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Chapter 1

Introduction

In global navigation satellite systems (GNSS), like Global Positioning System (GPS), oper-
ated by U.S., Galileo, under development by the European Union and partners, or Global
Navigation Satellite System (GLONASS), operated by Russia, the user position is determined
from the measurements of time of flight of radio signals transmitted by orbiting satellites,
technique also known as passive ranging. The GNSS signals can suffer interferences, block-
age, attenuations and reflections until they reach the user equipment, and this is affecting the
position measurement.[5] While most of the errors can be overcome, the ones caused by re-
flections, also known as multipath errors, are challenging. The reflections on the surrounding
buildings and terrain are added as delayed multipath components to the direct radio signal,
introducing a bias in the determination of time of flight. The reflections have a random
behaviour for the user equipment, making it difficult to impossible to remove completely.

The user equipment, also known as GNSS receiver, is designed to reduce the multipath
errors. Different types of receivers have different performances in terms of multipath miti-
gation. Widely used industry standard receivers are the narrow correlator and double delta
correlator. In those two cases the DLL discriminator in the receiver is the one that reduces
the multipath errors. The antenna of the user equipment can also be modified to mitigate
the multipath, either hardware, like the choke ring antennas, or hardware and software, like
the Beam-forming for the array antennas.

New multipath mitigation methods are using estimation theory to detect the time of flight
of the direct component as well as of the multipath components. Those techniques can be
implemented using the DLL discriminator of the receiver and the range processor, as it will
be shown later in the paper. At the end of the estimation process, only the information about
the direct component is used in the range measurement. This is known as joint estimation
of the time of flight of direct and reflected signals and will be the research subject of this
thesis.

1



2 Chapter 1. Introduction

1.1 Objectives
The objective of this thesis is to investigate different approaches for the joint estimation of the
time of flight of the direct signal and the reflected signals and to compared them regarding
their multipath mitigation capabilities by means of numerical simulations. The goal is to
investigate if, and the degree in which, different joint estimation methods can outperform
the tracking loops already implemented in the conventional receivers.

In this thesis, the maximum likelihood joint estimation of the time of flight will be inves-
tigated. Due to the computational complexity of the maximum likelihood estimation, signal
compression techniques will be used. Different constraints will be proposed and developed.

For evaluation of the solutions, a simulation platform has to be developed, which will
be used for generating the direct and reflected signals and also for implementing the pro-
posed algorithms. The performance of estimation methods in multipath environments will
be compared with the classical tracking loops.

1.2 Thesis Outline
The structure of the thesis is as follows.

Chapter 1 states the problem of multipath mitigation and presents the objectives of the
thesis.

Chapter 2 provides an overview of the GNSS fundamentals, which are a necessary back-
ground when working with GNSS signals and multipath propagation.

Chapter 3 is proposing and developing a maximum likelihood estimation algorithm for
the delays of the line of sight and of the multipath signals. For a higher efficiency, constrains
are proposed on the amplitudes.

Chapter 4 presents two different compression methods, which are based on signal matched
correlators and code matched correlators.

Chapter 5 evaluates the performance of the proposed maximum likelihood estimation
algorithm, for both compression methods presented, and compares it with the classical DLL
with 0.1 and 0.3 early-late spacing. One ideal scenario is considered, with delays on the
sample grid, in which the general behaviour of the algorithm is illustrated, and a realistic
scenario, with delays that can take any value in between +/- one chip.

Chapter 6 presents the achievements of this thesis and future directions of development
of the work presented.



Chapter 2

Global Navigation Satellite
systems

This chapter will cover the basic aspects of GNSS that are used in the next chapters. First,
an introduction to GNSS will be given and the main types of errors that can occur will be
described briefly. After that, the GNSS signal will be discussed. The chapter will end with
a presentation of the GNSS user equipment, the tracking loops and the most used receivers
for multipath mitigation.

2.1 GNSS introduction
According to Groves in [5], GNSS refers to those navigation systems that provide the user
with a three-dimensional positioning solution by passive ranging using radio signals transmit-
ted by orbiting satellites. Passive ranging means that the user is receiving signals without
transmitting anything back. The satellite is emitting a signal from which the user can de-
termine the range, i.e. its distance from the satellite. The range measurement from several
satellites, combined with the information about the satellite position contained in the signal,
allows the user equipment to compute the user position.

The range ρ, can be expressed as a function of the transmission time tt, the arrival time
ta, and the speed of signal propagation, given by the speed of light, c, [5]

ρj = (ta − tt,j) c, (2.1)
where j is the index for a certain satellite.

In an error free environment, only three satellites are needed for the determination of
the user position. In the three-dimensional space, with just one satellite emitting, the user
could be anywhere on the sphere centred on the satellite and with the radius given by the
range. With two satellites emitting, the user could be on the intersection circle between the
two spheres. With three satellites, the solution is on one of the two points where the three
spheres intersect, and with the Earth as a fourth sphere, only one point is selected.

The three-dimensional user position, at a certain arrival time, ru(ta), is computed from
a set of three equations, corresponding to three different satellites. The equation for satellite
j is

ρj =
√

(rs,j(tt,j)− ru(ta))T (rs,j(tt,j)− ru(ta)), (2.2)

3



4 Chapter 2. Global Navigation Satellite systems

where rs,j(tt,j) is the position of satellite j at the transmission time tt,j and because of the
data contained in the GNSS signal, it is known to the receiver for any given moment of
time. The range ρj was determined according to equation (2.1). So the only unknown in
this equation is the user position ru(ta).

The satellites have atomic clocks which give precise clock measurements. All the satellites
are synchronised with each other. Equations (2.1) and (2.2) are for the ideal case, when the
receiver clock is also synchronized with the satellites clocks. But in practice this does not
happen. The satellites and receiver clocks are not perfectly synchronised and this affects the
range measurement. Having just one receiver involved, the error will be the same for all the
ranges determined by it and it can be overcome by considering the range measurement from a
fourth satellite. The only change will be that in equation (2.2) another unknown parameter
will be added, representing the error, and four equations will be needed. To distinguish
between the ideal ranges measured without clock errors and the true ones measured with
clock errors, the term of pseudo-range will be used for the latter ones. One of the equations,
for satellite j, will be

ρ̃j =
√

(rs,j(tt,j)− ru(ta))T (rs,j(tt,j)− ru(ta)) + ec(ta), (2.3)

where ρ̃j is the pseudo-range and ec is the error due to receiver clock.

2.2 Type of errors
For the range measurement, it is important to know the sources of errors and to try to model
them. The following are the most important ones.

Errors in the data broadcast by the satellite: The satellite transmits orbit data, known
as ephemeris data, which is a set of parameters used to compute satellite position at a
certain moment of time. The information about the transmission time is controlled by the
internal clock of the satellite which is very precise, but sometimes errors can occur. Both
the ephemeris data and satellite clock data are analysed by a network of monitor stations,
at precise locations, with highly accurate synchronized clocks, which are part of the Control
Segment, also known as Ground Segment, of the GNSS system. The control segment includes
also control stations and uplink stations. The control stations detect if there are errors in the
ephemeris data or satellite clock data and can use the uplink stations to transmit correcting
information to the satellite station. [5] Even if there are ephemeris errors in the signal, those
are small and the resulting user position error is not significant, with values below 2 meters
[1].

Atmospheric errors: Due to the free electrons in the ionosphere and the gases in the
troposphere, the signals are suffering delays. Both ionospheric and tropospheric delays are
dependent on the elevation angle of the satellite, being much higher for low angles. The
elevation angle is the angle between the line of sight from the satellite to the receiver and the
horizontal plane. Most GNSS user equipment have a threshold for elevation angle, ignoring
the signals that are received from angles below 5 or 10 degrees. Ionospheric delays vary with
solar radiation, meaning that the delays are different depending on the time of the day. Also
they vary with frequency and that is why, if the ranging measurement is conducted on more
frequencies, the ionospheric delay can be determined. The tropospheric delays vary with
weather conditions. For both ionospheric and tropospheric delays, models can be used to
partially correct them. [5]

Receiver measurement errors: The range measurement in the receiver can be affected
by the thermal noise, radio-frequency interferences and other inaccuracies. This error will
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be different for each pseudo-range determined by the receiver. It can be added as an extra
component to the equation (2.3), but is basically impossible to determine it. However, the
resulting position error will not be larger than 1.5 meters.

ρ̃j =
√

(rs,j(tt,j)− ru(ta))T (rs,j(tt,j)− ru(ta)) + ec(ta) + en,j(ta), (2.4)

where en,j(ta) represents the noise error for one pseudo-range determined.
Signal blockage: Depending on the elevation angle, the surrounding buildings and terrain,

the signal from a certain satellite can be blocked. The signal can be blocked also by the user
vehicle. In mountain areas or streets with high buildings, also known as urban canyons,
mostly for low elevation satellites, signal blockage can be severe and the user equipment
might receive signals from less then four satellites. If this is for short periods of time, one of
the four unknown parameters used to determine the user position, as presented in equation
(2.3), can be assumed to be known, for example the user height or the receiver clock error,
equal to the previous determined values. [5]

Multipath errors: The signal received by the user equipment in a certain observation
interval is usually not just the combination of direct signals from the satellites in view. It
also contains reflected or diffracted components of the same signals. The delayed components
of a certain satellite are attenuated, phase shifted with respect to the direct component and
delayed. More details about the multipath components will be given in the next chapters.
As it will be explained, when the delays are high, the user equipment can ignore them
when computing the range. But if the delays are small, also known as close multipath,
they introduce a bias in the time of flight calculation. The multipath errors are a big
challenge, because they are difficult to model and reduce. They are dependent on the outside
environment, and for the close multipath this is changing randomly and is hard to predict.

2.3 GNSS signals
This section will give a brief overview about the GNSS signals common characteristics and
some details which are not of interest for this thesis will be skipped.

Each GNSS signal has three important components, the navigation message data, the
PRN code and the carrier component. Each of them will be presented next.

Each satellite sends data messages, in the form of a baseband signal, with the frequency
spectrum around 0Hz, and with values of either +1 or −1 [6]. The data message rate is
usually between 50 and 500 symbols per second [5].

Further, another component is added, the spreading or pseudo-random noise (PRN) sig-
nal. The PRN signal is similar to the data message signal, with values of either +1 or −1,
but with a higher symbol rate, between 0.511 and 10.23 Mchips per second. To distinguish
between the PRN and data, in the PRN case, one symbol is called chip and the PRN sym-
bol rate is measured in chips per second and is called chipping rate, even if mathematically
symbols and chips are the same. [5] The bandwidth of the modulated signal is in general
proportional to the chipping rate [6]. The interval of time in which a chip is transmitted is
the chip period.

The PRN signal is periodic and one period represents the PRN code. Depending on
the type of signal, the PRN codes have different lengths and characteristics. One satellite
broadcasts several PRN codes, corresponding to different access and performance levels. All
PRN codes are pseudo-random sequences, predefined, known a priori by the receiver and
distinct between satellites. Except for the fact that is completely known at the receiver, a
PRN code has the same properties as a random sequence of the same length. That is why it
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does not correlate with other PRN codes, or with itself if it is delayed with more than one
chip. Because of those properties, the PRN codes play an important role in GNSS, in signal
transmission and in multipath mitigation techniques.

The PRN and data message signals could be expressed as the convolution between a
chipping or data sequence, and a pulse. The pulse shape can be a rectangular window, as
is the case in figure 2.1, or other shapes, like the Root Raised Cosine [11]. In practice, the
rectangular window pulse shape is widely use, the others being to expensive to implement
comparing to the performance gain.

Before transmission, the data signal is modulated on higher frequencies, on a carrier
frequency between 1 and 2 GHz, resulting in a bandpass signal. This is called Binary Phase
Shift Keying (BPSK) modulation. This type of modulation is represented in figure 2.1 and
can be expressed as in equation (2.5).

Figure 2.1: The signals contributing to the BPSK signal.

sBPSK(t) = ac(t)d(t)cos(2πfct+ φc), (2.5)

where sBPSK is the BPSK modulated signal emitted by a certain satellite, a is the amplitude,
c is the PRN signal, d is the data signal and fc and φc are the carrier frequency and phase
offset.

Another type of modulation, specific to many of the new GNSS signals, is the Binary
Offset Carrier (BOC) modulation. It is more complex but gives better performance for the
signal in terms of tracking capabilities and multipath resilience [2]. The modulated signal
can be expressed as

sBOC(t) = ab(t)c(t)d(t)cos(2πfct+ φc), (2.6)

where sBOC is the BOC modulated signal emitted by a certain satellite, b is the extra compo-
nent added, called sub-carrier function, which is usually a periodic signal with a rectangular
window shape, with amplitudes of +1 and −1. The rest of the parameters are the same as in
(2.5). Compared to the BPSK signals, the center of the frequency spectrum of BOC signals
is moved from fc to fc ± fs, where fs is the frequency rate of b(t).



2.3. GNSS signals 7

Now, that the main components of the GNSS signal have been defined, the role of the
PRN code in signal transmission and multipath mitigation will be detailed.

In GNSS signal transmission, one PRN code corresponds to one signal. The receiver
identifies very easy each signal, with the help of the PRN code. Different satellites can
transmit in the same time, sharing the same carrier frequency, due to the separation offered
by the PRN codes. This technique is known as Code Division Multiple Access (CDMA).

Usually, one satellite station needs to transmit simultaneously more signals, sharing the
same carrier frequency. One popular technique is Quadrature Phase Shift Keying (QPSK).
If two BPSK signals are multiplexed together using QPSK, the resulting signal is

sQPSK(t) = aIcI(t)dI(t)cos(2πfct+ φc)− aQcQ(t)dQ(t)sin(2πfct+ φc), (2.7)

where the subscripts I and Q denote the in-phase and quadrature-phase components.
The PRN code is important in multipath mitigation techniques because of its autocorre-

lation function and it will be explained in the next sections how those properties are used
in multipath mitigation. For now just the autocorrelation properties of the PRN code will
be presented. The autocorrelation function of the PRN code is almost zero for delays larger
than one chip and maximum when the delay is zero. This can be explained intuitively by con-
sidering the pseudo-random characteristic of a rectangular shape PRN code with amplitude
+1 and −1. If two identical such codes are out of sync with more then one chip, at a random
moment of time, the multiplication of the two codes could take random values of +1 and
−1, and the summation of those values over an accumulation interval will be approximately
0. Following the same approach, if the two identical codes are out of sync with less then one
chip then the probability that their multiplication value at a certain moment of time is +1
is proportional with the overlapping region. This can be expressed as follows.

The autocorrelation function for a continuous PRN signal, c(t), is given by the relation

Rcc(τ) = lim
T→∞

1
T

∫ T

0
c(t− τ)c(t)dt, (2.8)

where τ is the delay and T is the accumulation interval.
In GNSS, the accumulation interval is at least 1 ms [5] and the sampling rates are high,

resulting in high enough number of samples N, to be able to make the following approximation
for the autocorrelation function of the discrete PRN signal.

Rcc(i) = lim
N→∞

1
N

N∑
n=1

cn−icn (2.9a)

≈ 1
N

N∑
n=1

cn−icn (2.9b)

where i represents the number of samples corresponding to the delay τ , and cn is one sample
of the PRN signal, from a vector of samples indexed after n.

For the PRN code with rectangular shape and amplitude 1, and for an accumulation
interval less than the length of the PRN code, the resulting expression for the autocorrelation
function is as given in (2.10) for the discrete case, and in (2.11) for the continuous case [6].

Rcc(i) =
{

1− |i|Nc
for |i| ≤ Nc

0 otherwise
(2.10)
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where Nc is the number of samples in one chip period. In terms of continuous delay, this
autocorrelation can be expressed as

Rcc(τ) =
{

1− |τ |Tc
for |τ | ≤ Tc

0 otherwise
(2.11)

where Tc represents one chip period.
The autocorrelation function from equation (2.11) is represented in figure 2.2.

Figure 2.2: The autocorrelation function for a PRN code with rectangular shape.

It will be presented in the next sections how the autocorrelation function is used in the
receiver.

2.4 GNSS user equipment
In figure 2.3 is presenting a block diagram of the user equipment. The receiver is not clearly
separated in the user equipment. The ranging processor block is a software processing device
and not everyone consider it part of the receiver. Some authors see it as another component
of the user equipment which functions in a loop with the receiver. In this thesis, the ranging
processor is considered part of the receiver.

The only two blocks, which are of interest for the multipath mitigation techniques anal-
ysed in the next chapters, are the intermediate frequency (IF)/base band (BB) signal pro-
cessing and the ranging processor blocks, which are marked with a blue doted line in figure
2.3. All the rest will be described briefly, for putting the mentioned blocks in the context.
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Figure 2.3: Block diagram showing the GNSS user equipment.

The antenna is converting an electromagnetic signal into an electric signal [5]. The
antenna can be designed to mitigate multipath, either at the hardware level, like the Choke
Ring Antenna, or software, like the Beam-forming, as already mentioned in the introduction
of this thesis. The output from the antenna is directed to the front-end of the receiver.

One satellite broadcasts different signals in different frequency bands. In GPS, there
are 10 different types of navigation signals, like C/A, P(Y) and others, corresponding to
different applications and with different access levels, each allocated to one of the three
bands available, known as L1, L2 and L5. Similarly, in Galileo there are other 10 types of
signals allocated across three frequency bands. More about the different GNSS signals and
frequency bands can be found in [5].

In the front-end, the signals are processed separately, if belonging to different frequency
bands. The received signal is processed in the analogue domain first and then converted to
the digital domain. Different receiver types process the signal differently, but usually it is
amplified, band-limited and down-converted. The down-conversion is done in two stages,
and in the second stage the signal can be converted to base band (BB) or to a frequency
called intermediate frequency (IF), depending on the receiver type. In this thesis the BB will
be used, but the IF will be presented for giving a general picture.

In the IF signal, the carrier frequency is denoted by fIF . If the transmitted signal is a
QPSK signal, then the output IF signal, sIF , is given by the relation

sIF (t) = Re{s(t)ej(2π(fIF +fDOP )t+φ)}, (2.12)

where
s(t) = aIcI(t)dI(t) + jaQcQ(t)dQ(t). (2.13)

The same notations as in (2.7) are being used, with the specification that the amplitudes
aI and aQ are after the transformations in the front-end. The Doppler frequency, fDOP , is
due to the relative movement between the user and the satellite, during the signal receiving
process. More details about the Doppler frequency can be found in literature ([8],[6]). If
the expression in (2.12) is extended, it can be observed that the sIF signal is similar to the
sQPSK signal from (2.7), with changes in frequency, phase and amplitude.
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The BB signal is also the result of a down-conversion of the received signal, but to a
carrier frequency equal to 0 Hz. The resulted signal is a complex signal and can be expressed
as

sBB(t) = s(t)ej(2πfDOP t+φ), (2.14)

with the same notations as in (2.12) and with s given by (2.13).
In the BB signal processing block, each type of signal broadcast by each satellite is

identified, based on the PRN code. For this to be possible, one channel is allocated to each
type of signal and to each satellite in view. The total number of channels in a receiver,
nchannels, can be expressed as

nchannels = ntypes ∗ nsatellites, (2.15)

where ntypes indicated how many type of signals a certain receiver can decode and nsatellites
represents how many satellites are in the view of the receiver. Typically, nsatellites value is
between 10 and 12, and ntypes value can be equal to or greater than 1.

The main task of the BB signal processing and the ranging processor blocks is, for each
channel, to find the corresponding pseudo-ranges and the satellite positions. The difference
between the time of transmission and the time of arrival, known as time of flight, multiplied
by the speed of light, gives the pseudo-range, as explained in equation (2.1). The pseudo-
ranges, satellite positions and other data, from each channel, are sent to the navigation
processor, which computes the user position, as shown in equation (2.3).

Timing parameters and the ephemeris data can be retrieved from the message data, after
demodulation. If the exact time of transmission is known, the satellite position is calculated
from the ephemeris data. To calculate the time of flight, three different stages are needed:
acquisition, tracking and message data demodulation. The time of flight, tflight, can be
expressed as

tflight = Tc(x NPRN + y), (2.16)

where Tc is one chip period, NPRN is the PRN code length in chips, x is an integer retrieved
from the message data and y is computed in the acquisition and tracking stage and with the
property that y < NPRN . The value given by yTc is known as code phase.

The BB signal processing and the ranging processor blocks, for one channel, are detailed
in figure 2.4.
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Figure 2.4: Block diagram showing the tracking loops for one channel.

To determine the Doppler offset, given by fDOP in formula (2.14), and the phase of the
PRN code, yTc from (2.16), two loops are working together, the carrier loop and the code
loop, in two stages, the acquisition and tracking stage. The acquisition gives the coarse
estimates and the tracking is refining the estimates. The red lines in figure 2.4 indicate the
carrier loop and the green lines the code loop. Each loop has a numerical controlled oscillator
(NCO), controlled by the ranging processor and driven by the reference oscillator [5], which
generates local replicas of the carrier frequency or the PRN code.

In a classical code loop, the Code NCO generates three local replicas of the PRN code,
known as early (E), prompt(P) and late(L) replicas, which are the same PRN code with
different phases. In the acquisition stage only the prompt replica is used to determine the
coarse estimate of the code phase. In the tracking stage, all three local replicas are used,
for determining the refined code phase component. This type of implementation of the code
loop in the tracking stage is known as delay lock loop and it will be explained in details in
the next section. The code tracking loop estimate is the one affected by multipath errors.

2.5 Delay Lock Loop and the effects of multipath prop-
agation

In the tracking stage, the PRN code is known. What is not known is the fine alignment
between the transmitted PRN code and the locally generated code, which can be between
[−Tc, Tc]. To determine it, the autocorrelation properties of the PRN code are used. It was
shown in equation (2.11) that in a multipath error free environment, the autocorrelation
function of the PRN code is symmetric, has maximum value when the signal is not delayed
and is zero if the delay is larger then one chip period.

In the DLL, the correlation between two signals is achieved by multiplying the incoming
samples and accumulating the results over an observation interval, similar to formula (2.9).

Three different replicas of the PRN code are generated, the early, prompt and late replicas,
with different delays, and the DLL is trying to match the received code with the prompt
replica. The delay between the early and the late replicas is a design parameter, known
as chip correlator spacing, with values between 0.05 and 1 chips, depending on the receiver
type. The prompt replica is halfway between them. [5] The DLL correlates the received
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signal with the each replica and compares the results. If the received PRN code is aligned
with the prompt replica, then the correlation value between the received signal and the early
replica is equal with the correlation value between the received signal and the late replica.
The Code NCO is controlling and changing the delay of the prompt replica until the two
mentioned correlation values are equal. This process is represented in figure 2.5.

Figure 2.5: Representation of delay estimation principle in a DLL

In a multipath environment, the received signal is a sum of the direct and the reflected
components. The reflected components are attenuated, delayed and phase shifted. The
correlation function between a multipath affected signal and the locally generated replica is
not symmetric and errors might occur in the determination of code phase.

For illustration, we consider the input to one of the BB processing channels, given by a
multipath affected BPSK signal, which can be expressed as

sBB(ta) =
M∑
m=0

amc(tt − τm)d(tt − τm)ej(2πfDOP ta+φ) + w(t), (2.17)

where w is the noise, M represents the number of reflected components, and am and τm are
the amplitudes and delays corresponding to each component, with a0 > am and τ0 < τm,
for all m = {1...M}. Exceptions can occur in those relations, due to the propagation of
the direct component through an environment that is delaying or attenuating, but we don’t
consider them here. The rest of the notations are the same as before.

The carrier loop removes the carrier components and the input to the DLL can be ex-
pressed as

sDLL(ta) =
M∑
m=0

amc(tt − τm)d(tt − τm) + w(t), (2.18)

where am is a complex amplitude. For simplicity, the data message is assumed to be known
or not existent, and it will ignored and the signal is

sDLL(ta) =
M∑
m=0

amc(tt − τm) + w(t). (2.19)

If the noise is ignored, the correlation function between the received signal and a replica
of the PRN code, crep, can be expressed as below
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rsc(τ) =
N∑
n=1

crep(tn − τ)sDLL(tn)

=
N∑
n=1

crep(tn − τ)(
M∑
m=0

amc(tn − τm))

=
M∑
m=0

am

N∑
n=1

crep(tn − τ)c(t− τm).

(2.20)

Please note that discrete values have been used, as the signal is digital, and the term 1/N
in front of the summation in the correlation was not used any more, to be aligned with the
behaviour of the DLL.

From equation (2.20) it can be noticed that the correlation function of a signal with
multipath components is a summation of the correlation functions corresponding to each
component from the signal. For the case of M = 1, this is illustrated in the next figure.

Figure 2.6: The correlation function between the replica PRN code and a signal with one multipath
component.

It can be observed that when the correlation values between the received signal and the
early and late replicas are equal, the prompt replica is not perfectly aligned with the direct
component. This biasing effect is introduced by the multipath signal component, which
distorts the correlation function corresponding to only the LOS component. Next, it will be
explained how the conventional GNSS receivers are trying to overcome this bias.

2.6 Multipath mitigation in conventional receivers
In the GNSS industry today, there are two main types of receivers with adapted DLL ar-
chitecture designed to mitigate multipath, known as narrow correlator and double delta
correlator. Many variations of those exist, which will not be detailed in this thesis.

The narrow correlator is based on the observation that the bias introduced by the mul-
tipath is less sever if the chip correlator spacing is smaller. The band limiting of the signal
in the front-end of the receiver is usually rounding the edges of the correlation function and
this is limiting how small the chip correlator spacing can get. The narrow correlator has chip
correlator spacing between 0.1 and 0.05 chips.

The double delta correlator is based on the observation that the delay of the peak of the
correlation function is not affected my the multipath, if lower amplitudes are assumed for
the reflected components. Two additional correlators are implemented in the receiver, known
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as very-early and very-late. The spacing between the very-early and very-late correlators is
twice the spacing between the early and late correlators. The results from the early late
correlators and from the very-early and very-late correlators are used to find the peak of the
correlation function which also coincides with the true delay of the received signal.

In Chapter 5, the performance of DLL, with early late spacing of 0.3 and 0.1, will be
compared with the performance of the proposed ML estimation algorithm.

2.7 Signal to noise ratio in GNSS
In GNSS, for expressing the signal power relative to noise, the carrier to noise density ratio
(C/N0) is specified. The carrier to noise density ratio is the ratio of the received carrier
power to noise spectral density and is measured in dB Hz.

The terms of signal to noise ration and carrier to noise density ratio are sometimes used
interchangeably, but they are not the same [9]. The carrier is the received signal, so both
terms, signal/ carrier, can be used. But the difference is given by the noise density, N0,
which is the amount of noise power per unit of bandwidth and is expressed in W/Hz [3], or
dB W/Hz. In GNSS, it is convenient to refer to the signal to noise density ratio, because it
does not depend on the bandwidth.

The bandwidth B is included in the carrier to noise ratio (C/N), as below

C

N
= C

BN0
. (2.21)

In dB, the ratio becomes (
C

N

)
dB

=
(
C

N0

)
dBHz

− 10log10(B). (2.22)

Considering the sample frequency fs equal with the bandwidth(
C

N

)
dB

=
(
C

N0

)
dBHz

− 10log10(fs). (2.23)

The carrier power C is the power of the received signal, which, in the absence of multipath
components (M = 0), is

C = PsDLL
= E[a0c(t− τ0)(a0c(t− τ0))∗]
= |a0|2E[c(t− τ0)c∗(t− τ0)] = |a0|2E[1]
= |a0|2,

(2.24)

where E[·] is the expected value operator. We computed the power using the expected value,
due to the pseudo-random characteristic of the PRN code.

For complex white noise, with standard deviation of the real and imaginary parts given
by σ, the noise power is given by

Pnoise = 2σ2. (2.25)

The SNR, for one signal component (M = 0), is given by

SNR = C

N
= |a0|2

2σ2 , (2.26)
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where 2σ2 = BN0
When multipath components are part of the signal (M > 0), the total SNR will change.

As a convention in the thesis, the term SNR will be used for the SNR of the direct component.
When this will not be the case, it will be clear from the text.

In GNSS, the SNR from equation (2.26) is negative. After the correlation of the received
signal with the replica PRN code in the DLL, the SNR is increased to a positive level. The
SNR after correlation will be equal with the SNR before the correlation multiplied with a
factor of N , where N represents the total number of samples in the observation interval, as
it is shown in appendix A.
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Chapter 3

Maximum Likelihood
Estimation

In this chapter, an estimation algorithm, based on the maximum likelihood estimator, will be
proposed and developed for the estimation of the delays of the line of sight and the multipath
components in the GNSS signals. The main difference between the classical DLL and the
maximum likelihood estimation is that the DLL is trying to minimize the error induced by
the multipath. The ML estimator proposed, however, performs joint estimation of the delays
of all multipath components present in the signal, therefore avoiding the error introduced by
multipath signal components which are not accounted for in the DLL.

The maximum likelihood estimation is a very popular method within statistical signal
processing, due to its asymptotic optimality: as the number of observations used by the
estimator tends to infinity, the estimator becomes unbiased and achieves the Cramér-Rao
lower bound (CRLB)[7]. Asymptotically unbiased estimator means that the mean of the
estimate resulting from a number of realizations tends to the true values of the parameters
to be estimated, as the number of realizations goes to infinity. The fact that the estimate
asymptotically achieves the CRLB means that the variance of the estimator achieves its
minimum possible limit, the CRLB, as the number of observations tends to infinity. In
addition, for estimation problems affected by noise, the CRLB can be achieved even for
relatively small data sets if the SNR is large enough [7]. Weill has researched and documented
the relation between the maximum likelihood estimator for GNSS signals and the CRLB,
and more about it can be found in [13], [12] and [14]. The CRLB is not a topic for this thesis,
so it will not be discussed further. The goal of the this thesis is to asses if, and when, the
maximum likelihood estimator performs better than the classical DLL and and this will be
detailed in Chapter 5.

Two important directions of research for the maximum likelihood estimator in GNSS can
be found in literature, the one from Selva Vera, in [11], and the one from Weill, in [15], and
they are the main reference for this chapter and chapter 4. Similar to Selva [11], we are going
to use the vector form of the signals, as we consider it straightforward and easy to generalize
for different number of multipath components. Similar to Weill [15], and to the development
of his work for the Vision Correlator [10], we will consider constraints on the amplitudes, as
presented in section 3.4, based on the method proposed by Weill, with Lagrange multipliers,
but also with a different method, developed in this thesis.

17
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3.1 Signal model
The maximum likelihood principle states that the maximum likelihood estimator is the one
that maximizes the likelihood function, i.e. the probability density function (PDF) of the
observations considered as a function of the parameters to estimate [7]. In order to formulate
the likelihood function, it is very important to asses a correct signal model and this is the
subject of this section.

Before stating a signal model, some assumptions have to be made. The signal arriving at
the receiver is affected by multipath propagation caused by the scatterers in the environment.
We assume that the receiver and the environment are static during one observation time
and, hence, so is the multipath channel response. Only one channel in the GNSS receiver
is considered, meaning that only one type of signal from only one satellite is analysed.
Furthermore, the carrier frequency and Doppler offset have been corrected by the carrier
loop. For simplicity, the navigation data message is considered to be either known, removed
or not existent, as in a pilot signal, and it will be ignored. In the case when the navigation
message is not ignored and not known, the observation time is aligned so that a bit transition
in the message data occurs at the border of an observation interval, not during the observation
interval. Under this assumption, the message data only impacts the sign of the correlation
result.

At the point in the receiver where the ML estimation is taking place, the signal has
been converted from analogue to digital domain, so we will work with a discrete-time signal
model. The signal samples are part of a data set, also known as time series, collected during
an observation interval, and are denoted by {s1, s2, ..., sN}, with one signal sample sn given
by

sn ≡ s(tn) ≡ s((n− 1)Ts), (3.1)

where tn is the time instant corresponding to the n’th sample, equal with (n − 1)Ts, where
Ts is the sample period.

Assuming that M multipath components are reaching the receiver at the moment of
observation, the signal model for the n’th sample can be formulated as

s(tn) =
M∑
m=0

amc(tn − τm) + w(tn), (3.2)

where s(tn) is the received complex„ baseband signal, with the carrier frequency and the
Doppler offset removed, w(tn) is a sample of a complex zero-mean Gaussian noise, c(tn) is
sample of the PRN code, τ0 and a0 are the delay and amplitude of the line of sight component,
τm and am, for m > 0, are the delays and amplitudes of the multipath components. The
amplitudes am are complex and can be expressed in polar form as

am = Ame
jφm , (3.3)

where Am and φm are the magnitude and phase of the m’th signal component.
If the N samples from an observation interval are ordered in a vector, then the signal

model can be expressed as below
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s(0Ts)
s(1Ts)

...
s((N − 1)Ts)

 =


c(0Ts − τ0) c(0Ts − τ1) . . . c(0Ts − τM )
c(1Ts − τ0) c(1Ts − τ1) . . . c(1Ts − τM )

...
... . . . ...

c((N − 1)Ts − τ0) c((N − 1)Ts − τ1) . . . c((N − 1)Ts − τM )




a0
a1
...
aM

+


w(0Ts)
w(1Ts)

...
w((N − 1)Ts)


(3.4)

and more compactly as

s = C(τ )a+w, (3.5)
where

s = [s1 s2 ... sN ]T ,
a = [a0 a1 ... aM ]T ,
τ = [τ0 τ1 ... τM ]T ,
C(τ ) = [c(τ0) c(τ1) ... c(τM )] with
c(τm) = [c1(τm) c2(τm) ... cN (τm)]T and cn(τm) ≡ c((n− 1)Ts − τm),
w = [w1 w2 ... wN ]T with wn ≡ w((n− 1)Ts).

(3.6)

3.2 Cost Function
The signal model in (3.2) is a mathematical expression describing the observed signal s, as a
function of a set of parameters, which are either known or can be determined or estimated.
In the present case, the delay of the line of sight τ0 is the parameter of interest, while the
rest of the delays τm, with m > 0, are just means to estimate the parameters of interest,
being known as nuisance parameters. The PRN code c is known to the receiver, the noise
w is assumed to be a complex zero-mean Gaussian noise with uncorrelated samples and the
complex amplitudes am are unknown and need to be determined together with the delays. In
practice, the number of multipath components is not known, and is difficult to approximate,
but for now M is assumed to be known and later in the thesis it will be investigated how a
bad approximation is affecting the estimation results.

For the ease of mathematical representation, the unknown parameters are included in the
vector θ, as follows

θ = [aT , τT ] = [a0, ... , aM , τ0, ... , τM ]. (3.7)

In ML estimation, the estimate θ̂ML is obtained by maximizing the likelihood function,
given by the probability density function (PDF) of s, as a function of unknown parameters
in θ. For a Gaussian distribution, the PDF for one complex sample is

p(sn) =
(

1
πσ2

s

)
exp

(
− 1
σ2
s

|sn − µs|2
)

(3.8)

where σs is the standard deviation of sn and µs is the mean, or expected value of sn.
According to (3.2), the signal sn is composed of a deterministic part, given by

M∑
m=0

amcn(τm),
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and a stochastic part, given by the noise component, with variance σ2 and the mean 0. The
mean of one sample sn will be given by

µs = E[sn] = E[
M∑
m=0

amcn(τm) + wn] (3.9a)

= E[
M∑
m=0

amcn(τm)] + E[wn] (3.9b)

=
M∑
m=0

amcn(τm) + 0, (3.9c)

where E[·] denotes the expected value operator.
And the variance of sn will be

σ2
n = var(sn) = var(

M∑
m=0

amcn(τm) + wn) (3.10a)

= var(
M∑
m=0

amcn(τm)) + var(wn) (3.10b)

= 0 + σ2, (3.10c)

The expression for p(sn) becomes

p(sn) =
(

1√
πσ

)2
exp

− 1
σ2

∣∣∣∣∣s−
M∑
m=0

amc(τm)
∣∣∣∣∣
2 (3.11)

The PDF of the vector s is given by the product of the PDF’s for each sample, because
the noise samples are uncorrelated. And because the likelihood function is equal to the PDF
of s, the likelohood function is

L(s;θ) =
(

1√
πσ

)2N
exp

− 1
σ2

N∑
n=1

∣∣∣∣∣sn −
M∑
m=0

amcn(τm)
∣∣∣∣∣
2 (3.12)

Thus, the ML estimate of θ is given by

θ̂ML = arg max
θ

L(s;θ). (3.13)

By combining (3.12) and (3.13) the expression for θ̂ML is

θ̂ML = arg max
θ

exp

− 1
σ2

N∑
n=1

∣∣∣∣∣sn −
M∑
m=0

amcn(τm)
∣∣∣∣∣
2 . (3.14)

The term in front of the exponent from (3.12) was dropped because it does not depend on
θ. As the logarithm is a monotonically increasing function, it can be applied to the argument
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of the argmax operation, without changing the location of the extremum, leading to

θ̂ML = arg max
θ

− 1
σ2

N∑
n=1

∣∣∣∣∣sn −
M∑
m=0

amcn(τm)
∣∣∣∣∣
2 (3.15a)

= arg min
θ

N∑
n=1

∣∣∣∣∣sn −
M∑
m=0

amcn(τm)
∣∣∣∣∣
2

, (3.15b)

which can also be expressed as

θ̂ML = arg min
θ
|| s−C(τ )a ||2 . (3.16)

The term that is minimized in (3.16) is defined as the cost function for the parameters
θ, i.e.

J(θ) =|| s−C(τ )a ||2 . (3.17)

It can be noticed that the ML minimization has become a Least Squares minimization
problem. This is always the case in the ML estimation problems where the noise has Gaussian
distribution N (0, σ2I) [7]. How the minimization can be interpreted now is that the solution
will give the parameters that best fit the noiseless signal model to the received signal. And
that the squared error between each point from the received signal and the fitted model is
minimized as much as possible.

The minimization of J with respect to θ is 2M dimensional, has a quadratic dependence
on a and a non-linear dependence on the delay parameters in τ . The minimization is
challenging because of the high dimensions and because of the non-linear dependence on
τ . But the quadratic dependence on the complex amplitudes in a can be exploited and a
close form expression for a can be derived. This will reduce the problem from 2M dimensional
to M dimensional, depending only on the delays parameters vector τ . For the estimation of
τ , a grid search can be performed, at a resolution high enough. Or it can be estimated in
two stages, first over a course grid and after that improve the estimation by performing an
iterative search around the initial solution.

3.3 Parameters Estimation

In this section it will be detailed how the parameters in θ̂ML can be estimated, by solving

θ̂ML = arg min
θ
J(θ). (3.18)

The norm 2 in (3.17) can be expressed as || x ||2= xHx, where x is a complex vector
and (·)H denotes conjugate transposition. Using this, and by keeping the matrix, vector
notation, the cost function in (3.17) can be extended as

J(θ) =
(
sH − aHC(τ )H

)(
s−C(τ )a

)
= sHs− sHC(τ )a− aHC(τ )Hs+ aHC(τ )HC(τ )a.

(3.19)

By dropping sHs due to its independence of θ, the cost function can expressed
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J(θ) ∝ J1(θ) = −sHC(τ )a− aHC(τ )Hs+ aHC(τ )HC(τ )a, (3.20)

where ∝ indicates proportionality.

3.3.1 Amplitudes determination
In order to determine a close form expression for the parameters in a, the rest of the param-
eters in θ̂ML will be considered to be known. Due to the quadratic relation between J and
a, for any fixed value of τ , the value of a that minimizes the cost function can be found, by
taking the gradient of J with respect to a and setting it to 0.

Because a is complex, the derivative needs to be computed as below

∇aJ =
[
∂J

∂a

∂J

∂a∗

]
, (3.21)

where (·)∗ denotes conjugate.
By solving ∇aJ(aML, τ ) = 0, two sets of equations are obtained, both resulting in the

same equation, as it is shown in appendix B,

C(τ )HC(τ )aML = C(τ )Hs. (3.22)

If C(τ )HC(τ ) is invertible, the solution for the complex amplitude vector, aML, has the
following form

aML(τ ) =
(
C(τ )HC(τ )

)−1
C(τ )Hs. (3.23)

One remark needs to be made. In the estimation process, the amplitudes determined are
complex and if needed, the magnitude and the phase can be calculated, by using the below
relations [15]

a = aR + jaI , (3.24a)

A = |a| =
√

(aR)2 + (aI)2, (3.24b)

φ = atan2(aR, aI), (3.24c)

where the superscripts R and I are indicating the real and imaginary parts, and a is any of
the complex amplitudes from the vector aML(τ ).

If expression (3.23) is used in (3.17), the cost function becomes

J(τ )|a=aML
=|| s−C(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs ||2 (3.25)

Or, if (3.23) is used in the extended expression from (3.20), then a simplified form of the
cost function is obtained, as follows

J1(τ )|a=aML
=− sHC(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs− sHC(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs

+ sHC(τ )
(
C(τ )HC(τ )

)−1
C(τ )HC(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs,

(3.26a)

= −2sHC(τ )
(
C(τ )HC(τ )

)−1
C(τ )Hs+ sHC(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs, (3.26b)
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resulting in

J1(τ )|a=aML
= −sHC(τ )

(
C(τ )HC(τ )

)−1
C(τ )Hs, (3.27a)

which can also be expressed as

J1(τ )|a=aML
= −sHC(τ )aML(τ ). (3.27b)

The expression for the cost function does not depend on the amplitudes any more. This
means that to a certain value of τ corresponds a certain value of J and J1.

3.3.2 Delays estimation
In order the find the optimum vector of delays τ̂ML, the most straightforward approach is
to perform a grid search in the region where the delays are expected to be. To increase the
accuracy of the estimation, the resolution of the grid can be increased, or an iterative search
can be performed around the initial result. But for now, we will focus only on the grid search,
performed at a resolution corresponding to the sampling period Ts.

The optimum τ̂ML is the one that minimizes the below expression,

τ̂ML = arg min
τ
J1(τ )|a=aML

. (3.28)

If we define the set T , containing all possible combination of delays in the search grid,
the approximate ML estimate can be defined as:

τ̂ML,grid = arg min
τ∈T

J1(τ )|a=aML
. (3.29)

In the above expression, we simply restrict the values that τ can take in the argmin
operation to those present in the set T , i.e., to the points in the grid. The ML estimation
takes place in the receiver in the tracking stage. And in the tracking stage the incoming
signal is already coarsely aligned with the PRN replica code, with an uncertainty of +/−
one chip. The search interval for all delays is [−Tc, Tc], where Tc is the chip period.

Another restriction on the delays is that the line of sight delay is the smallest, and the
multipath delays follow the below relation.

τ0 < τ1 < ... < τM . (3.30)

The constraints in (3.30) are introduced in the elements of the set T .

3.3.3 Algorithm overview
As an overview of the estimation algorithm, a pseudo-code is generated.

Pseudo-code:
1 : Create a set T of all possible combinations of delays, τ i, which are in the interval

[−Tc, Tc] and respect the condition τ0 < τ1 < ... < τM . The index i indicates the position in
the set.

# For each τ i ∈ T
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2 : Compute aML(τ i) =
(
C(τ i)HC(τ i)

)−1
C(τ i)Hs

3 : Compute J1(τ i) = −sHC(τ i)aML(τ i).
# Minimization
4 : Find the index k yielding the lowest value J1(τ i)
5 : τ̂ML = τ k

Assuming that the number of multipath components is known and the environment is
not affected by noise, the ML estimation should always find the good solution, due to the
optimality of the ML estimator. But because some multipath delays might be much closer
to the line of sight delay comparing to the resolution of the search space and because the
estimation is not allowed by the relation in (3.30) to search for equal delays, some errors are
to be expected.

If the situation of M = 1 is considered, in which the delay of the multipath is so close
to the delay of the line of sight that can be considered equal, and for the particular case in
which τ0 = τ1 = 0 chips, the normalized cost function looks like in figure 3.1.
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Figure 3.1: The normalized cost function, in the case when τ0 = τ1 = 0 chips, from two different view
angles.

From the estimation point of view, all the delay combinations, in which one of the delays
is on the true value and the other one is in a region that respects the condition in (3.30),
have equal values of the cost function. For the special case in which τ0 = τ1 = 0 chips, the
cost function has equal values, which are also the minimum value, for τ0 in [−Tc, 0 − Ts]
and τ1 = 0 chips and for τ0 = 0 chips and τ1 in [0 + Ts, T c]. And this can be extended for
more multipath delays very close to each other, with the same conditions: only one of the
delays will be assigned to the true value. The process that is taking place in order for this
to happen is that the estimation is assigning a high value to the amplitude corresponding to
the component which is on the true value and a very low value to the rest of the amplitudes.
When the components are summed up, because of the difference in amplitudes, so in power,
the component that is on the true delay is almost masking the the rest of the components.

In practice, the values that the multipath delays get from the estimation are not impor-
tant. What is important is that the line of sight delay is on the true value. The cost function
can be adjusted, so that the LOS component is always the component with larger amplitude.
This can be done by imposing some constraints on the amplitudes and it will be discussed
in the next section.
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3.4 Parameters Estimation with constrained amplitudes

3.4.1 Amplitude constraints
A simple restriction on the amplitudes would be given by the relation A0 > Am, with
m > 0, considering that the direct component is usually the strongest. In practice, there can
be exceptions, which will be ignored in the thesis. With some prior knowledge about the
relation between the amplitudes, this restriction can be made more strict.

In GNSS, the power of line of sight component is at least 3− 4 dB higher than the power
of the multipath components. Usually the difference is between 6 and 10 dB. Considering
the signal model in (3.2), the line of sight component is a0cn(τ0) and its power is given by

P0 = A2
0,

as it was shown in (2.24).
The same applies to the first multipath and its power will be P1 = A2

1.
The ratio between the real part of the amplitude of the first multipath and the amplitude

of the line of sight is

A1

A0
=
√
P1

P0
= 1√

10( ∆
10 )
, (3.31)

where ∆ represents the difference in dB between the power of the line of sight and the power
of the first multipath component.

Figure 3.2 shows how the amplitudes ratio changes with the value of ∆.
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Figure 3.2: Dependency between amplitudes ratio and power difference.

In order to make the constraint on the amplitudes more stringent, it can be enforced that

A1

A0
≤ α, (3.32)

where the value of α is a tuning parameter, but in general it is safe to set α = 0.7 [15], which
corresponds (roughly) to ∆ = 3 dB.

In order to use the amplitudes constraint in the estimation process, a relation between the
complex amplitudes is needed. From equation (3.24b) results that A2 = |a|2 = (aR)2 +(aI)2,
and (3.32) can be reformulated as

|a1|2

|a0|2
≤ α2. (3.33)
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Considering (3.33), the new relation between the amplitudes is

α2|a0|2 ≥ |a1|2, (3.34a)
...

α2|a0|2 ≥ |aM |2. (3.34b)

In vector form, this constraint can be expressed as

aHΩ1a ≥ 0, (3.35a)
...

aHΩMa ≥ 0, (3.35b)

where Ω1, ... ΩM are diagonal matrices given by

Ω1 =


α2 0 · · · 0
0 −1 · · · 0
· · 0 ·· · · ·· · · ·
0 0 · · · 0

, ... ΩM =


α2 0 · · · 0
0 0 · · · 0
· · · ·· · · ·· · 0 ·
0 0 · · · −1

 (3.35c)

A relaxation can be achieved by summing up the subequations in (3.34), resulting in

Mα2|a0|2 ≥ |a1|2 + ...+ |aM |2, (3.36)

and in vector form can be expressed as

aHΩa ≥ 0, (3.37a)

where Ω is a diagonal matrix given by

Ω =


Mα2 0 · · · 0

0 −1 · · · 0
· · · ·· · · ·· · · ·
0 0 · · · −1

 (3.37b)

Depending on how strict the constraint needs to be, one of the constraints presented,
(3.34) or (3.36), can be used. For the case of equal delays, which was presented in subsection
3.3.3, the constrain in (3.36) is enough to make the difference and the estimation to give the
correct result for the line of sight delay.

3.4.2 Constrained minimization
Two methods to compute the ML cost function, subject to the amplitude constraints, will be
presented in this subsection, and in chapter 5 those methods will be compared for efficiency.
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Brut Force Constraints This is a straightforward method and it is based on the idea
that the values of the cost function, in the regions where the amplitudes do not respect the
constraints, are not needed. More detailed, that when the amplitudes produced do not re-
spect the constraints in (3.34), it is for those combinations of delays in which the true value
of the line of sight delay is closer to another component than to the line of sight component.
To illustrate the method, the pseudo-code is presented.

Pseudo-code:
1 : Create a set T of all possible combinations of delays, τ i, which are in the interval

[−Tc, Tc] and respect the condition τ0 < τ1 < ... < τM . The index i indicates the position in
the set.

# For each τ i
2 : Compute aML(τ i) =

(
C(τ i)HC(τ i)

)−1
C(τ i)Hs

3 : Check if
{
aML(τ i)HΩ1aML(i), ... aML(i)HΩMaML(i)

}
≥ 0

4 : If yes, compute J1(τ i) = −sHC(τ i)aML(τ i)
5 : If not, set J1(τ i) = 0.
# Minimization
6 : Find the index k yielding the lowest value J1(τ i)
7 : τ̂ML = τ k

Lagrange constraints The cost function which will be considered is the one from (3.20),
restated here for convenience

J1(θ) = −sHC(τ )a− aHC(τ )Hs+ aHC(τ )HC(τ )a. (3.38)

With Lagrange, implementing the constraint from (3.35) is much complicated than im-
plementing the constraint from (3.37). In order to exemplify the procedure to be followed,
we choose the constraint that is simple to treat analytically, the one in (3.37).

h(a) = aHΩa, (3.39)

with Ω as in (3.37b), then the ML optimization with Lagrange constraints can be formulated
as

θ̂ML,L = arg min
θ
J1(θ),

subject to h(aML,L) ≥ 0,
(3.40)

where θ̂ML,L = [τ̂ML,L, aML,L].
The constrain can be incorporated in an objective function, called the Lagrangian, as

below

L(θ, λ) = J1(θ)− λh(a), (3.41)

with λ ≥ 0.
The solution is given by
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θ̂ML,L = arg min
θ
L(θ, λL), (3.42)

where λL is the optimal value for λ.
The problem in (3.42) has a nonlinear dependency on τ and a quadratic dependency on

a, and the same as in minimization with unconstrained amplitudes, we can freeze τ and find
a close form expression for a. For a fixed τ , the minimization becomes

aML,L = arg min
a
L(θ, λL). (3.43)

The challenge is that in addition to aML,L, the optimum λL has to be determined also.
This optimization can be carried out by solving the system of equations resulting from the
Karush-Kuhn-Tucker (KKT) conditions. More about the KKT conditions can be found in
literature, as in [4], and we will not go into details about them in this thesis.

The KKT conditions are

∇aL(aML,L, τ , λL) = 0, (3.44a)
h(aML,L) ≥ 0, (3.44b)

λL ≥ 0, (3.44c)
λLh(aML,L) = 0. (3.44d)

Subequations (3.44b), (3.44c) and (3.44d) imply that

when λL = 0, h(aML,L) > 0, (3.45a)
and when λL > 0, h(aML,L) = 0. (3.45b)

A way to solve the constraint optimization is to consider first the case (3.45a), in which

λL = 0.

L(θ, λL) becomes equal with J1(θ), and by solving (3.44a)

∇aL(aML,L, τ , λL) = ∇aJ1(aML,L, τ ) = 0

results the same solution as in the unconstrained case in (3.23),

aML,L = aML =
(
C(τ )HC(τ )

)−1
C(τ )Hs.

For this solution, the constraint needs to hold

h(aML,L) > 0. (3.46)

If (3.46) holds, then (3.23) is the expression of aML,L.
This case is exactly equal to the first method, when the constraint is fulfilled. Hence, we

can conclude that for the vectors of delays for which the constraint is inactive and fulfilled,
then both methods yield the same result.

If (3.46) does no hold, the next case, (3.45b), is considered, with

λL > 0.
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Expression (3.44a) becomes

∇aL(aML,L, τ , λL) = ∇aJ1(aML,L, τ )− λL∇ah(aML,L) = 0. (3.47)

By solving
∇aL(aML,L, τ , λL) =

[
∂L
∂a

∂L
∂a∗

]
= 0,

two sets of equations are obtained, both resulting in the same expression, as shown in ap-
pendix C, (

C(τ )HC(τ )− λLΩ
)
aML,L = C(τ )Hs. (3.48)

If
(
C(τ )HC(τ )− λLΩ

)
is invertible, the expression for aML,L is

aML,L =
(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs. (3.49)

In order to find λL, the new expression for aML,L is used in

h(aML,L) = 0, (3.50)

resulting in the below equation, as shown in appendix C,

(
C(τ )Hs

)H (
C(τ )HC(τ )− λLΩ

)(−1) Ω
(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs = 0, (3.51)

The expression for λL can be deduced from equation 3.51. The values obtained should
be checked to hold the constraints for λL > 0 and for

(
C(τ )HC(τ )− λLΩ

)
invertible.

Solving the equation (3.51) for any number of multipath components, so for arbitrary
size of C(τ )HC(τ ), is challenging, due to the matrix inversion. We restrict our analysis to
the case of just one multipath component.

The following notations are used, to simplify the readability of the expression.

Rcc(τ ) = C(τ )HC(τ ), (3.52)

where Rcc can be seen as an auto-correlation matrix, of dimensions (M + 1,M + 1).

rsc(τ ) = C(τ )Hs, (3.53)

where rsc can be seen as a cross-correlation vector, of dimensions (M + 1, 1).
For the case of M = 1, as shown in appendix C, the expression for λL is

λL = −b±
√
b2 − 4ac

2a , subject to λL > 0 and λL 6=
d

e
, (3.54)

where

a = α4rsc(τ )HΩ(−1)rsc(τ ),
b = 2α2det(Rcc)rsc(τ )HRcc(τ )(−1)rsc(τ ),
c = det(Rcc)2rsc(τ )HRcc(τ )(−1)ΩRcc(τ )(−1)rsc(τ ),
d = det(Rcc),
e = α2Rcc(τ )2,2 −Rcc(τ )1,1,

det(Rcc) = Rcc(τ )1,1Rcc(τ )2,2 −Rcc(τ )1,2Rcc(τ )2,1.

(3.55)
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The constrained expression for aML,L is used in the cost function, giving

J1(θ)|a=aML,L
= −2sHC(τ )

(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs

+ sHC(τ )
(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )HC(τ )

(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs,

(3.56a)

which is

J1(θ)|a=aML,L
= −2sHC(τ )aML,L + aHML,LC(τ )HC(τ )aML,L. (3.56b)

To illustrate the Lagrange optimization, the pseudo-code is presented next.
Pseudo-code:

1 : Create a set T of all possible combinations of delays, τ i, which are in the interval
[−Tc, Tc] and respect the condition τ0 < τ1 < ... < τM . The index i indicates the position in
the set.

# For each τ i
2 : Compute aML(τ i) =

(
C(τ i)HC(τ i)

)−1
C(τ i)Hs

3 : Check if aML(τ i)HΩaML(τ i) ≥ 0
# If yes
4 : Compute J1(τ i) = −sHC(τ i)aML(τ i)
# If not
5 : Compute λL(τ i) given by (3.54)
6 : Compute aML,L(τ i) =

(
C(τ i)HC(τ i)− λL(τ i)Ω

)(−1)
C(τ i)Hs

7 : Compute J1(τ i) = −2sHC(τ i)aML,L(τ i) + aML,L(τ i)HC(τ i)HC(τ i)aML,L(τ i)
# Minimization
8 : Find the index k yielding the lowest value J1(τ i)
9 : τ̂ML = τ k

For those delay vectors in which the unconstrained amplitudes already fulfil the constraint,
both methods lead to the same estimate of the amplitudes. The difference lies in those delay
vectors for which the constraint is active. While in the first method we simply discard those
delays by setting the cost function to zero, in the constrained optimization method we try
to find the best vector of amplitudes that still fulfils the constraints and in this case, the
constraint will be fulfilled with equality.

In the end, the methods would give different solutions only if the optimum of the cost
function found by the constrained optimization method corresponds to a vector of delays in
which the amplitude constraint will be active. Otherwise, both methods will give the same
solution, i.e. vector of delays.

3.5 Computational complexity
A drawback of the ML estimator is the computational complexity. In order to asses the
computational complexity, the ML estimator without constrained amplitudes will be consid-
ered. We considered that the computational complexity of the other two approached with
constrained amplitudes is not significantly different.
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If the algorithm is not optimized to reduce the computational burden, the cost function
in 3.27a is calculated at each observation interval, for each τ i ∈ T . For visualisation, the
dimensions of each component in the cost function will be stated.

J1(τ i)|a=aML
= −sH1,NC(τ i)N,M+1

(
C(τ i)HM+1,NC(τ i)N,M+1

)−1
C(τ i)HM+1,NsN,1 (3.57)

To increase the computational efficiency, the product C(τ all)HC(τ all) can be precom-
puted for all the possible values of τ and stored in the receiver. Here, τ all denotes the vector
of all the values of τ on the search grid. During the estimation, for any C(τ i)HC(τ i), the
corresponding values can be retrieved from the stored matrix. By doing so, only the (M+1,
M+1) matrix inversion is needed at each step in the search.

For each observation interval, the signal can be multiplied with the matrix of all the
delayed PRN replicas, and during the estimation, for any τ i, select the necessary values
from the precomputed vector C(τ all)Hs.

We use Ngrid to refer to the dimension of the vector τ all. The value of Ngrid depends on
the implementation and on the resolution of the grid.

For the approach presented, the computational complexity is driven by the product
C(τ all)Hs and is equal with O(NgridN).

In the receiver, the computational complexity might differ, depending on the specific
implementation. In order for the ML estimator to be suitable for implementation in the
GNSS receiver, the computational burden needs to be reduced. In chapter 4, the compression
of the received signal will be presented.
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Chapter 4

Compression

In chapter 3, the ML estimation method was presented for estimating the delays in the GNSS
signals. Even if the method is optimal and achieves good results, it is not suitable for GNSS
applications if the computations are too costly. A standard observation interval in GNSS is
between 1 ms and 20 ms, and the sampling rates are high, leading to more than 105 samples
for one observation. While the correlations between the PRN codes with different delays can
be precomputed in advance and stored in the receiver, the correlations between the received
signal and the delayed PRN codes have to be computed at each observation interval, and
maybe for each possible delay, which may be infeasible to do in real-time computations. In
this chapter, two different compression methods will be presented. The chapter is using as
main reference the work of Selva Vera in [11].

First, it will be presented the idea of compression, what’s expected from it and what are
the evaluation criteria, and after that, the compression matrix will be derived.

4.1 Compression in general
The compression should achieve the reduction of the number of components of the observed
vector s, yet keeping all the information needed for the estimation process. It is the projection
of the received signal into a subspace of dimension much smaller than the original signal
vector. The parameter of interest in the ML estimation is the delay of the line of sight. It
follows that the information needed for the ML estimation is the part from the signal that
carries information about the delays of the LOS and multipath components. Considering the
signal model in (3.5), restated here for convenience,

s = C(τ )a+w,

the component that needs to be preserved is the matrix C(τ ). Reformulating, all the
information needed is contained in the subspace spanned by the columns of C(τ ). So, it can
be said that the compression should project s into a smaller subspace, that contains c(τ),
for any τ .

Applying the compression matrix Q to the received signal, the following is obtained

QHs = QH
(
C(τ )a+w

)
, (4.1)

The compressed signal model is

33
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sc = Cc(τ )a+wc, (4.2)

where,
sc = QHs, (4.3)

Cc(τ ) = QHC(τ ) (4.4)

wc = QHw. (4.5)

The new cost function after compression will be

Jc =|| sc −Cc(τ )a ||2, (4.6)

which can be extended and approximate to

J1c = −scHCc(τ )a− aHCc(τ )Hsc + aHCc(τ )HCc(τ )a. (4.7)

The unconstrained expression for the amplitudes is

a = (Cc(τ )HCc(τ ))−1Cc(τ )Hsc. (4.8)

To achieve an efficient compression, the matrix Q should have a low number of columns,
much lower then the number of rows.

The space of Q should contain the space of c(τ) for any τ ,

QQHc(τ) = c(τ). (4.9)

In order to keep the the noise samples of s uncorrelated after compression, the following
condition needs to be fulfilled

QHQ = I. (4.10)

The relation in equation (4.9) is for the ideal case, but in practice some information is
lost after compression. The loss incurred in compression for a given τ can quantified by [11]

Hloss(τ) = || c(τ)−QQHc(τ) ||2
|| c(τ) ||2 . (4.11)

In order to find the optimum compression matrix, some criteria have to be considered:
the number of columns in Q to be as small as possible, the hardware implementation to be
easy to achieve and loss incurred in compression to be as low as possible, for all possible
delays.

The canonical components compression method will be presented, with two different
approaches, based on correlators matched to the code, and to the signal. This method has
the advantage that it can be implemented in the receiver by modifying the DLL discriminator.
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4.2 Compression based on code matched correlators
It will be shown that the observed signal can be compressed using a bank of code matched
correlators. This is based on the PRN code structure.

As it was stated in section 2.3, the PRN code can be seen as the convolution between
a sequence of Dirac deltas, with values of −1 and +1, called chips, and a pulse. Because
the rectangular pulse shape is the most used in the GNSS receivers, only this one will be
considered in this thesis. The distance between two chips is the chip period Tc, and most of
the energy of the rectangular pulse shape is inside of an interval equal to the chip period.

c(t) = p(t) ∗ g(t), (4.12)
where p(t) is the sequence of Dirac deltas and g(t) is the pulse shape.

The components in equation (4.12) are represented in figure 4.1, for arbitrary values of
the first four chips.

Figure 4.1: The signals contributing to the PRN signal.

The difference between the PRN code and the PRN chipping sequence is that the PRN
chipping sequence is sparse, having only the first sample from each chip equal with +1 or
−1, and the rest of the samples being 0.

In the digital domain, the convolution can be expressed as

c((n− 1)Ts) =
∞∑

k=−∞
p((n− 1− k)Ts)g(kTs). (4.13)

Considering that most of the energy of g(t) is inside [0, Tc], the expression can be approx-
imated to

c((n− 1)Ts) ≈
K−1∑
k=0

p((n− 1− k)Ts)g(kTs), (4.14)

where K is the number of samples in one chip period.
By taking N samples and arranging them in a vector, the following expression can be

stated


c(0Ts)
c(1Ts)

...
c((N − 1)Ts)

 ≈


p(0Ts − 0Ts) p(0Ts − 1Ts) . . . p(0Ts − (K − 1)Ts)
p(1Ts − 0Ts) p(1Ts − 1Ts) . . . p(1Ts − (K − 1)Ts

...
... . . . ...

p((N − 1)Ts − 0Ts) p((N − 1)Ts − 1Ts) . . . p((N − 1)Ts − (K − 1)Ts




g(0Ts)
g(1Ts)

...
g((K − 1)Ts)


(4.15)



36 Chapter 4. Compression

and more compact, the PRN code c is

c ≈ Pg, (4.16)

where

c = [c1 c2 ... cN ]T , with cn ≡ c((n− 1)Ts),
P = [p(0) p(Ts) ... p((K − 1)Ts)] with
p(kTs) = [p1(kTs) p2(kTs) ... pN (kTs)]T and pn(kTs) ≡ p((n− 1)Ts − kTs),
g = [g1 g2 ... gK ]T with gk ≡ g((k − 1)Ts).

(4.17)

The delayed PRN code is c(t− τ), where τ is a random delay. Considering the delay τ a
multiple of Ts, equal to iTs, the discrete delayed PRN signal is

c((n− 1)Ts − τ) = c((n− i− 1)Ts)

≈
K−1∑
k=0

p((n− i− 1− k)Ts)g(kTs)

≈
K−1+i∑
k=i

p((n− i− 1− (k − i))Ts)g((k − i)Ts)

≈
K+i−1∑
k=i

p((n− 1− k)Ts)g(kTs − τ)

(4.18)

The equation (4.18) we can conclude that for delaying the PRN code is enough to delay
to pulse in equation (4.12), as below

c(t− τ) = p(t) ∗ g(t− τ). (4.19)

If τ can take values between [−Tc, T c], then i is between [−K,K], and the discrete delayed
PRN code, c((n− 1)Ts − τ), for any possible τ , can be expressed as

c((n− 1)Ts − τ) ≈
2K−1∑
k=−K

p((n− 1)Ts − kTs)g(kTs − τ). (4.20)

For N samples ordered in a vector, the expression becomes


c(0Ts − τ)
c(1Ts − τ)

...
c((N − 1)Ts − τ)

 ≈


p(0Ts +KTs) . . . p(0Ts − 0Ts) . . . p(0Ts − (2K − 1)Ts)
p(1Ts +KTs) . . . p(1Ts − 0Ts) . . . p(1Ts − (2K − 1)Ts

... . . . ... . . . ...
p((N − 1)Ts +KTs) . . . p((N − 1)Ts − 0Ts) . . . p((N − 1)Ts − (2K − 1)Ts




g(0Ts − τ)
g(1Ts − τ)

...
g((3K − 1)Ts − τ)


(4.21)

and in a more compact notation, the delayed PRN vector c(τ) can be expressed as
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c(τ) ≈ Pg(τ), (4.22)
where c(τ) is the same as in expression (3.6), and

P = [p(−KTs) ...p(0) ... p((2K − 1)Ts)] with pn(kTs) the same as in equation (4.17)
g(τ) = [g1(τ) g2(τ) ... g3K(τ)]T with gk ≡ g((k − 1)Ts − τ).

(4.23)

The matrix P is nothing more then a set of delayed replicas of the sampled PRN sequence
of deltas, p((n− 1)Ts). The expression in (4.22) is very important because, according to it,
it can be stated that c(τ) is inside the span of P , for any τ [11].

According to the condition in equation (4.9), the space of Q should contain the space of
c(τ) for any τ . The conclusion is that Q can be chosen to have the same span as P .

We could choose Q = P , but the condition

QHQ = I,

needs to be fulfilled. According to this condition, the columns of Q have to be orthonormal,
meaning orthogonal and of norm 1. If any two different columns are multiplied the result
should be 0.

Considering the sparse nature of the columns of P , and the pseudo-random characteristic
of the PRN code, we can state that only the multiplication between columns spaced with a
multiple of K will give a result different than zero. If one column is multiplied with itself,
will give the result N/K and if the column from the position 1 will be multiplied with the
column from position K + 1 or 2K + 1, the result will close to zero, due to pseudo random
PRN code. So the conclusion is that the matrix P almost fulfils the conditions to be the
compression matrix, but not perfectly. So we chose to include an additional matrix R, which
will be multiplied with P , and the result to be a matrix with orthonormal columns. The
compression matrix can be expressed as [11]

Q = PR, (4.24)

where R is obtained from the Cholesky decomposition of (PH
P )−1 [11], fulfilling the con-

dition that

RRH = (PH
P )−1, (4.25)

With the compression matrix Q obtained as in (4.24), we make sure the conditions in
(4.10) and (4.9) are fulfilled.

The compressed signal is

sc = (PR)Hs = RHP
H
C(τ )a+RHP

H
w = Cc(τ )a+wc, (4.26)

The cost function in equation (4.6) becomes

Jc =|| RH(PH
s)−RH(PH

C(τ ))a ||2 (4.27)

The term P
H
s can be obtained after correlating the observed signal s with a bank of

delayed replicas of p. The number of correlators needed is equal to the number of columns in
P ,and it can be reduced, for higher compression levels. The rest of the components can be
precomputed and stored in the receiver. The code matched correlators refer to the correlators
matched to the delayed replicas of p.
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4.3 Compression based on signal matched correlators
The compression based on signal matched correlators refers to correlators matched to the
PRN signal, c(t). It’s actually much closer to the classical DLL structure than the code
matched correlators. The considerations leading to this kind of compression are similar to
those presented in section 4.2, but simplified.

Inspired by the proof in section 4.2, we force the formulation and say that a discrete
sample of the PRN code is equal with

c((n− 1)Ts) =
K−1∑
k=0

c((n− 1− k)Ts)wp(kTs), (4.28)

where wp(kTs) is a sample in a vector wp, which has the component wp(0) = 1, the rest the
components equal to 0.

By taking N samples and arranging them in a vector, the following is obtained


c(0Ts)
c(1Ts)

...
c((N − 1)Ts)

 ≈


c(0Ts − 0Ts) c(0Ts − 1Ts) . . . c(0Ts − (K − 1)Ts)
c(1Ts − 0Ts) c(1Ts − 1Ts) . . . c(1Ts − (K − 1)Ts

...
... . . . ...

c((N − 1)Ts − 0Ts) c((N − 1)Ts − 1Ts) . . . c((N − 1)Ts − (K − 1)Ts




wp(0Ts)
wp(1Ts)

...
wp((K − 1)Ts)


(4.29)

and the PRN vector c becomes

c ≈ Ccorwp, (4.30)

where c is the same as in (4.17) and

Ccor = [c(0) c(Ts) ... c((K − 1)Ts)] with
c(kTs) = [c1(kTs) c2(kTs) ... cN (kTs)]T and cn(kTs) ≡ c((n− 1)Ts − kTs),
wp = [(wp)1 (wp)2 ... (wp)K ]T with (wp)k ≡ wp((k − 1)Ts).

(4.31)

To delay the code c is enough to delay the window wp, and in the discrete domain it can
be stated that

c((n− 1)Ts − τ) ≈
K−1∑
k=−K

c((n− 1)Ts − kTs)wp(kTs − τ). (4.32)

By arranging N samples in a vector, the following results


c(0Ts − τ)
c(1Ts − τ)

...
c((N − 1)Ts − τ)

 ≈


c(0Ts +KTs) . . . c(0Ts − 0Ts) . . . c(0Ts − (K − 1)Ts)
c(1Ts +KTs) . . . c(1Ts − 0Ts) . . . c(1Ts − (K − 1)Ts

... . . . ... . . . ...
c((N − 1)Ts +KTs) . . . c((N − 1)Ts − 0Ts) . . . c((N − 1)Ts − (K − 1)Ts




wp(0Ts − τ)
wp(1Ts − τ)

...
wp((2K − 1)Ts − τ)


(4.33)
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In a more compact notation,

c(τ) ≈ Ccorwp(τ), (4.34)

where c(τ) is the same as in (3.6), and

Ccor = [c(−KTs) ...c(0) ... c((K − 1)Ts)] with c(kTs) the same as in (4.31)
wp(τ) = [(wp)1(τ) (wp)2(τ) ... (wp)2K(τ)]T with (wp)k ≡ wp((k − 1)Ts − τ).

(4.35)

It can be noticed from (3.6) and (4.35), that c(τ) and c(kTs) are the same when τ is
equal with kTs.

From expression (4.34) it can be concluded that c(τ) is inside the span of Ccor, for any
τ [11]. Because Q is supposed to contain the space of c(τ) for any τ , it can be deduced that
Q and Ccor can have the same span. As in the previous method, taking into account that

QHQ = I,

there is a matrix Rs, for which [11]

Q = CcorRs. (4.36)

The same as for code matched correlators, the matrix Rs can be obtained from the
Cholesky decomposition of (Ccor

H
Ccor)−1, fulfilling the condition that

RsRs
H = (Ccor

H
Ccor)−1, (4.37)

The compressed signal is

sc = (CcorRs)Hs = RH
s Ccor

H
C(τ )a+RH

s Ccor
H
w = Cc(τ )a+wc, (4.38)

The cost function in equation (4.6) becomes

Jc =|| RH
s (Ccor

H
s)−RH

s (Ccor
H
C(τ ))a ||2 (4.39)

Similar to the previous method, the term Ccor
H
s can be obtained after correlating the

observed signal s with a bank of delayed replicas of the PRN vector c. The initial number
of correlators can be reduced further, and the degree of compression is subject to further
research. The rest of the terms required by the cost function can be precomputed and stored
in the receiver.

The columns of Ccor and P are called correlators. The maximum number of correlators
in the case of signal matched correlators is equal with the number of samples spanning
the interval where the delays could be, so the interval of two chip periods [−Tc, T c]. The
maximum number of correlators in the case of code matched correlators is a bit higher, equal
with the number of samples spanning the interval where the delays could be plus the number
of samples in one chip period, so three chip periods in total, from [−Tc, 2Tc].

The role of the matrix R and Rs is to make sure that after compression, the noise
components from the observed signal are kept uncorrelated. In the absence of noise, the role
of this matrix in the compression should be negligible and to obtain good estimation results
without R or Rs included in the compression. This will be investigated in chapter 5.
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Chapter 5

Numerical Assessment

In this chapter, the numerical performance of the ML estimation will be evaluated. In
section 5.2 a simple scenario will be considered, in which the delays are matching perfectly
the search space and where the ML estimation is expected to give optimum results. In section
5.3, a more complicated scenario is considered, in which the delays can take any value, and
errors, due to resolution and to numerical issues, are expected in the estimation. For this
scenario, which we call from now on the continuous delays scenario, and fits better to what
is expected in real-life situations, the performance of the ML estimation will be compared
with the performance of one of the classical DLL’s, the narrow correlator, with 0.1 and 0.3
early-late spacing.

Furthermore, we will explore in this chapter the effects that different types of compres-
sion will have on the performance of the ML estimator, compared to the case in which no
compression is applied. For the DLL, the uncompressed signal is considered.

The compression is implemented with full number of correlators, 41 for Signal Matched
Correlators (SMC) and 61 for Code Matched Correlators (CMC).

5.1 Assumptions about the system
In the thesis, when referring to signal to noise ration (SNR), we are sometimes referring to
the carrier to noise density ratio (C/N0), which is the ratio of the received carrier power to
noise density and is measured in dB Hz. The difference can be seen from the units in which
they are expressed. It is convenient to refer to C/N0, because it is fixed for all the methods
investigated, while the SNR is changed by the method used.

When multipath components are part of the signal (M > 0), the total SNR will change.
As a convention in the thesis, the term SNR will be used for the SNR of the direct component.
When this will not be the case, it will be clear from the text.

5.2 Discrete delays
In this section, an ideal case is considered, in which the delays can only be multiples of the
sample period, and the search space for the delays is the grid spaced with Ts, in the interval
[−Tc, Tc].

To verify the correctness of the implementation and get obtain some insight on the esti-
mator’s behavior, we first assess the estimator’s accuracy in a noise-free environment, where

41
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the estimator is expected to provide the correct result. After that, we evaluate it in a more
realistic environment with AWGN by means of Monte Carlo simulations. For all simulations
with noise, 1000 Monte Carlo trials will be run.

The compression methods will be compared and the effect of the whitening matrix on
different compression methods will be investigated.

The performance of the estimator will be assessed also when the assumptions made on
the signal model are not correct. We will restrict our investigation to only two situations,
when one multipath component is present in the received signal, but not assumed by the
signal model used for estimation, and the opposite, when the received signal has just the
direct component, but the estimator assumes there is an additional multipath component.

5.2.1 No multipath component
The scenario, in which the received signal has just the line of sight (LOS) component, and
the signal model is assumed correctly, is the one that gives the best estimation results. In an
ideal situation, with delays on the grid of the search, the estimation is perfect. Therefore, we
use this scenario to explore how compression of the received signal may affect the estimator’s
accuracy. In fact, if the estimator cannot obtain accurate estimates with a given compression
for this scenario, there is little hope that it will work well with more complicated signals.

In both compression methods discussed, SMC and CMC, the compression is achieved in
two steps. First, the received signal is passed through a bank of correlators, and second, a
whitening matrix R is applied. The role of the matrix R is to make sure that after com-
pression, the noise components from the observed signal remain uncorrelated. The impact
of R on the two compression methods is different, and it is expected to be negligible for
the CMC, as the correlators of this method almost don’t correlate the noise. We tested the
performance of the algorithm without the matrix R obtained from a Cholesky decomposi-
tion, by replacing R with the identity matrix I. An intermediate method was also tested, in
which a weighted identity matrix was considered, κI, with κ given by 1/

√
N for SMC and

1/(
√
KN) for CMC, where N is the number of samples in the observation interval and K is

the ratio between the chip period Tc and the sample period Ts.

Noiseless channel

In order to test if the shape of the ML cost function in 3.20 is changed after compression,
and what is the effect of the whitening matrix on it, the results in figure 5.1 were produced.
The cost function for the uncompressed signal is compared with the cost function for the
compressed signal. The expectation is, that in the absence of noise, the matrix R to have
no effect on the estimation accuracy, i.e. where the minimum of the cost function is, but to
change the shape of the cost function for some methods.
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Figure 5.1: Comparison between the cost function for compressed and uncompressed signals, and for
different compression types. No multipath components are present and no noise. The cost functions are
normalized.

It can be observed that for the signal compressed with CMC, the cost function has the
same shape as the cost function for uncompressed signal, no mater how the whitening matrix
is obtain. For the signal compressed with SMC, the cost function keeps the same shape as the
cost function for uncompressed signal only whenR is obtained from Cholesky decomposition.
If R is the identity matrix, or a normalized version of it, the cost function is flattened.

Channel with noise

In order to test the performance of the compression methods against each other and to
compare them with the performance of uncompressed signal, a high level of noise will be
included, of 38 dB Hz. A usual level of noise is between 42 and 48 dB Hz. The same scenario
as for the results in 5.1 is kept for the results in 5.2, with noise added.
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Figure 5.2: Comparison between the cost function for compressed and uncompressed signals, and for
different compression types. No multipath components are present and the SNR is 38dB Hz. The cost
functions are normalized.

It can be noticed, that for signals compressed with SMC, with R equal with the identity
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matrix, or with a normalized version of it, the minimum of the cost function does not track
the true value of the delay, even if the shape of the cost function is not apparently affected
by noise, in contrast with all the other situations presented, in which the cost function
shapes are affected by noise, but they track the true delay. A preliminary conclusion is
that for compression based on SMC, the matrix R should be obtained from a Cholesky
decomposition of Ccor. For the compression based on CMC is seems that the matrix R can
be replaced by the identity matrix and yet keeping the performance of the estimation.

In order to probe those conclusions, simulations will be conducted. First, for an SNR of
38 dB Hz and varying the delay of LOS in the interval [−Tc, Tc]. Next, for the delay of LOS
equal with 0 chips, and varying the SNR in the interval from 30 dB Hz to 50 dB Hz.

The case of R equal with a normalized version of I is not considered further, because
from figure 5.2, it shows that there is no difference between it and the case of R equal with
I.
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Figure 5.3: Comparison between the detection error with and without compression applied, and for different
compression types. No Multipath component is considered. The error is the mean of absolute errors for 1000
realizations.

In figure 5.3a, the absolute error of the ML estimates as a function of the value of the
LOS delay in a noisy environment is depicted. The estimation error is hardly affected by the
value of the LOS delay. In this section, we will continue with τ0 = 0 chips.

Both figures 5.3a and 5.3b give the same conclusion, that for the SMC, it is important
to include the matrix R with Cholesky decomposition, and that for the CMC it can be left
out. The performance of the SMC with Cholesky is similar with the performance of CMC
with Identity, at least in the ideal case of no multipath. For the rest of the simulations of
this section, we will consider only the SMC with a whitening matrix obtained from Cholesky
decomposition.

Another observation is that when the SNR is above 42 dB-Hz, the ML estimation has
very good results, with the exception of SMC with R equal with I, which we concluded is
not a good option.

5.2.2 One multipath component
So far in this work, we have always made the assumption that the ML estimator knows the
number of multipath components that it should search for. To evaluate the robustness of
the estimator against mismatches in the assumed signal model, and three situations will be
investigated, as presented below
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• Correct assumption on the number of multipaths

• Underestimation of the number of multipaths - One multipath is present in the signal,
but the algorithm does not search for it

• Overestimation of the number of multipaths - One multipath is assumed, but is not
present in the signal

The tests will be conducted without noise and with noise.

Noiseless channel

In a noise free environment, for correct assumption on the number of multipath components,
the estimation is perfect for the uncompressed signal. It was tested that the same results are
obtained for the compressed signal, with both compression methods.

For underestimation, when the multipath is part of the signal but not searched for, the
ML estimation is still perfect, with 0 detection error, for noiseless channel. To show the
effect of the multipath component which is not searched for, on the ML cost function, the
figure 5.4 is presented for the uncompressed signal. The cost function has been evaluated for
a set of different values of the relative multipath component delay, ranging from 0 to 1 chips.
Tests have been conducted and the results look the same for the two compression methods
presented.
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Figure 5.4: The cost functions, when just the LOS is searched, but the signal has also multipath, with
magnitude A1 ≈ 0.5A0. The overlapping cost functions correspond to different values of the multipath delay.
No noise is present.

For overestimation, the amplitude constraints are needed to avoid an error which can go
up to two chips for the line of sight component. With constraints on the amplitudes, the
error is 0. See figure E.1 in the appendix, for the simulation results without the amplitude
constraints. The only component from the signal can be seen as a summation of two com-
ponents having the same delay. But the ML estimation can not search for equal delays, and
it will assign the true value to one of the components, giving the other component a value
in the space allowed by the delay constraints. For more details, see section 3.3.3. In section
3.3.3 it was explained the case of one multipath delay which is so close to the line of sight
delay that can be considered equal.
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Channel with noise

Next, the accuracy of the ML estimation, under noisy conditions, will be tested.
Different values of the phase of the multipath, relative to the phase of the line of sight,

will be investigated. The reason for it is that the relative phase of the multipath component
with respect to the LOS component may have a strong effect on the SNR of the signal,
depending on whether the components add up constructively or destructively.

Correct assumption on the number of multipaths The signal is composed from the
line of sight and one multipath and the algorithm is searching for them.

The level of 42 dB-Hz is chosen, as it is a medium-high level of noise. The delay τ0 is
fixed at 0 chips, and the delay of the multipath is varied in the interval given by [τ0, Tc].

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Detection error when SNR is 42 dB−Hz, 
τ

0
 = 0 chips. 

compression: 1, type: s, type of R: Cholesky  

First multipath relative delay (chips)

A
b

so
lu

te
  E

rr
o

r 
(c

h
ip

s)

 

 

phase =   0
o

phase =  30
o

phase =  60
o

phase =  90
o

phase = 120
o

phase = 150
o

phase = 180
o

Signal: LOS and 1 MP;      Search: LOS and 1MP;

Figure 5.5: Error between the true delay and the detected delay. The delay of the direct component is
0 chips. One Multipath component is present and the algorithm searches for it. The error is the mean of
absolute errors for 1000 realizations.

By analysing the results in figure 5.5, it is observed that the detection error is in general
very low, excepting the case when the multipath component is very close to the LOS. For
the out of phase components, the error, when the multipath delay is equal with the LOS
delay, is growing, reaching the level of 0.014 chips. This behaviour can be explained by the
fact that the out phase multipath is decreasing the power of the total signal component, as
shown below,

Ps.total = 1
N

N∑
n=0

(a0cn(τ0) + a1cn(τ1))(a0cn(τ0) + a1cn(τ1))∗

= 1
N

N∑
n=0

(A0e
j0cn(τ0) +A1e

jπcn(τ0))(A0e
j0cn(τ0) +A1e

jπcn(τ0))∗

= 1
N

N∑
n=0

(A0 −A1)2 = (A0 −A1)2.

(5.1)
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In the given simulations, A1 ≈ 0.5A0, which gives Ps.total = (0.5A0)2 = 0.52P0.
The SNR for the total signal component is

SNRdBHz = 10log10(Ps.total
N0

) = 10log10(0.52P0

N0
)

= 10log10( P0

N0
) + 10log10(0.52) = (42− 6.0206) dB Hz

= 35.9794 dB Hz,

(5.2)

and so, this situation can be compared with the one in which the signal is composed just
by the LOS, and with an SNR of 35.9794 dB Hz. This can be checked in figure 5.3b, for
approximately 35.9794 dB Hz.

Underestimation of the number of multipaths For the case when the signal is com-
posed by the LOS and one multipath, but the algorithm is searching just the LOS, it was
shown that for delays on the sample grid, without noise, there is no detection error, even if
the cost function shape is distorted by the multipath component. In the presence of noise,
the distortions in the cost function will produce detection errors and the characteristics of
those errors will be investigated.

First, simulations are conducted in order to evaluate the absolute detection error, for
different SNR’s and for few values of the multipath delay, as shown in figure 5.6.
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Figure 5.6: Error between the true delay and the detected delay. One multipath component is present but
the algorithm doesn’t search for it. The line of sight and the multipath are in phase. The error is the mean
of absolute errors for 1000 realizations.

It can be observed in figure (5.6) that the out of phase components produces a higher
detection error than the in-phase components and this is in line with the findings from
equation 5.2, where it was shown that for out of phase, the total SNR of the signal is
decreased and then a higher detection error is expected.

The ML estimator is unbiased, so it is expected that for a large number of realizations,
the errors to cancel each other if are not considered in absolute values. But when the signal
model used is mismatched, the ML estimator cannot be expected to be unbiased any more.
This case is illustrate in figure 5.7b, for the case of underestimation.
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Figure 5.7: Error between the true delay and the detected delay. The delay of the direct component is 0
chips. One Multipath component is present but the algorithm doesn’t search for it.

In figure 5.7a, the same conclusion, as the one from figure 5.6, can be made. That the
out of phase multipaths have a much sever effect on the estimation accuracy.

Overestimation of the number of multipaths When one multipath is assumed by the
algorithm, but is not present in the signal, it was discussed for the case without noise, that
without the amplitude constraints the errors would be large and with the constraints it goes
to 0. In the presence of noise, an error is to be expected and it can be seen in figure 5.8
that this error is very low. The only exception is at the last delay on the search grid, when
τ0 = 0.95 chips. It does not matter too much, because in the receiver, in the tracking stage,
the value τ0 = 0.95 chips is not a realistic one, the delays being usually smaller.
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Figure 5.8: Error between the true delay and the detected delay. One multipath component is assumed
by the algorithm, but the signal is composed just from the direct component. The error is the mean of the
absolute errors for 1000 realizations.

5.2.3 Two multipath components
For a signal composed from the direct component and two multipaths, with delays that can
be only on the sample grid, the estimation error is 0 in a noise free environment.
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For an environment affected by noise, when the signal model is has the correct number of
multipaths, the estimation error is strongly dependent on the difference between the direct
component and the stronger multipath. In the current set-up, we consider the line of sight
at 42 dB Hz, the first multipath at 36 dB Hz, and the second multipath at 34 dB Hz. So it
is expected that the estimation error will be dependent on the difference between the LOS
and the first multipath and not that much on the third component. To illustrate this, and
also to investigate the level of error, two simulation scenarios will be considered, one with
the first multipath very close to LOS and the second with the first multipath at a higher
distance to LOS.

More details about the set-up are presented next.

• τ0 = −0.2 chips and phase0 = 0o. We chose τ0 different than 0 chips just to vary a
bit the simulations. And a negative value is possible because the PRN code is coarsely
aligned with +/− 1 chips at the beginning of the tracking loop.

• phase1 = {0o, 180o}.

• τ2 = [τ1, Tc], with a step of Ts and phase2 = 90o.

• First scenario: τ1 − τ0 = 1Ts, so τ1 = −0.15 chips

• Second scenario: τ1 − τ0 = 6Ts, so τ1 = 0.1 chips

The results are shown in figure 5.9, and are as expected. The delay of the strongest
multipath component, relative to the LOS, is the one that determines mostly the error to
get.
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Figure 5.9: Error between the true delay and the detected delay. The signal is composed by the line of
sight and two multipaths and the algorithm is searching for them. The error is the mean of the absolute
errors for 1000 realizations.

5.3 Continuous delays
In the previous section, the delays were on the grid defined by the sample period Ts. In
practice, the delays can take any value between the grid and this is the situation that will
be investigated in this section.
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It was noticed in the previous section that, for both compression methods discussed, the
compression does not affect the performance of the estimator. This investigation will be
conducted in current section for the case of continuous delays.

The performance of the ML estimation algorithm will be compared against the perfor-
mance of the classical DLL, with 0.1 and 0.3 early-late spacing, for channels with and without
noise.

The compression is considered with full correlators, spaced with Ts. There will be 41
correlators for the signal matched correlators and 61 correlators in total for the code matched
correlators.

For all simulations in this section, the constraint on the amplitudes is considered.

5.3.1 Search algorithm
The delay search in the previous section was made only in one step, on the coarse grid with
Ts spacing, and the chip period Tc was an integer of the sample period. The ration between
the chip rate and the sample frequency was 20.

In order to be able to have changes in the PRN code for delays smaller than one sample
period, there are more implementation approaches. In this project, the approach according
to which the sample frequency is not an integer of the chip rate is chosen, due to its simple
implementation. The performance of the method is sensitive to the values of the ratio between
the chip rate and the sample frequency and to the length of the observation interval. Those
are calibration parameters and if they are not chosen properly, some delays will produce
the same change in the PRN code, and the ML estimation will not be able to distinguish
between them. For delays in interval [−Tc, Tc], with a step of 0.01Ts, it was noticed that, for
an observation interval of 0.01 seconds, a good ration between the chip rate and the sample
frequency is equal with 20.1111.

The delay search could be made directly on a fine grid, but that will have a high com-
putational burden. To be more efficient, the search will be made in two steps. First on the
coarse grid with Ts spacing, and the second search around the initial solution, with a spacing
of 0.1Ts. For a good selection of observation interval and ratio between the sample frequency
and chip rate, the resolution of the search is increased 10 times comparing to one step search
on the coarse grid. The error that is expected in the estimation is half of the resolution of
the grid, so half of 0.1Ts. If ε is the estimation error in chips, then εmaxim = 2.49 · 10−3

chips, which is the equivalent of 0.7286 meters and this is an acceptable error in GNSS.

5.3.2 No Multipath Component
As already mentioned, the delays are inside the interval [−Tc, Tc], with a step of 0.01Ts.

For the case of no noise, the resolution error, with εmaxim = 2.49 · 10−3 chips. This is for
both not compressed and for compressed signals, with the compression methods discussed.
For illustration, in figure 5.10 we consider the delay from [−0.05Tc, 0.05Tc]. It has been
tested, that this uniform behaviour is for the full interval [−Tc, Tc].
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Figure 5.10: Error between the true delay and the detected delay. The signal has just the line of sight, and
the algorithm searches just for it. The channel is not affected by noise.

For a channel affected by noise, is interesting to test if both the compressed and uncom-
pressed signals have the same tracking performance. Based on results from previous section,
from figure 5.3a, it can be concluded that the error has a uniform behaviour over all delays in
interval [−Tc, Tc], with a small deviation at the extremes. It could be argue that the uniform
behaviour might change because the delays are continuous and the correlators of the com-
pression are spaced with one sample period. That is why we conduct the simulations again
in the interval [−0.2Tc, 0.2Tc], and the interval should be enough to show the behaviour.Due
to time limitations, the simulations results are not ready at the time of submiting this thesis.

5.3.3 One multipath component
In this subsection, the tracking performance of the ML estimation algorithm will be compared
with the performance of DLL with 0.1 and 0.3 early-late spacing. For no multipath, the DLL
performs very good in general and is not of interest to compare it with other methods. It
makes sense for the ML estimator to be replace the classical DLL only if multipath is expected
and if the results are proven to be better.

Noiseless channel

It was shown in section 5.2.1 that in the case of no noise, for one multipath component, when
the constraint on the amplitudes is included, the error is 0, even if the number of multipaths
is assumed correctly or not. It will be investigated if this is the case for continuous delays.
Some numerical issues are to be expected.

Correct assumption on the number of multipaths When correct assumptions on the
signal model are made, for one multipath component, we investigate the performance of the
ML estimator comparing with the DLL, in the case of no noise.
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Figure 5.11: Error between the true delay and the detected delay. The signal is composed by the line of
sight and one multipath and the algorithm is searching for them. The channel is not affected by noise.

It can be noticed from figure 5.11 for relative delays smaller than 0.1Tc, some errors can
be noticed in the ML estimation. For the uncompressed signals they are usually smaller, as
it can be seen in appendix E.2, where this case was tested for the uncompressed signal and
for the one compressed with SMC. Also they differ if the constraint on the amplitudes is with
Lagrange or with BrutForce, as it can be seen in the next figure.
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Figure 5.12: Error between the true delay and the detected delay. The signal is composed by the line of
sight and one multipath and the algorithm is searching for them. The channel is not affected by noise. The
compression is based on Code Matched Correlators.

The case presented in figure 5.12 is a very bad one, in which the amplitude constraints
can not fix much of the error. But in general they remove an important part of it. And
usually Lagrange performs better in those situations.

Underestimation of the number of multipaths For the case of one multipath present
in the signal, but mismatched signal model with just the line of sight, it is tested how the
extra component, which is not searched for, affects the estimation accuracy and it is compared
with the DLL accuracy, as shown in figure 5.13.
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Figure 5.13: Error between the true delay and the detected delay. The signal has LOS and 1MP, but the
algorithm searches just for LOS. The channel is not affected by noise.

If when the delays were on the grid, we couldn’t see any error for the case of no noise,
for the continuous delays case, the results look much different. When the multipath is out of
phase relative to the direct component, the error of the ML is almost equal with that of the
DLL with 0.1 spacing. Simulations have been conducted also for signals compressed with
SMC and for no compression, with the results shown in appendix in E.3. The results are
much better for the uncompressed signal. The explanation is subject to further research.

Overestimation of the number of multipaths For the case when no multipath com-
ponent is present, and mismatched signal model that assumes one multipath, the results
are shown in figure 5.14. No comparison with the DLL was made, because in this case, the
performance of the DLL is very good, and we gain no information by comparing them.
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Figure 5.14: Error between the true delay and the detected delay. The signal has just the line of sight, but
the algorithm searches for LOS and one MP. The channel is not affected by noise.

Tests have been conducted for the same set-up as in figure 5.14, but for signals compressed
with SMC and for not compressed signals, and the results are much better when the signal
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is not compressed, the error being equal with the resolution of the grid. Again, as in the
underestimation case, this is subject to further research.

Channel with noise

The simulations in this chapter are meant to illustrate how the DLL and the ML estimator
performance are affected by noise in situations which are close to real-life scenarios.

Correct assumption on the number of multipaths The results presented next, for
the case of line of sight and one multipath and correct signal model, in a noisy environment,
are considered very important for the comparison between the DLL and the ML estimator.
Those will be the ones used to make a initial conclusion for the comparison. But it has to be
noted that depending on the set-up of the system, like the length of the observation interval,
the SNR and some other parameters, the point where the lines intersect will be at different
positions. So the results should be used just for an initial feeling of the comparison between
the DLL and ML. For some clear conclusions, more thorough tests are needed.
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Figure 5.15: Error between the true delay and the detected delay. The signal is composed by the line of
sight and one multipath and the algorithm is searching for them. The channel is affected by noise.

It can be noticed in 5.15, that for the out of phase multipaths, for very small relative
delays, there is a region where the DLL with 0.1 spacing performs better than the DLL. in
real life situations, the phase of the multipath components has a random behaviour, so a
mean between the 2 figures in 5.15 is usually expected.

Underestimation of the number of multipaths One multipath is present in the signal,
but the algorithm assumes just the line of sight.
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Figure 5.16: Error between the true delay and the detected delay. The signal has LOS and 1MP, but the
algorithm searches just for LOS. The multipath is out of phase with the LOS. The channel is affected by
noise.

For the case of underestimation presented in figure 5.16, the performance of the ML
estimator is almost the same with the performance of the DLL with 0.1 spacing. Base on the
results from no noise channel for underestimation, is to be supposed that for no compression,
the performance of the ML would be much better than the DLL.

Overestimation of the number of multipaths One multipath is assumed by the algo-
rithm, but is not present in the signal
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Figure 5.17: Error between the true delay and the detected delay. The signal has just the line of sight, but
the algorithm searches for LOS and one MP. The channel is affected by noise.

For overestimation, comparing with the case without noise, the maximum error is just
slightly larger, but the distribution of the intermediate errors is different.
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5.3.4 Two multipath components - Noiseless channel
Due to time limitations, for the case of two multipath components, only the simulations for
a channel not affected by noise are presented.

The ML estimation error is strongly dependent on how close the first multipath is to
the line of sight and what phase difference they have. Is to be expected that when the first
multipath is very close to the line of sight, the ML estimator will give worst results than the
DLL. And when the fist multipath is farther away from the line of sight, the ML estimator
to give better results than the DLL. This will be shown in the next simulations.

The set-up of the system is:

• τ0 = −0.0329 chips and phase0 = 0o. We chose τ0 different than 0 chips just to vary a
bit the simulations. And a negative value is possible because the PRN code is coarsely
aligned with +/− 1 chips at the beginning of the tracking loop.

• phase1 = {0o, 180o}.

• τ2 = [τ1, Tc], with a step of 0.1Ts and phase2 = 90o.

• First scenario: τ1 − τ0 = 0.3Ts, so τ1 = −0.017983 chips

• Second scenario: τ1 − τ0 = 6Ts, so τ1 = 0.26544 chips
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Figure 5.18: Error between the true delay and the detected delay. The first multipath is very close to the
line of sight, at a distance of 0.3Ts.
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Figure 5.19: Error between the true delay and the detected delay. The first multipath is far from to the
line of sight, at a distance of 6Ts.

Based on the results in figures 5.18 and 5.19, we can conclude that when the strong
multipath components is very close to the line of sight, the DLL performas better. For the
rest of the situations, the proposed and implemented ML estimation algorithm outperforms
the DLL, when the signal model is accurate.



Chapter 6

Conclusion

The aim of this thesis has been to research the joint estimation of the delays of the direct and
the reflected signals in GNSS systems and to propose and implement an efficient solution,
which can outperform the classical DLL.

In order to achieve this goal, two main directions of research of the maximum likelihood
estimation in GNSS multipath mitigation, given by Weill in [15] and Selva in [11], have been
reviewed in detail. Based on the findings, a maximum likelihood estimation algorithm was
proposed.

Two compression methods, with code matched correlators and signal matched correlators,
have been studied and successfully implemented together with the joint maximum likelihood
estimator. For increasing the efficiency of the estimation, constraints on the amplitudes of
the components have been imposed. Two type of constraints were developed, one proposed
by Weill, with Lagrange multipliers, and another method, developed in this thesis, following
a brut force.

A simulation environment was successfully developed in Matlab and a DLL performance
assessment capability was implemented, which simulates the solution given by the DLL in a
real receiver. Using this tool, a detailed performance assessment of the maximum likelihood
estimator was performed and compared with the DLL performance.

The results obtained indicate that the maximum likelihood estimator outperforms the
DLL in general, but exceptions can occur if the stronger multipath components is very close
and out of phase with respect to the line of sight. The performance of the maximum likelihood
estimator depends on the correct assumptions about the number of multipath components.

The compression level can be increased, yet keeping a good accuracy of the estimation.
But this was not detailed in the thesis and a higher level of compression is subject of further
research.

The band limiting effect in the receiver has not been a topic for this thesis and how
it impacts the accuracy of the estimation is subject to further investigation. Also, for a
complete picture, simulations should be done on signals generated outside the simulator and
for dynamic channels during the observation interval.

Although there are still aspects which need to be investigated, the proposed solution is a
promising and feasible approach to mitigate the positioning errors induced by multipath.

As directions of further development, the next step should be the implementation of
the proposed maximum likelihood estimator in the receiver. Also, other estimators, which
perform better in a dynamic channel, and which would be considered feasible for the imple-
mentation, can be researched and developed, i.e. the particle filter.
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Appendix A

SNR in DLL

After correlation in the DLL, the SNR will be the ratio between the power of the signal part
from the correlation and the power of the noise part from the correlation. We consider the
correlation between the received signal a0c(t−τ0)+w(t), and one of the replica PRN code. If
the prompt PRN replica is considered, then we are interested in the value of the correlation
function at the prompt delay τp, which is given by

rsc(τp) =
N∑
n=1

crep(tn − τp)sDLL(tn)

=
N∑
n=1

crep(tn − τp) (a0c(tn − τ0) + w(tn))

= a0

N∑
n=1

crep(tn − τp)c(tn − τ0) +
N∑
n=1

crep(tn − τp)w(tn)

(A.1)

Depending on the difference between τp and τ0, the summation
∑N
n=1 crep(tn−τp)c(tn−τ0)

has a fixed value. For τp = τ0:

N∑
n=1

crep(tn − τp)c(tn − τ0) = N (A.2)

Considering this case further,

rsc(τp) = a0N +
N∑
n=1

crep(tn − τp)w(tn) (A.3)

In the expression (A.3), it can be noticed that the first term is the signal term and the
second is the noise term. The SNR will be given by

SNRr = P (Na0)
P (
∑N
n=1 crep(tn − τp)w(tn))

= N2|a0|2

P (
∑N
n=1 crep(tn − τp)w(tn))

. (A.4)

The power of the noise term is
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P (
N∑
n=1

crep(tn − τp)w(tn)) = E[(
N∑
n=1

crep(tn − τp)w(tn))(
N∑
n=1

crep(tn − τp)w(tn))∗]

=
N∑
n=1

E[crep(tn − τp)w(tn)crep(tn − τp)w∗(tn)]

=
N∑
n=1

E[1w(tn)w∗(tn)] = N2σ2

(A.5)

and so the SNR of rsc(τp), when τp = τ0, is equal with

SNRr = N2|a0|2

N2σ2 = N
|a0|2

2σ2 = N · SNR. (A.6)



Appendix B

Amplitudes derivation without
constraints

Taking into account that the superscript (·)H denotes transpose conjugate, it is equivalent
with ((·)∗)T , where (·)∗ denotes conjugate and (·)T denotes transpose, and the cost function
from (4.7) can be expressed as

J(θ) = (s∗)Ts− (s∗)TC(τ )a− (a∗)T (C(τ )∗)Ts+ (a∗)T (C(τ )∗)TC(τ )a. (B.1)

From ∇aJ(aML, τ ) =
[
∂J
∂a ,

∂J
∂a∗

]
= 0, the following is obtained

[
−(s∗)TC(τ ) + (a∗ML)T (C(τ )∗)TC(τ ), −

(
(C(τ )∗)Ts

)T +
(
(C(τ )∗)TC(τ )aML

)T ] = 0.
(B.2)

By going back the to (·)H superscript, the expression in (B.2) becomes

[
−sHC(τ ) + aHMLC(τ )HC(τ ), −

(
C(τ )Hs

)T +
(
C(τ )HC(τ )aML

)T ] = 0. (B.3)

The equation is solved for each term in the vector. For the first term,

−sHC(τ ) + aHMLC(τ )HC(τ ) = 0, (B.4a)
C(τ )HC(τ )aML = C(τ )Hs. (B.4b)

Next, for the second term

−
(
C(τ )Hs

)T +
(
C(τ )HC(τ )aML

)T = 0, (B.5a)
C(τ )HC(τ )aML = C(τ )Hs. (B.5b)

It can be notices that the expressions in (B.4b) and (B.5b) are the same. If C(τ )HC(τ )
is invertible, the complex amplitude vector aML has the following solution

aML = (C(τ )HC(τ ))−1C(τ )Hs (B.6)
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Appendix C

Amplitudes derivation with
Lagrange constraint

The Lagrange function is

L(θ, λ) = J1(θ)− λh(a) (C.1)

Expression ∇aL(aML,L, τ , λL) = 0 is equivalent with

∇aJ1(aML,L, τ )− λL∇ah(aML,L) = 0, (C.2)

where
∇ah(aML,L) =

[
∂h

∂a
,

∂h

∂a∗

]
=
[
aHML,LΩ, (ΩaML,L)T

]
, (C.3)

and, as shown in (B.3),

∇aJ1(aML,L) =
[
−sHC(τ ) + aHML,LC(τ )HC(τ ), −

(
C(τ )Hs

)T +
(
C(τ )HC(τ )aML,L

)T ]
.

(C.4)
By solving (C.2), two sets of equations are obtained, as follows

−sHC(τ ) + aHML,LC(τ )HC(τ )− λLaHML,LΩ = 0, (C.5a)
aHML,L

(
C(τ )HC(τ )− λLΩ

)
= sHC(τ ) (C.5b)(

C(τ )HC(τ )− λLΩ
)
aML,L = C(τ )Hs, (C.5c)

and

−
(
C(τ )Hs

)T +
(
C(τ )HC(τ )aML,L

)T − λL(ΩaML,L)T = 0, (C.6a)
C(τ )HC(τ )aML,L − λLΩaML,L = C(τ )Hs, (C.6b)(

C(τ )HC(τ )− λLΩ
)
aML,L = C(τ )Hs, (C.6c)

It can be noticed that the expressions in (C.5c) and (C.6c) are the same. If
(
C(τ )HC(τ )−

λLΩ
)
is invertible, then
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aML,L =
(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs. (C.7)

In order to find λL, the new expression for aML,L is used in

h(aML,L) = aHML,LΩaML,L = 0, (C.8)

resulting in

((
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs

)H
Ω
((
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs

)
= 0, (C.9a)(

C(τ )Hs
)H (

C(τ )HC(τ )− λLΩ
)(−1) Ω

(
C(τ )HC(τ )− λLΩ

)(−1)
C(τ )Hs = 0. (C.9b)

With the notation in (3.52) and (3.53), the expression becomes

rsc(τ )H (Rcc(τ )− λLΩ)(−1) Ω (Rcc(τ )− λLΩ)(−1)
rsc(τ ) = 0. (C.10)

For the case of M = 1,
Ω =

[
α2 0
0 −1

]
, (C.11)

and

Rcc(τ )− λLΩ =
[
Rcc(τ )1,1 − α2λL Rcc(τ )1,2

Rcc(τ )2,1 Rcc(τ )2,2 + λL

]
. (C.12)

The inverse is given by

(Rcc(τ )− λLΩ)(−1) = 1
det(Rcc(τ )− λLΩ)

[
Rcc(τ )2,2 + λL −Rcc(τ )1,2
−Rcc(τ )2,1 Rcc(τ )1,1 − α2λL

]
,

(C.13)
where

det(Rcc(τ )− λLΩ) =
(
Rcc(τ )1,1 − α2λL

)
(Rcc(τ )2,2 + λL)−Rcc(τ )1,2Rcc(τ )2,1

= Rcc(τ )1,1Rcc(τ )2,2 −Rcc(τ )1,2Rcc(τ )2,1 − α2λLRcc(τ )2,2 + λLRcc(τ )1,1

= det(Rcc)− λL
(
α2Rcc(τ )2,2 −Rcc(τ )1,1

)
,

(C.14)

with det(Rcc) being the determinant of Rcc(τ ) given by

det(Rcc) = Rcc(τ )1,1Rcc(τ )2,2 −Rcc(τ )1,2Rcc(τ )2,1. (C.15)

It can be observed that the expression in (C.13) can be restated as

(Rcc(τ )− λLΩ)(−1) = 1
det(Rcc(τ )− λLΩ) (A−B), (C.16a)
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where

A =
[

Rcc(τ )2,2 −Rcc(τ )1,2
−Rcc(τ )2,1 Rcc(τ )1,1

]
, (C.16b)

B =
[
−λL 0

0 α2λL

]
. (C.16c)

Matrices A and B are

A = det(Rcc)Rcc(τ )(−1). (C.17)

B = λL

[
−1 0
0 α2

]
= λL(−α2)Ω(−1). (C.18)

Using (C.16a) in (C.10), the equation becomes

rsc(τ )H 1
det(Rcc(τ )− λLΩ) (A−B)Ω 1

det(Rcc(τ )− λLΩ) (A−B)rsc(τ ) = 0, (C.19)

and by extending it

1
det2(Rcc(τ )− λLΩ)

rsc(τ )H(A−B)Ω(A−B)rsc(τ ) =

= 1
det2(Rcc(τ )− λLΩ)

rsc(τ )H (AΩA−AΩB −BΩA+BΩB) rsc(τ )

= 0;

(C.20)

rsc(τ )HBΩBrsc(τ ) = rsc(τ )HλL(−α2)Ω(−1)ΩλL(−α2)Ω(−1)rsc(τ )
= λ2

Lα
4rsc(τ )HΩ(−1)rsc(τ ).

(C.21)

rsc(τ )HAΩArsc(τ ) = rsc(τ )Hdet(Rcc)Rcc(τ )(−1)Ωdet(Rcc)Rcc(τ )(−1)rsc(τ )
= det(Rcc)2rsc(τ )HRcc(τ )(−1)ΩRcc(τ )(−1)rsc(τ ).

(C.22)

rsc(τ )HAΩBrsc(τ ) = rsc(τ )Hdet(Rcc)Rcc(τ )(−1)ΩλL(−α2)Ω(−1)rsc(τ )
= λL(−α2)det(Rcc)rsc(τ )HRcc(τ )(−1)rsc(τ )
= rsc(τ )HBΩArsc(τ ).

(C.23)

And equation (C.20) becomes

1
det2(Rcc(τ )− λLΩ)

(
λ2
Lα

4Rsc(τ )HΩ(−1)rsc(τ ) + λL2α2det(Rcc)rsc(τ )HRcc(τ )(−1)rsc(τ )

+ det(Rcc)2rsc(τ )HRcc(τ )(−1)ΩRcc(τ )(−1)rsc(τ )
)

= 0;
(C.24)

The following notations are used, for easier visualization of the equation
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α4rsc(τ )HΩ(−1)rsc(τ ) = a,

2α2det(Rcc)rsc(τ )HRcc(τ )(−1)rsc(τ ) = b,

det(Rcc)2rsc(τ )HRcc(τ )(−1)ΩRcc(τ )(−1)rsc(τ ) = c,

det(Rcc) = d,

α2Rcc(τ )2,2 −Rcc(τ )1,1 = e.

(C.25)

With the notation in (C.25), equation (C.24) is

(aλ2
L + bλL + c)

(d− λLe)2 = 0, (C.26)

which gives

λL = −b±
√
b2 − 4ac

2a , subject to λL 6=
d

e
. (C.27)



Appendix D

Cost Function minimization
following Weill [15]

In [15], only one multipath component is considered. The cost function in (3.17) is extended
and expressed as a function of the autocorrelation of the PRN signal, and the correlation
between the PRN signal and the observed signal. This is useful because it can be related with
the DLL structure in the receiver. When minimizing the cost function, Weill is imposing the
constraint that the amplitude of the direct signal should be larger than the amplitude of the
multipath, with a certain factor. But in this thesis, this constraint will be ignored and it
will be shown that by ignoring it, the result of the minimization coincides with the results
reported in [11].

For one multipath component, the signal model in continuous time is

s(t) = a0c(t− τ0) + a1c(t− τ1) + w(t), (D.1)

and in vector form

s = a0c(τ0) + a1c(τ1) +w, (D.2)

with the same notations as before.
for the simplified model in (D.2) can be written as

J = (sH − c(τ0)Ha∗0 − c(τ1)Ha∗1)(s− a0c(τ0)− a1c(τ1))
= sHs+ a∗0a0c(τ0)Hc(τ0) + a∗1a1c(τ1)Hc(τ1)
+ a∗1a0c(τ1)Hc(τ0) + a∗0a1c(τ0)Hc(τ1)
− a∗0c(τ0)Hs− a∗1c(τ1)Hs− a0s

Hc(τ0)− a1s
Hc(τ1).

(D.3)

When N is large enough, as it is common in the GNSS signal processing, the products
of s and c(τm) represent different correlations. As a prof for this see equation (2.9). The
auto-correlation of the PRN vector, c(0), is noted with Rcc(0) and is given by

Rcc(0) = c(0)Hc(0) = c(τ0)Hc(τ0) = c(τ1)Hc(τ1). (D.4)

The correlation between the delayed PRN vector, c(τm − τq), and one not delayed, c(0),
is noted with Rcc(τm − τq) and is given by
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Rcc(τ1 − τ0) = c(τ1)Hc(τ0)
Rcc(τ0 − τ1) = c(τ0)Hc(τ1) = Rcc(τ1 − τ0)∗.

(D.5)

The cross-correlation between the delayed PRN vector, c(τm), and the observed vector,
s, is noted with Rsc(τm) and is given by

Rsc(τ0) = c(τ0)Hs
Rsc(τ1) = c(τ1)Hs.

(D.6)

By inserting (D.4), (D.5) and (D.6) into (D.3) and by dropping sHs due to its indepen-
dence of θ, the new expression for J is

J(θ) ∝e (a∗0a0 + a∗1a1)Rcc(0) + a∗1a0Rcc(τ1 − τ0) + a∗0a1Rcc(τ1 − τ0)∗

− a∗0Rsc(τ0)− a∗1Rsc(τ1)− a0Rsc(τ0)∗ − a1Rsc(τ1)∗,
(D.7)

where ∝e indicates proportionality.
The complex amplitudes, a0 and a1, can be expressed as

a0 = aR0 + jaI0

a1 = aR1 + jaI1,
(D.8)

where the superscripts R and I are indicating the real and imaginary parts.
To reduce the size of the minimization of J , following Weill approach, we can equate to

zero the partial derivatives of J with respect to the real and imaginary parts of a0 and a1.

∂J

∂aR0
= 0; ∂J

∂aI0
= 0; ∂J

∂aR1
= 0; ∂J

∂aI1
= 0. (D.9)

By solving the system of equations in (D.9), the following expressions are obtained for
the real an imaginary part of the amplitudes, as it is shown in D.1,

aR0 = Rcc(0)(Rsc(τ0)∗ +Rsc(τ0))−Rsc(τ1)∗Rcc(τ1 − τ0)−Rsc(τ1)Rcc(τ1 − τ0)∗
2(Rcc(0)2 −Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗) (D.10a)

aI0 = j
Rcc(0)(Rsc(τ0)∗ −Rsc(τ1))−Rsc(τ1)∗Rcc(τ1 − τ0) +Rsc(τ1)Rcc(τ1 − τ0)∗

2(Rcc(0)2 −Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗) (D.10b)

aR1 = Rcc(0)(Rsc(τ1)∗ +Rsc(τ1))−Rsc(τ1)∗Rcc(τ1 − τ0)∗ −Rsc(τ0)Rcc(τ1 − τ0)
2(Rcc(0)2 −Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗) (D.10c)

aI1 = j
Rcc(0)(Rsc(τ1)∗ −Rsc(τ1)) +Rsc(τ0)Rcc(τ1 − τ0)−Rsc(τ0)∗Rcc(τ1 − τ0)∗

2(Rcc(0)2 −Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗) . (D.10d)

The values of aR0 , aI0, aR1 and aI1 can be computed for any fixed value of τ0 and τ1. The
minimization of J is now a two dimensional minimization problem dependent on τ0 and τ1.
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D.1 Amplitudes derivations
The ML cost function, depending on the real and imaginary parts of the amplitudes, for
just one multipath component, can be obtained by combining equations (D.8) and (D.7), as
follows

J =((AR0 − jAI0)(AR0 + jAI0) + (AR1 − jAI1)(AR1 + jAI1))Rcc(0)
+ (AR1 − jAI1)(AR0 + jAI0)Rcc(τ1 − τ0) + (AR0 − jAI0)(AR1 + jAI1)Rcc(τ1 − τ0)∗

− (AR0 − jAI0)Rsc(τ0)− (AR0 + jAI0)Rsc(τ0)∗

− (AR1 − jAI1)Rsc(τ1)− (AR1 + jAI1)Rsc(τ1)∗, (D.11a)

and by extending it, the cost function becomes

J =((AR0 )2 + (AI0)2 + (AR1 )2 + (AI1)2)Rcc(0)
+ (AR0 AR1 − jAR0 AI1 + jAI0A

R
1 +AI0A

I
1)Rcc(τ1 − τ0)

+ (AR0 AR1 + jAR0 A
I
1 − jAI0AR1 +AI0A

I
1)Rcc(τ1 − τ0)∗

− (AR0 − jAI0)Rsc(τ0)− (AR0 + jAI0)Rsc(τ0)∗

− (AR1 − jAI1)Rsc(τ1)− (AR1 + jAI1)Rsc(τ1)∗. (D.11b)

Next, the partial derivatives of J with respect to AR0 , AI0, AR1 and AI1 are computed and
equalled to 0, as it was indicated in equation (D.9), for getting the expressions for AR0 , AI0,
AR1 and AI1.

The derivative of J with respect to AR0 is

∂J

∂AR0
=2AR0 Rcc(0) + (AR1 − jAI1)Rcc(τ1 − τ0) + (AR1 + jAI1)Rcc(τ1 − τ0)∗

−Rsc(τ0)−Rsc(τ0)∗ = 0,
(D.12)

giving the following expression for AR0

AR0 = 1
2Rcc(0)(Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)).
(D.13)

The derivative of J with respect to AI0 is

∂J

∂AI0
=2AI0Rcc(0) + (jAR1 +AI1)Rcc(τ1 − τ0) + (−jAR1 +AI1)Rcc(τ1 − τ0)∗

+ jRsc(τ0)− jRsc(τ0)∗ = 0,
(D.14)

giving the following expression for AI0

AI0 = j

2Rcc(0)(−Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)).
(D.15)
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The derivative of J with respect to AR1 is

∂J

∂AR1
=2AR1 Rcc(0) + (AR0 + jAI0)Rcc(τ1 − τ0) + (AR0 − jAI0)Rcc(τ1 − τ0)∗

−Rsc(τ1)−Rsc(τ1)∗ = 0,
(D.16)

giving the following expression for AR1

AR1 = 1
2Rcc(0)(Rsc(τ1) +Rsc(τ1)∗ −AR0 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

− jAI0(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)).
(D.17)

The derivative of J with respect to AI1 is

∂J

∂AI1
=2AI1Rcc(0) + (−jAR0 +AI0)Rcc(τ1 − τ0) + (jAR0 +AI0)Rcc(τ1 − τ0)∗

+ jRsc(τ1)− jRsc(τ1)∗ = 0,
(D.18)

giving the following expression for AI1

AI1 = j

2Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗ +AR0 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI0(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)).
(D.19)

The expressions (D.13), (D.15), (D.17) and (D.19) form a four system of equations with
four unknowns, which can be solved.

First, equations (D.13) and (D.15) are used in equation (D.17), giving

AR1 = 1
2Rcc(0)

(
Rsc(τ1) +Rsc(τ1)∗

− 1
2Rcc(0)(Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

− j j

2Rcc(0)(−Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
)
, (D.20a)
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and by extending it, AR1 becomes

AR1 = 1
4Rcc(0)2

(
2Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)

− (Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
+ (−Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
)
, (D.20b)

= 1
4Rcc(0)2

(
2Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)

−Rsc(τ0)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)−Rsc(τ0)∗(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
+AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
− jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
−Rsc(τ0)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗) +Rsc(τ0)∗(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
−AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
)
, (D.20c)

= 1
4Rcc(0)2

(
2Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)− 2Rcc(τ1 − τ0)Rsc(τ0)

− 2Rcc(τ1 − τ0)∗Rsc(τ0)∗ +AR1 (4Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)
)
, (D.20d)

From the last equation is resulting that

AR1 = Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)−Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗
2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗ . (D.21)

Next, equations (D.13) and (D.15) are used in equation (D.19), giving

AI1 = j

2Rcc(0)

(
−Rsc(τ1) +Rsc(τ1)∗

+ 1
2Rcc(0)(Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ j
j

2Rcc(0)(−Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
)
, (D.22a)
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and by extending it, AI1 becomes

AI1 = j

4Rcc(0)2

(
2Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗)

+ (Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
− (−Rsc(τ0) +Rsc(τ0)∗ −AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗))(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
)
, (D.22b)

= j

4Rcc(0)2

(
2Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗)

+Rsc(τ0)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗) +Rsc(τ0)∗(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
−AR1 (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
+ jAI1(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
+Rsc(τ0)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)−Rsc(τ0)∗(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
+AR1 (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

− jAI1(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
)
, (D.22c)

= j

4Rcc(0)2

(
2Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗) + 2Rcc(τ1 − τ0)Rsc(τ0)

− 2Rcc(τ1 − τ0)∗Rsc(τ0)∗ + jAI1(−4Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)
)
. (D.22d)

From the last equation is resulting that

AI1 = j
Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗) +Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗

2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗) .

(D.23)
The equations (D.21) and (D.23) are used in equation (D.13), in order to compute the



D.1. Amplitudes derivations 77

expression for AR0 , as below

AR0 = 1
2Rcc(0)

(
Rsc(τ0) +Rsc(τ0)∗

− Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)−Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗
2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗

(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

+ jj
Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗) +Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗

2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗

(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
)
, (D.24a)

and by extending it, AR0 becomes

AR0 = 1
2Rcc(0)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)(

(Rsc(τ0) +Rsc(τ0)∗)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)

− (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)
+ (Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)Rsc(τ0) +Rcc(τ1 − τ0)∗Rsc(τ0)∗)
− (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗)

− (Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)(Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗)
)
,

(D.24b)

= 1
2Rcc(0)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)(

(Rsc(τ0) +Rsc(τ0)∗)2Rcc(0)2

− 2Rcc(0)(Rsc(τ1)∗Rcc(τ1 − τ0) +Rsc(τ1)Rcc(τ1 − τ0)∗)
)
, (D.24c)

and the final expression is

AR0 =(Rsc(τ0) +Rsc(τ0)∗)Rcc(0)− (Rsc(τ1)∗Rcc(τ1 − τ0) +Rsc(τ1)Rcc(τ1 − τ0)∗)
2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗ .

(D.24d)

The final step is to use the equations (D.21) and (D.23) in equation (D.15), in order to
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compute the expression for AI0, as below

AI0 = j

2Rcc(0)

(
−Rsc(τ0) +Rsc(τ0)∗

− Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)−Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗
2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗

(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)

+ jj
Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗) +Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗

2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)

(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
)
, (D.25a)

and by extending it, AI0 becomes

AI0 = j

2Rcc(0)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)(
(−Rsc(τ0) +Rsc(τ0)∗)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)

−Rcc(0)(Rsc(τ1) +Rsc(τ1)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
+ (Rcc(τ1 − τ0)Rsc(τ0) +Rcc(τ1 − τ0)∗Rsc(τ0)∗)(Rcc(τ1 − τ0)−Rcc(τ1 − τ0)∗)
−Rcc(0)(−Rsc(τ1) +Rsc(τ1)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)

− (Rcc(τ1 − τ0)Rsc(τ0)−Rcc(τ1 − τ0)∗Rsc(τ0)∗)(Rcc(τ1 − τ0) +Rcc(τ1 − τ0)∗)
)
,

(D.25b)

= j

2Rcc(0)(2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗)(
2(−Rsc(τ0) +Rsc(τ0)∗)Rcc(0)2 + 2Rcc(0)Rsc(τ1)Rcc(τ1 − τ0)∗

− 2Rcc(0)Rsc(τ1)∗Rcc(τ1 − τ0)
)
, (D.25c)

and the final expression is

AI0 =j (−Rsc(τ0) +Rsc(τ0)∗)Rcc(0) +Rsc(τ1)Rcc(τ1 − τ0)∗ −Rsc(τ1)∗Rcc(τ1 − τ0)
2Rcc(0)2 − 2Rcc(τ1 − τ0)Rcc(τ1 − τ0)∗ .

(D.25d)
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Figure E.3: Error between the true delay and the detected delay. The signal is composed by the LOS and
one MP and but the algorithm is searching just for LOS. The channel is not affected by noise. Comparison
between different compression methods.
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