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Synopsis:

This thesis describes the design and anal-
ysis of a nonlinear attitude control system
for a CubeSat sized satellite based on the
structure of the AAUSAT satellites.
An analysis of the main disturbances
is made with the conclusion that only
the magnetic dipole moment needs to be
taken into account when performing at-
titude control, as this disturbance is 10
times larger than the rest combined.
An estimation of the satellite dipole mo-
ment is made as a bias estimation by an
Extended Kalman Filter. The resulting
estimate is correct within 8 % of the true
dipole moment when estimating on data
basen on a slowly tumbling satellite with
state noise.
A sliding mode controller is used as the
nonlinear controller and uses the mag-
netic dipole estimate from the Extended
Kalman Filter to counteract this distur-
bance. The result is a controller capa-
ble of following a Nadir reference within
an axis-wise error of 10 degrees. The
downside to the controller is the constant
power consumption needed, in order to
counteract the magnetic dipole moment
of the satellite.





Preface

This thesis covers the development of a attitude control system designed for
implementation on a CubeSat sized satellite. The work is made as a Master’s
thesis at the Department of Electronic Systems at Aalborg University in the
period April 2014 to August 2014.

The calculations for the presented work are made in Matlab with the sim-
ulations implemented in Simulink. The base structure of the Simulink model
is developed by previous project groups working on the AAUSAT project and
modified to work with the developed controller and disturbances. The imple-
mented parameters and simulation structure are presented in appendix A.

A thank you should be given by the author to Associate Professor Jesper
A. Larsen for supervising the project throughout the project period. Further
thanks should be given to the students who have previously been working on
the AAUSAT projects for the work of determining satellite parameters and
development of simulation tools.

Rasmus Holst
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Nomenclature

b
aA Rotation matrix from a to b
B Magnetic field from Earth
E Identity matrix
I Inertia matrix

m Dipole moment
Ω Vector containing angular velocities
ωo Orbit rate
b
aq Attitude quaternion
q̄ Imaginary part of a quaternion
q4 Real part of a quaternion

S [·] Skew symmetric representation
iv Vector in i-frame

q̇, Ω̇ Time derivative of q, Ω
V Lyapunov Candidate Function
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Introduction 1
About the thesis

This thesis covers the devopment of a attitude control system designed for
implementation on a CubeSat sized satellite. The satellite used in this project
is a CubeSat satellite build at Aalborg University in the section of Automa-
tion and Control. Furthermore the thesis also covers the estimation of the
satellite’s magnetic dipole moment, and will be used in the control structure
to counteract the disturbance caused by this magnetic dipole.

1.1 AAUSAT

The AAUSAT-project is currently counting three launched satellites and fur-
ther two is scheduled for launch shortly. All five satellites are designed as
single unit sized CubeSats, all actuated by magnetorquers and operating in
Low Earth Orbit (LEO).

Satellite frame definition

Magnetorquers

Figure 1.1: Exploded view of the AAUSAT satellite
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6 Introduction

From figure 1.1 an exploded view of the AAUSAT3 and AAUSAT4 is shown.
The exploded view of the satellite shows three magnetorquers placed mutually
perpendicular to each other, aligning these perpendicular to the x-, y- or z-axis
of the satellite body respectively.

Mission specifications

Throughout the report, mission specific parameters are needed to determine
the satellite behavior wrt. the environment. The parameters used in this
report is based on the AAUSAT-3 structure and orbit, and, unless otherWise
mentioned, are as listed in appendix A.

1.2 Coordinate Systems

In order to describe the environment of the satellite, several different coordi-
nate systems are used. Some coordinate systems origins at the Earth while
others use the satellite itself. In the subsequent paragraphs the different coor-
dinate systems used in this text is described. It should be noted, that every
mentioned coordinate system are right hand orthogonal systems.

IX

IY

I,ECEFZ

ECEFX

ECEFY

CX

CY

CZ

SX

SY

SZ

OX
OY

OZ

Satellite

Orbit path

Inertial frame
ECEF frame
Control ref. frame
Satellite body frame
Orbit frame

Figure 1.2: The used coordinate systems shown relative to each other. The illustration
is not scalable.

Orbit CS

The Orbit coordinate system origins at the Satellites centre of mass with the
z-axis pointing from the satellite towards the Earths centre of mass. The y-axis
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points in the direction of the orbit velocity vector while the x-axis completes
the system.
Frame superscript: O

Inertial CS

The Inertial coordinate system has its origin at the Earths centre of mass. The
z-axis is parallel to the Earths axis of rotation and points towards the North
Pole. The x-axis spans from the centre of Earth to Vernal Equinox1. The
y-axis completes the coordinate system.
Frame superscript: I

ECEF CS

The Earth-centered Earth-fixed coordinate system has the origin at the Earths
centre of mass and shares the z-axis with the Inertial CS. The x- and y-axis
aligns with the corresponding axes in the Inertial CS on the initial Julian date.
After this, it follows Earth’s rotation.
Frame superscript: ECEF

Satellite body CS

The Satellite body coordinate system is fixed in the satellite. The coordinate
system originates at a corner of the physical satellite frame as defined on figure
1.1. The z-axis is defined to be perpendicular to the antenna side of the body.
The sensor measurements will be made in this frame.
Frame superscript: S

Control reference CS

The Control coordinate system is used to simplify the inertia matrix later on.
This coordinate system has the origin in the satellite centre of mass with its
principal axes fixed relative to the axes of the Satellite body CS. The x-axis
is the axis with maximal moment of inertia and the z-axis is the one with the
lowest moment of inertia.
Frame superscript: C

1.3 Rotations

The project contains multiple coordinate systems, and rotations of measure-
ments and attitude representations between the coordinate systems are needed.
Methods of this is described below using rotation matrices and quaternions.

1Vernal Equinox is the point where the ecliptic crosses the equator on the first day of
spring.
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Rotation matrices

The orientation of a vector (e.g. a measurement or heading) in a given coor-
dinate system can be expressed in another coordinate system by the use of a
rotation matrix.

S ẑ

Sŷ

Sx̂

C x̂

C ŷ

C ẑ

Control ref. CS

Satellite body CS

Figure 1.3: Coordinate system within a reference coordinate system.

The rotation between two coordinate systems, for instance from the Satellite
body frame to the Control ref. frame, as seen on figure 1.3, can be described
by the rotation matrix [[Wertz, 1994]]

C
S A =

Cx[Sx]
Cx[Sy]

Cx[Sz]
Cy[Sx]

Cy[Sy]
Cy[Sz]

Cz[Sx]
Cs[Sy]

Cz[Sz]

 (1.1)

where CiSj is the representation of Sj onto the Ci axis.
A vector given in the Satellite body frame can by this approach be described

in the Control ref. frame by using the rotation matrix as

Cv = C
S ASv (1.2)

The rotation matrix will in this report mostly be used to perform measurement
operations. This could for instance be gyroscope- or magnetometer measure-
ments in the Satellite body frame that needs to be transformed into coordinates
of the Control ref. frame.
The rotation matrix can also be used to perform operations on the attitude

representation of the satellite, but it has a serious disadvantage; the Euler
angles can represent the same orientation in multiple ways, leading to singu-
larities. This can be avoided by using quaternions as described in the next
section.
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Quaternions

The quaternions provide a singularity-free describtion of the orientation with
only four parameters. The quaternion consists of three imaginary parts and a
single real part and can be expressed as [[Wertz, 1994]]

q = iq1 + jq2 + kq3 + q4 (1.3)

or with the imaginary part contracted as

q = q̄ + q4 (1.4)

A unit quaternion can be rotated about the vector n = [n1 n2 n3]
ᵀ at an

angle φ, by the equations:

q1 = n1 sin
φ

2

q2 = n2 sin
φ

2

q3 = n3 sin
φ

2

q4 = cos
φ

2
(1.5)

The unit quaternion satisfies the constraint

qᵀq = q̄ᵀq̄ + q24 = q21 + q22 + q23 + q24 = 1 (1.6)

By this constraint it is seen that the quaternion representation of the rotation
between two aligning frames is

b
aq = [q1 q2 q3 q4]

ᵀ = [0 0 0 1]ᵀ (1.7)

The quaternion rotation between coordinate systems are used extensively
throughout the report. The quaternion representing the rotation from the
Satellite body frame to the Control reference frame can be written as

C
S q. (1.8)

A convenient feature of representing attitude by quaternions is the method
for calculating succesive rotations. A rotation can for instance be calculated
as

2
1q =3

1 q⊗2
3 q (1.9)

or equivalently by

2
1q = S

(
2
3q
)

3
1q (1.10)
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with S (q) being the skew-symmetric matrix

S (q) =


q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q3
−q1 −q2 −q3 q4

 (1.11)

The quaternion can be used for vector rotation as well. To do this, the
imaginary part of the quaternion is used. This gives:

Cv = C
S q
∗ ⊗ Sv ⊗ C

S q (1.12)

with C
S q
∗ being the conjugate of C

S q and Sv is the 3-dimensional vector aug-
mented like [vx vy vz 0]ᵀ.
The rotation matrix from eq. (1.1) can be represented by quaternions as

C
S A =

[
C iS

CjS
CkS

]
(1.13)

where e.g. kS is the z-axis of the Satellite body frame given in the Control
reference frame. By parameterizing by quaternions the vectors become:

C iS =
[
q21 − q22 − q23 + q24 2(q1q2 − q3q4) 2(q1q3 + q2q4)

]ᵀ (1.14)
CjS =

[
2(q1q2 + q3q4) −q21 + q22 − q23 + q24 2(q2q3 − q1q4)

]ᵀ (1.15)
CkS =

[
2(q1q3 − q2q4) 2(q2q3 + q1q4) −q21 − q22 + q23 + q24

]ᵀ (1.16)

This could for instance be used to calculate the angular velocity relation
between multiple frames

S
OΩ = S

I Ω− ωO
SjO (1.17)
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Kinematic and Dynamic
Model 2

This chapter describes the modeling of the kinematics and dynamics of a rigid
spacecraft. The equations contains inputs from actuators and disturbances, these
will be presented in the next chapter.

2.1 Kinematic

The kinematic equation presented here is the motion of a rigid spacecraft,
described as the rotation from an orientation at a time instance to another
orientation shortly after. This is presented using unit quaternions. [Wertz
[1994]]
Let the orientation of the spacecraft at time t be given by the quaternion q(t).

The later orientation at time t+ ∆t can then be described as q(t+ ∆t). The
rotation between q(t) and q(t + ∆t) can be expressed by another quaternion
q̃:

q(t+ ∆t) = q̃ q(t). (2.1)

With the definition of a quaternion from eq. (1.5) the relation can be rewrit-
ten as:

q(t+ ∆t) =

[
cos

∆φ

2
E + sin

∆φ

2
S (Ω)

]
︸ ︷︷ ︸

q̃

q(t) (2.2)

with E being the identity matrix and S (n) being the skew symmetric repre-
sentation of the vector of rotation, Ω.
The angle of rotation, ∆φ, can for small rotations be approximated to be

Ω∆t. Together with the small angle approximations

• cos
∆φ

2
= 1

• sin
∆φ

2
=

Ω∆t

2

the rotation in eq. (2.2) simplifies to become

q(t+ ∆t) ≈
[
E +

1

2
S (Ω) ∆t

]
q(t) (2.3)

where S (Ω) is the skew symmetric representation of the angular velocity

S (Ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (2.4)

13



14 Kinematic and Dynamic Model

The rate of change of the orientation can now be found by using

q̇(t) =
q(t+ ∆t)− q(t)

∆t
(2.5)

and by replacing the first term in the numerator with the expression from eq.
(2.3), the kinematic equation becomes

q̇(t) =
1

2
S
(
C
OΩ
)
q. (2.6)

or rewritten with the quaternion spilt into the imaginary and scalar part

q̇4 = −1

2
C
OΩq̄ (2.7)

˙̄q =
1

2
C
OΩq4 −

1

2
C
OΩ× q̄ (2.8)

2.2 Dynamic

The dynamic equation of the satellite describes how torques relates to the angu-
lar velocity of the body. These torques could for instance be the control torques
(magnetorquers, momentum wheels etc.) or disturbances (aerodynamic drag,
gravitational forces etc.). [Wertz [1994]]

O

R

ρi

i

Rigid Body

Figure 2.1: ρi: Vector from COM to a given mass i. R: Vector from Fr to COM of Fs

The rigid body shown in figure 2.1 consists of n-mass points. From the centre
of mass to the mass point i lies the vector ρi. The angular momentum for the
rigid body rotating in the Inertial frame can by Newton’s second law be defined
as

L ≡
n∑

i=1

miρi × ρ̇i. (2.9)
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by rewriting ρ̇i = Ω× ρi and inserting it into 2.9 it becomes

L =

n∑
i=1

miρi × (Ω× ρi) (2.10)

At this point the inertia is introduced. By defining the inertia as

I11 ≡
n∑

i=1

mi(ρ
2
i2 + ρ2i3) (2.11a)

I22 ≡
n∑

i=1

mi(ρ
2
i3 + ρ2i1) (2.11b)

I33 ≡
n∑

i=1

mi(ρ
2
i1 + ρ2i2) (2.11c)

I21 = I12 ≡ −
n∑

i=1

miρi1ρi2 (2.11d)

I23 = I32 ≡ −
n∑

i=1

miρi2ρi3 (2.11e)

I31 = I13 ≡ −
n∑

i=1

miρi3ρi1 (2.11f)

with eq. (2.11a-2.11c) being the sum of intertia and eq (2.11d-2.11f) being
the product of inertia, eq. (2.10) becomes

L ≡ Ib
C
I Ω. (2.12)

By letting the principal axes of the satellite form the basis for the Control
frame CS, the off-diagonal elements of inertia matrix disapears, leaving only
the sum of inertia on the diagonal. This is set up in matrix form as

Ip =

I11 0 0
0 I22 0
0 0 I33


From this, the time derivative of the angular momentum, which relates to

the torques acting on the satellite, can be set up as

L̇ + C
I Ω× L =Next (2.13)

L̇ = −C
I Ω× L+Next (2.14)

with Next being external torques.
By rewriting eq. (2.12) to C

I Ω = I−1p L, eq. (2.14) becomes

L̇ = −(I−1p L)× L + Next (2.15)



16 Kinematic and Dynamic Model

or equivalently

Ip
C
I Ω̇ = −C

I Ω× (Ip
C
I Ω) + Next

C
I Ω̇ = −I−1p

[
C
I Ω× (Ip

C
I Ω)

]
+ I−1p Next. (2.16)

The external torques, Next, is in this report set to be the input torque caused
by the magnetorquers and the external torques caused by disturbances such
as gravity gradient, aerodynamic drag, radiation and magnetic dipole. The
selected torques are described in the next chapter.



Actuator and Disturbances 3
3.1 Magnetorquers

The satellite is controlled by six coils, mounted side by side as three pairs,
placed mutually perpendicular to each other in the satellite body as seen on
figure 1.1. This makes them align with the x-, y- and z-axis of the Satellite
body frame respectively. When an electric current runs through these coils, a
magnetic dipole moment is generated. This magnetic dipole moment can for
each of the coils be described as [Hughes [2004]]

m = niA (3.1)

where

• n is the windingcount of the coil

• i is the applied current

• A is the coil area.

The magnetic dipole moment from each of the coils can be combined in a
vector notation. This can be written as

Sm =

mx

my

mz

 (3.2)

As this magnetic dipole moment from the magnetorquers is given in the Satel-
lite body frame and is needed in the Control frame, a rotation is made

Cm = C
S ASm. (3.3)

The magnetic dipole of the magnetorquers interacts with the magnetic field
from Earth, resulting in a control torque described by

CNctrl = Cm× CB (3.4)

= Cm× C
OAOB (3.5)

where OB is magnetic flux vector of Earth given in the Orbit frame. The
maximal magnetic flux value from Earth can be approximated as

B =
2M

r3
(3.6)

where M is the magnetic moment of Earth and r is the distance from the
centre of Earth.
The magnetorquers used in the AAUSAT project is dimentioned with the

following parameters

17



18 Actuator and Disturbances

A Coil area 0.049
[
m2
]

n Coil winding count 275 [−]
i Electric current 53 [mA]
r Distance to satellite 6978 [km]
M Earth’s magnetic moment 7.96 · 1015 [T]

The magnetorquers, with the given parameters, can produce a torque of
946.46 nNm.

3.2 Gravitational Torque

O’
dmn

Bn

ρn

r

dms

Bs

Figure 3.1: r: Vector from COM to a given mass i. ρn: Vector from COM in Fr to mi

in Fs

The forces acting on a mass element in the satellite body caused by the
gravitational gradient from Earth can be written as [Hughes [2004]]

dFi =
−µRidmi

R3
i

(3.7)

with

• Fi being the i’th gravitational force
• µ being the gravitational constant from Earth
• Ri being the orientation from Earth’s geocenter to the ith mass element.
• Ri being the distance from the geocenter of Earth to the ith mass element

The torque acting on the satellite from the gravity gradient forces becomes

dNi = ri × dFi (3.8)

where ri is the vector from the centre of mass to the ith mass element with
the corresponding force Fi.
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O

ρ

rir′i

Rs

Ri

Centre of mass

Geometric centre

Mass element, dmi

Figure 3.2: Gravity gradient torque description

The combined torque from all of the element masses can be combined as

Ng =

∫
ri × dFi =

∫ (
ρ+ r′i

)
× −µRi

R3
i

dmi (3.9)

with the terminology given in figure 3.2.
Assuming that the geometric center is the centre of mass, the distance from

the Earth to the satellite is much greater than the size of the satellite and that
the satellite consists of a single rigid body, eq. (3.9) becomes

Ng =
3µ

R3
s

[
R̂s ×

(
IpR̂s

)]
(3.10)

The equation from eq. (3.10) can be rewritten to fit the coordinate systems
used in this report. The unit vector pointing from Earth to the satellite body,
R̂s is the same as the zenith vector local to the orbit position. This can be
found in the transformation matrix from the Orbit frame to the Satellite body
frame as described in eq. (1.13)

S
OA =

[
SiO

SjO
SkO

]
(3.11)

with Sc3O being the projection of the Orbit frame z-axis onto the axes of the
Satellite body frame. Inserting this notation into eq. (3.10), it becomes

Ng = 3ω2
o

(
SkO × Ip

SkO

)
(3.12)

In order to find the worst case torque caused by gravity on the satellite, each
of the concerning parameters has been set equal to the worst possible values.
The worst possible gravity gradient is defined to occur wwith the centre of
mass displaced 2 cm towards one of the corners of the satellite, see figure 3.3,
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m1

m2

v2

v1

Geometric centre

Satellite body

Figure 3.3: COM displacement causing maximum gravity gradient

as this increases the possibility to locate the point mass further away from the
centre of mass.
The displacement of the centre of mass gives rise to a torque around the ge-

ometric centre. By calculating the distance from centre of mass to the corners
and the corresponding masses, as seen on figure 3.3, the inertia matrix for the
Satellite body frame can be recalculated according to eq. (2.11a - 2.11f).
Denote the vector from centre of mass to the nearest corner of the satellite by

v1 and the opposite vector from the centre of mass to the far-off corner by v2,
and the corresponding masses in these directions by m1 and m2 respectively.
The new inertia matrix becomes

sI =

 0.0041 −0.0024 −0.0024
−0.0024 0.0041 −0.0024
−0.0024 −0.0024 0.0041

 (3.13)

with

v1 =

0.0385
0.0385
0.0385

 v2 =

0.0615
0.0615
0.0615



m1 = 0.385 kg m2 = 0.615 kg | v1 | = 0.0666 m | v2 | = 0.1066 m

This results in a worst case gravity gradient torque of 23.98 nNm.

3.3 Aerodynamic Drag

The aerodynamic drag is caused by the surrounding atmosphere acting as a
resisting force on the satellite body. The most important parameters are the
area of the body drifting through the wind, and the atmospheric density. The
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maximal disturbing torque caused by drag, is found when the exposed area
is at its maximum and the vector from the centre of pressure to the centre
of mass is perpendicular to the velocity vector, see figure 3.4. The maximum
area is given as the attitude where a corner of the satellite is pointing in the
orbit direction. The minimum area is given as the attitude where a side of the
satellite is pointing in the orbit direction, see figure 3.5

v̂

N̂

Satellite surface

Figure 3.4: Satellite surface cutting through the wind

Figure 3.5: Maximum and minimum surface area

The force created by the aerodynamic drag can be calculated by the formula
[Hughes [2004]]

Faero = −1/2CDρv
2
(
N̂ · v̂

)
v̂dA (3.14)

with

• CD, drag coefficient
• ρ, air density
• v, velocity
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•
(
N̂ · v̂

)
v̂, angle between the normal vector of the exposed area and the

velocity vector
• dA exposed area

In these calculations, the exposed area is calculated in the direction of the
velocity vector, which simplifies the formula. The resulting torque based on
this force is calculated as

Naero = Faero ×Rcom. (3.15)

With the following values

CD Drag coefficient 2 [−]
ρ600 Air density at 600 km altitude 1.454 · 10−13

[
kg/m3

]
v Velocity 6000 [m/s]
A Area 0.01733

[
m2
]

the worst case aerodynamic torque disturbance is calculated to be 22.54 nNm
in an orbit height of 600 km. As the height decreases, the aerodynamic force,
and thereby torque, increases.

3.4 Magnetic Residual Dipole

Placed in LEO, the satellite will interact with Earths magnetic field, and any
magnetic field created in the satellite by electric currents or material properties
will thereby result in a force in a given direction. This magnetic field strength
and direction is very hard to determine prior to launching the satellite, which
is why a worst case estimate is used in the following.
The satellite has been estimated as a magnetic dipole with a dipole moment

of 10 mAm2 based on [NASA [1969]]. Like magnetorquers, the torque produced
by the magnetic residual dipole disturbance can be calculated as [Wertz [1994]]

Nmag = mmag ×B (3.16)

with mmag being the magnetic moment of the satellite and B being the mag-
netic flux vector from Earth.
The maximal magnetic flux value from Earth can be approximated as

B =
2M

r3
(3.17)

where M is the magnetic moment of Earth and r is the distance from the
centre of Earth.
Using the values from the following table, the worst case disturbing magnetic

residual torque is calculated to be 468.54 nNm.

M Earth’s magnetic moment 7.96 · 1015 [T]
r Distance from entre of Earth to satellite 6978 [km]
D Satellite dipole moment (estimate) 10

[
mAm2

]
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3.5 Solar Radiation

The light rays, mainly from the sun, that reaches the satellite will either be
absorbed or reflected. In both situations the light rays will cause a pressure on
the satellite body resulting in a torque around the centre of mass. The light
emission and reflection from Earth and the moon could also cause a pressure
on the satellite, however, this radiation is small compared to that caused by
the sun.

N̂

Solar radiation, Frad Reflection

Satellite surface

Figure 3.6: Solar radiation and reflection on satellite surface

The pressure, Frad, on a radiated area is given as [Wertz [1994]]

Frad = CaPA (3.18)

where Ca is the absorption constant of the radiated area, P is the solar flux
and A is the radiated area. The radiation constant Ca is a number between 1
(total absorption) and 2 (total reflection).
The solar flux depends on the distance from the sun and is therefor near

independent of orbit altitude in LEO. The solar flux is calculated as

P =
Fs

c
= 4, 53 · 10−6 kg/ms2 (3.19)

with Fs being the mean solar energy, 1358 W/m2, and c being the speed of
light.
The resulting torque around the centre of mass is the given as

Nrad = Frad ×RCOM (3.20)

where RCOM is the vector from the centre of mass to the geometric centre of
radiation pressure.
The worst case torque caused by radiation can now be calculated to be

3.138 nNm, with
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Ca Absorption constant 2 [−]
P Solar flux 4.53 · 10−6

[kg/ms2
]

A Maximum radiated area 0.01733
[
m2
]

RCOM Distance from geometric center to COM 2 [cm]

3.6 Disturbance Comparison

The mentioned actuator- and disturbance torques are given in the following
table

Actuator
Ntorque Magnetorquers 946.46 [nNm]

Disturbances
Ng Gravity gradient 23.98 [nNm]
Naero Aerodynamic drag 19.26 [nNm]
Nmag Magnetic residual dipole 468.54 [nNm]
Nrad Solar radiation 3.14 [nNm]

Resulting torque
Nresult Resulting torque 411.89 [nNm]

As seen, the most significant disturbance is by far the magnetic residual
dipole, however, this is based on an estimate of the magnetic dipole moment
of the satellite.



Earth’s Magnetic Field and
Controllability 4

Actuating the satellite by magnetorquers in Low Earth Orbit causes som challenges,
as the satellite will not have full controllability.

4.1 Geomagnetic Field of Earth

The geomagnetic field surrounding Earth vary in field strength and direction
according to the local position of the satellite in orbit. The magnetic field can
be compared to that of a dipole magnet where the dipoles are located at the
magnetic poles of Earth.

Figure 4.1: Magnetic field around Earth as a dipole. Figure provided by Wikimedia
Commons

The magnetic field can be represented by the IGRF (International Geo-
magnetic Reference Field) model, a model approximating the magnetic field
strength and direction at any location around Earth, taking the abnormali-
ties from an ideal magnetic dipole field into account. An example of the field
strength approximated by the IGRF-11 model can be seen in figure 4.2.
The magnetic field strength and direction will vary highly according to the

location of the satellite. In figure 4.3 an example of an orbiting satellite is
seen.

25
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Figure 4.2: IGRF model showing field strength abnormalities [Wertz [1994]]
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Figure 4.3: Magnetic field experienced by satellite in LEO.

4.2 Controllability

The satellite will not experience controllability in all three axes at the same
time, as the torque produced by the magnetorquers can only be applied per-
pendicular to the direction of the magnetic field. In other words, the torque
produced in a three dimensional space by the magnetorquers will be projected
down onto the two dimensional plane perpendicular to the local geomagnetic
field as seen on figure 4.4.



4.2. Controllability 27

Projected torque Desired torque

B-field

Figure 4.4: Desired torque projected down onto the plane perpendicular to the B-field

The torque produced by the magnetorquers is written as

Ndes = m×B (4.1)

where m is the magnetic dipole moment produced by the torquers [mx my mz]
ᵀ

and B is the geomagnetic field from Earth [Bx By Bz]
ᵀ.

The torque projected down onto the perpendicular plane can be written as
[R. Wisniewski [1996]]

Nctrl =

[
Ndes ×B

||CB||2

]
︸ ︷︷ ︸

mprojected

×B (4.2)

If the desired torque is parallel to the local geomagnetic field, the resulting
control torque from eq. (4.2) becomes zero. If the desired torque is perpen-
dicular to the local geomagnetic field, the resulting- and desired torque will
remain the same.





Part III

Estimation and Control
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Satellite Energy and
Lyapunov Stability 5

In order to prove stability for the controller in chapter 7, the Lyapunov condition
is investigated in the following chapter.

An initial Lyapunov candidate is set up based on the energy of the satellite.
In the following section the energy of the system is investigated, and in the
subsequent sections a Lyapunov candidates for the controller is shown.

5.1 System Energy

The energy of the satellite is split into two; a kinetic energy caused by the
satellite rotating between the Inertial frame and Orbit frame, and a potential
energy caused by the gravity gradient and the fact that the satellite rotates
around Earth, named the gyro effect. [Hughes [2004]]

Kinetic Energy

The kinetic energy is a result of the satellite rotating in the Inertial frame. The
angular velocity of the satellite can be considered as a sum from the Inertial
frame to the Orbit frame and the angular velocity from Orbit frame to the
Satellite Reference frame. Expecting the angular velocity from the Inertial
frame to the Orbit frame, ωo, to be constant1, the resulting expression for the
kinetic energy becomes

Ekinetic =
1

2
C
OΩ

ᵀ
ICOΩ (5.1)

Potential Energy

The potential energy is based on the effects of the gravity gradient and the
rotational motion of the satellite.
The potential energy due to the gravity gradient can be written as

Egravity =
3

2
ω2
o
CkOIp

CkO (5.2)

where CkO is the local Zenith unit vector resolved in the Control Reference
frame.
The rotational motion of the satellite also causes a potential energy. The

summand C
I Ω× Ip

C
I Ω in the dynamic model from eq. (2.16) can be rewritten

according to

C
I Ω = C

OΩ + ωo
CjO (5.3)

1For a circular orbit
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Only a single part of the rewritten expression contributes to the potential
energy, making the potential energy due to the rotational motion become

Egyro = −1

2
ω2
o
CjO

ᵀ
Ip

CjO (5.4)

Combined Energy

The combined energy for the satellite orbiting Earth can be written as

Etotal = Ekinetic + Egravity + Egyro

=
1

2
C
OΩ

ᵀ
ICOΩ +

3

2
ω2
o
CkOIp

CkO −
1

2
ω2
o
CjO

ᵀ
Ip

CjO (5.5)

5.2 Lyapunov Stability

The controller described in the following chapters can be proven stable by
looking at a Lyapunov candidate function (LCF). The LCF can tell if the
controller is stable or asymptotically stable. It is necessary to point out that
a LCF is only a sufficient condition for the controller to be stable; if the
conditions for the LCF are not satisfied for a specific controller it does not
mean that the controller is unstable.
From Khalil [2002] the LCF can be defined as:

Let x = 0 be an equilibrium point for ẋ = f(x) and D ⊂ Rn be a domain
containing x = 0. Let V : D → R be a continuously differentiable function
such that

V (0) = 0 and V (x) > 0 in D − {0} (5.6)

V̇ (x) ≤ 0 in D (5.7)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (5.8)

then x = 0 is asymptotically stable.

Energy Based LCF

As the behavior of the Lyapunov candidate function is coinciding with the
desired properties of the energy of a stable system, an initial guess for a LCF
to prove stability for a controller would be based on the energy expression from
eq. (5.5)
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V = Etotal

=
1

2
C
OΩ

ᵀ
ICOΩ +

3

2
ω2
o
CkOIp

CkO −
1

2
ω2
o
CjO

ᵀ
Ip

CjO (5.9)

The derivative of the LCF can be written as

V̇ = C
OΩ

ᵀ
ICOΩ̇ + 3ω2

o
CkOIp

C j̇O − ω2
o
CjO

ᵀ
Ip

C j̇O (5.10)

From the system dynamics, an expression for Ip
C
OΩ̇ can be obtained by using

eq. (5.3)

Ip
C
OΩ̇ = ω2

oIp
C j̇O − S

[
C
OΩ
]
Ip

C
OΩ + ω2

oS
[
C
OΩ
]
Ip

CjO + ω2
oS
[
C
OΩ
]
Ip

C
OΩ

− ω2
oS
[
CjO

]
Ip

CjO + 3ω2
oS
[
CkO

]
Ip

CkO︸ ︷︷ ︸
Ngg

+Nctrl (5.11)

The LCF derivative can be reduced by inserting eq. (5.11) into eq. (5.10)
and use the following math operators

C
OΩ S

[
C
OΩ
]

= 0 (5.12)
C j̇O = S

[
CjO

]
C
OΩ (5.13)

C
I Ω̇ = C

OΩ̇ + ωoS
[
CjO

]
C
OΩ (5.14)

The LCF derivative now becomes

V̇ = C
OΩ

ᵀ
[
ω2
oIp

C j̇O − S
[
C
OΩ
]
IpCOΩ + ω2

oS
[
C
OΩ
]
Ip

CjO + ω2
oS
[
C
OΩ
]
Ip

C
OΩ −

ω2
oS
[
CjO

]
Ip

CjO + 3ω2
oS
[
CkO

]
Ip

CkO + Nctrl

]
+ 3ω2

o
CkOIp

C k̇O − ω2
o
CjO

ᵀ
Ip

C j̇O

(5.15)

V̇ = C
OΩ

ᵀ
Nctrl (5.16)

It will later be shown that the energy based LCF can not be used to prove
asymptotic stability for the Sliding Mode Controller in chapter 7, however it
can be used to prove other attitude controllers asymptotically stable. Another
attempt to make a LCF is shown in the following section.

Additional LCF

To prove stability for the Sliding Mode Controller, another LCF is set up. The
energy based LCF fails the condition of V̇ (x) ≤ 0 for the SMC; a condition
which is belived possible to meet with another LCF. [R. Wisniewski [1996]]
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It will be shown in chapter 7 that a desirable LCF derivative could look like

V̇ = q̄ᵀC
OΩ (5.17)

since this can be shown to be negative definite. From the kinematics, the
derivative of the real part of the quaternion is

q̇4 = −1

2
C
OΩ · q̄ (5.18)

A LCF that supports this derivative can be written as

V = 2(1− q4) (5.19)

or equivalent, by the expression q̄ ᵀ q̄ + q24 = 1, as

V = q̄ᵀq̄ + (1− q4)2 (5.20)



Magnetic Dipole Moment
Estimation 6

From chapter 2 it was shown, based on an estimate, that the magnetic dipole
moment of the satellite was the largest disturbance by far. In order for the attitude
controller to counteract this magnetic dipole moment, an estimation is necessary.

From the disturbance comparison made earlier it was seen, that the magnetic
dipole moment of the satellite was by far the greatest. In order to make a
precise estimation of the magnetic dipole moment, a method using an Extended
Kalman Filter (EKF) is proposed in the following. [T. Inamori [2010]]

6.1 Estimation Method

The proposed method for estimating the magnetic dipole moment is based on
augmenting an Extended Kalman Filter (EKF) as it could be considered a
traditional bias estimation. The dynamic model for the system relates the ex-
ternal torques to the behavior of the satellite, as was described in section 2.2.
By letting the satellite perform without input control in detumbled mode the
only torques acting on the satellite is the disturbances described in chapter 3.
The estimation requires knowledge about the change in angular velocity mea-
sured by the gyroscopes, and the magnetic field around the satellite measured
by the magnetometers.

6.2 Magnetic Dipole Estimation

The estimation of the magnetic dipole moment is made with an augmented
EKF. An EKF is chosen over a traditional (linear) Kalman filter, as this offers
the possibility to linearize the system at all time instances. As the magnetic
field from Earth is part of the system equation, this is highly desired.
The estimation consists of two parts; a prediction- and an update part. The

prediction step uses the previous state estimate together with the system model
to calculate a new state estimate. The update step uses the state prediction
together with a measurement to create the resulting state estimate. For some
applications, multiple prediction steps may be performed per update step, or
likewise the other way around.
The EKF is operating in discrete time where the system model is given as

xk = Φkxk−1 + Γkuk + Gkwk (6.1)
zk = Hkxk + Dkuk + vk (6.2)

As mentioned earlier, the control input is set to zero in this application,
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reducing eq. (6.1 - 6.2) to

xk = Φkxk−1 + Gkwk

zk = Hkxk + vk

Γ

Γ

Φ

Φ

z−1

z−1

H

H

K

u

zk

ẑk−
+

x̂+
kx̂−k

w v

Figure 6.1: Kalman filter

From figure 6.1 the structure of the Kalman Filter can be seen as a traditional
observer. This leads to the following equations for the EKF predict- and
update part [M. Grewal and A. Andrews [2008]]

Prediction

x̂−k = Φkx̂
+
k−1 (6.3)

ẑk = Hkx̂
−
k (6.4)

P−k = ΦkP
+
k−1Φ

ᵀ
k + Qk−1 (6.5)

Update

Kk = P−k Hᵀ
k

(
HkP

−
k Hᵀ

k + Rk

)−1 (6.6)
x̂+
k = x̂−k + Kk (z− ẑ) (6.7)

P+
k = (E−KkHk) P−k (6.8)

The dynamical model for the satellite is used in the EKF, as this relates the
input torques to the angular velocities as mentioned earlier. The dynamical
model has been given in eq. (2.16) as (with frames omitted)

Ip∆Ω̇ = −Ω× (IpΩ) + m×B (6.9)

where all disturbances except the magnetic dipole moment has been neglected.
The model is linearised according to

x = xref + ∆x. (6.10)
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where the system is to be linearised around xref . This makes the system model
become

∆Ω̇ = I−1p (S[IpΩref ]− S[Ωref ]Ip)∆Ω− I−1p (S[B])∆m (6.11)

with S[·] being a skew symmetric representation.
Since the EKF is augmented with the magnetic dipole moment, the state

vector can be described as

x =

[
Ω
m

]
=

[
Ωref 3×1
mref 3×1

]
+

[
∆Ω3×1
∆m3×1

]
(6.12)

with Ω = [ωx ωy ωz]
ᵀ being the angular velocities and m = [mx my mz]

ᵀ

being the magnetic dipole moment given in the Satellite reference frame.
The EKF uses the following dimensions and values for the calculations

A =

[
I−1(S[IΩref ]− S[Ω]I) S[−I−1B]

03×3 03×3

]
(6.13)

B =
[
E6×6

]
(6.14)

H =
[
E3×3 03×3

]
(6.15)

Q =

[
E3×3 03×3
03×3 10−3 ·E3×3

]
(6.16)

R = 10−1 ·
[
E3×3

]
(6.17)

The above dimensions and values have been used in simulations to test the
EKF performance. In the following sections different situations are tested.

Estimation Results

Firstly the functionality of the EKF is verified by letting all the disturbances,
except the satellite magnetic dipole, be set to zero and let the EKF estimate
the magnetic dipole moment. For the verification simulation the following
values have been used:

Maximum gravity gradient 0 Nm
Maximum aerodynamic drag 0 Nm
Maximum solar radiation 0 Nm
Magnetic residual dipole [0 0 − 0.006]ᵀ Am2

Orbit height 600 km
Initial angular velocity 10−3 · [1 1 1]ᵀ rad/s
Simulation time 4 orbits
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The wanted output from the EKF estimation would be the same as the set
magnetic dipole moment at the simulation. An average of the last 15,000
seconds of the estimator output, as seen on figure 6.2, results in a satisfying
magnetic dipole estimation of [0 0 − 0.0059]ᵀ Am2 .
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Figure 6.2: Satellite magnetic dipole estimation with EKF

Confident in the estimation results, the previously neglected disturbances
have been reinserted into the simulation. The parameters for the Kalman
filter has been kept the same as previously and the simulation parameters set
to be the following:
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Maximum gravity gradient torque 23.89 nNm
Maximum aerodynamic drag torque 19.26 nNm
Maximum solar radiation torque 31.38 nNm
Magnetic residual dipole [0.002 − 0.002 − 0.006]ᵀ Am2

Orbit height 600 km
Initial angular velocity 10−3 · [1 1 1]ᵀ rad/s
Simulation time 4 orbits

From the results show in figure 6.3 the output average of the last 15,000 seconds
results in a magnetic dipole moment estimation of [0.0021 − 0.0018 − 0.0058]ᵀ

Am2.

0 0.5 1 1.5 2 2.5

x 10
4

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−3 Magnetic dipole moment estimation

M
ag

ne
tic

 fi
el

d 
st

re
ng

th
[A

m
2 ]

Time[s]

 

 
m

x

m
y

m
z

Figure 6.3: Satellite magnetic dipole estimation with EKF
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Implementation Considerations

The data used for the previously calculated estimate has been captured from
a simulation tool, which provided the data with a perfect state knowledge. In
order to use the EKF to estimate the magnetic dipole moment of an orbiting
satellite, some additional work needs to be made.

Sensor Bias

The sensors used to measure the magnetic field surrounding the satellite, mag-
netometer, and the angular velocity, accelerometer, needs to be calibrated in
order for the measurements to be usefull. For both sensors this can be done
with a least square approximation.

Estimation with State Noise

The previous estimations are based on simulation data without any noise. In
the following estimation, a white noise with the variance σ2 = 0.0001 has been
included at the equation in (6.1) as w and a noise with variance σ2 = 0.000012
into eq. (6.2) at v, in order to represent the uncertainties in the measurements.
These values are based on the results in [K. Vinther and K. Jensen [2010]].
The parameters have been kept the same as in the previous simulation

Maximum gravity gradient torque 23.89 nNm
Maximum aerodynamic drag torque 19.26 nNm
Maximum solar radiation torque 31.38 nNm
Magnetic residual dipole [0.002 − 0.002 − 0.006]ᵀ Am2

Orbit height 600 km
Initial angular velocity 10−3 · [1 1 1]ᵀ rad/s
Simulation time 4 orbits

The resulting estimate from the EKF based on noisy data can be seen on
figure 6.4. The average of the last 10,000 seconds is calculated to be
[0.0021 − 0.0017 − 0.0056]ᵀ Am2, which correspond to an estimation error
of 7.8 %.
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Figure 6.4: Satellite magnetic dipole estimation with EKF of noisy data.





Sliding Mode Controller 7
A non-linear attitude controller is in the following presented, as it is believed
to outperform traditional linear controllers.

7.1 Sliding Mode Introduction

A Sliding Mode Controller (SMC) is chosen as the attitude controller structure
for the project.
A SMC works by acting on basis of the system states. The actuations is

divided into two parts, a reaching phase and a sliding phase. In the reaching
phase the controller makes the system states reach a sliding manifold from
an arbitrary state. The consecutive sliding phase makes the system states
converge to an equilibrium by letting the states follow the sliding manifold,
hence the name of the phase. These two phases can be seen in the phase
portrait on figure 7.1.

Reaching phase
Sliding phase

Figure 7.1: Phase portrait of a converging SMC. Illustration from [http://ej.iop.org].

The sliding- and reaching phase is defined by a variable, the sliding manifold,
denoted s. The manifold is designed to ensure convergence of the system states
towards an equilibrium. When the system is off the manifold, s 6= 0, it is said
to be in the reaching phase. When the system is on the manifold, s = 0, the
system is said to be in the sliding phase.

Reaching phase

The purpose of the reaching phase is to force the states of the system towards
the sliding manifold. This is done by applying a control gain according to the
position of the system states in proportion to the sliding variable.
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Mathematical the reaching phase can be describes as [Bandyopadhyay [2006]]

lim
s→0+

ṡ < 0 lim
s→0−

ṡ > 0 (7.1)

or

sṡ < 0. (7.2)

To make sure the system states reaches the sliding manifold in finite time,
the control gain is traditionally implemented as a sign-function. This makes
the controller act a bang-bang structure depending on the sign of s. This is
written as

sign(s) =


1 s > 0
0 s = 0
−1 s < 0

(7.3)

To reduce chattering at the manifold, the controller could actuate on the
basis of an alternative function, like the saturation function

sat(x) =


x |x| ≤ 1
0 x = 0

sign(x) |x| > 1
(7.4)

where x represents the slope
s

ε
.

Sliding Phase

The reaching phase is preceded by the sliding phase. This is given as the
phase, where the system dynamics has reached the sliding manifold and is
sliding along it towards the equilibrium. The sliding phase can be seen on
figure 7.1 where the chattering around the sliding manifold is visible. This
magnitude and characteristics of this chatter is decided by the structure of the
sliding variable, for instance by choosing the saturation function in eq. (7.4)
instead of the sign function from eq. (7.3).
Further more, the gain of the sliding variable determines how far away from

the sliding manifold the system states deviates and how well it suppresses
disturbances. [Khalil [2002]]

7.2 Sliding Manifold Design

The design of the SMC is divided into two, the sliding manifold and the sliding
condition. Firstly the manifold is designed and in the next section the sliding
condition is designed. [R. Wisniewski [1996]]
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The sliding manifold has to be able to make the system converge. The
equilibrium for the system operating in Nadir mode is defined between the
Satellite Body frame and the Orbit frame. The velocity between the frames
must be zero, S

OΩ = 0, and the quaternion orientation must keep the frames
aligned S

Oq = [0 0 0 1]ᵀ. The deviation between the equilibrium and the
actual states is defined as the errors, denoted Ω̄ and q̄ respectively.
A Sliding Variable that makes the system converge can be set up as

s = Ω̄ + Ksq̄ (7.5)

where Ks is a positive gain constant. When the system is on the manifold,
s = 0, the sliding variable can be rewritten as

Ω̄ = −Ksq̄ (7.6)

Convergence

The convergence towards the equilibrium can be proven by looking at the
Luapunov Candidate Functions from chapter 5.

Energy Based LCF

The derivative of the LCF based on kinetic and potential energy from chapter
5 became:

V̇ = Ω̄Nctrl (7.7)

which, by eq. (7.6), can be rewritten as

V̇ = −Ksq̄Nctrl (7.8)

The control torque, Nctrl can not be guaranteed to be positive definite, which
is why the condition of a negative definite LCF derivative can not be fulfilled
in order to achieve a asymptotically stable system. As the LCF is sufficient
criterions, this failed condition does not say anything about the stability of the
system. Another LCF can therefor be tested to prove asymptotical stability.

Alternative LCF

The second attempt to create a LCF in chapter 5 is tested to guarantee asymp-
totical stability. The LCF was given as

V = 2(1− q4) (7.9)

V̇ = q̄ᵀΩ̄ = −q̄ᵀKsq̄ (7.10)

As Ks is a positive definite gain, the derivate is negative definite. The LCF
therefore satisfies the criterions from section 5.2 and can be considered to be
asymptotical stable.
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7.3 Sliding Condition Design

The sliding condition can be understood as the control gain needed for the
system to reach the sliding manifold from an arbitrary point in the space of
the sliding variable. To determine the sliding condition, the sliding variable
is considered. The time derivative of the sliding variable can be considered as
the satellite motion on the space of the sliding variable

ṡ = ˙C
OΩ + Ks

C
Oq̇ (7.11)

Eq. (7.11) can be rewritten by the dynamic and kinetic equations

Iṡ = I ˙C
I Ω + IKsq̇ (7.12)

= −C
I Ω× (ICI Ω)− ωoI(CjO × C

OΩ) + IKs

[
C
OΩq4 + C

OΩq̄
]

+ Ndist + Nctrl (7.13)

The terms in eq. (7.13) can be split into two. Terms describing the motion of
the satellite and a term describing the control torque applied to the satellite.
If the system is on the sliding manifold, the torque needed to keep the system
at the manifold can be described as the terms from eq. (7.13) regarding the
satellite motion. If the system is not on the sliding manifold, a torque is needed
to force the system states towards it. This torque can be terms regarding the
control torque from eq. (7.13). Eq. (7.13) is therefore split into an equivalent
torque and a control torque

Iṡ = −C
I Ω× (ICI Ω)− ωoI(CjO × C

OΩ) + IKs

[
C
OΩq4 + C

I Ωq̄
]

+ Ndist︸ ︷︷ ︸
Negative equivalent torque

+Nctrl︸ ︷︷ ︸
Control torque

which corresponds to

Neq = C
I Ω× (ICI Ω) +ωoI(CjO×C

OΩ)− IKs

[
C
OΩq4 + C

I Ωq̄
]
−Ndist (7.14)

Sign-based Sliding Condition

The sliding condition used as the control torque can, according to [Bandy-
opadhyay [2006]], be written as

Nctrl = −λsign(s). (7.15)

as it was stated in eq. (7.3). λ is a positive gain constant. This equation is only
true if the system is able to actuate the control torque in any direction. This
is not the case for the satellite actuated by magnetorquers, as seen in chapter
4, as the desired control torque is projected down on a two-dimensional plane
perpendicular to the local magnetic field of Earth. The magnetic moment from
this projection can be written as

Cm =
NDesired Torque × CB

||CB||2
(7.16)
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where the desired torque should be replaced by the sliding condition from eq.
(7.15).

Cm =
−λsign(s)

||CB||2
× CB (7.17)

Inserting this expression for the magnetic moments into the equation for the
differentiated sliding variable yields

ṡ =

[
−λI−1sign(s)

||CB||2
× CB

]
× CB (7.18)

=

[
I−1
(
CB×−λsign(s)

)
||CB||2

]
× CB (7.19)

assuming Neq = 0.
To check the stability of this sliding condition, it is tested with a Lyapunov

Candidate Function. The LCF used is

V =
1

2
sᵀIs (7.20)

Looking at the derivative of the LCF and inserting the expression from eq.
(7.19) results in

V̇ =
−λ
||CB||2

(
CB× s

)(
CB× sign(s)

)
(7.21)

Equation (7.21) can not be guaranteed to be negative (semi)definite, as the
angles between

(
CB× s

)
and

(
CB× sign(s)

)
might not have the same sign.

Continuous Sliding Condition

The sign-function from the previous mentioned sliding condition did not prove
stable. An alternative function is in the following presented. [R. Wisniewski
[1996]]
A continuous sliding variable is set up corresponding to the sign-based sliding

variable from eq. (7.15)

Ndes = Neq −λs︸︷︷︸
Nctrl

(7.22)

Following the same procedure as previously, the magnetic moment of the
control torque can be written as

Cm =
−λs

||CB||2
× CB (7.23)
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which gives a differentiated sliding variable looking like

ṡ =

[
−λI−1s

||CB||2
× CB

]
× CB (7.24)

once again assuming the equivalent torque to be zero.
The derivative of the Lyapunov Candidate Function V = sᵀIs becomes

V̇ =
−λ
||CB||2

(
CB× s

)(
CB× s

)
(7.25)

The two last terms in eq. (7.25) retains the sign independent of the angle
between CB and s. The conditions for the Lyapunov Candidate Function is
therefore met and convergence towards the sliding manifold is secured.
Results of the developed SMC is shown in the next chapter.



Part IV

Results and Conclusion

49





Simulation Results 8
Simulation results of the Sliding Mode Controller from the previous chapter is in
the following

The controller performance is judged on the time to settle and stay within
an angular error of 10 degrees axis-wise, and at the same time use as little
power (generated torque) as possible.

8.1 Sliding Mode Controller

The subsequent simulation of the Sliding Mode Controller has been conducted
without any disturbances enabled, except state noise.
The sliding variable is given as

s = Ω̄ + Ksq̄ (8.1)

and the derivative of the sliding variable as

ṡ = I−1Nctrl (8.2)

where the control torque was decided by the sliding condition

Nctrl = −λs (8.3)

The parameters Ks and λ has been chosen by an empiric approach to be

• Ks = 0.0005

1 0 0
0 1 0
0 0 1


• λ = 0.00001.

The specific parameters regarding the simulation are listed in Appendix A.
The simulation took 13.000 seconds, equivalent to just over two orbits, to

converge. The combined mean power consumption at steady state was 0.6 mW.
The largest deviation from the angular reference after settling was 1.8 degrees.
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Figure 8.1: Simulation of Sliding Mode Controller.

8.2 Sliding Mode Controller with Perfect
Disturbance Compensation

The subsequent simulation of the Sliding Mode Controller has been conducted
with the equivalent torque enabled. The sliding variable is given as

s = Ω̄ + Ksq̄ (8.4)

and the derivative of the sliding variable as

ṡ = I−1Neq + I−1Nctrl (8.5)
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where the control torque was decided by the sliding condition

Nctrl = −λs (8.6)

and the equivalent torque is known from eq. (7.14)

Neq = Ω× (IΩ) + ωoI(jo ×Ω)− IKs [Ωq4 −Ωq̄]−Ndist. (8.7)

The term Ndist inlcudes only the disturbance from the satellite magnetic dipole
moment, as this is considered the largest cf. section 3.6. The values of the
satellite dipole moment has been set to be mactual = [0.002 − 0.002 −
0.006]ᵀ Am2. The controller was implemented with perfect knowledge of the
satellite dipole moment. This makes Ndist become

Ndist = mactual × CB (8.8)

The parameters Ks and λ has been chosen empirically as described in the
previous section, and has been kept the same

• Ks = 0.0005

1 0 0
0 1 0
0 0 1


• λ = 0.00001.

The specific parameters regarding the simulation are listed in Appendix A.
This simulation is similar to the first simulation regarding convergence time.

It also settled in two orbits, however, the combined mean power consumption
at steady state increased to was 5 mW in order to generate a counteracting
magnetic dipole moment.
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Figure 8.2: Simulation of Sliding Mode Controller with perfect disturbance compensa-
tion.

8.3 Sliding Mode Controller with Estimated
Disturbance Compensation

The subsequent simulation of the Sliding Mode Controller has been conducted
with the environmental disturbances enabled including the satellite dipole mo-
ment.
The Sliding Mode Controller has the same parameters as in the previous

section, except for Ndist. The enviromental disturbances from gravity gradient,
solar radiation and aerodynamic pressure has been included, and the controller
does no longer know the real dipole moment of the satellite. This was estimated
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in chapter 6 to be mest = [0.0021 − 0.0017 − 0.0056]ᵀ Am2.
The simulation took 19.000 seconds to converge. The combined mean power

consumption at steady state was 6 mW.
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Figure 8.3: Simulation of Sliding Mode Controller with estimated disturbance compen-
sation.
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8.4 Sliding Mode Controller without Disturbance
Compensation

The subsequent simulation of the Sliding Mode Controller has been conducted
with all disturbances enabled, as in the previous section, but without the
equivalent torque enabled.
The Sliding Mode Controller has the same parameters as in the previous

section.
The simulation did not converge to the demand of 10 degree axis-wise error.

Already at 11.000 seconds the error reaches 50 degrees and stays within this
error throughout the simulation. The combined mean power consumption at
steady state was 7.5 mW.
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Figure 8.4: Simulation of Sliding Mode Controller without disturbance compensation.





Conclusion and Discussion 9
The developed Sliding Mode Controller performs as wanted. The simulation
based on ideal criterions, where all disturbances where known and counter-
acted, had no trouble to converged to the nadir reference.
The magnetic dipole estimation resulted in a fair estimate. The estimate

was performed on noisy states, where a real world implementation also would
have the challenge of bias errors at the sensors, which is believed to make the
dipole estimate worse.
When the estimated magnetic dipole moment is used in the sliding mode

controller to counteract the torque caused by the satellite dipole moment,
the performance of the controller is highly dependent on the accuracy of the
estimate, as was seen from chapter 8.
If the results of the sliding mode controller is compared to that of the linear

quadratic controller from B, it is clear that the sliding mode controller outper-
forms the linear quadratic controller.

The controller’s dependency on the accuracy of the satellite dipole moment
estimate can be a challenge when implementing a controller on an orbiting
satellite, as even a small estimation error can cause an angular deviation from
the reference attitude. Furthermore, the constant need to neutralize the dipole
moment also has a downside when looking at power consumption. Any further
work done to this project could be looking at a way to estimate the satellite
dipole moment prior to launch, for instance as described in R. Moskowitz
and R. Lynch [1964] where the estimation is based on measurements of the
magnetic field around the satellite. If the dipole moment is known prior to
launch it can be neutralized by inserting passive components, and thereby
reduce the power consumption.
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Appendix

Appendix content

• A Default Simulation Parameters

• B LQR Controller

• C Matlab Code

61





Simulation Parameters and
Overview A

The simulation parameters for the controllers are stated in the table below.

Satellite
Mass 1 [kg]
Inertia diag[0.0017464, 0.0022092, 0.0022388] [−]
Max area 0.01732

[
m2
]

Absorption constant 2 [−]
Dipole moment [0.002 -0.002 -0.006]

[
Am2

]
Drag coefficient 2 [−]
Centre of mass [0.04907 0.04891 0.04297] [m]
Coil area 0.049

[
m2
]

Coil windings (pair) 550 [−]

Ephemeris
Orbit height 600 [km]
Solar flux 4.53 · 10−6

[
kg/ms2

]
Earth’s magnetic moment 7.96 · 1015 [T]
Velocity 6000 [m/s]
Air density 1.454 · 10−13

[
kg/m3

]
An overview of the simulation can be seen on figure A.1

Ndisturbance

Ncontrol

Time

Initial values (t=0)

Satellite
Dynamics

Orbit position

Angular velocity

Attitude

Controller
State

estimator
Sensor

emulation

Figure A.1: Simplified simulation schematic
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Linear Controller B
To compare the efficiency of the Sliding Mode Controller from chapter 7 a linear
controller is made, based on the principle of a Linear Quadratic Regulator.
This is intented to work as a Nadir pointing controller, tweaked to meet the
following points

Maximum peak power consumption 15 mW
Maximum power consumption (1 orbit average) 10 mW
Maximum individual axis deviation 10 deg.
Maximum settle time 10 orbits

B.1 System model

The equations of motion from eq. (2.7) and eq. (2.16) are linearised to work
in Nadir mode. The disturbances are neglected.
The kinematic equation remains the same:

q̇ =
1

2
R (Ω) s

rq. (B.1)

The external torques from eq. (2.16) gets replaced by the control torque
from eq. (3.5)

IpΩ̇ = −Ω× (IpΩ) + m(t)×B(t). (B.2)

B.2 Linearisation

The system model will have to be linearised about a desired operation point
in order to be used in a linear controller. This is described in the following.
The attitude of the system is ment to perform in Nadir mode, which means

that a fixed vector spanned in the Satellite body frame will always point to-
wards the centre of Earth. In this report the spanned vector will be parallel
to the z-axis of the Satellite frame.
When the z-axis of the satellite is pointing towards Earth and the x-axis is

pointing in the orbit direction, the frames of the body and the orbit is aligning.
This can be expressed as S

OΩ = 0 = [0 0 0]ᵀ and S
Oq = [0 0 0 1]ᵀ.

Kinematic

The linearization of the kinematic equation is made from the Inertial frame
to the Satellite body frame, which behaves as a negative rotation around the
y-axis: [0 − ωo 0].
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YI
XI

ZI

ZS

Figure B.1: Satellite orbiting the origin of the Inertial frame

With the kinematic equation from eq. (2.7) set up as


q̇1
q̇2
q̇3
q̇4

 =
1

2
R (Ω)


q1
q2
q3
q4

 (B.3)

[
˙̄q
q̇4

]
=

1

2
R (Ω)

[
q̄
q4

]
(B.4)

it can be rewritten as

˙̄q =
1

2
(q4Ω−Ω× q̄) (B.5)

q̇4 = −1

2
Ωᵀq̄ (B.6)

with q̄ being the imaginary part of the quaternion,

q1q2
q3

.
When linearized as a negative rotation around the Satellite body y-axis, the

kinematic equation becomes

˙̄q =
1

2
Ωq4 −

1

2
Ω× q̄ ≈ 1

2
Ω (B.7)

By replacing S
I Ω with the expression for S

OΩCO the following equation results
in the linearized version of the kinematics

δq̄ =
1

2
δΩ− 1

2
[0 − ωo 0]ᵀ − δq̄× [0 − ωo 0]ᵀ (B.8)
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Dynamic

The dynamic equation is also linearized as a negative rotation around the
Satellite body y-axis. The dynamic equation consists of the cross coupling
and the generated control torque

δΩ̇ = δ (−Ω× IpΩ) + I−1p δNctrl (B.9)

The cross coupling becomes

−Ω× IpΩ =

(Iy − Iz)ωyωz

(Iz − Ix)ωzωx

(Ix − Iy)ωxωy

 (B.10)

When linearized around the y-axis eq. (B.10) becomes

−Ω× IpΩ ≈

σxωoδωz

0
σzωoδωx

 (B.11)

with

σx =
Iy − Iz
Ix

σy =
Iz − Ix
Iy

σz =
Ix − Iy
Iz

(B.12)

B.3 State space model

Collecting the previously deduced linear models into a state space model yields
the following result

[
Ω̇
˙̄q

]
=



0 0 ω0σx 0 0 0
0 0 0 0 0 0

ω0σz 0 0 0 0 0
1
2 0 0 0 0 ω0

0 1
2 0 0 0 0

0 0 1
2 ω0 0 0


[
Ω
q̃

]
(B.13)

B.4 Controller structure

When the satellite is operating in Nadir mode it corresponds to letting the
Satellite body frame align with the Orbit frame. Any deviation from this is
an error, denoted with the subscript e and can be expressed as

Ωe = S
OΩ = SΩ− OΩ (B.14)
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for the angular velocities, and as

qe = O
S q = I

Sq⊗ O
I q (B.15)

for the quaternion error.

Controller Satellite

I
Sq

I
SΩ

qO
I q

O
I Ω

Figure B.2: Overview of the controller.

The system is linearized to work with an error of S
Oq = [0 0 0 1] and

S
OΩ = [0 0 0]. The model and reference is given in the Inertial frame while
the state errors are fed into the controller after the quaternion operation and
angular velocity substraction, respectively. This can be seen on figure B.2.
The controller is implemented as it would in a traditional MIMO system with

the system equation given as

ẋ = Ax + Bu (B.16)

and full state observability and -feedback. The system states are estimated in
a Kalman filter, performing calculations based on sensor reading and previous
states. As the resulting state estimate from the Kalman filter is different
from the true states, some precautions must be made. It is expected that
the estimated states will act as an divergence around the true states. In the
simulations, the estimator noise around the true states will be approximated
as white noise with a mean of zero and a deviation of σ2 = 0.0001 for the
quaternion states and a deviation of σ2 = 0.000012 for the angular velocity
states [K. Vinther and K. Jensen [2010]].

B.5 LQR

A Linear Quadratic Regulator (LQR) is used as the linear controller, in order
to compare it with a nonlinear controller. The LQR controller makes use
of weighting matrices in order to calculate an optimal controller gain, which
makes the system perform as desired.
A LQR can be designed and implemented to work in online- or offline mode,

both having advantages and disadvantages compared to each other. The on-
line LQR bases the controller gain on the present measurements, which should
make it point more accurately. The drawback is the need for solving the
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computationally heavy Riccati equation onboard the satellite. The offline con-
troller applies a gain calculated prior to execution, based on the predicted
satellite environment. This gives a lower pointing accuracy compared to the
online controller but will be a lot easier to compute.
It has been decided to carry on with the offline controller, from now on

refered to as a constant gain controller. The controller is inserted into the
system equation from eq. (B.16), at the vector u. This can be described as

u = −Lxe (B.17)

The controller uses the magnetorquers as actuators, which means that the
feedback matrix, L, only inputs to the dynamic equation from eq. (2.16) as an
external force, as described in section 3.1. The L matrix therefore looks like

L =

L11 L12 L13 L14 L15 L16

L21 L22 L23 L24 L25 L26

L31 L32 L33 L34 L35 L36

 (B.18)

Performance function

The LQR optimizes a performance function to calculate the best possible con-
troller gain for the system. The performance function uses penalties on the
system states, input states and final states in order to deside how they per-
form compared to each other. The discrete time version of the performance
function, with equal penalties for the final states, is given as

I =
N∑
k=0

x(k)ᵀQ1x(k) + u(k)ᵀQ2u(k) (B.19)

with

• x(k) being the system states at time k
• u(k) being the control signals at time k
• Q1 being the penalty weights for the system states
• Q2 being the penalty weights for the control signals

The resulting controller gain is calculated iteratively and requires knowledge
about the orbit environment.

B-field approximation

The strength and direction of the magnetic flux field from Earth is depending
on the distance from Earth and the type of orbit, and is varying with time.
This can be seen on figure B.3 From the figure it is possible to see, that the
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Figure B.3: Magnetic field intensity of Earth [Wertz [1994]].

change in intensity of the magnetic field is highly dependent on the orbit. An
equatorial orbit would face less change in intensity, compared to a polar orbit.
In order to use the magnetorquers in an offline linear controller, an average

of the magnetic field is nessesary. The average magnetic field can be calculated
as

oB̂ =
1

T

T∑
t=1

oB(t) (B.20)

where oB(t) is the magnetic flux vector from Earth given in the orbit frame for
time t. The magnetic field has been captured from a simulation tool, set up
with the predicted orbit parameters. The magnetic field at the simulation tool
is based on the IGRF11 model. An example of a magnetic field experienced
by the satellitte in polar orbit is shown in figure B.4

Weight penalty matrices

The weighting matrices, used in the performance function at eq. (B.19) to
calculate the optimal controller gain, is shown here. The matrices have been
set up with empirical guesses at first and iteratively adjusted in order to make
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Figure B.4: Magnetic field captured in Orbit frame at polar orbit.

the system perform as described in the start of the chapter.

Q1 =



100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Q2 = 10−4

1 0 0
0 1 0
0 0 1

 (B.21)

Simulation

The results from the simulation of the LQR are shown in the table below and
in figure B.5. The simulation did not include any disturbances.

Power consumption:
Settling phase (mean) 2,9 mW

Maintaining phase (mean) 0.724mW
Mean of 20 orbits 2mW

Maximum power consumption 12,2mW
Settling time 19.500 sec

The settling time is defined to be the time it takes the satellite from an arbi-
trary initial state till it settles with an axis-wise error below 10 degrees. The
power consumption calculation is based on a simulation time of 20 orbits.
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Figure B.5: Simulation of the system with chosen weights. Top: Angular velocity.
Middle: Error angles. Bottom: Produced torque.
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Mode Controller C

The following code is used as a function, with the following in- and outputs:

Input vector u
u1:3 Magnetic field measurement [Bx By Bz] [Tesla]
u4:7 Angular unit quaternion [q1 q2 q3 q4] [−]
u8:10 Angular velocity [wx wy wz] [Rad/sec]

Output vector
out1:3 Control torque [Nctrlx Nctrly Nctrlz] [Nm]
out4:7 Equivalent torque [Neqvx Neqvy Neqvz] [Nm]

MATLAB code:
1 function out = smc_function(u)
2 %#codegen
3
4 % --------------------------------------------------%
5 % - description -%
6 % --------------------------------------------------%
7 %Takes inputs from b-field , angle and ang. velocity.
8 %Creates control torque and dutycycle for driver
9

10 % --------------------------------------------------%
11 % - inputs -%
12 % --------------------------------------------------%
13 B_b = u(1:3); %magnetic field [X Y Z] (Tesla)
14 quat = u(4:7); %quaternion [q1 q2 q3 q(4/0)]
15 omega_ob = u(8:10); %Angular velocity rate [Wx Wy Wz]
16
17
18 % --------------------------------------------------%
19 % - noise -%
20 % --------------------------------------------------%
21 % Comment in to add state noise
22 % noise = 0.001* randn (4,1);
23 % quat = quat+noise;
24 % quat = quat/norm(quat);
25 %
26 % noise = 0.00001* randn (3,1);
27 % omega_ob = omega_ob +noise;
28
29 % --------------------------------------------------%
30 % - Vars -%
31 % --------------------------------------------------%
32 % --- Environment ---
33 orbitTime = 5830; % Orbit time in sec
34 omega_0 = (2*pi)/orbitTime; % Orbit rate
35
36 % --- Space ship ---

73
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37 inertia = [0.0017464 ,0.0022092 ,0.0022388];
38 I = diag(inertia);
39
40 % --- Torquers ---
41 N = 550; % coil windings
42 A = [0 0 0]; %init
43 A(1) = 0.07*0.07; % coil area x
44 A(2) = 0.07*0.07; % y
45 A(3) = 0.07*0.07; % z
46 V = 5; % supply voltage
47 R_m = 950; % coil resistance
48 i_max = [V/R_m , V/R_m , V/R_m]’; % max current
49 m_max = [N*i_max (1)*A(1) , N*i_max (2)*A(2) , N*i_max (3)*A(3)]’; %

max dipole
50
51 % --- Initial state vector ---
52 x0 = [quat ; omega_ob ]; % [q1 q2 q3 q0 Wx Wy Wz]
53
54 w_ob_x = x0(5); % Omega_x
55 w_ob_y = x0(6); % Omega_y
56 w_ob_z = x0(7); % Omega_z
57
58 omega_ob = [w_ob_x w_ob_y w_ob_z]’; %[Wx Wy Wz]
59 q = [x0(4) x0(1) x0(2) x0(3)]’; %[q0 q1 q2 q3] !! switch q4 to q1

!!
60
61
62 q0 = q(1);
63 q_bar = [q(2) q(3) q(4)]’;
64 % The rotation matrix FROM body TO orbit
65 S = [0 -q_bar (3) q_bar (2); q_bar (3) 0 -q_bar (1); -q_bar (2) q_bar

(1) 0];
66 R_o_b = eye (3) + 2*q0*S + 2*(S);%^2;
67 % The rotation matrix FROM orbit TO body
68 R_b_o = R_o_b ’;
69
70
71 % Projection of the axes in the BODY frame
72 i_b = R_b_o (:,1);
73 j_b = R_b_o (:,2);
74 k_b = R_b_o (:,3); % <=> c_b_3 = [R13 R23 R33]’
75 % Gravitational torque
76 tau_b_g = 3* omega_0 ^2*( cross(k_b , (I*k_b)));
77
78
79
80 % --------------------------------------------%
81 % - Controller -%
82 % --------------------------------------------%
83 %References
84 q_r = [1 0 0 0]’;
85 q4_r = q_r(1);
86 q_bar_r = [q_r(2) q_r (3) q_r(4)]’;
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87 Smatrix = [0 -q_bar_r (3) q_bar_r (2); q_bar_r (3) 0 -q_bar_r (1); -
q_bar_r (2) q_bar_r (1) 0];

88 q_bar_tilde = (q4_r*q_bar) - (q0*q_bar_r) - (Smatrix*q_bar);
89 %q_tilde = [eta_tilde ; epsilon_tilde ];
90
91 % Control gains
92 %Ks = 0.0005* diag ([1 1 1]);
93 Ks = 0.0005* diag ([1 1 1]);
94 %lambda_s = 0.00001;
95 lambda_s = 0.00001;
96
97 % Define sliding variable s and gain lambda_s
98 s = omega_b_ob + Ks*q_bar_tilde;
99

100 % Equivalent torques
101 %tau_eqv = cross(omega_b_ib , I*omega_b_ib) - tau_b_g + omega_0*I*

cross(c_b_1 , omega_b_ob)...
102 % - 0.5*I*Ks*( omega_b_ib*eta + cross(omega_b_ib ,epsilon));
103 mag_dipole_estimate = [0.0021 -0.0017 -0.0056] ’;
104 tau_eqv = -cross(B_b , mag_dipole_estimate);
105
106 %projected dipole
107 f = 1/( norm(B_b)^2);
108 tau_b_d = -lambda_s*s - tau_eqv; %desired torque
109 m_b = f*cross(B_b ,tau_b_d);
110
111 % Magnetic torque.
112 tau_b_m = cross(m_b ,B_b);
113
114 out = [tau_b_m ’ tau_eqv ’];
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