

 I

Master of Science Programme in Medialogy

Master’s Thesis

Title: Real-Time Augmented Reality for Robotic-Assisted Surgery

Author:

Martin Kibsgaard Jørgensen

Super visor: Martin Kraus

Abstract:

I try to improve communication during training with the da Vinci robotic surgery system, by allowing

a trainer to visually communicate with a trainee by augmenting the stereoscopic video stream.

I have investigated the video hardware of the da Vinci systems and implemented a system that is able

to input, output and overlay video streams compatible with all the systems. Additionally, I added

support for multiple 3D user input devices.

As an initial test and an example of how to use the developed system, virtual instruments have been

added to the system. In the test, the virtual instruments were overlaid the stereoscopic video stream of

the da Vinci S system in real-time.

Data: 26 August 2014

Pages: 52

Copies: 4

Copyright@2014. This report and/or app ended material may not be partly or completely published

or copied without prior written approval from the authors. Neither may the contents be used for

commercial purposes without this written approval.

 II

 III

Contents

1 Motivation .. 1

1.1 Improving Training .. 1

2 Hardware Environment .. 5

2.1 Detecting Video Formats .. 5

2.2 The da Vinci systems.. 6

2.2.1 da Vinci .. 7

2.2.2 da Vinci S ... 9

2.2.3 da Vinci Si .. 12

2.2.4 da Vinci Xi ... 14

2.2.5 Summary... 15

2.3 YCbCr 4:2:2 ... 16

2.4 Hardware requirements .. 16

3 System description.. 19

3.1 Video Hardware.. 19

3.1.1 Compatibility problems .. 19

3.2 User Input Devices ... 20

3.3 Software .. 20

3.3.1 DeckLink API in Unity .. 21

3.3.2 Outputting video ... 22

3.3.3 Keying .. 23

3.3.4 Inputting video.. 23

3.3.5 Input devices ... 24

3.3.6 da Vinci prefabs .. 24

4 System test .. 27

4.1 Optimization ... 27

4.2 Performance tests.. 27

4.3 Latency test ... 28

5 User evaluation ... 31

6 Conclusion .. 35

7 Future work .. 37

8 Bibliography ... 39

Appendix A. DeckLink API in Visual Studio .. 41

Appendix B. DVD .. 42

 IV

 V

READING GUIDE

References are cited using Chicago-style , e.g. (Last name 2014) and (Company 2014). A full list of

references can be found in Chapter 8 on page 39.

In this context:

- Surgeon always refers to a surgeon with expertise in robotic-assisted surgery.

- Trainer always refers to a surgeon or a nurse who teaches robotic-assisted surgery.

- Trainee is a medical student or surgeon that is currently learning robotic-assisted surgery.

- User always refers to an end-user, e.g. trainer and trainee.

- Developer always refers to a developer who utilizes the developed system, e.g. for future work.

In Appendix B on the last page there is a DVD attached, which includes this report in pdf format,

electronic sources, an A/V-production, different builds, and source code.

It can be beneficial to watch the A/V production before reading the report.

Enjoy

ACKNOWLEDGEMENT

I would like to thank Martin Kraus for his guidance, support, and great ideas, not only for this project,

but also all the way through my Master’s programme.

I wish to acknowledge the help and equipment made available by Aalborg University Hospital, and

especially thank Jane Petersson for all her help and sharing of expertise on the area of robotic surgery.

 VI

 Page 1 of 42

1 MOTIVATION

The motivation for this work is to improve training conditions for surgeons and medical students

learning to perform surgery with the da Vinci robotic surgery system by Intuitive Surgical. With the

da Vinci system, surgeons are able to perform surgery by controlling robot arms inside a patient. The

robot arms and a stereoscopic camera enter the patient through small incisions in the skin. The

technique is called robotic-assisted minimally invasive surgery. In Figure 1.1, the basic setup of a da

Vinci Operating Room (OR) is illustrated.

Figure 1.1 Basic da Vinci Operating Room. Left: Surgeon operating the Surgeon Console. Middle: Assisting nurse operating

the patient cart. Left: Vision cart. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A) 2014)

Through conversations and observations during training sessions at Aalborg University Hospital, it

has been determined that a large problem is the limitation of the communication between the trainer

and the trainee. When the trainee is operating the robot, the trainee’s vision is limited to that of the

stereoscopic camera. This makes it difficult for the trainer to communicate visually with the trainee.

For instance, a simple task as pointing is difficult and anything more advanced than that is nearly

impossible. This can also be a problem during real surgeries when the OR staff has to communicate

with the surgeon.

1.1 IMPROVING TRAINING
Training for robotic surgery at Aalborg University Hospital normally starts out with multiple two

days seminars; where about half the time is spent on theory and the other half practicing with the

robot. The first exercises are with the da Vinci Skill Simulator if it is available. The extra console used

for the simulator is sometimes in use in the OR. The next exercises are often performed on a live

anesthetized pig (wet training). One exercise is that the trainee has to make a cut, cauterize it to stop

the bleeding and sew it back together. When the trainee is in doubt about how to do something it can

 Page 2 of 42

be difficult for the trainer to show it. If the trainee has to look at the trainer, the trainee has to lean

back, which locks the system.

Telestration is currently the only way to communicate visually with the surgeon at the console. It

allows the assisting surgeon and nurses, or in this case the trainer, to draw illustrations on a touch

screen visible in the surgeon’s console.

Figure 1.2 Left: Drawing around a pen on the touch screen. Right: The drawing is not placed at the correct depth on the

console and is wrongly positioned on both eye.

A problem with telestration is that the 2D drawing on the touchscreen does not translate easily to 3D

(Lamprecht, Nowlin og Stern 2011), which makes it imprecise and limits the situations where

telestration is usable. It is sufficient to mark a larger area, but not precise enough to point to for

instance a vein (see Figure 1.2). In 2005, Intuitive Surgical was granted a patent with several ideas on

how to improve telestration (Lamprecht, Nowlin og Stern 2011). I have not been able to find any

mentions of it being improved.

(Ali, Loggins og Fuller 2008) has successfully implemented and evaluated a 3D telestration system

for the da Vinci system. They did not find any significant difference in error rates between 2D and 3D

telestration, but also suggest further evaluations to be made due to a small sample size (three test

subjects). The system grabs the camera input (S-Video) and overlays the telestration on a computer.

The image is then output as VGA, converted back to S-Video, and used as input for the synchronizer

on the first generation da Vinci system (see Section 2.2.1). They claim the telestration appears on the

console immediately, but I assume the multiple conversions between analog and digital adds delay to

the original camera input. The setup is very similar to that of (Galsgaard, et al. 2014), who had

problems with latency.

(Galsgaard, et al. 2014) suggests that it might help to add virtual instruments to the display of the

console. It was difficult to prove as the latency of the proposed system was too high and made

controlling the robot difficult. They suggest using a hardware keyer, e.g. a BlackMagic Design

DeckLink card, to reduce the latency of the system.

To my knowledge, only (Ali, Loggins og Fuller 2008) and (Galsgaard, et al. 2014) have overlaid

graphics directly on the main video stream, and both targeted the first generations system.

Pre-recorded video is another way to show the trainee what to do. Either showing a clip in full screen

or in part of the console’s display would help the trainee with predictable problems. The newer da

Vinci systems already support showing additional video input using the TilePro-feature. TilePro

 Page 3 of 42

allows the surgeon to display up to two additional video inputs in part of the console’s screens (see

Figure 1.3).

Figure 1.3 TilePro activated on the da Vinci S system. The size of the main video is reduced to make space for additional

video inputs. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A) 2014)

It requires activating a device that outputs the video clip and enabling TilePro on the console. The

TilePro-feature shrinks the camera input and takes up the entire bottom of the display in the console

even when the TilePro input only takes up a small part of the width. It would be beneficial to have a

system that can overlay video without taking up as much of the screen space and without having to

activate the TilePro-feature manually.

The da Vinci Si and da Vinci Xi systems both support dual consoles, which enables two surgeons to

operate the (up to) three instruments on the same system. The extra console can also be used to draw

arrows that are visible on the other console. This is often used at Aalborg University Hospital when a

senior surgeon is supervising another surgeon during a surgery. As an extra console is expensive, I

assume a system that is able to draw the same (and more) is preferable for most training scenarios.

Overall, the equipment is expensive and limited and the need for wet training makes training

expensive. Improving communication capabilities during training could make training more efficient.

In addition to augmenting the video signal by showing drawings, virtual tools, videos, or images, a

solution to the communication problem might be to display a webcam stream of the trainer to the

trainee.

Due to the limited time available for this project (4 months) and the project overlapping with the

regular summer holiday (no seminars at Aalborg University Hospital), it is not feasible to evaluate

any of the suggested solutions sufficiently. For those reasons, I have decided to focus on investigating

the video hardware of the different da Vinci systems for future reference and develop a system that is

able to augment the video of those. The system has to be is easy to use and build upon for future

work.

The system should support the video signals from the different da Vinci systems and should both be

able to output, overlay and input the video signals. Input could be needed for calculating a disparity

map to know at which depth drawing should be placed (Ali, Loggins og Fuller 2008). Additionally, it

should support common input devices for 3D user input that can be used for e.g. controlling virtual

tools or drawing in 3D.

 Page 4 of 42

 Page 5 of 42

2 HARDWARE ENVIRONMENT

Before it is possible to develop a video augmenting system for the da Vinci systems, it is necessary to

investigate the video hardware of the system. This chapter will explain my approach and describe the

video hardware in detail.

2.1 DETECTING VIDEO FORMATS
To detect the video formats used by the different da Vinci systems we (Aalborg University) acquired

a Blackmagic Design DeckLink Duo (see Figure 2.1). It is a PCIe-card that has two serial digital

interface (SDI) inputs and two SDI outputs. It supports most popular video formats from PAL to

1080p and it is able to detect input resolution and pixel format. Additionally it includes an internal

keyer that supports overlaying image data with an alpha channel on top of the standard-definition

(SD) formats PAL and NTSC (Blackmagic Design (A) 2014). It is registered as two separate

DeckLink SDI-cards by the computer, where each DeckLink SDI-card can either input, output, or key

an SDI signal.

Figure 2.1 Inputs and output on the Blackmagic Design DeckLink Duo (Blackmagic Design (A) 2014).

To detect the video format I wrote a C++ console application that uses the DeckLink API from the

DeckLink SDK (Blackmagic Design (B) 2014). It activates the input interface of a DeckLink card

and detects incoming frames and any changes in resolution and pixel format (see Figure 2.2). Input

format detection is only available on newer generation DeckLink cards; e.g. DeckLink Extreme 4K,

DeckLink Duo. For information on how to include the DeckLink API in Microsoft Visual Studio, see

Appendix A.

The application is available on the DVD attached in Appendix B.

 Page 6 of 42

Figure 2.2 Output from the format detection software. Displays input video and pixel formats. Each dot indicates a new

frame.

Additionally the console application can output frames with different solid colors and key based on

the alpha channel of the colors, which I used for initial testing of the keying capabilities.

For reference, a list of SDI standards can be found in Table 2.1.

Table 2.1 SDI standards including bitrates and example video formats (Wikipedia 2014)

Name Bitrates Example video formats

SD-SDI 270 Mbit/s, 360 Mbit/s, 143 Mbit/s,

177 Mbit/s

480i, 576i

ED-SDI 540 Mbit/s 480p, 576p

HD-SDI 1.485 Gbit/s, and 1.485/1.001 Gbit/s 720p, 1080i

Dual Link HD-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p

3G-SDI 2.970 Gbit/s, and 2.970/1.001 Gbit/s 1080p

6G UHD-SDI 6 Gbit/s 4Kp30

12G UHD-SDI 12 Gbit/s 4Kp60

2.2 THE DA VINCI SYSTEMS
There are currently four generations of da Vinci systems:

 da Vinci (1st gen)

 da Vinci S

 da Vinci Si

 da Vinci Xi

This section describes their video systems and includes a table with video inputs and outputs for each

of the systems.

 Page 7 of 42

2.2.1 da Vinci

Figure 2.3 The first generation da Vinci system. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A) 2014)

Figure 2.3 shows the first generation da Vinci system, which Intuitive Surgical launched in 1999

(Intutive Surgical (A) 2014). Aalborg University currently has one first generation system in a

robotics laboratory for research purposes. The system has a two channel stereoscopic camera

(endoscope) that is connected to two camera controllers (for left and right eye), which amplify and

adjust the images. The camera controllers have multiple video outputs, where the output used in the

first generation system is S-Video. S-Video is an analog video signal also often labeled as Y/C.

Both outputs from the two camera controllers go into a synchronizer that synchronizes and converts

the two signals to digital SD-SDI. The format detection software (see Section 2.1) detects the video

format as PALi50, which has a resolution of 720 by 576 pixels refreshing at 50 fields per second. It is

an interlaced format, which means that only every second vertical line is updated each field. It detects

the pixel format to be YCbCr 4:2:2.

Figure 2.4 Left: Synchronizer at the bottom of the vision cart. Right: DeckLink Duo between the vision cart and the surgeon

console.

The SD-SDI signals are connected to the surgeon’s console via BNC-cables (see Figure 2.4). To

avoid conversions between analog and digital video, any analog video processing should be done

before the synchronizer, while digital video processing should be done after it. The console outputs

one channel that includes icons and text overlaid by the console. A monitor displays the output from

the console to the assisting surgeons and nurses.

 Page 8 of 42

In Table 2.1 there is a list of all exterior video inputs and outputs on the first generation da Vinci

system.

Table 2.2 Video inputs and outputs on the da Vinci

Device Inputs Outputs

Vision Cart

2 x Camera Controllers Custom Camera Input S-Video (Main)

Composite (VBS/HD)

2 x Composite

 Synchronizer 2 x S-Video (Camera Input)

2 x Composite (Alt. Camera

Input)

2 x 2 SD-SDI (Camera)

2 x 2 Composite (Camera)

2 x S-Video (Camera)

Surgeon’s Console

 2 x SD-SDI (Main, Left & Right)

2 x S-Video (Left & Right)

Composite

S-Video

SD-SDI

According to (Fishman, et al. 2008) the two cameras are 5 mm apart, each angled 3 degrees towards

each other, and with a 48 degrees field of view. This is important to match when overlaying

stereoscopic virtual objects.

 Page 9 of 42

2.2.2 da Vinci S

Figure 2.5 The second generation, da Vinci System S. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A) 2014)

The da Vinci S is the second generation of the system and is from 2006 (see Figure 2.5). Aalborg

University Hospital currently has one of these, which is used only for training. From (Intuitive

Surgical (B) 2006) it appears that there is both SD and HD versions of the system. Aalborg University

Hospital has the HD version. Each channel of the stereo camera is connected to separate camera

controllers (Panasonic GP-US932). Each of the two camera controllers outputs two digital HD-SDI

signal, where only one from each is used (see Figure 2.6). The spare signal can be used for various

things, e.g. displaying the 3D video stream on a 3D monitor.

Figure 2.6 Back of the camera controller. (Panasonic 2014)

The HD-SDI signals enter the synchronizer at the bottom of the vision cart behind a small removable

plate (see Figure 2.7). The format detection application detects the signal between the camera

controllers and the synchronizer as 1080i59.94 with pixel format YCbCr 4:2:2. The video format has

a resolution of 1920 by 1080 pixels refreshing at 59.94 fields per second.

 Page 10 of 42

Figure 2.7 Left: Removing the four screws marked with red and three more srews to the left lets you remove the cover.

Right: Behind the cover are the video inputs (blue) from the camera controllers.

The vision cart outputs the video signals through a large blue custom cable to the surgeon’s console.

Like the first generation system, the surgeon’s console outputs a one-channel video signal from the

console with icons and text back to the vision cart. This signal is connected to a touch screen, where

assisting surgeons and nurses can change which camera is displayed on the screen, calibrate the

cameras, and use the telestration-feature.

The da Vinci S has five additional video inputs, which can be utilized by the TilePro-feature. There

are two S-Video (Y/C) inputs on the vision cart and two on the surgeon’s console. Additionally there

are DVI-inputs and -outputs on the surgeon’s console.

The priority of the signals for TilePro are (Intuitive Surgical (B) 2006):

1. DVI (Surgeon’s console)

2. S-Video #1 (Vision Cart)

3. S-Video #2 (Vision Cart)

4. S-Video #3 (Surgeon’s console)

5. S-Video #4 (Surgeon’s console)

The console outputs an S-Video and a composite signal. A hatch covers the inputs and outputs on the

console (see Figure 2.8).

 Page 11 of 42

Figure 2.8 Hatch on the surgeon console covers the TilePro inputs and additional outputs.

Table 2.3 lists all exterior video inputs and outputs. Note that the two main HD-SDI inputs on the

vision cart are behind the removable back-plate (see Figure 2.7).

Table 2.3 Video inputs and outputs on the da Vinci S

Device Inputs Outputs

Vision Cart

2 x Camera Controllers Custom Camera Input 2 x HD-SDI

S-Video

Composite

Sync

RGB/YPbPr (?)

 Synchronizer 2 x HD-SDI (Camera Input)

2 x S-Video (TilePro)

S-Video (Console)

HD-SDI (Console)

Composite (Console)

Surgeon’s Console

 2 x S-Video (TilePro)

2 x DVI (Left & Right, TilePro)

S-Video

Composite

2 x DVI (Left & Right)

 Page 12 of 42

Between the vision cart and the surgeon’s console there is a blue custom-made cable that carries the

multiple video signals. Additionally there are audio inputs and outputs and a green custom made

cable to connect those between the vision cart and the surgeon’s console.

According to (Intuitive Surgical (B) 2006) the cameras on the HD version of the system have a 60

degree field of view, whereas the SD version either has a 45 degree field of view with high

magnification or 60 degree with wide-angle.

2.2.3 da Vinci Si

Figure 2.9 The third generation, da Vinci Si. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A) 2014)

The third generation system, da Vinci Si (see Figure 2.9), was released in 2009 (Intutive Surgical (A)

2014). At Aalborg University Hospital, there are two complete da Vinci Si systems and an additional

surgeon’s console. The two systems are used for real surgeries and the additional surgeon’s console is

used either for assisting in surgeries or for training with the da Vinci Skills Simulator.

Because these systems are used for real surgeries, the operating rooms have to be kept as clean as

possible and we decided not to set up the input-test hardware. Fortunately, the product page for

specifically the da Vinci Si states that the video resolution is 1080i (Intuitive Surgical (C) 2014). The

pixel format is most likely YCbCr422 like the da Vinci S.

On this version, both channels from the stereoscopic camera are connected to the same camera

controller, which only has one HD-SDI output for each image (for left and right eye). The two HD-

SDI outputs are connect to a customized system, the CORE, at the bottom of the vision cart. This

system outputs video, audio, and robot controls through a blue optical fiber cable that is connected to

the surgeon’s console. Four fiber optics outputs are available, where the patient cart and surgeon’s

consoles each use one.

 Page 13 of 42

Figure 2.10 Left: Back of the console has TilePro intputs and stereo DVI outputs. Right: VEK wtih TilePro inputs and

adjustable stereo output in different formats.

On the back of the surgeon’s console, there are additional video inputs and outputs (see Figure 2.10).

The inputs are all for the TilePro-feature and the outputs can be used to display the left and right

images, likely with icons and text, from the console. The two DVI outputs are marked with SXGA,

which suggests that they only output a resolution of 1280 by 1024 pixels.

On the CORE, there is an option to install a Vision Expansion Kit (VEK) with more inputs and

outputs. The module includes two TilePro inputs similar to those on the console. Additionally it adds

four different types of output from both the right and the left channel (see Figure 2.10). It is possible

to change what they output through the touch screen. They can output the video with icons from the

surgeon console, with icons from the touch screen, or without icons.

Table 2.4 lists all exterior video inputs and outputs.

Table 2.4 Video inputs and outputs on the da Vinci Si

Device Inputs Outputs

Vision Cart

 Camera Controller Custom Camera Input 2 x HD-SDI (Main, Left & Right)

2 x Component (Left & Right)

 Synchronizer 2 x HD-SDI (Camera Input) DVI (Console)

Composite (Console)

S-Video (Console)

HD-SDI (Console)

Touchscreen (RGBO)

 Page 14 of 42

 Optional 2 x DVI (TilePro)

2 x S-Video (TilePro)

2 x HD-SDI (TilePro)

2 x DVI (Left & Right)

2 x Composite (Left & Right)

2 x S-Video (Left & Right)

2 x HD-SDI (Left & Right)

Surgeon’s Console

 2 x S-Video (TilePro)

2 x DVI (TilePro)

2 x HD-SDI (TilePro)

2 x DVI (SXGA, Left & Right)

The field of view of the cameras on the da Vinci Si system is also 60 degrees (Intuitive Surgical (D)

2014).

2.2.4 da Vinci Xi

Figure 2.11 The newest generation, da Vinci Xi. Copyright ©2014 Intuitive Srigcal, Inc. (Intutive Surgical (A), 2014)

The da Vinci Xi system was released in 2014 (Intuitive Surgical (C) 2014) and at the time of writing I

do not have access to one. Fortunately, the Readiness Guide available on

www.davincisurgerycommunity.com includes pictures of the back of both the vision cart and the

surgeon console (see), which shows that the video inputs and outputs are the same as on the da Vinci

Si system (see

Table 2.4).

http://www.davincisurgerycommunity.com/

 Page 15 of 42

Figure 2.12 Top: Back of vision cart on the da Vinci Xi system. Bottom: Back of the surgeon console on the da Vinci Xi

system. (Intuitive Surgical (E) 2014)

The release announcement for the da Vinci Xi system tells that the endoscope has been redesigned:

“A new endoscope digital architecture that creates a simpler, more compact design

with improved visual definition and clarity.

An ability to attach the endoscope to any arm, providing flexibility for visualizing the

surgical site.” (Intuitive Surgical (F) 2014)

Even though they mention improved visual definition and clarity, they still refer to the vision as 3D

HD, which indicates that it has not been upgraded to higher resolution formats like Ultra HD or 4K.

Furthermore, the inputs and outputs described in the Readiness Guide do not support higher than

1080i format (HD-SDI). Currently none of the DeckLink cards support keying on higher than an HD-

SDI signal.

A possibility is that they have implemented an improved pixel format like 10-bit RGB 4:4:4 that has a

higher color range and does not subsample. The DeckLink cards do support the 10-bit RGB pixel

format.

2.2.5 Summary

Augmenting the stream of the first generation da Vinci system can be done between the vision cart

and the surgeon console, which are connected by BNC-cables using SD-SDI. The video format is

PAL and the pixel format is YCbCr 4:2:2.

On the three newer system, the stream should be intercepted between the camera controllers and the

synchronizer/CORE, which are connected by BNC-cables using HD-SDI. On the Si and Xi systems, it

should also be possible to get the video stream from the VEK-module and input the augmented

 Page 16 of 42

stream using the TilePro-feature (only DVI supports stereo input). The video format is 1080i and the

pixel format is YCbCr 4:2:2. I have only been able to confirm the pixel format on the S system.

2.3 YCBCR 4:2:2
The pixel format detected on the systems is 8-bit YCbCr 4:2:2. It is a format that utilizes chroma

subsampling to reduce the data size of a video signal or file. Where RGB stores red, green, and blue

values for each pixel, YCbCr 4:2:2 only stores luminance (brightness) for each pixel and shares Cb

and Cr between two adjacent pixels. Cb is the difference between blue and luminance, and Cr is the

difference between red and luminance (Lambrecht 2001). The DeckLink API stores YCbCr like

shown in Figure 2.13. Two pixels take up 32 bits of memory. The format is named YUV in some

places in the API, even though that is the analog version of the format. Unfortunately, this makes it

difficult to know exactly how the DeckLink cards convert between RGB and YCbCr, as the

conversion constants are different.

Figure 2.13 YCbCr 4:2:2 pixel format's memory layout. (Blackmagic Design (B) 2014)

The DeckLink API and most standard textures on a GPU also include an alpha value for each pixel in

an RGB image (see Figure 2.14). Thus, each pixel in an RGBA image takes up 32 bits of memory. An

YCbCr image then requires half the space and bandwidth of an RGBA image of the same resolution.

Figure 2.14 BGRA pixel format's memory layout. (Blackmagic Design (B) 2014)

In most cases chroma subsampling does not reduce the perceived image quality, because visual acuity

for difference in color is significantly lower than difference in luminance (Lambrecht 2001). High

color difference between pixels that share chroma can in some cases cause visible artifacts like in

Figure 2.15.

Figure 2.15 Visible artifacts caused by chroma subsampling. (Chan 2007)

2.4 HARDWARE REQUIREMENTS
For the first generation, da Vinci system a DeckLink Duo (or two DeckLink SDI) is sufficient to

overlay images using the internal keyer, as the video signal is of SD resolution. The DeckLink Duo is

also able to input (capture) the stereo video from the vision cart or the one channel video from the

surgeon’s console. I assume this is also true for the non-HD version of the da Vinci S.

 Page 17 of 42

The HD version of the da Vinci S and the da Vinci Si both use a 1080i video signal, which the

DeckLink Duo’s keyer does not support. However, it can still output and input a 1080i signal and is

sufficient for capturing or outputting the stereoscopic video stream. To overlay images in HD a more

advanced device is needed. The DeckLink HD Extreme cards (any generation) support internal HD

keying (see Figure 2.16).

Figure 2.16 Blackmagic Design DeckLink 4K Extreme capture, playback and keying card. (Blackmagic Design (A) 2014)

The DeckLink HD Extreme cards are: DeckLink HD Extreme, DeckLink HD Extreme 2, DeckLink

HD Extreme 3, DeckLink HD Extreme 3D and DeckLink 4K Extreme. The first generation card is

possibly not supported by the newest driver.

Both the DeckLink Duo and the DeckLink Extreme cards require a second-generation PCI-express

socket with at least x4 bandwidth.

I have investigated other hardware solutions, but nothing compared to the DeckLink cards in terms of

price and capabilities (internal keying).

Figure 2.17 RG-59 coaxial cables with BNC connectors used for the video signals.

RG-59 coaxial cables with BNC connectors (see Figure 2.17) should be used to connect to the SDI

inputs and outputs. The impedance of a RG-59 coaxial cable is 75 Ω, where the coaxial cables used

for e.g. laboratory equipment and networking often are 50 Ω RG-58 cables. To avoid reflections, the

impedance should be consistent throughout the system (75 Ω).

 Page 18 of 42

 Page 19 of 42

3 SYSTEM DESCRIPTION

As the main purpose of this project is to reduce initial investigation and implementation time required

for future work, the system should support multiple resolutions and formats, and a variable number of

DeckLink cards either as inputs, outputs or for keying. For instance, a DeckLink Duo is sufficient for

keying on the first-generation da Vinci system, while two DeckLink Extremes are needed for keying

on the newer generations that have higher resolution video. Even more DeckLink cards should be

supported by the system to allow for keying and capture at the same time; for instance, by using two

DeckLink Extremes for keying and a DeckLink Duo for capturing simultaneously on the same

system.

3.1 VIDEO HARDWARE
To be able to implement the system effectively, without the need for a da Vinci system, we acquired

additional hardware and built the setup described below.

To simulate the output of the surgeon’s console I used a DeckLink Duo to output either two PAL or

two 1080i video signals. These signals are connected to two second-generation DeckLink Extremes

installed in another desktop computer. The DeckLink HD Extreme cards can then be used for

implementing and testing dual stream input, output and keying. Additionally, the second computer

has a Gigabyte GeForce GTX660 graphics card installed for effective rendering and format

conversions.

To display the signal generated by the DeckLink HD Extremes we acquired a Matrox MC-100 and a

consumer grade 3D TV (LG 32LB650). The MC-100 can take two HD-SDI signals and convert them

to 3D HDMI. It can output as either over/under, side-by-side or frame packed. It also has two HD-

SDI outputs that can pass-through the signals or output the 3D signal. The MC-100 is connected by

HDMI to the 3D TV, which displays the stereoscopic video.

The 3D TV uses passive polarized technology to display 3D video. It requires the users to wear light

low-cost polarized glasses. The glasses block light from every second horizontal line of pixels for one

eye, while displaying it for the other eye. The top-most line is only visible to the left eye; the second

line is only visible to the right eye, the third line to the left eye etc.

To use the system with the da Vinci systems the outputs from the camera controller should be

connected to the DeckLink HD Extremes. The output from the DeckLink cards should be connected

to the synchronizer/CORE on the vision cart. Optionally the MC-100 can be connected between the

DeckLink cards and the synchronizer to display the stereoscopic video on a 3D monitor.

3.1.1 Compatibility problems

As mentioned in Section 2.4, the DeckLink HD Extremes require at least a second-generation PCI-

express socket with x4 bandwidth. To properly work with the motherboard (Gigabyte GA-Z77X-

D3H) used in the second computer, the bandwidth has to be explicitly set in the BIOS to x4. If it is set

to the standard value AUTO, it limits the DeckLink Extreme card to x1, which makes the input and

output flash, as it cannot transfer the image data fast enough.

Additionally, I had to update the BIOS for the motherboard to support the graphics card.

The power supply unit (PSU) in the second computer was initially too weak at 450 Watts. With both

the two DeckLink Extremes and the graphics card installed the main voltage dropped below 11.5 Volt

 Page 20 of 42

and caused sudden shutdowns. Switching to a spare 1000 Watts PSU, made the system stable at 12

Volt.

We bought the DeckLink Extremes used and one of them did not appear in Windows Device

Manager. The DeckLink drivers are supposed to upgrade the firmware automatically on the cards, but

the firmware was too old for the driver to register the card. Installing an older driver (version 9.5.3)

made the card appear and made the driver update the firmware. The newest driver (version 10.0.3)

then registered the card and updated it to the newest firmware. Both driver versions are on the DVD

in Appendix B.

3.2 USER INPUT DEVICES
To control the virtual instruments or other objects in three dimensions we acquired some consumer

input devices. The Razer Hydra has been used in previous work with the da Vinci systems

(Galsgaard, et al. 2014) (Grande, et al. 2013) (Kibsgaard, Thomsen og Kraus 2014). It has six degrees

of freedom (position and orientation), six buttons, one analog trigger, and a joystick on each of the

two controllers. It is no longer in production, but its successor, STEM System, is being released in

October 2014, and should support the same SDK. The main improvements are wireless controllers, a

larger range, and no line of sight requirement (Sixense 2014).

The Leap Motion controller is able to track hand position and to some extent orientation. Initial

testing with the device suggested that it was too imprecise for tracking anything but a relaxed hand.

The Kinect for Windows v2 sensor was released in July 2014, just in time for the evaluation of this

system. It can track the skeleton of a user with precision positions of each joint. It is also able to track

orientations of the joints to some degree, but that requires some filtering to be usable (flickering). It

requires direct line of sight as it uses depth and infrared cameras to detect the users. For that reason, it

also has problems with occlusions. The sensor can detect three hand gestures: open hand, closed hand

and lasso (only index and middle finger stretched).

Control VR is a new controller to be released December 2014 (Control VR 2014). It can track torso,

arms, and fingers of a user. Finger position and orientation could be used to mimic how you control

the tools on the da Vinci systems.

3.3 SOFTWARE
For the system to support three-dimensional virtual instruments, a graphics engine is required. Due to

prior experience and availability, I choose to implement the system in the game engine Unity. Using a

fully developed game engine like Unity makes it easy to use and build upon for future work. The

system is implemented as a Unity-package, which can be included in any project to add support for

input, output, and keying on DeckLink devices. It is implemented using version 10.0.3 of the

DeckLink SDK and version 4.5.2f1 of Unity.

The core of the package is a script called DeckLinkManager that displays all DeckLink devices

installed in the computer. By adding the script to a GameObject in the scene, the developer is able to

choose what each device should do. The script has a custom-made inspector interface that displays all

the settings for each device, as seen in Figure 3.1.

 Page 21 of 42

Figure 3.1 Custom inspector for changing modes of the DeckLink devices. Left: Input mode. Right: Keying mode

The most important controls are the mode selection, input target/output source, and video format. The

mode selection controls whether the device inputs, outputs or keys. When the device is in input mode,

the input target is available if the developer wants to show the input on an object. Alternatively, the

input is accessible through the DeckLinkManager script (see Section 3.3.4). When the device is in

output mode, the output source setting is available, where it is possible to specify what to output from

(camera, image, video, or render texture). The advanced settings are for most uses correct at their

default value and some settings require additional scripting to be usable.

The device list in the custom inspector is only updated when the developer chooses to do so by

pressing Refresh device list. This is done as the settings are cleared when the list is updated and

manual control allows developers to work on a computer without DeckLink devices, without clearing

the settings.

The systems behind the main functionalities of the package are described in the following sections.

3.3.1 DeckLink API in Unity

The DeckLink API is a COM type dynamic-link library (DLL), which has to be wrapped in order to

be usable from Unity. This can be done by using the Type Library Importer (tlbimp.exe) included in

the Windows SDKs. The DeckLink API-files installed by the Desktop Video Driver from Blackmagic

Design are found at C:\Program Files (x86)\Blackmagic Design\Blackmagic Desktop Video\. They

are used as input for the converter, which then outputs a .NET compatible library that can be accessed

from C# in Unity. I built the wrapper with the following command line arguments:

tlbimp.exe DeckLinkAPI.dll /out:Interop.DeckLinkAPI.dll /namespace:DeckLinkAPI
/machine:x86

To support 64-bit builds the convertor should be run with:

tlbimp.exe DeckLinkAPI64.dll /out:Interop.DeckLinkAPI.dll /namespace:DeckLinkAPI
/machine:x64

The wrapper DLL built from the DeckLinkAPI.dll should be placed in Project

Folder\Assets\Plugins\x86\ and the 64-bit version in Project Folder\Assets\Plugins\x86_64. Unity will

automatically use the correct DLL when building depending on the selected architecture in the build

settings.

 Page 22 of 42

All functionality of the DeckLink API can then be accessed directly in C# by its namespace:

using DeckLinkAPI;

The IDeckLinkIterator interface exposes available DeckLink devices that are not currently being used

by other applications (Blackmagic Design (B) 2014). The IDeckLink interface represents each device

and can be used to get the input, output and keyer interfaces.

3.3.2 Outputting video

The IDeckLinkOutput interface can acquire a display mode iterator that tells which display modes are

supported by the specific DeckLink device. I use this information to adjust the modes available in the

custom inspector interface.

At startup of the application, the IDeckLinkOutput interface is reacquired and used to check if the

combination of settings is supported. If it is, the output is enabled with the selected display mode and

flags. Then the interface is used to create a video frame with the chosen pixel format and frame flag.

The default pixel format is BGRA and the default frame flag is flip vertical.

One of the main reasons for implementing the system with Unity is to be able to output real-time 3D

graphics. To do this, each time a frame is rendered, it has to be transferred from GPU to CPU

memory to become available for the DeckLink device. In Unity, this can be done by the following

code (attached to a camera):

void OnPostRender () {
texture.ReadPixels (new Rect (0, 0, width, height), 0, 0); // 40 ms
texture.Apply (false); // 12 ms
colors = texture.GetPixels32 (); } // 4 ms

However, for one 1920 by 1080 pixels (full HD) frame that takes 56 milliseconds and the data still

has to be copied into the frame created by the IDeckLinkOutput interface. To display stereoscopic

graphics, two frames have to be output each frame. By transferring two full HD frames with this

method, the application can only run at 7 frames per second (fps). That is still without copying the

data to the DeckLink frame.

Another method for transferring a frame from the GPU is to use the function glReadPixels. However,

this requires Unity to run in OpenGL-mode instead of DirectX when using Windows. The default

graphics library is OpenGL when using Unity on Mac or Linux. On Windows, Unity can be launched

in OpenGL-mode by executing it with the command line argument -force-opengl. The glReadPixels

function can then be imported directly from the opengl32 library present on the system:

[DllImport("opengl32")]
public static extern void glReadPixels(int x, int y, int width, int height, int

format, int type, IntPtr buffer);

The function reads from the currently active frame buffer, which is always where the camera rendered

to, when the function OnPostRender is called. It outputs directly to a memory address, which is what

the DeckLink frame gives as a target for the image data. The function is able to transfer the data from

the GPU to the DeckLink frame in 10 ms. Using this method the application with two full HD frames

can run at 36 fps.

 Page 23 of 42

Importing a native C function like glReadPixels requires a Unity Pro license. However, it is possible

to wrap the function in a C# library that is usable with the free version of Unity. Such a wrapper can

be created with MonoDevelop (bundled with Unity) by creating a new C# Library project that

implements the glReadPixels function:

using System;
using System.Runtime.InteropServices;

namespace DeckLinkOpenGL
{
 public class OpenGL
 {
 [DllImport("opengl32")]
 public static extern void glReadPixels(int x, ...); } }

It compiles as a DLL and is used from Unity the same way the DeckLink API wrapper is used (see

Section 3.3.1).

The developer can add a camera to the output source of the custom inspector interface and it will

automatically add a script to the camera, which calls glReadPixels each time it has rendered. The

target memory address to a DeckLink frame is set from the DeckLinkManager script on start.

Additionally, I have implemented a class that is able to output an image selected by an open file

dialog. In its current implementation, it uses Unity’s resource-loader class www, which uploads

images directly to the GPU. The image data is then copied back to the CPU and into a DeckLink

frame. Optimally the image data should be accessible directly in the CPU memory. The output source

also has a movie setting, which has not been implemented yet.

3.3.3 Keying

The keyer interface can be acquired from each DeckLink device. When enabled, it is possible to

choose between internal or external keying. External keying will output the image (fill) on one SDI

and an alpha mask (key) on another. This can be used in a video mixer to overlay the image on

another video stream. The internal keyer overlays the image directly into the input video stream of the

DeckLink device.

The alpha channel of the output frame is used as the opacity of the overlay image. The keyer interface

also allows changing the overall opacity of the overlay, either instantly or over a number of frames

(ramp up/down).

3.3.4 Inputting video

Before enabling input, a callback target has to be set. Each time a new frame arrives the

VideoInputFrameArrived method of the callback target is called. I implemented this in the

DeckLinkDevice class, which I also use to store settings and capabilities of each card.

When a new frame arrives, the memory address is stored and can be read directly in CPU memory if

the developer wants to process it. At the end of each Unity frame, the image data is also uploaded to

the GPU as a texture to display the input. Similar to outputting, this is done using OpenGL functions

implemented in the same wrapper DLL. glBindTexture is used to set the target texture on the GPU

and glTexSubImage2D is used to transfer the data to the GPU.

 Page 24 of 42

As the pixel format is YCbCR (see Section 2.3) it has to be converted to RGB for most purposes. The

DeckLink SDK includes an example of a shader that does this conversion (Blackmagic Design (B)

2014). I have implemented a version of the shader in Unity that can be used on a material if the

developer only wants to use it for displaying the input. It is also possible to convert the input to RGB

without directly displaying it using Graphics.Blit. However, this last functionality requires a Unity

Pro license.

The callback target also has to implement a method for detecting input format changes. I use this

method for stopping the input stream, resizing textures and DeckLink frames, and restarting the

stream with the detected formats. It also prints the detected formats in the console.

3.3.5 Input devices

I have implemented a class, which is able to receive input from the different devices. The developer is

able to easily change the input device by the custom inspector interface or by script. The class

translates the information from the different devices into a more homogeneous format, so the

developer can get position, orientation, and button states in one place independent of which device is

in use.

The devices that I have implemented are the Kinect for Windows v2, Razer Hydra (and STEM), and

basic mouse control, where the scroll wheel adjust the depth. I plan to implement more devices as I

acquire them. The position read from the Kinect sensor, is the vector between the hand and upper-

torso joints rotated to the orientation of the main camera in the scene and offset by the position of the

camera. This means that the position in front of the camera is relative to where the hand is in front of

the torso. The user’s position relative to the sensor is then less important.

The trigger on the Hydra, left button on the mouse, and the closed hand gesture on the Kinect controls

the same value called Trigger [0…1], which is the primary button input. The 1 and 2 button, the right

mouse button and the lasso hand gesture is used as secondary button input.

3.3.6 da Vinci prefabs

In Unity, a prefab (short for prefabricated) is a stored object that includes components (scripts) and

properties (script values) which can be used to easily instantiate a complex object. I use it to include a

virtual instrument that can be dragged into any scene. To control the instrument with the Razer Hydra

or the Kinect, their respective prefabs have to be dragged into the scene as well.

To give an example of how to use the input device class, I have implemented a script that utilizes the

information to control an instrument similar to the standard pincer instruments on the da Vinci

systems. The Trigger value is used to open and close the pincers. The secondary button input was

used to create smoke similar to the smoke when cauterizing. However, the evaluation proved it to be

distracting and confusing (see Chapter 0). Instead, it is used to clutch the virtual instruments, i.e.

moving the controllers without moving the instruments. A third button is used to clutch the entry

point of the tools.

 Page 25 of 42

Figure 3.2 Two virtual instruments created from a prefab

I also implemented a script that sets up two cameras similar to the endoscopic stereo camera based on

the selected da Vinci system in the inspector.

 Page 26 of 42

 Page 27 of 42

4 SYSTEM TEST

4.1 OPTIMIZATION
The optimal formats for transferring textures to and from the GPU are BGRA and

UNSIGNED_INT8888_REV as it requires no conversion or shuffling. This might be different on

other setups and operating systems.

To improve the performance of outputting from the GPU, I wrote a shader that converts BGRA to

YCbCr 4:2:2, which is the format used by the da Vinci systems. It reduces each frame to half the size,

and allows for 78% higher frame rate, when outputting two full HD frames. It cannot be used for

keying, which requires an alpha channel. Using this shader (Graphics.Blit) requires Unity Pro.

4.2 PERFORMANCE TESTS
I have tested the performance of the system’s functionalities on the two setups I have available with

three different scenes. The first scene is just a cube and two cameras (56 triangles). The triangle count

is doubled because of the two cameras. The second scene has two high quality virtual instruments

resembling the tools on the da Vinci system (103.000 triangles). The third scene has a very high

polygon count to stress the GPU (1.100.000 triangles). All scenes are tested with output, keying, and

input of 1080i frames. On Setup 1, outputting with BGRA format is tested instead of keying, as the

DeckLink Duo cannot key in HD. Keying and outputting in BGRA format has the same performance.

Table 4.1 Setup 1: Intel Core i5 3.2 GHz (2 cores, 4 threads), Intel HD4000 GPU (intergrated), 8 GB RAM, DeckLink Duo

 Triangles CPU Load (%) Frame time (ms) FPS Index 59.94

Output (YCbCr) 56 19 11 91 1.52

2 x Output 56 18 20.2 49 0.82

2 x Output 103 k 21 56.2 18 0.30

2 x Output 1.1 mil 27 261.6 3.9 0.07

Output (BGRA) 56 23 15.4 65 1.08

2 x Output 56 25 28.1 35 0.58

2 x Output 103 k 24 63.2 16 0.27

2 x Output 1.1 mil 27 270.3 3.7 0.06

Input 876 17 8.6 116 1.94

2 x Input 876 17 14.0 72 1.20

2 x Input 103 k 27 42.5 23 0.38

2 x Input 1.1 mil 27 211.0 4.8 0.08

 Page 28 of 42

Table 4.2 Setup 2: Intel Core i3-3240 3.4 GHz CPU (2 cores, 4 threads), Gigabyte Geforce 660 GTX GPU, 8 GB RAM 1600

MHz, 2 x DeckLink Extreme (2nd gen.)

 Triangles CPU Load (%) Frame time (ms) FPS Index 59.94

Output (YCbCr) 56 28 8.0 125 2.09

2 x Output 56 29 14.9 67 1.12

2 x Output 103 k 29 15.3 66 1.10

2 x Output 1.1 mil 28 16.3 61 1.02

Keying (BGRA) 56 28 13.8 73 1.22

2 x Keying 56 29 26.6 37 0.62

2 x Keying 103 k 29 27.0 37 0.62

2 x Keying 1.1 mil 29 28.1 36 0.60

Input 876 27 3.1 331 5.52

2 x Input 876 27 4.7 213 3.55

2 x Input 103 k 27 5.1 196 3.27

2 x Input 1.1 mil 27 5.1 196 3.27

All these measurements require data to be transferred either from or to the GPU. Outputting image

frames directly from CPU memory can be done in 2.1 ms (479 FPS) for one output and 3.9 ms (255

FPS) for two outputs. This shows that the bottleneck (at least on the second system) is the data

transfers between the CPU and GPU memory.

4.3 LATENCY TEST
As the overlaying does not create an immediate visible delay, I developed a simple test that should be

able to measure if there are one or more frames latency. I modified the SignalGenerator example from

the DeckLink SDK (Blackmagic Design (B) 2014) to output on two DeckLink devices. It outputs a

white square in the left side of the image, which expands 200 pixels to the right each frame.

Connecting both outputs directly to the MC-100 and showing the output as an over-under image,

shows that the two white squares from each output aligns vertically. Connecting one of the signals to

another DeckLink device that overlays graphics is sometimes one frame faster than the other direct

signal (see Figure 4.1).

 Page 29 of 42

Figure 4.1 3D TV showing over-under image of the latency test. On top is the keyed signal and on bottom the direct signal.

The keyed signal is one frame ahead.

It is also possible for the frames to align or the keyed frame to be one frame delayed. I assume this is

because of the synchronizer in the MC-100 (Matrox 2014) and the timing of when the keyer is

activated. One frame difference between the two signals is the maximum observed with this method.

Although this method is not precise, the observations suggest that the keying at most delays the signal

one frame.

 Page 30 of 42

 Page 31 of 42

5 USER EVALUATION

To test if the system might be useful and to get directions for future work, I conducted an end-user

evaluation at Aalborg University Hospital. I used the system to overlay the virtual instruments

described in Section 3.3.6 to test the different functionalities of the system. Notes from the evaluation

(in Danish) can be found on the DVD in Appendix B.

Jane Petersson, Surgery Assistant at Aalborg University Hospital, helped me evaluate the system. She

works with the da Vinci systems daily by assisting in surgeries and by training students. She is

currently the only one in the country certified to teach nurses to become Registered Nurse First

Assistant in Robotic Surgery. The evaluation was also supposed to include a surgeon, but he had an

emergency surgery and had to cancel.

I set up my system with the da Vinci Si system that is normally used during training sessions. The

HD-SDI signals from each camera controller were connected to the DeckLink HD Extreme 2s, where

graphics from Unity was overlaid. The output of the Extremes were connected to the MC-100, where

the HD-SDIs was set to pass-through and used as input on the bottom of the vision cart (see Figure

2.7). Additionally, a 3D TV was connected by HDMI to the MC-100 to also show the stereoscopic

video to the subject (Jane) and the test conductor (me).

Before the test, Alborg University Hospital had borrowed the 3D TV and MC-100 for a short period

and they decided to buy an identical set for their training system (which I used for the test). Normally

it is connected to the spare HD-SDI outputs on the camera controllers (see Figure 2.6).

The test was conducted as a semi-structured interview to enable discussions and create ideas for

future work. I started by shortly introducing how the system works.

Jane believes that the Razer Hydra is great for when experienced surgeons demonstrate something to

a trainee. It is important to be able to show all 7-degrees of freedom so they can show the exact

motion. She believes that experienced surgeons easily can use the Razer Hydra without much

practice, which is also what I have experienced in previous work (Grande, et al. 2013) (Kibsgaard,

Thomsen og Kraus 2014).

It is not as practical for the assisting surgeon or nurse, as they often assist with extra tools and are not

always in the same place, i.e. not able to reach the controllers. In a clinical scenario, their working

area also has to be sterile, which might be difficult with the Razer Hydra. For them, it is often

sufficient to be able to point, which currently can be difficult. Jane noted that the rotation of the

virtual tools was incorrect after a while, which was corrected during the test by resetting the scene. I

have since fixed the problem.

Using the Kinect as input device allows for more freedom in user position and sterile interaction as no

contact is required. Jane believes that this makes the device usable for assisting surgeons and nurses;

possibly also in a clinical setting. However, the advanced models of the virtual instruments are not

necessary for this interaction method. An arrow or a sphere would be sufficient and is often better as

it blocks less of the vision. The missing degrees of freedom are a limitation during training compared

to the Razer Hydra.

We discussed how drawing with the Kinect would be useful. The open hand gesture should show a

marker or arrow and the closed hand gesture should draw at the position of the marker. The lasso

 Page 32 of 42

gesture could be used to clear the drawing. There should also be a way of disabling and enabling

drawing with the Kinec, e.g. by doing the lasso gesture while holding the hand above your head.

Interaction with the Kinect is also possible while being partly occluded by the robot arms, which is

often the case when assisting.

The last interaction method is using a regular mouse. It poses the same problems as the Razer Hydra

for the assisting surgeon or nurse. Like the Kinect it lacks rotation of the virtual tools, which might be

needed during training. Without rotation, the advanced models are not necessary and an arrow or

sphere would be better.

During all three interaction methods we noted that the perceived depth of the instruments was wrong.

After the test, I have corrected the size and depth of the tools in relation to video captured from the da

Vinci system at the evaluation.

Jane believes that the smoke used to simulate cauterization can cause confusion and distract the

trainee. It has very little functional purpose and the button should instead be used for clutching the

virtual tools.

Like suggested by (Galsgaard, et al. 2014), transparent overlay graphics should be evaluated.

According to Jane, transparency is a major improvement. The virtual instruments should preferably

never occlude any part of the display completely, e.g. it must not hide a hemorrhage. We adjusted the

opacity of the graphics to a level where it was still usable to display tasks to the trainee, while the

background still was visible. Based on our perception, the lowest usable opacity is 30% and 45%

opacity is preferable (see Figure 5.1).

Figure 5.1 Virtual tool overlaid the stereoscopic video with 45% opacity.

According to Jane, the color of the instruments should be green, to avoid confusion when referring to

the instruments. Green is the best color as it is rarely present in the human body. The most present

colors are red (muscles, most organs, blood, arteries); nuances of black and white (tendons, pellicle);

yellow (fat); nuances of blue and purple (veins).

 Page 33 of 42

I had implemented an occlusion plane, which makes the virtual instruments look like they penetrate

the background. Jane liked that it gives extra help to see the depth. However, its usefulness is limited,

as it currently has to be adjusted manually.

Overall, Jane believes the system with a few adjustments will be useful for training. Specifically the

depth has to be corrected and a clutch has to be implemented. The ability for the assisting surgeon or

nurse to point without touching a controller can also be useful in a clinical setting.

 Page 34 of 42

 Page 35 of 42

6 CONCLUSION

As an initial step to improve communication during training sessions with the da Vinci systems, I

have examined and described the video hardware of the systems. I covered this in detail for it to be as

useful as possible for any kind of future work involving the video hardware (see Chapter 0).

I have developed a system which is able to input, output, and overlay graphics onto the video signals

of all current models of the da Vinci systems. It is implemented in the free version of the Unity game

engine to add support for overlaying three-dimensional objects onto the stereoscopic video stream.

The system utilizes the DeckLink PCI-express cards from Blackmagic Design. To augment the video

stream of the first generation da Vinci system, it is sufficient with a DeckLink Duo or two DeckLink

SDI, while the newer generation systems require two DeckLink HD Extreme cards. To output or

input video from any of the systems a DeckLink Duo is sufficient (see Chapter 0).

I developed the system to be used for future work as there are many possibilities, and testing if they

improve training conditions can take a long time due to the sparse amount of subjects available. The

system includes custom interfaces for Unity, which allows developers to use the functionalities of the

system without having to program or learn about the DeckLink API. The interface detects any

installed DeckLink devices and defaults to settings matching the da Vinci systems. For each device, it

is possible to set it to input, output, or key and select target (e.g. a plane) or source (e.g. a camera) for

each mode (see Section 3.3).

Furthermore, I implemented several user input devices into one class, which transforms the data from

each device into a more homogenous format. As an example, I used the class to control a virtual

instrument resembling those of the da Vinci systems. With the class, it is possible to change input

device and implement more devices without changing the code of the virtual instrument (see Chapter

0).

The system is able overlay virtual instruments on the stereoscopic video stream at 37 frames per

second on each channel (left and right eye), without delaying the video signal noticeably (see Chapter

0). I have not been able to determine the exact latency that the overlaying introduces.

I evaluated the system with the help of an end-user, who helps trainees in the previously mentioned

training scenarios (see Chapter 0). Overall, the system shows promise and with a few adjustments, it

can improve training conditions.

 Page 36 of 42

 Page 37 of 42

7 FUTURE WORK

As the developed system is meant for future work, ideas about what to test with the system have

already been covered in Chapter 0. It is different approached on how to visually guide a trainee sitting

at the surgeon console. As the trainee’s vision is limited to that of the camera and the robot disables if

the trainee leans back, it is currently difficult to visually communicate with the trainee.

As previously mentioned, a possible solution is to show video or image guides to the trainee directly

in the surgeon console. Another solution to test is simply displaying a (3D) webcam stream of the

trainer to the trainee. The system was developed in Unity to support testing of overlaying 3D graphics

like for instance virtual instruments and drawing in 3D. It also makes it easy for future developers

familiar with Unity to develop an application that overlays the graphics from Unity on to the

stereoscopic video stream.

If multiple of the proposed solutions are usable, it would also be interesting to develop a graphical

user interface for the trainer to enable and control the different functionalities of the system.

To test if displaying videos is useful, the DeckLink Duo can be used for recording the stereoscopic

video from the da Vinci systems. On the da Vinci S system, it can be recorded from the spare outputs

on the camera controllers. The frames can be saved directly from Unity (not implemented) or be

captured using multi-channel recording software. I recorded dual stream video with a trial version of

vMix.

To increase the frame rate of the system, when overlaying graphics, is to use an NVIDIA Quadro or

AMD FirePro graphics card. They are workstation graphics cards that support fast data transfers from

the GPU to the CPU, without stalling the rendering.

Future work should also include implementing and evaluating new user input devices like the STEM

System and ControlVR.

 Page 38 of 42

 Page 39 of 42

8 BIBLIOGRAPHY

Ali, Mohammed R., Jamie P. Loggins, and William D. Fuller. 2008. "3-D Telestration: A Teaching

Tool for Robotic Surgery." JOURNAL OF LAPAROENDOSCOPIC & ADVANCED

SURGICAL TECHNIQUES, 107-112.

Blackmagic Design (A). 2014. DeckLink Tech Specs. Blackmagic Design. Accessed July 2014.

http://www.blackmagicdesign.com/dk/products/decklink/techspecs/W-DLK-01.

Blackmagic Design (B). 2014. "Blackmagic DeckLink SDK." no. 10.0.4. Blackmagic Design.

Chan, Glenn. 2007. "Color Bars Vegas-DV." Wikimedia Commons. Accessed 2014.

https://commons.wikimedia.org/wiki/File:Color-bars-vegas-dv.gif.

Control VR. 2014. Control VR. Accessed August 2014. http://controlvr.com/.

Fishman, Jonathan M., Stephen R. Ellis, Christoper J. Hasser, and John D. Stern. 2008. "Effect of

reduced stereoscopic camera separation on ring placement with a surgical telerobot." Surgical

Endoscopy.

Galsgaard, Bo, Martin Møller Jensen, Florin-Octavian Matu, Mikkel Thøgersen, and Martin Kraus.

2014. "Stereoscopic Augmented Reality System for Supervised Training on Minimal

Invasive Surgery Robots." Proceedings of Virtual Reality International Conference.

Grande, Kasper, Rasmus Steen Jensen, Martin Kraus, and Martin Kibsgaard. 2013. "Low-Cost

Simulation of Robotic Surgery." Laval, France: Association for Computing Machinery.

Intuitive Surgical (B). 2006. "da Vinci S System Overview Script." no. A. Intuitive Surgical.

Intuitive Surgical (C). 2014. da Vinci Si. Intuitive Surgical. Accessed June 2014.

http://www.intuitivesurgical.com/products/davinci_surgical_system/davinci_surgical_system

_si/surgeon-control.html.

Intuitive Surgical (D). 2014. "da Vinci Si In-Service Guide: OR Staff." no. J. Intuitive Surgical.

Intuitive Surgical (E). 2014. "da Vinci Xi Surgical System Readiness Guide." no. A. Intuitive

Surgical.

Intuitive Surgical (F). 2014. Press Release - da Vinci Xi. Intuitive Surgical. April. Accessed July

2014. http://investor.intuitivesurgical.com/phoenix.zhtml?c=122359&p=irol-

newsArticle&ID=1914477.

Intutive Surgical (A). 2014. Image Gallery. Intutive Surgical. Accessed July 2014.

http://www.intuitivesurgical.com/company/media/images/.

Kibsgaard, Martin, Kasper Kronborg Thomsen, and Martin Kraus. 2014. "Simulation of Surgical

Cutting in Deformable Bodies using a Game Engine." Lisboa, Portugal: INSTICC.

Lambrecht, Christian J.v.d.B. 2001. Vision Models and Applications to Image and Video Processing.

Springer.

Lamprecht, B., W.C. Nowlin, and J.D. Stern. 2011. Stereo telestration for robotic surgery. US Patent

Patent 7,907,166.

 Page 40 of 42

Matrox. 2014. Matrox MC-100 Technical Specifications. Accessed August 2014.

http://www.matrox.com/video/en/products/mc100/specs/.

Panasonic. 2014. "GP-US932CUS Tech Specs."

Sixense. 2014. STEM System. Accessed August 2014. http://sixense.com/wireless.

Wikipedia. 2014. Serial Digital Interface. Accessed August 2014.

https://en.wikipedia.org/wiki/Serial_digital_interface#Standards.

 Page 41 of 42

APPENDIX A. DECKLINK API IN VISUAL STUDIO

1. Add Filter (folder) DeckLink API (optional)

2. Add Existing File…

a. DeckLinkAPI.idl
3. Right click on DeckLinkAPI.idl, Compile

4. Add Existing File…

a. DeckLinkAPI_h.h
b. DeckLinkAPI_i.c

5. Right click on DeckLinkAPI_i.c, Properties, C/C++, Precompiled Headers

a. Change to “Not Using Precompiled Header”
6. The API can now be included:

a. #include “DeckLinkAPI_h.h”

 Page 42 of 42

APPENDIX B. DVD

1. Source

a. C++

b. Unity

c. Wrappers

2. Builds

a. C++

b. Different Unity builds

3. DeckLink Drivers

a. 9.5.3

b. 10.0.3 / 10.0.4

4. AV-production

5. Electronic Sources

6. Photos / Video

7. Unity Package

8. Report.pdf

