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Abstract

In this report we continue the work done in our previous semester report, on the subject of
Energy Games. Energy games are games played in multiweighted automata with the goal of
synthesizing a strategy for a controller, to keep the game running indefinitely. In doing so we
present the implementation of a software tool designed to synthesize these strategies, named
EgGS. Energy strategies can be used to control energy critical systems, such as satellites,
robotics, etc.
In our previous report, a prototype implementation of this tool was shown which was able
to synthesize strategies for games with a moderate amount of weighted configurations. Addi-
tionally, a language for expressing games was presented, named LEG (Language of Energy
Games). The formal syntax and semantics of LEG were also given given.
In this report we give refined theoretical definitions of energy games, as well as a discretely
timed variant of energy games. We elaborate on how a strategy can allow a system to run
infinitely, if such a strategy is possible, and we give a logical explanation of how this strategy
can be synthesized.
We also present a user’s guide to using LEG to express energy games in EgGS. While doing so,
we also present how a discretely timed game can be simulated, using only the existing syntax
of LEG.
As a follow-up to the results from our previous report, we present new methods which allow
EgGS to handle much larger games, and synthesize strategies for these within much less
time, than the former explicit approach. We will go into detail of how we obtain a symbolic
representation of energy games, and how this symbolic representation is used algorithmically
to synthesize strategies. While doing so, we show in detail how transitions are encoded using
quantified boolean expressions.
Following this, we present experimental data comparing the symbolic approach to the explicit
approach, and comment on the performance of both approaches. This is followed by a discus-
sion of the results, and the established complexities of the symbolic representation. Finally,
we conclude the report, by summing up the established results, and explain the impact of the
achieved results, in comparison to the previous inefficient approach.
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mcarls08@student.aau.dk

Rasmus Søgaard Jacobsen
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CHAPTER 1

INTRODUCTION

In this report we present EgGS - the Energy Game Strategizer. EgGS is a tool for synthesizing
strategies for energy-critical systems.

In this tool we can accurately and concisely express energy games using the syntax of LEG
(Language of Energy Games). We specify energy games between an environment and a
controller. In particular, the tool can synthesize a strategy for the controller (if any such
strategy exists), which will allow the game to proceed indefinitely without exceeding some
specified energy bounds. In Figure 1.1, we see an example of specifying a game in EgGS GUI.

Figure 1.1: EgGS in use.

Seen here is the window for specifying the game itself using LEG. After computing the winning
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states of the game, we may choose to view the winning states of the game, or a strategy for
the controller. We will elaborate further on the features of EgGS in Chapter 6.

1.1 Motivation

There is an ever growing market and number of applications for energy efficient and autonom-
ously functioning systems.
In distributed, embedded and reactive systems, energy management is important for ensuring
the most efficient operating parameters for those systems. These devices vary from many
fields, both private, corporate or for research. It impacts our daily lives in ways hidden to
most, to a great degree. Some devices may influence our daily lives in a more direct manner,
and we are continuing to see more use of such systems.

A recent example of this is flying drone package delivery. Major online retailers in the U.S. and
China have begun to experiment with delivering packages by autonomous flying drones. These
drones will deliver packages, ordered online, autonomously in urban areas. They are entirely
autonomous and as such are also subject to energy bounds and other resource constraints. In
fact entire packaging centers for such retailers may be automated almost entirely. In complex
systems such as these, it is of great importance to the efficiency of the system that the devices
can function in appropriate periods of time, to avoid wasting both time and energy.
For example, a robot may return to charge too early, while it still may be able to perform
some small task. By optimizing this with a strategy, other resources can be saved, such as the
amount of time spent in a charging station, thereby requiring fewer charging stations for a
specific number of robots. Furthermore it may be possible to maximize the efficiency of the
battery capacity by performing a specific sequence of actions which may not be immediately
obvious.

Another example of this is small autonomous devices for private use, such as autonomous
vacuum cleaners or lawnmowers. These devices are also subject to several energy constraints,
and may also save money or time by following a certain strategy. For example, a robotic
vacuum cleaner may decide to clean different parts of the house, depending on the time of
day, the type of flooring, or the current battery capacity, whilst ensuring that it does this job
without running out of battery, thus being able to function indefinitely.

It is the goal of all these autonomous systems to function to their highest efficiency, and
operate indefinitely. In the scope of this project we are considering critical components, which
cannot easily be salvaged in case they fail. The problem which inspired the work was energy
management of miniaturized satellites known as CubeSATs.
It is both challenging, impractical and expensive to retrieve such devices in case of failure.
These devices are great examples of energy critical systems which require a specific and tightly
bound energy strategy.
Systems such as these are subject to a large number of variables in automated operation, in
energy, time and any other resource constraint. The design of the system is not only greatly
important, but also the decision-making process of which actions to take given a specific
situation. These designs need to be thoroughly examined and verified before deployment,
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which can be extremely challenging for complex systems. Synthesizing an energy strategy will
ensure operational safety in such energy critical systems.

1.2 Contribution

• We define a formalism for Multiweighted Energy Games, for use in the context of a tool
for synthesizing energy aware strategies.

• We introduce the language LEG (Language of Energy Games). LEG can accurately
express large games by creating states, combinations of states and rules (transitions).
The syntax and semantics are defined.

• We present methods used for synthesizing strategies for the controller, with a symbolic
representation. The symbolic representation allows for synthesis in a much shorter time
than through an explicit approach.

• We present the tool EgGS (Energy Game Strategizer) - a tool which allows us to
express energy games in LEG and synthesize winning strategies. A description of the
implementation and features of EgGS is given.

1.3 Related Work

In this report we continue the work done in a previous project. In the previous project [8], we
have shown how Energy Games can be expressed using an expressive language named LEG
(Language of Energy Games). We have also presented a prototype implementation of a tool
which compiles LEG syntax into an energy game. The main focus of the previous project was
the development of the LEG language, and the groundwork for implementation.

Energy games with lower and weak upper bounds with a single weight were presented in [5]
and studied in [12, 11, 10] for single-weighted games, and complexities established herein.
Multiweighted energy games have been studied in [6] and [9] for unary encoding.

Timed games were discussed in [5], where an undecidability result was shown for timed
weighted energy games. Timed games were also briefly mentioned in [13], where lower and
upper complexity bounds for several variants of energy games are also given. In this report
we study energy games similar to [13], however herein we do not consider energy games
turn-based, and players do not have ownership over any states, rather players have ownership
over transitions.
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CHAPTER 2

MULTIWEIGHTED ENERGY GAMES

In this section we will formally define Energy Games. Some parts of this chapter are excerpts
and rewritten passages from our previous report[8] on this subject.

2.1 Introduction to Energy Games

Energy Games are two-player games played on a finite integer-weighted graph. In this game it
is the objective to find a strategy that ensures infinite runs are possible while accumulated
weights stay within lower and/or upper bounds. These bounds may be either weak or strong
depending on the type of game.
We say that these games are multiweighted ie. the weights can have arbitrary dimensions. To
introduce energy games we present a simple example, a game with strong upper and lower
bounds, seen in Figure 2.1.
In this example we are simulating a flying drone. This drone delivers packages for an online
store. This drone is subject to two different bounds, and as such each transition label in the
energy game is a two-dimensional vector. In this case the resources represented by this vector
is the battery capacity b and the package capacity p. We will refer to this weight-vector as
(b, p).
The upper bounds of the energy game are represented by bmax and pmax. Energy Games may
be subject to different bounds, and different types of bounds. If bounds are weak, then we
may be able to perform an action which would accumulate a value on a specific weight which
is higher than the bound, but the value would stay capped at the bounds. If it is strongly
bound, then no action is permitted that would break the bound. Note that a game with both
weak upper and lower bounds is trivially true. The game is played between a controller and
the environment. These players are also referred to as the existential player (the controller)
and the universal player (the environment). Intuitively - the existential player has the free
choice when defining a strategy for the game, and the universal player, our opponent, controls
all other actions. In the context of our drone example, the universal player chooses whether to
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Figure 2.1: A flying drone example.

deliver one or two packages, representing whether or not the two delivery addresses are close
enough to each other to perform two deliveries. Transitions that are shown with regular lines
are owned by the controller, and those shown with dashed lines are owned by the environment.
This means that any given node with a dashed transition will allow the universal player to
have the first choice, either pick a universal transition, or force the existential player to pick
an existential transition.

Definition 2.1 A k-weighted energy game G is a four-tuple.

G = (Q,=⇒∃,=⇒∀, q0)

where Q is a finite set of configurations, q0 ∈ Q is the starting configuration, =⇒∃ and =⇒∀
are the transition rules. The transition rules =⇒Γ are finite subsets of:

=⇒Γ⊆ Q× Zk ×Q

where Γ = {∃, ∀}.

Each transition in a k-weighted energy game has a k-dimensional integer-vector cost. In the
example in Figure 2.1 that vector has a dimension of two. We denote by Zk the set of integer
vectors of dimension k > 0. A weight cost vector is denoted w and w[i] is the i’th coordinate
of that vector. The accumulated weight is denoted by the vector v.
We say that a vector w ≤ v iff w[i] ≤ v[i] for all i where 1 ≤ i ≤ k.

2.1.1 Semantics

A semantic energy game is played in a directed acyclic graph, G = (Q× Zk,−→∃,−→∀).
The transition relations in G are given by the transition rules:
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(q, v) −→Γ (q′, v + w) in G ⇔ q
w==⇒Γ q

′ in G,Γ = {∃, ∀}

where q is the source configuration, w the weight vector, and q′ is the target configuration.
We write (q, v) −→Γ (q′, v′) whenever (q, w, q′) ∈−→Γ where v′ = v + w.
For every rule describing a transition in an energy game, there exists a corresponding set of
transitions q w−−→Γ q

′ between weighted configurations ((q, v) ∈ G.

Each transition belongs to the controller (∃) or the environment (∀). When a weighted
configuration has both universal and existential outgoing edges the universal player can choose
a universal transition, or force the controller to choose an action.
When talking about energy games, and these types of systems in general, we are interested
in systems that are non-terminating. In the context of energy games, this means that we are
only interested in infinite runs, to keep the system running indefinitely within certain resource
constraints. For an energy game to be considered valid, we implicitly assume that every
configuration in G is non-blocking, i.e. for every (q, v) ∈ G there exists a transition (q, v) w−→Γ
(q′, v′). In other words, for an energy game to be considered valid, every configuration in the
graph has at least one outgoing transition.

A run is a sequence of transitions between weighted configurations, made from the different
choices of transitions by the existential and the universal player from a given starting weighted
configuration. This starting point is defined by a configuration being marked as the starting
configuration, and all weights initialized to a certain value v.
Our goal with these energy games is to synthesize a strategy which guarantees an infinite
run. In a run of the game, it is the goal of the controller to achieve an infinite sequence. The
transitions that lead to this sequence of weighted configurations are chosen by the controller
and the environment.
An infinite run with weights is called a k-weighted run. This infinite sequence takes the form
of

ρ = (q0, v0), (q1, v1), (q2, v2), ...

where qj ∈ Q, v0 = l, and vj+1 = vj +w ∈ Zk where w is in some transition (qj , w, qj+1) ∈−→Γ.
A run is strongly or weakly bound on either the lower or upper bound, or both. These bounds
are given by vectors of lower and upper bounds, denoted by l, b ∈ Nk

0 respectively.
For all i in v, the lower bound for v[i] = l[i], and the upper bound for v[i] = b[i]. A full
definition of strong and weak bounds and the variants they give rise to is given in Section
2.4. A run ρ is winning if for every transition in the run, ρ = (q0, v0), ..., (qn, vn), ..., it holds
that l[i] ≤ v[i] ≤ b[i], in the case of the game being strongly upper and lower bound. A list of
bound- and game types is given in Section 2.4.

Therefore, in an infinite run in a strongly bound game, it is required that qj
wj−→ qj+1 where for

every j ≥ 0 it holds that vj+1[i] ≤ b[i] for every i. Or in other words, every vector coordinate
must be below the bounds for each i’th coordinate, in every step of the game. This is called a
k-weighted run restricted to strong upper- and lower bounds.

A prefix of such a weighted infinite run is shown in Figure 2.2a. We will refer to the set of all
weighted runs in G restricted to b and l as WRbl(G).
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2.2 Strategies

In this section we will formally define a strategy, which consists of a map σ from a weighted
configuration, from a weighted run ρ ∈WRbl(G), to a next configuration σ(q, v) ∈ Q. We say
that a weighted run

ρ = (q0, v0), ...(qn, vn)(qn+1, vn+1, ...)

respects a strategy σ if for all n either

qn
w−−→∀ qn+1, with vn+1 = vn + w

or
qn

w−−→∃ qn+1 with qn+1 = σ(qn, vn)

If a weighted run respects a strategy, then we know that every weighted configuration in that
run is winning. σ is winning in (q, v) if any run ρ starting in (q, v), which respects σ is winning.
In this case case, we say that (q, v) is winning. If a winning run respects a strategy, we say
that the strategy is winning.

In the example on Figure 2.1, at the starting configuration, assuming starting weights of (0, 0),
the drone is faced with a number of choices. In this example, we will show a winning strategy.
An example of a winning strategy, given in the form of a strategy readable to humans, is given
in Figure 2.2b.
The first obvious choice is to charge the battery. The variable bmax represents the maximum
battery capacity. The charge transition adds the value of bmax to v[i] where i is the coordinate
for b, in this case 0. Charging in any configuration where the battery is not exactly 0 is a
losing move. This is due to the game being strongly bound. A winning strategy does exist
for the given example, for some bounds. We can show that a strategy exists for the bounds
bmax = 4 and pmax = 2. It does however not exist for e.g. bmax = 3, pmax = 2. Intuitively, the
low battery capacity of 3 is not enough to make a long delivery, even though the drone can
attempt that action. A strategy for a system specifies which action to take given a particular
situation. We will now give a formal definition of a strategy.

Definition 2.2 Memory-Less Existential Strategy

A strategy for the controller σ for a k-weighted game G = (Q,−→∃,−→∀, q0) is a map from
Q× Zk to Q, i.e.:

σ : Q× Zk −→ Q

such that for some w ∈ Zk, (q, w, σ(q, v)) ∈−→∃.

When looking at Figure 2.2a we see a sample run of the game. Here we are looking at a prefix
of an infinite run, to demonstrate the winning strategy of the controller.

The blue (solid) line represents the current battery level, and the red (dashed) line represents
the number of packages held. The bounds in this game are strong, and the lower bound is
zero for both weights. The upper bound for the battery bmax = 4 as indicated on the graph,
and the package capacity pmax = 2.
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q1−→
Charge

q1−→
GetPck

q1−→
GetPck

q1−→
Go
q2 99K

Long
q1−→

Charge
q1−→

GetPck
q1

Weighted configuration here:
(q1, 2, 2)

pmax = 2

bmax = 4

1

3

(a) A sample run prefix.

� �
1 i f c o n f i g u r a t i o n == q1
2 i f b==0
3 Charge
4 i f b>1 and p==2
5 Go
6 i f b>0 and p<2
7 GetPackage� �

(b) Strategy in textual form.

(c) Strategy as MTIDD.

Figure 2.2: Sample run with a winning strategy, presented in textual form, and MTIDD form.

As a sample run consider starting from the initial weighted configuration of (q1, 0, 0). The first
choice is to charge the battery, bringing us to (q1, 4, 0). From here it is possible to choose from
any of the other actions, such as going on a delivery. However, depending on the universal
player, either one or more packages will be delivered. Therefore, it is not possible to have
a winning strategy that takes the Go transition while carrying less than two packages. In
that case the universal player could choose the DeliverLong which would break the lower
bound.

Likewise, the lower battery bound would be broken as well, if the deliver transition is taken
with a battery level less than two. Therefore it should be apparent that since we cannot enter
with less than two packages, and less than 4 in battery level, that a battery capacity of 3
would not allow a winning strategy - the battery capacity would be too low to fetch both
packages and then go on a delivery.

9



This sample run seems to indicate that an infinite run is possible, and it is. This strategy has
been synthesized by EgGS, and in the following Section 2.3 we will show how to synthesize
a strategy. Given here is the winning strategy in two forms; in Figure 2.2b the strategy is
specified textually. Strategies and their information might be expressed by MTIDDs as seen
in Figure 2.2c, or textually as conditional statements as seen in Figure 2.2b.
An MTIDD is a Multi-Terminal Interval Decision Diagram, these are interval representations of
binary decision diagrams, which are discussed in Section 4.1. However, the strategy should be
apparent intuitively - from the first node, we check whether the configuration is 1 (representing
q1. The next node is an integer test of the battery value. Indicated by intervals, we check
certain other values to determine which action to take, such as charging if b is 0, or proceeding
to checking the number of packages, if b is in the interval [2, 4].

2.3 Strategy Synthesis

To synthesize a strategy, we mean to find a winning space. A configuration space, is a finite
set of weighted configurations W = {(q0, v0), ..., (qn, vn)}. For a configuration space to be
considered winning, it must hold that l ≤ vn ≤ b for any n, it holds that for all universal
transitions, and for some existential transition with source (qn, vn), the target weighted
configuration is also in the configuration space. This is called the winning space.
In this section we will elaborate on finding the maximal winning space as a fixed point. From
this winning space, we can synthesize a winning strategy. If no such winning space exists,
then no winning strategy is possible, and as such an infinite run is not possible for the game.
A full definition of the fixed-point theorem and how it relates to this computation of a fixed
point is given in Appendix C.
To briefly explain the algorithm used to find the winning space, we define a monotonic function
which takes us from one winning space to the next, by applying the transitions of the game.
In doing so we reduce the configuration space, by eliminating configurations which cannot
reach a winning configuration by any transition from the previous configuration space. This
is repeated until we reach the greatest fixed point, i.e. until W = F (W). The function
F : W→W is defined as:

(q, v) ∈ F (W)⇔ l ≤ v ≤ b
∧

∀(q, v) −→∀ (q′, v′)⇒ (q′, v′) ∈W
∧

∃(q, v) −→∃ (q′, v′) ∧ (q′, v′) ∈W

(2.1)

F (W) can be intuitively explained as follows: For every universal transition, the target
weighted configuration of that transition must exist in W, and for some existential transition,
the target weighted configuration exists in W.
The initial assumed winning space W0, is the set of all weighted configurations within the
bounds of the game i.e. (q, v) ∈W0 for all q and all v where l ≤ v ≤ b.
To achieve the greatest fixed point, the result of F is inputted to F again, and continues these
iterations until the result is the same as the input.
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An example of the application of F is illustrated in Figure 2.3. Each of the graphs represents
some Wn for the drone example. In this case we are only showing the weighted configurations
pertaining to the state q1. As shown in Appendix C, we know that this function will reach a
greatest fixed point and terminate eventually. Should this greatest fixed point be ∅, then the
game is not capable of achieving an infinite run.
An example of the fixed point algorithm is shown in Figure 2.3. In this example we see

p

b
0

2

4
(a) W0.

p

b
0

2

4
(b) W3.

p

b
0

2

4
(c) W5.

p

b
0

2

4
(d) W8, the last iteration.

Figure 2.3: Fixed point iterations for the q1 configuration of the drone example.

the application of F on the drone example, however, for simplicity only the weights of q1 is
shown. Since the controller only has control in this configuration, it is sufficient to consider
the winning weights of this configuration.
In Figure 2.3a we see W0. Here we have assumed every combination of weighted configurations
to be winning. After two iterations, in Figure 2.3b, the algorithm has discovered two weighted
configurations that are in fact not winning. This is because no transition exists which would
not break the bounds of the game. After two more iterations, as seen in Figure 2.3d, more
weighted configurations have been excluded - the transitions in those weighted configurations
were leading to what was excluded in the previous iterations. This procedure continues until
no further weighted configurations are excluded. When this point is reached, we have found a
winning space of weighted configurations.

The winning space directly points to a strategy in itself - since the transition relation is known
the controller can select a transition which leads to a weighted configuration in W. One or
more maps can also be algorithmically constructed from the winning space.

The main algorithm can be seen in Algorithm 1, and F (W) in Algorithm 2. Some optimizations
have been made on the function for some efficiency, such as limiting the possible configurations
examined in each iteration to configurations in the last weighted configuration space.
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Algorithm 1 Input: a game G = (Q,−→∃,−→∀, q0), and lower and upper bounds l, b.
1: W← Q× {v | l ≤ v ≤ b}
2: repeat
3: Wold ←W
4: W← F (Wold)
5: until W = Wold
6: return W

Algorithm 2 F (W).
1: Wnew = ∅
2: bool valid
3: for all (q, v) ∈W do
4: valid = true
5: for all (q, v) −→∀ (q′, v′) do
6: if (q, v) /∈W then
7: valid← false
8: break for
9: if valid then

10: if (q, v) 6−→∃ (q′, v′) then
11: Wnew ←Wnew ∪ (q, v)
12: else
13: for all (q, v) −→∃ (q′, v′) do
14: if (q′, v′) ∈W then
15: Wnew = Wnew ∪ (q, v)
16: break forreturn Wnew

2.4 Variants of Energy Games

As we previously mentioned, games are subjected to Lower and Upper bounds. These bounds
can be either weak or strong, and in this section we will elaborate on bounds, and thereby the
different variants of energy games. A bound is weak, if transitions which break the bounds
are allowed, but when adding it to v[i], the value of w[i] is truncated, such that v[i] = b[i]
if the upper bound is broken, or v[i] = b[i] if the lower bound is broken. Strong bounds (or
just referred to as bounds), do not allow this truncation, and as such an action that breaks
the bound is not a possible choice in a strategy. These differences mean a number of different
variants of energy games, which we will summarize in this section.

k-Weighted Energy Games with Lower Bound (GL)

In this problem we ask whether the controller has a winning strategy, where all coordinates in
vi ≥ li, in any infinite run following this strategy, i.e.:

For a game G and a vector of lower bounds l ∈ Nk
0, does there exists a strategy σ for the
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controller, such that any weighted run (q0, v0), (q1, v1), ... ∈WR∞(G) which respects σ, and
satisfies vi ≥ l?

This problem has been shown to be no less than EXPTIME-hard but no more than k-EXPTIME
in [13].

k-Weighted Energy Games with Lower and Weak upper bound (GLW)

Following the same rules as above in GL, but with the addition of a weak upper bound,
such that for any coordinate that breaks the upper bound, that coordinate is truncated to
b[i]:

For a game G and two vectors of lower and upper bounds l, b ∈ Nk
0 is there a strategy σ such

that any weighted run in WR∞(G) respecting σ satisfies l ≤ vi ≤ b, where if v[i] > b[i] then
v[i] = b[i]?

This problem was shown to be polynomial time reducible to GLU in [13].

k-Weighted Energy Games with Lower and Upper bound (GLU)

We ask whether, given a game and two vectors of lower and upper bounds, does there exist a
strategy for the controller in which all accumulated weights stay above the lower bound and
stays at a value below or equal to the upper bounds?

For a game G, and two vectors of lower and upper bounds l, b ∈ Nk
0, is there a strategy σ

such that any weighted run (q0, v0), (q1, v1), ... ∈WRbl(G) which respects σ satisfies li ≤ vi ≤
bi?

This problem was shown to be polynomial time reducible to GLU(1) (i.e. energy games with
a single weight coordinate, as seen in [5], and as such is EXPTIME-complete.

Other specializations

We can describe some specializations of other problems of energy games, such as considering
a game where there exists only existential choices i.e. −→∀= ∅ (the existential variant) or
likewise, a universal-only game where −→∃= ∅ (the universal variant).

For the existential variant it is sufficient to ask whether some weighted run exists within
given bounds. However, for the universal variant it is required that all weighted runs have
accumulated weights within the given bounds.

We also introduce further possibilities for updating the weights of the configuration later in the
definition of LEG. In LEG we allow weight updates to be dependent on arithmetic expressions
which rely on the configuration. As explained in Section A.2, the construction of energy games
through LEG consists of weighted configurations for all sets. Knowing this, it is possible to
define vector updates as w[i] = v[i] ∗ 2 and other similar arithmetic expressions.
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In other sources, energy games are expressed as turn-based, with the controller or the
environment having ownership over configurations rather than transitions. In Appendix B, it
is shown that the approach considered in this report is reducible to turn-based games.

2.5 Discretely Timed k-weighted Energy Games

It is an obvious thing to ask for an extension with time to energy games. In this section we
will give definitions for discretely timed energy games.
In Section 3.3, we will show how such a game can be simulated using our language for ex-
pressing energy games, LEG, with minor limitations. Since energy games with continuous
time have been shown to be undecidable even for one clock in [5], we here consider a discrete
setting, where time is represented as integer time units.
A Discretely Timed Energy Game is a k-weighted Game played in discretely timed priced
automata with energy constraints. As with regular energy games, transitions belong to either
the controller or the environment.

Figure 2.4: Simplified timed drone.

Clocks in a timed game must satisfy any guard on transitions. By B(X), we denote the set of
boolean clock constraints (guards) over the set of clocks X.
These constraints are a subset of boolean logic, given by the syntax g ::= x ./ n | g1 ∧ g2,
where ./= {≥, >,≤, <,=}.

Definition 2.3 Discretely Timed k-weighted Energy Game
A discretely timed k-weighted energy game is a 6-tuple

GT = (Q,X, I,=⇒∃,=⇒∀, q0)
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Where Q is a finite set of configurations, q0 ∈ Q is the starting configuration, and X is a
finite set of clocks of GT .
I : Q→ B(X) assigns invariants to configurations.
Our transition rules =⇒Γ are given by:

=⇒Γ⊆ Q× Zk × B(X)× 2X × N×Q

where Γ = {∃,∀}. The game forms transitions between timed weighted configurations (q, c, v)
where c ∈ N|X|. Timed transitions are written q w,r,g,−−−−→

d
q′ whenever (q, w, g, r, d, q′) ∈−→ where

r is the set of clocks to reset, g the set of guards, d the duration, and c the clock values. As
with non-timed games q is the source configuration and q′ the target configuration.

This effectively means that in a timed energy game, a transition is only possible if the guards
g are satisfied for every clock value c.

As an example consider a smaller version of the previously given drone example, with a single
clock x as seen in Figure 2.4. In this example, the drone is able to charge and load up packages
as normal, however in this case, there is a constraint on how fast it must do these things, if
this is not done in three time units, the package is too delayed, and it is not possible for the
drone to make a delivery. Here it is assumed that each action consumes one time unit, such as
charging or retrieving a package. As such, the drone must not delay at all before going on a
delivery, or the guard cannot be satisfied, and the game is lost, since no transition in q1 is
possible without breaking the bounds.
In q2, the universal player may force the existential player to delay, but when the invariant is
reached, even the universal player is forced to make his move. After the delivery is done the
clock is reset. This game can run infinitely1.
In Section 3.3, we will show how this game can be encoded using untimed energy games in
LEG.

2.5.1 Semantics

A semantic discretely timed k-weighted energy game is played in a directed acyclic graph
GT = (Q× (X→ N)× Zk,−→∃,−→∀).
The transition relations are given by the transition rules:

(q, c, v) −→Γ (q′, c′, v + w) in GT
⇔

q
w,g,r===⇒

d
q′ in GT .

For which it holds that c |= g, c′ |= I(g) and c′ = c+ d[r].
Additionally, the transition relations have for every configuration in Q the delay transition

1−−→:

(q, c, v) 1−−→∃ (q, c+ 1, v) where c+ 1 |= I(q).

1This was verified by EgGS
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c+ 1 ∈ N|X| is given as (c+ 1)(x) = c(x) + 1 for all x ∈ X.

An infinite run with time is called a timed k-weighted run. This infinite sequence takes the
form of

ρ = (q0, c0, v0), (q1, v1, v1), (q2, c2, v2), ...

where qj ∈ Q and vj+1 = vj +w ∈ Zk where w is in some transition (qj , w, g, r, d, qj+1) ∈−→Γ.

2.6 Timed Strategy

A strategy in a timed game is specified similarly to a strategy in a non-timed game. In
non-timed games, decision are made depending on the configuration and the weights of the
resource vector. In the case of timed games, we consider the value of the clock(s) as well. A
strategy for the timed drone example is given in Figure 2.5. A strategy must stay within all
invariants and clock guards. It should be noted, that in an energy game, both the existential
and universal player must satisfy invariants.

Definition 2.4 Timed Existential Strategy
A strategy for Player 1, σT , is a strategy for a game GT . It is a map from a timed weighted
configuration i.e.:

σT : Q×X→ N× Zk −→ ({1}∪ =⇒∃)

such that if σT (q, c, v) = (q′, g, v, r, d, q′′), then q′ = q, where c |= g and c[r] |= I(q′′).

� �
1 i f c o n f i g u r a t i o n == q1
2 i f b==0
3 Charge
4 i f b>1 and p==2 and x <=3
5 Go
6 i f b !=0 and p<2
7 GetPackage� �

(a) Textual strategy.

(b) MTIDD strategy.

Figure 2.5: Strategy for the timed drone in Figure 2.4.

We say that a timed weighted run

ρ = (q0, c0, v0), ...(qn, cn, vn)(qn+1, cn+1, vn+1, ...)

respects a timed strategy σT if for all n either
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qn
w,g,r−−−→

d ∀
qn+1, with vn+1 = vn + w

or
qn

w,g,r−−−→
d ∃

qn+1 with (qn+1 = σ(qn, cn, vn).

In a strongly bound timed game, a run ρ is winning if for every transition in the run,
ρ = (q0, c0, v0), ..., (qn, cn, vn), ..., it holds that l[i] ≤ v[i] ≤ b[i], in the case of the game being
strongly upper and lower bound. A timed strategy is winning, if for any winning timed
weighted configuration (qn, cn, vn), σ(qn, cn, vn) is part of any winning run ρ.

2.7 Timed Strategy Synthesis

For solving these timed energy games, we adapt the algorithm shown in Section 2.3. We will
adapt the algorithm to take clocks into consideration.
This is an adaptation of the function F (W) which was shown in Equation 2.1.

(q, c, v) ∈ F (W)⇔ l ≤ v ≤ b
∧

∀(q, c, v) −→∀ (q′, c′, v′)⇒ (q′, c′, v′) ∈W
∧(

∃(q, c, v) −→∃ (q′, c′, v′) ∧ (q′, c′, v′) ∈W

∨

∃(q, c, v) 1−−→ (q, c+ 1, v) ∧ (q, c+ 1, v) ∈W
)

The main algorithm is still the same, however, here the value of the clocks is considered as
well. This means that a configuration space in the timed algorithm is a finite set of timed
weighted configurations, i.e. W = {(q0, c0, v0), ..., (qn, cn, vn)}.
As an addition, a disjunction is added which states that if the timed weighted configuration
resulting from a delay transition is in W, then the third conjunction holds. The application
of this fixed point algorithm would result in a three-dimensional graph, and as such is not
pictured here.
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CHAPTER 3

THE LEG LANGUAGE

In this chapter we give an introduction to the LEG language. It will also cover any additions
to LEG, compared to the version of LEG presented in [8]. Additionally we will show how we
can represent discretely timed games using the existing features of LEG, and show how LEG
could be extended to cover guards as part of its own syntax as well.

3.1 Introduction to LEG

In this section we introduce the three elements that make up LEG: statesets, weightsets, and
rules. We then proceed to show some of the games that can be expressed with LEG.

3.1.1 Statesets

Statesets are used to express the configurations of a game. All configurations in a game
corresponds to a tuple of states - a state from each stateset. This combination of states, is
the reasoning behind naming each vertex in the final graph a configuration. An example of a
stateset declaration is given in Listing 3.1. This stateset declares the configurations one and
two.

� �
1 s t a t e s e t x :X={one , two} i n i t one ;� �

Listing 3.1: Example of a stateset.

The keyword stateset declares that the following is a stateset declaration. The lower-case
x is an identifier for the stateset variable. The stateset variable is used in rules to refer to
states in configurations. These identifiers can consist of lower- and upper-case letters as well
as numbers, but must begin with a lower-case letter. The upper-case X is the identifier of
the stateset and it is equivalent to the full set of states in that stateset. The identifier of
the stateset can, like the variable identifier, have a complex name, but must begin with an
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upper-case letter. The set of states is embraced by brackets and contains a finite list of states.
Each state can have a complex identifier, and follows the same rules as a variable identifier
i.e. it must begin with a lower-case letter. Finally init one describes the initial state of the
statevariable. These initial states must be marked in each stateset, as they mark the starting
configuration of the game.

Given only one stateset, the configurations are equivalent to the states of that stateset. The
expressive power of LEG becomes apparent when two or more statesets are declared. Observe
the statesets declared in Listing 3.2. These two statesets describe configurations corresponding
to the combinations of states from each stateset. The configurations described in Listing 3.2
are (one,alpha), (one,beta), (two,alpha), (two, beta). Adding a third state to either
stateset would increase the number of configurations to 6. Adding a third stateset would
increase the number of configurations as a multitude of the number of states declared in the
third stateset. This can be of great assistance in the creation of large systems with many
configurations. This feature may for example be used to model whether a system is in some
state which is common for all states of the system. For example, a satellite may have a stateset
describing whether or not it is currently exposed to sunlight.

� �
1 s t a t e s e t x :X={one , two} i n i t one ;
2 s t a t e s e t y :Y={a lpha , beta } i n i t a l pha ;� �

Listing 3.2: Example of two statesets.

3.1.2 Weightsets

Weightsets are used to express the resources of a game. It shares some similarities with the
stateset. An example of a weightset declaration can be seen in Listing 3.3.

� �
1 w e i g h t s e t a :A [ 0 , 4 ] i n i t 0 ;� �

Listing 3.3: Example of a weightset.

The keyword weightset declares that the following is a weightset declaration. As with
statesets, the lower-case letter a is a variable and the upper-case A is the identifier of the
weightset. The same naming syntax applies to variable- and weightset identifiers. While the
syntax for a weightset is given as an interval, in this case [0,4], the actual meaning is that of
a set of integers. The set of integers includes every integer between the minimum value and
the maximum value, both values included. Thus, the weightset A in Listing 3.3 contains the
set of integers 0, 1, 2, 3, 4.

Recall that an Energy Game has an accumulated weight vector, v, and each transition has
a vector weight. Each weightset defines the valid values of a coordinate in v. A weight
vector associated with some transition likewise has an entry for each coordinate in v, i.e. a
manipulation on the weightset. The indexation of this vector is determined by the order of
declaration of weightsets. An index for the weightsets in Listing 3.4 would be (a,b).
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� �
1 w e i g h t s e t a :A [ 0 , 4 ] i n i t 0 ;
2 w e i g h t s e t b :B [ 0 , 1 ] i n i t 0 ;� �

Listing 3.4: Example of two weightsets.

3.1.3 Rules

An semantic game has transition relations between each weighted configuration. Every
transition has an associated cost on one or more weights. Any weight that is not mentioned, is
implicitly assumed to have a 0-cost. As mentioned earlier, every transition is owned by either
the controller, or the environment.

Rules in LEG, correspond to the transitions rules shown in Definition 2.1. Each rule defines
a set of transitions between weighted configurations, and as such one rule may result in a
multitude of transitions. Rules are either defined as being either universal or existential. An
existential rule is embraced by chevrons, e.g. <rule> and universal rules are embraced by
square brackets, e.g. [rule]. The common usage, however, is to declare a list of existential
rules and a list of universal rules. The existential can be declared in a block by writing
erules:, followed by any number of rules. The universal block is specified in the same manner,
but writing urules: instead. This is shown in Listing 3.6

A rule consists of two primary elements, a condition, and an update. The condition comes before
the keyword ->, followed by the update. Observe the rule in Listing 3.5. The condition here
is x in {one}, y in {alpha}, which results in the update x={two}, b+=1;. The condition
of a rule only relates state variables, which are matched to any matching configuration. The
update specifies the resulting configurations, by relating state variables, but may also specify
a cost for a weight variable.

� �
1 x i n { one } , y i n { a lpha } −> x={two } , b+=1;� �

Listing 3.5: Example of a rule.

In the condition, a state variable may be specified to be in one or more states, e.g. x in {one}
specifies that this rule is only enabled for configuration that includes the state one. The case
of x in { one, two}, means that the rule is enabled for any configuration in which the state
is either one or two. As x in { one, two} is equivalent to x being in any of its states, it is
possible to write x in X1 instead. It is also possible to exclude x in X, as this is equivalent
to specifying "it does not matter what x is". The condition of a rule must always specify states
for at least one state variable.

The update of a rule specifies the valid target configurations as well as the manipulation
performed on accumulated weights. The target configurations are identified through state
variables. Continuing the example in Listing 3.5, the update of the rule being x=two, b+=1,
the resulting configuration may be any configuration in which y is in state alpha and x is
in state two. If the state variable x was related to all the states, it could be written as x=X.

1Currently not supported in the symbolic algorithm.
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Left-hand side Assignment Equation
1
1 + 1
1− 1

= 1 ∗ 1
w + = 1+ v

− = 1− v
∗ = 1∗ v

max
min

Table 3.1: Weight assignments.

Figure 3.1: Example game.

Contrary to the condition of a rule, not writing a state variable in the update part of a rule is
equivalent to no change to the state.

In the update of a rule, the manipulation of a weight, e.g. b+=1, is called a weight assignment.
A basic assignment is performed by =, but the shorthands +=, -=, *= are equally correct syntax.
The left-hand side of a weight assignment always relates to a weight variable. The right-hand
side of a weight assignment can be either a simple or complex equation. An example of a simple
equation could be a single integer, while a complex equation may contain weight variables2.
It is also possible to use the keywords max and min in place of an equation - these keywords
denote the upper or lower bound of the weight. The possible equations and assignments can
be seen in Table 3.1, where w denotes a weight variable and v denotes any weight variable, w
included.

2Currently not supported in the symbolic algorithm.
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An example of LEG is given in Listing 3.6 and the corresponding graphical representation of
the game is shown in Figure 3.1.

� �
1 s t a t e s e t x :X={one , two} i n i t one ;
2 s t a t e s e t y :Y={a lpha , beta } i n i t a l pha ;
3
4 w e i g h t s e t a :A [ 0 , 4 ] i n i t 0 ;
5 w e i g h t s e t b :B [ 0 , 1 ] i n i t 0 ;
6
7 e r u l e s :
8 x i n { one } , y i n { a lpha } −> a+=1;
9 x i n { two } , y i n { beta } −> a−=1;

10 x i n { one } , y i n { a lpha } −> x={two } , b+=1;
11 x i n { two } , y i n { beta } −> x={one } , b+=1;
12
13 u r u l e s :
14 x i n { two } , y i n { a lpha } −> y={beta } , a−=1, b−=1;
15 x i n { one } , y i n { beta } −> y={a lpha } , a+=1, b−=1;� �

Listing 3.6: Declaration of an Energy Game.

3.2 Updates to LEG

There have been some updates to the syntax of LEG since [8]. These changes do not affect
the semantics of LEG.

Comments are now possible in LEG. Comments are lines of text which are ignored by the
lexer and parser. The beginning of a comment is marked by // and the comment ends with
the end of line. This feature is beneficial for writing small comments about an LEG line, such
as explaining what a rule does or what a stateset represents.

In weight assignments, some fine-tuning to the expression of equations has been done. The
option to include parentheses in the equation has been added, regulating the order of evaluation.
This allows for weight assignments such as w+= 2*(v-2), which increases the expressiveness
of LEG. Another change to the syntax of weight assignments is the option to use the keywords
max and min as part of an equation. Previously it was only possible to encode lines such
as w+=max, but now it is also possible to encode lines such as w+=max-3. With the previous
implementation, the weight assignment w+=max would model a transition that would represent
a valid move only when the accumulated weight was 0. With the new option, it is easier to
model transitions that are restricted to values between 0 and higher, such as w+=max-3, which
will only represent a valid move when the accumulated weight is between 0 and 3.

Finally, rules can be named. This has the syntax Name: rule, where Name is the name of a
rule and rule is simply a substitute for a full rule. Names of rules must start with upper-case
letters and end with colon.

Examples of all these new features of LEG can be seen in the timed energy game from Figure
3.6, Listing 3.6b.
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3.3 Timed Games in LEG

In this section we will show how all the features of discreetly timed automata can be simulated.
Currently LEG has no built-in support for guards, clocks and invariants, but these can still be
expressed through use of the current syntax. We will show how each of these are made.
In LEG, a clock can be expressed as a weightset, with the upper bound acting as a global
invariant. By creating intermediate configurations which utilizes LEG syntax features, we can
create any features necessary for this weightset to function as a clock. By associating a certain
weight to each transition for the clock, we can add a time cost to every action in the game.

3.3.1 Delays

A timed game is able to delay at any point, as long as it satisfies any eventual invariants
in that configuration, or any global invariants. By global invariants, we are referring to the
bounds of the clock. Since we are simulating clocks as weightsets, clocks are bound as well.
Assume that a global invariant means placing an invariant on all configurations in the game.
As mentioned in Section 2.5 however, we are simulating a discretely timed game. Since all
resources in LEG operate on integers, this is true here as well, and as such the least amount
of delay is 1 time unit. In Figure 3.2 we can see how to simulate delays in LEG. It is possible

(a) Player 1 can delay at any time.

(b) Looping transitions to simulate delay
transitions.

Figure 3.2: Simulating delay transitions with LEG.

23



for Player 1 to delay at any time when playing in all states of the abstract version seen in
Figure 3.2a. So, to simulate the delays we simply add self-looping transitions which add the
lowest possible time unit. This allows Player 1 to delay for however long he pleases, in steps
of 1 time unit.
However, if there had been an outgoing universal transition from q2, as seen in Figure 3.3, it
should be noted that Player 2 can force Player 1 to delay until breaking the bounds of the
game. After one delay transition, Player 2 will be in control again, and will force Player 1 to
make a move. Since no other transitions exist other than delaying, the game will be lost.
To solve this, we could put an invariant on q2.

Figure 3.3: The environment can force the controller to delay indefinitely.

3.3.2 Guards

Transitions in timed games are only enabled if the current value of clocks satisfies the
corresponding guards. In Figure 3.4a the transition is only possible if the clock has a value
less than 3.
To simulate this, in Figure 3.4b we add the intermediate configuration i, and create the
transitions q1

x+=max-3−−−−−−→ i, i x-=max-3−−−−−−→ q2.
Note that the keyword max, is LEG syntax referring to the upper bound of the resource on
the left-hand side of the weight update, in this case x. We can for example assume an upper
bound of 5, or expressed in LEG weightset x:X[0,5] init 0;. Having this upper bound
on a resource which is effectively simulating a clock, means that we assume every configuration
to satisfy the invariant x ≤ 5.
Since the existential player is guaranteed to only consider winning moves in a synthesized
strategy, this transition is effectively only enabled when the guard is satisfied. For example, if
the upper bound is 5, x+ = (5− 3), is not winning for 4 or 5, and this holds for any value of
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(a) Guard - desired functionality

(b) Guard simulated in LEG

Figure 3.4: Simulating guards in LEG

upper bounds.
In the intermediate configuration i, it is important that time cannot pass, therefore, we do
not add any delay transitions to this.
When leaving i, we reset the clock to the value before the ’guard’ transition, or the value
would be changed when checking the guard.
This effectively simulates the behaviour of a guard in an LEG Energy Game.

3.3.3 Invariants

Invariants are assigned to each configuration. Invariants effectively block any player from
staying in a certain configuration when the conditions are no longer met. Therefore it should
be noted that the universal player should not be able to occupy q2 either if the invariant is
not satisfied.
In Figure 3.5a we see the modified version of the previous example shown in Figure 3.2a.
Here q2 has an outgoing universal transition, and the invariant x ≤ 5, where x is our single
clock.
In Figure 3.5b, we see that since q1 has no outgoing universal transitions, we simply add the
looping +1 transition. The situation in q2 is entirely different.
First, a guard is added to the transition q1 −→ q2. This guard ensures that q2 is not reachable
for values which do not satisfy the invariant. When q2 is reached, we must only be able to
delay if x ≤ 4, since delaying by 1 if the clock is 5 would break the invariant - and leave
us in q2 with a clock value of 6. To check whether or not x ≤ 4, we create the transition
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(a) An invariant is placed in q2.

(b) Invariant simulated in LEG.

Figure 3.5: Simulating invariants in LEG.

q2
max−4−−−−−→ i0, to a new intermediate configuration. In this intermediate configuration, time

cannot pass - the purpose of this configuration is only to check if x ≤ 4. If x had the value 5,
and the upper bound 6 for example, taking this transition would be a losing move.
When leaving the intermediate configuration, it should be noted that the value of the clock
has been changed to some value, and we must return it to the value before entering i0. This is
done by subtracting the value which was added. However, in this case we wish to delay, and
as such we subtract by one less than we added. We have then effectively only enabled the
delay transition as long as it satisfies the invariant.
Since the universal player can take the transition from q1 to q2 at any time, or never, we
need to give the existential player the choice to leave q2 when the invariant is reached. This
effectively simulates the behaviour of the universal player being forced to leave q2.
In this case, we create an existential transition which subtracts by 5. Assuming that the lower
bound is 0, since it is not possible for q2 to be winning with the clock value 6, this transition
is enabled if, and only if the value of x is 5.
When this transition is taken, we reach another intermediate configuration, which exists to
enable another transition to reset the clock back to its original value.

3.3.4 Timed Example

Using all of the techniques just shown, we will now show how to create the timed drone seen
in Figure 2.4, of Section 2.5. In the timed drone example in Figure 3.6, the Charge and
GetPackage actions, consume 1 time unit. In q1 we have added the cost of this to the weight
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(a) The LEG version of the timed drone example seen in Figure 2.4.

� �
1 s t a t e s e t d : L o c a t i o n={q1 , q2 , i 0 , i 1 , i 2 , i 3 } i n i t q1 ;
2
3 w e i g h t s e t b : B a t t e r y [ 0 , 4 ] i n i t 0 ;
4 w e i g h t s e t p : Packages [ 0 , 2 ] i n i t 0 ;
5 w e i g h t s e t x : Clock [ 0 , 6 ] i n i t 0 ;
6
7 e r u l e s :
8 Delay : d i n {q1} −> d={q1 } , x+=1; //Time can pass
9 Charge : d i n {q1} −> d={q1 } , b += max , x+=1;

10 GetPck : d i n {q1} −> d={q1 } , b −=1, p+=1, x+=1;
11 Go : d i n {q1} −> d={ i 0 } , x+=max−3; // Wil l l o s e i f c l o c k guard f a i l s
12 d i n { i 0 } −> d={q2 } , x−=max−3; // Restore c l o c k to prev ious va lue
13 Delay : d i n {q2} −> d={ i 1 } , x+=max−4; //Check i f time i s l e s s than 5
14 d i n { i 1 } −> d={q2 } , x−=max−5; // I f i t i s , de lay one
15 Delay : d i n {q2} −> d={ i 2 } , x−=5; // I n v a r i a n t reached
16
17 u r u l e s :
18 d i n {q2} −> d={ i 3 } ; //
19 d i n { i 2 } −> d={ i 3 } , x+=5; // Set c l o c k to value b e f o r e i n v a r i a n t
20 DelLong : d i n { i 3 } −> d={q1 } , b−=2, p−=2,x=0; // Resets c l o c k� �

(b) The LEG code for the timed drone example.

Figure 3.6: Timed Drone in LEG.

vectors of GetPackage and Charge, and we have added the delay transition.
From q1 to q2, we have made the guard construction, which was discussed earlier in this
section. In q2 we have made the necessary constructions to achieve an invariant, which was
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also discussed earlier in this section.
Inputting the code seen in Figure 3.6b, to EgGS, we are presented with the following strategy
for q1: In this particular example of a strategy, we are in some weighted configurations

� �
1 ( q1 , 0 , 0 , 0 ) −> Charge
2 ( q1 , 0 , 1 , 0 ) −> Charge , Delay
3 ( q1 , 0 , 1 , 1 ) −> Charge
4 ( q1 , 0 , 2 , 0 ) −> Charge , Delay
5 ( q1 , 0 , 2 , 1 ) −> Charge , Delay
6 ( q1 , 0 , 2 , 2 ) −> Charge
7 ( q1 , 1 , 0 , 0 ) −> GetPck
8 ( q1 , 1 , 1 , 0 ) −> Delay , GetPck
9 ( q1 , 1 , 1 , 1 ) −> GetPck

10 ( q1 , 2 , 0 , 0 ) −> GetPck
11 ( q1 , 2 , 2 , 0 ) −> Delay , Go
12 ( q1 , 2 , 2 , 1 ) −> Delay , Go
13 ( q1 , 2 , 2 , 2 ) −> Delay , Go
14 ( q1 , 2 , 2 , 3 ) −> Go
15 ( q1 , 3 , 1 , 0 ) −> Delay , GetPck
16 ( q1 , 3 , 1 , 1 ) −> Delay , GetPck
17 ( q1 , 3 , 1 , 2 ) −> GetPck
18 ( q1 , 3 , 2 , 0 ) −> Delay , Go
19 ( q1 , 3 , 2 , 1 ) −> Delay , Go
20 ( q1 , 3 , 2 , 2 ) −> Delay , Go
21 ( q1 , 3 , 2 , 3 ) −> Go
22 ( q1 , 4 , 0 , 0 ) −> Delay , GetPck
23 ( q1 , 4 , 0 , 1 ) −> GetPck
24 ( q1 , 4 , 1 , 0 ) −> Delay , GetPck
25 ( q1 , 4 , 1 , 1 ) −> Delay , GetPck
26 ( q1 , 4 , 1 , 2 ) −> GetPck
27 ( q1 , 4 , 2 , 0 ) −> Delay , Go
28 ( q1 , 4 , 2 , 1 ) −> Delay , Go
29 ( q1 , 4 , 2 , 2 ) −> Delay , Go
30 ( q1 , 4 , 2 , 3 ) −> Go� �

Listing 3.7: A winning strategy for the simulated timed drone.

presented with two choices of action. Any choice in this strategy is a winning choice.
It should however be noted, that assuming a starting weighted configuration of (q1, 0), some
of these transitions are not reachable. It is for example not possible to be in the weighted
configuration (q1, 1, 0, 0), as any action before that would have added to the third resource
(the clock).
This however is not an issue - it merely means that the strategy is valid for several starting
weighted configurations. As such we have simulated a timed weighted energy game in LEG,
and synthesized a strategy for it.
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CHAPTER 4

SYMBOLIC REPRESENTATION

In this chapter we will present an approach to provide efficient implementation of the fixed
point algorithm. Utilizing the expressive power of the LEG language, we present a symbolic
representation of LEG energy games and show how to synthesize a strategy with this rep-
resentation. The symbolic representation calls for different data structures and a somewhat
different algorithmic approach, compared to an explicit implementation.

4.1 Binary Decision Diagrams

In order to achieve a symbolic representation, energy games will be encoded as quantified
boolean expressions. Quantified boolean expressions may efficiently be implemented by a
Reduced Ordered Binary Decision Diagram (ROBDD). In this section we will give a short
description of BDDs and define what it means for a BDD to be Reduced and Ordered. BDDs
were introduced in [7]. The definitions in this section are based on [7] and [4].

Definition 4.1 Binary Decision Diagram
A binary decision diagram is a rooted, directed acyclic graph with a vertex set V . Every vertex
v ∈ V is either terminal or non-terminal.

• The two terminal vertices are labelled 0 and 1.

• A non-terminal vertex corresponds to a test on a boolean variable. As such each vertex is
associated with a variable, var(v) = var. The outgoing edges are defined by tests on this
variable. Low (low(v)), corresponding to the assignment of 0, is graphically represented
by a dashed line. High (high(v)), corresponding to the assignment of 1, is graphically
represented by a solid line.

BDDs may be used to compactly represent any boolean expression. This allows for many
practical applications, and many problems can be encoded as boolean expressions. Since
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Figure 4.1: A Binary Decision Diagram.

BDDs can represent any boolean expression, they also support any boolean operation. An
example of a BDD is shown in Figure 4.1.

Definition 4.2 Ordered Binary Decision Diagram
A Binary Decision Diagram is ordered (OBDD), if for all paths through the graph, variables
follow a given linear order O, e.g. O = x1 < x2 < x3 < ... < xn

Note that a OBDD can be reordered at any time but must follow the ordering O through all
paths in the graph. For certain BDDs, ordering of variables can be of quite some importance
in regards to the size of the graph.

Definition 4.3 Reduced Ordered Binary Decision Diagram
An OBDD is reduced if it satisfies two conditions.

• Every vertex in the graph must be unique. This means that no two vertices will have
the same variable name, with the same low- and high-successors.

• Every test on a vertex must be non-redundant. This means that a given vertex must
have different low- and high-successors.

An example of an ROBDD, and a non-reduced OBDD is given in Figure 4.2, along with an
ROBDD without the 0-terminal node (the standard representation).

For the rest of the report, when we refer to BDDs, we are always referring to ROBDDs.
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Figure 4.2: Far left: OBBD. Middle: ROBDD. Far Right: ROBDD with negative terminal
removed.

4.1.1 BDD Operations

The BDD data structure is very compact and also efficient for handling quantified boolean
expressions. In addition, the ROBDD data structure has some convenient properties. These
properties are based on the canonicity lemma, given in [4]. The canonicity lemma states that
for any boolean expression there is one, and only one, ROBDD over the same variable ordering.
A consequence of this is the ability to check whether a quantified boolean expression is a
tautology or satisfiable in constant time.
BDDs support all operators which are also supported by boolean expressions, as well as the
quantifiers ∃ and ∀.
We will not go into detail on the operations of BDDs, but we will comment briefly on some of
them. When working with BDDs, the most used operations are Apply and Restrict.
By | v | we denote the number of vertices in a BDD. By v, we denote the set of vertices and
edges making up a BDD.
Any operator used in boolean expressions can be expressed in a call to Apply(v1, v2, op) where
op is the boolean operator, and v1 and v2 are BDDs on which to perform the operation. It
works by going through each vertex of the BDDs from the root, and construction a new BDD
with the applied operator.
Restrict is called as Restrict(v, x, b), where v is a BDD, x is a set of variables, and b is
a truth assignment. It works by going through each vertex, and if var(v) = x, the vertex’s
high or low branch is removed, depending on the truth assignment b. For example, if b is
true, the low edge is removed. This restriction returns a BDD for which only the given truth
assignments will satisfy the given vertices. The complexities of these two algorithms are shown
in Table 4.1. The quantifiers ∃ and ∀ are defined as follows:

∃x.t = t[0/x] ∨ t[1/x]
∀x.t = t[0/x] ∧ t[1/x]
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Algorithm Complexity
Apply(v1, v2, op) O(| vl | · | vr |)
Restrict(v, w, b) O(| v |)

Table 4.1: Complexities of Apply and Restrict

Where x is a set of variables to satisfy the truth assignment t.
As such, both quantifiers can be implemented by two calls to Restrict, and one call to
Apply.
It is possible to determine that two boolean functions are the same, by constructing their
ROBDDs φ1 and φ2 and verifying that φ1 ⇔ φ2 is a tautology.

4.2 Quantified Boolean Encoding

In this section we will present the encoding of LEG Energy Games as quantified boolean
expressions. Encoded as quantified boolean expressions, we will show how symbolic represent-
ation is achieved.

As previously shown, LEG is an expressive language for expressing energy games. In order to
utilize the expressiveness of LEG during the computation, the applied data structures must
also be very expressive. The BDD data structure is a data structure which can very compactly
represent quantified boolean expressions. This requires a symbolic encoding of the game. This
symbolic representation must be able to represent all possible weighted configurations.

In order to explain the encoding of LEG into quantified boolean expressions, the example
in Figure 4.3 is used. Figure 4.3 shows the Energy Game resulting from the LEG-code in
Listing 4.1. First we detail how to encode the statesets and weightsets into boolean variables
and values. Next we show how rules are encoded using boolean expressions. Using these two
transformation techniques, we show how to compute a fixed point using boolean expressions
and quantifications.

4.2.1 Configuration Encoding

To achieve configurations encoded using boolean variables, each configuration must correspond
to a unique assignment of boolean variables. Recall that each configuration is a tuple of states,
one state from each of the statesets. Each state in each stateset can be encoded by assignment
of boolean variables. In the example, the states from stateset X would require one boolean
variable to encode, namely x0. one from stateset X would be encoded as x0 ⇔ false and
the state two would be encoded as x0 ⇔ true. We shall use the equivalent encoding ¬x0 for
x0 ⇔ false and x0 for x0 ⇔ true for the remainder of the chapter. The boolean variables
required to encode a stateset is equivalent to the bits required to encode the amount of states
present in the stateset. Thus if a stateset had 100 states, it would require 7 boolean variables,
as 7 bits are required to express the value 99. As both statesets in our example have 2 states,

32



Figure 4.3: Example game.

� �
1 s t a t e s e t x :X={one , two} i n i t one ;
2 s t a t e s e t y :Y={a lpha , beta } i n i t a l pha ;
3
4 w e i g h t s e t a :A [ 0 , 4 ] i n i t 0 ;
5 w e i g h t s e t b :B [ 0 , 1 ] i n i t 0 ;
6
7 e r u l e s :
8 x i n { one } , y i n { a lpha } −> a+=1;
9 x i n { two } , y i n { beta } −> a−=1;

10 x i n { one } , y i n { a lpha } −> x={two } , b+=1;
11 x i n { two } , y i n { beta } −> x={one } , b+=1;
12
13 u r u l e s :
14 x i n { two } , y i n { a lpha } −> y={beta } , a−=1, b−=1;
15 x i n { one } , y i n { beta } −> y={a lpha } , a+=1, b−=1;� �

Listing 4.1: The LEG code for the example in Figure 4.3.

they require only 1 boolean variable each.
Weightsets have a similar encoding. In the example the weightset A contains the values from 0
to 4. 3 variables are required to encode 5 values, thus the weightset A needs the three variables:
a0, a1, a2.
Following the example, any weighted configuration can be expressed by use of the boolean
variables x0, y0, a0, a1, a2, b0. Note that this also allows the encoding of weighted config-
urations outside the bounds given by the weightsets. We will address this problem later.
Table 4.2 shows the statesets and weightsets of our example and their associated boolean
encoding.

Matching the boolean variables with a weighted configuration is done by means of a boolean
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Stateset Boolean encoding Boolean prime variables
stateset x:X=one, two init one; x0 x′0
stateset y:Y=alpha, beta init alpha; y0 y′0

Weightsets Boolean encoding Boolean prime variables
weightset a:A[0,4] init 0; w0w1w2 w′0w′1w′2
weightset b:B[0,1] init 0; v0 v′0

Table 4.2: Statesets and weightsets with their associated boolean encoding.

expression, specifically the conjunction of all the variables. For example, given the weighted
configuration (x,y,a,b)=(one, beta, 3, 1), the corresponding boolean expression would
be ¬x0 ∧ y0 ∧ a0 ∧ a1 ∧ ¬a2 ∧ b0. To simplify the following explanations, we introduce the
following shorthand notation.
s is a vector representing the boolean variables s0, . . . , sn, either a stateset or a weightset.

4.2.2 Rule Encoding

A rule in LEG can give rise to transitions from multiple configurations to multiple configurations,
depending on the states the rule is enabled on. In this example we consider a simple transition
from a single configuration to another configuration ((one,alpha) −→ (two,alpha)). This
transition is modelled by the existential rule in Line 10 in Listing 4.1. The rule is enabled
only when x=one and y=alpha. To model the transition as a boolean expression, we must
consider the weighted configuration before and after the transition. To model the resulting
weighted configuration, we need the same variables required to encode the enabling weighted
configuration, but the variables must be distinguishable from each other. We introduce a prime
variable for each boolean variable, as shown in Table 4.2. The prime variables will always
relate to a resulting weighted configuration and thus only be present in boolean expressions
for rules.

Consider the rule

x in {one}, y in {alpha}− > x = {two}, b+ = 1;. (4.1)

This rule states that a transition from (one,alpha) to (two,alpha) is possible, while adding
1 to the weight b. To model this, let us first consider the states. The configuration that enables
this rule must have ¬x0 ∧ ¬y0 and it must result in a configuration x0 ∧ ¬y0. In addition the
rule must add 1 to the weight b, which we model with the abstract predicate add(b, b′,+1).
Any weight or stateset that is not mentioned must remain the same before and after the rule.
Thus the boolean encoding of the rule is

¬x0 ∧ ¬y0 ∧ x′0 ∧ ¬y′0 ∧ add(a, a′, 0) ∧ add(b, b′,+1). (4.2)

Table 4.3 shows the encoding for every rule in the example.

In case the rule allows a non-deterministic choice between enabling or resulting states, this is
encoded as the disjunction of each possible state. For example if the rule had been

x in {one}, y in {alpha}− > x = {two}, y = {alpha, beta}b+ = 1;, (4.3)

34



Existential rules Boolean encoding
x in {one}, y in {alpha} -> ¬x0 ∧ ¬y0∧
a+=1; ¬x′0 ∧ ¬y′0 ∧ add(a, a′,+1) ∧ add(b, b′, 0)
x in {two}, y in {beta} -> x0 ∧ y0∧
a-=1; x′0 ∧ y′0 ∧ add(a, a′,−1) ∧ add(b, b′, 0)
x in {one}, y in {alpha} -> ¬x0 ∧ ¬y0∧
x={two}, b+=1; x′0 ∧ ¬y′0 ∧ add(a, a′, 0) ∧ add(b, b′,+1)
x in {two}, y in {beta} -> x0 ∧ y0∧
x={one}, b+=1; ¬x′0 ∧ y′0 ∧ add(a, a′, 0) ∧ add(b, b′,+1)

Universal rules Boolean encoding
x in {two}, y in {alpha} -> x0 ∧ ¬y0∧
y={beta}, a-=1, b-=1; x′0 ∧ y′0 ∧ add(a, a′,−1) ∧ add(b, b′,−1)
x in {one}, y in {beta} -> ¬x0 ∧ y0∧
y={alpha}, a+=1, b-=1; ¬x′0 ∧ ¬y′0 ∧ add(a, a′,+1) ∧ add(b, b′,−1)

Table 4.3: Rules and their associated boolean encoding.

i.e. y could result in either alpha or beta, the encoding would be

¬x0 ∧ ¬y0 ∧ x′0 ∧ (¬y′0 ∨ y′0) ∧ add(a, a′, 0) ∧ add(b, b′,+1). (4.4)

There are several ways to represent the predicate add(w, w′, k), where k ∈ N as a quantified
boolean expression. Intuitively, the predicate will encode a boolean expression describing each
value that can be expressed through the the variables w. This is then associated with the
boolean encoding of the value resulting from applying the arithmetic described in k to the
value, using the variables w′. That is, for each value i ∈W , where W = [0,m], we encode the
value i as bi using the variables w = bi. We proceed to encode i+ k as bi+k using the variables
w = bi+k. We then related the encodings as a conjunction, i.e. (w = bi ∧ w′ = bi+k). As this is
done for each value i ∈W , the disjunction of all the encodings is needed, i.e.

(w = b0 ∧ w′ = b0+k) ∨ · · · ∨ (w = bm ∧ w′ = bm+k) (4.5)

Recall that the boolean encoding is able to express invalid values, e.g. the variables a0a1a2
could express the value 7 through a0 ∧ a1 ∧ a2 even though the weightset variable a is only
allowed to assume values up to 4. By encoding add for only the valid values, we have ensured
that only valid values will count as enabling. The rules may still result in weights outside the
specified bounds, as they should.
There is a small issue with resulting weights outside the specified bounds. These values may
be less than 0 or assume a higher value than the boolean variables are able to express. For
this reason, and only during computation, the values are increased by an offset corresponding
to the greatest subtraction specified by any rule. Similarly, when the boolean variables are
created, enough variables are created to accommodate the addition of the offset, the maximum
value of the weight and the greatest value any rule adds to the weight. An illustration of
this is given in Figure 4.4, with the original values specified by the LEG syntax illustrated in
Figure 4.4a and the resulting domain values shown in Figure 4.4b.
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Figure 4.4: Valid values and domain values before and after adding offset and maximal
addition.

During computations all values are subject to an offset. offsetw is the greatest value subtracted
from the weight w. addw is the greatest value added to the weight w. During the computation,
the greatest value that can be assumed by w are given by domainw = maxw + offsetw +
addw.

4.3 Symbolic Fixed Point Algorithm

After constructing every rule, we are ready to apply those rules in computation. In this section
we will show an adaptation of the previously shown fixed point algorithm in Algorithm 1.
The implementation of the fixed point algorithm on the symbolic encoding is implemented as
constructions of BDDs.
We denote by E(x, x′) the disjunction of existential rules over x and x′, and by U(x, x′) the
disjunction of universal rules over x and x′. The predicate W0 is initially true for any valid
state or weight. This is achieved by encoding the valid weighted configurations, as by the
example on weight a:

Va = (¬a0∧¬a1∧¬a2)∨(a0∧¬a1∧¬a2)∨(¬a0∧a1∧¬a2)∨(a0∧a1∧¬a2)∨(¬a0∧¬a1∧a2) (4.6)

W0 is then initially defined by

W0 = Vss1 ∧ · · · ∧ Vssn ∧ Vws1 ∧ · · · ∧ Vwsm , (4.7)

where ssi is a stateset and wsj is a weightset. Thus the fixed point step BDD construction is
given by:

Wn+1(x) = Wn(x) ∧ (∃x′.[E(x, x′)] =⇒ ∃x′.[E(x, x′) ∧Wn(x′)]) ∧ ∀x′.[U(x, x′) =⇒ Wn(x′)]
(4.8)

Where Wn is the n’th assumed solution space. This means that the symbolic fixed point
algorithm is given by Algorithm 3. When we reach a fixed point, we have reached the BDD
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Algorithm 3 Symbolic fixed point algorithm for LEG games.
while (Wn+1(x) != Wn(x)) do

Wn+1(x) = Wn(x) ∧ (∃x′.[E(x, x′)] =⇒ ∃x′.[E(x, x′) ∧Wn(x′)]) ∧ ∀x′.[U(x, x′) =⇒
Wn(x′)]

which represents all possible weighted configurations which are winning. By checking against
this BDD it is easy to verify if a given weighted configuration is part of the winning space.
This is, for instance, good to check for any given initial weighted configuration.
There are several reasons why Algorithm 3 is easy to implement using BDDs. Given that
every part of the algorithm, save the iteration, is quantified boolean expressions, it is possible
to utilise the efficient representation provided by BDDs. In addition, BDD operations are
efficient. Finally, the comparison of two BDDs is a very efficient operation, as described in
Section 4.1 .
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CHAPTER 5

IMPLEMENTATION

In this section we elaborate on the overall architecture of the implementation. We will also
explain the frameworks used, such as BuDDy and ANTLR4, and how they interact with the
architecture.
The tool is currently implemented in C].NET 4.0. As such it is built targeting the Windows
platform. However, the implementation could easily be ported to other platforms through
another C] implementation such as the Mono Project [15].
The current GUI implementation is done in WPF (Windows Presentation Foundation)[2],
which is platform-specific and as such cannot be ported to other platforms. However, the
tool can function as a command-line client as well on other platforms, or have separate GUI
implementation depending on platforms. Using WPF however, allows for hardware acceleration
when rendering. WPF uses Direct3D for rendering, which allows the rendering process to be
done via the GPU. Having hardware acceleration may aid when viewing very large graphs
and diagrams.

5.1 Architecture

The overall architecture is shown in the diagram in Figure 5.1. Shown in this diagram is the
various components which make up EgGS. It should be noted that this is not a complete
component diagram, as some components, such as GUI and other less relevant components
are not shown. There are three main components which make up the EgGS system - the LEG
compiler, the BuDDy C] interface, and LEGProgram (the core system).
ANTLR4 is a third-party tool which assists in generating the lexer and parser classes for the
LEG compiler. ANTLR4 is discussed in detail in Section 5.3. The lexer and parser is then
inserted into the LEG compiler code. From here a listener class is called by observer pattern
which uses the loader to initialize the GameBuilder with some LEG code.
Depending on the type of game selected the core component LEGProgram will either explicitly
construct a game by listing every possible weighted configuration of the game, and running a
fixed point algorithm on that assumed winning space.
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Figure 5.1: The overall architecture of the tool.

If a symbolic game is selected, the core depends on the BuDDy C] interface. BuDDy is
an efficient Binary Decision Diagram library with highly efficient BDD operations and data
structures. BuDDy is discussed in detail in Section 5.2. Using BuDDy, the core constructs a
set of BDDs which symbolically encodes the entire LEG Energy Game. Then, a symbolic fixed
point algorithm is computed on this set of rules to achieve a winning space. This winning
space can then be presented as a list of all winning weighted configurations, or as a BDD
describing all the winning weighted configurations.

5.2 BuDDy and the BuDDy C] interface

BuDDy [14] is a C/C++ Binary Decision Diagram library. It has highly efficient vectorized
BDD operations, automated garbage collection, and many features for working with BDDs.
Included in the library is a C++ interface.
In the implementation of EgGS, a custom C] interface was created. Using BuDDy as a C
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library, we offload the main computational work to a more low-level implementation, while
retaining the strong features of C] for the rest of the EgGS implementation.
To achieve this, BuDDy was compiled as a class library, which is then imported into the EgGS
source code. In this section we will elaborate on this C] interface to BuDDy.
If we refer to the main architecture in Figure 5.1, it is apparent that the only class to call the
BuDDy library directly is PlatformInvoke. Any other class in the interface will have to use
any of the imported methods in it. Creating BDDs in BuDDy is done by declaring boolean
variables. Each BDD is then constructed by combining them with some operator in a call to
bdd_apply. This method takes as input pointers to two BDDs, and an integer representing
which operator to apply.

5.2.1 Calling a BuDDy function

The BUDDY class serves as a wrapper for any function needed to manipulate BDDs. A function
such as bdd_apply(BDD l, BDD r) is called by calling the static method BUDDY.Apply(BDD
bdd1, BDD bdd2, BUDDY.Operator op). Each of these wrapper functions then calls the
function on the pointer of the BDD. This wrapper class also handles any information that is
relevant when calling BuDDy functions, e.g. an enumeration representing each operation. In

� �
1 p u b l i c c l a s s BUDDY
2 {
3 #r e g i o n De f ines
4 /// <summary>
5 /// The l i s t o f o p e r a t o r s supported by bdd_apply
6 /// </summary>
7 p u b l i c enum Operato r
8 {
9 /∗ . . . ∗/

10 }
11 #endreg ion
12 #r e g i o n Kernel . c
13 /// <summary>
14 /// I n i t i a l i z e s the BuDDy package
15 /// </summary>
16 p u b l i c s t a t i c void I n i t ( i n t number_of_nodes , i n t c a c h e s i z e )
17 {
18 bddVars . C l e a r ( ) ;
19 i n i t i a l i z e d = true ;
20 Conso l e . W r i t e L i ne ( "Buddy i n i t " ) ;
21 P l a t f o r m I n v o k e . b d d _ i n i t ( number_of_nodes , c a c h e s i z e ) ;
22 }
23 }� �

Listing 5.1: Excerpt of the BUDDY wrapper class.

Listing 5.1 we see an excerpt of the BUDDY class. An example of a wrapped function is the
static method Init.
When using BuDDy the library must first be initialized. By calling BUDDY.Init, and passing
the initial number of nodes to be allocated, and some choice of cache size. This cache size
determines how often a memory allocation takes place. If 100 BDD nodes are cached, 100
more will be allocated every time that amount is reached. This can affect performance, and

40



as such when initializing BuDDy the size of the energy game in question must be taken into
account.
BUDDY calls the imported functions in PlatformInvoke. An example of such an imported
function is shown in Listing 5.2. The signature of most of these methods are pointers or a

� �
1 [ D l l I m p o r t (@" BuDDyHelper . d l l " , C a l l i n g C o n v e n t i o n = C a l l i n g C o n v e n t i o n . Cdec l ) ]
2 p u b l i c s t a t i c extern I n t P t r bdd_apply ( I n t P t r bdd , I n t P t r bdd2 , i n t o p e r a t o r _ c h o i c e ) ;� �

Listing 5.2: bdd_apply imported into PlatformInvoke.

primitive data type. This allows inter-communication between managed and unmanaged code.
Every method in BuDDy is imported in this manner, and then wrapped in the BUDDY class.
When calling a method in BUDDY, the pointer is not given, but an object representing a BDD
is.

5.2.2 Representing BDDs

To create a BDD or a BDD variable, the class BDD represents each BDD as an object, as seen
in Listing 5.3, which is an excerpt of that class. Note that this does not mean that every
node in BuDDy’s table is represented as an object, only the pointer to that BDD is. When
constructing a new BDD variable, we generally want to give it an index in the ordering, and a
name.
BDDs are represented with a platform-specific pointer to the node in the BuDDy library, a
nullable integer referring to the index if the BDD is a variable, and in that case, the name of
the variable. These parameters are passed to the constructor of BDD, which then calls IthVar,
which calls bdd_ithvar in BuDDy with the given index. A minor loss of efficiency with this
approach is that some BDDs are only freed in BuDDy’s memory, when the C] garbage collector
frees that BDD object.
The memory management in BuDDy is implemented as a custom garbage collector. This
garbage collector depends on reference counting. When a variable is created, it automatically
calls bdd_addref, which increases the reference count of that node by 1. A call to bdd_ithvar
also calls bdd_addref.
When the C] garbage collector frees a BDD object, the destructor decreases the reference
count of that node by one.

The names of each BDD variable is saved in the wrapping class BUDDY. Here a list is held of all
the names of the declared variables. This class also holds all relevant methods for constructing
the rules that can be expressed in LEG, and automatization of declaring the required number
of variables for representing a stateset or weightset.

In Listing 5.4, we see the implementation of the static method MakeAddition. Given the
necessary information, such as the upper bound and lower bound, and the number to add by,
this method returns a BDD representing that addition. Note that the prime variables in this
BDD may in fact go outside the bounds of the game. This detail is important to the fixed
point algorithm, as discussed in Section 4.2.2.
Note that the implementation of MakeSubtraction is identical, with the exception of sub-
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� �
1 p u b l i c c l a s s BDD
2 {
3 p u b l i c I n t P t r p o i n t e r ;
4 p u b l i c i n t ? i ;
5 p u b l i c s t r i n g name ;
6
7 #r e g i o n C o n s t r u c t o r s and r e l a t e d f u n c t i o n s
8 /∗ . . . ∗/
9 /// <summary>

10 /// Construct a new named BDD Var iab le .
11 /// Adds a name and a r e f e r e n c e to the i t h v a r i a b l e .
12 /// </summary>
13 /// <param name="_i">The v a r i a b l e index .</param>
14 /// <param name="_name">The v a r i a b l e name.</param>
15 p u b l i c BDD( i n t _i , s t r i n g _name )
16 {
17 i = _i ;
18 p o i n t e r = I t h V a r ( _i ) ;
19 name = _name ;
20 l a s t I n d e x = _i ;
21 BUDDY . bddVars . Add ( t h i s ) ;
22 }
23 /∗ . . ∗/
24
25 /// <summary>
26 /// Creates the i t h v a r i a b l e in BuDDy.
27 /// </summary>
28 p r i v a t e I n t P t r I t h V a r ( i n t i )
29 {
30 r e turn P l a t f o r m I n v o k e . bdd_ i thva r ( i ) ;
31 }
32 /// <summary>
33 /// Destructor − c a l l DelRef on a l l dest royed o b j e c t s in C# code
34 /// </summary>
35 ~BDD( )
36 {
37 i f (BUDDY . i n i t i a l i z e d )
38 t h i s . DelRef ( ) ;
39 }
40 /∗ . . . ∗/
41 }� �

Listing 5.3: Excerpt of the BDD class.

tracting the operand in the prime variables.
To declare the number of required variables to represent a weightset, the method BoundedVarArray,
as seen in Listing 5.5, will automatically determine the required amount of boolean variables
needed to represent values op to maxvalue. This method is used when declaring the variables
representing the weightsets.

5.2.3 Satisfying Variable Assignments

When a BDD is created, we can ask BuDDy for all variable assignments that satisfy that
BDD. In the case of having computed the winning space as a BDD, this means getting the
explicit binary version of the winning space. In BuDDy, this is implemented with a call to
bdd_allsat. In the BuDDy library, this function has this signature void bdd_allsat(BDD
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� �
1 p u b l i c s t a t i c BDD MakeAddit ion ( i n t operand , i n t xMin , i n t xMax , i n t x O f f s e t , BDD [ ] x←↩

, BDD [ ] x_ )
2 {
3 i n t b i t s R e q u i r e d = x . Length ;
4 // B i t s t r i n g s g iven as p l a i n s t r i n g s
5 s t r i n g x S t r i n g = " " ; // b i t v a l u e o f non−prime
6 s t r i n g x_St r i ng = " " ; // b i t v a l u e o f prime
7 BDD [ ] s u b r e s u l t s = new BDD[ xMax−xMin +1] ;
8 // enumerate va lue s over the i n t e r v a l o f v a l i d va lue s
9 f o r ( i n t n = 0 ; n <= xMax − xMin ; n++)

10 {
11 // value with in Val id bounds
12 x S t r i n g = B i t F u n c t i o n s . B i t S t r i n g ( n + x O f f s e t + xMin , b i t s R e q u i r e d ) ;
13 // Value r e s u l t i n g from apply ing the operand − may go o u t s i d e bounds
14 x_St r i ng = B i t F u n c t i o n s . B i t S t r i n g ( n + x O f f s e t + xMin + operand , b i t s R e q u i r e d←↩

) ;
15 // s t o r e the s u b r e s u l t
16 s u b r e s u l t s [ n ] = MakeBDDFromBitString ( x S t r i n g , x ) & MakeBDDFromBitString (←↩

x_Str ing , x_ ) ;
17 }
18 //Now bu i ld the e n t i r e ad d i t i on r u l e by d i s j u n c t i o n o f a l l the p o s s i b l e va lue s ←↩

s to r ed in s u b r e s u l t s
19 BDD r e s u l t = BUDDY . BDDFalse ( ) ;
20 f o r ( i n t i = 0 ; i < s u b r e s u l t s . Length ; i ++)
21 {
22 r e s u l t = r e s u l t | s u b r e s u l t s [ i ] ;
23 }
24 r e turn r e s u l t ;
25 }� �

Listing 5.4: Method for generating an addition rule.

� �
1 /// <summary>
2 /// Construct BDD v a r i a b l e s with the g iven name from 0 to max value .
3 /// </summary>
4 /// <param name="upperbound">The maximum value the v a r i a b l e s must be ab le to ←↩

r e p r e s e n t .</param>
5 /// <param name="varName">The i d e n t i f i e r f o r the v a r i a b l e s .</param>
6 /// <returns >Array o f BDD v a r i a b l e s .</ returns >
7 p u b l i c s t a t i c BDD [ ] BoundedVarArray ( i n t maxvalue , s t r i n g varName )
8 {
9 s t r i n g maxva lueB i t = B i t F u n c t i o n s . B i t S t r i n g ( maxvalue ) ;

10 // Store a l l our x v a r i a b l e s
11 BDD [ ] x = new BDD[ maxva lueB i t . Length ] ;
12
13 // Construct a l l our v a r i a b l e s
14 f o r ( i n t i = 0 ; i < maxva lueB i t . Length ; i ++)
15 {
16 x [ i ] = new BDD( varName +(1 + i ) ) ;
17 }
18 r e turn x ;
19 }� �

Listing 5.5: Method for declaring the number of required variables.

r,bddallsathandler handler). That is, as input it expects a BDD for which to find all
satisfying variable assignments, and a function pointer to a function which handles the variable
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assignment. For every satisfying variable assignment the handler will be called. This handler
has the signature void allsatPrintHandler(char* varset,int size). When it is called,
BuDDy will pass a char array to the function, and the handler will process that information
in whatever way necessary. In this array of chars, the index refers to the variable index, and a
value representing the variable assignment. False is equivalent to 0, true equivalent to 1, and
in case that variable can be both true or false, -1 is given.
To accommodate this functionality, the handler passed to BuDDy is implemented in the C]

interface.

� �
1 [ D l l I m p o r t (@" BuDDyHelper . d l l " , C a l l i n g C o n v e n t i o n = C a l l i n g C o n v e n t i o n . Cdec l ) ]
2 p u b l i c s t a t i c extern void b d d _ a l l s a t ( I n t P t r bdd , [ MarshalAs ( UnmanagedType .←↩

F u n c t i o n P t r ) ] A l l S a t H a n d l e r a l l s a t h a n d l e r ) ;
3
4 [ UnmanagedFunct ionPointer ( C a l l i n g C o n v e n t i o n . Cdec l ) ]
5 p u b l i c d e l e g a t e void A l l S a t H a n d l e r ( I n t P t r v a r s e t , i n t s i z e ) ;� �

Listing 5.6: Importing a function which takes a function pointer as an argument.

A delegate in C], is really just a function pointer. This function pointer is marshalled as an
unmanaged type, as a function pointer. The signature of this delegate, corresponds to the
signature of a handler implemented in BuDDy. This means that getting all satisfying variable
assignments from the C] interface can be achieved in the following way:

� �
1 /// <summary>
2 /// Cal l a l l s a t with your own handler method
3 /// Be c a r e f u l when c r e a t i n g such a method − do not d e v i a t e on the s ignature , and be←↩

aware that the p o i n t e r from c i s a char ∗ ( cor responds to byte [ ] )
4 /// </summary>
5 p u b l i c s t a t i c void A l l S a t (BDD bdd , P l a t f o r m I n v o k e . A l l S a t H a n d l e r h a n d l e r )
6 {
7 P l a t f o r m I n v o k e . b d d _ a l l s a t ( bdd . p o i n t e r , h a n d l e r ) ;
8 }� �

Listing 5.7: A call to AllSat.

An implementation of a handler which prints all the satisfying variable assignments to the
console can be implemented in this manner shown in Listing 5.8. The method for getting all
satisfying variable assignments then simply becomes:

� �
1 p u b l i c s t a t i c void A l l S a t P r i n t (BDD bdd )
2 {
3 // Delegate as C f u n c t i o n p o i n t e r .
4 P l a t f o r m I n v o k e . A l l S a t H a n d l e r h a n d l e r = A l l S a t P r i n t e r ;
5 P l a t f o r m I n v o k e . b d d _ a l l s a t ( bdd . p o i n t e r , h a n d l e r ) ;
6 }� �

5.2.4 Using the BuDDy C] Interface

Consider the example shown in Section 4.2.2, and specifically the rule x in {one}, y in
{alpha} -> a+=1. From Listing 4.1, we know that the game in question consists of the
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� �
1 s t a t i c void A l l S a t P r i n t e r ( I n t P t r v a r s e t , i n t s i z e )
2 {
3 byte [ ] managedArray = new byte [ s i z e ] ;
4 Marsha l . Copy ( v a r s e t , managedArray , 0 , s i z e ) ;
5 i n t [ ] i n t s = new i n t [ s i z e ] ;
6 f o r ( i n t i = 0 ; i < s i z e ; i ++)
7 {
8 i f ( managedArray [ i ] == 255)
9 {

10 // Assignment i r r e l e v a n t
11 i n t s [ i ] = −1;
12 }
13 i f ( managedArray [ i ] == 1)
14 {
15 // Assignment p o s i t i v e
16 i n t s [ i ] = 1 ;
17 }
18 i f ( managedArray [ i ] == 0)
19 {
20 // Assignment negat ive
21 i n t s [ i ] = 0 ;
22 }
23 i f ( i n t s [ i ] != −1)
24 Conso l e . Write ( bddVars [ i ] . name + "−>" + i n t s [ i ] + " " ) ;
25 }
26 Conso l e . Write ( " \n −−−−−−−−−−−−−−−−−−−−−−−− \n " ) ;
27 }� �

Listing 5.8: AllSatPrinter - prints all satisfying variable assignments to the console.

statesets x:X={one, two} and y:Y={alpha, beta}.
To encode these statesets, we need one boolean variable for each of these. Additionally, we
require prime variables, to encode their values after a transition. Note that the indexes given

� �
1 BDD x = new BDD(0 , " x " ) ;
2 BDD y = new BDD(1 , " y " ) ;
3 BDD x_ = new BDD(2 , " x ’ " ) ;
4 BDD y_ = new BDD(3 , " y ’ " ) ;� �

here are used to determine the ordering in the resulting BDDs. To encode the rule, we create
an enumeration of all possible values of the variables x and y. For this case, these are merely 0
and 1, representing the first and the second state in the statesets. Next to create the necessary
values, we can use the method shown in Listing 5.5. Assume the variable a in the rule, has an
upper bound of 4, and a lower bound of 0.

� �
1 BDD [ ] a = BDD. BoundedVarArray (4 , " a " ) ; //a v a r i a b l e s c r ea ted
2 BDD [ ] a_ = BDD. BoundedVarArray (4 , " a ’ " ) ; //a prime v a r i a b l e s c r ea ted� �
� �

1 BDD r u l e = ( ! x & ! y ) & ( ! x_ & ! y_ ) & BDD. MakeAddit ion ( 1 , 0 , 4 , 0 , a , a_ ) ;� �
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Corresponding to the logic (¬x∧¬y)∧ (¬x′ ∧¬y′)∧ add(a, a′,+1), as seen in Table 4.3. The &
operator, is a an overloaded operator, which performs code equivalent to the following:

� �
1 BUDDY . Apply ( x , y ,BUDDY . Operato r . And ) ;� �

As such we have effectively created the state variables, and the weight variables necessary to
represent this rule. In Section 5.4 we will show how this is used to execute the symbolic fixed
point algorithm.

5.3 ANTLR4

ANTLR4[16] (ANother Tool for Language Recognition) is a tool for generating parsers. It
also provides a runtime library, which is able to walk the constructed parse-trees. It is a
widely used tool for parser generation, and is able to generate class files for C]. When defining
the language, we started out with code examples of how we wanted the concrete syntax to
appear. After a few iterations and some feedback on this, we constructed a grammar in the
form of an EBNF in [8]. Further updates and adjustments have been made to the grammar of
LEG (shown in Table 5.1), but it does not impact the semantics of LEG. This grammar is
defined in ANTLR’s grammar language, and passed as input to ANTLR4. ANTLR4 then
generates the lexer LEGLexer and the parser LEGParser over the grammar, and using the
ANTLR4 C] runtime library, walks the parse tree. While the parse tree is being walked, the
construction of an energy game is handled by an observer pattern in LEGListener which calls
LEGLoader. While walking the tree from the left to the right, the listener and loader are
called by observation, and receives the relevant tokens and parsing contexts and passes this
to methods in the builder to build an energy game. Depending on the type of game chosen
(symbolic or non-symbolic), a game is instantiated by the GameBuilder.

cletter ::= [A-Z]
lletter ::= [a-z]
letter ::= cletter | lletter
digit ::= [0-9]
integer ::= digit (digit)*
transitionname ::= cletter (lletter | cletter)* :
operator ::== + | - | *
statesetdeclaration ::= stateset statevariable : statesetidentifier

= stateset init stateidentifier;
statevariable ::= lletter (letter| integer)*
statesetidentifier ::= cletter (letter | integer)*
stateset ::= { stateidentifier(, stateidentifier)* }
stateidentifier ::= (integer | lletter) (letter | integer)*
weightdeclaration ::= weightset weightvariable : weight ;
weightvariable ::= lletter (letter| integer)*
weight ::= weightidentifier [ integer , integer ] init

integer
weightidentifier ::= cletter (letter | integer)*
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ruledeclarations ::= (erule | urule | eruleblock | uruleblock)*
erule ::= < rule > ;
urule ::= [ rule ] ;
eruleblock ::= erules: rule ; (rule ;)*
uruleblock ::= urules: rule ; (rule ;)*
rule ::= (transitionname condition - > con-

sequence) | (condition - > consequence)
condition ::= comparison (, comparison)*
consequence ::= (stateassignment|weightassignment)(,(stateassignment

| weightassignment))*
comparison ::= statevariable in (stateset | statesetidenti-

fier)
stateassignment ::= statevariable = (stateset | statesetidenti-

fier)
weightassignment ::= weightvariable (= | operator=) (equation

| max | min)
operator ::= + | - | *
equation ::= (( equation operator equation ))| (( equa-

tion )) | (number | weightvariable | max |
min) (operator (integer | weightvariable |
max | min))*

model ::= statesetdeclaration (statesetdeclaration)*
weightdeclaration (weightdeclaration)*
ruledeclarations

Table 5.1: EBNF for LEG .

Among the updates to the LEG grammar, we have the addition of comments (not shown in the
EBNF, since this works by skipping any tokens after //), changes to the token structure, to
fix some bugs, and the possibility to name transitions. This can be seen in rule in Table 5.1.
Additionally, as an error, the keywords max and min were missing from equation, and have
been added. Adjustments have been made for full paranthesis support in equations.

5.4 LEGProgram - the EgGS core

The core of EgGS is mainly composed of the game builder, and the algorithms for computing
the greatest fixed point of a given game expressed using LEG syntax. When the GameBuilder
class receives instructions from the LEGLoader, depending on the choice of algorithm, it
either constructs a class of the type EnergyGame, or of the type SymbolicEnergyGame. After
constructing an EnergyGame, the algorithm will examine every single weighted configuration in
the assumed winning space to find a greatest fixed point. This algorithm is seen in Listing 5.9
If the instantiated class is of type SymbolicEnergyGame, an EnumerationHandler class will be
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� �
1 p u b l i c LEGConf igurat ionSpace <T> F i x e d P o i n t A l g o r i t h m ( )
2 {
3 // D e c l a r a t i o n s and i n i t i a l i z a t i o n s
4 LEGConf igurat ionSpace <T> w = w e i g h t e d C o n f i g u r a t i o n S p a c e ; // Current con f igSpace
5 LEGConf igurat ionSpace <T> w_old = new LEGConf igurat ionSpace <T>() ; // ConfigSpace ←↩

f o r comparison
6 Stopwatch stopWatch1 = new Stopwatch ( ) ; // i t e r a t i o n t imer
7 Stopwatch stopWatch2 = new Stopwatch ( ) ; // t o t a l t imer
8 i t e r a t i o n s = 0 ;
9 whi le ( ! w_old . Equa l s (w) )

10 {
11 i t e r a t i o n s ++;
12
13 w_old = w ;
14 w = FF ( w_old ) ;
15 Conso l e . W r i t e L i ne ( " \ n I t e r a t i o n {0} done " , i t e r a t i o n s ) ;
16 }
17
18 Conso l e . W r i t e L i ne ( " Fixed po int found in {0} i t e r a t i o n s " , i t e r a t i o n s ) ;
19 r e turn w ;
20 }� �

Listing 5.9: Fixed-point algorithm, main part.

instantiated. This class holds all information related to the encoding of the variables which have
been created in BuDDy. This means that for any weightset declared in LEG, when comparing
the symbolic values for the variables representing that weightset, the enumerationhandler
holds information about the offset, upper and lower bound and greatest addition related to
the weightset. For example, given a string of bits representing the satisfying assignment to the
state variables, enumerationhandler gives the name of the state that the variable assignment
corresponds to, as seen in Listing 5.10.

� �
1 p u b l i c s t r i n g GetSta te ( s t r i n g _b i t s , s t r i n g _ s t a t e s e t V a r i a b l e )
2 {
3 i n t debug = B i t F u n c t i o n s . G e t I n t ( _ b i t s ) ;
4 r e turn S t a t e s e t T a b l e [ _ s t a t e s e t V a r i a b l e ] [ debug ] ;
5 }� �

Listing 5.10: EnumerationHandler method for getting the name of the state which a variable
assignment represents.

When GameBuilder creates a SymbolicEnergyGame, it will create all the rules of the game,
in a way similar to that seen in Section 5.2.4. This is shown in Listing 5.11. Once a
SymbolicEnergyGame has been built, we are ready to compute a greatest fixed point for the
game. This fixed point algorithm, shown in Listing 5.12 corresponds to the one presented in
Algorithm 1 of Section 2.3. As previously mentioned, BuDDy works with a custom garbage
collector. Therefore any BDDs which are no longer used in the end of the loop have their
references deleted, in order to free any unused nodes in BuDDy. This can be seen by explicit
calls in the code to DelRef.
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� �
1 /// <summary>
2 /// Bui lds an Energy Game us ing BDDs. The Energy Game i s used f o r symbol ic ←↩

computation
3 /// </summary>
4 /// <returns >A Symbolic Energy Game.</ returns >
5 p u b l i c Symbol icEnergyGame BuildBDDEG ( )
6 {
7 // Create an Enumeration Handler and i n i t i a l i z e i t
8 Enumerat ionHand le r eh = new Enumerat ionHand le r ( S t a t e s e t s , Weightse t s , wMax , wMin , ←↩

greate s tAdd , g r e a t e s t S u b ) ;
9

10 BDD E r u l e s = BUDDY . BDDFalse ( ) ;
11 BDD U r u l e s = BUDDY . BDDFalse ( ) ;
12 i n t i = 0 ;
13 f o r e a c h ( Rule r u l e i n Ru l e s )
14 {
15 i f ( r u l e . U n i v e r s a l )
16 {
17 U r u l e s = U r u l e s | MakeRuleBDD ( r u l e , eh ) ;
18 }
19 e l s e
20 {
21 E r u l e s = E r u l e s | MakeRuleBDD ( r u l e , eh ) ;
22 }
23 }
24 r e turn new Symbol icEnergyGame ( eh , E r u l e s , U r u l e s ) ;
25 }� �

Listing 5.11: The method used by GameBuilder to build a SymbolicEnergyGame.
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� �
1 BDD w ;
2 BDD wn = BUDDY . BDDTrue ( ) & i n v a l i d V a l u e s ; // Al l i n v a l i d va lue s l i s t e d , and negated , ←↩

meaning i n v a l i d va lue s ( o u t s i d e bounds ) l ead to 0
3 BDD w_ ;
4 BDD e x i s t ;
5 BDD f o r a l l ;
6 Steps = 0 ;
7 Conso l e . W r i t e L i ne ( " Computing Winning BDD. . " ) ;
8 do
9 {

10 //Update W
11 w = wn ;
12 // Create Wxprime , by r e p l a c i n g a l l v a r i a b l e s with prime v a r i a b l e s
13 w_ = w ;
14 f o r e a c h ( BDDPair p a i r i n p a i r s )
15 {
16 w_ = BUDDY . Rep lace (w_ , p a i r ) ;
17 }
18 // E x i s t e n t i a l q u a n t i f i c a t i o n , a l l prime v a r i a b l e s
19 e x i s t = BUDDY . E x i s t ( E r u l e s , pr imesVar ) . I m p l i e s (BUDDY . AppEx i s t ( E r u l e s , w_ , BUDDY .←↩

Operato r .AND, pr imesVar ) ) ;
20 // Unive r sa l Quant i f i c a t i on , a l l primes
21 f o r a l l = BUDDY . AppAl l ( Uru l e s , w_ , BUDDY . Operato r . IMP , pr imesVar ) ;
22 //Update Wn
23 wn = w & e x i s t & f o r a l l ;
24 w . DelRef ( ) ;
25 e x i s t . DelRef ( ) ;
26 f o r a l l . DelRef ( ) ;
27 i f ( Steps % 10 == 0 && Steps != 0)
28 Conso l e . W r i t e L i ne ( " I t e r a t i o n : " + Steps ) ;
29 Steps++;
30 } whi l e (w != wn) ;
31 BUDDY . P r i n t L a b e l l e d ( "Win" , wn) ; //Dump the winning BDD as . dot
32 WinningBDD = wn ;
33 w . DelRef ( ) ;
34 w_ . DelRef ( ) ;
35 pr imesVar . DelRef ( ) ;
36 i f (BUDDY . NodeCount (wn) == 0)
37 Conso l e . W r i t e L i ne ( " Winning BDD found in " + Steps + " i t e r a t i o n s . " ) ;
38 e l s e
39 Conso l e . W r i t e L i ne ( " After " + Steps + " i t e r a t i o n s , no winning space was found . " ) ;
40 r e turn wn ;� �

Listing 5.12: The main part of the fixed point algorithm in SymbolicEnergyGame.
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CHAPTER 6

EGGS - A MULTIWEIGHTED ENERGY GAMES TOOL

In this chapter we will demonstrate the tool and what is possible with it.

6.1 Features of EgGS

When EgGS is first launched, the user is presented with two windows; a console and a main
window similar to that seen in Figure 6.1. The main window is primarily made up of a text
editor, which is used for writing LEG syntax. After expresseing a game, initially, only the
Compute! button is enabled. Once the Compute! button has been pressed, a greatest fixed
point will be computed of the game described by the syntax in the text editor. For details on
the LEG syntax and how to express games in LEG, please refer to Chapter 3.

The text editor, as seen in Figure 6.1, highlights keywords, comments and values. Once the
text editor holds a valid syntax, the greatest fixed point can be computed by clicking the
Compute! button, as seen in Figure 6.1. The console shows information about the current
computational step.

Once a winning BDD has been computed, the previously disabled buttons Erules BDD, Urules
BDD, Show Winning List, Show Strategy and Show BDD, are enabled.

Starting from the far right, the Show BDD will show a BDD of the greatest fixed point as
seen in Figure 6.2. The values represented for weights in this BDD are subject to the offset
value, as described in Section 4.2.2. Note that the rendering of the shown BDDs is currently
dependent on the dot render of Graphviz[1], which comes packaged with EgGS.

The button Show Strategy, displays the window shown in Figure 6.3. This strategy simply
lists what actions (rules) stay in the winning space given a weighted configuration. In case the
rules have not been named, the strategy is instead expressed as a transition from a weighted
configuration to another weighted configuration - implicitly expressing the rule.

To see the list of all weighted configurations in the winning space, the menu seen in Figure 6.4
can be shown by clicking the Show Winning List. Note that this may require a high amount
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Figure 6.1: The compute button is located in the bottom right corner of the main window.

of rendering time for very large games.

The two buttons Erules BDD and Urules BDD, each display a BDD similar to the one seen in
Figure 6.2, but exclusively for existential rules or universal rules, respectively. These BDDs
might be helpful when looking for errors in encoded rules.

It is also possible to compute a fixed point without the symbolic representation, using the
explicit algorithm. The explicit algorithm can be selected as seen in Figure 6.5. The console
will still register information about the process, but the weighted configurations of the explicit
computation will also be displayed in the console.
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Figure 6.2: Each satisfying assignment to the winning BDD, represents a winning weighted
configuration.

Figure 6.3: A strategy, as displayed through EgGS.
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Figure 6.4: A list of all weighted configurations that are part of the winning space.

Figure 6.5: It is possible to select an explicit algorithm in EgGS.
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6.2 Extensions to EgGS

The EgGS tool is not without shortcomings, and some features of LEG are currently un-
supported. A full suite of analytic tools could be added to accommodate the analytic work
associated with synthesizing energy strategies. Most the desirable features are mainly GUI
related e.g. better representation and presentation of results, such as exporting results in
different formats. However, as we have shown, the core functionality of the tool is robust, and
ready for immediate use.

• Currently the symbolic encoding does not support rules with weight assignments involving
a weight variable. An example of such a rule could be

x in {one}, y in {alpha}− > x = {two}, b+ = 2 ∗ a;

, where a and b are both weight variables. As weight assignments involving values of
other weights is a strength of the LEG syntax, it should be supported in the symbolic
encoding.

• The BuDDy framework supports the export and import of BDDs. Thus, it is desirable
to support the export of the various BDDs generated by EgGS. Saving the computed
winning BDD, will also allow the strategy to be synthesized without recomputing that
BDD.

• By simulating an energy game as a step-by-step game between the user as the controller,
and the environment controlled by EgGS, users may come to better understand their
energy games and how a strategy may fail.

• As mentioned in Section 2.4, there are several variants of energy games. While the
support for strong and weak bounds would be most efficiently implemented through the
LEG syntax, EgGS should also implement support for strong and weak bounds.

• There are several ways to present a strategy. As mentioned in Section 2.2, the MTIDD
structure might be an interesting way to present a strategy. The current presentation of
strategies is needlessly big, and certainly better presentations exist. A strategy may also
be represented directly as a MTBDD, which is supported by BuDDy.

• Currently the representation of timed games require explicit syntax to express them in
LEG. Until LEG provides support for guards on rules, and invariants on configurations,
EgGS may implement a tool to transform a LEG syntax and some separately specified
constraints, into a LEG syntax representing the discreetly timed game.

• BuDDy is initialized with two values; a value for the number of preallocated nodes and
a node caching value. It would be beneficial to either allow the user to specify these
values or improve the dynamic adjustment of these values for any specified energy game.

• A consideration for computation is the option of allowing the reordering of variables.
Variable reordering can be an expensive operation, but for very large games with many
iterations, it might provide a benefit. Additional experimentation is required to establish
whether this would provide a benefit or not.

• Generating a graph displaying the energy game described by the syntax would be
beneficial.
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CHAPTER 7

EXPERIMENTS

In this section we will evaluate the efficiency of the algorithms used in this version of the tool.
We will compare the efficiency to the explicit representation of games, and comment on the
perceived complexities of the symbolic approach.

7.1 Setup

This section details how the tests were conducted. The test equipment is first presented,
followed by details about the test cases.

All the tests in were carried out on a machine with an Intel Core i7-3612QM CPU, running at
2.10GHz, with 6 GB of DDR3 memory running at a bandwidth 800MHz. The i7-3612QM has
an L3 cache of 6MB, 4 L2 caches of 256KB, and 8 L1 caches of 32KB.

Memory measurements were performed using a profiling tool, with a memory snapshot of
each stage in computation. Time measurements are done with the C] class StopWatch, which
measures elapsed wall-clock time, with an accuracy to fractions of milliseconds. This time was
also saved during each stage of the computation.

Memory results are dependent on a few uncontrollable variables. As the BDD operations are
memory-intensive operations, it should be noted that performance is very dependent on the
number of calls to allocate memory and the number of calls to BuDDy’s own garbage collector.
By design in our implementation, a game will preallocate a larger amount of BuDDy nodes for
larger games. This value is currently set to allocate a number of nodes corresponding rougly
to 150MB. This number is manageable by a majority of modern PCs, and results in a large
improvement to the performance of BuDDy. For smaller games, the tool will only allocate a
few MBs of memory initially.

56



Figure 7.1: Game for states and statesets tests.

7.1.1 Test cases

The tests are based on two base cases, as seen in Listing 7.1 and in Listing 7.2. These base
cases are scaled up to provide a wide array of different test cases.

The LEG syntax in Listing 7.1 have been scaled up by increasing the number of statesets and
the number of states in each stateset. Each such scaling also increases the number of rules
to provide the same circular energygame as seen in Figure 7.1. These test cases are named
MsNss, where M and N represent a number.

The LEG syntax in Listing 7.2 results game seen in Figure 7.2.
This game is scaled up in two ways. The first fashion in which the game is scaled, is by an
increasing upper bound of both weightsets. Each case of this type will have the upper bound
increased by a multiplier. This effectively increases the number of weighted configuration
represented. These test cases are named owNx, where Nx is the multiplier. In addition to
increasing the upper bound, the other variant also scales the values added and subtracted in
the rules. These test cases are named warNx, where Nx is the multiplier.

For all cases, four values are measured: The memory used during construction, the memory
used during the computation of a fixed point, the time spent on construction and the time spent
on computation. In each case, these values are measured for both the explicit and symbolic
representation. The time spent on construction was added to the time spent computing to
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Figure 7.2: Game for weightsets tests.

� �
1 s t a t e s e t a :A={a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9} i n i t a0 ;
2 s t a t e s e t b :B={b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 , b8 , b9} i n i t b0 ;
3 w e i g h t s e t x :X [ 0 , 1 ] i n i t 0 ;
4 <a i n {a0 } , b i n {b0} −> a={a1 } , b={b1 } , x+=1>;
5 [ a i n {a1 } , b i n {b1} −> a={a2 } , b={b2 } , x−=1];
6 <a i n {a2 } , b i n {b2} −> a={a3 } , b={b3 } , x+=1>;
7 [ a i n {a3 } , b i n {b3} −> a={a4 } , b={b4 } , x−=1];
8 <a i n {a4 } , b i n {b4} −> a={a5 } , b={b5 } , x+=1>;
9 [ a i n {a5 } , b i n {b5} −> a={a6 } , b={b6 } , x−=1];

10 <a i n {a6 } , b i n {b6} −> a={a7 } , b={b7 } , x+=1>;
11 [ a i n {a7 } , b i n {b7} −> a={a8 } , b={b8 } , x−=1];
12 <a i n {a8 } , b i n {b8} −> a={a9 } , b={b9 } , x+=1>;
13 [ a i n {a9 } , b i n {b9} −> a={a0 } , b={b0 } , x−=1];� �

Listing 7.1: Case 1.

give the total time. The maximum memory of either construction or computation was used in
the results. The results displayed in the following sections are all shown with total time and
the maximum memory used.

7.1.2 Limitations

Comparing the symbolic and the explicit approach directly is difficult - the scalability of the
symbolic representation is best showed for large examples. However, the explicit implement-
ation is extremely slow for such large games. The most time-consuming symbolic test, is
computed in roughly 55 minutes. As this is the maximum, every test was set to timeout after
one hour. In the case of a timeout, no discernible conclusions can be made from the data of
the explicit algorithm. This timeout is necessary, because as showed in [8], it takes several
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� �
1 s t a t e s e t x :X={one , two} i n i t one ;
2 s t a t e s e t y :Y={a lpha , beta } i n i t a l pha ;
3
4 w e i g h t s e t a :A [ 0 , 4 ] i n i t 0 ;
5 w e i g h t s e t b :B [ 0 , 1 ] i n i t 0 ;
6
7 e r u l e s :
8 x i n { one } , y i n { a lpha } −> a+=1;
9 x i n { two } , y i n { beta } −> a−=1;

10 x i n { one } , y i n { a lpha } −> x={two } , b+=1;
11 x i n { two } , y i n { beta } −> x={one } , b+=1;
12
13 u r u l e s :
14 x i n { two } , y i n { a lpha } −> y={beta } , a−=1, b−=1;
15 x i n { one } , y i n { beta } −> y={a lpha } , a+=1, b−=1;� �

Listing 7.2: Case 2.

hours to compute a winning space for games with a weighted configuration of about 105, and
even days when approaching a magnitude of 105 and 106.

7.2 Data

Shown in this section is the data from the test results. Time is shown in minutes and seconds,
but the raw data can be seen in Appendix D.
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
10s2ss 200 16.02 14.05
100s2ss 20000 176.5 26.09
250s2ss 125000 172.5 Timeout
500s2ss 500000 176.5 Timeout
1000s2ss 2000000 177.2 Timeout

(a) Case Ms2ss: Memory.

102 103 104 105 106

101.5

102

Weighted Configurations

M
em

or
y(
M
B
)

(b) Plot of memory for Ms2ss, found in Table 7.1a.

Table 7.1: Test case Ms2ss, memory results.

60



Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
ow10x 1804 13.03 19.77
ow15x 3904 13.6 14.1
ow20x 6804 14.72 14.63
ow30x 15004 15.22 Timeout
ow40x 26404 15.81 Timeout
ow50x 41004 18.7 Timeout
ow100x 162004 22.26 Timeout
ow250x 1005004 25.77 Timeout
ow500x 4010004 177 Timeout
ow1000x 16020004 180 Timeout
ow2000x 64040004 203.7 Timeout
ow3000x 144060004 235.9 Timeout
ow4000x 256080004 256.1 Timeout
ow5000x 400100004 294.3 Timeout
ow10000x 1600200004 446.8 Timeout

(a) Case ow: Memory.

103 104 105 106 107 108 109
101

102

Weighted Configurations

M
em

or
y(
M
B
))

(b) Plot of memory for ow, found in Table 7.2a.

Table 7.2: Test case ow, memory results.
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
10s25ss 2× 1025 23.7 OOM
50s25ss 5.96046× 1042 190.1 OOM
100s25ss 2× 1050 242.3 OOM
250s25ss 1.77636× 1060 418.5 OOM
500s25ss 5.96046× 1067 OOM OOM
1000s25ss 2× 1075 OOM OOM

(a) Case Ms25ss: Memory.

1022 1030 1038 1046 1054 1062

101.5
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Weighted Configurations
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em

or
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)

(b) Plot of memory for Ms25ss, found in Table 7.3a.

Table 7.3: Test case Ms25ss, memory results.

62



Test case Weighted Configurations Time by symbolic Time by explicit
10s2ss 200 0.5192873 s 1.287193 s
100s2ss 20000 0.7574245 s 3 min 28.4298882 s
250s2ss 125000 0.7894276 s T imeout
500s2ss 500000 0.9154329 s T imeout
1000s2ss 2000000 2.3884742 s T imeout

(a) Case Ms2ss: Time.
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(b) Plot of time for Ms2ss, found in Table 7.4a.

Table 7.4: Test case Ms2ss, time results.
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Test case Weighted Configurations Time by symbolic Time by explicit
ow10x 1804 0.597709 s 1 min 18.2604205 s
ow15x 3904 0.6567422 s 8 min 4.8949852 s
ow20x 6804 0.7469507 s 32 min 18.694073 s
ow30x 15004 0.638447 s T imeout
ow40x 26404 1.0193067 s T imeout
ow50x 41004 0.9224052 s T imeout
ow100x 162004 1.1724107 s T imeout
ow250x 1005004 2.4002739 s T imeout
ow500x 4010004 5.8915896 s T imeout
ow1000x 16020004 20.5681978 s T imeout
ow2000x 64040004 1 min 22.0163743 s T imeout
ow3000x 144060004 3 min 39.7417351 s T imeout
ow4000x 256080004 6 min 4.6073954 s T imeout
ow5000x 400100004 12 min 8.5975853 s T imeout
ow10000x 1600200004 55 min 39.70168 s T imeout

(a) Case ow: Time.
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(b) Plot of time for ow, found in Table 7.5a.

Table 7.5: Test case ow, time results.
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Test case Weighted Configurations Time by symbolic Time by explicit
10s25ss 2× 1025 0.7351674 s OOM
50s25ss 5.96046× 1042 4.9005141 s OOM
100s25ss 2× 1050 36.1657469 s OOM
250s25ss 1.77636× 1060 9 min 53.5291146 s OOM
500s25ss 5.96046× 1067 OOM OOM
1000s25ss 2× 1075 OOM OOM

(a) Case Ms25ss: Time.
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(b) Plot of time for Ms25ss, found in Table 7.6a.

Table 7.6: Test case Ms25ss, time results.
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7.3 Discussion

When looking at all the data it is immediately clear that the symbolic representation is not
only faster, but able to represent much larger games. This is of course due to the symbolic
representation - where the explicit representation lists and checks each weighted configuration
in the game, the symbolic representation merely adds a boolean variable whenever needed.
This means that the exponential blow-up seen in the explicit representation is not present in
the symbolic.
In the symbolic representation, the time required to find a winning space is more dependent
on the rules themselves, rather than the number of possible weighted configurations. This also
means that the algorithm terminates much earlier if no strategy is possible.
To support this claim, consider the case ow100x. For this case a winning space does indeed
exist, and it is found in only 1.17 seconds. However, if we were to design the rule in such a
way that it leads to a less complex BDD, we would require a lot fewer iterations.

� �
1 s t a t e s e t x :X={one , two} i n i t one ;
2 s t a t e s e t y :Y={a lpha , beta } i n i t a l pha ;
3
4 w e i g h t s e t a :A [ 0 , 4 0 0 ] i n i t 0 ;
5 w e i g h t s e t b :B [ 0 , 1 0 0 ] i n i t 0 ;
6
7 e r u l e s :
8 x i n { one } , y i n { a lpha } −> a+=401;
9 x i n { two } , y i n { beta } −> a−=401;

10 x i n { one } , y i n { a lpha } −> x={two } , b+=401;
11 x i n { two } , y i n { beta } −> x={one } , b+=401;
12
13 u r u l e s :
14 x i n { two } , y i n { a lpha } −> y={beta } , a−=401, b−=401;
15 x i n { one } , y i n { beta } −> y={a lpha } , a+=401, b−=401;� �

Listing 7.3: ow100x modified to have no winning strategy.

Consider the alterations made to ow100x in Listing 7.3. In this case, it should be clear that
no winning strategy is possible - every rule in the game breaks the bound no matter what.
As such the rules do not create any new nodes in a BDD - in the quantification step no
assignments satisfies the BDDs describing the rules. And as such, the algorithm terminates
immediately after two iterations, in only 0.44 seconds.

It should be noted that due to the memory snapshots that were taking along the process, some
of the lower time results may be slightly skewed. This is due to the memory snapshot, taking
an average of 550ms. This value has little impact on the comparison of the algorithms however,
as this delay is present for all datasets, both in the explicit and symbolic representation. Each
dataset does have slight fluctuations, since only one test was done on each test-case, but this
does not seem to impact the interpretation of the data.

7.3.1 Space

The results on memory testing are displayed in Tables 7.1a, 7.2a and 7.3a. Some of these
results are marked as OOM , denoting that the system encountered an Out Of Memory
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exception. Likewise, some results are marked as Timeout, if the system exceeded the 1 hour
time limit.

A common pattern for all the memory test case is a sudden jump in memory consumption -
at places it would seem that the symbolic representation consumes more memory than the
explicit approach. This is mostly due to the desire for speed in the symbolic representation.
As mentioned earlier, BuDDy works with a custom garbage collector, and allocating often
and garbage collecting often can have a severe impact on performance. Depending on the
estimated size of a game, and the complexity of the rules, a certain cache size of BuDDy and
initial allocated memory is set. It is an ongoing effort to improve the way the tool predicts
the amount of memory needed. However, the largest pre-allocated memory in BuDDy is
roughly 150MB. This is apparent from the memory data points being more consistent when
the memory exceeds this value.

The Ms2ss test cases, seen in Table 7.1, maintained 2 statesets and 1 weightset while scaling
the number of states in each stateset up. The sudden jump in the symbolic algorithms, is
assumed to be caused by BuDDy pre-allocating a larger amount of nodes for large games.

The ow test cases, seen in Table 7.2, maintained the same game graph, but adjusted the upper
bound of the weightsets. The first thing worth noting is that these test cases, even though
they express more weighted configuration than the Ms2ss test cases, use less memory for a
comparable number of weighted configurations. For both algorithms, it seems encoding large
weightsets require less memory than encoding large statesets. While it seems that the symbolic
representation is more efficient, the results from the explicit algorithm unfortunately timed
out. Again we observe the sudden spike in memory usage between test case ow250x and test
case ow500x.

Overall the symbolic approach is far less dependant on the constant of the weightsets. The
memory representation is directly dependent on the number of nodes in the BDDs constructed.
The number of nodes in a BDD in buddy, is influenced partly by the number of variables
needed to represent a game, but also the amount, and complexity of the rules involving those
variables.

7.3.2 Time

The results on time testing are displayed in Tables 7.4a, 7.5a and 7.6a. Overall the symbolic
approach is far superior to the explicit approach. In Table 7.5a we see how the symbolic
representation finds a winning space in fractions of seconds, compared to the explicit approach,
and how it handles large examples with ease.
In [8], we saw how even moderately sized games took hours to compute, as seen in Figure 7.3
It should be noted that the results shown there cannot be directly compared, as they were
conducted on another test case. It is however a good indication of the exponential blow-up
seen in the explicit approach.

The Ms2ss test cases, seen in Table 7.4, show a clear difference between the symbolic algorithm
and the explicit algorithm. Even in the simplest of the test cases, the 10s2ss case with a mere
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Figure 7.3: The slow times of the explicit approach, as shown in [8].

200 weighted configurations, it is clear that the symbolic algorithm uses substantially less time
to compute a fixed point, compared to the explicit algorithm. Even at a higher amount of
weighted configurations, where the explicit exceeds the 1-hour time out, the symbolic algorithm
takes mere seconds to find the winning space.

The ow test cases, seen in Table 7.2, also demonstrate a clear advantage in the symbolic
algorithm, compared to the explicit algorithm. Already at the ow30 test case, with about
15.000 weighted configurations, the explicit algorithm requires over an hour of computation
time. The symbolic algorithm does not reach any computation time similar until the ow10000x
case, which has 1.6 billion weighted configurations.

7.3.3 Complexity

As mentioned briefly in Section 4.1, the complexities of operations on BDDs, scale linearly
with the size of the BDDs. As such the complexity of an energy game, is directly influenced
by the efficiency of the operations on BDDs. During the fixed point algorithm, we are only
using calls to Apply and Restrict, which both scale linearly with the number of nodes in
the BDD. Quantification is, as mentioned, implemented using a call to Apply, and two calls
to Restrict.
In the very worst-case, the blow-up of a BDD may be exponential as well. However, in this
case, the average case seems to scale polynomially.
The worst case of BDD complexity, would be a game, where the game is fully connected
between all configurations, and where the weights assignments in these rules, all result in
weighted configurations being in the winning space, and branching the BDD out for every
single possible weighted configuration. Such a BDD is highly unlikely.
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CHAPTER 8

CONCLUSION

We have shown an approach to encode energy games, written with LEG syntax, symbolically. A
symbolic fixed point algorithm have been presented. We have implemented the transformation
to symbolic encoding and the symbolic algorithm in the tool EgGS. The tool, EgGS has been
used to test both the symbolic algorithm and explicit algorithm. The tests clearly indicate
that the symbolic algorithm is superior in computation time. The tests also indicate that the
symbolic algorithm consumes less memory compared to the explicit algorithm when dealing
with large amounts of weighted configurations.
The process of synthesizing a strategy using the symbolic algorithm is mainly dependent on
the operations on binary decision diagrams. As such a strategy can be found in polynomial
time in the average case. The explicit approach has an exponential growth relative to the
number of weighted configurations, which prevents the representation of larger games.
It has been shown in Section 4.2 how the syntax of LEG, can be encoded to describe a game
through boolean variables and expressions. The binary decision diagram data structure has
been applied to compactly encode the boolean expressions. With the usage of the BDD data
structure, several important operations during the symbolic fixed point computation, have
been made easy.
We have presented the features and the implementation of EgGS in detail, and elaborated on
how it can be used to generate strategies. In regards to the usability and overall utility of the
tool, more features could be desired, however, we have shown that the core implementation is
both robust and usable.
It has been demonstrated that LEG syntax is capable of representing a discretely timed game
and a strategy for a timed example has been presented, without any changes to complexity.
What follows from this project, is a software tool which can accurately and efficiently generate
an energy strategy even for complex energy games expressed in LEG.
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APPENDIX A

SYNTAX AND SEMANTICS OF LEG

In this appendix we present the syntax and semantics of LEG. This is an excerpt of the
previous report [8].

A.1 Abstract Syntax

The abstract syntax M of LEG is given by:

M ::= stateset SSet weightset WSet in rules ERules;URules,

and we define the set MODELS to be the set of all models described by this syntax.

The collection of all statesets is given by

SSet ::= s1 : S1inita1; . . . ; sn : Sninitan

M ::= stateset SSet weightset WSet in rules ERules;URules
SSet ::= s1 : S1inita1; . . . ; sn : Sninitan, where Si is a finite set and ai ∈ Si

WSet ::= w1 : W1initv1; . . . ;wk : Wkinitvk, where Wi ::= {j ∈ N | li ≤ j ≤ ui} and vi ∈Wi

ERules ::= <Rule1>, . . . , <Rulen>
URules ::= [Rule1], . . . , [Rulen]
Rule ::= Pre− >Upd
Pre ::= s1 ∈ A1, . . . , sn ∈ An, where Ai ⊆ Si

Upd ::= s1 :∈ SExp1; . . . ; sn :∈ SExpn;w1 := WExp1; . . . ;wk := WExpk

SExpi ::= si | Ai, where Ai ⊆ Si

WExpj ::= wl |WExp op WExp | n where op ∈ {+,−, ∗} and n ∈ N

Table A.1: Abstract Syntax of LEG.

75



where S1, . . . , and Sn are finite sets of states, si is the statevariable and the initial state is
ai ∈ Si. We define the set SSETS to be the set of all statesets described by this syntax.

WSet ::= w1 : W1initv1; . . . ;wk : Wkinitvk

is a collection of weightsets, where Wi is a set of integers from some lower bound li to some
upper bound ui, i.e. Wi ::= {j ∈ N | li ≤ j ≤ ui}. The initial value of the weightvariable
wi is vi ∈ Wi. We define the set WSETS to be the set of all weightsets described by this
syntax.

The initial weighted configuration c0 is given by (a1, . . . , an, v1, . . . vk).

ERules ::= <Rule1>, . . . , <Rulen>

is a list of existential rules. We define the set ERULES to be the set of all existential rules
described by this syntax.

URules ::= [Rule1], . . . , [Rulen]
is a list of universal rules. We define the set URULES to be the set of all universal rules
described by this syntax.

Every rule Rule ::= Pre− >Upd consists of preconditions Pre and an update Upd. We define
the set RULES to be the set of all rules described by this syntax.

A precondition is a specification that a state variable si must be in some set of states Ai,
where Ai must be a subset of the stateset Si for a rule to be enabled. A precondition is given
by

Pre ::= s1 ∈ A1, . . . , sn ∈ An,

where Ai ⊆ Si. We define the set PRE to be the set of all preconditions described by this
syntax.

An update is the assignment of the state variable si to be in some state expression SExpi

and for some weight wj to be assigned the value specified by the weight expression WExpj ,
i.e.

Upd ::= s1 :∈ SExp1; . . . ; sn :∈ SExpn;w1 := WExp1; . . . ;wk := WExpk.

We define the set UPD to be the set of all updates described by this syntax.

A state expression SExpi is either the state si (i.e. the state would remain the same) or a set
of states Ai, which is a subset of Si, i.e.

SExpi ::= si | Ai,

where Ai ⊆ Si. We define the set SEXPi to be the set of all stateexpressions described by
this syntax.

A weight expression is either some weightvariable wl or some natural number n or the arithmetic
expression of two weight expressions, limited to the arithmetic operators for multiplication,
subtraction and addition, i.e.

WExpj ::= wl |WExp op WExp | n,
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where op ∈ {+,−, ∗} and n ∈ N. We define the set WEXP to be the set of all weightexpres-
sions.

A.2 Semantics

ModelJstateset SSet weightset WSet in rules ERules;URulesK =
(SSetJSSetK×WSetJWSetK, ERulesJERulesK,URulesJURulesK, c0)

SSetJs1 : S1; . . . sn : SnK = S1 × · · · × Sn

WSetJw1 : W1; . . . wn : WnK = W1 × · · · ×Wn

ERulesJ<Rule1>, . . . , <Rulen>K =
⋃n

i=1RuleJRuleiK

URulesJ[Rule1], . . . , [Rulen]K =
⋃n

i=1RuleJRuleiK

RuleJPre− >UpdK = {(c1, c2) | c1 ∈ PreJPreK and (c1, c2) ∈ UpdJUpdK}

PreJs1 ∈ A1, . . . , sn ∈ AnK = {c | c(si) ∈ Ai for all i = 1 . . . n}

UpdJs1 :∈ SExp1; . . . ; sn :∈ SExpn;w1 := WExp1; . . . ;wk := WExpkK =
{(c1, c2) | c2 = (s1, . . . , sn, w1, . . . wk) and si ∈ SExpiJSExpiKc1 and wj =WExpjJWExpjKc1
for all i = 1 . . . n and j = 1 . . . k}

SExpiJsiK = {(c, ai) | ai = c(si)}
SExpiJAiK = {(c, ai) | ai ∈ Ai where Ai ⊆ Si}

WExpJwlKc = c(wl)
WExpJWExp1 op WExp2Kc =WExpJWExp1Kc opWExpJWExp2Kc where op ∈ {+,−, ∗}
WExpJnKc = n where n ∈ N

Table A.2: Denotational Semantics of LEG.

To give a proper semantic for LEG, we must first define some collections to describe the sets
of syntactic expressions. Let EGAMES be the collection of all Energy Games. Let FinSET
be the collection of all finite sets.

LEG defines a two-player game G:

G = (C,→∃,→∀, c0)

where C is a set of weighted game configurations, →∃ is the existential transitions, →∀ is the
universal transitions and co is the initial weighted configuration.

The weighted configurations are the Cartesian product of all statesets and all weightsets given
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Model : MODEL→ EGAMES
SSet : SSET→ FinSET
WSet : WSET → FinSET
ERules : ERULES→ 2C×C

URules : URULES→ 2C×C

Rule : RULE→ 2C×C

Pre : PRE→ 2C

Upd : UPD→ 2C×C

SExpi : SEXPi → 2C×Si

WExp : WEXP→ (C → Z)

Table A.3: Signatures of Denotational Semantics of LEG.

by M , i.e.

C = S1 × · · · × Sn ×W1 × · · · ×Wk =
n∏

i=1
Si ×

k∏
j=1

Wj .

The existential transitions have the signature →∃⊆ C × C and the universal transitions also
have the signature →∀⊆ C × C.

We introduce the semantic functionModel with the signature MODEL→ EGAMES. The
function is defined as

ModelJstateset SSet weightset WSet in rules ERules;URulesK =

(SSetJSSetK×WSetJWSetK, ERulesJERulesK,URulesJURulesK, c0).

Likewise we introduce the two functions SSet andWSet with the signature SSET→ FinSET
and WSET→ FinSET, respectively. We define the semantic functions:

SSetJs1 : S1; . . . sn : SnK = S1 × · · · × Sn

and
WSetJw1 : W1; . . . wn : WnK = W1 × · · · ×Wn.

We introduce the two semantic functions ERules and URules, with signatures ERULES→
2C×C and URULES→ 2C×C . We define these two functions

ERulesJ<Rule1>, . . . , <Rulen>K =
n⋃

i=1
RuleJRuleiK

and

URulesJ[Rule1], . . . , [Rulen]K =
n⋃

i=1
RuleJRuleiK,

respectively.
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We define two weighted configurations (c1, c2) to be in a rule, JPre→ UpdK, if and only if c1
is in JPreK and (c1, c2) are in JUpdK, i.e.

(c1, c2) ∈ JPre→ UpdK def⇐⇒ c1 ∈ JPreK ∧ (c1, c2) ∈ JUpdK.

A rule has the signature JPre→ UpdK ⊆ C ×C, i.e. its range is a mapping from one weighted
configuration to another weighted configuration. The semantic function Rule has the signature
RULE→ 2C×C . We define the function

RuleJPre− >UpdK = {(c1, c2) | c1 ∈ PreJPreK and (c1, c2) ∈ UpdJUpdK}.

We introduce a notation for referring to the states and weights a configuration is made of: If a
weighted configuration c is made up of states and weights, c = (a1, . . . , an, v1, . . . , vk), then we
denote c(si) = ai and c(wj) = vj .

JPreK describes the conditions under which a rule applies. These conditions are described by
a weighted configuration - a rule is enabled if the current weighted configuration is described
by the conditions found in Pre. Thus, JPreK must be a set of weighted configurations, so the
signature must be JPreK ⊆ C. The set of configurations under which the conditions are met,
are the possible combinations of states for each statevariable described in JPreK. In order to
make these configurations into weighted configurations, it is necessary to combine them with
weights. Because LEG does not have conditions related to weights, the weights are simply
whatever the weights happen to be in c. We introduce the semantic function Pre which has
signature PRE→ 2C . We define

PreJs1 ∈ A1, . . . , sn ∈ AnK = {c | c(si) ∈ Ai for all i = 1 . . . n}.

JUpdK is to describe the effect on the system, i.e. a change in state and weight. A change
in state and weight is a transition from one weighted configuration to another weighted
configuration. The signature is thus JUpdK ⊆ C × C. Given a weighted configuration c1 and
an update JUpdK it is possible to determine a new weighted configuration c2 by evaluating the
state expressions SExpi and weight expressions WExpj given by the syntax.

(c1, c2) ∈ Js1 :∈ SExp1; . . . ; sn ∈ SExpn;w1 := WExp1; . . . ;wk := WExpkK

def⇐⇒

∀i = 1 . . . n .JSExpiK (c1, c2 (si)) ∧ ∀j = 1 . . . k. c2(wj) = JWExpjKc1.

In order to achieve this we introduce the semantic function Upd with signature UPD→ 2C×C .
We define this function:

UpdJs1 :∈ SExp1; . . . ; sn :∈ SExpn;w1 := WExp1; . . . ;wk := WExpkK =

{(c1, c2) | c2 = (s1, . . . , sn, w1, . . . wk) and si ∈ SExpiJSExpiKc1 and wj =WExpjJWExpjKc1

for all i = 1 . . . n and j = 1 . . . k}.

A stateexpression for changing the state in a configuration is a mapping between a weighted
configuration and a state. Stateexpressions have the signature JSExpiK ⊆ C×Si. The abstract
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syntax requires a definition of the semantics for both (c, ai) ∈ JsiK and (c, ai) ∈ JAiK. For the
case (c, ai) ∈ JsiK, the state expression is referring to the current state of the state variable -
this is equivalent to no change, (c, ai) ∈ JsiK

def⇐⇒ ai = c(si). We introduce a semantic function
SExpi with signature SEXPi → 2C×Si . We define the function:

SExpiJsiK = {(c, ai) | ai = c(si)}.

For the case (c, ai) ∈ JAiK, the resulting tuple must contain the statevariable ai in any state
from the set of states Ai, where Ai ⊆ Si. Thus, (c, ai) ∈ JAiK

def⇐⇒ ai ∈ Ai define the
nondeterministic assignment of the statevariable ai to any state in Ai ⊆ Si. We extend the
semantic function SExpi with a definition for the case JAiK:

SExpiJAiK = {(c, ai) | ai ∈ Ai}

where Ai ⊆ Si.

A weightexpression is a mapping between a weighted configuration c and a new weight value.
This gives the weightexpression the signature: JWExpjK : C → Z. The semantic function is
required to cover the cases JnKc, JwlKc and Jwexp1 op wexp2Kc. We introduce the semantic
function WExp with the signature WEXP→ (C → Z). We define how the function acts on
the three case:

WExpJwlKc = c(wl)

WExpJWExp1 op WExp2Kc =WExpJWExp1Kc opWExpJWExp2Kc

where op ∈ {+,−, ∗}, and
WExpJnKc = n

where n ∈ N.
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APPENDIX B

TURN-BASED ENERGY GAMES

Earlier sources of energy games present a different way of defining the games. It is possible to
express energy games as turn-based models, where each configuration belongs to the existential
and universal player respectively. This is for example shown in [13]. In this case, existential
locations are marked with a diamond (�) and universal locations with a square (�). We will
show that these methods of representing the games are equivalent in expressive power. When
we introduce LEG in Chapter 3, we will demonstrate how this language is suited for expressing
transitions as existential or universal.

This change means little to the implementation and the semantics of the games. One way
of looking at this abstraction is the transformation to the other representation of energy
games. When encountering a node which has both existential and universal transitions, the
universal player has the choice of playing his own transitions, or surrendering the choice to
the existential player. This is reflected in the transformation in Figure B.1b.

We will now show how an energy game represented by owned transitions can be transformed
to an energy game with owned states i.e. a turn-based energy game. Please refer to the two

(a) G = (Q,−→∃,−→∀, q0). (b) GT = (Q∃,Q∀,−→, q0).

Figure B.1: Transitions belonging to players, and locations belonging to players.

81



definitions of energy games found in Figure B.1.

First we must make the transformation from one set of locations Q to two sets of locations,
existential and universal Q∃,Q∀.

We denote by GT the two-player turn-based energy game equivalent of an energy game G,
which is obtained from the transformation below.

Theorem B.1 The turn-based energy game GT is equivalent in complexity and execution to,
and can be transformed to and from an energy game G.

This is shown in the following transformation:

We say that q ∈ Q∀ iff q −→∀ q′ for some q′.
And q ∈ Q∃ iff q −→∃ q′ for some q′ and q −→∀ q′′ /∈−→∀ for any q′′.

Next we transform the transition relations −→∃,−→∀ to one transition relation

−→⊆ (Q∃ ∪Q∀)× Zk × (Q∃ ∪Q∀).

For universal transitions we say that

if q ∈ Q∀ and there exists a transition q w−→∀ q′ then −→=−→ ∪(q, w, q′).

For existential transitions we say that

if q ∈ Q∀ and q
w−→∃ q′ then −→=−→ ∪(q, 0, q′′) ∪ (q′′, w, q′)

where q′′ ∈ Q∃ is a newly created intermediate existential location.

If q ∈ Q∃ then every transition is added to −→ without transformation.

Strategies and the definition of them are also defined in the same manner, however, we say that
a weighted run for Player 1 (∃) respects a strategy σ if σ((q0, v0), ..., (qn, vn)) = (qn+1, vn+1)
for all n where qn ∈ Q∃.

As such we have shown that this definition of energy games can be reduced to a turn-based
energy game, and is therefore also subject to the same complexity results.
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APPENDIX C

FIXED POINTS

In this chapter we will give some formalization of fixed points, and how they are used to find
winning spaces, and thereby winning strategies in energy games. Some of the text in this
chapter is based on [3, 17].

Initially, we aim to describe Tarski’s Fixed Point Theorem, and then explain how this forms
the basis of achieving a fixed point of an energy game. To do so we will first briefly introduce
partially ordered sets and complete lattices.

Definition C.1 Partially Ordered Sets (posets)

A partially ordered set, or, a poset - is a pair (D,v) where D is a set and v is a binary
relation over D for which it holds that:
v is reflexive: d v d for all d ∈ D.
v is antisymmetric: d v e and e v d implies that d = e for all d, e ∈ D.
v is transitive: d v e v d′ implies that d v d′ for all d, d′, e ∈ D.

We say that a pair (D,v) is totally ordered if, for all d, e ∈ D, d v e or e v d holds.

Definition C.2 Lower and Upper Bounds

If (D,v) is a poset, and X is a set, then consider X ⊆ D. We say that d ∈ D is an upper
bound of X iff x v d for all x ∈ X.
d is the least upper bound (lub) of X, written

⊔
X, iff

d is an upper bound for X and
d v d′ for every d′ ∈ D that is an upper bound for X.

We say that d ∈ D is a lower bound for X iff d v x for all x ∈ X.
d is the greatest lower bound (glb) of X, written

d
X iff

d is a lower bound for X and
d′ v d for every d′ ∈ D that is a lower bound for X.
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Definition C.3 Complete Lattices

A poset (D,v) is a complete lattice iff
d

X and
⊔

X exist for every subset X of D. A complete
lattice has a least element ⊥ =

d
D (bottom element), and a greatest (top) element > =

⊔
D.

Monotonic Functions and Fixed Points Let (D,v) be a poset. We say that a function
f : D → D is monotonic iff d v d′ implies that f(d) v f(d′) for all d, d′ ∈ D. An element
d ∈ D is called a fixed point of f iff d = f(d).

When computing the fixed point of the configuration space (the winning space), we must
therefore define a monotonic function f : W→W to be able to compute it.

Theorem C.1 Tarski’s Fixed Point Theorem

Let (D,v) be a complete lattice, and f : D → D be monotonic. Then f has a largest fixed
point zmax and a least fixed point zmin given by.

zmax =
⊔
{d ∈ D | d v f(d)},

zmin =
l
{d ∈ D | f(d) v d},

A full proof for this theorem is found in [3, 17].

Computation of Greatest Fixed Point Let (2W,⊆) be our complete lattice and f :
2W → 2W a monotonic function, where W is the set of all possible weighted configura-
tions.

Then, from Tarski’s theorem we know that the greatest (and least) fixed point of f is:

zmax = fn(W) zmin = fm(∅) (C.1)

Or, in other words, the greatest fixed point is equal to the function of the top element for
some n,m ∈ N, where ∅ = ⊥ and W = >. Since f is monotonic we know that we have the
non-growing sequence

W ≥ f(W) ≥ f2(W) ≥ ... ≥ fn(W)

and the non-decreasing sequence

∅ ≤ f(∅) ≤ f2(∅) ≤ ... ≤ fm(∅)

As an example of a fixed point computation, consider the fixpoint computation of the type of
energy game given in this report. If we let W ∈ 2W be a set of configurations of a game G, c
an element of W, and f : 2W → 2W be defined as:

f(Wn) ={Wn+1 | c is in Wn+1 iff
there exists a transition (c, w, c′) ∈−→∃
and for every existing transition (c, w, c′) ∈−→∀
c′ is in Wn}
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Then it should be apparent that f is indeed monotonic, since W ≥ f(W) ≥ f2(W) ≥ ... ≥
fn(W) and ∅ ≤ f(∅) ≤ f2(∅) ≤ ... ≤ fm(∅) and that (2W,⊆) is a complete lattice.

Knowing this, we can derive from the fixed point theorem, that since 2W is a complete lattice,
and f is monotonic, then , by application of Tarski’s Fixed Point Theorem, we know that
the greatest fixed point can be found by repeated computation of the top element of 2W in
fn(W)(EquationC.1), and a unique greatest fixed point is then guaranteed to be found in a
finite number of steps n.
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APPENDIX D

RAW TEST RESULTS
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
10s2ss 200 16.02 14.05
100s2ss 20000 176.5 26.09
250s2ss 125000 172.5 Timeout
500s2ss 500000 176.5 Timeout
1000s2ss 2000000 177.2 Timeout

(a) Case Ms2ss: Memory.

102 103 104 105 106

101.5

102

Weighted Configurations
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(b) Plot of memory for Ms2ss, found in Table D.1a.

Table D.1: Test case Ms2ss, memory results.
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
ow10x 1804 13.03 19.77
ow15x 3904 13.6 14.1
ow20x 6804 14.72 14.63
ow30x 15004 15.22 Timeout
ow40x 26404 15.81 Timeout
ow50x 41004 18.7 Timeout
ow100x 162004 22.26 Timeout
ow250x 1005004 25.77 Timeout
ow500x 4010004 177 Timeout
ow1000x 16020004 180 Timeout
ow2000x 64040004 203.7 Timeout
ow3000x 144060004 235.9 Timeout
ow4000x 256080004 256.1 Timeout
ow5000x 400100004 294.3 Timeout
ow10000x 1600200004 446.8 Timeout

(a) Case ow: Memory.
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(b) Plot of memory for ow, found in Table D.2a.

Table D.2: Test case ow, memory results.
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
war10x 1804 19.9 21.73
war50x 41004 21.08 17.8
war100x 162004 21.95 Timeout
war250x 1005004 23.84 Timeout
war500x 4010004 177.1 Timeout
war1000x 16020004 179.2 Timeout

(a) Case war: Memory.
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(b) Plot of memory for war, found in Table D.3a.

Table D.3: Test case war, memory results.
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Test case Weighted Configurations Memory by symbolic (MB) Memory by explicit (MB)
10s25ss 2× 1025 23.7 OOM
50s25ss 5.96046× 1042 190.1 OOM
100s25ss 2× 1050 242.3 OOM
250s25ss 1.77636× 1060 418.5 OOM
500s25ss 5.96046× 1067 OOM OOM
1000s25ss 2× 1075 OOM OOM

(a) Case Ms25ss: Memory.
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(b) Plot of memory for Ms25ss, found in Table D.4a.

Table D.4: Test case Ms25ss, memory results.
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Test case Weighted Configurations Time by symbolic (ms) Time by explicit (ms)
10s2ss 200 519.2873 1287.193
100s2ss 20000 757.4245 208429.8882
250s2ss 125000 789.4276 Timeout
500s2ss 500000 915.4329 Timeout
1000s2ss 2000000 2388.4742 Timeout

(a) Case Ms2ss: Time.
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(b) Plot of time for Ms2ss, found in Table D.5a.

Table D.5: Test case Ms2ss, time results.
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Test case Weighted Configurations Time by symbolic (ms) Time by explicit (ms)
ow10x 1804 597.709 78260.4205
ow15x 3904 656.7422 484894.9852
ow20x 6804 746.9507 1938694.073
ow30x 15004 638.447 Timeout
ow40x 26404 1019.3067 Timeout
ow50x 41004 922.4052 Timeout
ow100x 162004 1172.4107 Timeout
ow250x 1005004 2400.2739 Timeout
ow500x 4010004 5891.5896 Timeout
ow1000x 16020004 20568.1978 Timeout
ow2000x 64040004 82016.3743 Timeout
ow3000x 144060004 219741.7351 Timeout
ow4000x 256080004 364607.3954 Timeout
ow5000x 400100004 728597.5853 Timeout
ow10000x 1600200004 3339701.68 Timeout

(a) Case ow: Time.
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(b) Plot of time for ow, found in Table D.6a.

Table D.6: Test case ow, time results.
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Test case Weighted Configurations Time by symbolic (ms) Time by explicit (ms)
war10x 1804 625.8806 6515.9312
war50x 41004 813.4001 2605022.448
war100x 162004 900.3552 Timeout
war250x 1005004 1258.4539 Timeout
war500x 4010004 2036.4318 Timeout
war1000x 16020004 3555.194 Timeout

(a) Case war: Time.
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(b) Plot of Time for war, found in Table D.7a.

Table D.7: Test case war, time results.
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Test case Weighted Configurations Time by symbolic (ms) Time by explicit (ms)
10s25ss 2× 1025 735.1674 OOM
50s25ss 5.96046× 1042 4900.5141 OOM
100s25ss 2× 1050 36165.7469 OOM
250s25ss 1.77636× 1060 593529.1146 OOM
500s25ss 5.96046× 1067 OOM OOM
1000s25ss 2× 1075 OOM OOM

(a) Case Ms25ss: Time.
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(b) Plot of time for Ms25ss, found in Table D.8a.

Table D.8: Test case Ms25ss, time results.
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