072.9 Power: 8063.0 -0.12 -9.93 
Table 3-4: Model verification, +0.5 variable value comparison. 
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Python/HYSYS variable values = (30, 20, 2.2, 87.5, 27.5) 

Python results: HYSYS results: Error % Error # 
diff. 

Wobbe: 56.50 Wobbe: 56.18 -0.56 -0.32 

SG: 0.6556 SG: 0.6516 -0.61 -0.004 

HHV: 42.75 HHV: 42.96 0.50 0.21 

Dew: -30.47 Dew: -30.11 -1.18 0.36 

RVP: 15.32 RVP: 15.44 0.81 0.12 

NGL: 2554.9 NGL: 2558.9 0.15 3.93 

Power: 9311.0 Power: 9308.0 -0.032 -2.95 
Table 3-5: Model verification, -0.5 variable value comparisons. 

Table 3-4 and Table 3-5 shows the comparison of the +0.5 and -0.5 values applied to the models 
and HYSYS. The percentage errors and the numerical differences are given. In general the 
percentage errors are very low for all models in both scenarios.  

Same comparison is done for values outside the experimented range. That is for values at +1.5 and -
1.5 in Table 3-6 and Table 3-7. 

Python/HYSYS variable values = (50, 40, 2.6, 100, 40)  

Python results: HYSYS results: Error % Error # 
diff. 

Wobbe: 57.98 Wobbe: 57.38 -1.03 -0.60 

SG: 0.6969 SG: 0.6873 -1.37 -0.01 

HHV: 45.04 HHV: 45.07 0.074 0.033 

Dew: -6.89 Dew: -7.90 14.58 -1.01 

RVP: 13.28 RVP: 13.06 -1.63 -0.22 

NGL: 1990.4 NGL: 1955.5 -1.75 -34.89 

Power: 7419.2 Power: 7209.0 -2.83 -210.17 
Table 3-6: Model verification, +1.5 variable value comparisons. 

Python/HYSYS variable values = (20, 10, 2.0, 80, 20)  

Python results: HYSYS results: Error % Error # 
diff. 

Wobbe: 55.62 Wobbe: N/A N/A N/A 

SG: 0.6303 SG: N/A N/A N/A 

HHV: 41.37 HHV: N/A N/A N/A 

Dew: -49.01 Dew: N/A N/A N/A 

RVP: 18.24 RVP: N/A N/A N/A 
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NGL: 3226.70 NGL: N/A N/A N/A 

Power: 11126.8 Power: N/A N/A N/A 

Table 3-7: Model verification, -1.5 variable value comparisons. 

In HYSYS it was not physical possible to run the simulations in the process design with values at -
1.5 and therefor no results are compared in Table 3-7. The percentage errors in Table 3-6 are for 
most parameters larger, compared to the results in Table 3-4 and Table 3-5. The HC dew point 
model has a high percentage error of almost 15 %, but since the numerical error is only 1 degree 
Celsius, it is still an acceptable result.    

The regression models fit the HYSYS results and are ready to be implemented in the optimisation 
code, where the function to be optimised can be constraint by one or more of the others.    

3.1.4 Results 
Case 1 and 2 are calculated in Python and the results are compared to a HYSYS simulation applied 
with the variable values found from the Python calculation in order to verify each case.  

The code script for optimisation: 

from scipy.optimize import minimize 
 
def f1(x): 
# Dew - Constrain function 
return -1*(1.8594*x[0] + 13.6961*x[2] + 2.6635*x[4] - 0.0043*x[0]*x[3] - 0.0040*x[0]*x[4] - 
0.0801*x[2]*x[3] - 0.3040*x[2]*x[4] - 0.0063*x[3]*x[4] - 0.0055*x[0]*x[0] - 121.1210) – 2 

def f2(x): 
# Wobbe - Constrain function 
return -1*(0.0862*x[0] + 0.3914*x[2] - 0.1072*x[3] + 0.1550*x[4] - 0.0006*x[0]*x[3] + 
0.0006*x[0]*x[4] - 0.0184*x[2]*x[4] - 0.0007*x[3]*x[4] + 0.0007*x[3]*x[3] + 56.6857) + 56.2 

def f3(x): 
# HHV - Constrain function 
return -1*(0.1551*x[0] + 0.7386*x[2] - 0.2107*x[3] + 0.2821*x[4] - 0.0011*x[0]*x[3] + 
0.0011*x[0]*x[4] - 0.0344*x[2]*x[4] - 0.0014*x[3]*x[4] + 0.0013*x[3]*x[3] + 44.6248) + 46 

def f4(x): 
# SG - Constrain function 
return -1*(0.0029*x[0] + 0.0159*x[2] - 0.0035*x[3] + 0.0048*x[4] - 9.062e-05*x[0]*x[2] - 
1.887e-05*x[0]*x[3] + 1.838e-05*x[0]*x[4] - 0.0006*x[2]*x[4] - 2.25e-05*x[3]*x[4] + 2.204e-
05*x[3]*x[3] + 0.6699) + 0.7 

def objectivefun(x): 
#Function to be minimized (Power) 
return -162.7289*x[0] - 1823.7320*x[2] - 166.4767*x[4] + 28.6875*x[0]*x[2] - 1.2327*x[0]*x[3] 
+ 0.7800*x[0]*x[4] + 0.0258*x[1]*x[3] - 43.7112*x[2]*x[3] + 67.0597*x[2]*x[4] - 
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3.2682*x[3]*x[4] + 1.4819*x[0]*x[0] + 93.7959*x[2]*x[2] + 1.8744*x[3]*x[3] + 
3.0675*x[4]*x[4] + 1.72e+04 

‘Constraints’ 
cons = ({'type': 'ineq', 'fun': f1}, 
{'type': 'ineq', 'fun': f2}, 
{'type': 'ineq', 'fun': f3}, 
{'type': 'ineq', 'fun': f4}) 

‘Bounds’ 
bnds = ((25, 45), (15, 35), (2.1, 2.5), (85, 95), (25, 35)) 

'Initial guess independt variables' 
x0 = [35, 25, 2.3, 90, 30] 

res = minimize(objectivefun, x0, method='SLSQP', bounds=bnds, constraints=cons) 

print res 
print "Dew =", Dew(res['x'][0],res['x'] [1],res['x'][2],res['x'][3],res['x'][4]) 
print "Wobbe =", Wobbe(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4]) 
print "SG =", SG(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4]) 
print "HHV =", HHV(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'] [4]) 
 

The boundaries can be changed to see how the optimisation function performs - for example outside 
the training set. As well can the constraint functions values or the composition of them be changed 
to apply a desired case.  

For case 1 it was necessary to set the wobbe index constraint to ≤ 56.2 [MJ/m3], because the wobbe 
index data collected from the simulations are close to 55.8 [MJ/m3] as the minimum value. The 
optimisation function had difficulties in finding the optimum before changing it. 

Case 1 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 Wobbe index ≤  56.2 [MJ/m3] 

 HHV ≤ 46 [MJ/m3] 

 SG ≤ 0.7 [rel_to_air] 

Optimisation Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

8841 
Power 
consumption

8832 -0.10 -9 

HC dew 
point 

-36.13 
HC dew 
point 

-36.05 -0.22 0.08 

Wobbe 56.2 Wobbe 55.9 -0.54 -0.3 
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HHV 42.3 HHV 42.47 0.40 0.17 
SG 0.6470 SG 0.6433 -0.57 -0.0037 
RVP 17.05 RVP 17.02 -0.18 -0.03 
Variables found: Variables from optim.:  
P Expander 26.95 P Expander 26.95 N/A 
T Reboiler 15 T Reboiler 15 N/A 
P 3rd Sep. 2.5 P 3rd Sep. 2.5 N/A 
P Booster 85 P Booster 85 N/A 
T TEG 25 T TEG 25 N/A 

Table 3-8: Case 1 optimisation results vs. HYSYS comparison. 

The optimisation function for case 1 is finding the almost exact same values as the HYSYS 
simulation applied the, by Python, found variable values. The numerical error difference does more 
or less not exist and the percentage errors spans only from 0.1 to 0.57.  

Throughout the experimental plan and working with the simulations in HYSYS and Python, it is 
obtained that the wobbe index has a high influence to the energy consumption. To see the effect of 
the wobbe index, it is omitted from the optimisation constraints. 

Case 1-b 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 HHV ≤ 46 [MJ/m3] 

 SG ≤ 0.7 [rel_to_air] 

  Optimisation Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

7008 
Power 
consumption

7017 0.13 9 

HC dew 
point 

-6.23 
HC dew 
point 

-5.428 -12.87 0.802 

Wobbe 57.87 Wobbe 57.58 -0.50 -0.29 
HHV 45.15 HHV 45.43 0.62 0.28 
SG 0.6970 SG 0.6933 -0.53 -0.0037 
RVP 12.45 RVP 12.53 0.64 -0.08 
Variables found: Variables from optim.:  
P Expander 45 P Expander 45 N/A 
T Reboiler 15 T Reboiler 15 N/A 
P 3rd Sep. 2.5 P 3rd Sep. 2.5 N/A 
P Booster 85 P Booster 85 N/A 
T TEG 35 T TEG 35 N/A 

Table 3-9: Case 1-b optimisation without wobbe index as a constraint results vs. HYSYS comparison. 

When not taking demands for the wobbe index into consideration it minimises the power 
consumption by more than 1800 kW, compared to case 1. The percentage errors are also in this case 
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in general very low. The HC dew point percentage error is high, but the numerical error difference 
is still acceptable. 

Case 2 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 RVP ≤ 12 [psia] 

Optimisation Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

7129 
Power 
consumption

7084 -0.63 -45 

HC dew 
point 

-6.03 
HC dew 
point 

-5.439 -10.58 0.638 

Wobbe 57.88 Wobbe 57.57 -0.54 -0.31 
HHV 45.18 HHV 45.41 0.51 0.23 
SG 0.6975 SG 0.6931 -0.63 -0.0044 
RVP 12.00 RVP 12.02 0.17 0.02 
Variables found: Variables from optim.:  
P Expander 45 P Expander 45 N/A 
T Reboiler 35 T Reboiler 35 N/A 
P 3rd Sep. 2.45 P 3rd Sep. 2.45 N/A 
P Booster 85 P Booster 85 N/A 
T TEG 35 T TEG 35 N/A 

Table 3-10: Case 2 optimisation results vs. HYSYS comparison. 

The dew point percentage error is again high for this case, but it is still acceptable because of the 
low numerical difference. The errors for the other parameters are very low or almost not existing. 

Within the boundaries used in the experimental test, the optimisation model predicts the almost 
exact same results as the HYSYS simulations does with the variable input, provided by Python for 
all cases. 

How the model performs when the high low boundaries are increased by a factor is investigated in 
order to try finding an even better optimum. 

The new boundaries applied to code script are: 

‘Bounds’ 
bnds = ((15, 55), (5, 45), (1.9, 2.7), (75, 105), (15, 45)) 

The Python calculations give a warning when applying these boundaries, but the constraints are 
often still met. Therefor a comparison is yet still interesting. 
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Case 1 – new boundaries 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 Wobbe index ≤  56.2 [MJ/m3] 

 HHV ≤ 46 [MJ/m3] 

 SG ≤ 0.7 [rel_to_air] 

 Optimisation Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

7859 
Power 
consumption

7818 -0.52 -41 

HC dew 
point 

-35.5 
HC dew 
point 

-34.92 -1.63 0.58 

Wobbe 56.2 Wobbe 55.95 -0.44 -025 
HHV 42.5 HHV 42.57 0.16 0.07 
SG 0.6498 SG 0.645 -0.74 -0.0048 
RVP 18.73 RVP 18.04 -3.68 -0.69 
Variables found: Variables from optim.:  
P Expander 31.48 P Expander 31.48 N/A 
T Reboiler 5 T Reboiler 5 N/A 
P 3rd Sep. 2.7 P 3rd Sep. 2.7 N/A 
P Booster 75 P Booster 75 N/A 
T TEG 17.61 T TEG 17.61 N/A 

Table 3-11: Case 1 - new boundaries, results vs. HYSYS comparison. 

Compared to the results for case 1 in Table 3-8, the percentage errors in this case are slightly larger 
for some parameters, but still very low in general. The power consumption when increasing the 
boundaries is almost 1000 kW lower. 

Case 1-b – new boundaries 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 HHV ≤ 46 [MJ/m3] 

 SG ≤ 0.7 [rel_to_air] 

Optimisation Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

6544 
Power 
consumption

7235 10.56 691 

HC dew 
point 

-6.14 
HC dew 
point 

-1.87 -69.59 4.27 

Wobbe 57.9 Wobbe 58.07 0.29 0.17 
HHV 45.42 HHV 46.31 1.96 0.89 
SG 0.699 SG 0.7081 1.17 0.0082 
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RVP 12.59 RVP 15.42 22.48 2.83 
Variables found: Variables from optim.:  
P Expander 47.82 P Expander 47.82 N/A 
T Reboiler 5 T Reboiler 5 N/A 
P 3rd Sep. 2.7 P 3rd Sep. 2.7 N/A 
P Booster 76.2 P Booster 76.2 N/A 
T TEG 28.87 T TEG 28.87 N/A 

Table 3-12: Case 1-b new boundaries, optimisation results vs. HYSYS comparison. 

The error differences are now more inconsistent and the constraints are not maintained. Power 
consumption, HC dew point and the RVP errors are too large and unacceptable. 

Case 2 – new boundaries 
Minimise power when: 

 HC dew point ≤ -2 [C] 

 RVP ≤ 12 [psia] 

Optimization Results: 
HYSYS Results 

(Validation): 
Error 

%: 
Error # 

difference: 
Power 
consumption

6494 
Power 
consumption

7180 10.56 686 

Dew -2 Dew 3.817 -290.85 5.817 
Wobbe 58.2 Wobbe 58.54 0.58 0.34 
HHV 45.94 HHV 47.16 2.66 1.22 
SG 0.71 SG 0.7225 1.76 0.0125 
RVP 11.77 RVP 15.42 31.01 3.65 
Variables found: Variables optim:  
P Expander 50.27 P Expander 50.27 N/A 
T Reboiler 5 T Reboiler 5 N/A 
P 3rd Sep. 2.7 P 3rd Sep. 2.7 N/A 
P Booster 75.31 P Booster 75.31 N/A 
T TEG 30.1 T TEG 30.1 N/A 

Table 3-13: Case 2 - new boundaries, optimisation results vs. HYSYS comparison. 

Again the error differences are too high and unacceptable for power consumption, HC dew point 
and RVP. No constraints are met.  

3.1.5 Optimisation by HYSYS  
HYSYS has a build in optimiser function where it is possible to apply the parameter to be optimised 
along with the wanted constraints. Several tests were performed in order to determine the accuracy 
of the optimiser. 

Minimize power without any constraints 
 All variables set to lowest values before start. 
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Optimiser failed after several resets of an adjuster’s iteration since it reached its maximum 
of 100 and several activations of the optimisation process was needed, since an 
inconsistency warning occurred and paused the process.   

 All variables set to highest values before start. 
The optimiser comes out successful and converged faster than any of the other test. The 
power consumption ended up at 7400 kW.  

 All variables set to mid values before start. 
Successful outcome again, but the power consumption is at 7950 kW. Several activations of 
the optimisation process were once again needed. 

In comparison the regression model in Python calculates the power consumption to be 7008 kW. 
Applying the variable values found by the model in HYSY, gave almost the exact same result, 7017 
kW. 

Minimize power case 1 and 2 applied 
 All variables set to lowest values before start 

 All variables set to highest values before start 

 All variables set to mid values before start 

 All variables set to high-low-high-low-high before start 

 All variables set to low-high-low-high-low before start 

The majority of the cases tested above failed in the optimisation process. The ones that had a 
successful HYSYS outcome were in fact not successful, since not all constraints were fulfilled. As 
an example case 1 with mid-level variable values entered before starting the optimisation process, 
found a power consumption of 8014 kW, but the wobbe constraint were too high. The other three 
constraints were met. 

The HYSYS optimiser needs a value for each variable before being apple to perform the 
optimisation. The results were very inconsistent for all tests. When trying to minimise the power 
consumption, even without any constraints applied, each simulation gave a different result 
regarding power consumption and the found variables. The same inconsistencies apply to the results 
when adding the constraints, which rarely were met. In general the function is very slow compared 
to the regression model and it takes between 1-4 minutes to complete one optimisation scenario. 
HYSYS are looping the simulations until it has found a local optimum, which causes the long 
converging time and inconsistencies depending on the starting variable values. Whereas the 
regression model is finding a global optimum and is fulfilling the constraints. 

3.1.6 Manually Adjusting  
To achieve the desired output for the wobbe index only, it would be interesting to see the result for 
power consumption. By manually adjusting only one or two main variables, i.e. P after expander 
and TEG inlet T, it resulted in a power consumption of 9807 kW. The variable values started at 
mid-level and it took several tries before reaching the goal. Especially the final small adjustment to 
reach exactly 56.2 took the most. The adjustments were done in Python and checked in the HYSYS 
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model, which was almost identical. If applying the optimisation model in Python to the same case – 
Wobbe constraint at 56.2 – the power consumption is only 8840 kW. If adding more constraints this 
process of manually adjusting the variables to meet the desired constraints will take a tremendous 
amount of time - a comprehensive trial and error session. 

3.1.7 Summary 
The concept of DOE has been applied to tests performed on a HYSYS oil and gas separation 
process. An experimental plan of 46 tests with a 3 level variation in 5 factors with 7 parameter 
responses has been executed. The data output has been processed in Python, where a variety of 
libraries and modules has been used to analyse the data. A regression model for each parameter was 
created and verified by plots and calculations comparing them to HYSYS results. An optimisation 
algorithm was used to minimise the power consumption and maintaining desired export constraints 
at the same time. The variables values found in each case was applied to HYSYS and the results 
compared. In general the errors of the cases are very small or not existing, which show that with the 
DOE and RSM methods, it is possible to predict the variable values for minimising the power 
consumption and preserving the constraints within the experimental boundaries. When increasing 
the boundaries by a factor the model showed some inconsistencies and larger percentage errors, 
which makes it almost unusable outside the boundaries. Along with the optimisation possibility the 
DOE concept also reduces the number of required experiments radically.   

HYSYS’ own optimiser function was tested and found impractical because of its inconsistencies in 
the results and requires a larger amount of time.  

By manually adjusting the parameters to meet the demanded constraints the power consumption 
becomes significantly larger and required lots of trial and error runs to complete. This emphasizes 
the effect of the DOE optimisation model in saved power consumption and the time spent on 
manually adjusting the variables to meet the constraints given. 
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3.2 Weight Estimation Modelling 
The error propagation method is applied to a Master Equipment List, MEL, from a previous 
Ramboll project, in order to investigate the possibilities of the method. The investigation also 
comprises which parameters affect the combined uncertainty. 

The Monte Carlo method is applied to multiple parameters in order to determine a total topside 
production weight. Central process equipment that depends on a combination of oil, gas and water 
flow rates is simulated in HYSYS - same separation set-up used in the process optimisation section. 
The weight estimation of the equipment is depending on values, i.e. pressure, flow, temperature, 
etc. provided by HYSYS for each piece of equipment in the simulation. This weight estimation of 
the most central process equipment is the foundation for calculating the total topside weight. Monte 
Carlo simulation is used in order to randomly select values for flow rates and factors within a 
calculated standard deviation. 

3.2.1 Error Propagation Applied to Existing MEL 
The MEL used consist of more than 150 pieces of equipment. For several types there are needed 2 
or 3 of the same. These sets are considered as one unit since the uncertainty are the same for them 
all. The weight of one is multiplied with 2 or 3 to achieve the unit’s weight.     

The span of +/- 30 % is calculated for each piece of equipment and units of the same type in the 
MEL. The span is then squared and the square root of the sum is the span of the combined 
uncertainties, in accordance with equation [3]. The MEL with all the error propagation calculations 
can be found in Appendix 2.1 – Error Propagation Applied to STA-3 MEL.   

The combined uncertainty span is calculated to be 188.34 tonnes, which is a lot smaller than the +/- 
30 % of 675.85 tonnes. The total weight of the MEL is 1126.42 tonnes and the span of 188.34 
tonnes corresponds to a combined uncertainty of only +/- 8.36 %. 

 

Figure 3-6: Combined uncertainty graph as a function of applied % uncertainty to each piece of equipment. 
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As shown by Figure 3-6, the combined uncertainty percentage error is linear depending on the 
applied uncertainty percentage to each piece of equipment. If a single type of equipment is 
extremely heavy compared to the rest, it has a great influence on the combined uncertainty. As an 
example there are 3 main power generators, which whey 258.6 tonnes combined. If their weight 
doubled, the combined uncertainty would increase from 8.36 % to 11.85 %.    

To prepare a MEL for the HYSYS simulation of central process equipment, the MEL in Appendix 
2.1 is cut down so it represents almost the same types and number of equipment as the HYSYS 
model. The new smaller MEL is calculated in the same way as before, to see how the combined 
uncertainties react. When applying a +/- 30 % uncertainty to each type or unit of equipment, the 
combined uncertainty is higher than before, +/- 12.38 %, which is an increase of roughly 50 %. The 
MEL has been cut by approximately one third. In Appendix 2.2 – Error Propagation Applied to Cut 
Down STA-3 MEL calculations for both +/- 30 % and +/- 50% applied is given. When comparing 
the original MEL and the cut down MEL, it is observed that in the shorter MEL most of the 
equipment has all different weights. In the original MEL several types of equipment are of the same 
weight. If the weights for some of the equipment in the cut down MEL, are changed to be more 
alike the combined +/- percentage uncertainty drops.  

3.2.2 Combined Weight Estimation Based on HYSYS Data 
When designing a process plant the flow rates combined with temperature and pressure are the 
major influential factors. It is possible to change the flow rates in HYSYS according to a plausible 
range. In order to easily apply the simulated HYSYS values into the calculating weight estimation 
spread sheets, the calculation methods are combined into one spread sheet. The equipment weight 
can then be calculated for each simulation with a given combination of the flow rates for oil, gas 
and water, to see how the variation in the flow rates affect the duty, temperature and pressure etc. 
required for pumps, compressors, coolers & heat exchangers, separators and scrubbers along with 
several more types of equipment. These parameters are used for the weight estimations. 

An example of a simulation result is given in Appendix 2.3 – HYSYS Equipment List Data. These 
data, among other known design criteria for the equipment, are then applied to combined weight 
estimation sheet, which can be found in Appendix 2.4 – Combined Excel Weight Estimation Sheet.  

3.2.3 Simulation Plan and Modelling 
The approach for modelling a function for the weight estimate depending on the flow rates for oil, 
gas and water is almost the same as the one used in the process optimisation section. A full factorial 
experiment plan is carried out in HYSYS. The variable values for the levels are given in Table 3-14. 

Variable → Oil 
[barrel/day]

Gas 
[m3/hr] 

Water 
[barrel/day] 

High (+1) 25300 32090 37740 
Mid (0) 23000 29170 31450 
Low (-1) 20700 26250 25160 

Table 3-14: Variable values and levels used in HYSYS 
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The ranges for oil, gas and water has been determined by Ramboll’s chief consultant, Anders 
Andreasen.  

The variables from the process optimisation section are set to their originally designed mid-level 
values. 

The experiment is a 3 factor 3 level experiment equals to 33 = 27 simulation combinations. The 
simulation results can be found in Table 3-15. 

Sim. 
no. 

X1 X2 X3 Wobbe 
index 

SG HHV HC 
Dew 

Power RVP Eq. 
weight 

1 0 0 0 56.57 0.6631 43.65 -22.79 8937 13.94 558.1 
2 1 1 1 56.53 0.6619 43.57 -23.31 10030 13.81 598.0 
3 -1 -1 -1 56.59 0.6637 43.68 -22.52 7777 13.98 516.9 
4 0 0 1 56.52 0.6617 43.56 -23.33 9425 13.64 581.1 
5 0 0 -1 56.54 0.6621 43.59 -23.22 8268 13.84 536.0 
6 1 1 0 56.54 0.6622 43.59 -23.20 9450 13.89 571.2 
7 1 1 -1 56.55 0.6624 43.60 -23.15 8871 14.05 550.2 
8 -1 -1 0 56.56 0.6626 43.62 -23.04 8364 13.83 537.7 
9 -1 -1 1 56.55 0.6624 43.61 -23.09 8954 13.73 564.9 
10 1 0 0 56.54 0.6621 43.59 -23.24 9233 13.63 567.8 
11 -1 0 0 56.57 0.6631 43.64 -22.80 8869 14.64 556.7 
12 0 1 1 56.54 0.6623 43.60 -23.12 9973 14.45 596.3 
13 -1 1 1 56.58 0.6634 43.66 -22.60 9952 15.30 595.3 
14 0 -1 -1 56.56 0.6627 43.62 -23.00 7822 13.33 519.5 
15 1 -1 -1 56.53 0.6619 43.57 -23.41 7902 12.80 522.5 
16 0 1 0 56.56 0.6628 43.63 -22.97 9410 14.57 569.6 
17 0 -1 0 56.56 0.6627 43.62 -22.94 8428 13.28 540.6 
18 1 0 1 56.50 0.6609 43.52 -23.69 9475 13.04 582.9 
19 1 -1 1 56.53 0.6619 43.57 -23.33 9082 12.66 569.5 
20 -1 0 -1 56.57 0.6631 43.64 -22.82 8264 14.67 535.7 
21 -1 1 -1 56.60 0.6639 43.69 -22.47 8781 15.56 544.6 
22 -1 0 1 56.59 0.6637 43.68 -22.51 9515 14.71 582.4 
23 0 1 -1 56.57 0.6631 43.65 -22.81 8827 14.71 549.3 
24 1 -1 0 56.51 0.6612 43.53 -23.70 8460 12.65 541.7 
25 1 0 -1 56.54 0.6620 43.58 -23.32 8351 13.31 537.4 
26 -1 1 0 56.59 0.6635 43.67 -22.60 9394 15.52 565.8 
27 0 -1 1 56.48 0.6603 43.48 -24.05 8935 12.88 562.8 

Table 3-15: Experimental plan, HYSYS results and eq. weight estimate. 

As seen in the table the only objectives impacted by the variation in the flow rates are the power 
consumption and the equipment weight estimation. The other has little or no deviation in their 
outcome.  

The goal for the experiment is to create a regression model for the equipment weight estimations. 
The same procedure when creating the regressions models for the process optimisation is used.   
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The equipment weight regression model was found to be: 

ݐ݄ܹ݃݅݁ݍܧ  ൌ 0.0010 ∙ ܺ1 ൅ 0.0278 ∙ ܺ2 ൅ 0.0037 ∙ ܺ3
െ 3.896 ∙ 10ି଻ ∙ ܺ2 ∙ ܺ2 െ 58.2391

[5]

 

Improvement of the model is done by analysing outliers etc. as done similar in the process 
optimisation experiment. 

A graph showing the simulated HYSYS values vs. the predicted values calculated by the model can 
be found in Figure 3-7. The points form a decent linear line and the model is good fit. 

 

Figure 3-7: Simulated HYSYS values vs. Predicted regression model values. 

 

The model is verified by comparing the regression model calculation of mid, low and high level 
values and the corresponding HYSYS simulation results for the same combinations. Table 3-16 
page 43 shows that the percentage error and numerical percentage are very low for all comparisons. 
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Python/HYSYS variable mid values = (23000, 29170, 31450) 

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 560.55 EqWeight: 558.1 0.44 2.45 

Python/HYSYS variable low values = (20700, 26250, 25160) 

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 516.84 EqWeight: 516.9 -0.01 -0.06 

Python/HYSYS variable high values = (25300, 32090, 37740)                      

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 597.6 EqWeight: 598.0 -0.07 -0.4 
Table 3-16: EqWeight model verification for mid, low and high levels. 

Verification for values between mid to high and mid to low values and values outside training set 
has also been made.  

Python/HYSYS variable mid-high values = (24150, 30630, 34595) 

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 579.9 EqWeight: 578.5 0.24 1.4 

Python/HYSYS variable mid-low values = (21850, 27710, 28305) 

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 539.53 EqWeight: 535.1 0.82 4.43 

Python/HYSYS variable high-high values = (26450, 3550, 40885)               

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 613.64 EqWeight: 677.7 -10.44 -64.06 

Python/HYSYS variable low-low values = (19550, 24790, 22015)                 

Python results: HYSYS results applied 
to EqWeight  spread 
sheet: 

Error 
% 

Error # diff. 

EqWeight: 492.5 EqWeight: 500.4 -1.6 -7.9 
Table 3-17: Verification of the model with values not used to create the model. 
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Table 3-17 shows the comparison errors of the values applied to the model and to the equipment 
estimation spread sheet through HYSYS. When testing the model above the ranges for the flow 
rates in the high-high level case, the percentage error are getting to high. Otherwise the model 
performs really well and can be used as the foundation to calculate a total weight for a production 
platform. 

Factors for all of the additional equipment are to be calculated and found from known offshore 
platform data and equipment lists. The different factors needed are: 

 The rest of the remaining process equipment not sized by HYSYS data. 

 A combined factor for the remaining equipment, i.e. electrical/instrumentation, piping and 
structural. 

 Accommodation. 
 
By reviewing existing process MELs an imperial factor, Frest, of 1.283 is found by isolating the 
weight of the central process equipment, similar to the equipment used in the HYSYS simulation 
and the weight of the remaining equipment in relation to each other. From equation [5] the 
contribution of the rest can be written as: 
 
௥௘௦௧ݐ݄ܹ݃݅݁  ൌ ,݈݅݋ሺݐ݄ܹ݃݅݁ݍܧ ,ݏܽ݃ ሻݎ݁ݐܽݓ ∙ ௥௘௦௧ [6]ܨ
  
Where oil, gas and water are the flow rates applied from Table 3-14 page 40, corresponding to X1, 
X2 and X3 in equation [5]. The total weight of the process equipment is found by combining 
equation [5] and [6] and can be written as: 
 

௣௥௢௖௘௦௦ݐ݄ܹ݃݅݁ ൌ ݐ݄ܹ݃݅݁ݍܧ ൅ܹ݄݁݅݃ݐ௥௘௦௧ [7]

Through weight data from known offshore installations, where the weights for 
electrical/instrumentation, piping, structural and process equipment are indicated, along with the 
module weight.  An average factor, Ftotal, where the process equipment related to the total weight is 
found to be 4.08, see Table 3-20 and Table 3-21 page 47 and 48 for further information. 

The accommodation facility is as standard set to weigh 800 tonnes, Weightaccommodation. The total 
weight for a production platform can then be written as: 

 
௧௢௧௔௟ݐ݄ܹ݃݅݁ ൌ ௣௥௢௖௘௦௦ݐ݄ܹ݃݅݁ ∙ ௧௢௧௔௟ܨ ൅ܹ݄݁݅݃ݐ௔௖௖௢௠௠௢ௗ௔௧௜௢௡ [8]

Applying mid-level rates to oil, gas and water the total weight becomes: 
 

௧௢௧௔௟ݐ݄ܹ݃݅݁ ൌ ሺሺ560.55 ൅ ሺ560.55 ∗ 1.283ሻሻ ∙ 4.08ሻ ൅ 800 
ൌ ૟૙૛૚. ૜  ࢙ࢋ࢔࢔࢕࢚

[9]

 

This is however a result where no uncertainties is applied to any contribution in the equation. 
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When applying a conservative uncertainty of 50% to each piece of equipment in the MEL 
calculated by mid-level rates for oil, gas and water, the result of equation [9] becomes: 

 
௧௢௧௔௟,ହ଴ݐ݄ܹ݃݅݁ ൌ ሺሺ837.1 ൅ ሺ837.1 ∗ 1.283ሻሻ ∙ 4.08ሻ ൅ 800 

ൌ ૡ૞ૢૠ. ૜  ࢙ࢋ࢔࢔࢕࢚
[10]

Uncertainties could also be applied for Frest, Ftotal and Weightaccommodation to give an even more 
conservative result. 

3.2.4 Monte Carlo Method Applied 
When uncertainties are taking into account one could easily choose the worst case scenario for each 
factor. To have a more realistic result, where the uncertainties applied to each contribution in the 
model are randomly picked within a normal distribution curve, the Monte Carlo method is needed. 
The random selected value for one contribution is totally independent from the other. The model 
can be applied a given number of runs, where each contribution are randomly selected and summed 
together. A few runs will give an inaccurate result, since it is unlikely to have hits that cover the 
normal distribution. A large amount of trials is therefore required and using Python as the program 
to compile the large amount of samples will be suitable. 

Adding Uncertainties 
Uncertainties need to be added to every single contribution which includes: 

 Oil flow rate. 

 Gas flow rate. 

 Water flow rate. 

 The EqWeight, equation [5]. 

 The Weightrest, equation [6]. 

 The combined factor for the remaining equipment. 

 Accommodation weight. 
 

The uncertainties applied to the list above are converted into a standard deviation, which is a 
measure of dispersion from the mean value. Ramboll’s approach to the uncertainties, are that they 
covers the middle 80 % under the normal distribution curve and is corresponding to +/- 2 standard 
deviations. This deviates from the example given in Figure 1-9 page 20, where +/- 1 standard 
deviation corresponds to 68.2% and +/- 2 corresponds to 95.4%. When calculating the standard 
deviation an adjustment is therefore needed, in accordance with equation [11].  
 

ܺ ൌ ߤ ൅ ܼ ∙ [11] ߪ

Where µ is the mean and σ the standard deviation of the variable X, and Z is the value from the 
standard normal distribution for the desired percentile. To adjust the standard deviation it has to be 
divided by the z-value of the 90th percentile of the distribution. From a z-score table or by using 
Python, the z-value is found to be +/-1.28. The 90th percentile indicates that 40% from the mean 
value to the boundary is covered.  
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Flow rates 
The standard deviations, σ, for each flow rate are the range from level 0 to +1. This range is then 
divided by the z-value of 1.28. In Table 3-18 the σ for oil, gas and water are listed. 

Flow rate of: Standard deviation, σ: 

Oil 
σை௜௟ ൌ

25300 െ 23000
1.28

ൌ 1796.9 

Gas 
σீ௔௦ ൌ

32090 െ 29170
1.28

ൌ 2281.3 

Water 
σௐ௔௧௘௥ ൌ

37740 െ 31450
1.28

ൌ 4914.1 

Table 3-18: Standard deviations of oil, gas and water flow rates. 

EqWeight and Weightrest added 50% uncertainty 
For the central process equipment weight, calculated by the combined weight estimation sheet, each 
piece of equipment are added a 50% uncertainty in each of the 27 simulations. The combined 
standard deviation is calculated by squaring each σ related to each piece of equipment and taking 
the square root of the sum. Example of the method is applied to Appendix 2.4 and is listed in Table 
3-19. 

Equipment Span (+/- 50%) Span squared
࣌ ൌ

૛/࢔ࢇ࢖ࡿ
૚. ૛ૡ

 
σ 2 

Inlet cooler 12.51 156.47 4.89 23.88 
Oil export cooler 0.33 0.11 0.13 0.02 
LP1 inlet cooler 1.58 2.51 0.62 0.38 
LP2 inlet cooler 35.21 1239.45 13.75 189.12 
IP inlet cooler 30.90 954.69 12.07 145.67 
Glycol inlet cooler 11.66 135.94 4.55 20.74 
HP cooler 6.21 38.59 2.43 5.89 
Interstage heater 4.27 18.21 1.67 2.78 
1st stage separator 9.73 94.66 3.80 14.44 
2nd stage separator 4.74 22.43 1.85 3.42 
3rd stage separator 4.32 18.64 1.69 2.84 
LT separator 1.50 2.26 0.59 0.34 
LP1 scrubber 0.91 0.83 0.36 0.13 
LP2 scrubber 1.74 3.01 0.68 0.46 
IP scrubber 3.90 15.22 1.52 2.32 
Glycol inlet scrubber 7.63 58.23 2.98 8.89 
Expander inlet 
scrubber 6.95 48.31 2.72 7.37 
Glycol contactor 6.90 47.59 2.69 7.26 
LP1 compressor 6.98 48.78 2.73 7.44 
LP2 compressor 15.75 247.92 6.15 37.83 
IP compressor 25.15 632.33 9.82 96.49 
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HP compressor 16.43 270.04 6.42 41.20 
Gas lift compressor 0.00 0.00 0.00 0.00 
Expander 9.28 86.15 3.63 13.15 
Re compressor 9.28 86.15 3.63 13.15 
Return pump 0.22 0.05 0.08 0.01 
PW pump 0.22 0.05 0.08 0.01 
Oil booster pump 1.10 1.21 0.43 0.18 
Oil pump 7.88 62.09 3.08 9.47 
WI pump 3 x 50% 41.22 1699.30 16.10 259.29 
Heat exchanger 1 24.66 607.98 9.63 92.77 
Heat exchanger 2 12.15 147.56 4.75 22.52 
NGL splitter 6.19 38.33 2.42 5.85 
Power generator 2 x 
100% 172.36 29707.97 67.33 4533.08 
Fine filter x 2 (2 
micron) 4.10 16.78 1.60 2.56 
SRP package 39.16 1533.54 15.30 234.00 
CIP Package 7.50 56.23 2.93 8.58 
Vacuum dearerator 3.78 14.32 1.48 2.18 
Vacuum pump x 2 0.92 0.85 0.36 0.13 
Vacuum pump skid x 
2 2.77 7.65 1.08 1.17 
 558.1 195.25 - ඥ࣌૛ ൌ ૠ૟. ૛ૠ 

Table 3-19: Appendix 2.4 combined standard deviation example. 

The average combined standard deviation of the 27 simulation, 76.46 tonnes, is used as the final 
standard deviation in the Monte Carlo model. 

The same approach is applied to the Weightrest MEL’s and an average of 43.1 tonnes is found to be 
the standard deviation. 

Factor for the remaining equipment 
The Ftotal factor is created by comparing weight data from known offshore installations listed in 
Table 3-20. 

Platform Total Weight 
[tonnes] 

Process Weight 
[tonnes] 

Rel. 
(factor) 

A 1106 225 4.92 
B 1190 338 3.52 
C 1385 346 4.00 
D 1676 546 3.07 
E 1205 232 5.19 
F 1612 530 3.04 
G 805 141 5.71 

Table 3-20: Weight data of offshore installations (12). 
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Low 
factor 

High 
factor 

Span 
࣌ ൌ

૛/࢔ࢇ࢖ࡿ
૚. ૛ૡ

 

3.04 5.71
2.67 1.04 

Mid f 4.08
Table 3-21: Factor, rest mid-level and standard deviation. 

A standard deviation of 1.04 tonnes is applied to the factor contribution of the Monte Carlo model. 

Accommodation 
The living quarters is set to whey 800 tonnes and it is applied a +/- 20% uncertainty. Table 3-21 
shows the calculation. 

Span (+/- 20%) 
࣌ ൌ

૛/࢔ࢇ࢖ࡿ
૚. ૛ૡ

 

320 125.0  
Table 3-22: Accommodation standard deviation. 

  

3.2.5 The Monte Carlo Model 
The different contributions from section 3.2.4 are joined together into one model. The model can 
then be applied with a given number of randomly picked samples from each contribution – Monte 
Carlo Simulation. The Python model sample is written as: 

'Model with uncertainties' 
Samples = 100000 
X = Samples 

'Rates at 10%, 10% and 20% uncertainties (used in HYSYS sim)' 
oil = (np.random.normal(23000, 1796.9, X)) 
gas = (np.random.normal(29170, 2281.3, X)) 
water = (np.random.normal(31450, 4914.1, X)) 

Weight = EqWeight(oil, gas, water) 
Weight_uncertainty = (np.random.normal(0, 76.46, X)) 
Weight_plus_uncertainty = Weight + Weight_uncertainty 
Rest = (EqWeight(oil, gas, water)*1.283) 
Rest_uncertainty = (np.random.normal(0, 43.1, X)) 
Rest_plus_uncertainty = Rest + Rest_uncertainty 
Weight_total = Weight_plus_uncertainty + Rest_plus_uncertainty 

factor = (np.random.normal(4.08, 1.04, X)) 

'Total weight multiplied by combined factor + accommondation' 
Weight_total_factor = Weight_total * factor + (np.random.normal(800, 125, X)) 

The entire code script can be found in Appendix 2.5 – Monte Carlo Code Script. 
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3.2.6 Monte Carlo Simulation Results 
The model is run several times with a various number of samples in order to find the required 
amount where the model is performing well with an acceptable calculation time for the program. 

Simulations with samples of 100, 1.000, 10.000, 100.000, 1.000.000 and 10.000.000 are carried out 
and the results of the following are noted: 

 Mean 

 Minimum 

 Maximum 

 Standard deviation 

The results are listed in Appendix 2.6 – Monte Carlo Results, Samples Variety where it can be 
obtained that from 100.000 samples and beyond, the histograms fits the normal distribution curve 
more or less perfectly. The mean and standard deviation values do not vary by more than a few 
tonnes as they are converging around the 100.000 sample mark, shown in Figure 3-8.  

The minimum and maximum values are increasing, when simulating more than 100.000 samples in 
the model. Hitting these extreme outer limits is very unlikely and is close to a chance of 0%. Some 
of the minimum results are negative, which is caused by the high uncertainties that results in high 
standard deviations relative to the mean values in the contributions. The 100.000 samples results are 
shown in Table 3-23 and Figure 3-9 page 50. 

 

Figure 3-8: Convergence plot of the values for mean and standard deviation. 
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100.000 samples 
results: Weight [tonnes]: 

Mean 6006 

Minimum 496 

Maximum 13077 

Standard deviation 1395 

Table 3-23: Monte Carlo results when simulating 100000 samples. 

The estimated weights of offshore equipment are by experiences very rarely to be less than the 
estimated weight without uncertainties applied, i.e. the mean value. The mean value is therefore the 
best possible outcome. Worst case scenario is expected to be within 2 standard deviations and there 
is only a 10% chance of hitting a value above mean + 2 standard deviations.  

The x-axis of Figure 3-9 is the weight in tonnes of the topside structure randomly picked by the 
Monte Carlo simulation and the blue columns, which there is 100 of, represents all of the 100.000 
simulations. The higher the column is the more hits of the value is simulated by the Monte Carlo 
model at that weight interval for the given column. The y-axis is the probability of hitting a value in 
a given column. The total area within the normal distribution curve, green line, sums up the 
probabilities to be 100%.  

 

 

Figure 3-9: Histogram with a normal distribution curve of the Monte Carlo results of 100.000 samples. 
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The mean value added only 1 standard deviation multiplied 1.28, represents only a 15.9% chance of 
hitting a value that is above and is considered a reasonable scenario, which is not as conservative as 
the mean added 2 standard deviation. 

 
6006 ൅ 1395 ∙ 1.28 ൌ ૠૠૢ૛ [12] ࢙ࢋ࢔࢔࢕࢚

 The result in equation [12] is an increase of 29.7% from the mean value. 

To distinguish the affect each contributions has to the Monte Carlo models combined standard 
deviation. Simulations where one contribution’s uncertainty is removed and instead mid-level or 
mean values are applied and reviewed. The remaining 4 contributions are applied their uncertainties 
in the same way as before and it results in 5 simulations cases, conducted again with 100.000 
samples.  
 

Case Uncertainty set to 
mid/mean value 

Minimum 
weight 
[tonnes] 

Maximum 
weight 
[tonnes] 

Standard 
deviation 
[tonnes] 

1 Accommodation 468 12733 1389 
2 Factor, Ftotal 4078 8102 428 
3 Rest_uncertainty 208 12074 1383 
4 Weight_uncertainty 177 11829 1358 
5 Rates 178 12473 1387 

Table 3-24: Uncertainty cases results. 

From Table 3-24 it can be seen that only case 2 differs from the rest. The factor uncertainty for 
Ftotal, is impacting the models standard deviation and is decreasing it significantly, ref. equation [8] 
page 44. It also shows that the other uncertainties have little or almost no impact on the combined 
standard deviation compared to the result from Table 3-23. The mean values are for all cases around 
6000 tonnes. 
The Ftotal factor uncertainty consists of three contributions. These are split up and their respective 
standard deviations are calculated. The model is then applied three factor uncertainties instead of 
one combined to see the influence it will have for the results.  

100000 samples results 
(partitioned factor 
uncertainty): Weight [tonnes]: 

Mean 6141 

Minimum 163 

Maximum 13181 

Standard deviation 1440 

Table 3-25: Monte Carlo result, when the factor uncertainty is partitioned. 
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Table 3-25 shows the results. Comparing them to Table 3-23 the mean and standard deviation are 
slightly larger, 2-3 %. For both the Monte Carlo simulation results the mean and standard deviation 
values are consistent, only differing a few tonnes, when running the simulation multiple times. The 
minimum and maximum values are more varying and can easily be +/- 600 tonnes. Even for 
simulations conducted with one million samples.    

To roughly investigate how the model performs up against a real life study, the Ramboll STA-3 
study total topside weight result is compared to the Monte Carlo model result. The flow rates from 
the STA-3 study are applied to the Monte Carlo model without any uncertainty. Uncertainties for 
the remaining contributions are still preserved. The total weight of the STA-3 topside was in the 
study calculated to be 9247 tonnes. The mean of the Monte Carlo model is converged at 6177 
tonnes and the standard deviation at 1425 tonnes. If adding 2 standard deviations to the mean value 
it results in a total weight of 9027 tonnes. The difference is only 220 tonnes, which is considered to 
be a good result, when taking the large amount of work done by the other disciplines into account. 

3.2.7 Summary 
By using error propagation to combine the uncertainties for MELs in study phases, it will give a 
better more precise and lower weight estimate. The method could easily be applied to the existing 
MEL templates at Ramboll and the result can be held up against the current conservative weight 
estimates. One should be aware of the lists size and composition of weights. If one piece is 
significantly heavier compared to the rest, it will have a large impact on the combined uncertainty. 
As well, if the weights in the MEL are all very different or alike, it will either increase or decrease 
the combined uncertainty.  

Ramboll’s weight estimation methods have been combined into one spread sheet, where the central 
process equipment is present. Data from a HYSYS separation process simulation can easily be 
copied to the spreadsheet in order to obtain the influence to the weight estimations caused by 
changes in the simulation set-up. A regression model of the equipment weight depending on 
variation in oil, gas and water flow rates was created by carrying out full factorial experiment plan. 
This model set the foundation for a combined model to estimate the total topside weight and is 
intended to be used in early phase studies at Ramboll. Every contribution in the combined model is 
applied with normal distributed uncertainties and the Monte Carlo method is used to simulate 
randomly picked values. 

The model performs well and calculates fast for a large amount of samples – within seconds for all 
simulations. The factor contribution for electrical/instrumentation, piping and structural weight has 
the largest impact to the combined standard deviation and when partitioning the Ftotal factor, the 
mean and standard deviation values increases. If the model where to be improved, it is crucial that 
more data from each contribution in the factor has to be at a higher detail level. It is easy to apply 
new inputs or changes to the model in Python to test different scenarios and cases. This has helped 
indicate the behaviours of the model. It is also possible to adapt other uncertainties to the model 
depending on the project study or phase that need to be processed.  
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The model performs well up against up against the STA-3 study. The opportunity of saving time in 
early phase project by only letting the process department create their fundamental design of the 
central process equipment could be plausible. 
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Sources of errors 

Process Optimisation 
In order for this method to be successful, it has to be thoroughly and strictly executed. A lot of 
manually entered data in HYSYS and excel is needed, which often can lead to mistakes. The 
simulations have to be performed one by one in HYSYS and the results transferred to excel. For 
each simulation it is important to be aware of if any errors occurring during the HYSYS simulation 
and resetting the adjusters or number of iteration in order to get the right results. The results were 
often displayed even if errors occurred. 

During the creation of the Python code and model, a lot of debugging took place, as well as trying 
different possibilities of code scripts found by research, for a given aspect in the model. This 
process contained several mistakes and errors, which was analysed and solved. The final code script 
is intended to be used by whom it could be useful to in future studies at Ramboll. The code script 
then has to be changed in order to adapt it for a given case. This would require a remake of any 
needed regression models and renaming the elements in the code script. Future creation of a 
thorough step by step guideline is therefore relevant in order to minimise the chance of errors 
occurring and mistakes made by the user.     

Weight Estimation – Monte Carlo 
Once again the large amount of manually performed data processing can lead to mistakes and the 
method has to be executed strictly to give a successful outcome. Besides entering the simulation 
plan into HYSYS and the results to excel, like in the process optimisation method, a lot of data has 
to be entered into the combined weight estimation spread sheet. This is another factor where 
mistakes can be made before being able to apply the CSV-file into Python.    

Because of the need to only create one regression model, where the central process equipment 
weight depends on the flow rates, and renaming a few elements in the code script. The usage of the 
model is easier and less demanding for the person adapting it to future studies compared to process 
optimisation procedure.  

Inaccuracy lies in the factors used in the model and their respective uncertainties. These are based 
on data from known offshore installations. To improve the result these data, is done by collecting 
more data from other installations and reviewing the relations between the process equipment and 
the remaining equipment in a higher level of detail. Another option is to create separate models for 
piping, electrical/instrumentation and structural in the same way as for the process equipment. Such 
model could be applied in the more detailed phases of a project.  
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Future Work 

Process Optimisation 
For further verification and improvement of the method, it would be interesting to test the 
optimisation model on other HYSYS simulations set-ups. These HYSYS set-ups could be from 
other completed studies or even from production platforms in use, to investigate if a saving in the 
energy consumption would be possible. 

The method could also be used in other stages at the platform, than the oil and gas separation, i.e. 
water treatment, chemical units or any other units where it could be an advantage to save energy. 

Weight Estimation – Monte Carlo 
The level of detail in several aspects of the model could be improved in order to achieve a better 
estimate. At first the weight estimation methods for each type of equipment could be improved by 
collecting vendor information for newer equipment technologies instead of using the older Ramboll 
Estimation Manual. By reviewing more data for the factors found from known offshore installations 
and Master Equipment Lists, would contribute to an improvement of the accuracy of the general 
model as well. For a more detailed and accurate result it would be interesting to adapt the model 
with data only from installations very similar to the topside design in the given study. This requires 
more work in each project, since each time the model and the used data are unique in every aspect 
of the model. The improvement of the weight estimation methods and factors would also result in 
an improvement of the uncertainties used. Verification and comparison up against other completed 
studies would be relevant. In order to make sure the comparison made to the STA-3 study is not a 
one hit wonder. 

In general for both methods, it is very relevant in the future to create detailed user guidelines for the 
procedure and usage of the methods, in order to make other Ramboll employees being able to adapt 
it to their future projects. The cost for a topside structure is linked to the weight and dimension of 
each piece of equipment. Adding a cost element into the model would be a great and relevant 
expansion in the future.  

 



EN7-2 Bachelor Thesis Ramboll Oil & Gas, Esbjerg 

AAU – Esbjerg 15-01-2015 Page 56 of 101 
 

Conclusion 
This bachelor thesis is based on selected issues worked upon during the internship at Ramboll Oil & 
Gas by the energy engineering student, Kasper Rønn Rasmussen. The problems described in the 
analysis are set to be part of the annual development goal for Ramboll. Development studies are 
done each year at Ramboll in order to optimise their way of working or finding new and innovative 
methods to the oil and gas industry. 

When designing an offshore oil and gas separation facility, it is difficult to predict the lowest 
possible energy consumption, when at the same time the export quality constraints have to be met. 
The many interactions between the large varieties of equipment make it almost impossible to 
distinguish trends among them. In order to optimise a given HYSYS process simulation in reference 
to the power consumption, five variables which was known to have a large impact, were 
investigated by a DOE and RSM approach. These methods made it possible, on behalf of a 
systematically experiment plan, to create regression models for each of the desired export outputs 
and the power consumption. The optimisation model could be set up to minimise the power in 
accordance to export constraints depending on a given scenario. By the verification of the model it 
showed the best results, when using it inside the experimental training set boundaries. The model 
provides large energy savings in the investigated cases compared to a traditional manual adjustment 
of the variables and proves that the approach and method is suitable for future use in the industry 
for study projects or to existing platforms.  

In early phase projects the essential work lies in the creating the MEL and determine the weight for 
each piece of equipment. The total weight of the MELs are added an uncertainty percentage 
depending on the phase and detail level of the project. By error propagation the uncertainties was 
added to each piece of equipment instead and it resulted in a combined uncertainty, which was 
lower than the initial applied uncertainty. This approach proved to give a better and more precise 
weight estimate and together with the modelling of a regression model of the central process 
equipment, it set the foundation for a total topside weight. This was done by using the HYSYS 
simulation results, which depended on the variation in the oil, gas and water rates, and applying 
them to the combined weight estimation spreadsheet.  Factors for the rest of the process equipment 
and the remaining piping, electrical/instrumentation and structural weight were created by 
correlation of data from known installations. By using the Monte Carlo method to predict a result 
within the normal distribution for each uncertainty applied to every contribution in the model. It 
was possible to give a weight estimate for a total topside platform, where the randomly picked 
contributions in the model are independent. The major influence in the model comes from the Ftotal 
factor. To improve the models accuracy the contribution in the Ftotal factor are to be created in a 
higher detail level. This would be an advantage if the model were to be applied in a concept phase 
study. If the improvements of the model are verified to be sufficient, this tool could in the future 
save a lot of man hours in early phase project.  
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Appendix 1.1 – HYSYS Experiment Procedure 
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The spread sheet ‘Parameter Variation’ is entered in order to set the variable values according to 
the experiment plan. 

 

 

When entering the spread sheet the given values for the simulation are applied in row B (red circle). 
Row C and D are the variable boundaries (black circle) and are only present in the spread sheet in 
order to remember them and make it easier to apply simulation combinations. From row E to N are 
the objective responses to the given simulation (green box). In this example all variables are set to 
mid-level (0). 
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HYSYS then needs to be active to perform the simulation. 
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When the simulation has converged and no warning has occurred the results can be read and copied. 
If any error should occur in the simulation a message is shown, and then it is possible to quickly 
locate where there is a problem in the simulation. Often a few clicks can reset and recalculate the 
simulation without the problem occurring again.  
 

 
 
C1, C2, C3 and C4 are summed together and are combined the amount of NGL. The data for the 
simulation is then applied in an Excel spread sheet. The next simulation combination from the 
experiment plan is entered and the procedure repeats itself until the experiment plan is done.   
An overview of the total HYSYS simulation is shown below. 
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Appendix 1.2 – Python Regression Model Procedure 
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HHV Model Example 

Python code script example – HHV regression model: 

#Start conditions: results2 = sm.ols('HHV ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 
+Expander2 + Reboiler2 + Seperator2 + Booster2 + TEG2', data=df).fit() 

results2 = sm.ols('HHV ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 - 
Reboiler:Seperator - Reboiler:Booster - Expander:Reboiler - Seperator:Booster - Reboiler:TEG - 
Reboiler - Expander:Seperator + Booster2', data=df).fit() 

print results2.summary() 

1st regression summery run includes every possible variable, variable interactions and second order 
terms from the start the conditions. 
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P > | t | values above 0.05 are removed one by one, starting usually with a second order terms. In 
the 2nd run Seperator2 is removed. 
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Reboiler:Seperator is removed in the 3rd run since it has a maximum value for P > | t |. 
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Reboiler:Booster is removed for the 4th run. 

 
 
5th run - Expander:Reboiler removed. 
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The second order term TEG2 is removed for the 6th run. 

 
 
7th run – Reboiler2 removed 
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8th run – Seperator:Booster removed. 

 
 
9th run – Expander2 removed. 
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10th run – Reboiler:TEG removed. 

 
 
11th run – Reboiler removed 
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12th and final run – Expander:Seperator removed 

 
 
The number of terms has been reduced and the R-squared value is very close to 1, which indicates a 
good fitted model. These runs are performed multiple times for each model, where the chosen first 
terms are varying in some extend to see if another results would occur. The P > | t | values are 
changing depending on the term excluded from the model.   
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Appendix 1.3 – Entire Python Code Script 



# ‐*‐ coding: utf‐8 ‐*‐
"""
Created on Mon Aug 04 10:04:30 2014

@author: KARR
"""
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from pandas import DataFrame
import statsmodels.formula.api as sm
import statsmodels.api as smapi
import statsmodels.graphics.regressionplots as regplot
from statsmodels.graphics.regressionplots import *
import seaborn as sns

Location = r'\\ramoil.ramboll‐group.global.network\Common\GlobalProjects\2014
'\1100011376\P‐Process\Design of experiment\Sim_data.csv'
df = pd.read_csv(Location, sep=";")
print df

'Regression models'
#Start conditions: results = sm.ols('Power ~ (Expander+Reboiler+Seperator+
#Booster+TEG)**2 +Expander2 + Reboiler2 + Seperator2 + Booster2 + TEG2', 
#data=df).fit()

'First results before correcting dataset'
results = sm.ols('NGL ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Expander:TEG ‐ Reboiler:Booster ‐ Reboiler:Seperator ‐ 
'Reboiler:TEG ‐ Expander:Seperator ‐ Seperator ‐Seperator:Booster ‐ Booster:TEG
' + Reboiler2 + Booster2', data=df).fit()
 
results1 = sm.ols('RVP ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:Booster ‐ Expander:TEG ‐ Expander:Seperator ‐ Reboiler:Seperator ‐ 
'Expander:Reboiler ‐ Reboiler:TEG ‐ Booster:TEG ‐ Seperator:TEG ‐ 
'Seperator:Booster ‐ Seperator ‐ Booster ‐ Reboiler + Reboiler2 + 
'Seperator2', data=df).fit()

results2 = sm.ols('HHV ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Reboiler:Seperator ‐ Reboiler:TEG ‐ Reboiler:Booster ‐'
'Seperator:Booster ‐ Expander:Seperator ‐ TEG ‐ Reboiler ‐ Seperator+Expander2
'+ Booster2 + TEG2', data=df).fit()
 
results3 = sm.ols('SG ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:TEG ‐ Reboiler:Seperator ‐ Expander:Reboiler ‐ Reboiler:Booster ‐
'Seperator:Booster ‐ Expander:Seperator ‐ TEG ‐ Reboiler ‐ Seperator +Expander2 
'+ Booster2 + TEG2', data=df).fit()

results4 = sm.ols('Wobbe ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:TEG ‐ Reboiler:Booster ‐ Expander:Reboiler ‐ Reboiler:Seperator ‐ 
'Seperator:Booster ‐ Expander:Seperator ‐ TEG ‐ Reboiler ‐ Seperator + Expander2 
'+ Booster2 + TEG2', data=df).fit()

results5 = sm.ols('Power ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Reboiler:Seperator ‐ Booster:TEG ‐ Expander:TEG ‐ 
'Reboiler:TEG ‐ Reboiler:Booster ‐ Expander:Seperator ‐ Seperator:Booster ‐ 
'Expander:Booster ‐ Reboiler + Booster2', data=df).fit()

results6 = sm.ols('Dew ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Reboiler:Seperator ‐ Reboiler:Booster ‐ Expander:Seperator 
'‐ Reboiler:TEG ‐ TEG ‐ Booster:TEG ‐ Seperator:Booster ‐ Expander:Booster ‐ 
'Seperator ‐ Expander:TEG ‐ Reboiler + Booster2 + TEG2', data=df).fit()

'Second go :‐)'
results = sm.ols('NGL ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:Seperator ‐ Expander:TEG ‐ Reboiler:TEG ‐ Expander:Seperator ‐ 
'Expander:Reboiler ‐ Reboiler:Booster ‐ Seperator:Booster ‐ Seperator', 
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data=df).fit()

results1 = sm.ols('RVP ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:TEG ‐ Reboiler:Seperator ‐ Reboiler:TEG ‐ Expander:Seperator ‐ 
'Expander:Reboiler ‐ Seperator + Reboiler2 + TEG2', data=df).fit()

results2 = sm.ols('HHV ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:Seperator ‐ Reboiler:Booster ‐ Expander:Reboiler ‐ Seperator:Booster 
'‐ Reboiler:TEG ‐ Reboiler ‐ Expander:Seperator + Booster2', data=df).fit()

results3 = sm.ols('SG ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Reboiler:Booster ‐ Reboiler:Seperator ‐ Reboiler:TEG 
'‐Seperator:Booster ‐ Reboiler + Booster2', data=df).fit()

results4 = sm.ols('Wobbe ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Expander:Reboiler ‐ Reboiler:Booster ‐ Reboiler:Seperator ‐ Seperator:Booster 
'‐ Reboiler:TEG ‐ Reboiler ‐ Expander:Seperator + Booster2', data=df).fit()

results5 = sm.ols('Power ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Booster ‐ Reboiler:Seperator ‐ Reboiler ‐ Expander:Reboiler ‐ Reboiler:TEG 
'+Expander2 + Seperator2 + Booster2 + TEG2', data=df).fit()

results6 = sm.ols('Dew ~ (Expander+Reboiler+Seperator+Booster+TEG)**2 ‐ 
'Reboiler:TEG ‐ Reboiler ‐ Expander:Reboiler ‐ Booster ‐ Reboiler:Seperator ‐ 
'Expander:Seperator ‐ Reboiler:Booster +Expander2', data=df).fit()

print results.summary()
print results1.summary()
print results2.summary()
print results3.summary()
print results4.summary()
print results5.summary()
print results6.summary()

def Power(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=‐162.7289
    SepC=‐1823.7320
    TEGC=‐166.4767
    ExpSepC=28.6875
    ExpBoosC=‐1.2327
    ExpTEGC=0.7800
    RebBoosC=0.0258
    SepBoosC=‐43.7112
    SepTEGC=67.0597
    BoosTEGC=‐3.2682
    Exp2C=1.4819
    Sep2C=93.7959
    Boos2C=1.8744
    TEG2C=3.0675
    Int=1.72e+04     
    
    respower = ExpC*Expander + SepC*Seperator + TEGC*TEG + ExpSepC*Expander*
    Seperator + ExpBoosC*Expander*Booster + ExpTEGC*Expander*TEG + RebBoosC*
    Reboiler*Booster + SepBoosC*Seperator*Booster + SepTEGC*Seperator*TEG + 
    BoosTEGC*Booster*TEG + Exp2C*Expander*Expander + Sep2C*Seperator*Seperator 
    + Boos2C*Booster*Booster + TEG2C*TEG*TEG + Int
    return respower

def Wobbe(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=0.0862
    SepC=0.3914
    BoosC=‐0.1072
    TEGC=0.1550
    ExpBoosC=‐0.0006
    ExpTEGC=0.0006
    SepTEGC=‐0.0184
    BoosTEGC=‐0.0007
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    Boos2C=0.0007 
    Int=56.6857
        
    reswobbe = ExpC*Expander + SepC*Seperator + BoosC*Booster + TEGC*TEG + 
    ExpBoosC*Expander*Booster + ExpTEGC*Expander*TEG + SepTEGC*Seperator*TEG 
    + BoosTEGC*Booster*TEG + Boos2C*Booster*Booster + Int
    return reswobbe

def SG(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=0.0029
    SepC=0.0159
    BoosC=‐0.0035
    TEGC=0.0048
    ExpSepC=‐9.062e‐05
    ExpBoosC=‐1.887e‐05
    ExpTEGC=1.838e‐05
    SepTEGC=‐0.0006
    BoosTEGC=‐2.25e‐05
    Boos2C=2.204e‐05
    Int=0.6699   
    
    ressg = ExpC*Expander + SepC*Seperator + BoosC*Booster + TEGC*TEG + 
    ExpSepC*Expander*Seperator + ExpBoosC*Expander*Booster + ExpTEGC*Expander
    *TEG + SepTEGC*Seperator*TEG + BoosTEGC*Booster*TEG + Boos2C*Booster*
    Booster + Int
    return ressg

def HHV(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=0.1551
    SepC=0.7386
    BoosC=‐0.2107
    TEGC=0.2821
    ExpBoosC=‐0.0011
    ExpTEGC=0.0011
    SepTEGC=‐0.0344
    BoosTEGC=‐0.0014
    Boos2C=0.0013
    Int=44.6248    
    
    reshhv = ExpC*Expander + SepC*Seperator + BoosC*Booster + TEGC*TEG + 
    ExpBoosC*Expander*Booster + ExpTEGC*Expander*TEG + SepTEGC*Seperator*TEG + 
    BoosTEGC*Booster*TEG + Boos2C*Booster*Booster + Int
    return reshhv

def RVP(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=‐0.3862
    RebC=0.0903
    BoosC=‐0.1227
    TEGC=‐0.9514
    ExpBoosC=0.0031
    RebBoosC=‐0.0007
    SepBoosC=0.0163
    SepTEGC=0.0490
    BoosTEGC=0.0027
    Reb2C=‐0.0009
    TEG2C=0.0060
    Int=38.3067

    resrvp = ExpC*Expander + RebC*Reboiler + BoosC*Booster + TEGC*TEG + 
    ExpBoosC*Expander*Booster + RebBoosC*Reboiler*Booster + SepBoosC*Seperator*
    Booster + SepTEGC*Seperator*TEG + BoosTEGC*Booster*TEG + Reb2C*Reboiler*
    Reboiler + TEG2C*TEG*TEG + Int
    return resrvp

def NGL(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=‐97.5646
    RebC=‐4.6692
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    BoosC=‐31.7798
    TEGC=‐164.7876
    ExpBoosC=0.7904
    SepTEGC=18.2413
    BoosTEGC=0.7947
    Int=7797.0129           
    
    resngl = ExpC*Expander + RebC*Reboiler + BoosC*Booster + TEGC*TEG + 
    ExpBoosC*Expander*Booster + SepTEGC*Seperator*TEG + BoosTEGC*Booster*
    TEG + Int
    return resngl

def Dew(Expander, Reboiler, Seperator, Booster, TEG):
    ExpC=1.8594
    SepC=13.6961    
    TEGC=2.6635
    ExpBoosC=‐0.0043
    ExpTEGC=‐0.0040
    SepBoosC=‐0.0801
    SepTEGC=‐0.3040
    BoosTEGC=‐0.0063
    Exp2C=‐0.0055
    Int=‐121.1210
    
    resdew = ExpC*Expander + SepC*Seperator + TEGC*TEG + ExpBoosC*Expander*
    Booster + ExpTEGC*Expander*TEG + SepBoosC*Seperator*Booster + SepTEGC*
    Seperator*TEG + BoosTEGC*Booster*TEG + Exp2C*Expander*Expander + Int
    return resdew

print Wobbe(35, 25, 2.3, 90, 30)
print SG(35, 25, 2.3, 90, 30)
print HHV(35, 25, 2.3, 90, 30)
print Dew(35, 25, 2.3, 90, 30)
print Power(35, 25, 2.3, 90, 30)
print RVP(35, 25, 2.3, 90, 30)
print NGL(35, 25, 2.3, 90, 30)

'Optimization'
from scipy.optimize import minimize

def f1(x):
    # Dew ‐ Constrain function
    return ‐1*(1.8594*x[0] + 13.6961*x[2] + 2.6635*x[4] ‐ 0.0043*x[0]*x[3] ‐ 
    0.0040*x[0]*x[4] ‐ 0.0801*x[2]*x[3] ‐ 0.3040*x[2]*x[4] ‐ 0.0063*x[3]*x[4] 
    ‐ 0.0055*x[0]*x[0] ‐ 121.1210) ‐ 2 

def f2(x):
    # Wobbe ‐ Constrain function
    return ‐1*(0.0862*x[0] + 0.3914*x[2] ‐ 0.1072*x[3] + 0.1550*x[4] ‐ 
    0.0006*x[0]*x[3] + 0.0006*x[0]*x[4] ‐ 0.0184*x[2]*x[4] ‐ 0.0007*x[3]*x[4] 
    + 0.0007*x[3]*x[3] + 56.6857) + 56.2

def Wobbe2(x):
    return 0.0862*x[0] + 0.3914*x[2] ‐ 0.1072*x[3] + 0.1550*x[4] ‐ 0.0006*x[0]
    *x[3] + 0.0006*x[0]*x[4] ‐ 0.0184*x[2]*x[4] ‐ 0.0007*x[3]*x[4] + 0.0007
    *x[3]*x[3] + 56.6857
    
def f3(x):
    # HHV ‐ Constrain function
    return ‐1*(0.1551*x[0] + 0.7386*x[2] ‐ 0.2107*x[3] + 0.2821*x[4] ‐ 
    0.0011*x[0]*x[3] + 0.0011*x[0]*x[4] ‐ 0.0344*x[2]*x[4] ‐ 0.0014*x[3]*x[4] 
    + 0.0013*x[3]*x[3] + 44.6248) + 46
    
def f4(x):
    # SG ‐ Constrain function
    return ‐1*(0.0029*x[0] + 0.0159*x[2] ‐ 0.0035*x[3] + 0.0048*x[4] ‐ 
    9.062e‐05*x[0]*x[2] ‐ 1.887e‐05*x[0]*x[3] + 1.838e‐05*x[0]*x[4] ‐ 
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    0.0006*x[2]*x[4] ‐ 2.25e‐05*x[3]*x[4] + 2.204e‐05*x[3]*x[3] + 0.6699) + 0.7

def f5(x):
    # RVP ‐ Contrain function
    return ‐1*(‐0.3862*x[0] + 0.0903*x[1] ‐ 0.1227*x[3] ‐ 0.9514*x[4] + 
    0.0031*x[0]*x[3] ‐ 0.0007*x[1]*x[3] + 0.0163*x[2]*x[3] + 0.0490*x[2]*x[4] 
    + 0.0027*x[3]*x[4] ‐ 0.0009*x[1]*x[1] + 0.0060*x[4]*x[4] + 38.3067) + 12

def objectivefun(x):
    #Function to be minimized
    return ‐162.7289*x[0] ‐ 1823.7320*x[2] ‐ 166.4767*x[4] + 28.6875*x[0]*x[2] 
    ‐ 1.2327*x[0]*x[3] + 0.7800*x[0]*x[4] + 0.0258*x[1]*x[3] ‐ 43.7112*x[2]
    *x[3] + 67.0597*x[2]*x[4] ‐ 3.2682*x[3]*x[4] + 1.4819*x[0]*x[0] + 93.7959
    *x[2]*x[2] + 1.8744*x[3]*x[3] + 3.0675*x[4]*x[4] + 1.72e+04
    
cons = ({'type': 'ineq', 'fun': f1},
{'type': 'ineq', 'fun': f2},
{'type': 'ineq', 'fun': f3},
{'type': 'ineq', 'fun': f4})
#{'type': 'ineq', 'fun': f5})

bnds = ((25, 45), (15, 35), (2.1, 2.5), (85, 95), (25, 35))
#bnds = ((0.1, 200), (0.1, 200), (0.1, 200), (0.1, 200), (0.1, 200))
#bnds = ((20, 50), (10, 40), (2.0, 2.6), (80, 100), (20, 40))
'Initial guess independt variables'
x0 = [35, 25, 2.3, 90, 30]
#x0 = [0, 0, 0, 0, 0]

res = minimize(objectivefun, x0, method='SLSQP', bounds=bnds, constraints=cons)

print res
print f1(res['x'])
print f2(res['x'])
print f3(res['x'])
print f4(res['x'])
print "Dew =", Dew(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4])
print "Wobbe =", 
Wobbe(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4])
print "SG =", SG(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4])
print "HHV =", HHV(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4])
print "RVP =", RVP(res['x'][0],res['x'][1],res['x'][2],res['x'][3],res['x'][4])

#print objectivefun(x0)

'Plots'
plt.figure(01)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.Wobbe, results4.fittedvalues, color="blue", lowess=True)
plt.savefig("Wobbe_resid.png")

plt.figure(02)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.SG, results3.fittedvalues, color="blue", lowess=True)
plt.savefig("SG_resid.png")

plt.figure(03)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.RVP, results1.fittedvalues, color="blue", lowess=True)
plt.savefig("RVP_resid.png")

plt.figure(04)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.HHV, results2.fittedvalues, color="blue", lowess=True)
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plt.savefig("HHV_resid.png")

plt.figure(05)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.NGL, results.fittedvalues, color="blue", lowess=True)
plt.savefig("NGL_resid.png")

plt.figure(06)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.Power, results5.fittedvalues, color="blue", lowess=True)
plt.savefig("Power_resid.png")

plt.figure(07)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.Dew, results6.fittedvalues, color="blue", lowess=True)
plt.savefig("Dew_resid.png")

plt.show()

plt.figure(1)
plt.plot(df.NGL,results.fittedvalues, 'bo')
plt.title('NGL')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("NGL_predicted_vs_simulated.png")

plt.figure(8)
plt.hist(results.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('NGL')
plt.savefig("NGL_hist_residuals.png")

plt.figure(15)
res=results.resid
fig=smapi.qqplot(res)
plt.title('NGL')
plt.savefig("NGL_qqplot.png")
plot_leverage_resid2(results)
plt.savefig("NGL_leverage_vs_residuals.png")
influence_plot(results)
plt.savefig("NGL_influence.png")

plt.figure(2)
plt.plot(df.RVP,results1.fittedvalues, 'bo')
plt.title('RVP')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("RVP_predicted_vs_simulated.png")

plt.figure(9)
plt.hist(results1.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('RVP')
plt.savefig("RVP_hist_residuals.png")

plt.figure(16)
res1=results1.resid
fig=smapi.qqplot(res1)
plt.title('RVP')
plt.savefig("RVP_qqplot.png")
plot_leverage_resid2(results1)
plt.savefig("RVP_leverage_vs_residuals.png")
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influence_plot(results1)
plt.savefig("RVP_influence.png")

plt.figure(3)
plt.plot(df.HHV,results2.fittedvalues, 'bo')
plt.title('HHV')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("HHV_predicted_vs_simulated.png")

plt.figure(10)
plt.hist(results2.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('HHV')
plt.savefig("HHV_hist_residuals.png")

plt.figure(17)
res2=results2.resid
fig=smapi.qqplot(res2)
plt.title('HHV')
plt.savefig("HHV_qqplot.png")
plot_leverage_resid2(results2)
plt.savefig("HHV_leverage_vs_residuals.png")
influence_plot(results2)
plt.savefig("HHV_influence.png")

plt.figure(4)
plt.plot(df.SG,results3.fittedvalues, 'bo')
plt.title('SG')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("SG_predicted_vs_simulated.png")

plt.figure(11)
plt.hist(results3.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('SG')
plt.savefig("SG_hist_residuals.png")
plt.figure(18)
res3=results3.resid
fig=smapi.qqplot(res3)
plt.title('SG')
plt.savefig("SG_qqplot.png")
plot_leverage_resid2(results3)
plt.savefig("SG_leverage_vs_residuals.png")
influence_plot(results3)
plt.savefig("SG_influence.png")

plt.figure(5)
plt.plot(df.Wobbe,results4.fittedvalues, 'bo')
plt.title('Wobbe')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("Wobbe_predicted_vs_simulated.png")
plt.figure(12)
plt.hist(results4.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('Wobbe')
plt.savefig("Wobbe_hist_residuals.png")
plt.figure(19)
res4=results4.resid
fig=smapi.qqplot(res4)
plt.title('Wobbe')
plt.savefig("Wobbe_qqplot.png")
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plot_leverage_resid2(results4)
plt.savefig("Wobbe_leverage_vs_residuals.png")
influence_plot(results4)
plt.savefig("Wobbe_influence.png")

plt.figure(6)
plt.plot(df.Power,results5.fittedvalues, 'bo')
plt.title('Power')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("Power_predicted_vs_simulated.png")
plt.figure(13)
plt.hist(results5.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('Power')
plt.savefig("Power_hist_residuals.png")
plt.figure(20)
res5=results5.resid
fig=smapi.qqplot(res5)
plt.title('Power')
plt.savefig("Power_qqplot.png")
plot_leverage_resid2(results5)
plt.savefig("Power_leverage_vs_residuals.png")
influence_plot(results5)
plt.savefig("Power_influence.png")

plt.figure(7)
plt.plot(df.Dew,results6.fittedvalues,'bo')
plt.title('Dew')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("Dew_predicted_vs_simulated.png")
plt.figure(14)
plt.hist(results6.norm_resid())
plt.ylabel('Count')
plt.xlabel('Normalized residuals')
plt.title('Dew')
plt.savefig("Dew_hist_residuals.png")
plt.figure(21)
res6=results6.resid
fig=smapi.qqplot(res6)
plt.title('Dew')
plt.savefig("Dew_qqplot.png")
plot_leverage_resid2(results6)
plt.savefig("Dew_leverage_vs_residuals.png")
influence_plot(results6)
plt.savefig("Dew_influence.png")

plt.show()
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Appendix 2.1 – Error Propagation Applied to STA-3 MEL 
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STA-3 
MEL 

Equipment: 
Weight 
(tonnes) (-30%) (+30%) Span 

Span 
squared 

2 x Inlet Cooler (Tube side) 24.80 17.36 32.24 14.88 221.41
Test Separator Inlet Cooler  9.00 6.30 11.70 5.40 29.16
1st Stage Separator 27.00 18.90 35.10 16.20 262.44
2nd Stage Separator 12.60 8.82 16.38 7.56 57.15
3rd Stage Separator 8.40 5.88 10.92 5.04 25.40
Test Separator 10.50 7.35 13.65 6.30 39.69
2 x Crude Oil Booster Pump A/B 2.15 1.50 2.79 1.29 1.66
Crude Oil Export Cooler 2.52 1.76 3.28 1.51 2.29
2 x Crude Oil Export Pump A/B 15.26 10.68 19.84 9.16 83.83
Oil Fiscal Meter 9.00 6.30 11.70 5.40 29.16
Combined Oil and Gas Analyzer House  3.00 2.10 3.90 1.80 3.24
Oil Metering Proofer 9.00 6.30 11.70 5.40 29.16
Oil Pig Launcher 2.00 1.40 2.60 1.20 1.44
1st Stage LP Inlet Cooler  5.50 3.85 7.15 3.30 10.89
1st Stage LP Suction Scrubber  1.50 1.05 1.95 0.90 0.81
2 x LP Suction Drum Pump A/B 1.00 0.70 1.30 0.60 0.36
1st Stage LP Compressor  

17.00 
11.90 22.10 10.20 104.04

2nd Stage LP Compressor 0.00 0.00 0.00 0.00
2nd Stage LP Inlet Cooler  5.50 3.85 7.15 3.30 10.89
2nd Stage LP Suction Scrubber 4.00 2.80 5.20 2.40 5.76
Booster Inlet Cooler  33.60 23.52 43.68 20.16 406.43
Booster Suction Scrubber 1.20 0.84 1.56 0.72 0.52
Booster Compressor 

28.60 
20.02 37.18 17.16 294.47

HP Compressor 0.00 0.00 0.00 0.00
Dehydration Inlet Cooler  15.90 11.13 20.67 9.54 91.01
Dehydration knock out scrubber 1.60 1.12 2.08 0.96 0.92
Glycol Contactor 4.90 3.43 6.37 2.94 8.64
Gas / Gas Exchanger  17.40 12.18 22.62 10.44 108.99
Gas / Liquid Exchanger  16.20 11.34 21.06 9.72 94.48
Expander Inlet Scrubber 3.80 2.66 4.94 2.28 5.20
Turbo Expander 4.50 3.15 5.85 2.70 7.29
LT Separator   7.40 5.18 9.62 4.44 19.71
NGL Splitter 19.80 13.86 25.74 11.88 141.13
Reboiler 2.60 1.82 3.38 1.56 2.43
HP suction scrubber 2.30 1.61 2.99 1.38 1.90
HP After cooler  6.20 4.34 8.06 3.72 13.84
Gas lift suction scrubber  1.40 0.98 1.82 0.84 0.71
Gas lift compressor  5.40 3.78 7.02 3.24 10.50
Gas lift recycle cooler 2.00 1.40 2.60 1.20 1.44
Gas lift meter 0.30 0.21 0.39 0.18 0.03
Gas Fiscal Meter 18.00 12.60 23.40 10.80 116.64
Gas Pig Launcher 2.10 1.47 2.73 1.26 1.59
Glycol Regeneration Package 9.90 6.93 12.87 5.94 35.28
3 x Cooling Medium Cooler 11.70 8.19 15.21 7.02 49.28
Cooling Medium Expansion Tank 1.60 1.12 2.08 0.96 0.92
3 x Cooling Medium Pump 13.02 9.11 16.93 7.81 61.03
Cooling Medium Filter 1.10 0.77 1.43 0.66 0.44
Cooling Medium Storage Tank 10.00 7.00 13.00 6.00 36.00
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Cooling Medium Make up Pump 1.00 0.70 1.30 0.60 0.36
Chemical Injection Package 16.00 11.20 20.80 9.60 92.16
Storage capacity all chemicals 30.00 21.00 39.00 18.00 324.00
Chemical collection tank 7.00 4.90 9.10 4.20 17.64
Chemical collection pump 0.10 0.07 0.13 0.06 0.004
HP Flare Knock out Drum 8.35 5.85 10.86 5.01 25.11
HP flare metering package 0.50 0.35 0.65 0.30 0.09
LP flare metering package 0.25 0.18 0.33 0.15 0.02
Flare ignition package 0.50 0.35 0.65 0.30 0.09
LP flare gas ejector 0.25 0.18 0.33 0.15 0.02
HP Hydro cyclone 2.20 1.54 2.86 1.32 1.74
LP Hydro cyclone 0.60 0.42 0.78 0.36 0.13
2 x Produced Water treatment Unit 27.20 19.04 35.36 16.32 266.34
2 x Water Return Pump 0.20 0.14 0.26 0.12 0.01
Fuel Gas Scrubber 0.70 0.49 0.91 0.42 0.18
Fuel Gas Superheater 1.00 0.70 1.30 0.60 0.36
Fuel Gas Inlet Cooler 1.80 1.26 2.34 1.08 1.17
Hypochlorite Package 1.30 0.91 1.69 0.78 0.61
Hypochlorite storage tank 3.87 2.71 5.03 2.32 5.39
2 x Seawater Lift Pump 10.15 7.11 13.20 6.09 37.12
3 x Coarse Filter 18.90 13.23 24.57 11.34 128.60
2 x Fine Filter 5.60 3.92 7.28 3.36 11.29
Sulphate Removal Package Skid 47.00 32.90 61.10 28.20 795.24
Clean In Place Package 9.00 6.30 11.70 5.40 29.16
Vacuum Deaerator 7.60 5.32 9.88 4.56 20.79
2 x Vacuum Pump 1.00 0.70 1.30 0.60 0.36
3 x Seawater Injection Booster Pump 1.50 1.05 1.95 0.90 0.81
3 x Produced Water Injection Booster Pump 1.50 1.05 1.95 0.90 0.81
3 x Water Injection Pump 32.40 22.68 42.12 19.44 377.91
Fresh Water Generation Package 3.00 2.10 3.90 1.80 3.24
Fresh Water Storage Tank 0.00 0.00 0.00 0.00 0.00
2 x Fresh Water Distribution Pump 0.60 0.42 0.78 0.36 0.13
Hazardous Open Drain Tank 2.00 1.40 2.60 1.20 1.44
2 x Hazardous Open Drain Pump 0.60 0.42 0.78 0.36 0.13
Drain caisson pump 0.50 0.35 0.65 0.30 0.09
Non Hazardous Open Drain Tank 0.50 0.35 0.65 0.30 0.09
2 x Non Hazardous Open Drain Pump 0.60 0.42 0.78 0.36 0.13
Drain caisson pump 0.50 0.35 0.65 0.30 0.09
Closed Drain  / LP Flare Knock out  Drum 4.00 2.80 5.20 2.40 5.76
2 x Closed Drain Pump 1.00 0.70 1.30 0.60 0.36
3 x Heli Fuel Tank 6.00 4.20 7.80 3.60 12.96
2 x Diesel Tank 0.00 0.00 0.00 0.00 0.00
Diesel Filter 0.50 0.35 0.65 0.30 0.09
2 x Diesel Pump 0.60 0.42 0.78 0.36 0.13
2 x Diesel Filter  1.00 0.70 1.30 0.60 0.36
2 x Air Compressor 4.00 2.80 5.20 2.40 5.76
2 x Air Dryer Package 5.00 3.50 6.50 3.00 9.00
Air Receiver 5.00 3.50 6.50 3.00 9.00
2 x Inert Gas Generator 12.00 8.40 15.60 7.20 51.84
Sewage Macerator Package 0.50 0.35 0.65 0.30 0.09
3 x Firewater Pump Package     135.00 94.50 175.50 81.00 6561.00
Deluge Valve Skids 14.00 9.80 18.20 8.40 70.56
2 x Firewater Jockey Pump 1.20 0.84 1.56 0.72 0.52
3 x Main Power Generator 258.60 181.02 336.18 155.16 24074.63
Emergency Diesel Generator 16.00 11.20 20.80 9.60 92.16
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Wellhead Control Panel 4.00 2.80 5.20 2.40 5.76
Total  Square root of the sum 1126.42 788.50 1464.35 675.85 188.34

= # +- 94.17
+/- % 8.360144
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Appendix 2.2 – Error Propagation Applied to Cut Down STA-3 MEL 
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STA-3 
MEL Cut down to central process equipment 

Equipment Weight (-30%)  (+30%) Span 
Span 
squared 

2 x Inlet Cooler (Tube side) 24.80 17.36 32.24 14.88 221.41
1st Stage Separator 27.00 18.90 35.10 16.20 262.44
2nd Stage Separator 12.60 8.82 16.38 7.56 57.15
3rd Stage Separator 8.40 5.88 10.92 5.04 25.40
2 x Crude Oil Booster Pump A/B 2.15 1.50 2.79 1.29 1.66
Crude Oil Export Cooler 2.52 1.76 3.28 1.51 2.29
2 x Crude Oil Export Pump A/B 15.26 10.68 19.84 9.16 83.83
1st Stage LP Inlet Cooler  5.50 3.85 7.15 3.30 10.89
1st Stage LP Suction Scrubber  1.50 1.05 1.95 0.90 0.81
2 x LP Suction Drum Pump A/B 1.00 0.70 1.30 0.60 0.36
1st Stage LP Compressor  

17.00 
11.90 22.10 10.20 104.04

2nd Stage LP Compressor 0.00 0.00 0.00 0.00
2nd Stage LP Inlet Cooler  5.50 3.85 7.15 3.30 10.89
2nd Stage LP Suction Scrubber 4.00 2.80 5.20 2.40 5.76
Booster Inlet Cooler  33.60 23.52 43.68 20.16 406.43
Booster Suction Scrubber 1.20 0.84 1.56 0.72 0.52
Booster Compressor 

28.60 
20.02 37.18 17.16 294.47

HP Compressor 0.00 0.00 0.00 0.00
Glycol Contactor 4.90 3.43 6.37 2.94 8.64
Gas / Gas Exchanger  17.40 12.18 22.62 10.44 108.99
Gas / Liquid Exchanger  16.20 11.34 21.06 9.72 94.48
Expander Inlet Scrubber 3.80 2.66 4.94 2.28 5.20
Turbo Expander 4.50 3.15 5.85 2.70 7.29
LT Separator   7.40 5.18 9.62 4.44 19.71
NGL Splitter 19.80 13.86 25.74 11.88 141.13
Reboiler 2.60 1.82 3.38 1.56 2.43
HP suction scrubber 2.30 1.61 2.99 1.38 1.90
HP After cooler  6.20 4.34 8.06 3.72 13.84
Gas lift compressor  5.40 3.78 7.02 3.24 10.50
2 x Main Power Generator 172.40 120.68 224.12 103.44 10699.83
Total Square root of the sum 453.53 317.47 589.59 272.12 112.26

= # +- 56.13
+/- % 12.3763

Equipment Weight (-50%)  (+50%) Span 
Span 
squared 

2 x Inlet Cooler (Tube side) 24.80 12.40 37.20 24.80 615.04
1st Stage Separator 27.00 13.50 40.50 27.00 729.00
2nd Stage Separator 12.60 6.30 18.90 12.60 158.76
3rd Stage Separator 8.40 4.20 12.60 8.40 70.56
2 x Crude Oil Booster Pump A/B 2.15 1.07 3.22 2.15 4.61
Crude Oil Export Cooler 2.52 1.26 3.78 2.52 6.35
2 x Crude Oil Export Pump A/B 15.26 7.63 22.89 15.26 232.87
1st Stage LP Inlet Cooler  5.50 2.75 8.25 5.50 30.25
1st Stage LP Suction Scrubber  1.50 0.75 2.25 1.50 2.25
2 x LP Suction Drum Pump A/B 1.00 0.50 1.50 1.00 1.00
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1st Stage LP Compressor  
17.00 

8.50 25.50 17.00 289.00
2nd Stage LP Compressor 0.00 0.00 0.00 0.00
2nd Stage LP Inlet Cooler  5.50 2.75 8.25 5.50 30.25
2nd Stage LP Suction Scrubber 4.00 2.00 6.00 4.00 16.00
Booster Inlet Cooler  33.60 16.80 50.40 33.60 1128.96
Booster Suction Scrubber 1.20 0.60 1.80 1.20 1.44
Booster Compressor 

28.60 
14.30 42.90 28.60 817.96

HP Compressor 0.00 0.00 0.00 0.00
Glycol Contactor 4.90 2.45 7.35 4.90 24.01
Gas / Gas Exchanger  17.40 8.70 26.10 17.40 302.76
Gas / Liquid Exchanger  16.20 8.10 24.30 16.20 262.44
Expander Inlet Scrubber 3.80 1.90 5.70 3.80 14.44
Turbo Expander 4.50 2.25 6.75 4.50 20.25
LT Separator   7.40 3.70 11.10 7.40 54.76
NGL Splitter 19.80 9.90 29.70 19.80 392.04
Reboiler 2.60 1.30 3.90 2.60 6.76
HP suction scrubber 2.30 1.15 3.45 2.30 5.29
HP After cooler  6.20 3.10 9.30 6.20 38.44
Gas lift compressor  5.40 2.70 8.10 5.40 29.16
2 x Main Power Generator 172.40 86.20 258.60 172.40 29721.76
Total Square root of the sum 453.53 317.47 589.59 272.12 187.10

= # +- 93.55
+/- % 20.62717
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Appendix 2.3 – HYSYS Equipment List Data 
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Appendix 2.4 – Combined Excel Weight Estimation Sheet 



Combined equipment sizing sheet For convenience if needed: +/‐ percantage error

*Copy values from HYSYS and known parameters corresponding to the cells marked with GREEN *Convert BPD to m3/hr *Converrt MMSCFD to m3/hr: X %:

Items: BPD: 31450 m3/hr = 208.356 MMSCFD: 1 m3/hr: 1118.9

Coolers & Heaters Tag no.: Duty (kW):

T tube in 

(°C):

T tube out 

(°C):

T shell in 

(°C):

T shell out 

(°C):

LMTD 

(°C):

Tube shell 

(#): Weight (t): Weight + X%

Weight ‐ 

X%

Inlet cooler 36‐HA‐01 6379.7 104.8 80.0 25.0 40.0 59.8 150/300 12.51 18.76 6.25

Oil export cooler 21‐HA‐01 82.0 56.0 55.0 25.0 40.0 22.3 150/150 0.23 0.34 0.11

LP1 inlet cooler 23‐HE‐01 170.7 50.7 30.0 25.0 40.0 7.5 150/150 1.60 2.40 0.80

LP2 inlet cooler 23‐HE‐02 381.8 49.6 30.0 25.0 40.0 7.1 150/150 35.06 52.59 17.53

IP inlet cooler 23‐HE‐03 2723.2 93.3 30.0 25.0 40.0 20.4 150/300 31.37 47.06 15.69

Glycol inlet cooler 23‐HE‐04 4020.1 128.2 30.0 25.0 40.0 29.0 150/600 11.87 17.80 5.93

HP cooler 27‐HE‐02 2090.5 151.0 30.0 25.0 40.0 34.2 150/600 6.22 9.33 3.11

Interstage heater 20‐HA‐01 0.0 65.3 65.3 25.0 40.0 32.2 150/300 4.27 6.40 2.13

Separators Tag no.:

Flow oil 

(m3/hr):

Flow water 

(m3/hr):

Reten. Time 

(min.): % Full: L/D Ratio:

Allow. Stress 

(N/mm2)

Corr. 

allow. 

(mm): ID (m): T/T (m):

W/T 

req.:

W/T 

select: Shell (t): Head (t): Weight (t): Weight + X%

Weight ‐ 

X%

1st stage separator 20‐VA‐01 181.889394 109.0 5 65 4 300 3 2.26 9.05 15.98 15.98 8.22 1.51 9.73 14.60 4.87

2nd stage separator 20‐VA‐02 187.779909 11.1936612 5 65 4 300 3 2.00 7.99 6.67 10.00 4.00 0.74 4.74 7.11 2.37

3rd stage separator 20‐VA‐03 171.780555 1.05 5 65 4 300 3 1.91 7.62 4.13 10.00 3.65 0.67 4.32 6.48 2.16

Scrubbers Tag no.:

Vapor flow 

at (m3/hr):

Vapor dens. 

at (kg/m3):

Liquid dens. 

at (kg/m3):

K factor 

(m/s):

Corrected K 

factor:

L/D 

Ratio:

Design P 

(barg):

Allow. Stress 

(N/mm2)

Corr. 

allow. 

(mm): ID (m): T/T (m):

W/T 

req.:

W/T 

select: Shell (t): Head (t): Weight (t): Weight + X%

Weight ‐ 

X%

LT separator 25‐VG‐02 514.582744 39.780964 495.9 0.1 0.058 3.5 35.0 160 3 0.97 3.38 15.22 15.22 1.25 0.26 1.51 2.26 0.75

LP1 scrubber 23‐VG‐01 2573.3 3.11263324 698.6 0.1 0.070 3.5 1.8 160 3 0.93 3.27 3.90 10.00 0.77 0.16 0.93 1.39 0.46

LP2 scrubber 23‐VG‐02 2725.1 8.60215279 646.4 0.1 0.068 3.5 6.5 160 3 1.29 4.50 6.24 10.00 1.45 0.31 1.76 2.64 0.88

IP scrubber 23‐VG‐03 1647.6 28.2015216 556.6 0.1 0.060 3.5 25.5 160 3 1.49 5.22 16.68 16.68 3.27 0.68 3.95 5.92 1.97

Glycol inlet scrubber 24‐VG‐01 303.1 130.43696 330.5 0.1 0.053 3.5 89.5 160 3 1.28 4.48 44.46 44.46 6.39 1.31 7.70 11.55 3.85

Expander inlet scrubber 25‐VG‐01 213.6 128.611142 218.5 0.1 0.053 3.5 87.5 160 3 1.31 4.58 44.44 44.44 6.69 1.37 8.06 12.09 4.03

Glycol contactor 24‐VB‐01 303.1 130.43696 330.5 0.1 0.057 3.5 89.5 160 3 1.24 4.32 43.06 43.06 5.78 1.18 6.96 10.44 3.48

Compressors & Expanders Tag no.: Duty (kW):   Weight (t): Weight + X%

Weight ‐ 

X%

LP1 compressor 23‐KA‐01 245.5 7.04 10.56 3.52

LP2 compressor 23‐KA‐02 985.3 15.86 23.78 7.93

IP compressor 23‐KA‐03 2184.7 25.24 37.86 12.62

HP compressor 27‐KA‐01 1048.2 16.44 24.66 8.22

Gas lift compressor 27‐KA‐02 6.26E‐05 0.00 0.00 0.00

Expander 25‐KH‐01 394.5 9.29 13.94 4.65

Re compressor 25‐KA‐01 394.5 9.29 13.94 4.65

Pumps Tag no.: Duty (kW): Weight (t): Weight + X%

Weight ‐ 

X%

Return pump 23‐PA‐01 0.1 0.22 0.33 0.11

PW pump 44‐PA‐01 0.2 0.22 0.33 0.11

Oil booster pump 21‐PA‐01 64.5 1.10 1.65 0.55

Oil pump 21‐PA‐02 305.8 Real duty WI pump: 7.89 11.84 3.95

WI pump 3 x 50% 29‐PA‐02 1807.0 903.5 41.22 61.83 20.61

Heat exchangers Tag no.: Duty (kW):

T tube in 

(°C):

T tube out 

(°C):

T shell in 

(°C):

T shell out 

(°C):

LMTD 

(°C):

Tube shell 

(#):

Overall U 

(kJ/hr/m2/C)

U 

(W/m2/C): Weight (t): Weight + X%

Weight ‐ 

X%

Heat exchanger 1 25‐HA‐01 690.7 30.0 16.2 ‐24.8 25.0 17.1 600/600 1201.7 333.8 24.65 36.98 12.33

Heat exchanger 2 25‐HA‐02 281.9 16.2 10.6 ‐25.1 12.8 13.8 600/600 1220.0 338.9 12.84 19.25 6.42

Additional equipment Tag no.:

% Full:

L/D 

Ratio:

Design P 

(barg):

Allow. Stress 

(N/mm2)

Corr. 

allow. 

(mm): ID (m): T/T (m):

W/T 

req.:

W/T 

select: Shell (t): Head (t): Weight (t): Weight + X%

Weight ‐ 

X%

NGL splitter 25‐VE‐01 65 3.5 33.5 300 3 1.95 6.81 15.49 15.49 5.16 1.08 6.24 9.36 3.12

kW Needed 

(max. 

19570):

Total weight of 

the two 

generators (t): Weight + X%

Weight ‐ 

X%

Power generator 2 x 100% N/A 8974.23671 172.36 258.54 86.18

ID (m): T/T (m):

W/T 

req.:

W/T 

select: Shell (t): Head (t): 

Weight of 

two(t): Weight + X%

Weight ‐ 

X%

Fine filter x 2 (2 micron) N/A 2.28 1.5 11.3 11.3 0.96 1.09 4.10 6.14 2.05

Weight (t): Weight + X%

Weight ‐ 

X%

SRP package N/A 39.16 58.74 19.58

Weight (t): Weight + X%

Weight ‐ 

X%

CIP Package N/A 7.50 11.25 3.75

ID (m): T/T (m):

W/T 

req.:

W/T 

select: Shell (t): Head (t): Weight (t): Weight + X%

Weight ‐ 

X%

Vacuum dearerator N/A 1.5 9 8.7 10.0 3.35 0.43 3.78 5.68 1.89

Duty (kW):

Weight of 

two(t): Weight + X%

Weight ‐ 

X%

Vacuum pump x 2 N/A 10.4 0.92 1.38 0.46

Weight of 

two(t): Weight + X%

Weight ‐ 

X%

Vacuum pump skid x 2 N/A 2.77 4.15 1.38

TOTAL 560.9 841.4 280.5

Vacuum pump weight (t):

0.46

Lenght (m): Height (m): Width (m): 

Lenght (m): Height (m): Width (m): 

Lenght (m): Height (m): Width (m): 

6.7 5.8 3.7

2.9 5.8 2.5

Lenght (m): Height (m): Width (m): 

0 10.4 1.25 0.62 0.39

Flow (m3/hr):

Flow (m3/hr):

208.3

208.3

Flow (m3/hr): Design P (barg): Allow. Stress (N/mm2) Corr. allow. (mm):

208.3 10 160 3

Additional kW (if needed 

automatically included in 

eq.):

Duty applied in main eq. 

(min 4 kW & max 789 kw)

Flow (m3/hr):

208.3

Design P (barg):

10

Allow. Stress (N/mm2)

160

Corr. allow. (mm):

3

14.20

2.32

5.19

60.44 0.41

Length (m):Area (m2): OD (m):

0.82 0.60

Additional kW (if needed 

automatically included in 

eq.):

Generator Taurus 70 

chosen for power 

demand between 5101 

and 7160 kW

0

Generator Titan 250 chosen 

for power demand between 

10216 and 19570 kW

0

Generator Mars 100 

chosen for power 

demand between 

7161 and 10215 kW

3

Design P (barg):

30.0

9.0

2.25

Duty applied in main eq. 

(min 4 kW & max 789 kw)

64.5

305.8151227

Generator Taurus 60 

chosen for power demand 

up to 5100 kW

Width (m): 

2.01

0.06

1.64

1.64

2.19

2.37

2.48

2.38

0.93

2.25

2.25

5.33

0.64

1.82

114.5 789

4

4

Actual flow (m3/hr):

161.2

Reten. Time (min.):

5

50

6.83

2.68

5.94

7.03

7.54

7.11

5.73

1.49

270.3

444.8

308.1

135.9

3.8 2.8

6.99

5.45

0.02

3.91

3.91

1.48

1.98

2.34

4.42 1.52 1.71

6.92 1.97

Length (m):

0

0

0

0

450.0

200.0

300.0

450.0

450.0

1.34 0.67

Area (m2): ID (m):

0.88

0.28

0.65

0.97

1.40

0.76

0.54

227.1

12.3

76.1

1.98 0.99 0.62

U (W/m2/C):

470.0

300.0

300.0

4.77

0.46120.80

Width for one 

generator (m): 

Lenght for one 

generator (m):

Height for one 

generator (m):

Lenght (m): Height (m): Width (m): 

0.64

1.34 0.67

0.150.0

Lenght (m): Height (m):

3.33
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Appendix 2.5 – Monte Carlo Code Script 



# ‐*‐ coding: utf‐8 ‐*‐
"""
Created on Fri Oct 10 10:56:13 2014

@author: KARR
"""

# ‐*‐ coding: utf‐8 ‐*‐
"""
Created on Thu Oct 09 14:47:35 2014

@author: KARR
"""

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import array
import pylab as p
from numpy import genfromtxt
from pandas import DataFrame
from scipy.stats import stats
from scipy.stats import norm
from numpy.random import normal
import matplotlib.mlab as mlab
from pandas import DataFrame
import statsmodels.formula.api as sm
import statsmodels.api as smapi
import statsmodels.graphics.regressionplots as regplot
from statsmodels.graphics.regressionplots import *
import seaborn as sns

Location = r'\\ramoil.ramboll‐group.global.network\Common\GlobalProjects\2014
'\1100011376\P‐Process\DOE & Weight‐Cost estimation\Full factorial
'\FF_sim_data_CSV.csv'
df = pd.read_csv(Location, sep=",")
print df

data = np.genfromtxt(Location, dtype=float, delimiter=',', names=True)

print data
print data['Wobbe']
print data['SG']
print data['HHV']
print data['Dew']
print data['Power']
print data['RVP']
print data['NGL'] 
print data['EqWeight']
print data['EqWeightpos']
print data['EqWeightneg']
print data['sumS2']

'Regression models'
Start conditions: results = sm.ols('Power ~ (Oil+Gas+Water)**2 + Oil2 + Gas2 
+ Water2', data=df).fit()

results = sm.ols('Power ~ (Oil+Gas+Water)**2 ‐ Gas:Water ‐ Oil:Gas ‐ Oil:Water 
'+ Water2', data=df).fit()
results1 = sm.ols('EqWeight ~ (Oil+Gas+Water)**2 ‐ Oil:Gas‐ Oil:Water ‐ 

1



'Gas:Water + Gas2', data=df).fit()

print results.summary()
print results1.summary()

'Models'

def Power(Oil, Gas, Water):
    OilC = 0.0238    
    GasC = 0.1705
    WaterC = 0.1708
    Water2C = ‐1.244e‐06
    IntC = ‐713.2169
    
    respower = OilC*Oil + GasC*Gas + WaterC*Water + Water2C*Water*Water + IntC
    return respower
    
def EqWeight(Oil, Gas, Water):
    OilC = 0.0010    
    GasC = 0.0278
    WaterC = 0.0037
    Gas2C = ‐3.896e‐07
    IntC = ‐58.2391
    
    reseqweight = OilC*Oil + GasC*Gas + WaterC*Water + Gas2C*Gas*Gas + IntC
    return reseqweight

'Mid level'
print Power(23000, 29170, 31450)
print EqWeight(23000, 29170, 31450)

'High level'
print Power(25300, 32090, 37740)
print EqWeight(25300, 32090, 37740)

'Low level'
print Power(20700, 26250, 25160)
print EqWeight(20700, 26250, 25160)

'mid‐high'
print EqWeight(24150, 30630, 34595)

'mid‐low'
print EqWeight(21850, 27710, 28305)

'high‐high'
print EqWeight(26450, 33550, 40885)

'low‐low'

print EqWeight(19550, 24790, 22015)

plt.figure(0)
sns.set(style="whitegrid")
sns.set_style("ticks")
sns.residplot(df.EqWeight, results1.fittedvalues, color="blue", lowess=True)
plt.savefig("EqWeight_resid.png")

plt.figure(1)
plt.plot(df.EqWeight,results1.fittedvalues, 'bo')
lt titl (' i ht')
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plt.title('EqWeight')
plt.xlabel("Simulated values with HYSYS")
plt.ylabel("Predicted using regression model")
plt.savefig("EqWeight_predicted_vs_simulated.png")

plt.figure(2)
res=results1.resid
fig=smapi.qqplot(res)
plt.title('EqWeight')
plt.savefig("EqWeight_qqplot.png")

plt.figure(3)
plot_leverage_resid2(results1)
plt.savefig("EqWeight_leverage_vs_residuals.png")

plt.figure(4)
influence_plot(results1)
plt.savefig("EqWeight_influence.png")

'Model with uncertainties'
Samples = 1000000
X = Samples

'Rates at 10%, 10% and 20% (used in HYSYS sim)'
oil = (np.random.normal(23000, 1796.9, X))
gas = (np.random.normal(29170, 2281.3, X))
water = (np.random.normal(31450, 4914.1, X))

'Rates at 40%'
oil = (np.random.normal(23000, 7187.5, X))
gas = (np.random.normal(29170, 9115.6, X))
water = (np.random.normal(31450, 9828.1, X))

'Rates at 30%'
oil = (np.random.normal(23000, 5390.6, X))
gas = (np.random.normal(29170, 6836.7, X))
water = (np.random.normal(31450, 7371.1, X))

'Rates at 20%'
oil = (np.random.normal(23000, 3593.8, X))
gas = (np.random.normal(29170, 4557.8, X))
water = (np.random.normal(31450, 4914.1, X))

'Rates at 10%'
oil = (np.random.normal(23000, 1796.9, X))
gas = (np.random.normal(29170, 2281.3, X))
water = (np.random.normal(31450, 2457, X))

'Rates at mid/mean values'
oil = 23000
gas = 29170
water = 31450

Weight = EqWeight(oil, gas, water)
Weight_uncertainty = (np.random.normal(0, 76.46, X))
Weight_plus_uncertainty = Weight + Weight_uncertainty
Rest = (EqWeight(oil, gas, water)*1.283)
Rest_uncertainty = (np.random.normal(0, 43.1, X))
Rest_plus_uncertainty = Rest + Rest_uncertainty
Weight_total = Weight_plus_uncertainty + Rest_plus_uncertainty
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'Factors combinded'
factor = (np.random.normal(4.08, 1.04, X))
factor_mean = 4.08
'Factors partitioned'
factor_EI = (np.random.normal(0.46, 0.36, X))
factor_piping = (np.random.normal(0.45, 0.31, X))
factor_structure = (np.random.normal(2.28, 0.96, X))
 

'Total weight multiplied by combined factor + accommondation'
Weight_total_factor = Weight_total * factor + 800
Accommodation = (np.random.normal(800, 125, X))
Weight_total_factor = Weight_total * factor + Accommodation
Weight_plain = (Weight + Rest) * factor_mean + 800

WWW = (Weight_plus_uncertainty + Rest) * factor + 800 

print Weight_plain
print 'Mean', np.mean(WWW)
print 'Minimum', np.min(WWW)
print 'Maximum', np.max(WWW)
print 'stddev', np.std(WWW)

'Total weight added partitioned factors'
Weight_total_partitioned_factors = Weight_total + Weight_total * factor_EI + 
Weight_total * factor_piping + Weight_total * factor_structure + Accommodation

'Prints'
print oil
print gas
print water
print Weight
print Weight_uncertainty
print Weight_plus_uncertainty
print Rest
print Rest_uncertainty
print Rest_plus_uncertainty
print Weight_total
print factor
print Accommodation
print Weight_total_factor 

print 'min weight', np.min(Weight)
print 'min weight_uncer', np.min(Weight_uncertainty)
print 'min weigt_plus_unc', np.min(Weight_plus_uncertainty)
print 'min rest', np.min(Rest)
print 'min rest_uncer', np.min(Rest_uncertainty)
print 'min rest_plus_unc', np.min(Rest_plus_uncertainty)
print 'min weight_tot', np.min(Weight_total)
print 'min factor', np.min(factor)

print 'Mean', np.mean(Weight_total_factor)
print 'Minimum', np.min(Weight_total_factor)
print 'Maximum', np.max(Weight_total_factor)
print 'stddev', np.std(Weight_total_factor)

print 'Mean', np.mean(Weight_total_partitioned_factors)
print 'Minimum', np.min(Weight_total_partitioned_factors)
print 'Maximum', np.max(Weight_total_partitioned_factors)
print 'stddev', np.std(Weight_total_partitioned_factors)
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'Histogram and normal distribution plot'
plt.figure(5)
Weight_total_factor.sort()
WTFmean = np.mean(Weight_total_factor)
WTFstd = np.std(Weight_total_factor)
plt.hist(Weight_total_factor, bins=100, normed=True)
x = np.linspace(np.min(Weight_total_factor), np.max(Weight_total_factor),1000)
plt.plot(x, mlab.normpdf(x, WTFmean, WTFstd))
plt.savefig("X_samples")

'Histogram and normal distribution plot partitioned factors'
plt.figure(6)
Weight_total_partitioned_factors.sort()
WTPFmean = np.mean(Weight_total_partitioned_factors)
WTPFstd = np.std(Weight_total_partitioned_factors)
plt.hist(Weight_total_partitioned_factors, bins=100, normed=True)
x = np.linspace(np.min(Weight_total_partitioned_factors), 
np.max(Weight_total_partitioned_factors),1000)
plt.plot(x, mlab.normpdf(x, WTPFmean, WTPFstd))
plt.savefig("XP_samples")

plt.figure(7)
Rest_uncertainty.sort()
RUmean = np.mean(Rest_uncertainty)
RUstd = np.std(Rest_uncertainty)
plt.hist(Rest_uncertainty, bins=100, normed=True)
x = np.linspace(np.min(Rest_uncertainty), np.max(Rest_uncertainty),1000)
plt.plot(x, mlab.normpdf(x, RUmean, RUstd))
plt.savefig("X_samples")

'Combined factor'
mean + 1.28 stddev
mean_plus = WTFmean + 1.28*WTFstd
mean ‐ 1.28 stddev
mean_minus = WTFmean ‐ 1.28*WTFstd

print 'mean+1.28std', mean_plus
print 'mean‐1.28std', mean_minus  

'Partitioned factors'
mean + 1.28 stddev
mean_plus = WTPFmean + 1.28*WTPFstd
mean ‐ 1.28 stddev
mean_minus = WTPFmean ‐ 1.28*WTPFstd

print 'mean+1.28std', mean_plus
print ' mean‐1.28std', mean_minus

plt.show()
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Appendix 2.6 – Monte Carlo Results, Samples Variety 
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100 samples results: Weight [Tonnes]: 
Mean 

6064 

Minimum 
2852 

Maximum 
9887 

Standard deviation 
1317 

 

1000 samples results: Weight [Tonnes]: 
Mean 

5986 

Minimum 
1134 

Maximum 
10300 

Standard deviation 
1325 

 

10000 samples 
results: Weight [Tonnes]: 
Mean 

6001 

Minimum 
1140 

Maximum 
12086 

Standard deviation 
1409 
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100000 samples 
results: 

Weight [Tonnes]: 

Mean 
6006 

Minimum 
496 

Maximum 
13077 

Standard deviation 
1395 

 

1000000 samples 
results: Weight [Tonnes]: 
Mean 

6003 

Minimum 
-354 

Maximum 
13302 

Standard deviation 
1398 

 

10000000 samples 
results: Weight [Tonnes]: 
Mean 

6001 

Minimum 
-904 

Maximum 
14621 

Standard deviation 
1398 
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