
Aalborg University Esbjerg Campus
Department of Electronic Systems

Niels Bohrs Vej 8
DK-6700, Esbjerg

http://www.en.esbjerg.aau.dk/

Title:
GraphHelper - Visualising & Explor-
ing the Semantic Web using Intelligent
Searching Tools

Theme:
Applied Intelligent Information Systems

Project Period:
02.09.2013 - 01.08.2014

Project Group:
IIS4-H106

Participant(s):
Heidi Munksgaard
Dines Madsen

Supervisor(s):
Dr. David L. Hicks
Jacobo Rouces
Michael Boelstoft Holte

Copies: 5

Page Numbers: 132

Date of Completion:
July 31, 2014

Abstract:

This report details the development
of tools to assist users in efficiently
searching through large Resource De-
scription Framework (RDF) datasets.
To accomplish this, the research group
has developed a graph visualisation
application called GraphHelper, which
can represent RDF-graphs from both
local files and remote repositories. In
addition the research group proposes
two algorithm for intelligent searching
in RDF-data.
Interesting Graph is an A*-like
Breadth-First-Search algorithm, which
to the best of the research groups
knowledge, is a novel approach to
exploring RDF-graphs. A user spec-
ifies search terms, based on which
Interesting Graph searches the local
neighbourhood of a designated node
and returns the most promising sub-
graph to be visualised by GraphHelper.
Interesting Path searches for relevant
paths between two nodes, using a set of
search terms specified by the user. This
algorithm is an extension of previous
work in the field. For both Interesting
Graph and Paths, a set of experiments
were performed in order to determine
the precision of the algorithms using
real-life data.
With this report comes a CD-ROM
which contains documentation, source
code, libraries and experimental re-
sults. GraphHelper and all libraries are
open source.

http://www.en.esbjerg.aau.dk/

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

Contents

Preface vii

1 Project Description 3
1.1 Introduction . 3
1.2 The Semantic Web . 5

1.2.1 Resorce Description Framework 5
1.2.2 SPARQL . 8

1.3 Problem Statement . 16
1.4 Existing Solutions . 17

1.4.1 Gruff . 17
1.4.2 VisualRDF . 17
1.4.3 RDF GRAph VIsualization Tool 17
1.4.4 Welkin . 18
1.4.5 GraphHelper . 18

1.5 Language Selection . 18
1.5.1 Java . 18
1.5.2 Python . 19
1.5.3 C# . 19
1.5.4 Decision . 20

1.6 Existing Libraries & Frameworks . 20
1.6.1 RDF Data Management . 20
1.6.2 Graph Visualisation . 24

1.7 Frameworks Selected . 25

2 Algorithms, Design & Implementation 27
2.1 Introduction . 27
2.2 Software Overview . 27
2.3 Jena Implementation . 29

2.3.1 Data Management . 30
2.3.2 Local File Models . 32

iii

iv Contents

2.3.3 Endpoints . 35
2.4 JGraphX Implementation . 39

2.4.1 Automatic Layout . 41
2.4.2 Customization & Styles . 43
2.4.3 Visualisation Implementation 44
2.4.4 VisGraph . 44
2.4.5 Interesting Graph . 50
2.4.6 Interesting Paths . 51

2.5 Algorithms . 54
2.5.1 Extracting Sub-Graphs . 54
2.5.2 Interesting Graph . 62
2.5.3 Interesting Paths . 67

3 Experiments & Trials 75
3.1 Introduction . 75
3.2 Measuring Interestingness . 75
3.3 Interesting Paths . 76

3.3.1 Question One . 77
3.3.2 Question Two . 77
3.3.3 Question Three . 77
3.3.4 Question Four . 77
3.3.5 Question Five . 79
3.3.6 Reflections . 81

3.4 Interesting Graph . 81
3.4.1 Reflections . 82

3.5 Parallel Bucket-Based Breadth First Search 84
3.5.1 Reflections . 86

4 Discussion 87
4.1 Software Architecture Status . 87

4.1.1 Graph Visualisation . 87
4.1.2 Addressing Blank Nodes in Endpoints 88

4.2 Interesting Path & Graph . 88
4.2.1 Semantic Improvements . 88

4.3 Parallel Bucket-Based Breadth First Search 91
4.3.1 DataUnit Packing . 91
4.3.2 Memory Management . 91
4.3.3 Write-to-Disk . 92

5 Conclusion 93

A StringTemplate 97

Contents v

B TDB 101
B.1 Concurrency . 102
B.2 TDB Management . 103

C Stanford Core NLP 105

D User Assisted Search 109

E Class Diagrams 111
E.1 Parallel Bucket-Based Breadth First Search 112
E.2 Visualisation Classes . 113
E.3 Data Containers . 114
E.4 RDFTree & WordScorer . 115
E.5 Data Sources . 116
E.6 Data Storage . 117

Bibliography 119

Glossary 125

Acronyms 131

vi Contents

Preface

This Masters Thesis has been written by group IIS4-F-14 at Aalborg University Es-
bjerg in connection with the 9th and 10th semester Masters Project period from fall
2013 to summer 2014.
This project is based on the theme Applied Intelligent Information Systems, in which
the emphasis is placed upon information retrieval and the Semantic Web

This report consists of five chapters and an appendix

Chapter One:
Sections 1.1 and 1.2 describes the project background and provides a brief primer on
the Semantic Web and SPARQL Protocol and RDF Query Language (SPARQL).
Section 1.3 formulates a problem statement as well as several project requirements.
Sections 1.4 to 1.6 explore already existing solutions, both full applications, as well
as frameworks and APIs.
Section 1.7 selects appropriate tools for the project to work with.

Chapter Two:
Section 2.2 presents the software architecture developed
Sections 2.3 and 2.4 document how Jena and JGraphX is used throughout the project.
Section 2.5 documents the intelligent search algorithms and remote sub-graph extrac-
tion algorithm developed by the project group.

Chapter Three:
Sections 3.2 to 3.4 discuss how to test the search algorithms developed, the results
achieved, as well as reflections upon the results.
Section 3.5 documents a run-time experiment on the sub-graph extracting algorithm
devised.

Chapter Four:
Chapter 4 draws upon previous chapters, detailing issues encountered during devel-

vii

viii Preface

opment, as well as expanding on future areas of research and improvements.

Chapter Five:
Chapter 5 summarizes across the project period and the results achieved, as well as
reflecting on the future of research with regard to the Semantic Web.

The Appendix:
Chapters A to C are short introductions to libraries used throughout the project.
Chapter D describe a disambiguity feature used to assist users in searching.
Chapter E contains select class diagrams for the program developed.

References used in this report are written as [8] for referring to the full source in the
bibliography or [45, p. 142-150] when referring to a specific area of a source. When
referring to a specific section, the reference will look like this: section 3.2, while a
table reference will look like this: table 3.1, a picture reference will look like this:
fig. 1.3, a reference to a listing will look like this: listing 1.1, a reference to an equation
will look like this: eq. (2.2) and references to an appendix looks like this: section E.3.

A CD-ROM containing the report, source code, libraries and experimental results is
attached with the printed report.
Tools used for this project include: Oracle NetBeans 7.4, Microsoft Visio 2007,
Sparx’s Enterprise Architect 9
The code developed is dependent on the following frameworks and libraries: Java 7
64-bits, Apache Common IO 2.4, Apache Commons Collections 4.0, Google Guave
17.0, Jena 2.11, JGraphX 2.3.0.4, Stanford Core NLP 2014-01-04, String Template
4.0.8.

The research group would like to thank Dr. David L. Hicks, Ph.D student Jacobo
Rouces and assistant Professor Michael Boelstoft Holte for their advice and guidance
during the project.
In addition we would like to thank the following people for their support: Ph.D
student Petar Durdevic, Study Secretary Britta Marie Jensen, Claus Hansen as well
as our families and friends.

Aalborg University Esbjerg, July 31, 2014

Preface 1

Heidi Munksgaard
<hmunks05@student.aau.dk>

Dines Madsen
<dmadse09@student.aau.dk>

2 Preface

Chapter 1
Project Description

1.1 Introduction

Since the birth of the Internet and the World Wide Web (WWW), the Web has been
viewed as a web of documents, due to the vast amount of web-pages and documents
it contains. This perception has changed due to the steady growth of the Semantic
Web and advancement in information retrieval technology, with the Web now being
considered more as a web of data-points. Data is now no longer constrained to be
situated in a monolithic block on web-pages but can be collected and merged into
ontological units in which data is being categorized by type and relationships rather
than location in a given document.
Data contained in the Semantic Web is stored in directed labelled graphs to show
not only the data itself, but also properties of the data and it’s relations to other
relevant data.

This new type of data abstraction provides Semantic Web users with an immense
amount of information, which can not easily be navigated in a feasible manner using
traditional tools such as Structured Query Language (SQL) or other traditional infor-
mation retrieval tools. What is needed instead are tools that simplifies the structure
of the information displayed to the user. Several tools have been developed for solv-
ing the issue of abstracting non relevant data away from the user. These solutions
are based on three different methodologies:

• SPARQL

• Hierarchical structure

• Graphical visualisation

The SPARQL language is to the Semantic Web, what SQL is to relational
databases. With SPARQL queries it is possible for the user to retrieve a sub-set
of the whole graph, and have it displayed in formatted text. In order for the user

3

4 Chapter 1. Project Description

to interpret the sub-sets generated with SPARQL, some prior knowledge is usually
required. For a user, without a relevant technical background, the learning curve for
using SPARQL efficiently can be steep, which makes graph navigation with SPARQL
unrealistic for a layperson.

Another way of abstracting away information from the user is to display informa-
tion in a hierarchical structure, in which the information is divided into categories
which can be expanded out to sub-categories. This way, the user can choose a main
category, and then via mouse clicking, expand this main category into sub-categories
in a tree-like manner, in much the same way as navigating the folder-structure on a
computer. One application which has implemented hierarchical structure model is
gFacet [34]. Besides the hierarchical structure, which has been implemented to pro-
vide the user with a graph-like user interface, this application provides the user with
different options for viewing the data, called facets. This way different interrelations
can be displayed to the user dependent on the facet chosen.

Since gFacet provides the user with a Graphical User Interface (GUI) the learn-
ing curve is not nearly as steep to users without prior knowledge compared with
SPARQL. But gFacet does not provide the user with a sub-graph showing actual
connections between entities in the graph, but rather aggregated connections be-
tween entities.

In the third method, graphical visualisation, data is laid-out as nodes with con-
nections and the prior knowledge required for using a graph visualisation systems is
comparable to using systems like gFacet. Issues arise with the use of tools display-
ing all connections between all entities in a graph. There can be thousands or even
hundreds of thousands of connections between a given entity and all other entities in
the graph. Such a graph is full of clutter and will quickly confuse a user more than
it will aid them, when trying to discover relevant connections between entities in a
graph.

This project was inspired by researchers associated with the early Pursuit against
Organized crime using envirOnmental scanning, the Law and IntelligenCE systems
(ePOOLICE) project. The ePOOLICE project is a joint European research project
aimed at merging large numbers of public information sources into a predictive data
model aimed towards early detection of organized crime. This way subject-matter-
experts are provided with advanced tools for making predictions about organized
crime.
As the subject-matter-experts do not necessarily posses the necessary technical knowl-
edge and skills to efficiently navigate large data sets, it was suggested that the re-
search group should explore options of providing users with a graphical visualisation
tool, that has the means to simplify searching and interpreting graphs. This way the
discovery of relevant information will be more efficient for the users.

1.2. The Semantic Web 5

1.2 The Semantic Web
The early 1990’s saw a boom in information technology with the invention of the
WWW, which created a vast network of web-pages, connected by Uniform Resource
Identifier (URI) technology. The WWW quickly began accumulating large amounts
of information, that was easily parse-able by computers, and readable by humans.
However it proved difficult for machines to automatically extract information from
web-pages, due to the implicit nature with which the information is presented. Many
different methods have been developed for Data mining information from the WWW,
but most rely on heuristics or probabilistic approaches, which can produce unreliable
results. In 2001 Dr. Tim Berners-Lee[3] published an article, describing a scenario
in which computers effortlessly could explore the WWW, extracting information and
making inferences about said information with minimal human intervention. This
new network, which Dr. Berners-Lee called the Semantic Web, would not be a
replacement of the WWW, but rather provide an additional layer of information.
The goal for the Semantic Web was to be machine-readable, and more importantly,
sufficiently semantically rich for machines to draw inferences, but also flexible enough
so that a wide variety of information could be described. The system proposed by
Dr. Berners-Lee was named the RDF

1.2.1 Resorce Description Framework

RDF is a recommendation put forth by the World Wide Web Consortium (W3C)
in 1999[9], with a revised version published in 2004[8]. The RDF is a W3C recom-
mendation, used for decomposing knowledge into little pieces. These little pieces are
called resources.

A resource is a description of a given item, which could be a person, a city or
another item described with a noun. The resource is identified with a unique URI,
a literal or a blank node. A literal is a string denoting a certain value, for example
the number “ ten” or the city “Berlin”. A blank node is a way of describing an entity
that cannot directly be identified. An example could be: “ George buys a present
for his friend”. In this case “friend” is a node without a unique description, since
George can have several friends. This type of resource is also called an anonymous
resource. RDF does not have a predefined storage format, but instead a host of
different serialization-forms that can used, such as Resource Description Framework
Extensible Markup Language (RDF/XML), Turtle, N-Triples, Notation 3, OWLWeb
Ontology Language and OWL 2 Web Ontology Language. RDF is specifically kept
abstract so that it has the power to describe a wide range of topics. The relation
between the resources is described as a directed labelled graph, which is also called
an RDF graph. Each resource is a node in this graph and the edge between them is a
predicate. Since an RDF graph is directed the node from which the edge goes out, is
called a subject, while the node to which the edge goes in is called an object. So the
RDFframework describes a model by which a directed graph can be represented as
a set of triples, with each triple containing a subject, predicate and object, commonly

6 Chapter 1. Project Description

written as:

<subject, predicate, object>

A triple can be used to express a wide range of relations such as: “ John Doe owns
a VW golf”, as illustrated by fig. 1.1

Figure 1.1: A simple directed graph, illustrating John Doe’s ownership of a VW golf

Figure 1.1 illustrates the ownership of a VW golf, by a John Doe. The car has
two properties, namely a license plate and manual gearing. Translating the graph
into triples, would result in the following:

<John Doe, ownsCar, VW golf>
<VW golf, License plate, AB 12 345>

<VW golf, Gearing, Manual>

While this representation does have considerable flexibility, it does suffer from am-
biguity. What nationality is the license plate? It might be possible to deduce the
nationality based on the format, but this would require domain specific knowledge,
and would therefore introduce uncertainty into the graph. In order to avoid this am-
biguity, RDF uses URIs to uniquely identify resource types. By introducing URI’s,
the issues faced in fig. 1.1 have been solved in fig. 1.2

The different definitions for Gearing will not cause an issue, as the URI’s uniquely
define where to find their individual definitions. It is also worth noting that John
Doe does not have to create all necessary definitions, but instead can rely on other
definitions, in this case from www.VM.com and www.centurion.dk, to define aspects.

Not every field is an URI. The three boxes Manual, AB 12 345 and 7 are called
literals. Two types of literals are possible

Plain literal are plain strings with an optional language tag

1.2. The Semantic Web 7

Figure 1.2: John Doe has expanded his possessions with a bike

Typed literal are strings bundled with datatype information. RDF does not pro-
vide explicit datatype information, but rather defers the definitions of types to
developers

Literals can only be used as objects, as it does not make conceptual sense to have a
subject or predicate literal.

8 Chapter 1. Project Description

1.2.2 SPARQL

SPARQL[31] is a query language used for querying RDF graphs either situated on
the web, in a file or in an RDF-triplestore. SPARQL is a descriptive language which
allows for complex descriptions of graph-patterns. For users of SQL, many of the
keywords and base structures of SPARQL will be familiar. The newest version of
SPARQL is v1.1 which was published 21-03-2013 and the recommendations are de-
veloped and managed by W3C.

There are four types of basic patterns which SPARQL supports
• Triple patterns

• Conjunctions

• Disjunctions

• Optional patterns
The four types of patterns are mixed in different ways in order to achieve the desired
pattern.

Triple Pattern

The most common pattern which describes the basic RDF pattern of Subject-Predicate-
Object. Listing 1.1 illustrates a simple triple pattern search

Listing 1.1: An example of a SPARQL triple pattern query

PREFIX rdf:<http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT * WHERE
{

?x rdf:FN ?fname
}

The output resulting listing 1.1 query will be the subject x and the object fname
of type literal, with the predicate rdf:FN. This predicate is an RDF standard entity,
and represents the full name of an entity. Figure 1.3 shows a simple triple pattern
that would be returned by listing 1.1.

Conjunction Pattern

Conjunction patterns are two or more triple patterns which when taken together
describe a more complex pattern. An example of a simple conjunction query can be
seen in listing 1.2

1.2. The Semantic Web 9

Figure 1.3: An example of a SPARQL triple pattern result

Listing 1.2: An example of a SPARQL Conjunction Query

PREFIX foaf:<http://xmlns.com/foaf/0.1>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT * WHERE
{

?person rdf:Type foaf:Person .
?person foaf:name ?name .
?person foaf:mbox ?email .

}

The resulting output from this query, illustrated by fig. 1.4 will be the objects of a
subject of the rdf:Type Person. The objects: name and email are literals containing
the name and email address of the subject. This query is conjunctive, which is
equivalent to a logic AND since it will only output a result for vertices where all
three properties are present.

Figure 1.4: An example of a SPARQL intersection pattern

Disjunction Pattern

Disjunction patterns merges result-sets of sub-queries. An example of a disjunction
query is shown in listing 1.3

10 Chapter 1. Project Description

Listing 1.3: An example of a SPARQL Disjunction Query

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT * WHERE
{

{ ?book dc10:title ?title }
UNION
{ ?book dc11:title ?title }

}

The resulting output from this query, which is illustrated in fig. 1.5, will be the
object literals equal to the title given by the predicate dc10 or dc11. The query

Figure 1.5: An example of a SPARQL disjunction pattern

uses the UNION keyword, which is equivalent to a logic OR and there will therefore
be looking for books with either dc10:title or dc11:title and merging the sets. If an
subject has both a dc10:title and dc11:title, the subject will be outputted twice.

Optional Pattern

Optional patterns allow for flexibility in SPARQL queries. An example of an optional
query can be seen in listing 1.4.

Listing 1.4: An example of a SPARQL optional query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT * WHERE

1.2. The Semantic Web 11

{
?person foaf:name ?name .
OPTIONAL(?person foaf:depiction ?depiction).

}

As can be seen on fig. 1.6 the resulting output from this query will be the name
of a person who is the friend of a friend of a given entity. If there is a depiction of the
person from the result set, this depiction will also be output. If no such depiction
exists for an entity in the result set, only the name will be displayed.

Figure 1.6: An example of a SPARQL optional pattern

SPARQL keywords

The four SPARQL keywords used for the actual data extraction are:

SELECT - is equivalent to the SQL SELECT, meaning that out of the full set
retrieved elements, only the specified values are returned.

CONSTRUCT - Creates a sub-graph consisting of the triples from those found in
the WHERE clause. CONSTRUCT is often used to make implicit information
explicit.

ASK - Asks whether a graph contains a specific pattern. Returns true or false only

DESCRIBE - Describes a specific node. There is no specification for how a node
should be described in the SPARQL 1.1 standard. It can therefore be some-
what unreliable when working with remote Triplestore, unless the Triplestore
documentation has been read

In addition to the query patterns listed above, SPARQL also provides keywords for
arranging the output in various ways:

ORDER BY ?value - Orders the result by ?value in ascending(default) or de-
scending order

GROUP BY ?value - Groups results by ?value

12 Chapter 1. Project Description

LIMIT k - Returns the first k entries or less of the result set

OFFSET k - skips the first k results. Often used in combination with LIMIT

PREFIX - Defines prefixes for URIs for later use in the query. This is done in order
to make queries shorter and easier to read for humans.

The last group of SPARQL keywords are used for expanding or limiting the amount
of data fetched when using the keywords in the uppermost listing.

FILTER - Removes entities which fulfill the requirements in the FILTER expression

UNION - Is used in disjunction queries and merges two result sets.

OPTIONAL - Is used if properties belonging to a group of entities that are non-
uniform.

The following examples highlight usage of the terms presented so far. As an
example, a Turtle file which can be seen in listing 1.5, represents people and their
family relations, those being their names, gender and parents. An RDF sub-graph
can be constructed as well as data, which was initially implicit, can be made explicit
using CONSTRUCT. An example of the use of the CONSTRUCT keyword can be
seen on listing 1.6, which will construct an RDF graph showing the grandfather and
grandchildren in the family described in the Turtle file.

Listing 1.5: Turtle file describing human relations

@prefix : <http://www.snee.com/ns/demo#> .

:jane :hasParent :gene .
:gene :hasParent :pat ;

:gender :female .
:joan :hasParent :pat ;

:gender :female .
:pat :gender :male .
:mike :hasParent :joan .

1.2. The Semantic Web 13

Listing 1.6: SPARQL Construct query

PREFIX : <http://www.snee.com/ns/demo#>

CONSTRUCT { ?p :hasGrandfather ?g . } WHERE
{

?p :hasParent ?parent .
?parent :hasParent ?g .
?g :gender :male .

}

An example of the output from the CONSTRUCT query on listing 1.6 can be
seen on fig. 1.7

Figure 1.7: An example of inferring implicit data to make it explicit

As mentioned above another use for the CONSTRUCT feature is to create an
RDF sub-graph which can be constructed from a given result set. An example of
this usage can be seen on listing 1.7. With this CONSTRUCT query it is possible
to construct a sub-graph with subjects and objects with the corresponding literals
“Einstein”, “Bohr” and “Faraday” only, but with any given predicates between these
nodes.

14 Chapter 1. Project Description

Listing 1.7: SPARQL CONSTRUCT query for creating a sub-graph

PREFIX : <http://stackoverflow.com/q/20840883/1281433/>

CONSTRUCT {
?s ?p ?o

}
WHERE
{

VALUES ?s { :"Einstein" :"Bohr" :"Faraday"}
VALUES ?o { :"Einstein" :"Bohr" :"Faraday"}
?s ?p ?o

}

The ASK query is used when a boolean result is required. The example of such
a query taken from the book: Learning SPARQL by Bob Ducharme[11, p.119], can
be seen on listing 1.8. The output from the query shown on listing 1.8 will be either
true or false depending on whether a subject s has an object city with an invalid
URI

Listing 1.8: SPARQL ASK query return boolean results

PREFIX dm: <http://learningsparql.com/ns/demo#>
ASK WHERE
{

?s dm:location ?city .
FILTER(!(isURI(?city))) .

}

The FILTER keyword is used when wishing to filter out specific items from a
result set. An example of the use of the FILTER keyword can be seen in listing 1.9.
This query will select all entities of cities in Texas with a population larger than
50.000. In addition it will select the metro population, which is a sum of the popu-
lation of adjacent cities, if it exists. Besides the filtering the query also contains the
keyword ORDER BY, which will put the resulting data set in a given order. In this
case the cities are ordered in descending order according to population size.

1.2. The Semantic Web 15

Listing 1.9: SPARQL Optional Query with filter and order by

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX dbp: <http://dbpedia.org/ontology/>
4
5 SELECT * WHERE {
6 ?city rdf:Type

<http://dbpedia.org/class/yago/CitiesInTexas>;
7 ?city dbp:populationTotal ?popTotal .
8 OPTIONAL (?city dbp:populationMetro ?popMetro) .
9 FILTER (?popTotal > 50000)

10 }
11 ORDER BY desc ?popTotal

The GROUP BY keyword is used in SPARQL in the same way as it is used in
SQL, namely for grouping certain items together. This example of a query using
the GROUP BY taken from the book: Learning SPARQL by Bob Ducharme[11,
p. 94], can be seen on table 1.1. This query will select all items matching a given
description. The amount value contained in the triples with the given description
name will be summed together and stored in a variable called amount with the use
of the SUM function summing all the values from e:amount and storing them in the
variable mealTotal with the use of the AS function. The SUM and AS functions
are redundant to the corresponding functions in SQL. When the given data has been
processed it will be grouped by description showing the mealTotal value correspond-
ing to each group. As an example of an output running the query in listing 1.10 can
be seen on table 1.1.

Listing 1.10: SPARQL query using the GROUP BY keyword

PREFIX e: <http://learningsparql.com/ns/expenses#>
SELECT ?description (SUM(?amount) AS ?mealTotal)
WHERE
{

?meal e:description ?description ;
e:amount ?amount .

}
GROUP BY ?description

16 Chapter 1. Project Description

description mealTotal
dinner 84.80
lunch 30.58

breakfast 17.50

Table 1.1: Output from the SPARQL query from listing 1.10.

The LIMIT keyword is used when wanting to limit the result set to a given
amount of triples, meaning that if you set LIMIT to be equal to 20, only the 20 first
results will be displayed for you.

1.3 Problem Statement
As it is not feasible for laypeople to effectively navigate the Semantic Web with the
current set of visualisation tools, the project group puts forth the following problem
statement:

How to develop a graph visualisation application with tools which assist end-users
with the discovery of relevant information from Semantic Web sources

As this application will be used for research purposes, the developed code needs to
be open-sourced.
The resulting application can be broken down into a set of sub-requirements

File Format and Triplestore Support
The application should be able to load and save models from widely used graph file
formats, such as:

• RDF/XML

• N3

• Turtle

• N-Triples

• OWL

• OWL 2

In addition to accepting data from common file formats, the application should also
be able to interface with Triplestores for storage and retrieval of triples. This inter-
face should be accessible both programmatically, as well as through human-entered

1.4. Existing Solutions 17

SPARQL queries.

Graph Visualisation
The application should be able to render large complex graphs, containing nodes,
edges and literals. Support for colour coding of edges and nodes/literals is necessary
in order to produce more human-readable graphs. It should be possible to spawn
context menus from objects on the graph, in order to manipulate or explore the
graph. Graphs should be exportable into common image formats.

Intelligent Exploration Tools
The application should assist a user in exploring and searching through complex
RDF-Graphs. The application should allow a user to filter out unwanted relations
as well as provide a method for specifying topics of interest. The results of these
explorations should be visualisable.

1.4 Existing Solutions
In order to speed up development, it will be desirable to make use of already existing
solutions, although some modifications most likely will be needed.

1.4.1 Gruff

Gruff[36] is a closed-source graph visualiser application, developed by Franz Inc.
Gruff is used for visualisation of sub-graphs extracted from AllegroGraph, a Triple-
store also developed by Franz Inc. As Gruff does not fulfill the requirements of being
open-sourced and applicable to multiple types of triple stores, it is not considered a
valid candidate for further exploration.

1.4.2 VisualRDF

This application was developed by Alvaro Graves[19] and published on GitHub as a
visualisation tool for RDF graphs. VisualRDF shows simple RDF-graphs in a web-
site, and allows a user to drag and move nodes in the graph. As there has been
no updates on this project for more than six months, the documentation is poor,
and the implementation very rudimentary, this application is not consideration as a
candidate for the project solution.

1.4.3 RDF GRAph VIsualization Tool

The RDF GRAph VIsualization Tool (RDF-Gravity)[17] tool is modelled on top of
Java Universal Network/Graph Framework (JUNG) a Java library, which provides
an Application Programming Interface (API) for visualisation data. RDF-Gravity vi-
sualiser both RDF graphs and OWL Web Ontology Language graphs. RDF-Gravity
has a GUI which gives the user the option of merging multiple files into one graph,

18 Chapter 1. Project Description

as well as offering zoom, rendering and selection of areas in a graph. The software
also provides the user with a selection of filtering tools for simplifying views of a
given graph, as well as providing the user with full text search, with the use of an
RDF Data Query Language (RDQL). This tool will would fulfill most of the require-
ments stated in the requirement specifications, but the license is not open-source and
RDF-Gravity is therefore not a candidate.

1.4.4 Welkin

Welkin[46] is a graph visualisation tool used to find the density of very large graphs,
and does not show the labels of properties. Nor does it enable users to extract single
nodes or paths, which is a requirement for this project solution. Welkin is therefore
not a candidate for further work.

1.4.5 GraphHelper

As no suitable application to expand upon was found, the research group has decided
to create an application in order to address the requirements set forth in section 1.3.
This application will be named GraphHelper, and in the following sections APIs and
frameworks which might speed up development will be discussed.

1.5 Language Selection
In order to make an informed choice with regard to programming language for the
project, the following requirements are set forth:

1. Open Source - As the project product will be used for research purposes, an
open source requirement will ensure that modifications and expansions can be
implemented, without legal issues arising.

2. Multi-platform - The product should be executable across all major operating
systems: Windows, Mac OS and Linux.

3. Good library ecology - Implementing every feature from the bottom up, would
be exhaustive. Good open source libraries will speed up development, and is
library ecology is therefore an important aspect

As the set of programming languages available is incredible large, we limit the scope
to three of the major open source object oriented languages, namely Java, Python
and C#

1.5.1 Java

Java[50] is one of the major object oriented programming languages today. It is
open source, and is supported on all the major operating systems through the Java

1.5. Language Selection 19

Virtual Machine (JVM). Java has a strong open source community attached, which
is reflected in the wide range of libraries available to developers.

For graph manipulation, there are several minor projects that handle either pars-
ing of serialized files, or performing inferences, but the two major projects within the
field of RDF-graphs, are the Jena-[37] and Sesame[49] frameworks. Jena and Sesame
are open source frameworks, aimed towards providing tools for the task of working
with RDF-graphs. Both frameworks contain tools for parsing and serializing graphs
in multiple different formats, as well as in-memory Triplestore for manipulations of
graphs. SPARQL queries can be performed on in-memory models with both Jena
and Sesame as well as against web-based endpoints.

For visualisation of graphs, Java has a wide range of libraries, some more devel-
oped than others. As interaction with the graph is necessary, we will ignores libraries
which generate static images of graphs, and instead focus on those libraries which
provide access to elements in a plotted graph. Most of the major frameworks, such
as JGraphx[21], JUNG[22] and Prefuse[24] allow for the creation of Swing frames
which can be embedded into graphical interfaces. Each of the three libraries men-
tioned support a various kinds of graphs, including directed, as well as methods for
automatic placement of nodes.

1.5.2 Python

Python[13] is an open source programming language, that supports a number of
programming paradigms, including object oriented. Python has native support in
most Linux distributions, and has various implementations on Microsoft Windows
and Apple Mac OS. Python has several libraries aimed at working with RDF-graphs.

RDFLib[26] is one of the major RDF-graph libraries, containing a host of tools.
RDFLib can parse common graph formats, such as RDF/XML, N3, Turtle, TriX
and more. SPARQL queries can be executed against in-memory models, as well as
against certain external triplestores. RDFLib also has support for storing triples
within common relational databases, such as MySQL, PostgreSQL and SQLite.

RDFlib has support for OWL 2’s RL profile, extending normal RDF-graphs with
OWL triples, as well as adding support for OWL serialisation format. Reasoning
across OWL sets can be performed using FuXi[15]

There are several libraries for visualising various types of graphs. NetworkX[23]
allows not only for visualisation, but also contains common network analysis tools,
such as shortest path, betweenness and centrality algorithms. igraph[35] is another
graph library, for Python, R and Ruby. As with NetworkX, igraph contains a set of
tools for network analysis as well as visualising.

1.5.3 C#

C# is a relatively young programming languages, which supports imperative, ob-
jective and functional programming paradigms. C# has native support on most
Windows platform, with support for Linux and Mac OS via The Mono Project[55].

20 Chapter 1. Project Description

For graph manipulation, Jena is available as a ported version for .NET[14]. The
.NET version of Jena was last updated 19.12.2010, is therefore by no means state-of-
the-art. Sesame has also been ported to .NET and has been named dotSesame[49].
Dotsesame is a significantly more recent porting of Sesame, with the latest version
being generated late Jan. 2014.

C# does not have as wide a selection of graph visualisation frameworks as
Java or Python. However GraphX[12], Microsoft Automatic Graph Layout[47] and
Graph#[51] all offer the basic visualisation, layout and manipulation tools necessary
for this project.

1.5.4 Decision

Looking at the three requirements set forth for selecting a language, all three lan-
guages meeting requirement 1 and 2. While C# does have ported versions of Sesame
and Jena, there is some concern regarding rates of updates and support, especially
when considering the pace at which Semantic Web applications and frameworks are
evolving. RDFLib, Jena and Sesame all have sizeable groups of both users and
developers, making both Java and Python viable options with regard to framework
selection. As the project group already has experience with Java, the implementation
language will be Java.

1.6 Existing Libraries & Frameworks
This section describes existing libraries, frameworks and APIs, which could at least
partially solve the problem stated for this project. The section is divided into existing
solutions for the logical data management of the problem stated for this project and
the visualisation of semantic data.

1.6.1 RDF Data Management

In this subsection the research group has looked at existing solutions for solving the
processing of RDF triples and graphs in order to find the most appropriate tools
for fulfilling the requirement specifications for the logical data management of the
project solution. The two existing solutions described in this subsection are. The
Jena Framework and The OpenRDF Sesame Framework. These two frameworks have
been chosen because they are open-sourced, they are still supported and the software
has been developed on so it has reached an appropriate maturity. This means that
most bug issues have been solved and the documentation makes the implementation
of these frameworks relatively simple.

Jena Framework

The Jena framework is written in Java, with Jenas architecture diagram shown in
fig. 1.8. The major three components, RDF API, Ontology API and SPARQL API

1.6. Existing Libraries & Frameworks 21

are the core APIs of Jena. In addition to these components, Jena has parsers in order
to read and write various RDF file formats. Jena supports several forms of model
management, from in-memory models, to simple disk-based Triplestores(TDB) and
web-interfaceable Triplestores(Fuseki).

Figure 1.8: The Jena Architecture [41]

Jena RDF API
The Jena RDF API can be used to create and manipulate RDF graphs with the use
of a class called Model. This class can be used to create the nodes and edges, which
makes up a graph. The Jena RDF API can be reached through Java application
code alongside the Jena OWL Web Ontology Language API and the Jena SPARQL
API. This way SPARQL queries can be invoked and OWL Web Ontology Language
inferences can be drawn on a given model in the same file.

Jena Ontology API
The Jena Ontology API is used for extracting previously unknown knowledge from
the triples in a given RDF graph. Since this API will not be used in this project
solution, this API will not be explained any further.

Jena SPARQL API

22 Chapter 1. Project Description

As shown in the architecture diagram in fig. 1.8 the Jena SPARQL API can be
invoked from the command-line through pre-compiled executables, as well a through
the Java API. This means that a SPARQL query can be run directly on the model
from the Jena RDF API.

Inference API
The Jena Inference API is a generic inference subsystem, to which a range of inference
engines or reasoners can be plugged in. These types of engines are used to extract
additional information out of an RDF graph in addition to the information extracted
with classes from the APIs from the upper most layers. Since this API is not used
in the project solution, this API will not be explained any further.

Storage API
The Jena Storage API provides the interface for storing RDF triples. The file formats,
which are supported for storage and fetching through the Jena Storage API include:

• RDF/XML

• Notation 3

• Turtle

• OWL Web Ontology Language

• OWL 2 Web Ontology Language

When fetching triples from an end-point triple store such as DBpedia it will often
suffice to store these triples in a Model in-memory. But if the set of triples is to big to
be stored in-memory, the Jena Storage API also provides other storage abstractions
such as SDB, TDB and if needed, custom made databases.

Fuseki
Besides the APIs just described, Jena also provides software for setting up a RDF
Triplestore server. This software is called Fuseki and it can be accessed through the
application code made for the three uppermost APIs in the Jena Framework as well
as in a stand-alone customized Java application.

OpenRDF Sesame Framework

The OpenRDF Sesame Framework is like the Jena Framework written in Java. As
can be seen on fig. 1.9 the APIs are similar to the ones in the Jena architecture,
only with the layers in reverse order. In this section the components making up The
OpenRDF Sesame Framework will be described briefly.

1.6. Existing Libraries & Frameworks 23

Figure 1.9: The OpenRDF Sesame Architecture

RDF Model
In the RDF Model, which is the lowest layer in the OpenRDF Sesame Framework,
as can be seen on fig. 1.9, all basic RDF entities and methods are defined. The
entities include URIs, blank nodes, literals and statements while the methods include
processing of models and their entities.

Storage And Inference Layer API
As the name implies the Storage And Inference Layer (Sail) API is used for storing
files or to extract additional information out of an RDF graph. The storage abstrac-
tions can be either in-memory or disk-based. The Sail API supports the same file
formats as the Jena Storage API.

RDF/IO
RDF/IO (Rio) contains parsers for reading in and writing out RDF statements into
and out of files.

HTTPClient API
This API is used for communication with an HTTP server which is not necessarily
a part of the Sesame Framework. The HTTPClient API can therefore be used for
generic HTTP communication with an external server Triplestore.

Repository API
This API It contains methods for uploading, manipulating, quering and processing
data. The Repository API is implemented in a number of different classes such as
the SailRepository and the HTTPRepository. The SailRepository translates calls into
Sail objects while the HTTPRepository will process the calls into HTTP objects.

HTTP Server
The HTTP Server is in the top of the software layer of the OpenRDF Sesame Frame-
work. In the same way that the Fuseki server can be accessed through application
code in the Jena Framework, the HTTP Server for The OpenRDF Sesame framework
can be accessed through application code and as well as through the Repository API
and directly through the HTTPClient.

24 Chapter 1. Project Description

1.6.2 Graph Visualisation

There are several open-source graph visualisation framework available. In this section
the most relevant frameworks will be discussed, although this is by no means a
thorough analysis of all frameworks.

JGraphX Framework

The JGraphX Framework[21] is a Java Swing library originally developed under
the name JGraph, aimed towards JavaScript. JGraph was forked and renamed to
JGraphX under a Berkeley Software Distribution license. JGraphX offers a rich set
of features such as:

• Automatic layout algorithms

• Event-based actions

• Context menu support

• Various styles for creation of custom look and feel of graphs

JGraphX is still actively being developed on, and would be an idea candidate for
this project. The framework supports color coding for edges, nodes and literals and
enables spawning of context menus from objects on the graph. It also supports
exporting of graphs in a range of file formats(PNG, JPEG, BMP and more).

JUNG

JUNG[22] is not only a graph visualisation framework, but also contains tools for
network analysis such as calculating flow-rates and shortest-paths. JUNG is written
in Java and has support for

• Context menu support

• Automatic layout algorithms

• Event-based actions

• Custom rendering through overwriting of object forms

Graphs can be exported to images to most common image formats in various qual-
ities. JUNG has seen limited development. At the time of writing, the last version
was published 29-05-2013, which does produce some concern about the longevity of
JUNG.

1.7. Frameworks Selected 25

Prefuse

Prefuse[24] is a visalisation framework for a wide range of applications, such as
tables, graphs, trees and more. It is licensed under Berkeley Software Distribution
and supports the following features

• Context menu support

• Automatic layout algorithms

• Event-based actions

• Various styles for creation of custom look and feel of graphs

Prefuse uses Swing components and contains a host of more advanced features such
as animation and integrated search. Prefuse has seen limited development in recent
time.

1.7 Frameworks Selected
After exploring the existing libraries, frameworks and APIs in this section, the choice
has fallen upon the Jena framework for handling RDF data and JGraphX framework
has been chosen for visualisation. They are both open-sourced and still actively being
developed on. The Jena Framework supports all file formats listed in the sub require-
ments in section 1.3, as well interfacing with Triplestores both programmatically and
through human-entered SPARQL queries.

JGraphX Framework fulfills the sub-requirements of being able to render large,
complex graph, containing nodes edges and literals. The framework also supports
color coding of edges, nodes and literals, as well as enabling spawning of context
menus from objects on the graph. JGraphX also has support for exporting graphs
as images. While the frameworks selected fulfill a good deal of the sub requirements,
the problem of assisting a user in exploring and searching for specific graphs or paths
based on topics of interest as well as these features remains unsolved, as far as existing
libraries, frameworks and APIs are concerned. The solution to these problems will
therefore be the focus of a large part of this project.

26 Chapter 1. Project Description

Chapter 2
Algorithms, Design & Implementation

2.1 Introduction
This chapter describes how GraphHelper is implemented. Section 2.2 presents the
software architecture designed, as well as the rational behind it. Sections 2.3 and 2.4
describes how Jena and JGraphX is used throughout GraphHelper. Section 2.5 ex-
plores the algorithms implemented within GraphHelper for intelligent searching, as
well as for efficient extraction of sub-graphs from remote endpoints.

2.2 Software Overview
Software is often developed and expanded upon at incredible rates, as new features
are added and old bugs are corrected, especially within areas where active research is
being undertaken. For this project, the Jena framework was selected as the backbone
for RDF data storage and manipulation. Due to the rapid development of frame-
works, it might later be necessary to switch to a different framework in order to fulfill
new requirements. If Jena is directly integrated into the software developed, with
hooks going to various GUI components, it will be a prohibitive task to track down
and replace all these connections.

In order to facilitate changes in the fundamental components of the software, a
modular message passing class based design has been designed. An abstract entity
diagram of the software created can be seen in fig. 2.1

Please note that fig. 2.1 shows only a simplified overview of the software, illus-
trating only major components of the design. Blue components have knowledge of
Jena where red components have knowledge of JGraphX. Green elements are purely
Swing-based and have no knowledge of either framework.

MainGUI Facilitates communication between GUI components and DataStorage,
and is the main GUI entity. MainGUI is decoupled from Jena by way of DataS-

27

28 Chapter 2. Algorithms, Design & Implementation

Figure 2.1: Simplified entity diagram for GraphHelper

torage and has no knowledge of the underlying framework used. MainGUI is
also decoupled from JGraphX via TabMaster.

DataStorage An accesspoint betweenMainGUI and models and endpoints. DataS-
torage exposes a set methods for interacting with the models and endpoints
through a predefined interface. DataStorage can have zero or more LocalGraphs
and GenericEndpoints. As DataStorage handles some direct interaction with
models, such as loading models from files, DataStorage is directly connected
with Jena. The class diagram for DataStorage can be found in section E.6

LocalGraph Contains one RDF graph loaded from a local file. LocalGraph can be
interacted with using methods from the interface DataSourceInterface. Local-
Graph and its interface class diagram can be found in section E.5

GenericEndpoint Contains contact information for one remote Triplestore SPARQL
endpoint, such as Open Link Virtuoso. LocalGraph and GenericEndpoint im-
plements the same interface, and as such allows for the same operations, al-
though their behaviour can be different. GenericEndpoint and its interface
class diagram can be found in section E.5

TabMaster A custom JTabbedPane which controls interactions with the visualisa-
tions and the SPARQL result table.

VisGraph A wrapper around the graph, component and settings used by JGraphX.
VisGraph is only interacted with through TabMaster through the interface
GraphTab. VisGraph and its interface class diagram can be found in section E.2

Interesting Graph Contains graph, component, settings and table used by JGraphX.
Interesting Graph is only interacted with through TabMaster. Interesting
Graph and its interface class diagram can be found in section E.2

2.3. Jena Implementation 29

Interesting Path Consists of several classes handling graph, component and set-
tings for visualisation, as well as a table to list paths. The class diagram for
Interesting Path can be found in section E.2

DataStorage, LocalGraph and GenericEndpoint all use Jena, and are therefore
considered as one module, in that all three would have to be rewritten in case of a
change of framework. In order for the decoupled communication between DataStor-
age and MainGUI to remain consistent, the implementation uses strongly defined
enums and custom classes for passing messages and data. LocalGraph and Generi-
cEndpoint both implement a common interface in order to allow for future flexibility.
Some triplestores already provide custom connectors for Jena, such as the Virtuoso
Jena Provider [60], and it seems reasonable that these providers will provide better
programmability and performance, when compared to GenericEndpoint.

The communication between MainGUI and the JGraphX components is much
less extensive, and therefore there is only limited homogeneity in interfacing between
these entities. Either of the three visualisation components could be replaced with
only relative little impact on the rest of the application.

The following sections describe implementation of Jena and JGraphX in more
details.

2.3 Jena Implementation
There are several ways to represent an RDF container in Jena. The most common
way is to use the Jena Model interface, and generate the model using the static
methods of ModelFactory. ModelFactory can create RDF, RDFS as well as other
models. The Model interface defines a set of methods enabling the user to store
nodes, properties and literals representing an RDF as well as a selection of methods
for interacting with the model. The storage of RDF models can be abstracted to
in-memory data structures, disk based persistent stores and inference engines. If
there is a need to create custom based data-abstractions for storing triples, the Jena
Graph interface will be more appropriate, as it has a simpler API than the Model
interface, making it easier to implement custom based RDF stores. In most cases
the default model from ModelFactory will be sufficient and will here after be referred
to as the model.

In a model nodes can be represented as either resources, literals or blank nodes.
In Jena blank nodes are referred to as either bNodes or anonymous node. The
Jena interface called Resource represents regular URI resources, bNodes as well as
properties, while the Jena Literal interface represents literals. Both interfaces share
the same interface RDFNode which can therefore represent all four types of nodes.

As mentioned in section 1.2.1, RDF graphs can be broken down into triple state-
ments, each of which contain a subject, predicate and object. One triple is represented
in Jena with an instance from the Statement interface for named graphs. The subject
in a triple can only be represented by a resource, as only blank- and URI nodes can

30 Chapter 2. Algorithms, Design & Implementation

be subjects, while an object can be any type of RDFNode. The Jena Property class
is a subclass of the Jena Resource class, and represents the predicates between the
subjects and objects in the triple. The elements of a triple can be extracted from
the Statement object with the following three methods:

• getSubject() will return an instance of type Resource

• getObject() will return an instance of type RDFNode

• getPredicate() will return an instance of type Property

Section 2.3.1 describes the functionality of the data management, and in sections 2.3.2
and 2.3.3 we shall go into more detail with how Jena is used in GraphHelper.

2.3.1 Data Management

DataStorage is the entry point for all interactions between the GUI and the under-
lying RDF data. DataStorage implements the interface DataRepositoryInterface for
which the class diagram can be found in section E.6. All models are stored in a
hash map which maps a model name to DataSourceInterfaces. A large proportion
of DataStorage’s public methods contains very little logic, in that DataStorage for-
wards the request to the appropriate model, and returns the results to the caller.
DataStorage only implements methods which act between models, or which are not
directly related to any model. Listing 2.1 shows one of these method, getQueryType,
which is not directly related to any model:

2.3. Jena Implementation 31

Listing 2.1: getQueryType determines SPARQL query type

1 public SPARQLExpressionType getQueryType(String _query) {
2 try {
3 Query query = QueryFactory.create(_query);
4 if (query.isSelectType()) {
5 return SPARQLExpressionType.SELECT;
6 } else if (query.isConstructType()) {
7 return SPARQLExpressionType.CONSTRUCT;
8 } else if (query.isAskType()) {
9 return SPARQLExpressionType.ASK;

10 } else if (query.isDescribeType()) {
11 return SPARQLExpressionType.DESCRIBE;
12 } else if (query.isUnknownType()) {
13 return SPARQLExpressionType.UNKNOWN;
14 } else {
15 return SPARQLExpressionType.ERROR;
16 }
17 } catch (Exception e) {
18 return SPARQLExpressionType.ERROR;
19 }
20 }

getQueryType can determine the type of a SPARQL query as well as determine
whether the query is malformed. This method is used by the GUI in order to invoke
the appropriate type of method on a model, as well as to stop the query process early
if the expression entered is invalid.

In addition DataStorage handles creation, manipulation and destruction of Data-
SourceInterfaces objects. For endpoints this is relatively simple, as only the name
and Uniform Resource Locator (URL) need be provided. For LocalGraph a valid
graph file is loaded using Jena’s FileManager, as seen in listing 2.2

32 Chapter 2. Algorithms, Design & Implementation

Listing 2.2: A file is loaded using FileManager

1 public ImportModel ImportModel(String _path, String
_modelName, FileFormat _format) {

2
3 Model model = ModelFactory.createDefaultModel();
4 InputStream in = FileManager.get().open(_path);
5 String format = ...;
6
7 if (in == null) {
8 return ImportModel.FileNotFound;
9 } else {
10 try {
11 model.read(in, null, format);
12 in.close();
13 LocalGraph newGraph = new LocalGraph(model);
14 if (this.myModels.containsKey(_modelName)) {
15 this.myModels.remove(_modelName);
16 this.myModels.put(_modelName, newGraph);
17 } else {
18 this.myModels.put(_modelName, newGraph);
19 }
20 myModels.put(_modelName, newGraph);
21 } catch (Exception e) {
22 return ImportModel.FileParseError;
23 }
24 return ImportModel.Success;
25 }
26 }

Listing 2.2 creates a default model and provides the FileManager with a file
path. Lines 11-20 loads the data into the model and adds the model to myModels,
overwriting any model of the same name already loaded.

In the following sections, more details will be provided about local file models
and endpoints.

2.3.2 Local File Models

RDF graphs loaded from the various serialization formats are stored in GraphHelper
as LocalGraph objects, the class diagram for which can be found in section E.5. A
graph is loaded into a Jena model and stored as the private attribute myFullModel.
In addition to the model, LocalGraph contains attributes such as maximum number

2.3. Jena Implementation 33

of nodes to be returned on visualisation calls, as well as the current center node.
LocalGraph implements the interface DataSourceInterface, which dictates a large
set of methods to be implemented, some of which are not relevant to Localgraph.
Methods such as verifyConnection and get/setTimeout always return a default value.

SPARQL Support

SPARQL expressions are supported for the four query types(see section 1.2.2), by
way of four methods. Listing 2.3 shows the implementation for SPARQL construct
calls

Listing 2.3: Construct queries return a model upon successful completion

1 @Override
2 public Model performConstruct(String _query) throws

QueryExceptionHTTP
3 {
4 Model newModel = null;
5
6 Query query = QueryFactory.create(_query);
7 QueryExecution qExe =

QueryExecutionFactory.create(query,
this.myFullModel);

8
9 newModel = qExe.execConstruct();

10 return newModel;
11 }

Lines 6-7 creates first a query object, and secondly a query plan to be executed.
Said plan is executed in line 9, and if successful the resulting model is returned from
the function. A model generated by construct queries are assigned a new name by
DataStorage and is then ready for a user to work with.

Visualisation

A LocalGraph can be visualised if it already has a centre vertex, or if one is provided
as part of the visualisation call. When CenterOn is called on a LocalGraph, it will
perform a Breadth-First-Search (BrFS) going outwards from the centre node, as
shown in listing 2.4

34 Chapter 2. Algorithms, Design & Implementation

Listing 2.4: CenterOn performs BrFS

1 public VisualiseWrapper CenterOn() {
2 ...
3 while (!myQ.isEmpty()
4 && size(subModel) < maxVertices) {
5 RDFNode center = myQ.remove();
6 CenterOnProcessNode(processedNodes, subModel, center,

myQ);
7 }
8 myStatements = getStatements(subModel);
9 result = new VisualiseWrapper(myStatements,

VisualiseStatus.Success);
10
11 return result;
12 }

Listing 2.4 builds a temporary model around the initial node, by processing each
neighbour in an outwards fashion. Each node in the queue is processed as shown in
listing 2.5

2.3. Jena Implementation 35

Listing 2.5: Each new node is processed in order to find new statements and frontier
candidates
1 private void CenterOnProcessNode(...) {
2
3 StmtIterator stmts;
4 if (!_c.isLiteral()) {
5 stmts = myFullModel.listStatements(_c.asResource(),

null, (RDFNode) null);
6 while (stmts.hasNext() && size(_m) < maxVertices) {
7 Statement stmt = stmts.next();
8
9 if (!_m.contains(stmt)) {

10 _m.add(stmt);
11
12 if (!_p.contains(stmt.getObject())) {
13 _p.add(stmt.getObject());
14 _q.add(stmt.getObject());
15 }
16 }
17 }
18 }
19 ...
20 }

If the current node is not a literal, a statement iterator is created in line 5 which
fetches all statements where _c is subject. Wildcards in Jena are denoted with null,
and the triple patterns to look for is written as

<_c, *, *>

Lines 6-17 iterates across the statements found, and if a statement has not been
processed before, it is added to the temporary model. If the object of the statement
has not been processed either, it gets added to the frontier. Listing 2.5 is abridged,
as the same steps are performed for statements where _c is the object.

2.3.3 Endpoints

The GenericHTTPEndPoint class represents a single remote Triplestore, the class
diagram of which can be found in section E.5. The Triplestore is identified by a
URL attribute, which is used extensively throughout the class. As there is no local
model to directly access, all interactions with the Triplestore have to be performed via
SPARQL expressions. Jena supports both plain HTTP calls, as well as Simple Object

36 Chapter 2. Algorithms, Design & Implementation

Access Protocol (SOAP)-based calls. As with LocalGraph, GenericHTTPEndPoint
implements the interface DataSourceInterface which dictates a number of methods
to be implemented. The simplest method, verifyConnection, simply verifies that the
Triplestore in question is available. Listing 2.6 shows the implementation

Listing 2.6: verifyConnection asks a Triplestore whether it contains anything

1 public boolean verifyConnection() {
2 String q = "ASK { }";
3
4 try {
5 Query myQuery = QueryFactory.create(q);
6 QueryExecution qExe =

QueryExecutionFactory.sparqlService(this.myURL,
myQuery);

7 qExe.setTimeout(myTimeout);
8 boolean result = qExe.execAsk();
9 qExe.close();
10 return result;
11 } catch (Exception e) {
12 return false;
13 }
14 }

verifyConnection simply asks a Triplestore whether it contains any information.
If it does not, or if an exception was encountered, it returns false. When working
with endpoints, it is necessary to set time-outs in order to prevent remote calls that
never finish. Line 7 sets the time-out to a value specified by GenericHTTPEndPoint,
which per default is set to 30 seconds.

Visualisation

In order to create a visualisation around an initial node, GenericHTTPEndPoint
needs to create a sub-graph in memory. Visualisation is therefore a two-step process,
where a sub-graph is constructed, and then reduced to fit the maximum number of
nodes specified. Listing 2.7 shows the first SPARQL expression executed

2.3. Jena Implementation 37

Listing 2.7: Constructs a sub-graph from all the neighbours of %s

1 CONSTRUCT {
2 # k = 1
3 <%s> ?p11 ?o11.
4 ?s12 ?p12 <%s>.
5 }
6 WHERE {
7 # k = 1
8 <%s> ?p11 ?o11.
9 ?s12 ?p12 <%s>.

10 }

The variable %s is the center node. If the result of listing 2.7 is less than the
maximum number of nodes specified, the model is expanded up to two times with
the next step of neighbours. If a time-out happens during expansion, the previously
retrieved model is used. As the sub-model can be substantially larger than the
maximum number of nodes, the final model is reduced using a BrFS algorithm.

Jena, Endpoints and bNodes

During development of visualisation-features for endpoints it was noted that Jena
was unable to fetch neighbours of blank nodes, a feature that worked as expected for
local models. After further investigation it was discovered that Jena does not use
the ID assigned to a blank node by a Triplestore, but instead creates a new unique
ID within the current graph. If a blank node is made a focal point, the ID sent to
a Triplestore has no meaning within the Triplestores scope. This is not a flaw in
Jena, but rather a design decision. The ID provided by a Triplestore to a blank node
need not be consistent between SPARQL calls, as described by Jena contributor Rob
V[25].

And even with CONSTRUCT queries the situation is similar, almost
all RDF formats say that a blank node label is only scoped to the doc-
ument. So if I have _:id and _:id in two separate requests semantically
speaking I have two different blank nodes.

Regardless of the format you also have the issue that some syntaxes
are quite restrictive in what characters can appear in a blank node label so
even if a store does use its internal identifiers (which is rare) it will often
have to escape/encode them in some way to be valid syntax. This then
requires you to be aware of each endpoints escaping/encoding scheme (if
it exposes identifiers at all) and how to translate it into an actual ID.

38 Chapter 2. Algorithms, Design & Implementation

Directly addressing blank nodes located in Triplestores therefore seems problematic,
and could invoke odd behaviour depending on the endpoint addressed. Blank nodes
have therefore been made un-selectable for centering within GraphHelper until a
robust method has been found for addressing blank nodes in Triplestores.

2.4. JGraphX Implementation 39

2.4 JGraphX Implementation

JGraphX is used to create all visualisations for this project. The framework[44] is
aimed towards modelling of mathematical graphs, flowcharts, process diagrams and
more. The major classes for working with JGraphX are

mxGraph - The graph object from which diagrams can be created. Contains both
object-components of the graph as well as styles.

mxGraphComponent - The Swing component that actually visualises a graph.
This class extends JScrollPane and Printable, and contains several EventHandler
sources.

mxConstants - Contains a large collection of constants, mostly focusing on style-
options and their relevant options.

mxGraphLayout - An interface from which several automatic layout algorithms
inherit.

The main interaction class is mxGraph as it is where the actual graph is manipulated.
Vertices and edges in mxGraph are classified as mxCells. Listing 2.8 shows the
insertion of two vertices and the connection of the vertices with an edge.

Listing 2.8: Creation of two vertices and an edge

1 Object parent = getDefaultParent();
2 getModel().beginUpdate();
3 try {
4 Object v1 = insertVertex(parent, null, "Vertex 1",

100, 100, 80, 30);
5 Object v2 = insertVertex(parent, null, "Vertex 2",

100, 100, 80, 30);
6 Object edge = insertEdge(parent, null, edgeData, v1,

v2);
7 } finally {
8 this.getModel().endUpdate();
9 }

Line 1 gets the top most component, namely the default parent. Objects will be
added hierarchically to the default parent, although for truly hierarchical diagrams
such as organisational diagrams elements should be added to their actual parent.
Line 2 prepares the graph for bulk transaction, temporarily disabling certain event
triggers for performance reasons.

40 Chapter 2. Algorithms, Design & Implementation

Line 3-5 creates two objects and connects them with an edge. Vertices have four
major properties:

ID - The second parameter passed is the ID assigned. If no ID is assigned one will
be generated automatically

Value - The third parameter is a value object. The object can be a simple string,
or a more complex object. If value is a complex object, the developer needs to
implement methods for correctly retrieving the value that is to be shown on
the vertex.

Position - Each vertex is assigned an initial X-Y position, where (0;0) is the top left
corner with positive X-values moving the position to the right, and positive-
Y values moving the position downwards. If the vertex is a child of another
vertex, relative positions are also possible.

Dimension - A vertex is assigned a width and height.

Edges share both ID and value with vertices, but do not have positions and dimen-
sions, but instead which vertices they are to connect. It is also possible to assign a
style to a vertex or edge upon creation(see section 2.4.2).
Line 8 ends the transaction and enables events.
In listing 2.8 the edge is given an object rather than a string as value. This object is
commonly defined as an Extensible Markup Language (XML) document, as shown
in listing 2.9.

Listing 2.9: Document created for multi-value storage

1 Document myDoc = mxDomUtils.createDocument();
2 Element edgeData = myDoc.createElement("edgeData");
3 String uri = "http://example.org/User1";
4 edgeData.setAttribute("fullURI", uri);
5 String shortURI = "User1";
6 edgeData.setAttribute("shortName", shortURI);
7 insertEdge(parent, null, edgeData, v1, v2);

When using non-string objects, it is necessary to override convertValueToString
in order for labels to show properly. Listing 2.10

2.4. JGraphX Implementation 41

Listing 2.10: convertValueToString() gets labels from complex values

1 @Override
2 public String convertValueToString(Object cell) {
3 if (cell instanceof mxCell) {
4 Object value = ((mxCell) cell).getValue();
5
6 if (value instanceof Element) {
7 Element elt = (Element) value;
8
9 if (elt.getTagName().equalsIgnoreCase("edgeData"))

10 {
11 return elt.getAttribute("shortName");
12 }
13 }
14 }
15 return super.convertValueToString(cell);
16 }

As this method can be called on many different objects within a graph, robustness
is important. Not all objects necessarily have to use complex value-objects at the
same time.

2.4.1 Automatic Layout

While the position of vertices within a graph can be configured manually, it is often
impractical to do by hand for automatically generated graphs. JGraphX offers several
automatic methods for arranging vertices based on different requirements. A subset
of these methods are shown below:

Circle - Attempts to play vertices in a circle with minimum edge distance

Organic - Organic based method where objects are pushed away from each other
based on a cooling principle. A second Fast Organic version is also avilable

Parallel Edge Arranges vertices with more than one edge. Others remain unmoved

Stack Creates a horizontal or vertical stack layout.

As only the organic method has been employed in GraphHelper, this section will focus
upon this methodology. The organic layout method in JGraphX is based on Davidson
and Harzel’s 1996 paper Drawing Graphs Nicely Using Simulated Annealing[10]. This
approach considers proper laying out of a graph as an optimisation problem, where

42 Chapter 2. Algorithms, Design & Implementation

the fitness function is a composite of several heuristics. Common components consist
of:

• Even distribution of vertices

• Uniform edge-length

• Minimise edge-crossings

• Keep vertices from coming too close to edges

Only vertices with edges are affected by the organic layout algorithm. The algorithm
is applied to the top most object, the parent object, as seen in listing 2.11

Listing 2.11: Fast Organic algorithm applied to a graph

1 mxFastOrganicLayout layout = new
mxFastOrganicLayout(this);

2
3 this.getModel().beginUpdate();
4 try {
5 layout.execute(this.getDefaultParent());
6 } finally {
7 mxMorphing morph = new mxMorphing(myComponent);
8
9 morph.addListener(mxEvent.DONE, new

mxIEventListener() {
10 @Override
11 public void invoke(Object arg0, mxEventObject

arg1) {
12 getModel().endUpdate();
13 }
14 }
15);
16 morph.startAnimation();
17 }

Line 7 applies the layout to the graph, within a graphs-transaction. An mxMor-
phing object is also applied in order to give a visually pleasing animation to the
moment of the vertices. As the mxMorphing is applied after the fast organic layout,
the mxMorphing needs to end the graph-transaction post animation.

2.4. JGraphX Implementation 43

2.4.2 Customization & Styles

JGraphX facilitates the customization of canvases, vertices, edges and more. This
section will focus on customisation of vertices and edges. JGraphX uses a system
much reminiscent of Cascading Style Sheets, in which properties and values are
defined either as a string or object, and applied to objects within a graph. Listing 2.12
shows the definition of a style as a string at the creation of a vertex.

Listing 2.12: Defining styles as strings is useful during development

1 String style = "shape=ellipse;strokeColor=ff000000;"
2 Object v1 = insertVertex(parent, null, "Vertex 1", 100,

100, 80, 30, style);

This would create a black ellipse, but defining styles as strings can quickly become
unwieldy and difficult to manage. When working with multiple complex styles, it is
better to define a new style for the graph as seen in listing 2.13

Listing 2.13: Defining a style and adding it to the stylesheet

1 Hashtable<String, Object> style = new Hashtable<>();
2 mxGraph graph = new mxGraph();
3 mxStylesheet stylesheet = this.getStylesheet();
4
5 style.put(mxConstants.STYLE_SHAPE,

mxConstants.SHAPE_RECTANGLE);
6 style.put(mxConstants.STYLE_FILLCOLOR,

mxUtils.getHexColorString(Color.yellow));
7 style.put(mxConstants.STYLE_PERIMETER,

mxConstants.PERIMETER_RECTANGLE);
8 style.put(mxConstants.STYLE_STROKECOLOR,

mxUtils.getHexColorString(Color.black));
9 style.put(mxConstants.STYLE_SPACING_LEFT, 5);

10 style.put(mxConstants.STYLE_SPACING_RIGHT, 2);
11 style.put(mxConstants.STYLE_SPACING_TOP, 3);
12 style.put(mxConstants.STYLE_SPACING_BOTTOM, 1);
13
14 stylesheet.putCellStyle("Literal", style);

In this method, the stylesheet is fetched for the current graph, and a new style

44 Chapter 2. Algorithms, Design & Implementation

is created using mxConstants which contains constants for all style options as well
as some values. It is also possible to change the default style for both vertices and
edges, by calling setDefaultEdgeStyle() and setDefaultVertexStyle() and passing the
appropriate style as a parameter.

2.4.3 Visualisation Implementation

All implementations for visualisations are contained within the package TabCon-
tainer. Figure 2.2 shows a simplified class diagram for the visualisation and support
classes. TabMaster is a customized extension of JTabbedPane and controls all inter-
actions from the outside GUI with tabs inside it. In addition to the three types of
visualisations(VisGraph, InterestingGraph and InterestingPathsGraph), TabMaster
also contains one static tab which cannot be closed. This tab is used for the results
of SPARQL queries executed else-where, and contains a JTable which displays the
results.

VisGraph and InterestingGraph both implement the interface GraphInterface,
which enforces communality between the two classes so that GraphTab can be used
as a common container. InterestingTab is used as a wrapper around Interesting-
PathsGraph and a JTable, which is listing the interesting paths found.

GraphStyles contains a set of static methods for the generation of JGraphX styles
and is shared by all three mxGraph inheriting classes.

2.4.4 VisGraph

VisGraph visualises simple searches in a flash-light-like manner, where a single vertex
is selected by a user when exploring a neighbourhood. The visualisation can be
compared to the spotlight thrown from a flash-light, in which the view is restricted
to a sphere around the centre node. The sphere area is defined based on steps from
the initial node, rather than geometric distance. For a full class diagram of the
VisGraph class, see fig. E.2. Figure 2.3 shows VisGraph displaying nodes around Sir
Tim Berners-Lee.

URI vertices are shown as blue and literals as yellow rectangles, with blank nodes
being shown as red ellipses. In order to produce a more succinct image, all URIs are
cropped to only show the sub-string following the last forward slash or hash-tag, and
literals are cropped to twenty characters. VisGraph takes collections of TripleState-
ment,(see fig. E.3), a custom class which contains a collection of triple statements as
well as meta-information about subjects, predicates and objects. TripleStatement is
used in order to decouple visualisation and data management, so that VisGraph has
no awareness of Jena and is in no way dependent on any of Jena’s data structures.

Navigation & Presentation

In order to navigate around a group, the user has several options, with the primary
option being to double-click an URI-node. This forces VisGraph to update to the

2.4. JGraphX Implementation 45

Figure 2.2: Simplified class diagram for visualisation

46 Chapter 2. Algorithms, Design & Implementation

Figure 2.3: Ten neighbours of Tim Berners-Lee in DBpedia

representation with the selected vertex as the center. VisGraph implements a custom
version of mxGraphComponent, which captures double clicks, the event-handler of
which can be seen in listing 2.14

Listing 2.14: A custom component catches double clicks and forwards to VisGraph

1 public void mouseReleased(MouseEvent e) {
2 if (!e.isConsumed() && isEditEvent(e)) {
3 Object cell = getCellAt(e.getX(), e.getY(), false);
4 if (cell != null && ((mxCell) cell).isVertex()) {
5 myGraph.CenterOn((mxCell)cell);
6 }
7 e.consume();
8 }
9 }

The same process can be invoked by right clicking an URI-vertex and selecting
Center On from the pop-up menu that appears.

2.4. JGraphX Implementation 47

Tool-tips & Menus

The user can obtain more information about a vertex in one of two ways, via tool
tips or right-click menu. Tool tips are shown when a user places the cursor over an
edge or vertex, at which point listing 2.15 is invoked

Listing 2.15: getToolTipForCell() fetches edge and vertex values

1 @Override
2 public String getToolTipForCell(Object cell) {
3 if (cell instanceof mxCell) {
4 mxCell c = (mxCell) cell;
5
6 if (c.isVertex()) {
7
8 return c.getId();
9 }

10 if (c.isEdge()) {
11 try {
12 Object value = c.getValue();
13 Element elt = (Element) value;
14 return elt.getAttribute("fullURI");
15 } catch (Exception e) {
16 return "Cell Element not found";
17 }
18 }
19 } else {
20 return super.getToolTipForCell(cell);
21 }
22 return null;
23 }

As URI vertices, blank nodes and literals all have to be unique within an RDF-
graph, their respective values are used as IDs within the VisGraph. Edges on the
other hand do not have to be unique with regard to URIs, as multiple edges can have
the same URI. IDs for edges are therefore automatically generated, and the edge
URI is stored in an XML document, which is then returned by getToolTipForCell.

VisGraph implements three standard Swing interfaces:

PopupMenuListener - Prototypes for events triggered when a menu appears or
disappears

48 Chapter 2. Algorithms, Design & Implementation

MouseListener - Prototypes for events triggered by mouse movement and clicks

ActionListener - Prototype for action events

VisGraph builds five custome menus to be triggered on vertex, blank node, literal,
edge and background. When a user clicks within an area controlled by VisGraph,
listing 2.16 is triggered

Listing 2.16: mouseClicked() handles mouse clicks for right-click menus

1 @Override
2 public void mouseClicked(MouseEvent e) {
3 if (SwingUtilities.isRightMouseButton(e)) {
4 JScrollPane pane = ((JScrollPane) myComponent);
5 int vertOffset =

pane.getVerticalScrollBar().getValue();
6 int horOffset =

pane.getHorizontalScrollBar().getValue();
7
8 Object[] myCells = getSelectionCells();
9 if (myCells.length == 0) {
10 myBackgroundMenu.show(myComponent,
11 e.getX() - horOffset, e.getY() - vertOffset);
12
13 } else if (myCells.length == 1) {
14 SingleSelectedNode(myCells[0], e);
15 } else if (myCells.length > 1) {
16 MultipleSelectedNodes(myCells, e);
17 }
18 }
19 }

Line 3 ensures that only right-clicks are acted upon.
Lines 4-6 extracts the inherited JScrollPane from mxGraphComponent and re-

trieves the vertical and horizontal position. This is done in order to ensure that the
position at which a menu appears is at the cursor position.

Lines 8-17 gets the number of elements current selected and triggers either a
background, single element or multiple element menu. SingleSelectedNode further
breaks this down to showing specific menus depending on the type of element clicked.

Once a menu has been spawned the user can select an item and VisGraph executes
the desired action.

The background menu has a slider as shown in fig. 2.4 which changes the minimum
distance between nodes in the current VisGraph. Sliding the nob has no effect until

2.4. JGraphX Implementation 49

Figure 2.4: The background menu slider controls the minimum distance between nodes

the menu is closed, upon which listing 2.17 is executed

Listing 2.17: popupMenuWillBecomeInvisible triggers upon menus closing

1 @Override
2 public void popupMenuWillBecomeInvisible(PopupMenuEvent

e) {
3 if (mySlider.valueHasChanged()) {
4 int newValue = mySlider.Update();
5 myForceConstant = (double) newValue;
6 RearrangeModel();
7 }
8 }

If the slider value has changed during the menus life-time, the force constant is
updated and the organic layout algorithm is reapplied to the graph. This allows the
user to space out denser graphs, thereby making it easier to identify and interact
with individual vertices within said graph.

50 Chapter 2. Algorithms, Design & Implementation

2.4.5 Interesting Graph

InterestingGraph, (for class diagram see section E.2), shares a large part of it’s imple-
mentation with VisGraph, invoking features such as organic layout and menus(with
fewer options). As InterestingGraph needs additional information in order to present
a more abstract overview when compared to VisGraph, InterestingGraph uses Inter-
estingTriple instead of TripleStatement as a data container.

In order to provide a better overview of complex graphs, InterestingGraph uses
two distinct styles, namely withMatch and withoutMatch from GraphStyles, in order
to colour vertices with a positive score green and red for vertices with a score of zero,
as seen in fig. 2.5.

Figure 2.5: Search on Grace Hopper looking for terms: COBOL, Programming Language

In order to handle vertices with more than one predicate connecting them, Inter-
estingGraph implements abstract edges. An edge can be rendered with or without
arrows depending on InterestingTriple.predDir
source2Target - One or more predicates going from source to target. Edge will

show direction

target2Source - One or more predicates going from target to source. Edge will
show direction

uniDirection - Two or more predicates connecting in opposite direction. Edge will
not show direction. A custom style is applied to these edges to prevent showing
of arrow ends.

2.4. JGraphX Implementation 51

InterestingGraph initially only shows URI-vertices in order to keep a simple overview.
The user can click individual vertices and select Get Literals from the right click
menu. Literals for the vertex is fetched from the data source(local models extract
the literals directly, where as remote endpoints executes a SPARQL-expression),
attached to the vertex and the graph rearranged with the layout.

2.4.6 Interesting Paths

Interesting Paths differs from VisGraph and InterestingGraphs both graphically and
in features. The visualisation of interesting paths both lists the paths in a table, as
well as showing their graphical representation, as seen in fig. 2.6 The table and visu-

Figure 2.6: Visualisation of ten paths with one path highlighted in red

alisation work in conjunction in that a path selected in the table will he highlighted
in the visualisation. Listing 2.18 shows the custom modifications implemented in
InterestingPathsPanel to achieve this.

52 Chapter 2. Algorithms, Design & Implementation

Listing 2.18: Custom events and settings for implemented table

1 myTableModel = new DefaultTableModel(
2 new Object[]{"Steps", "Intermediate Nodes", "Score"},

0) {
3 @Override
4 public boolean isCellEditable(int row, int column) {
5 return false;
6 }
7 };
8
9 myTable = new JTable(myTableModel);
10 myTable.getSelectionModel()
11 .addListSelectionListener(new ListSelectionListener() {
12
13 @Override
14 public void valueChanged(ListSelectionEvent e) {
15 int row = myTable.getSelectedRow();
16 if(row > -1) {
17 myGraph.setPathSelected(row);
18 }
19 }
20 });

Lines 1-7 makes the table uneditable, where lines 9-20 adds a listener to the
table which notifies the InterestingPathsGraph class with the index of the newly
path selected.

Path Layout

When a path is selected all entities that are not part of the selected path are greyed-
out, and entities in the path are high-lighted with a red border. Listing 2.19

2.4. JGraphX Implementation 53

Listing 2.19: Selection of a path requires the application of custom styles to all
elements in the graph
1 private void getPathObjects(int _idx) {
2 Object[] pathObjects = new

Object[myPaths[_idx].myPath.size()];
3
4 Object[] edges = getChildEdges(getDefaultParent());
5 Object[] pathEdges = new

Object[myPaths[_idx].Steps()];
6 int ptr = 0;
7
8 for (Object e : edges) {
9 if (memberOfPath(e, _idx)) {

10 pathEdges[ptr] = e;
11 ptr++;
12 }
13 }
14
15 Object[] vertex =

getChildVertices(getDefaultParent());
16 Object[] pathVertices = new

Object[myPaths[_idx].IntermediateNodes()];
17 ptr = 0;
18
19 for (Object v : vertex) {
20 if (memberOfPath(v, _idx) && !(startObj.equals(v)

|| endObj.equals(v))) {
21 pathVertices[ptr] = v;
22 ptr++;
23 }
24 }
25 Object parent = this.getDefaultParent();
26 this.getModel().beginUpdate();
27 try {
28 setCellStyle(edgeFade, edges);
29 setCellStyle(edgeSelect, pathEdges);
30 setCellStyle(vertexFade, vertex);
31 setCellStyle(vertexSelect, pathVertices);
32 setCellStyle(this.vertex, new Object[]{startObj,

endObj});
33 setCellStyles(mxConstants.STYLE_MOVABLE, "false",

new Object[]{startObj, endObj});
34 } finally {
35 this.getModel().endUpdate();
36 refresh();
37 }
38 }

54 Chapter 2. Algorithms, Design & Implementation

Lines 2-24 iterates across all edges and vertices in the graph, in search of those
that are members of the selected path. Lines 25-37 applies the faded style to all
edges and vertices, and then un-fades those elements that are part of the selected
path.

Layout & Paths

Lines 32-33 in listing 2.19 configures the start and end node as unmoveable. This
is done in order to prevent the automatic layout from moving said nodes. Interest-
ingPaths places the start and end node at opposite ends of the canvas, locks them,
and then places all other nodes in the middle between them. Finally an organic lay-
out is applied which pushes the non-locked elements away from each other, thereby
separating out individual paths from each other. As with VisGraph the minimum
distance between nodes can be changed using a menu slider.

2.5 Algorithms

2.5.1 Extracting Sub-Graphs

This section details the development process for sub-graph extraction used by Inter-
esting Paths and Interesting Graphs, as well as the issues that provoked changes in
methodology. Triplestores can contain vast amounts of information, and in order to
provide reliable service they often impose limitations upon their external SPARQL
fronts. The main three restrictions discovered during the development phase are:

Time-outs: There are two types of time-out that can occur during retrieval of
data namely client-side and server-side. Client-side time-outs can be configured for
Jena SPARQL endpoint requests, where as server-side time-outs are defined by the
endpoint. As server-side time-outs are outside the sphere of control for the applica-
tion, the only possible to avoiding this type of restriction is to ensure that SPARQL
expressions sent to an endpoint requires minimal processor time. Therefore sending
large SPARQL expressions, forcing the endpoint to perform laborious filtering or
merging tasks, are to be avoided when possible.

SPARQL-length: Some endpoints restrict the length of queries, usually by
length of string. This commonly occur when an expression uses the IN or VALUES
operators containing several long URIs to be matched in some way. The proper way
to avoiding this restriction, is to break large expressions up into shorter queries.

Result set size: SPARQL 1.1 allows queries to set LIMIT and OFFSET thereby
permitting queries to be broken up into sections. Triplestores can present limitations
both on the maximum page size, as well as the maximum size of the total result set.
The total result set limitation is the more stringent, as it can make it near impossible
to get all connections, for a highly connected vertex.

In addition to these hard limitation there are softer restrictions that arise from
communicating over a public network like the internet. The first implementation

2.5. Algorithms 55

attempted for extracting sub-graphs from a remote triple store, in this case DBpe-
dia used a simple FIFO-queue to keep track of the frontier and performed a single
SPARQL call for each URI in the frontier. In addition a set was maintained of
vertices already visited. The StringTemplate for the query executed can be seen in
listing 2.20

Listing 2.20: StringTemplate for extracting in and outbound connections of a vertex

1 INANDOUT(URI, filters) ::=
2 <<
3 SELECT (\<<URI>\> AS ?input) ?p1 ?p2 ?o ?s WHERE
4 {
5 {
6 \<<URI>\> ?p1 ?o
7 FILTER(!isBlank(?o)) .
8 FILTER(!isLiteral(?o)) .
9

10 <if(filters)>
11 <filters: {f|
12 FILTER(!strStarts(STR(?o), "<f>")) .
13 FILTER(!strStarts(STR(?p1), "<f>")) .}>
14 <endif>
15 }
16 UNION
17 {
18 ?s ?p2 \<<URI>\> .
19 FILTER(!isBlank(?s)) .
20 FILTER(!isLiteral(?s)) .
21
22 <if(filters)>
23 <filters: {f|
24 FILTER(!strStarts(STR(?s), "<f>")) .
25 FILTER(!strStarts(STR(?p2), "<f>")) .}>
26 <endif>
27 }
28 }
29 >>

Listing 2.20 selects all triples with the URI either as subject or object, applies
filtering, and then merges the two sub-queries into one. A number of worker threads
would then perform one query each and return any new URIs discovered to the
frontier, as well as storing all triples retrieved in a Jena Model. This approach was

56 Chapter 2. Algorithms, Design & Implementation

indeed capable of building sub-graphs around a vertex, but suffered from two major
disadvantages:
Performance: Initially each query executed would require ~2000ms to complete.
It should be noted that time measurements on remote endpoints can are only crude
approximations and will depend on the endpoint, client-side hardware, internet con-
nection etc. By restructuring the SPARQL query to using SELECT instead of CON-
STRUCT, the retrieval time was reduced to ~600ms per call. But even 600ms per
query is problematic, when is is not uncommon for vertices to have neighbourhoods
on a scale of 100.000 at even a distance of two or three from the initial vertex. This
would mean extracting a sub-graph of distance 2-3 would require ~16 hours. This
can obviously be brought down by deploying more than one worker thread, but even
here there are limitations. At a worker thread count of more than six, DBpedia
would begin returning HTTP errors, commonly 503 - Service unavailable and 500
- Internal server error, which would require the resubmission of the query, thereby
requiring additional time to complete the request.

Memory-usage: Keeping all retrieved triples within a Jena Model in memory is
expensive, as some sub-graphs taking up 1G of memory or more. A single monolithic
frontier and visited vertices system is also expensive, as the list of visited vertices
can grow massive.

Based on the experiences from the first implementation, a new algorithm design
was proposed, with the two major changes being:

Aggregated SPARQL Queries: In order to improve performance during data
collection, the algorithm should fetch data for multiple URIs during each SPARQL
call.

Data Offloading: The algorithm should not maintain a full model of the col-
lected triples in memory, but instead offload to a disk-based system. The algorithm
should also minimize how much data needs to be maintained within the frontier and
visited vertices data structures.

Parallel Bucket-Based Breadth First Search

Parallel Bucket-Based Breadth First Search (PBBBFS) is the algorithm devised
by the research group which incorporates these improvements. The class diagram
for PBBBFS can be seen in fig. 2.7(for the full class diagram, see section E.1).
MetaWorkUnit and DataWorkUnit extend WorkUnit and contain everything nec-
essary in order to process the specific unit, such as the generation of appropriate
SPARQL expressions and storage of partial frontier results. MetaWorker and Data-
Worker both extend the standard Java thread class, and implement their own logic
for processing work units. The worker threads each retrieve and deliver work units
from the DataManager, which ensures thread-safety by synchronizing input/output
methods.

The DataManager contains a queue of URIs for MetaWorkUnits as well as a
dual-queue structure for frontier and visited vertices. The dual-queue consists of

2.5. Algorithms 57

Figure 2.7: Class diagram for PBBBFS algorithm

58 Chapter 2. Algorithms, Design & Implementation

a current frontier and a next-step frontier [43]. In order to prevent the algorithm
from exploring already explored territory, there must be no intersection between the
current and next-step frontier. Once the current frontier has been fully explored, the
next-step frontier becomes the new current frontier as is seen in step two in fig. 2.8.
This method of frontier-managing means that PBBBFS need only keep the current
frontier in memory, instead of a list of all visited vertices. fig. 2.8 illustrates this
method, where the red vertices are in the current frontier, and the green vertices are
being added to the next-step frontier. Instead of maintaining an in-memory model
PBBBFS exports triples to a TDB(for an introduction to TDB, see chapter B)

Process & Implementation

PBBBFS is a two step iterative multi-threaded process, illustrated by the flowchart
in fig. 2.9

PBBBFS will iterate until the model distance, that is the number of steps from
the initial vertex out to the frontier, is equal to the target distance. Each iteration
consists of three processes executed in sequence:

Exploration Process: In order to be able to aggregate URIs from the frontier
into groups that can be extracted, the algorithm needs to know the result size for each
URI in the current frontier. The exploration process gathers this meta information by
aggregates URIs in the current frontier into groups and creates SPARQL expressions
using listing 2.21

2.5. Algorithms 59

Figure 2.8: PBBBFS uses a concentric ring-based approach to frontier-management

60 Chapter 2. Algorithms, Design & Implementation

Figure 2.9: Flowchart diagram for PBBBFS

Listing 2.21: StringTemplate for retrieving meta data

1 COUNT_TRIPLES(URIs, filters) ::=
2 <<
3 SELECT ?known (COUNT(?known) AS ?count) WHERE
4 {
5 VALUES ?known {<URIs: {uri|\<<uri>\>}>} .
6 {
7 ?known ?p ?o .
8 FILTER(!isLiteral(?o)) .
9 FILTER(!isBlank(?o)) .
10 <if(filters)>
11 <filters: {f|
12 FILTER(!strStarts(STR(?o), "<f>")) .
13 FILTER(!strStarts(STR(?p), "<f>")) .}>
14 <endif>
15 }
16 UNION
17 {
18 ?s ?p ?known .
19 FILTER(!isLiteral(?s)) .
20 FILTER(!isBlank(?s)) .
21 <if(filters)>
22 <filters: {f|
23 FILTER(!strStarts(STR(?s), "<f>")) .
24 FILTER(!strStarts(STR(?p), "<f>")) .}>
25 <endif>
26 }
27 } GROUP BY ?known
28 >>

2.5. Algorithms 61

listing 2.21 selects all triples involving ?known and groups them, returning the
aggregated results as the output. VALUES contains a list of URI for which to
determine number of triples. The entire expression is kept below 4000 characters
in length, an empirically determined value, in order to avoid the SPARQL length
restriction.

The Exploration Process can be seen in fig. 2.10 The process spawns a number

Figure 2.10: Process diagram for Exploration Process

of MetaWorker threads equal to the number of cores available to the JVM. The
MetaWorkers will continue to request and process work units, until it is handed a
null package, upon which the thread will terminate. Once all threads have finished,
the sub-process ends.

Data Extraction Process: Using the meta-information gathered in the pre-
vious step, this process groups URIs into DataWorkUnits and hands these off to
DataWorkers as illustrated in fig. 2.11 DataWorkUnits come in two types; normal,

Figure 2.11: Process diagram for the Data Extraction Process

62 Chapter 2. Algorithms, Design & Implementation

defined as those with a result set of 10.000 or less, and massive for those with a result
set larger than 10.000. Normal DataWorkUnits are processed with a single SPARQL
call that collects both in- and outgoing triples. Massive DataWorkUnits are split into
in- and outgoing triples, and then each subset is explored up to a depth of 40.000
results. While this method does not ensure a full collection, it does retrieves the
largest set possible from a remote endpoint given the limitations mentioned earlier.
Once the triples have been collected, they are handed off to a TDB triple store(for
information about TDB, see chapter B), and the potential new frontier vertices are
handed over to the DataManager.

2.5.2 Interesting Graph

Finding related material in an RDF graph can be a daunting task. It is not uncom-
mon for vertices to have neighbours numbering in the hundreds or thousands. While
interfaces such as SPARQL can be used to explore neighbourhoods, the result sizes
can quickly become unmanageable for human users. To assist users in exploring RDF
graphs, the research group has developed Interesting Graph, an A*(pronounced ’A
star’)[32]-like search algorithm.

Algorithmic Behaviour

A* is an approximative graph search algorithm that relies on heuristics in order to
guide the search. It has a wide range of applications, from efficient path finding
in video games to general graph searches. Instead of performing a greedy-search to
explore a neighbourhood, A* prioritizes exploration with a heuristic measure. A*
implements a priority queue as a frontier, in which the best candidate nodes are
ordered based on fitness. Candidates are commonly scored based on distance and a
heuristic

f(n) = g(n) + h(n) (2.1)

Where

f(n) is the total fitness score for node n

g(n) is the distance from the initial node for node n

h(n) the heuristic score for node n

The heuristic depends on the scenario in which A* is deployed. For finding the
shortest distance between two nodes, h(n) might be the distance from n to the
target. A* can therefore behave in two different ways

BrFS As h(n) approaches 0, A* will explore the closest neighbours first

Best-First-Search (BeFS) As h(n) increases proportionally to g(n), A* will ex-
plore promising neighbours more aggressively

2.5. Algorithms 63

Interesting Graph is not a full A* implementation in that it does not have a target
node to search for. Instead the heuristic focuses on estimating the interestingness of
nodes. First we define a few terms:

j → The j-th node
L(j) → Function returning a bag-of-words set of literals for node j
T → bag-of-words set for search terms
Hj → The number of search term hits for node j
msj → Weighted match score for node j
sj → Score for node j
β → User specified weight

The number of term matches is calculated using eq. (2.2)

Hj = T ∩ L(j) (2.2)

and the score for the node is calculated using eq. (2.3)

msj = β · log(1 +Hj)
log(1 + |T |) (2.3)

Figure 2.12 shows a plot of ten match scores with term set cardinality ranging from
one to ten, with β = 1 Equation (2.3) assigns scores in a non-linear fashion, assigning

Figure 2.12: Equation (2.3) with |T | ∈ [1; 10] and β = 1

relatively high scores to low match counts. This is done in order to ensure that

64 Chapter 2. Algorithms, Design & Implementation

Interesting Graph doesn’t ignore single term matches. β allows a user to adjust the
aggressiveness with which Interesting Graph should persue interesting nodes. For
β = 0 Interesting Graph acts as an BrFS, and increasingly higher values of β forces
Interesting Graph to search in a more BeFS manner.

Implementation

For endpoints Interesting Graph uses TDB(for details on TDB, see chapter B), and
as such the implementation for local graph files and endpoints are much the same
and will be treated as one. The process for Interesting Graph is illustrated in fig. 2.13

Figure 2.13: Process diagram for Interesting Graph

Build Tree: Interesting Graph builds a custom N-ary Tree RDFTree of RDFTreeN-
odes(see section E.4 for class diagrams) branching out from the initial node. A
frontier and list is used to keep track of which nodes to expand, and which already
have been processed. RDFTree keeps track of its own depth, which is used to track
distance from the initial node. The tree will be expanded until either the maximum
distance has been reached, or the frontier is empty. Once the tree has been built,
the process moves on to scoring.
Score Tree: The tree is not scoring during construction, as this would entail ex-
tracting literals for each node sequentially. During development of PBBBFS(see
section 2.5.1), clear performance advantages was achieved by bundling URIs into
sets of SPARQL expressions, rather that performing individual calls. Interesting
Graph therefore constructs a set of SPARQL queries for extraction of literals which
are stores in a one-to-many collection using the Google Guave v1.7 library. The
algorithm now has sufficient information to select a subset of the tree to present to
the user.

2.5. Algorithms 65

Filter Tree: The process of reducing the RDFTree follows two rules:

Connectivity - All nodes should be connected and floating unconnected nodes are
not allowed

Priority - Removal of nodes should favour uninteresting followed by least interesting
nodes

To accommodate these restrictions, a filtering strategy has been developed. Fig-
ure 2.14 shows an example of an RDFTree. The Connectivity rule allows for the

Figure 2.14: Example of RDFTree with interesting(green) and uninteresting(red) nodes

removal of nodes I, C and G but not D as this would leave H hanging. If I, C and
G were removed, and a limit of four nodes was introduced, it would be necessary to
make a choice between removing E, F and H. B is not a candidate for removal, as
this would leave E and F hanging.

Filtering is implemented as the class RecursiveInterestingPruning, which filters
RDFTrees as an iterative two-step process. Uninteresting nodes are filtered as shown
in listing 2.22

66 Chapter 2. Algorithms, Design & Implementation

Listing 2.22: pruneUninterestingLeaves removes uninteresting nodes without chil-
dren
1 private void pruneUninterestingLeaves() {
2 List<RDFTreeNode> list = new ArrayList<>();
3
4 for (RDFTreeNode tn : myTree.getNodes()) {
5 if (!tn.hasChildren() && tn.getMyMatchScore() == 0.0)

{
6 list.add(tn);
7 }
8 }
9 for(RDFTreeNode tn : list) {
10 myTree.removeNode(tn);
11 }
12 }

PruneUninterestingLeaves iterates over the set of nodes in the tree, generating a list
of all nodes which have a score of 0.0 and no children. The nodes are removed from
the tree afterwards. The second step, pruneInterestingLeaves is shown in listing 2.23

Listing 2.23: pruneInterestingLeaves removes interesting nodes from leaves

1 private void pruneInterestingLeaves(RDFTreeNode root) {
2 PriorityQueue<RDFTreeNode> myLeafNodes = new

PriorityQueue<>(50, Collections.reverseOrder());
3
4 for (RDFTreeNode tn : myTree.getNodes()) {
5 if (tn.getMyChildren() == null ||

tn.getMyChildren().isEmpty()) {
6 myLeafNodes.add(tn);
7 }
8 }
9
10 while (!myLeafNodes.isEmpty() && maxInter < totalInter)

{
11 myTree.removeNode(myLeafNodes.remove());
12 totalInter--;
13 }
14 }

2.5. Algorithms 67

PruneInterestingLeaves constructs a priority queue of interesting leaf nodes, and re-
moves the least interesting node iteratively. Once the tree has been filtered, it is
transformed into triples.
Transform Tree to Triples: RDFTree does not maintain predicate relations be-
ween nodes, and therefore in order to visualise the resulting graph, these relations
have to be rediscovered. As any two nodes can have several predicates connecting
them, the process finds all relevant connections. The final result is returned as an
array of InterestingTriples(for class diagram see section E.3)

2.5.3 Interesting Paths

Where Interesting Graph(section 2.5.2) searches in an area around a given vertex,
Interesting Paths searches for note-worthy paths between two vertices, given a set of
restrictions. Interesting Paths is an extension of work done by Heim et al.[33] in the
article RelFinder: Revealing Relationships in RDF Knowledge Bases. Heim et al.
described a system for finding paths between two vertices in any given Triplestore
using SPARQL expressions.

A valid path is defined as any set of triples leading from A to B, with vertices
passed through called intermediate nodes. Certain limitations are imposed on valid
paths in order to keep paths understandable to users. These limitations are:

Loops: As the number of intermediate nodes increases, the number of trivial so-
lutions of looping through the same vertices, increases. This unnecessarily increases
the number of paths that have to be processed and adds little value to the result. In
order to prevent this, paths are not allowed to have repeating vertices.

Changes of direction: Paths with several changes of direction, can be difficult
for users to interpret. For performance and usability reasons, the maximum num-
ber of changes in directions allowed is set to one(1). This makes for four types of
connections, illustrated in fig. 2.15

Where c is an previously unknown vertex. These four types are informally named
direct path, shared property path and shared resource path.

The result set for paths of even modest length can be quite large, numbering
in the thousands, well above what any end user can realistically analyse[18]. The
research group proposes to sort these paths based on interestingness, using a bag-
of-words approach. The bag-of-words of search terms is provided by the user, and is
used to give scores to vertices in paths found, based on the literals attached to the
intermediate nodes. A simplified diagram of the process can be seen in fig. 2.16. The
following sections takes a closer look at each of the four steps in the process. For
experimental results of the algorithm see section 3.3

User Input

Interesting Paths takes six parameters:

68 Chapter 2. Algorithms, Design & Implementation

Figure 2.15: Four types of paths are permitted

Figure 2.16: Simplified process diagram for Interesting Paths

2.5. Algorithms 69

Source/Target URI for the source and target vertex. In order to assist users in
selecting appropriate URIs, a disambiguity feature has been implemented as
discribed in chapter D

Min/Max Intermediate Nodes Minimum and maximum number of intermediate
nodes between source and target. The lower bound allowed is one(1) in order
to exclude the trivial solution of a direct connection

Language Language restriction for literals. Some RDF graphs assume a default
language, which literals will not be tagged with. Language is therefore optional

Filters URIs for predicates and vertices which are to be ignored. A set of default
URIs are automatically provided, filtering OWL, RDF and RDFS. Filters are
optional

Search Terms Terms which describe the topic of interest to the user

Max # of Paths The maximum number of paths returned by the algorithm

Once a proper set of parameters has been provided, the next step of the process is
executed.

Searching for Paths

Paths are found using a set of SPARQL expressions generated using StringTemplates.
Before going into details about how paths are retrieved, the research group would
like to discuss property paths. SPARQL v1.1 brought a new feature called property
paths, which adds support for multi-step triple patterns. Listing 2.24 shows a simple
example of a concatenated property path

Listing 2.24: Example of SPARQL property path and explicit path

1 ...
2 {
3 ?person rdf:Type/rdf: foaf:Person .
4 }
5 {
6 ?person rdf:Type ?x .
7 ?x rdf:Type foaf:Person .
8 }

Line 2 is equivalent to lines 5-6. Property paths support a number of logical
operators such as concatenation, zero-or-more/one-or-more and negation of paths
and more. For the purposes of finding interesting paths, property paths suffer from
two issues, one of which cannot easily be resolved:

70 Chapter 2. Algorithms, Design & Implementation

Wild-card Predicates - As of v1.1 property paths do not support wild-card pred-
icates. This can be resolved by creating paths on the form of (predicate |
!predicate)

Path returned - Property paths returns what is at the end of a given path, rather
than the actual path itself. As the steps in-between the start and end node are
crucial to the algorithm, this renders property paths unfit for use in Interesting
Path.

Property paths have therefore been discounted as a solution tool.

All SPARQL expressions are generated using SPARQLFactory, a custom class cre-
ated to ease working with StringTemplates through a set of static methods. The
SPARQL expressions for paths with k intermediate nodes, is generated by Gener-
ateQueries which constructs StringTemplates for each of the four types of paths.
The call hierarchy for GenerateQueries is illustrated in fig. 2.17 For brevity only

Figure 2.17: Call hierarchy for GenerateQueries showing the template calls

the direct connection call stack is shown in fig. 2.17. GenerateQueries returns an
array of SPARQL expressions, created by three methods(DirectConnection creates
SPARQL queries selecting paths from A to B and B to A), each of which calls the
appropriate templates. Each template is broken down into sub-templates which han-
dle selecting the appropriate variables, creating the right triple patterns, and apply

2.5. Algorithms 71

filtering to remove unwanted namespaces. Repeated vertices are prevented as shown
in listing 2.25

Listing 2.25: FILTER_LOOPBACK prevents repeated vertices using the SPARQL
IN operator
1 FILTER_LOOPBACK(start, end, iArray, j) ::=
2 <<
3 FILTER(?o<j> NOT IN (\<<start>\>, \<<end>\><iArray: {k|,

?o<k>}>)) .
4 >>

Each triple pattern is explicitly prevented from containing vertices found in the
other triples or the start and end vertices.

Once all queries have been created, they are executed on a data source. Ini-
tial attempts with running the queries directly on endpoints worked well for short
paths(one and two intermediate nodes) but would result in time-outs for longer paths.
To resolve this issue, TDBs are generated from endpoints and SPARQL expressions
are executed against the local TDB model instead, which has the additional benefit
of reuseability. For details on TDB see chapter B

Scoring and Natural Language

Once the possible paths have been extracted, a score has to be assigned to each path.
During development it was noted that there is a large discrepancy between the set
of intermediate nodes in all paths, and the set of distinct nodes in all paths. This
discrepancy is often of on an order of magnitude or more, which intuitively makes
sense as each vertex can have several possible paths running through it. Literals are
therefore only extracted for the discrete set of nodes, and stored in a one-to-many(one
URI to zero or more literals) relation list using the Google Guave v1.7 library. The
literals are extracted in batches by the string template seen in listing 2.26

72 Chapter 2. Algorithms, Design & Implementation

Listing 2.26: Literals are fetched in batches based on URIs and language

1 GET_LITERALS(sbjs, lang) ::=
2 <<
3 SELECT DISTINCT ?s ?o WHERE
4 {
5 ?s ?p ?o .
6 FILTER(isLiteral(?o)) .
7 FILTER(?s IN (<sbjs: {sbj| <sbj>}>)) .
8 <if(lang)>
9 FILTER(lang(?o) = ’<lang>’) .
10 <endif>
11 }
12 >>

Once literals have been collected, they are split into first sentences, then terms
and finally stemmed using the Stanford Core NLP(for details about this process see
chapter C).

Each path is scored based on a simple algorithm. First we define a few terms:

Pj → The j-th path
Iji → Intermediate node i of path j
T → bag-of-words set for search terms

L(Iji) → Function returning a bag-of-words set of literals for Iji

Hji → The number of search term hits for intermediate node i in path j
ISji → Term normalized score for intermediate node i in path j
PSj → Normalized score for path j

Each intermediate node is assigned a score based on eqn. 2.4 and 2.5

Hji → T ∩ L(Iji) Hji ∈ N, Hji ∈ [0; |T |] (2.4)
ISji → Hji

|T | ISji ∈ R, ISji[0; 1] (2.5)

Eqn. 2.5 normalizes individual nodes in order to prevent the over-estimation of any
one node in a path. And the final score for the individual path is calculated using
eqn. 2.6

PSj =

|Ij |∑
i=1

ISji

|Ij |
(2.6)

Eqn. 2.6 defines the score of a path, PSj as the sum of scores for all intermediate
nodes in the path, normalized by the number of intermediate nodes. As a last step

2.5. Algorithms 73

the list of paths are sorted in descending score and the top k paths are returned as
a list of InterestingPaths(for class diagram of InterestingPath see section E.3) to be
visualised.

74 Chapter 2. Algorithms, Design & Implementation

Chapter 3
Experiments & Trials

3.1 Introduction
This section details the experiments that have been performed during the project
period, both to validate search algorithms as well as to estimate run-time improve-
ments to PBBBFS. Each experiment is followed by an analysis and discussion with
potential improvements discussed in chapter 4.

3.2 Measuring Interestingness

Interesting Graphs and Interesting Paths, (sections 2.5.2 and 2.5.3), are essentially
search algorithms that explore a section of a graph based on user-determined pa-
rameters, in an attempt to find vertices of interest to the user. The performance of
search algorithms are distinctly user-centric, in that the goodness of an algorithms’
result is solely dependent on whether the user finds the results relevant.

Common methods for measuring performance of search algorithms involve the
creation of a gold standard, a human-annotated corpus of documents with which the
output of the algorithm can be compared. There are several methods for calculating
performance for a search system, most of which build on precision and recall[45, p.
142-150]

Precision = #(relevant items retrieved)
#(retrieved items) (3.1)

Recall = #(relevant items retrieved)
#(relevant items) (3.2)

These metrics are defined for un-ordered sets, but most modern algorithms use rank-
ing in order to ensure that the most relevant results are displayed first. For ordered
ranking-based systems, precision can be redefined in terms of top k results

Precisionk = #(relevant items retrieved)
#(top k retrieved items) (3.3)

75

76 Chapter 3. Experiments & Trials

Recall cannot be redefined in terms of k, as the total set of relevant elements is still
important in order to determine the completeness of the search. The man-hours nec-
essary to calculate precision and recall are not equal. In order to calculate precision
we need only to determine the number of relevant elements returned, whereas recall
requires a full mapping of all relevant elements in the element-space. This quickly
becomes an time-intensive task, as it is not uncommon for vertices to have neighbours
in the hundreds of thousands at even three or four steps from the initial vertex. As
the creation of a full gold standard for a realistic dataset is outside the scope of this
project, only precision will be measured during experimentation. Scoring of exper-
iments will be done by members of the research group, with conflicts resolved by a
third party.

3.3 Interesting Paths
The first part of the experiments conducted on the implementations described in
section 2.5 is on Interesting Paths.

The first set of experiments performed on interesting paths(section 2.5.3) consists
of five searches performed, called questions. Each search consisted of a start- and end-
vertex, a maximum number of intermediate vertices, a set of topics and search terms
derived from said topics. The experimental parameters can be seen in table 3.2 with
the top 50 interesting paths being extracted for each set of parameters, and language
being restricted to English. The precision for the experiment can be seen in fig. 3.1
and the numeric values in table 3.1

Figure 3.1: Precision results experiment

There are several interesting observations that can be made from this experiment.

3.3. Interesting Paths 77

Question Paths Found Precision at k
10 20 30 40 50

One 50 0 0 0 0 0
Two 24 0 0 0,067 0,05 0,04
Three 46 1 0,9 0,87 0,75 0,6
Four 50 1 1 1 1 1
Five 50 0,8 0,9 0,93 0,95 0,9

Table 3.1: Precision values from experiment

3.3.1 Question One

It would seem odd that there are no positive hits made between Tim Berners-Lee
and Dijkstra. In order to determine if distance is the limiting factor, a search is
performed from Edsger W. Dijkstra to Resource Description Framework with the
same parameters given for question one. This search results in zero(0) paths, which
validates the hypothesis.

3.3.2 Question Two

There were 24 paths found for this question, with 19 of 24 being given a positive score
by the algorithm. This would indicate a productive search, but when investigating
which search terms were most often found, terms such as of and and ranked very
high. These terms are very frequent in English, and could therefore easily skew
search-results by generating false-positive scoring. See section 3.3.6 for a discussion
on methods mitigating this issue.

3.3.3 Question Three

For question three 17 out of 46 paths had a positive score, most of which walk
through various programming languages, operating systems and computer scientists
who have worked on programming languages. The latter paths mostly revolve around
New York city and various military officers.

3.3.4 Question Four

Question four delivers an impressive average precision of one(1) for all five values of
k. All returned paths have a positive score, with the lowest value being ~0.89. The
algorithm has achieved this by returning a large group of almost similar paths, an
example of which can be seen in listing 3.1

78 Chapter 3. Experiments & Trials

Listing 3.1: Sub-set of results from question four

PREFIX db:<http://dbpedia.org/>

<Path>
<Step>db:resource/Bjarne_Stroustrup</Step>
<Step>db:ontology/designer</Step>
<Step>db:resource/C++</Step>
<Step>db:ontology/influenced</Step>
<Step>db:resource/Java_(programming_language)</Step>
<Score>1.0</Score>
<Done id="9"/>

</Path>
<Path>

<Step>db:resource/Bjarne_Stroustrup</Step>
<Step>db:ontology/designer</Step>
<Step>db:resource/C++</Step>
<Step>db:property/influenced</Step>
<Step>db:resource/Java_(programming_language)</Step>
<Score>1.0</Score>
<Done id="10"/>

</Path>
<Path>

<Step>db:resource/Bjarne_Stroustrup</Step>
<Step>db:property/designer</Step>
<Step>db:resource/C++</Step>
<Step>db:ontology/influenced</Step>
<Step>db:resource/Java_(programming_language)</Step>
<Score>1.0</Score>
<Done id="11"/>

</Path>
<Path>

<Step>db:resource/Bjarne_Stroustrup</Step>
<Step>db:property/designer</Step>
<Step>db:resource/C++</Step>
<Step>db:property/influenced</Step>
<Step>db:resource/Java_(programming_language)</Step>
<Score>1.0</Score>
<Done id="12"/>

</Path>

3.3. Interesting Paths 79

Note that these four paths are essentially the same, the difference being whether
the predicate is drawn from property or ontology, and thereafter every combination
of these. So while in theory this provides a very high precision, a user would find the
results less than optimal. We discuss this issue more in section 3.3.6

3.3.5 Question Five

All paths for question five have positive values and although there is some disagree-
ment between the annotators and the algorithm, over all the results are good.

80 Chapter 3. Experiments & Trials

Start End Length Topics Search Terms
Tim Berners-Lee Edsger W. Dijk-

stra
3 RDF, Semantic Web, Graph Resource Description Frame-

work, RDF, Graph, Semantic
Web

Tim Berners-Lee Grace Hopper 3 Compiler, web COBOL, National Institute
of Standards and Technology,
compiler

Grace Hopper Bjarne Strous-
trup

3 Compiler, programming lan-
guage

COBOL, C++, C

Bjarne Strous-
trup

Java 3 Compiler, programming lan-
guage

Java, C++, object oriented
language

Alan Turing Edsger W. Dijk-
stra

3 Turing Machine, graph theory Automata, graph search, tur-
ing machine

Table 3.2: Parameters used during experimentation

Filter
http://www.w3.org/2002/07/owl#

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#

http://dbpedia.org/class/yago/

Table 3.3: Filters applied during experiment

3.4. Interesting Graph 81

3.3.6 Reflections

The first experiment gave several insights on issues that need to be addressed in
order to achieve better search-performance.

Stop Words: A common issue within the field of information retrieval, usually
defined as words that are so common as to add no semantic value to searches. Stop
words can be dealt with using a stop word list or a weighting scheme[45, p. 25-26].

Stop word lists are generated in order to remove stop words from a dataset,
thereby improving both memory and computation performance. This method has
the distinct drawback of removing terms from searching, which can be problematic
for certain phrases, such as To be, or not to be. Due to the general application area
of GraphHelper, any stop word list would have to be dynamically generated, in order
to be domain independent[63].

Weighting schemes assign a weight to terms based on some weighting system.
A common model employed widely is the vector space model[45, p. 100-122], which
constructs vectors from text in a bag-of-words manner which can then be compared
in order to find similarities. Several of the more common weighting schemes up-
prioritize rare terms and down-prioritize common terms, thereby lowering the effect
of stop words when calculating similarities.

Vector space model and stop word lists can be used in conjunction, it would
therefore be the project groups recommendation to experiment with both methods.
Path Duplicates: Showing the same path multiple times with only minor variation
is unlikely to be well received by end users. The issue encountered in DBpedia is
somewhat unusual, in that when a Triplestore contains ontologies with overlapping
declarations, OWL:sameAs, OWL:equivalentProperty, OWL:equivalentClass is used
to indicate communality in meaning. In the case of discovering interesting paths
between Bjarne Stroustrup and the Java Programming Language as stated in sec-
tion 3.3.4, the research group concludes that there must be a flaw in the dataset. A
casual inspection of DBpedia suggests that it correctly implements OWL:sameAs for
other overlaps between db:property/ and db:resource/, and the research group has
stumpled upon an exception.

In the general case, relying on OWL Web Ontology Language for mapping be-
tween ontologies would be a more robust methodology, but in special cases it might
be necessary for users to create simple custom mappings in order to filter out oddities
in a dataset, as the oddities described in section 3.3.4.

3.4 Interesting Graph

The first set of experiments performed on Interesting Graphs(section 2.5.2) consists
of five searches, called questions. Each search consisted of a start vertex, a maximum
number of steps out from the root vertex, a β value set by the user and a set of search
terms. The experimental parameters can be seen in table 3.4 with at maximum

82 Chapter 3. Experiments & Trials

25 interesting nodes being selected for each set of parameters, and language being
restricted to English. The precision for the experiment can be seen in fig. 3.2 and

Source Length β Search Terms
Tim Berners-Lee 3 5 Resource Description Framework, RDF,

Graph, Semantic Web
Grace Hopper 3 5 COBOL, Compiler, Business Oriented
Bjarne Stroustrup 3 5 C++, C, Embedded
Java 3 5 Object Oriented Language, Functional

Language
Alan Turing 3 5 Automata, Graph Search, Turing Machine

Table 3.4: Parameters used during experimentation

the numeric values in table 3.5.

Figure 3.2: The precison of the interesting nodes in each subgraph

The source nodes in each sub-graph are not included when counting interesting
nodes, as these nodes by default will be interesting.

3.4.1 Reflections

After performing this experiment several issues have been raised: All of the result-sets
contain less than 25 interesting nodes. This seems unreasonable when considering

3.4. Interesting Graph 83

Question Nodes Found Precision at k Mean
5 10 15 20 25

One 17 0.8 0.9 0.93 0.8 0.64 0.8122
Two 22 0.8 0.6 0.6667 0.7 0.6 0.6944
Three 22 1 0.9 0.93 0.95 0.84 0.9372
Four 21 0.8 0.9 0.93 0.95 0.8 0.8639
Five 24 0.8 0.9 0.73 0.8 0.76 0.7989

Table 3.5: Precision values from experiment 1 for interesting graphs

that a full sub-graph, without the interesting node constraints, can contain hundreds
of thousands of nodes when searching within 3 steps out from the initial node. Further
investigation revealed that the low number of nodes returned, was the product of the
termination conditions during the RDFTree building process, shown in listing 3.2

Listing 3.2: Code for building RDFTree before filtering - first version

1 % Terminates on first node dist _maxNodes
2 % _maxNodes is not a useful measure. Was dumped from

later algorithms
3
4 while (myTree.getDepth() < _maxDist
5 && myTree.getCount() < _maxNodes
6 && myFrontier.size() > 0)
7 {
8 current = myFrontier.remove();
9 processedNodes.add(current.getMyValue());

10 processNeighbours(m, current, myFrontier, myTree,
processedNodes, myScorer);

11 }

Listing 3.2 builds up the RDFTree as described in section 2.5.2.
The _maxNodes attribute was originally envisioned to allow a user to specify the
maximum number of total nodes, interesting and uninteresting, returned by the
algorithm. Implementing the restriction this early in the process, means that the
termination conditions are very quickly met and once filtering has been applied to
the RDFTree, only a sub-set of nodes will be left.

In addition the restriction on maximum depth should be changed so as to allow
nodes up to the limit specified by the user, rather than less than. It is unlikely that
this restriction had any effect on the experiment performed, given the much lower
restriction imposed by _maxNodes.

84 Chapter 3. Experiments & Trials

The research group redesigned the process so that the graph tree had to be
build containing all nodes not exceeding maxDist. Afterwards the nodes contained
in the tree would be assigned a score of interestingness from the Interesting Graph
algorithm, before filtering was applied. The code shown in listing 3.3 shows the new
version for building the RDFTree. The process now continues to process nodes, as
long as the frontier has candidates, but only candidates where the neighbours fit
within the maximum distance restriction are actually processed.

Only after building the graph tree as seen in listing 3.3 and scoring all nodes
contained in this graph tree, will the pruning of nodes take place and now the maxN-
ode limit will be used, so the graph tree will only contain interesting nodes of an
amount being equal or less than maxNode. The total number of nodes returned can
be larger than maxNode, due to the necessity of keeping uninteresting nodes in order
to connect to interesting nodes further down in the tree.

Listing 3.3: Code snippet for building up the graph tree before processing interesting
nodes, v2
1 while (!myFrontier.isEmpty())
2 {
3 RDFTreeNode current = myFrontier.remove();
4 if((current.getDistance() + 1) <= myMaxDist)
5 {
6 processNeighbour(current);
7 }
8 }

The precision values for each question shown in table 3.5 is relatively high, with
mean values ranging from 0.69 to 0.94. The precision values are highly dependent on
the user choosing relevant search terms, and the data present in the Triplestore. It is
not easy to predict what effect the implementation errors discovered by the research
group in Interesting Graph will have on future precision values. The nature by which
Interesting Graph searches a graph, means that it might favour a node of particular
interest at the end of an otherwise not particularly interesting path, or fully explore
it’s closest neighbourhood before moving on. It is therefore recommended to repeat
the experiment when the algorithmic defects have been fully addressed.

3.5 Parallel Bucket-Based Breadth First Search
In order to test the performance gains of the PBBBFS algorithm, a set of trial runs
were run against DBpedia. it is important to note that these trials are at best
indicative, as there is a number of factors that are outside the search groups control.

3.5. Parallel Bucket-Based Breadth First Search 85

DBpedia Load - There is no way to determine the load that DBpedia is under
during experimentation.

Cache - Queries that have been cached will obviously be much faster if run a second
time as the Triplestore need only read from memory. In order to mitigate this
potential issue, one experiment is run at a in one day, thereby introducing a
24 hour delay between experiments.

Internet Delay/Speed - Queries were run from Aalborg University’s network,
which could be under various loads while running the experiment

With these caveats noted, the experiments were run once each for five URIs, with
the parameters given in table 3.6 and filters in table 3.7

URI # of Threads Max Distance
Tim Berners-Lee 4 3
Grace Hopper 4 3
Bjarne Stroustrup 4 3
Java 4 3
Alan Turing 4 3

Table 3.6: Parameters for PBBBFS experiment

Filter
http://www.w3.org/2002/07/owl#

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#

http://dbpedia.org/class/yago/

Table 3.7: Filters applied during experiment

PBBBFS is tested against the naïve BrFS algorithm initially developed, which
fetches each URI individually. Sum time in milliseconds is measured for each of the
five URIs, expanding the sub-graph from a distance from the initial node of zero to
three. The timing values can be seen in table 3.8

URI Naïve in ms(min) PBBBFS in ms(min) PBBBFS/Naïve
Tim Berners-Lee 3169239(~52) 785140(~14) 0.25
Grace Hopper 3010777(~50) 832724(~14) 0.28
Bjarne Stroustrup 3232623(~53) 793071(~12) 0.25
Java 3486162(~58) 872378(~14) 0.25
Alan Turing 2852315(~47) 713763(~11) 0.25

Table 3.8: Runtime values for the experiment

86 Chapter 3. Experiments & Trials

3.5.1 Reflections

PBBBFS presents across the board improvements when compared to naïve BrFS.
Even with the caveats noted previously, the time reduction is quite impressive. Fo-
cusing in on Bjarne Stroustrup, results show that PBBBFS has grouped URIs into
packages of 1 to 145 URIs per package. Plotting the unit size against the number of
units with said size is shown in fig. 3.3

Figure 3.3: Number of packages grouped by number of URIs per package

Figure 3.3 shows that PBBBFS does a good job of grouping URIs into large
units, with more than 87% of all packages containing 100 or more URIs. Further
improvements should focus on optimally packing the units and hand-optimizing the
code.

Chapter 4
Discussion

In this chapter limitations encountered throughout the project are discussed, as well
as areas of future research and improvements. Improvements detailed apply to soft-
ware design and implementation as well as algorithmic enhancements.

4.1 Software Architecture Status
As with most software projects involving frameworks, much has been learnt about
Jena and JGraphX during the project period. It would therefore be advantageous to
go back and apply some of the lessons learned to the early code developed, as well
as refactoring and restructuring the code-base before implementing further features.

For long running processes, such as building TDB stores and scoring large graphs,
the run-time can be fairly long. It would therefore be advantageous to show the status
of these processes, such that a user can track the progress. This would require a more
uniform threading approach, with well defined information flows to the GUI

4.1.1 Graph Visualisation

Most of the central features for visualising RDF graphs have already been imple-
mented. Any new features are aimed at increasing usability, the major features
being

Graph-Memory - Users can navigate between nodes by double clicking a desired
node. Most users are used to having a back button with which to retrace
their steps. Previous representations should be stored for a number of steps
backwards.

Visual Appearance - JGraphX styles have been used extensively throughout the
project, but in order to increase usability a centralized repository should be
designed. All visualisations should draw styles from there, as well as update

87

88 Chapter 4. Discussion

their own appearance when changes are made to the repository. The reposi-
tory should also be aware of namespaces, such that all elements belonging to
http://dbpedia.org/ are assigned a unique color, line type or shape. This can
be implemented using standard Swing components, as well as creating events
for notifying existing visualisations of changes.

4.1.2 Addressing Blank Nodes in Endpoints

As described in section 2.3.3, addressing blank nodes in remote Triplestores via Jena
is problematic, as the Triplestore blank node ID is stripped during extraction and
replaced with a local ID. If users are to be able to centre on blank nodes in endpoints,
a method for addressing them will have to be developed. One option is to use indirect
addressing, where all inbound and outbound nodes of the blank node is included in
a SPARQL query. This method is not perfect, as there is no guarantee that two
blank nodes don’t share the same neighbours, it will therefore be necessary to do
post-extraction processing to determine the uniqueness of the blank node. It would
also require keeping an additional layer of neighbours in memory upon extraction,
in order to have sufficient information to correctly identify blank nodes selected.

4.2 Interesting Path & Graph
While Interesting Graph and Interesting Path show generally promising precision
values in sections 3.3 and 3.4, there is still much room for improvement. While the
precision scores calculated give some indications of the performance of the algorithm,
the lack of a more robust gold standard to do comparisons against makes it difficult
to get a clear picture of how well the algorithms are performing. Even without
this gold standard there are several areas where further research could enhance the
algorithms.

4.2.1 Semantic Improvements

The current implementation only uses semantic information in order to calculate
scores. This is not uncommon, as many information retrieval systems rely heavily on
semantic information due to the relative simple nature of extracting meaning from
semantic information, compared with syntactic information. In addition, only se-
mantic information from literals is used, ignoring predicate labels and vertex URIs.
While some semantic data could be extracted from predicate labels, vertex URIs are
much more problematic. When creating an RDF graph, URIs for vertices need not
contain any relevant information about the node in question. It is common for URIs
to simply be defined using a hashed value ID, which contains no semantic value about
the node at hand. Predicates and node URIs are therefore unlikely to be sources of
additional semantic information. It is therefore important to improve the quality of
the semantic data already available in order to improve the accuracy of the algo-
rithms. There are three areas where the research group believes improvements can

4.2. Interesting Path & Graph 89

be attained

Term Weighting

The current model for matching search terms to literal text is very simple. The lemma
for terms in both the search query and documents are found and the intersection
between these two sets is selected. But not all term matches are equal. Terms
that are rare within the space of documents, should carry more significance as they
point to a smaller, more specific sub-set of documents. By the same reasoning,
common terms should carry less weight as they are much more ubiquitous. Within
modern information retrieval, this issue is addressed by the vector space model and
appropriate term weighting schema. While there would certainly be a penalty to
run-time performance, (vector space model is fairly simple to multithread), the run-
time cost would be minor when compared with the run-time of PBBBFS. Vector
space model has strong empirical evidence[58] documenting its effectiveness, making
it a strong candidate for improving accuracy of Interesting Graph and Interesting
Path.

Improving User Input

The performance of information retrieval systems are closely tied to the quality of
the search parameters entered by the user. Improvements can therefore often be
achieved from user-feedback on search terms entered, a common feature in most
modern search engines. The research group considers the following three methods
potential candidates for feedback-systems

Spell-checking: Incorrect spelling and typos can result in searches missing key
terms. But these errors can also generate much more subtle errors. When parsing
a sentence Stanford Core NLP (SCNLP) first tags all terms with a word class such
as noun, noun-plural, verb and so forth. Next the tagged sentence is parsed by a
lexicalized dependency parser which, using a set of grammatical rules and statistical
analysis, determines the grammatical structure of the sentence. Based on the Part-
Of-Speech (POS)-tags and grammar analysis, the lemmatizer determine lemmas for
each term. If either the POS-tagger or dependency-parser performs misinterpreta-
tions due to spelling-mistakes, the proper analysis of the rest of the sentence can be
affected. A simple dictionary-based approach should eliminate a large percentage of
errors.

Search-Term Feedback: RDF graphs are not easily accessible and understandable
to human users, a problem to which this project has been aimed at mitigating. In

90 Chapter 4. Discussion

order to assist users in selecting appropriate URIs to base searches on, a disambiguity
feature proposed by Heim et al[33] was implemented. Something similar could assist
users in selecting appropriate search terms, by providing feedback on whether a search
term is relevant within a specific graph. A full search of all literals within a graph to
determine the relevance of a given search term is unlikely to be practical, but as the
user has already specified the neighbourhood in which the search will be performed,
a simple heuristic can be applied. Checking literals in the immediate neighbourhood,
at distances one or two, could provide an indication of the prevalence of the search
term entered. The process could be executed in one of two ways:

Client-Load - The client fetches all literals at a distance k from a given node. Each
literal is processed using SCNLP and the search term hit rate is returned to
the user.

Endpoint-Load - Offloading the search to the endpoint might be more efficient,
but creates new issues. Just searching directly for the entered term will ignore
other morphological forms of the term. It might be possible to mitigate this
issue by selecting appropriate morphological forms from WordNet[48]

Research and experimentation will be needed in order to determine the best ap-
proach.

Graph-Term Memory: Both Interesting Graph and Interesting Path search for
and parse literals as part of their exploration process. By tracking the occurrence of
lemmas processed, a local meta-RDF graph could be constructed, linking lemmas to
URIs. This RDF graph could then be used for quick look-up of search terms feedback
to the user. In addition the graph could be explored for densities of search terms,
regions of the graph that uses a particular search term frequently, thereby generating
candidate URIs for additional searches. Some research has been done into density
calculations in RDF-graphs[56], and grammatical-based RDF graphs[42] but more
work will have to be done to create a suitable model.

Graph Information

As previously mentioned semantic information is used exclusively in the algorithms
developed during this project. Additional values should be derivable from RDF’s
graph structure, using graph theory, although very little research has been published
in this area. Graves et al. published the article A method to rank nodes in an
RDF graph[20], which describes a method for ranking nodes in an RDF graph using
closeness centrality. The graph is viewed as an undirected graph and all-pair shortest
paths are calculated. Each path is scored based on the edges involved in the path, in
this case as the inverse frequency of the predicate label within the graph.

Combining this graph theory approach with the already developed semantic meth-
ods could be a fruitful area of research. The importance of a node within an RDF

4.3. Parallel Bucket-Based Breadth First Search 91

graph could be used to weight the semantic value, with different centrality measures
being used depending on whether a user is searching for outlier or central nodes.
Researchers will have to explore which measures of centrality are useful, and how to
best integrate the results with the semantic information.

4.3 Parallel Bucket-Based Breadth First Search
PBBBFS showed significant run-time improvements when compared to a naïve BrFS
algorithm in section 3.5. Even with these improvements, retrieval times of 11-14
minutes would be considered cumbersome and slow by most users. There is therefore
a strong incentive to improving the run-time performance of PBBBFS. There are still
several improvements that can be achieved, both in terms of run-time and memory
performance.

4.3.1 DataUnit Packing

Packing the DataUnits more densely would reduce the number of SPARQL calls
necessary, a tactic which so far has yielded good performance improvements. This can
be viewed as an instance of the bin packing problem, where the objective is to pack a
number of goods into the least number of bins, given certain restrictions. Bin packing
is NP-complete[59, p. 595-597], but there are several heuristic based algorithm, which
promise no worse than 22% more bins than an optimal solution for one dimensional
problems. Even though this bin packing problem is two dimentional(URI length,
max result set), more sophisticated heuristics should provide some improvement.

4.3.2 Memory Management

Several undocumented attempts have been made to extract sub-graphs of depth four
and give. These attempts have only been partially successful, with some attempts
crashing due to Java memory restrictions. While the memory limits for Java could be
increased, a better solution would be to improve PBBBFSs memory usage. PBBBFS
DataManager class currently implements three queues and one black list

MetaQueue - Keeps track of URIs for which to fetch result set sizes

DataQueue - Keeps track of URIs for which to fetch results

DataQueue+1 - Queue for next iteration step outwards

Blacklist - A HashSet copy of DataQueue which is used for quick lookup of URIs
for filtering

MetaQueue and DataQueue can easily be merged into a single structure, with no
cost in performance. Blacklist can be merged with MetaQueue and DataQueue, but
there will be a loss in performance depending on the data structure chosen. If the
new structure is a HashSet, lookup times will be constant but iteration will suffer,

92 Chapter 4. Discussion

where as a list structure will have good iteration time but comparatively poor lookup
time. The optimal solution will depend on the number of Contains/Iterations and
their associated cost, which can be determined with a set of simple experiments.

4.3.3 Write-to-Disk

The current implementation of PBBBFS writes gathered triples to a disk-based TDB
for persistent storage. This write is performed once for each DataUnit, which as
it involves I/O activity, is a comparatively expensive operation. There are three
alternative strategies available

Full-Model Collect triples until all frontiers have been explored to a depth of k.
Expensive memory usage strategy

Frontier-Move Collect triples until one frontier has been fully explored, where
upon all triples are written to disk in bulk. Better memory usage strategy, but
does not scale well for larger frontiers

Block-Based Collect triples until a certain limit is met, upon which the collection
is exported to disk and the process starts anew. Potentially lowest memory
footprint, but with increased cost to I/O. Best scaling of the three options

Option one and two suffer from scalability issues, in that triples for frontiers at depths
of 4 or 5 can take up vast amounts of memory. Option three offers a good balance
between memory usage and I/O cost.

With these improvements implemented, PBBBFS should improve significantly
faster and scale better for bigger and deeper graphs.

Chapter 5
Conclusion

The problem statement set forth by the research group was the following:

How to develop a graph visualisation application with tools which assist end-users
with the discovery of relevant information from Semantic Web sources

On the basis of this statement, the application GraphHelper was created. In
order to speed up development, Jena and JGraphX frameworks were employed for
graph visualisation and RDF data management. The current version of GraphHelper
allows users to:

• Load and save RDF-files for all major file-formats, as well as to connect to
remote Triplestores through web-based interfaces

• Probe local and remote RDF-sources through user-entered SPARQL expres-
sions

• Visualise sub-graphs of larger complex RDF-graphs in a spot-light like manner,
where a local neighbourhood of a node is shown. Users can navigate around
the sub-graph by double-clicking on nodes in order to move the spot-light focus

The only feature specified in the problem statement that has not been implemented,
is the ability to export graphs to images. In addition to these features two intelligent
search algorithms have been developed, named Interesting Graph and Interesting
Path, as well as an algorithm for efficiently extracting sub-graphs, called Parallel
Bucket-Based Breadth First Search (PBBBFS).

93

94 Chapter 5. Conclusion

Interesting Graph is a novel A*-inspired BrFS algorithm for RDF-graphs. A user
selects a node to explore, as well as a set of terms that describes a topic of interest,
as well as a set of secondary parameters. The algorithm searches the neighbourhood
of the selected node, looking for interesting nodes, and constructs a sub-graph to be
displayed upon completion.

Interesting Graph has been tested against a real-life data set, called DBpedia.
Five nodes were explored, each with associated search terms. The research group
hand-annotated the result set in order to calculate the precision values. The best
experiment obtained a precision of ~0.95, while the worst experiment obtained a
precision of ~0.60 in spite of certain software defects. The research group considers
these results promising and expect to be able improve the precision through error
corrections in software and more advanced information retrieval models as described
in section 4.2.

Interesting Path is an extension of previous research by Heim et al.[33]. A user
selects a start node and an end node, as well as a set of terms that describes the topic
of interest, as well as set of secondary parameters. The algorithm searches for paths
connecting the start and end node with a predefined amount of intermediate nodes
between them, and visualise the results in a graph-like manner, showing the most
promising paths discovered between the start and end node containing interesting
intermediate nodes.

Interesting Path has in the same manner as Interesting Graph been tested against
the real-life data set, DBpedia. Five sets, each containing a start node and an end
node were explored in order to find interesting paths between them. The research
group hand annotated the result set in order to calculate the precision values. The
best experiment obtained a precision of ~0.95, while the worst experiment obtained
a precision value of ~0.00. The best-case results were over-estimated due to dupli-
cate paths resulting from incorrectly-applied ontologies in DBpedia. The worst-case
results were determined to stem from poor choice of search terms. For both of these
issues the research group has proposed several methods to remedy these hindrances,
and predicts that better results can be achieved.

PBBBFS is a novel BrFS algorithm devised by the research group in order to
efficiently extract sub-graphs from remote endpoints. The development of this algo-
rithm was necessary in order to overcome issues related to time-outs and run-time
performance when working with large datasets. PBBBFS iteratively probes around a
given node and groups neighbours into more optimal buckets of URIs, which can then
be extracted more efficiently. In addition to the improvements in collection-speed,
PBBBFS stores the resulting sub-graphs in local Triplestores in order to allow for
fast searches of previously collected sub-graphs.

PBBBFS has been tested on the real-life dataset DBpedia. The algorithm was
compared with a naïve BrFS implementation. PBBBFS extracted sub-graphs of
equal size at ~4x the speed of the naïve algorithm.

95

The research group is satisfied with the improvements gained, but has outlined
several suggestions for improving run-time and memory management for PBBBFS.

In 2006 Nigel Shadbolt, Tim Berners-Lee and Wendy Hall published the article
The Semantic Web Revisited in IEEE Intelligent Systems. In the article Shadbolt et
al. discuss the slow uptake of RDF, when compared to the explosive growth of the
WWW. The quotation below summarizes some of the issues noted for the slow rate
of adoption of RDF[57]:

This next wave of data ubiquity will present us with substantial re-
search challenges. How do we effectively query huge numbers of decen-
tralized information repositories of varying scales? How do we align and
map between ontologies? How do we construct a Semantic Web browser
that effectively visualise and navigates the huge connected RDF graph?
How do we establish trust and provenance of the content?

Great strides have been made within the areas of efficient querying of large decen-
tralized datasets, with the modern Triplestore being able to manage up to a trillion
triples[62]. Research into ontologies is also an active area of exploration, with thou-
sands of articles being published on RDF.

Visualisation and efficient presentation of RDF information to users however,
appears to only enjoy sparse attention from the research community. The research
group believes that in order for the Semantic Web to become accessible to non-
experts, intelligent user-centric information retrieval systems need to be developed.
The research group is confident that future research into this topic will bear fruit.

96 Chapter 5. Conclusion

Appendix A
StringTemplate

StringTemplate[54] is a Berkeley Software Distribution licensed open source Java
library, with ports for several other languages, aimed towards easing the creation
of highly formatted text. Originally developed by Terence Parr[53] as part of the
ANTLR project[52] to ease the process of generating formatted code created by
ANTLR. StringTemplate has since been used in various other scenarios, such as dy-
namic web-site generation etc. This section will provide a brief introduction into
using StringTemplate. For a more comprehensive overview of StringTemplate abili-
ties, please see the StringTemplate 4 documentation[30]

StringTemplate consists of three components:

ST Group An ST Group is a file with the extension .stg which contains one or
more templates. These templates can be used in conjunction to create complex
results

Template A template function with simple embedded logic

Java Code To create, fill in and generate a string from a template

Templates are written in plain text, which defines both a format, as well as the
variables which will be inserted into it. Listing A.1 shows a simple example

Listing A.1: A simple template

1 INBOUND(URI) ::=
2 <<
3 SELECT ?s ?p (\<<URI>\> AS ?known) WHERE
4 {
5 ?s ?p \<<URI>\> .
6 }
7 LIMIT 10000
8 >>

97

98 Appendix A. StringTemplate

Line 1 contains the template name, INBOUND, as well as the input URI. URI
could be a primitive, list, array, custom object or even another template. In this
case it is the place-holder for an URI string, which when inserted will generate a
simple SPARQL SELECT statement. Inputs within a template are encased using
triangles(< and >), and since URIs within SPARQL are also encased in triangles,
an extra set is escaped around URI. StringTemplate does, by default, maintain a
template’s format which is advantageous for generating human-readable strings.

The Java code to invoke listing A.1 can be seen in listing A.2

Listing A.2: Java code to invoke template

1 String URI = ...;
2
3 STGroup myGroup = new STGroupFile("STFile.stg");
4 ST inbound = myGroup.getInstanceOf("INBOUND");
5 inbound.add("URI", URI);
6
7 String result = inbound.render();

Line 3 loads the ST group from a file STFile.stg and line 4 creates an instance of the
template INBOUND. Line 5 adds the string URI to the template, and finally the
template is generated in line 7. StringTemplate uses a form of lazy evaluation, and
it is therefore only when render() is called that the actual string is created.

As previously mentioned StringTemplates can handle lists and arrays. Listing A.3
shows a template which generates a dynamic list of SPARQL filters.

Listing A.3: A simple template

1 FILTER(filterURIs) ::=
2 <<
3 <filterURIs:
4 {f|
5 FILTER(!strStarts(STR(?p), "<f>")) .
6 FILTER(!strStarts(STR(?s), "<f>")) .
7 }>
8 >>

Line 3-7 is a form of for each loop, with the temporary variable f being inserted in
line 5 and 6 on each iteration. The resulting SPARQL expression would filter out ?p
and ?s for URIs starting with any string found in filterURIs.

Nesting templates within templates is one of the strong features of StringTem-
plate. By partitioning a text into smaller templates, it is easier for a designer to create
complex strings. By extending upon listing A.1 we can combine it with listing A.3
to create a simple SPARQL generator with filtering, as seen in listing A.4.

99

Listing A.4: Templates can be nested within templates

1 INBOUND(URI, filters, limit) ::=
2 <<
3 SELECT ?s ?p (\<<URI>\> AS ?known) WHERE
4 {
5 ?s ?p \<<URI>\> .
6 <filter>
7 }
8 <if(limit)>LIMIT <limit><endif>
9 >>

Listing A.4 can accept filters and if no filters are added, line 6 will simply not be
shown. Line 8 inserts a limit, but if no limit is inserted it is necessary to perform an
if-check first, so as to not print LIMIT blank. If-checks in StringTemplates can be
considered is-set checks in that they return true if a variable is present, and false if
null.

The Java code to generate listing A.4 can be seen in listing A.5

Listing A.5: Java code to invoke templates

1 String URI = ...;
2 String[] filterURIs = ...;
3 int limit = ...;
4
5 STGroup myGroup = new STGroupFile("STFile.stg");
6
7 ST STfilter = myGroup.getInstanceOf("FILTER");
8 STfilter.add("filterURIs", filterURIs);
9

10 ST STinbound = myGroup.getInstanceOf("INBOUND");
11 STinbound.add("URI", URI);
12 STinbound.add("filters", STfilter);
13 STinbound.add("limit", limit);
14
15 String result = STinbound.render();

StringTemplate has been used extensively within this project to generate custom
SPARQL expressions.

100 Appendix A. StringTemplate

Appendix B
TDB

TDB is a file-based RDF store developed as part of the Apache Jena project[40]. TDB
is related to Fuseki[39], but is only intended for single client usage, and does therefore
not have REST-style SPARQL support. A TDB storage unit can be interacted with
by using either command-line scripts or the Jena API, but instructions will be given
for the Java API only in this report.

TDB triple stores are created using by using the TDBFactory as seen in list-
ing B.1

Listing B.1: TDBFactory creates the required files

1 String dir = "TDBStore";
2 Dataset dataset = TDBFactory.createDataset(dir);

If the dir location already contains a valid TDB triple store, this store will be re-
turned by the method call. Each TDB contains three hash-files, Subject-Predicate-
Object(SPO), Predicate-Object-Subject(POS) and Object-Subject-Predicate(OSP),
as well as transaction logs, prefix mappings and other meta data information. Once
a store has been created, it can contain multiple models, all accessible through the
Dataset. The recommended method for interacting with models, is via transactions.
Listing B.2 shows a code snippet where a set of triples are added to the default graph
of a TDB tripe store.

101

102 Appendix B. TDB

Listing B.2: Bulk insert of triples using transactions

1 String dir = "TDBStore";
2 Dataset dataset = TDBFactory.createDataset(dir);
3 List<Statement> stmts = ...
4
5 dataset.begin(ReadWrite.READ);
6 Model model = dataset.getDefaultModel();
7 model.add(stmts);
8 dataset.commit();
9 dataset.end();

Once a model has been loaded, it can be interacted with in much the same way
as a Jena standard models. Listing B.3 shows a SPARQL expression being executed
upon a TDB model.

Listing B.3: SPARQL expression executed on TDB Model

1 String query = ...
2 String dir = "TDBStore";
3 Dataset dataset = TDBFactory.createDataset(dir);
4 Model model = dataset.getDefaultModel();
5
6 dataset.begin(ReadWrite.READ);
7 Query q = QueryFactory.create(query);
8 QueryExecution qExe = QueryExecutionFactory.create(q,

model);
9 rs = qExe.execSelect();
10 // process results
11 dataset.end();

B.1 Concurrency
TDB triple stores, and by extension Jena models, are not inherently thread-safe, and
concurrency therefore has to be handled explicitly. The Jena API concurrency model
implements a Multiple-Reader/Single-Writer (MRSW)[38] model, using indicative
locking. Listing B.4 shows a model being locked for read-access.

B.2. TDB Management 103

Listing B.4: A read lock applied to a TDB model

1 String query = ...
2 String dir = "TDBStore";
3 Dataset dataset = TDBFactory.createDataset(dir);
4 Model model = dataset.getDefaultModel();
5
6 model.enterCriticalSection(Lock.READ);
7 // perform read-action
8 model.leaveCriticalSection();

The lock system is a contract, and does therefore not enforce read/write within
the critical sections. It only ensures that no critical section declared as write is called
when other threads are reading, and performing writes in a read section should be
avoided. It is worth noting that iterators cannot safely be read when outside the
critical area, as an iterator is not guaranteed to contain consistent data once leaving
the critical area.

B.2 TDB Management
The persistent nature of TDB triplestores allows for reuse of already collected sub-
graphs. A sub-graph can be reused by a new query if

SourceT DB = Sourcenew

EndpointT DB = Endpointnew

FiltersT DB ⊇ Filtersnew

(B.1)

Sub-graphs generated for Interesting Graphs and Interesting Paths can be reused
interchangeably, where either source or target for an Interesting Path can be reused
by an Interesting Graph and vice versa. Interaction with TDBs is handled by the
custom class TDBManager(for class diagram see fig. E.1). All TDBs are stored in the
sub-folders under TDBStorage and in addition to the TDB files, each TDB folder
has an XML settings file as well as a text file containing the sub-graphs frontier.
TDBManager probes these XML files in order to find suitable TDBs based on the
requirements set forth in B.1. If a TDB is found that meets the requirements but is
not of sufficient size, TDBManager will regenerate the frontier and expand the TDB
with the necessary number of steps.

104 Appendix B. TDB

Appendix C
Stanford Core NLP

Searching through and working with natural language can be very complex, due to
the varied ways in which human write. When searching for the term, organize a
user would expect the system to return documents containing morphologicals of the
search term, such as organizes and organizing. There are two methods for reducing
terms to a more common form, namely stemming or lemmatization[45, p. 30-33].

Stemming is a set of several different methods that employ heuristics in order
to reduce words. Stemming approaches vary greatly by language, but most rely on
defining a set of simple roles which can be executed iteratively.

Lemmatization attempts to reduce words using morphological analysis in order
to reduce words to their dictionary definition, called lemma.The SCNLP library
implements a lemmatization approach, which involves four step.

Tokenize - The process of splitting a document up into tokens[27].

Sentence Split - Breaks a document down into sentences.

Part-of-Speech(POS) - Annotates all tokens with with their grammatical word-
class[28]

Lemmatization - Finds the lemma for tokens using the semantic and syntactic
information derived in the previous steps

All interaction with SCNLP is handled by the class WordScorer, (Class diagram
section E.4). WordScorer configures Stanford Core’s pipe system with the selected
options before processing text strings. Listing C.1 shows WordScorer parsing search
terms into lemmas

105

106 Appendix C. Stanford Core NLP

Listing C.1: WordScorer breaks down search terms into lemmas

1 myBagOfWordsProperties.put("annotators", "tokenize,
ssplit, pos, lemma");

2 myPipes = new StanfordCoreNLP(myBagOfWordsProperties);
3 Annotation doc = new Annotation(mySearchString);
4 myPipes.annotate(doc);
5
6 for (CoreMap sentence :

doc.get(SentencesAnnotation.class)) {
7 for (CoreLabel token :

sentence.get(TokensAnnotation.class)) {
8 String lemma = token.get(LemmaAnnotation.class);
9 if (!myLemmas.contains(lemma.toLowerCase())) {
10 myLemmas.add(lemma.toLowerCase());
11 }
12 }
13 }

Lines 1-4 configures Stanford Core NLP to perform the four necessary steps as
well as creating an annotated document of the search string. Lines 6-13 iterate over
the lemmas and selects all distinct lemmas.

Once the search terms have been lemmatized, WordScorer is ready to score doc-
uments. The process for scoring documents is much the same as for preparing search
terms. Listing C.2 illustrates this

107

Listing C.2: WordScorer scores documents and collections of documents

1 public double ScoreDocuments(Collection<String> _docs) {
2 int score = 0;
3 int lemmaSpace = myLemmas.size();
4 List<String> tempLemmas = new LinkedList<>(myLemmas);
5
6 for (String d : _docs) {
7 score += ScoreDocument(d, tempLemmas);
8 }
9 return betaValue

10 * (Math.log((double) (1 + score))
11 / Math.log((double) (1 + lemmaSpace)));
12 }

Listing C.2 iterates across the collection, scoring each document individually.
Search term lemmas that are matched are removed from the collection, so the max-
imum score possible is

Scoremax = β · log(1 + score)
log(1 + |lemmas|)

∣∣∣∣
score=|lemmas|

= β · 1 (C.1)

Some WordScorer methods do not use beta-values, and the result range is therefore
[0; 1].

108 Appendix C. Stanford Core NLP

Appendix D
User Assisted Search

In several cases the user has to specify a vertex from which to search. This assumes
that the user already knows the correct URI which identifies the desired topic, but
the identification of said URI can be problematic for large and complex Triplestores.
In order to assist the user in this initial step, several dialog windows in GraphHelper
offers a disambiguity feature. Figure D.1 shows an example of a such a disambigu-
ity search The user can enter terms to search for as well as an optional language

Figure D.1: Disambiguity segment from Interesting Path Dialog

restriction. In this case we are searching for berners-lee and restricting language to
English. The search button executes a SwingWorker thread which runs the SPARQL

109

110 Appendix D. User Assisted Search

expression seen in chapter D[33, p.3]

1 SELECT ?s ?l count(?s) as ?count WHERE {
2 ?someobj ?p ?s .
3 ?s <http://www.w3.org/2000/01/rdf-schema#label> ?l .
4 ?l bif:contains ’"berners-lee"’ .
5 FILTER (!regex(str(?s),

’^http://dbpedia.org/resource/Category:’)).
6 FILTER (!regex(str(?s),

’^http://dbpedia.org/resource/List’)).
7 FILTER (!regex(str(?s), ’^http://sw.opencyc.org/’)).
8 FILTER (lang(?l) = ’en’).
9 FILTER (!isLiteral(?someobj)).
10 } ORDER BY DESC(?count) LIMIT 20

The expression selects all vertices with RDF-schema#label literals containing the
search term. The number of hits is counted by vertex, which can be considered a
simple measure of importance. Finally the results are ordered in descending order
and the top twenty vertices and accompanying scores are returned to be displayed
for the user.

It should be noted that the current implementation of the disambiguity search is
aimed towards DBpedia and Open Link Virtuoso. In line 4 the Open Link Virtuoso
custom command bif:contains is used due to the improved performance, but it can be
replaced with the generic SPARQL query: FILTER(CONTAINS(?l, "‘berners-
lee"’)) .

Appendix E
Class Diagrams

This chapter contains full class diagrams for key parts of the GraphHelper imple-
mentation

111

112 Appendix E. Class Diagrams

E.1 Parallel Bucket-Based Breadth First Search

Figure E.1: Full class diagram for the PBBBFS algorithm

E.2. Visualisation Classes 113

E.2 Visualisation Classes

Figure E.2: Explicit class diagram for visualisation classes

114 Appendix E. Class Diagrams

E.3 Data Containers

Figure E.3: Data containers used to decouple data management from visualisation

E.4. RDFTree & WordScorer 115

E.4 RDFTree & WordScorer

Figure E.4: RDFTree, node, filter and WordScorer classes

116 Appendix E. Class Diagrams

E.5 Data Sources

Figure E.5: DataSourceInterface, GenericHTTPEndPoint and LocalGraph classes

E.6. Data Storage 117

E.6 Data Storage

Figure E.6: DataStorage and DataRepositoryInterface classes

118 Appendix E. Class Diagrams

Bibliography

[1] http://dbpedia.org/.

[2] David Beckett and Tim Berners-Lee. Turtle - terse rdf triple language. http:
//www.w3.org/TeamSubmission/turtle/#sec-intro.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34–43, May 2001.

[4] World Wide Web Consortium. N-triples. http://www.w3.org/2001/sw/
RDFCore/ntriples/.

[5] World Wide Web Consortium. Notation 3. http://www.w3.org/
TeamSubmission/n3/.

[6] World Wide Web Consortium. Owl 2 web ontology language. http://www.
w3.org/TR/owl2-overview/#Introduction.

[7] World Wide Web Consortium. Owl web ontology language. http://www.w3.
org/TR/2004/REC-owl-guide-20040210/#Introduction.

[8] World Wide Web Consortium. Rdf/xml syntax specification (revised). http:
//www.w3.org/TR/REC-rdf-syntax/.

[9] World Wide Web Consortium. Resource description framework(rdf)
model and syntax specification. http://www.w3.org/TR/1999/
PR-rdf-syntax-19990105/.

[10] Ron Davidson and David Harel. Drawing graphs nicely using simulated anneal-
ing. ACM Trans. Graph., 15(4):301–331, October 1996.

[11] Bob DuCharme. Learning SPARQL. O’Reilly Media, Inc, Sebastopol, 2011.

[12] GraphX for .NET. Graphx for .net group. http://www.panthernet.ru/
en/projects-en/graphx-en.

119

http://dbpedia.org/
http://www.w3.org/TeamSubmission/turtle/#sec-intro
http://www.w3.org/TeamSubmission/turtle/#sec-intro
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TR/owl2-overview/#Introduction
http://www.w3.org/TR/owl2-overview/#Introduction
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#Introduction
http://www.w3.org/TR/2004/REC-owl-guide-20040210/#Introduction
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/1999/PR-rdf-syntax-19990105/
http://www.w3.org/TR/1999/PR-rdf-syntax-19990105/
http://www.panthernet.ru/en/projects-en/graphx-en
http://www.panthernet.ru/en/projects-en/graphx-en

120 Bibliography

[13] Python Software Foundation. Python programming language - official website.
http://www.python.org/.

[14] Jena .NET Framework. Jena .net framework. http://www.
linkeddatatools.com/downloads/jena-net.

[15] RDFLib FuXi. Rdflib fuxi. http://code.google.com/p/fuxi/.

[16] Google. Guava: Google core libraries for java 1.6+. https://code.google.
com/p/guava-libraries/.

[17] Sunil Goyal and Rupert Westenthaler. Rdf-gravity. http://semweb.
salzburgresearch.at/apps/rdf-gravity/.

[18] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of
user behavior in www search. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’04, pages 478–479, New York, NY, USA, 2004. ACM.

[19] Alvaro Graves. Visual representation of rdf. https://github.com/
alangrafu/visualRDF.

[20] Alvaro Graves, Sibel Adali, and Jim Hendler. A method to rank nodes in
an rdf graph. In Christian Bizer and Anupam Joshi, editors, International
Semantic Web Conference (Posters & Demos), volume 401 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[21] Jgraphx Group. Jgraphx group. https://github.com/jgraph/jgraphx.

[22] JUNG Group. Jung - java universal network/graph framework. http://jung.
sourceforge.net/.

[23] NetworkX group. Networkx for python. http://networkx.github.io/.

[24] Prefuse Group. prefuse | interactive information visualization toolkit. http:
//prefuse.org/.

[25] Project Group. Retrieving blank node mapping. http://stackoverflow.
com/questions/22536775/retrieving-blank-node-mapping/.

[26] RDFLib group. Rdflib. https://github.com/RDFLib.

[27] Stanford NLP Group. The stanford nlp (natural language processing) group.
http://nlp.stanford.edu/software/tokenizer.shtml.

[28] Stanford NLP Group. The stanford nlp (natural language processing) group.
http://nlp.stanford.edu/software/tagger.shtml.

[29] Stanford NLP Group. The stanford nlp (natural language processing) group.
http://nlp.stanford.edu/software/corenlp.shtml.

http://www.python.org/
http://www.linkeddatatools.com/downloads/jena-net
http://www.linkeddatatools.com/downloads/jena-net
http://code.google.com/p/fuxi/
https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
https://github.com/alangrafu/visualRDF
https://github.com/alangrafu/visualRDF
https://github.com/jgraph/jgraphx
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://networkx.github.io/
http://prefuse.org/
http://prefuse.org/
http://stackoverflow.com/questions/22536775/retrieving-blank-node-mapping/
http://stackoverflow.com/questions/22536775/retrieving-blank-node-mapping/
https://github.com/RDFLib
http://nlp.stanford.edu/software/tokenizer.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/corenlp.shtml

Bibliography 121

[30] StringTemplate Developer Group. Stringtemplate 4 documentation.
https://theantlrguy.atlassian.net/wiki/display/ST4/
StringTemplate+4+Documentation.

[31] The W3C SPARQL Working Group. Sparql 1.1 overview. http://www.w3.
org/TR/sparql11-overview/.

[32] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems, Science,
and Cybernetics, SSC-4(2):100–107, 1968.

[33] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo
Stegemann. Relfinder: Revealing relationships in rdf knowledge bases. In Pro-
ceedings of the 4th International Conference on Semantic and Digital Media
Technologies: Semantic Multimedia, SAMT ’09, pages 182–187, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[34] Philipp Heim, Jürgen Ziegler, and Steffen Lohmann. gFacet: A browser for the
web of data. In Proceedings of the International Workshop on Interacting with
Multimedia Content in the Social Semantic Web (IMC-SSW 2008), volume 417
of CEUR-WS, pages 49–58, 2008.

[35] igraph group. The igraph library. http://igraph.sourceforge.net/
index.html.

[36] Franz Inc. Gruff: A grapher-based triple-store browser for allegrograph. http:
//franz.com/agraph/gruff/.

[37] Apache Jena. Apache jena. http://jena.apache.org/.

[38] Apache Jena. Apache jena - concurrency. https://jena.apache.org/
documentation/notes/concurrency-howto.html.

[39] Apache Jena. Apache jena - fuseki. http://jena.apache.org/
documentation/serving_data/.

[40] Apache Jena. Apache jena - tdb. http://jena.apache.org/
documentation/tdb/index.html.

[41] jena.apache.com. getting started, October 2013.

[42] Claudia Kunze and Lothar Lemnitzer. Germanet - representation, visualization,
application. In LREC. European Language Resources Association, 2002.

[43] Charles E. Leiserson. Concepts in multicore programming: Lab 4: Breadth-first
search. http://courses.csail.mit.edu/6.884/spring10/labs/
lab4.pdf.

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://igraph.sourceforge.net/index.html
http://igraph.sourceforge.net/index.html
http://franz.com/agraph/gruff/
http://franz.com/agraph/gruff/
http://jena.apache.org/
https://jena.apache.org/documentation/notes/concurrency-howto.html
https://jena.apache.org/documentation/notes/concurrency-howto.html
http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/tdb/index.html
http://jena.apache.org/documentation/tdb/index.html
http://courses.csail.mit.edu/6.884/spring10/labs/lab4.pdf
http://courses.csail.mit.edu/6.884/spring10/labs/lab4.pdf

122 Bibliography

[44] JGraph Ltd. Jgraphx user manual. http://jgraph.github.io/mxgraph/
docs/manual_javavis.html.

[45] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[46] Stefano Mazzocchi and Paolo Ciccarese. Simile | welkin. http://simile.
mit.edu/welkin/.

[47] Microsoft. Automatic graph layout. http://research.microsoft.
com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/
default.aspx.

[48] George A. Miller. Wordnet: A lexical database for english. COMMUNICA-
TIONS OF THE ACM, 38:39–41, 1995.

[49] Enrico Minack. dotsesame. http://sourceforge.net/projects/
dotsesame/.

[50] Oracle. Java.com. http://www.java.com/en/.

[51] palesz. Graph#. http://graphsharp.codeplex.com/.

[52] Terence Parr. Antlr. http://www.antlr.org/.

[53] Terence Parr. Professor terence parr – university of san francisco. http://
parrt.cs.usfca.edu/.

[54] Terence Parr. Stringtemplate. http://www.stringtemplate.org/.

[55] The Mono Project. Mono. http://www.mono-project.com/Main_Page.

[56] Dongmei Ren, Baoying Wang, andWilliam Perrizo. Rdf: A density-based outlier
detection method using vertical data representation. In ICDM, pages 503–506,
2004.

[57] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.
IEEE Intelligent Systems, 21(3):96–101, May 2006.

[58] Yi Shang and Longzhuang Li. Precision evaluation of search engines. World
Wide Web, 5:159–173, 2002.

[59] Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag New York,
Inc., New York, NY, USA, 1998.

[60] OpenLink Software. Openlink virtuoso jena provider. http:
//virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtJenaProvider.

http://jgraph.github.io/mxgraph/docs/manual_javavis.html
http://jgraph.github.io/mxgraph/docs/manual_javavis.html
http://simile.mit.edu/welkin/
http://simile.mit.edu/welkin/
http://research.microsoft.com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/default.aspx
http://research.microsoft.com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/default.aspx
http://research.microsoft.com/en-us/downloads/f1303e46-965f-401a-87c3-34e1331d32c5/default.aspx
http://sourceforge.net/projects/dotsesame/
http://sourceforge.net/projects/dotsesame/
http://www.java.com/en/
http://graphsharp.codeplex.com/
http://www.antlr.org/
http://parrt.cs.usfca.edu/
http://parrt.cs.usfca.edu/
http://www.stringtemplate.org/
http://www.mono-project.com/Main_Page
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtJenaProvider
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtJenaProvider
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtJenaProvider

Bibliography 123

[61] OpenLink Software. Openlink virtuoso universal server. http://virtuoso.
openlinksw.com/.

[62] W3C. Largetriplestores - w3c wiki. http://www.w3.org/wiki/
LargeTripleStores.

[63] W. John Wilbur and Karl Sirotkin. The automatic identification of stop words.
J. Inf. Sci., 18(1):45–55, January 1992.

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/wiki/LargeTripleStores

124 Bibliography

Glossary

A*
An approximative breadth-first search algorithm that replies on heuristics. i,
62, 63, 94

AllegroGraph
A high-performance, persistent database, produced by Franz Inc. 17

bag-of-words
The decomposition of one or more documents into a set of distinct terms. 63,
67, 72, 81

Berkeley Software Distribution
A Unix operating system derivative developed and distributed by the Computer
Systems Research Group (CSRG) of the University of California, Berkeley, from
1977 to 1995.. 24, 25, 97

Cascading Style Sheets
A formating language used extensively on web-sites. 43

data mining
The practice of searching through large amounts of computerized data to find
useful patterns or trends. 5

DBpedia
A crowd-sourced community extracted graph based on Wikipedia[1]. 22, 46,
55, 56, 81, 84, 85, 94, 110

directed graph
A graph in which each connection has a direction, leading from A to B, where
the direction of a connection is commonly represented as an arrow. A directed

125

126 Glossary

connection indicates either ownership (A owns B, A has B) or A has a one-way
connection to B. 5

Fuseki
An Apache Jena triple store with REST-style SPARQL access[39]. 22, 23, 101

gFacet
Graph-based Faceted Exploration of RDF Data[34]. 4

GitHub
A web-based hosting service for software development projects.. 17

gold standard
A hand-annotated corpus of documents used for measuring performance of
search algorithms. 75, 76, 88

Google Guave
A Java library developed by Google that deals with: collections, caching, prim-
itives support, concurrency libraries, common annotations, string processing
and I/O[16]. 64, 71

Gruff
A grapher-based triple-store browser produced by Franz Inc, for AllegroGraph,.
17

information retrieval
Information retrieval is defined as finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers). 81

Interesting Graph
An algorithm created by the research group to find and score interesting nodes
in order to generate an interesting graph.. i, 28, 54, 62–64, 67, 75, 81, 84,
88–90, 93, 94, 103

Interesting Path
An algorithm created by the research group to find and score paths with a
given start-node and end-node, containing interesting intermediate nodes.. i,
29, 54, 67, 70, 75, 76, 88–90, 93, 94, 103

Java
An object-oriented programming language managed by Oracle Inc.. viii, 17–22,
24, 56, 80, 91, 97–99, 101

Glossary 127

Jena
A Java framework for working with RDF and RDFS[37]. vii, viii, 19–23, 25,
27–32, 35, 37, 44, 54–56, 87, 88, 93, 101, 102

JGraphX
A Java visualisation API[21]. vii, viii, 24, 25, 27–29, 39, 41, 43, 44, 87, 93

lazy evaluation
StringTemplate variables are lazily evaluated in the sense that referencing at-
tribute "a" does not actually invoke the data lookup mechanism until the tem-
plate is asked to render itself to text [30]. 98

mxCell
An edge or vertex within an JGraphX graph. 39

mxGraph
The main component of a JGraphX graph which contains all elements of the
graph. 39, 44

N-ary Tree
A tree where nodes can have an arbitrary degree. 64

N-Triples
N-Triples are a subset of Turtle and thereby hs a simpler format than Turtle.
This makes N-Triples documents easier to parse and generate. [4]. 5

Notation 3
This is a language which is a compact and readable alternative to RDF’s XML
syntax, but also is extended to allow greater expressiveness [5]. 5, 22

Open Link Virtuoso
An open source triple store for RDF and RDFS[61]. 28, 110

OWL 2 Web Ontology Language
The OWLWeb Ontologoy Language is a language for defining and instantiating
Web ontologies [6]. 5, 22

OWL Web Ontology Language
An extension of OWL [7]. 5, 17, 21, 22, 81

precision
The fraction of retrieved documents that are relevant. i, 75–77, 82, 84, 88, 94

128 Glossary

Prefuse
A Java-based open-source visualisation framework. 25

recall
The fraction of relevant documents that are retrieved. 75, 76

REST
Representational State Transfer is an architectural style consisting of a coordi-
nated set of architectural constraints applied to components, connectors, and
data elements, within a distributed hypermedia system.. 101

SDB
A SQL Database back-end for Jena[37]. 22

Semantic Web
A network of loosely connected entities, sharing semantically rich information,
based on a common reference format. vii, viii, 3, 5, 16, 20, 93, 95

Stanford Core NLP
A set of tools developed by the Stanford Natural Language Processing group
for working with natural language[29]. 72

StringTemplate
A Java library for creating and filling in templates for generating formatted
text strings. See App. A. 55, 69, 70, 97–99

Swing
A native Java GUI framework, which provides basic GUI objects, events and
other logistical tools for the design and implementation of GUIs. 19, 24, 25,
27, 39, 47, 88, 128

SwingWorker
A standard Swing class designed ease-of-multithreading for GUIs. 109

TDB
Jena TDB is an file-based triple store[40]. 22, 58, 62, 64, 71, 87, 92, 101–103

Triplestore
A database aimed towards storage of triples. The Triplestore exposes it’s triples
via query languages, such as SPARQL, and API calls. 11, 16, 17, 19, 21–23,
25, 28, 35–38, 54, 67, 81, 84, 85, 88, 93–95, 109

Glossary 129

Turtle
A Turtle(The Terse RDF Triple Language) document allows writing down an
RDF graph in a compact textual form. It consists of a sequence of directives,
triple-generating statements or blank lines. [2]. 5, 12, 22

vector space model
A model for representing text as weighted terms. 81, 89

Welkin
Welkin in the term describing the celestial sphere. 18

130 Glossary

Acronyms

API Application Programming Interface. 17, 18,
21–23, 25, 29, 101, 102

BeFS Best-First-Search. 62, 64
BrFS Breadth-First-Search. 33, 34, 37, 62, 64, 85,

86, 91, 94

ePOOLICE early Pursuit against Organized crime using
envirOnmental scanning, the Law and Intelli-
genCE systems. 4

GUI Graphical User Interface. 4, 17, 27, 30, 31,
44, 87

JUNG Java Universal Network/Graph Framework.
17, 24

JVM Java Virtual Machine. 18, 61

MRSW Multiple-Reader/Single-Writer. 102

PBBBFS Parallel Bucket-Based Breadth First Search.
56–60, 64, 75, 84–86, 89, 91–95, 112

POS Part-Of-Speech. 89

RDF Resource Description Framework. i, 5–8, 12,
13, 17, 19–23, 25, 27–30, 37, 62, 67, 69, 87–90,
93–95, 101

RDF-Gravity RDF GRAph VIsualization Tool. 17, 18
RDF/XML Resource Description Framework Extensible

Markup Language. 5, 22

131

132 Acronyms

RDQL RDF Data Query Language. 18
Rio RDF/IO. 23

Sail Storage And Inference Layer. 23
SCNLP Stanford Core NLP. 89, 90, 105
SOAP Simple Object Access Protocol. 35
SPARQL SPARQL Protocol and RDF Query Lan-

guage. vii, 3, 4, 8–17, 19, 21, 22, 25, 28, 31,
33, 35–37, 44, 51, 54–56, 58, 61, 62, 64, 67,
69–71, 88, 91, 93, 98, 99, 101, 102, 109, 110

SQL Structured Query Language. 3, 8, 11, 15

URI Uniform Resource Identifier. 5, 6, 12, 14, 29,
44, 46, 47, 51, 54–56, 58, 61, 64, 69, 71, 72,
85, 86, 88, 90, 91, 94, 98, 109

URL Uniform Resource Locator. 31, 35

W3C World Wide Web Consortium. 5, 8
WWW World Wide Web. 3, 5, 95

XML Extensible Markup Language. 40, 47, 103

	English title page
	Contents
	Preface
	1 Project Description
	1.1 Introduction
	1.2 The Semantic Web
	1.2.1 Resorce Description Framework
	1.2.2 SPARQL

	1.3 Problem Statement
	1.4 Existing Solutions
	1.4.1 Gruff
	1.4.2 VisualRDF
	1.4.3 RDF GRAph VIsualization Tool
	1.4.4 Welkin
	1.4.5 GraphHelper

	1.5 Language Selection
	1.5.1 Java
	1.5.2 Python
	1.5.3 C#
	1.5.4 Decision

	1.6 Existing Libraries & Frameworks
	1.6.1 RDF Data Management
	1.6.2 Graph Visualisation

	1.7 Frameworks Selected

	2 Algorithms, Design & Implementation
	2.1 Introduction
	2.2 Software Overview
	2.3 Jena Implementation
	2.3.1 Data Management
	2.3.2 Local File Models
	2.3.3 Endpoints

	2.4 JGraphX Implementation
	2.4.1 Automatic Layout
	2.4.2 Customization & Styles
	2.4.3 Visualisation Implementation
	2.4.4 VisGraph
	2.4.5 Interesting Graph
	2.4.6 Interesting Paths

	2.5 Algorithms
	2.5.1 Extracting Sub-Graphs
	2.5.2 Interesting Graph
	2.5.3 Interesting Paths

	3 Experiments & Trials
	3.1 Introduction
	3.2 Measuring Interestingness
	3.3 Interesting Paths
	3.3.1 Question One
	3.3.2 Question Two
	3.3.3 Question Three
	3.3.4 Question Four
	3.3.5 Question Five
	3.3.6 Reflections

	3.4 Interesting Graph
	3.4.1 Reflections

	3.5 Parallel Bucket-Based Breadth First Search
	3.5.1 Reflections

	4 Discussion
	4.1 Software Architecture Status
	4.1.1 Graph Visualisation
	4.1.2 Addressing Blank Nodes in Endpoints

	4.2 Interesting Path & Graph
	4.2.1 Semantic Improvements

	4.3 Parallel Bucket-Based Breadth First Search
	4.3.1 DataUnit Packing
	4.3.2 Memory Management
	4.3.3 Write-to-Disk

	5 Conclusion
	A StringTemplate
	B TDB
	B.1 Concurrency
	B.2 TDB Management

	C Stanford Core NLP
	D User Assisted Search
	E Class Diagrams
	E.1 Parallel Bucket-Based Breadth First Search
	E.2 Visualisation Classes
	E.3 Data Containers
	E.4 RDFTree & WordScorer
	E.5 Data Sources
	E.6 Data Storage

	Bibliography
	Glossary
	Acronyms

