
Master Thesis

Real-Time Embedded Systems in
Java

Author:
Kristian Kolding Foged-Ladefoged

Supervisor:
Bent Thomsen

June 10, 2014

Aalborg University

Department of Computer Science

Selma Lagerlöfs Vej 300

9220 Aalborg East

http://www.cs.aau.dk

Title: Real-Time Embedded Systems in
Java

Theme: Programming Technology

Project Term:
10th semester, spring 2013

Project Group:
sw105f14

Students:
Kristian Kolding Foged-Ladefoged

Supervisor:
Bent Thomsen

Copies: 2

Pages: 47

Finished: June 10, 2014

Synopsis:

This project investigates the usefulness
of object-oriented paradigm in real-time
embedded systems. The investigation is
twofold, with the benefits of the object-
oriented paradigm explored through a lit-
erature review, and 28 benchmarks devel-
oped in Java to investigate whether or not
the object-oriented paradigm has any in-
fluence on execution times.

The project concludes that the object-

oriented paradigm promotes maintainabil-

ity, reusability and increases productivity.

Execution times are however significantly

increased.

This report and its content is freely available, but publication (with source) may only be made

by agreement with the authors.

Summary

This project investigates the usefulness of object-oriented paradigm in real-
time embedded systems. The investigation is twofold, with the benefits
of the object-oriented paradigm explored through a literature review, and
28 benchmarks developed in Java to investigate whether or not the object-
oriented paradigm has any influence on execution times.

The literature review is conducted based on a search strategy, which
uses approaches suggested by Webster and Watson[32].

The benchmarks consists of 14 benchmarks, which is developed in two
versions using object-oriented design and little to none object-oriented de-
sign. The benchmarks is derived from the well-known Malardalen bench-
mark suite[9].

The project concludes that the object-oriented paradigm promotes main-
tainability, reusability and increases productivity. Execution times are how-
ever significantly increased.

5

Table of contents

1 Introduction 2
1.1 Motivation . 2
1.2 Problem Definition . 3

2 Literature Review 5
2.1 Search Strategy . 5
2.2 Literature Review . 7
2.3 Literature Conclusion . 12

3 Real-Time Embedded Java 14
3.1 Real-time system types . 14
3.2 Characteristics of real time embedded system 16
3.3 Worst Case Execution Time 17

3.3.1 Static methods . 17
3.3.2 Measure-based methods 18

3.4 Schedulability Analysis . 18
3.4.1 Fixed-Priority Scheduling 18
3.4.2 Cyclic Executive Scheduling 19

3.5 Safety-Critical Java . 19
3.5.1 Mission . 19
3.5.2 Compliance Levels . 20

3.6 Real-Time Java Platforms . 21

4 Java Benchmarks 23
4.1 Object-oriented metrics . 23
4.2 Java benchmark . 25
4.3 Benchmark results . 28
4.4 Benchmark conclusion . 30

5 Conclusion 32

0

Table of contents

6 Appendix 34
6.1 Top 100 Journals . 34

1

Chapter 1
Introduction

1.1 Motivation

Real-time embedded systems are a class of computer systems that monitor,
respond, and interact with an external environment, such as the real world.
The system interact with the environment through input and output inter-
faces such as sensors. The system is often required to compute and respond
within a certain time frame, hence the name ”real-time”. It is essential for
the system to finish within the time frame, exceeding the time frame can be
devastating depending on the application. Real time embedded systems
are ubiquitous and appear in a large variety of applications such as house-
hold appliances, multimedia, military, and medical[28].

Due to the time constraints of real-time embedded system, it is neces-
sary to develop reliable and predictable software. This is achieved by de-
veloping a software architecture with limited overhead, such as unneces-
sary middleware. The language C is a popular language for developing
real time embedded systems, due to its desirable characteristics such as the
ability to access hardware.[22]

According to the article ”Struggle continues to plug embedded pro-
gramming gap”[14], the American universities have shifted to teaching
Java programming instead of C, for the reason that there are more jobs as
Java developer than C developer. Unfortunately, this has created a gen-
eration of developers who are uneducated in C programming. Thereby
created a lack of real-time embedded developers.

2

Chapter 1. Introduction

Java is a high-level object oriented programming language, that is often
used as a general-purpose language. Java is often recognized as language
with high portability[21], because it runs on a virtual machine. Java is vi-
able language for real-time embedded system and is constantly receiving
more support[22].

A study which observed bug and productivity rates for Java and C++
showed that C++ generates about 15 to 50 percent more defects and about
200 to 300 percent more bugs compared to Java. Furthermore did the study
also show that Java is about 30 to 200 percent more productive that Java.
The results may seem a bit skeptical, but regardless the study proved that
Java is more productive and contains fewer bugs and defects[23].

1.2 Problem Definition

Java is high-level object-oriented programming language is very popular
and has is increasingly gaining more support for real-time embedded sys-
tems. As described in section [?], it seems like the upcoming generation
of software engineers lack the skills in real-time embedded system devel-
opment due to the shift in programming language taught in the American
universities.

To investigate the suitability of Java in real-time embedded system, I
want to achieve insight in what benefits of the object-oriented paradigm.
I have chosen to conduct a literature review to investigate the benefits of
the object-oriented paradigm in regards to what the literature states. This
brings me to my first research question which is:

”What benefits does the literature mention about the object-oriented
paradigm”

Execution times is of high importance in a real-time embedded system,
which is why I want to investigate the influence that the object-oriented
paradigm may have on the execution times. This brings me to my second
research question which is:

”Does the object-oriented paradigm influence the execution time of real
time systems?”

Furthermore I want to achieve knowledge about real-time embedded
systems and what makes Java a suitable language for real-time embedded
systems.

Part 2 contains the search strategy used for my literature review, as well
as the literature review itself. Part 3 contains knowledge about real-time

3

Chapter 1. Introduction

embedded systems and what makes Java a possible candidate for real-
time embedded development. Part 4 contains 24 benchmarks to investigate
whether or not, the object-oriented paradigm has any influence on execu-
tion times.

4

Chapter 2
Literature Review

2.1 Search Strategy

Webster and Watson[?] describe an approach for high quality review. The
approach focuses on structuring the review to make the research more com-
plete. Complete reviews are defined as a review containing more than one
research methodology, one journal, or one geographic location.

The approach consist of three components, identification of relevant and
impacting articles, previously important articles, and new research bases
on the previous articles. Webster and Watson suggest using leading jour-
nals related to the subject of interested, for searching for important and
relevant articles. Based on these articles a backward and forward citation
search should be conducted for identifying previously and subsequently
important articles.

I have chosen to Web of Knowledge as search engine to search for sci-
entific work. I find that Web of Knowledge best satisfies the requirements
of Webster and Watson[?][25]. Web of Knowledge offers great options for
constructing queries and limit the search to specific authors or publications.
This helps narrowing the search for a more specific search result.

Constructing an initial search query can be difficulty due to the lack of
knowledge for the search subject. I used an trial and error approach to find
some initial articles. Based on these articles I constructed a search query
which includes all articles describing object-oriented and level of abstrac-
tion, productivity, comprehension, bugs, defects, or quality attributes[13].

5

Chapter 2. Literature Review

(OO OR ”object-oriented”) AND (”level* of abstraction” OR productivity
OR compreh* OR bug* OR defect* OR maintainability OR modifiability OR
analyzability OR testability OR readability OR reliability OR reusability)

The query returned 2677 articles in total, which had to be reduced to a
more acceptable number of articles. Web of Knowledge provides the option
to export various types of data about the search result, such as keywords
for the articles. To reduce the amount of articles I used the keywords to an-
alyze the search result. I developed a small program to count the number of
times each keyword occurred. This analyze provided me with the insight
that maintainability, modifiability, analyzability, testability, readability, re-
liability, and reusability were very popular keywords among the articles in
the search result. Due to their popularity, I had to remove them.

The keyword program was further used to adjust the search query un-
til the exported keywords reach a acceptable state of fitting and unfitting
keywords. The final search query is as follows:

(OO OR ”object-oriented”) NEAR/1 (language OR paradigm OR design
OR development) AND (defect* OR bug* OR productivity OR quality OR
abstraction) The query returned 1282 articles in total. To reduce the amount
of articles further more, the query was altered to only include articles from
the top 100 most impacting journals in the field of computer science. The
top 100 most impacting journals was identified using the impact factor tool
from Web of Knowledge[24]. The journals was sorted based on the 5-year-
impact attribute. The final search query was refined using the top 100 most
impacting journals and returned 83 articles. The top 100 journals can be
seen in appendix 6.1

The 83 articles was manual reduced by reading the title, abstract, and
conclusion of each article. The manual-reduction narrowed the articles
down to 20 articles in total.

Based on the 20 articles a backwards citation was conducted to iden-
tify the most important articles that the 20 articles cited. The backwards
citation search was performed by utilizing Web of Knowledge option for
exporting the list of citation of the 20 articles. Based on this list I picked
the five most cited articles. Web of Knowledge also provides the option to
perform forward citation search, that returns a list of all articles citing one
of the 20 articles. Based on this list I picked the five most cited articles.

By using Webster and Watsons approach I found 30 articles in total. Dur-
ing the reading of the 30 articles, it was necessary to perform a final reduc-

6

Chapter 2. Literature Review

tion of the articles due to realizing upon reading the articles, that some of
the articles used object-oriented programming to achieve a goal but did not
discuss why object-oriented programming was used to achieve the goal.
The final number of articles is 11. A shortened version of the literature
search can be seen in table2.1

Step Articles Description
1. Query

(1282)
Search query described above executed at www.
webofknowledge.com – April 12th

2. Top Jour-
nals (83)

Reduction by only including articles from top
100 journals.

3. Manual
reduction
(20)

Narrowing results to articles that contain de-
scriptions on the use of code metrics or qual-
ity metrics and preferably in combination with
a project’s characteristics.

4. Backwards
Citation
(5)

From the citations from the articles in step 3, find
the most cited article not already included.

5. Forward
Citation
(5)

From the citations from the articles in step 3, find
the most cited article not already included.

6. Initial Re-
sult (30)

Combining articles identified in step 3 with arti-
cles identified in step 4 and 5.

7. Final
Result (11)

Removing irrelevant articles from step 6 upon
reading.

Figure 2.1: Short description of the literature search.

2.2 Literature Review

The article ”A controlled experiment for evaluating quality guidelines on
the maintainability of object-oriented designs”[16] points out that there
is a lack of empirical evidence to support the benefits of the object-oriented
paradigm.

The article goal is to provide empirical evidence that object-oriented de-
sign increases two important components of maintainability, which is un-
derstandability and modifiability.

The article compare the effect of design principles that are recognized as
good and bad practice. The recognized good practices are as follow: Cou-
pling between classes should be low, which is achieved by reducing the

7

www.webofknowledge.com
www.webofknowledge.com

Chapter 2. Literature Review

complexity and decreasing the number of messages between objects. In-
heritance coupling should however be kept high, which is achieved by sub-
class being specialization of its generalization superclass. Cohesion should
be kept high by letting classes carry out only one functionality. Services
should only require a minimum of attributes such that no attributes is un-
used. Furthermore classes need to portray a specialization, and not some
arbitrary choices of functionality. Lastly model names should closely cor-
respond to the name of the concepts being modeled.

The article set up an empirical study were 33 computer science students
would conduct maintainability on two different object-oriented systems,
that were designed after the recognized good and bad object-oriented prac-
tice.

The study results showed that object-oriented systems developed fol-
lowing the good practice were significantly easier to maintain.

The article ”An empirical investigation of the impact of the object-
oriented paradigm on the maintainability of real-world mission-critical
software”[10] cites that a number of empirical studies have been performed
to validate increased software maintainability using the object-oriented paradigm.
However these empirical studies have been inconclusive and the majority
of the studies have been conducted using students in controlled environ-
ments.

The articles goal is to perform a maintenance experiment on two ver-
sions of an operational real-world mission-critical system. The two ver-
sions are relatively developed in C using the structured paradigm and C++
using the object-oriented paradigm. Software professional were maintain-
ing both systems.

The experiment showed that group members working with the object-
oriented version required less effort to maintain to system. The article
points out that the usefulness of UML for analysis may be a beneficial fac-
tor for the object-oriented paradigm and thereby making it superior to non
object-oriented paradigms.

The article ”An Empirical Study of the Object-Oriented Paradigm and
Software Reuse”[26] investigates if the object-oriented paradigm improves
reusability. The experiment described in the article, is based on a target
system developed by a set of software engineering students. The students
were divided into two groups, one group used the procedural paradigm
and the other group used the object-oriented paradigm. The student groups
were furthermore divided into two groups, one group using reuse and the
other group not using reuse.

The experiment compared the four versions by the number of runs, run

8

Chapter 2. Literature Review

time errors, code edits, syntax errors, and the total time it took to fix run
time errors. The experiment showed that the object-oriented paradigm im-
proves productivity, although a significant part of the improvement is due
to the effect of reuse. Reuse promotes productivity regardless of language
paradigm, but the object-oriented paradigm is shown to promote the reuse
process.

The article ”Assessing the cognitive consequences of the object-oriented
approach A survey of empirical research on object-oriented design by in-
dividuals and teams”[6] present a state-of-the-art review of the empirical
research on object-oriented design. The article compares object-oriented
design versus procedural design with the focus on design performed by
individual and teams. Furthermore the article also focuses on reuse.

The review shows that novice object-oriented designers have difficulties
in the process of class creation. The mapping between the problem domain
and the programming domain is not easy. The notice object-oriented de-
signers need to construct a representation of the procedural aspects of the
solution in order to refine, evaluate and revise, in order to create proper
classes.

The review supports that the object-oriented paradigm promotes reuse
of software. The object-oriented paradigm is also shown to improve pro-
ductivity, and that a significant part of the improvement is due to the effect
of reuse.

The review also shows that the object-oriented paradigm helps over-
come some problems encountered at the software design team level com-
pared with traditional paradigms. Coordination and knowledge sharing is
enhanced, and the communication between team members is more effec-
tive.

The article ”Cognitive Activities and Level of Abstraction in Procedu-
ral and Object-Oriented Design”[18]observes experts in the object-oriented
paradigm and novice object-oriented designers with procedural experience
while they solve a design problem. Realism was of high importance for the
study, so the developers used java development tools of their own choice.

The articles goal is to compare the two designs developed by the experts
and novice object-oriented designers.

The article found that object-oriented designers decompose their de-
signs into classes corresponding to the real world domain entities. The
object-oriented designers also utilized reuse though built-in classes. Pro-
cedural designers decomposed their design according to actions on data
structures.

The goal of ”Evaluating the effect of a delegated versus centralized

9

Chapter 2. Literature Review

control style on the maintainability of object-oriented software”[8] is to
evaluate delegated and centralized control styles on the maintainability of
object-oriented software.

Delegated control style is done by distributing a well-defined set of re-
sponsibilities among a number of classes. Each class have a specific role
and critical for the overall system architecture. Centralized control style
is where a few larger classes is selected as control classes. These control
classes’ responsibility is to coordinate the smaller and more simpler classes.

The article present a study with 99 junior, intermediate, and senior Java
consultants. To compare the difference between professional developer and
students, 59 undergraduate and graduate students also participated. The
programming tasks consisted of six change tasks, a training task, a pretest
task, and four incremental design tasks.

Two measurements were used to compare the delegated and central-
ized control style, the total effort to complete a task measured in time, and
correctness of the implemented tasks.

The study showed that developers using delegated control style made a
more elegant solution and a better object-oriented representation of the task
to solve. However, the centralized control style offered better maintainabil-
ity, due to only a few classes contained the majority of the application logic.

The article ”Identification of dynamic comprehension processes dur-
ing large scale maintenance”[2] states that during maintenance, software
engineers must understand code for a variety of tasks, which requires a lot
of effort and can be time consuming.

The article present an experiment, where a software engineer task is
to maintain an emulation program of networking protocols. The software
engineer was observed and recorded as he maintained the system. The
goal was to see the comprehension process that the software engineer went
through.

It was observed that the software engineers used a multilevel approach
for obtaining knowledge about the code. The engineer frequently switched
between program situations and domain models. Effective understanding
of large-scale code needs substantial domain information.

In a related study, it was found that object-oriented experts uses a sys-
tematic top-down design strategy when they need to gain a greater under-
standing of a system. Whereas procedural experts uses a more opportunis-
tic approach, in which they changes between levels of abstraction.

The article ”Identification of Move Method Refactoring Opportuni-
ties”[19] propose a methodology for locating bad smells in object-oriented

10

Chapter 2. Literature Review

software. Some bad smells can be resolved by moving the source of the bad
smell such as methods, to a more suitable location in the software architec-
ture. The proposed methodology is able to evaluate whether or not the bad
smell is reduced or resolved after the source has been moved.

The article mentions that low coupling and high cohesion reflects a good
object-oriented design. The proposed methodology uses this knowledge
together with coupling and cohesion metrics to determine whether or not
to move a method.

By studying the coupling and cohesion metrics evolution on two open
source projects, it has shown that refactoring performed based on the pro-
posed methodology has a positive impact bad smells.

The article ”Predicting the probability of change in object-oriented
systems”[20] acknowledge of the importance of changes handling in the
software development process. The goal of the article is to predict the prob-
ability of class changes in future of the software development. To predict
the probability of class changes, the article present a methodology that uses
three attributes, which is referred to as axes of change.

The inheritance axis represents changes in interfaces and class inher-
itances. The reference axis represent changes in class instantiations and
declaration of methods. The dependency axis represent changes in class
and package names.

The presented methodology for predicting changes in object-oriented
system was proven to provide statistically insignificant predictions. The
methodology has been automated and can be applied to any object-oriented
software system for easy refactoring.

The article ”R++ Adding path-based rules to C++”[7] mentions that
one of the purposes of the object-oriented paradigm is to provide a higher
level of abstraction, thereby developers do not have to deal with irrelevant
implementation details and allows them to work at a more neutral level of
problem solving.

As application become more complex, a lot of effort is used on the low
level details of interobject dependencies. Maintaining these interobject de-
pendencies is a non-trivial task, and can lead to errors of omission and logic
by the developer maintaining the system.

The article adds path-based rules to the object-oriented programming
language C++. The rules strictly follow interobject paths in a domain model
as a new class member. The rules define automatic behavior of a class, and
monitor data members for changes, which satisfy a rule’s condition. If a
rule is satisfied, its action will be executed.

11

Chapter 2. Literature Review

Adding path-based rules to C++, has successfully provides a useful
level of abstraction, allowing the developer to avoid dealing with low level
implementation details when modelling dynamic collections of objects.

The article ”The class blueprint Visually supporting the understand-
ing of classes”[29] mentions that maintenance of software systems accounts
for 50 to 75 percent of the overall cost of system development. Reading
object-oriented code is more difficult than reading procedural code. The
domain model of the application is distributed across the whole system,
and is often modelled using inheritance and polymorphism, which de-
creases the readability of object-oriented code.

Understanding classes is of high importance in object-oriented systems
and contributes to better maintainability in object-oriented systems. The
article present a new approach, class blueprints, which is a visualization
of semantically augmented call and access-graph of the methods and at-
tributes of classes.

The article findings is that the suggested approach, class blueprints, re-
duces complexity by making assumptions about classes without having to
read the whole source code. The blueprints helps to select the relevant
methods whose reading is critical for understanding a class. A common
vocabulary is defined by the blueprints, which eases the communication
between developers. The blueprints helps the developers obtain a good
understanding of classes with a minimal effort.

2.3 Literature Conclusion

This part has sought to answer my first research question, which is as fol-
lows:

”What benefits does the literature mention about the object-oriented
paradigm”

The literature mentioned the lack empirical evidence that supports the
claims that the object-oriented paradigm is more effective, productive, reuse,
higher maintainability, and is less prone to defects and bugs. The lack of
empirical evidence is also reflected in the number of articles found using
the search strategy.

The literature did however validate some of the claims about the object-
oriented paradigm. Object-oriented software systems developed using a
good practice is requires less effort and are less time consuming to main-
tain, however using a delegated style is less beneficial than using a cen-
tralized style. The object-oriented paradigm was also showed to promote

12

Chapter 2. Literature Review

productivity, due to the high reusability provided by the object-oriented
design. Object-oriented developers do not have to deal with irrelevant im-
plementation details due to the high level of abstraction supported by the
object-oriented paradigm. The object-oriented paradigm is also shown to
help teams overcome problems during the design phase of software sys-
tems.

Overall does the object-oriented paradigm provide the developers with
the required insight in the code to be productive and carry out maintain-
ability with little effort.

13

Chapter 3
Real-Time Embedded Java

As the name suggests, real-time embedded systems, it is a combination of
real-time systems and embedded systems. Embedded systems are system
which are dedicated to solve a specific problem, where the coupling be-
tween hardware and software integration is tightly coupled. An embedded
system is usually part of a larger embedded system, known as embedding
system. An embedding systems consists of multiple embedded systems.
Embedded systems can be applied to a large variation of application, such
as security systems, telephones, televisions, and network routers. [15]

Real-time systems are computer systems that consists of a variety of
tasks with time constraints, used to control, monitor, and react to an ex-
ternal environment, such as the real world. The system interact with the
environment through input and output interfaces such as sensors.

The system has to comply accordingly to its time constraints, where time
constraints are deadlines for a execution time for a given functionality. If
these time constraints are not satisfied it could have a major impact on its
environment.

Real-time systems can be applied to a large variation of applications,
such as vehicle brakes, traffic control, communication, and household systems.[28]

3.1 Real-time system types

Real-time systems are categorized by three different types of time con-
straints depending on their application[15]. The three categories are hard,
soft, and firm time constraints. The three types of time constraints are de-
scribed below:

14

Chapter 3. Real-Time Embedded Java

Hard real-time systems have no tolerance for missed deadlines. The
computed results which are generated after a missed deadline is not use-
ful for the system. Depending on the application, the penalty of a missed
deadlines can be catastrophic and should always be avoided. Developing
a hard real-time systems require great effort to predict whether or not the
systems can uphold its time constraints. An example of a real-time system
with hard deadlines could be the brake system in vehicles, where the time
constraint is the delay between a person stepping on the brake until the
brake activate. [15]

Soft real-time systems strives to meet its deadlines, but it a bit more
flexible than hard real-time systems. Soft real-time systems can miss dead-
lines with none or only minor penalty. The computed results which are
generated after the missed deadline are likely to still be useful for the sys-
tem. A missed deadline can however delay the system and should there-
fore be avoided. An example of a real-time system with soft deadlines
could be a DVD player. The DVD player decodes the video and audio
streams while responding to user inputs. If a deadline is missed, the DVD
player will respond slow to the user input, but the computed result will
still be useful after the missed deadline. [15]

Firm real-time systems is viewed as a hybrid category between soft and
hard real-time systems. Firm real-time systems is required to meet a certain
amount of deadlines. The computed result which are generated after a
missed deadline is not useful for the system and will be discarded. An
example of a firm real-time system could be a mp3 player, where a missed
deadline would lead to few missed bits and thereby decreases the sound
quality. If too many deadlines are missed, the sound might just stop. [31]

As previously mentioned, real-time system consists of tasks, where each
task is responsible for a specific functionality. There exists three types of
tasks, sporadic, periodic, and aperiodic[5].

The tasks types are described as follows: Periodic tasks are repeatedly
executed within a regular time interval, known as its period[5].

Sporadic tasks can arrive at the system at arbitrary points in time, but
will only arrive with a minimum inter-arrival time between two consecu-
tive invocations[5].

Aperiodic tasks are only invoked once and the arrival time of the task is
unknown at design time. Aperiodic task cannot guarantee their nor other
tasks’ deadlines and are therefore not suitable for hard real-time systems[5].

15

Chapter 3. Real-Time Embedded Java

3.2 Characteristics of real time embedded system

Developing a real-time system is a non-trivial tasks due to the several im-
portant characteristics of real-time systems. This section contains the most
important characteristics.

Real-time systems interact with the real world using input and output
interfaces such as sensors. The real-time system must compute responses
accordingly to the input received from the real world. Real-time system
must incorporate all possible inputs and events retrieved from the real
world. Due to the real world being complex, the real-time systems often
tend to be complex as well[30].

Depending on the application of the real-time system, the system should
consist of high reliability, safety, and availability. The real-time system must
be engineered to tolerate faults, such that the system can continue to oper-
ate regardless of whether a fault has occurred and the type of the fault[30].

Real-time systems interact with an external environment, which is achieved
through devices such as sensors. The devices communicate with the pro-
cessor through input and output registers. The devices may also sent an
interrupt to signal the processor that a certain operations has been per-
formed. Due to the time constraints of real-time systems, the interaction
between the input and output ports, operations must be tightly coupled.
Middleware should be avoided if possible.

Real-time systems require an efficient implementation such that it can
meet its time constraints. This is the reason why imperative languages such
as C are often prefered for developing real-time systems. C can interact
with the hardware without a middleware layer and thereby making the
implementation more efficient.

The memory footprint for real-time systems intended for a high number
of produced units is very important. With good memory management it is
possible to keep the memory footprint low and thereby keep production
costs low as well. Due to real-time systems interacting with an dynamical
environment, it may be necessary to store temporary data in dynamically
allocated memory. The heap used for dynamically allocate memory is re-
quired to predictable, such that the system is schedulable.

Developing real-time system require tight coupling between software
and hardware engineers. Furthermore significant effort is required for mak-
ing a good requirements analysis to ensure the system reflects the desired
needs before producing the required hardware. The requirements are often
expressed formally as timed automata.[3]

Real-time program structure consists of three phases: initialisation, exe-

16

Chapter 3. Real-Time Embedded Java

cution, and termination. Initialisation phase creates all the needed objects
and threads throughout the systems life cycle. The initialisation phase will
only be invoked once in the systems life cycle and it is not time-critical.
In the execution phase, the tasks run concurrently and is therefore time-
critical. The termination phase is invoked when all the tasks are completed.
The termination cleans the system for old objects and threads and after-
wards invokes the Initialisation phases and thereby a new life cycle begins.

3.3 Worst Case Execution Time

Worst case execution time(WCET) is the most important factor for real-time
systems with hard deadlines. With the knowledge of each tasks’ WCET
and their corresponding task types it is possible to conduct a schedulabil-
ity analysis and thereby make sure that the system is schedulable and no
deadlines are missed.

Determining the WCET is a non trivial task and great effort is spent to
improve or research new tools and methods to achieve greater precision.
Precision is used to describe to which degree a derived WCET differs from
the actual WCET of a task.

There exists a large variation of benchmarks suites for evaluating and
comparing WCET methods and tools, such as the benchmark suite devel-
oped by Malardalen university in Sweden. The Malardalen benchmark
suite consists of 35 programs developed in C. The programs consists of
different algorithms and vary in size.

In 2006 Malardalen university announced a WCET challenge to evaluate
the state-of-the-art in timing analysis for real-time systems and to encour-
age further research in the WCET community. The challenge assesses both
academic and commercial WCET tools. This challenge also confirmed the
importance of WCET analysis.

There exists different approaches for WCET analysis, I will briefly de-
scribe static methods and measure-based methods.

3.3.1 Static methods

The static methods approach attempts to provide WCET estimations by
examining the an abstract representation of the code and combine it with
an abstract representation of the desired system which the code is meant
to be executed on. This approach provides safe WCETs, meaning that the
actual WCET will always be lower than the estimated WCET. The abstract

17

Chapter 3. Real-Time Embedded Java

representation only represent one type of processor, the codes WCETs is
therefore only guaranteed to be appropriate for this type of processor.

3.3.2 Measure-based methods

The measure-based methods approach measures the execution time of the
code being executed on the desired hardware or in a simulation. The WCET
is often more precise using measure-based methods than static methods.
Measure-based methods are not desirable, even with the higher precision,
due to the fact that the measure-based approach is very difficult to conduct.
To measure the WCET using the measure-based approach, all the worst
possible inputs must be identified which can be difficult.

3.4 Schedulability Analysis

The purpose of a schedulability analysis is to validate whether or not a real-
time system can uphold all of its deadlines. There exists several schedula-
bility algorithms, which ensures that real-time systems are reliable, two of
those algorithms are fixed-priority scheduling and cyclic executive schedul-
ing. These two algorithms are briefly explained below.

3.4.1 Fixed-Priority Scheduling

Fixed-priority scheduling(FPS) algorithm is widely adopted for real-time
systems. In FPS, tasks are given a fix priority before the program is exe-
cuted and thereby making FPS a static scheduling algorithm. FPS allow
the usage of preemption and will always execute the task with the high-
est priority. FPS can easily be applied to both periodic and sporadic tasks,
where sporadic tasks are treated as periodic with periods representing their
minimum inter-arrival time.

Assigning priorities to the tasks can be dealt with using either of the fol-
lowing two approaches: Rate-monotonic priority assignment or deadline-
monotonic priority ordering.

Rate-monotonic priority assignment assigns priorities such that the lower
a task’s period is, the higher priority the task will be assigned. Deadline-
monotonic priority ordering assigns priorities such that the lower a task’s
deadline is, the higher priority the task will be assigned.

18

Chapter 3. Real-Time Embedded Java

3.4.2 Cyclic Executive Scheduling

Cyclic executive scheduling(CES) algorithm consist of a fixed set of peri-
odic tasks, that is determined before runtime and which makes CES a static
scheduling algorithm. Each task is assigned into one or more procedures,
which are called in a specific order. The order is constructed such that the
deadlines of the tasks are upheld. The procedures are split into minor cy-
cles. Each minor cycle starts periodically and runs for a fixed amount of
time. The collection of all minor cycles needed to execute all tasks are re-
ferred to as a major cycle. [30]

CES is used because of its simplicity and easy implementation. How-
ever when a system reaches a certain size it becomes difficult to maintain.
Changes in the procedures lead to changes in their WCET and thereby re-
quires a reevaluation of the schedule.[30]

3.5 Safety-Critical Java

Java is a high-level object-oriented programming language and is relatively
new in the real-time embedded community. Java is receiving significant in-
terest in real-time use. Java required a real-time profile, for being used in
real-time systems. Real-time profiles provide a specification as how prop-
erties of the program should be structured for being suitable for real-time.

There exists a variety of real-time profiles for Java, such as Safety Crit-
ical Java(SCJ)[1]. SCJ consists of an API and a set of rules as how to pro-
gram real-time Java. Java is compiled into Java bytecode that runs typically
runs on a Java Virtual Machine(JVM), which makes Java difficult to use in
embedded systems. SCJ purpose is to sustaining and standardise safety
critical systems developed in Java.

3.5.1 Mission

Applications developed using SCJ consists of one or more missions. A
mission is defined as a set of periodic and aperiodic event handlers. Mis-
sions are assigned with a dedicated block of memory, referred to as mission
memory.

Objects created in the mission memory persist until the mission is ter-
minated and the mission resources will be released before the mission is
terminated. All missions start in a initialization phase, where objects may
be allocated in either the mission memory or the immortal memory.

19

Chapter 3. Real-Time Embedded Java

When the initialization phase has completed, the mission enters a execu-
tion phase. During the execution phase, the mission may use and alter the
created objects in either the mission or immortal memory. All processing
for missions occurs in one or more schedulable objects.

When a schedulable objects is released it enters its initial scoped mem-
ory. The scoped memory is not shared with other schedulable objects.
When a mission receives termination request, all of its objects are notified
to stop operating, such that the mission can safely stop and run clean-up
before being the mission is terminated.

3.5.2 Compliance Levels

SCJ provides three compliance levels to accommodate the large variety of
safety-critical applications. Safety-critical application can be very differ-
ent and vary greatly in complexity, such as single-thread applications and
multi-threaded applications. The three compliance levels are described as
follows:

Level 0 applications is a model often described as a cyclic executive
model. Using this level, the mission can be thought of a set of compu-
tations, which is executed in a periodically clock driven timeline and re-
peatedly executed throughout the missions lifetime. Level 0 schedulable
objects are only suitable for periodic event handlers, which consists of a
period, deadline, and a start time. All periodic event handlers are executed
with the control of a single thread, which is why there is no synchronisa-
tion concerns. Level 0 applications can create private memory, but it cannot
share them with any other periodic event handlers.

Level 1 applications consists of a single mission sequence with a set of
concurrent computations, each with a priority controlled by a fixed-priority
preemptive scheduler. Level 1 application can consists of periodic and
aperiodic event handlers. Objects are shared in the mission and immor-
tal memory among the applications periodic and aperiodic event handlers
using synchronized methods to maintain the integrity of the objects.

Level 2 applications starts with a single mission, but is allowed to cre-
ate and execute additional missions. Level 2 missions consists of periodic,
aperiodic event handlers, and no-heap real-time threads. No-heap real-
time threads, are real-time threads that do not have access to the heap, and
can therefore continue to run even during a garbage collection cycle.

20

Chapter 3. Real-Time Embedded Java

3.6 Real-Time Java Platforms

In this section, I examine two platforms, namely Java Optimized Processor(JOP)[27]
and Hardware near Virtual Machine(HVM). The JOP is a processor which
is designed to execute Java bytecode and is time predictable. The HVM is a
virtual machine, implemented in C, which interprets Java bytecode. HVM
is available for several embedded hardware platforms.[12].

JOP The JOP is designed for time-predictable execution of real-time tasks
developed in Java. JOP is an implementation of the Java Virtual Machine in
the hardware, such that Java bytecode can be executed directly on the pro-
cessor. JOP is intended for applications in embedded real-time systems and
the primary implementation is on a field programmable gate array, with
RAM, storage, and input/output ports. In general purpose processors the
instructions are written is machine code, whereas instructions run on the
JOP is Java bytecode. This means that there is no need of middleware to
interpret nor translate the Java bytecode into machine code.

The safety critical java profile is been implemented for the JOP. In addi-
tion to the JOP, there also exists a JOP emulator, which simulates the JOP.
The emulator offers support for debugging, such that the code does not
have to be executed on the actual JOP.

HVM The HVM is lean Java virtual machine for real-time embedded
systems[12]. The virtual machine is written in C and interprets Java byte-
code compiled by a standard Java compiler. The HVM run on bare bone,
meaning that an real-time operating systems is not needed. The HVM sup-
ports an increasing variety of embedded hardware platforms such as: Ar-
duino Uno, EV3, Atmel ATmega 2560[12]. The HVM allow execution na-
tively on a computer without the use of an emulator.

The HVM consists of two things, a plug-in for the Eclipse IDE and a
API with all the necessary methods for developing real-time applications
for the HVM. SCJ compliance level 0 and 1 are implemented in the HVM,
thereby providing the ability to schedule periodic and aperiodic tasks.

The HVM supports hardware objects [12] which allows developers to
interact with the input and output hardware ports using native Java. The
hardware objects increases the level of abstraction, which is good according
to the literature review in chapter 2.

Developers can choose to either encapsulate the hardware objects, which
would increase the level of abstraction, or can operate on the input and
output ports using bitwise operators, which however may not increase
the level of abstraction but may be more suitable for smaller applications.
HVM also supports native C code to be called from within the Java pro-

21

Chapter 3. Real-Time Embedded Java

gram. The desired native C methods must be declared in a separate C file
and referred to in the Java program.

22

Chapter 4
Java Benchmarks

This chapter is dedicated to answer the research question: ”‘Does the object-
oriented paradigm influence the execution time of real time systems?” To
answer this research question I have reengineered 14 of the well-known
Malardalen benchmark programs in two different versions, both written in
Java. One version using object-oriented design and the other version with
none or little use of object-oriented design.. Object-oriented metrics have
been applied to the benchmarks to validate the degree of object-oriented
design used in the benchmarks.

4.1 Object-oriented metrics

In my previous semester project I researched metrics that reflects quality
in object-oriented systems. Based on this research I found out that met-
rics are characterized by four distinct characteristics: complexity, cohesion,
coupling, and inheritance.

Complexity describes the interaction between entities in a software sys-
tems. Complexity is always desired to be low, which promotes good main-
tainability, modifiability, analysability, and testability.

Cohesion describes to which degree methods and attributes belongs to-
gether. High cohesion supports good reliability and reusability.

Coupling describes the dependencies among the classes and methods.
Low coupling is prefered and supports good readability and maintainabil-
ity.

23

Chapter 4. Java Benchmarks

Inheritance describes the amount of inheritance used in a software sys-
tem. High inheritance provides good reusability and maintainability.

Using metrics that covers the four characteristics, provides insight and
degree of object-oriented design that is applied to the benchmarks. The
popular and widely accepted C&K[4] metric suite covers the four charac-
teristics, which is way I have chosen this metric suite for measuring the
benchmarks.

C&K metric suite consists of six metrics, namely: weighted methods
per class(WMC), depth of inheritance tree(DIT), number of children(NOC),
coupling between classes(CBO), response for class(RFC), and lack of co-
hesion of methods(LCOM). In addition to the C&K metric suite, I have
decided to also measure the code size. The size metric used is lines of
code(LOC)

In my previous semester project, I discovered that literature describing
and validating metrics tend to have their own interpretation of metrics,
even well-known metrics such the C&K metrics. I will therefore provide a
brief description of each metric and how they are calculated.

WMC - Computes the sum of each method complexity in a class. This
metric often rely on a complexity metric to calculate the complexity of each
method. Due to the benchmarks programs being fairly small in size, I have
decided to simplify this metric, such that all methods have the complexity
value one. The WMC value is prefered to be low.

DIT - Computes the total of superclasses for a given class using a tree
structure. All my benchmarks are written in a single file, meaning that
nested classes will be interpreted as a subclass to a superclass. Therefore
will the DIT value represent the number of classes in additional to the main
class. The DIT value is prefered to be low.

NOC - Computes the number of direct descendants for a given class.
The NOC value is prefered to be low.

CBO - Computes the number of coupling between two classes. A cou-
pling exists when two classes shares at least one method class, field access,
inheritance, argument, return type, object declaration, or exception. The
CBO value is prefered to be low

RFC - Computers the total number of method declarations and method
calls in a class. The RFC value is prefered to be low.

LCOM - Computes the total number of method that are implemented in
the proper classes. LCOM decides if a method is implemented propperly
based on the number of pairs of methods in the class which share one or
more instance variables. The LCOM value is prefered to be high.

24

Chapter 4. Java Benchmarks

LOC - Computes the total number of lines of the java bytecode rather
than the total number of lines in the source code. The reason for this is
because line of source code does not reflect the size of a program, because
multiple statements can be represented on one line. The LOC value has no
preferable states since it only reflect the size of the program.

For simplicity, I have decided to not show the metrics for each class
but rather for each benchmark. This decision is based on the fact that the
programs are relative small and only consists of one or two classes. Fur-
thermore this decision provides a better overview of the metrics for all the
programs.

4.2 Java benchmark

Because of difference in the language design of C and Java, it was not pos-
sible to make a objective translation into Java, without the influence of my
personal coding style. The chosen Malardalen benchmarks are selected
based on related work, where the 14 benchmarks were translated into Java
for the purpose of validating a WCET tool for Java processor[17].

The related work inspired me to develop two versions of the same 14
benchmarks, one using object-oriented design(OO) and the other using lit-
tle to none object-oriented design(NOO). The two versions were developed
such that a comparison of the execution time could be made. The bench-
marks are implemented similar in both versions, it is only the program
structure that is different. Both programs utilizes the same facilities pro-
vided by java, such that there is only difference is type nor methods used.

The selected benchmarks are briefly described below:

Binary Search program does a binary search for the array of 15 integer
elements.

Bubble Sort program tests the basic loop constructors with integer com-
parison and simple array handling. The program sorts 100 integers.

Cyclic Redundancy Check program demonstrates a cyclic redundancy
check operation on 40 bytes of data. The program contains complex loops
and a lots of decisions.

Exponential Integral program computes an exponential integral func-
tion. The program contain simple loops and bitwise operations.

Fast Discrete Cosine Transform program performs a discrete cosine
transform on a two dimensional array, where both dimension lengths are

25

Chapter 4. Java Benchmarks

8. The program contains a lot of calculations based on integral array of
elements.

Fibonacci program calculates a 30 digit sequence of fibonacci numbers.
The program only contains a two nested loops.

Insertion Sort program performs a simple insertion sort for an array of
11 integers. The program contains one nested loop.

Janne Complex program contains two nested loops with a lot of integer
comparison.

Matrix Count program counts the sum of non-negative numbers in a
matrix. The program consists of a lot of nested loops.

Matrix Multiplication program multiplies two square matrices with
size of 20x20. The program consists a lot of multidimensional array han-
dling.

Nested Search program performs a search on a 4 dimensional array. The
program contains four nested loops.

Quick Sort program performs a quick sort algorithm on an array of 20
integer elements. The program contains three nested loops.

Select Number program selects the nth smallest number in an array. The
program consists of three nested loops and a lot of integer comparison.

Lower Upper Decomposition program simulates a linear equation by
lower upper decomposition. The program contains a lot of nested loops,
integer comparison, and array handling.

Table 4.1 displays the values of the metrics applied to the OO version
of the program. Table 4.2 displays the values of the metrics applied to the
NOO version of the program.

When dealing with program of small sizes it is hard to determine the
quality of the programs, and in general higher WMC, DIT, NOC, CBO, RFC,
and LCOM values indicates increased use of object-oriented design, but
does not reflect whether it is good or bad design.

The tables show that WMC values of the OO version are higher than
the NOO version, this would normally conclude that the NOO version is
of higher quality, but due to the small size of both program versions, it may
indicates that the OO version in in fact more object-oriented than the NOO
version due to the increase of methods used.

The tables shows that the DIT values for the NOO version is all equal 0,
reflecting no use of extra classes. The DIT values are however either 0 or 1,
which indicates that some programs are utilizing extra classes.

26

Chapter 4. Java Benchmarks

The NOC values are equal zero in both program versions. This shows
that neither of the versions uses any class inheritance.

The CBO values for the NOO version is all equal zero as expected since
that version does not contain any class objects. The CBO values for the OO
versions displays some coupling between objects in the program that uses
extra classes.

The tables show that the RFC values are higher in the programs utilizing
extra classes. The RFC values for the OO versions with no utilization of
extra classes is higher than the NOO version which confirms that the OO
versions is more object-oriented than the NOO version.

The LCOM values are significantly higher in the OO version than the
NOO version, which again confirms that the OO version is infact more
object-oriented.

The size of both versions are about the same, regardless of the amount
of object-oriented design applied to the programs.

In total the metrics shows that the use of object-oriented design is higher
in the OO version than the NOO version, which was expected.

WMC DIT NOC CBO RFC LCOM LOC
BinarySearch 6 1 0 2 11 10 234
Bubble 7 1 0 2 11 15 121
Crc 9 0 0 0 12 36 483
ExpInt 5 0 0 0 8 10 168
FDCT 5 1 0 2 10 6 1064
Fibonacci 4 0 0 0 7 6 48
InsertionSort 6 1 0 2 10 10 143
JanneComplex 4 0 0 0 7 6 52
MatrixCount 6 0 0 0 9 15 117
MatrixMult 6 0 0 0 9 15 137
NestedSearch 8 1 0 2 14 8 6057
QuickSort 5 0 0 0 8 10 365
Select 5 0 0 0 8 10 289
SLE 5 0 0 0 8 10

Table 4.1: This table shows the values of the applied metrics to the OO
benchmark version

27

Chapter 4. Java Benchmarks

WMC DIT NOC CBO RFC LCOM LOC
BinarySearch 3 0 0 0 6 3 255
Bubble 3 0 0 0 6 3 81
Crc 5 0 0 0 8 10 458
ExpInt 3 0 0 0 6 3 157
FDCT 3 0 0 0 6 3 970
Fibonacci 3 0 0 0 6 3 43
InsertionSort 3 0 0 0 6 3 105
JanneComplex 3 0 0 0 6 3 50
MatrixCount 3 0 0 0 6 3 102
MatrixMult 4 0 0 0 7 6 123
NestedSearch 3 0 0 0 6 3 6036
QuickSort 4 0 0 0 7 6 360
Select 4 0 0 0 7 6 282
SLE 3 0 0 0 6 3 286

Table 4.2: This table shows the values of the applied metrics to the NOO
benchmark version

4.3 Benchmark results

The execution time analysis have been conducted on both the HVM and
JOP platform. The reason for selecting both platforms for execution time
analysis, is to outrule that one platform may favor either object-oriented or
non object-oriented design.

I chose SymRT as tool for calculating the execution times. SymRT has
higher precision[11] than other state-of-the-art execution time tools in real-
time Java. Furthermore, the SymRT tool supports both the HVM and JOP
which is preferable. SymRT generates a network of timed automata, which
can be executed in UPPAAL to calculate both the best and worst execution
time. I have decided to use both worst and best case execution time, such
that the both execution times can be compared accordingly to the OO and
NOO version of the programs. The best and worst case execution times are
both measured in cycles.

Table 4.3 shows the best and worst case execution time, of both bench-
mark versions running the on HVM platform. Table 4.4 shows the best and
worst case execution time, of both benchmark versions running the on JOP
platform.

By comparing the BCET of both benchmark versions on the HVM plat-
form, it shows that the BCET is significantly higher when using object-
oriented design. The WCET is also significantly higher when using object-

28

Chapter 4. Java Benchmarks

oriented design. The JOP platform shows the same pattern as the HVM
platform, that the BCET and WCET is significantly higher when using object-
oriented design.

The JOP benchmark contains an unexplainable results from the nested
search NOO version. The benchmark programs for the HVM and JOP plat-
form are the same, however it is only the JOP platform that contains an
unexplainable result.

BCET NOO BCET OO WCET NOO WCET OO
BinarySearch 977 24231 1081 42339
Bubble 1677 2934 1883 4231
Crc 7179 9252 11748 27306
ExpInt 1648 2112 2518 3610
FDCT 1617 14139 1825 23953
Fibonacci 1179 1643 1740 2730
InsertionSort 900 1997 1004 3193
JanneComplex 880 1411 985 2079
MatrixCount 1721 2869 1927 3998
MatrixMult 3794 4310 4819 5693
NestedSearch 818 1995 923 3691
QuickSort 704 1338 807 2007
Select 704 1168 807 1797
SLE 3121 4483 3528 5853

Table 4.3: This table shows the benchmark results of both version using the
HVM as platform

29

Chapter 4. Java Benchmarks

BCET NOO BCET OO WCET NOO WCET OO
BinarySearch 921 6238 921 6238
Bubble 65 335 65 335
Crc 2328 2656 2514 4922
ExpInt 72 288 94 307
FDCT 1203 5887 1203 5887
Fibonacci 45 176 52 182
InsertionSort 233 651 233 651
JanneComplex 39 165 39 165
MatrixCount 103 349 103 349
MatrixMult 475 517 475 517
NestedSearch 19653 436 19653 436
QuickSort 414 773 414 773
Select 405 714 405 714
SLE 205 664 205 664

Table 4.4: This table shows the benchmark results of both version using the
JOP as platform

4.4 Benchmark conclusion

This part of the report has sought to answer my second research question,
which is as follows:

”Does the object-oriented paradigm influence the execution time of real
time systems?”

To answer the research question I have developed 12 Java benchmarks
in two different versions, one using object-oriented design and one using
little to none object-oriented design. The benchmarks have been tested on
two platforms, namely JOP and HVM, to show that the chosen platform
did not favor neither version of the benchmark.

To show that the two benchmark versions are using different levels of
object-oriented design, I applied the well-known C&K metric suite of the
following six metrics: WMC, DIT, NOC, CBO, RFC, and LCOM.

The benchmark result shows that the object-oriented paradigm does in
fact influence both WCET and BCET, regardless of the platform. The BCET
is increased by up to 2480 percent and the WCET is increased by up to 3916
percent.

The benchmarks are developed by a single developer, and may there-
fore be influenced by the developer subjective opinion about proper object-

30

Chapter 4. Java Benchmarks

oriented design. The benchmarks need to be evaluated by multiple devel-
opers to validate the applied object-oriented design.

31

Chapter 5
Conclusion

In this project, the study regulation required that the project should be on
a current research problem in computer science community and the project
should reflect understanding of the research problem. I chose to investi-
gate the possibilities of using Java in real-time embedded systems. I nar-
rowed my research into be about the benefits of using the object-oriented
paradigm for real-time embedded systems, which led me to the following
two research questions:

”What benefits does the literature mention about the object-oriented
paradigm”

”Does the object-oriented paradigm influence the execution time of real
time systems?”

My first research questioned was answered by conducting a literature
review using a search strategy based on the approaches suggested by Web-
ster and Watson[?]. The yield of the search strategy was low numbered,
which is understandable after conducting the literature review. A lot of the
literature mentioned the lack of empirical evidence supporting the claims
the benefits of the object-oriented paradigm.

The literature did however support some of the claims, showing that
the object-oriented paradigm support maintainability, reuse, increases pro-
ductivity, and is less defect and bug prone.

My second research question was answered by developing 14 bench-
marks in two different version, one using object-oriented design and using
little or none object-oriented design. To make sure that a singular platform
favored either of the benchmark version, the benchmarks was conducted
on two different platforms, namely JOP and HVM. To validate to which

32

Chapter 5. Conclusion

degree the object-oriented design was applied to both benchmark version,
the well-known C&K metric suite was applied. The C&K metric suite con-
firmed that the two benchmark versions was developed with different de-
gree of object-oriented design.

The BCET and WCET was calculated using SymRT, which can generate
a network of timed-automata. Using UPPAAL, it was possible to calcu-
late the WCET and BCET based on these network of timed-automata. The
benchmark results showed that the BCET and WCET was dramatically in-
creased using object-oriented design on both platforms.

The developed benchmarks need to be further validated, to ensure that
the implementation is correct and the object-oriented design is applied prop-
erly.

Object-oriented Java promotes some great features, but the execution
time does unfortunately suffer due to the object-oriented paradigm. Object-
oriented Java may do well in large real-time embedded systems, where
hardware costs are of low importance. Java developed using little or none
object-oriented design may be suitable for smaller real-time embedded sys-
tems or systems where hardware costs is of high importance such as in
mass production.

33

Chapter 6
Appendix

6.1 Top 100 Journals

Journals have been sorted in alfabetical order.

ID Journal Title
1 ACM Transactions on Applied Perception
2 ACM Transactions on Autonomous and Adap-

tive Systems
3 ACM Transactions on Computer-Human Inter-

action
4 ACM TRANSACTIONS ON DATABASE SYS-

TEMS
5 ACM Transactions on Embedded Computing

Systems
6 ACM TRANSACTIONS ON GRAPHICS
7 ACM TRANSACTIONS ON INFORMATION

SYSTEMS
8 ACM Transactions on Information and System

Security
9 ACM Transactions on Internet Technology
10 ACM TRANSACTIONS ON MATHEMATICAL

SOFTWARE
11 ACM Transactions on Multimedia Computing

Communications and Applications
12 ACM Transactions on Sensor Networks
13 ACM TRANSACTIONS ON SOFTWARE ENGI-

NEERING AND METHODOLOGY

34

Chapter 6. Appendix

14 ACM Transactions on the Web
15 Ad Hoc Networks
16 ADVANCES IN ENGINEERING SOFTWARE
17 ANNUAL REVIEW OF INFORMATION SCI-

ENCE AND TECHNOLOGY
18 COMMUNICATIONS OF THE ACM
19 COMPUTER-AIDED DESIGN
20 COMPUTER COMMUNICATIONS
21 COMPUTER COMMUNICATION REVIEW
22 COMPUTER GRAPHICS FORUM
23 Computer Networks
24 COMPUTERS & SECURITY
25 COMPUTER STANDARDS & INTERFACES
26 COMPUTER
27 DATA & KNOWLEDGE ENGINEERING
28 DATA MINING AND KNOWLEDGE DISCOV-

ERY
29 DECISION SUPPORT SYSTEMS
30 Electronic Commerce Research and Applications
31 EMPIRICAL SOFTWARE ENGINEERING
32 Enterprise Information Systems
33 EUROPEAN JOURNAL OF INFORMATION

SYSTEMS
34 GEOINFORMATICA
35 GRAPHICAL MODELS
36 IBM JOURNAL OF RESEARCH AND DEVEL-

OPMENT
37 IEEE Communications Surveys and Tutorials
38 IEEE COMPUTER GRAPHICS AND APPLICA-

TIONS
39 IEEE INTERNET COMPUTING
40 IEEE MICRO
41 IEEE MULTIMEDIA
42 IEEE NETWORK
43 IEEE PERVASIVE COMPUTING
44 IEEE SOFTWARE
45 IEEE Systems Journal
46 IEEE Transactions on Computational Intelli-

gence and AI in Games
47 IEEE Transactions on Dependable and Secure

Computing

35

Chapter 6. Appendix

48 IEEE TRANSACTIONS ON INFORMATION
TECHNOLOGY IN BIOMEDICINE

49 IEEE TRANSACTIONS ON INFORMATION
THEORY

50 IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING

51 IEEE TRANSACTIONS ON MOBILE COMPUT-
ING

52 IEEE TRANSACTIONS ON MULTIMEDIA
53 IEEE TRANSACTIONS ON RELIABILITY
54 IEEE TRANSACTIONS ON SOFTWARE ENGI-

NEERING
55 IEEE TRANSACTIONS ON VISUALIZATION

AND COMPUTER GRAPHICS
56 IEEE WIRELESS COMMUNICATIONS
57 IMAGE AND VISION COMPUTING
58 INFORMATION & MANAGEMENT
59 INFORMATION PROCESSING & MANAGE-

MENT
60 INFORMATION SCIENCES
61 INFORMATION AND SOFTWARE TECHNOL-

OGY
62 INFORMATION SYSTEMS
63 INFORMATION SYSTEMS FRONTIERS
64 INTERNATIONAL JOURNAL OF ELEC-

TRONIC COMMERCE
65 INTERNATIONAL JOURNAL OF GEO-

GRAPHICAL INFORMATION SCIENCE
66 INTERNATIONAL JOURNAL OF MEDICAL

INFORMATICS
67 International Journal on Semantic Web and In-

formation Systems
68 Internet Research
69 JOURNAL OF THE ACM
70 JOURNAL OF THE AMERICAN MEDICAL IN-

FORMATICS ASSOCIATION
71 JOURNAL OF THE AMERICAN SOCIETY FOR

INFORMATION SCIENCE AND TECHNOL-
OGY

72 Journal of Ambient Intelligence and Smart Envi-
ronments

36

Chapter 6. Appendix

73 Journal of the Association for Information Sys-
tems

74 Journal of Chemical Information and Modeling
75 Journal of Cheminformatics
76 JOURNAL OF INFORMATION SCIENCE
77 JOURNAL OF INFORMATION TECHNOLOGY
78 JOURNAL OF MANAGEMENT INFORMA-

TION SYSTEMS
79 JOURNAL OF MATHEMATICAL IMAGING

AND VISION
80 JOURNAL OF NETWORK AND COMPUTER

APPLICATIONS
81 Journal of Optical Communications and Net-

working
82 JOURNAL OF SOFTWARE MAINTENANCE

AND EVOLUTION-RESEARCH AND PRAC-
TICE

83 JOURNAL OF STRATEGIC INFORMATION
SYSTEMS

84 JOURNAL OF SYSTEMS AND SOFTWARE
85 JOURNAL OF VISUAL COMMUNICATION

AND IMAGE REPRESENTATION
86 Journal of Web Semantics
87 MATHEMATICAL AND COMPUTER MOD-

ELLING
88 MATHEMATICAL PROGRAMMING
89 METHODS OF INFORMATION IN MEDICINE
90 MIS QUARTERLY
91 MOBILE NETWORKS & APPLICATIONS
92 ONLINE INFORMATION REVIEW
93 Personal and Ubiquitous Computing
94 SIAM Journal on Imaging Sciences
95 SIMULATION MODELLING PRACTICE AND

THEORY
96 Software and Systems Modeling
97 SOFTWARE TESTING VERIFICATION & RELI-

ABILITY
98 VLDB JOURNAL
99 WIRELESS COMMUNICATIONS & MOBILE

COMPUTING
100 WORLD WIDE WEB-INTERNET AND WEB IN-

FORMATION SYSTEMS

37

Bibliography

[1] Safety critical specification for java. special communication with jsr
302 group, 2010.

[2] A.M. Vans A. von Mayrhauser. Identification of dynamic comprehen-
sion processes during large scale maintenance. 1996.

[3] Hans Toetenel Bas Graaf, Marco Lormans. Embedded software engi-
neering: The state of the practice. 2003.

[4] S R Chidamber and C F Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 1994.

[5] Gerhard Fohler Damir Isovid. Efficient scheduling of sporadic, aperi-
odic, and periodic tasks with complex constraints. 2000.

[6] Francoise Detienne. Assessing the cognitive consequences of the
object-oriented approach a survey of empirical research on object-
oriented design by individuals and teams. 1997.

[7] Anil Mishra Diane Litman, Peter F. Patel-Schneider. R++ adding path-
based rules to c++. 2002.

[8] Dag I.K. Sjoeberg Erik Arisholm. Evaluating the effect of a dele-
gated versus centralized control style on the maintainability of object-
oriented softwaree. 2004.

[9] Andreas Ermedahl Jan Gustafsson, Adam Betts. The mälardalen wcet
benchmark: Past, present and future. 2010.

[10] Stephen R. Schach Joa Sang Lim, Seung Ryul Jeong. An empirical in-
vestigation of the impact of the object-oriented paradigm on the main-
tainability of real-world mission-critical software. 2005.

38

Bibliography

[11] Bent Thomsen Kasper Soee Luckow, Corina S. Pasareanu. Symbolic
execution and model checking for timing analysis of java real-time
systems. Aalborg University, 2014.

[12] Stephan Korsholm. Hvm lean java for small devices.

[13] Rasmus Hoppe Nesgaard Aaen Kristian Kolding Foged-Ladefoged,
Kasper Møller Andersen. Software quality - what code metrics can
tell us. 2014.

[14] George Leopold. Struggle continues to plug embedded program-
ming gap. http://www.eetimes.com/document.asp?doc_id=
1261676, 2012. Last visited 15/5/2014.

[15] Qing Li. Real-Time Concepts for Embedded Systems. CMP Books, 2003.

[16] John W. Daly Lionel C. Briand, Christian Bunse. A controlled ex-
periment for evaluating quality guidelines on the maintainability of
object-oriented designs. 2001.

[17] Benedikt Huber Martin Schoeberl, Rasmus Ulslev. Worst-case execu-
tion time analysis for a java processor. Software Practice and Experiment,
2009.

[18] Bob Rehder Nancy Pennington, Adrienne Y. Lee. Cognitive activi-
ties and level of abstraction in procedural and object-oriented design.
1995.

[19] Alexander Chatzigeorgiou Nikalaos Tsantalis. Identification of move
method refactoring opportunities. 2009.

[20] George Stephanides Nikalaos Tsantalis, Alexander Chatzigeorgiou.
Predicting the probability of change in object-oriented systems. 2005.

[21] Oracle. The java language environment. http://www.oracle.
com/technetwork/java/neutral-137138.html. Last visited
5/4/2014.

[22] Oracle. The education of embedded systems software en-
gineers: failures and fixes. http://www.embedded.com/
design/programming-languages-and-tools/4238223/
The-education-of-embedded-systems-software-engineers--failures-and-fixes,
2012. Last visited 5/4/2014.

[23] Geoffrey Philips. Embedded software engineering: The state ofthe
practice. 1999.

[24] Thomsen Reuters. Web of knowledge impact factor tool. http://
webofknowledge.com/JCR, 2014.

39

http://www.eetimes.com/document.asp?doc_id=1261676
http://www.eetimes.com/document.asp?doc_id=1261676
http://www.oracle.com/technetwork/java/neutral-137138.html
http://www.oracle.com/technetwork/java/neutral-137138.html
http://www.embedded.com/design/programming-languages-and-tools/4238223/The-education-of-embedded-systems-software-engineers--failures-and-fixes
http://www.embedded.com/design/programming-languages-and-tools/4238223/The-education-of-embedded-systems-software-engineers--failures-and-fixes
http://www.embedded.com/design/programming-languages-and-tools/4238223/The-education-of-embedded-systems-software-engineers--failures-and-fixes
http://webofknowledge.com/JCR
http://webofknowledge.com/JCR

Bibliography

[25] Thomson Reuters. Why use web of knowledge. wokinfo.com/
about/whatitis/, 2013. Last visited 15/12/2013.

[26] Dennis G. Kafura Sallie M. Henry, John A. Lewis. An empirical study
of the object-oriented paradigm and software reuse. 1991.

[27] Martin Schoeberl. Jop: A java optimized processor for embedded real-
time systems. 2005.

[28] Alan Shaw. Real-Time Systems and Software. Wiley, 2001.

[29] Michele Lanza Stephane Ducasse. The class blueprint visually sup-
porting the understanding of classes. 2005.

[30] Michele Lanza Stephane Ducasse. Real-time systems and program-
ming languages: Ada 95, real-time java, and real-time posix. 2009.

[31] Scott Brandt Tim Kaldewey, Caixue Lin. Firm real-time processing in
an integrated real-time system. 2006.

[32] Jane Webster and Richard T. Watson. Analyzing the past to prepare
for the future: Writing a literature review. MIS Q., 2002.

40

wokinfo.com/about/whatitis/
wokinfo.com/about/whatitis/

	Introduction
	Motivation
	Problem Definition

	Literature Review
	Search Strategy
	Literature Review
	Literature Conclusion

	Real-Time Embedded Java
	Real-time system types
	Characteristics of real time embedded system
	Worst Case Execution Time
	Static methods
	Measure-based methods

	Schedulability Analysis
	Fixed-Priority Scheduling
	Cyclic Executive Scheduling

	Safety-Critical Java
	Mission
	Compliance Levels

	Real-Time Java Platforms

	Java Benchmarks
	Object-oriented metrics
	Java benchmark
	Benchmark results
	Benchmark conclusion

	Conclusion
	Appendix
	Top 100 Journals

