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Chapter 1

Introduction

A Brain Computer Interface (BCI) is a communication system that enables
the user to interact with a computer using his/her brain’s electromagnetic
signals. In the last decades, research in the BCI field has acquired an in-
creased importance because low-cost devices have enabled BCI methodolo-
gies and theories to be applied in numerous fields of study. There are differ-
ent technologies that can measure the brain’s activity, these can vary in size,
cost and capabilities. Depending on the field application of the BCI, special
hardware and software are used. Some BCI technologies have an high spatial
resolution, like the Magnetic Resonance Imaging (MRI). Those technologies
are used to obtain detailed information about localization and amplitude
of the brain signals. Technologies used for the analysis of the brain while
performing an action or processing an external input need to have a higher
temporal resolution, like electroencephalography (EEG). A higher temporal
resolution allows the observation of changes in the state of the brain that
happen within short periods of time.

In a BCI system that uses EEG technology, the electrical activity of the
brain is read by a headset placed on the user’s head. It has electrodes dis-
tributed symmetrically over the scalp and forehead. Initially the electrical
potential, defined as the voltage difference between two electrodes originated
by the neuronal activity of the brain, is detected [1]. Successively the EEG
signals can be used to control a computer in real time or analyzed to find
patterns or models of behavior.

The brain controls all the functions and activities of the body. For con-
trolling movement, both conscious and unconscious, the brain sends electrical
signals to the nervous system that in turn activate muscles or organs [2]. For
interpreting the external world, changes in the environment trigger responses
in the brain, and these can be attributed to input detection, recognition and
processing. These two different functionalities can be categorized as ac-
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tive or passive. Active behavior involves sending signals to the body, while
passive behavior interprets the input from external sources. A BCI system
can be tuned and modified to successfully detect one of these behaviors [3][4].

The use of a BCI constructed for passive behavior opens up the possibil-
ity to study human emotional responses from a new perspective. To be able
to describe the emotion that a certain stimuli (visual, auditive or tactile)
triggers on a person is a difficult task. The main reason is because emotions
are subjective and the terminology used to describe them depends on the
subjects and their cultural background. Nevertheless, evaluating changes in
the state of the brain, without defining or describing emotion brings forth
the possibility of measuring the brain’s response objectively. Hence, the use
of a BCI system, allows us to circumvent the limitations of subjective as-
sessments by analyzing the brain’s unbiased responses.

Therefore, this project aims to study the effect that audio stimuli in-
duces on the brain. In particular, we study how variation of a single audio
parameter affects the brain. The main objective is to model how the brain
responds to controlled audio variations. Successively, further research could
investigate what those brain variations represent in the emotional plane, po-
tentially allowing to guide the user into a different state by varying the audio
parameters. This is useful for various applications in fields spanning from
the entertaining industry to music therapy.

The next section will define the aim of this project in a more rigorous
manner, presenting the mathematical and statistical tools used to develop
the cause-effect, audio to emotional state, understanding.

1.1 Project Statement

This project is a preliminary analysis on how single sound-parameter varia-
tions trigger different responses in the brain. The objective of this analysis
is to find a direct relationship between a controlled single sound-parameter
variations and the brain’s signals by performing statistical regression analy-
sis.

The relationship or model representing the brain-sound response is an
objective and generalized measure of the brain’s behavior to a controlled
exposure of specific sounds. This model can then be used to infer what re-
gion or emotion gets triggered or heightened by the increase or decrease of a
sound parameter. Note that this inference can now be based upon objective
measures that are not dependent on a subject’s perspective or the subject’s
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classification of their own emotional state. Furthermore, models for different
sound parameters can be combined to speculate upon the expected response
of modifying several sound parameters simultaneously.

Specifically, this project will focus on two different sound parameters,
namely loudness and frequency. While these parameters will be varied to
trigger some response, all remaining sound parameters will be fixed on a
limited set of defined values.

This project will first seek to design an experiment that yields a represen-
tative amount of data for the regression analysis. This process begins with
the selection of range and values of all variable and fixed parameters fol-
lowed by the design and implementation of the experiment. The experiment
is divided into two fragments, the loudness experiment and the frequency
experiment. For the first experiment, loudness is the variable parameter
while frequency, timbre and the sound envelope are fixed. For the second
experiment, frequency is the variable parameter while loudness, timbre and
the sound envelope are fixed. The objective of the experiments is to obtain
the raw EEG signals of the listener while he/she is exposed to loudness or
frequency variations. The EEG signals will be acquired using the Emotiv
EPOC1, a consumer grade EEG device.

The signals obtained in the experiments are pre-processed to remove
noise, artifacts and to isolate certain frequency bands, that are associated
with particular brain activities. This is accomplished by applying well known
signal processing techniques that are standard in BCI. Furthermore, specific
intervals of time, related to the brain’s response, are selected as trials.

Using the covariance matrices of each trial, a measure of the distance
between them can be obtained. Commonly in BCI, the distance between
covariances are handled in Euclidean space, not taking into account that co-
variance matrices are symmetric positive definite (SPD) matrices and there-
fore belong to the curved space of a Riemannian manifold [5]. In this project
we will consider the covariance matrices as points in the Riemannian space.
These points we will be used to perform a statistical regression analysis in
this space in order to estimate the brain’s response signal as a function of
single-sound parameter variation.

If a valid regression model is found, interpolation between two covariance
matrices can be applied. The Riemannian interpolation can be used to map
a given loudness or frequency value with its corresponding brain state, by
approximating between two known covariance matrices.

1http://www.emotiv.com/
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1.2 Structure of the report

The report is sectioned into four parts:

Part I: Introduction

Chapter 1 contains a general introduction to the BCI field followed by the
project statement. A summary of various related research and basic theories
is described in Chapter 2. Chapter 3 gives a description of the EEG device
used in the experiments and introduces the basic notation for the data ob-
tained through the EEG device.

Part II: Theory

The notation and theory of the Riemannian manifold and its applications
in the BCI field are explained in Chapter 4. It is followed by the descrip-
tions of Regression and Interpolation theories in Chapter 5 and Chapter 6,
respectively.

Part III: Sound Parameter Variation Analysis

Part III gives an overview of the BCI process constructed for this project.
Chapter 7 elaborates on the design and construction of the loudness and
frequency experiments. A detailed description of the pre-processing is given
in Chapter 8. Data Analysis implementation is presented in Chapter 9.
Finally, interpolation implementation is described in Chapter 10.

Part IV: Results and Conclusion

The results of the regression analyses for both experiments are shown in
Chapter 11. The conclusion and the future works of the project are given in
Chapter 12 and Chapter 13, respectively.
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Chapter 2

Related Works

This chapter will provide an overview of the different topics that are used
throughout the project. It serves as context for the experimental design and
implementation and an introduction to BCI and emotions. It is divided into
multiple subsections, since the project encompasses many different fields of
study.

2.1 Emotion Classification

A classification of emotion or emotional reactions is a subjective and impre-
cise task. Being able to recognize emotion from audio stimuli is even more
challenging, since the short-time descriptions of emotions are limited and
could vary from person to person [6].

There are different emotion classification methods that propose solutions
to the emotion recognition problem. One of them is the two dimensional
emotional plane [6][7]. In this model, the valence level, varying from unpleas-
ant to pleasant, represents the typology of the emotion, while the arousal
level denotes the intensity of the emotion, varying from not aroused to ex-
cited. Another, more specific, model is the Thayer’s emotion plane [8][6].
This model categorizes emotions into different classes, as shown in Figure
2.1, where these classes are organized into four quadrants that collectively
represent the emotional plane.
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Figure 2.1: Thayer’s model of the Emotional Plane.

Many studies have been conducted to demonstrate that sound has the
capacity to lead the user into a specific emotional state [9]. From music to
non-musical sounds, different works argue that different contexts and musi-
cal/sound characteristics have an effect on the listener. Nonetheless, most
research is based on the subject’s classification or description of their own
emotion, making the results subjective and biased.

In the case of research based on non-subjective data, like BCI classifiers,
it has been shown that some specific sounds, with specific characteristics,
may have an impact upon the listener’s emotional response [10]. Although
this is an improvement upon the subjectivity of other research, it presents a
problem; it only applies to a specific combination of sound parameters and
context and can not be extrapolated to other sounds. In other words, little
research exists on the effects that sound parameter variations have on a lis-
tener’s emotional state.

2.2 Sound and Music Theory

The following subsections will give a review of the music and audio topics
necessary to understand the audio parameters involved in the production
and perception of sound. Note that the following sections follow the Western
common music notation system [11].

2.2.1 Frequency and Pitch

Frequency is the measurement of the cycles of a repetitive waveform. This
measurement is taken in Hertz (Hz) and it represents the number of cy-
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cles per second. The human ear is limited to frequencies between 20Hz and
15,000Hz approximately [12] [11], although this range varies with age.

Pitch corresponds to the perceptual auditory attribute of a frequency, a
subjective measure that allows sounds to be ordered on a scale from low to
high. It is limited to the human frequency-range of hearing and affected by
loudness, sound envelope and the presence of other simultaneous frequencies
[11].

The human ear and brain process the frequency or pitch of a sound
together. Some theories explain that each frequency has a corresponding
displacement in a membrane, called Basilar membrane, located inside the
inner ear [13], while other theories attribute pitch recognition exclusively to
processing in the brain. Both, Basilar membrane displacement and brain
processing occur as a response to listening to a pitch. Nevertheless, classifi-
cation of the pitch is attributed to the brain [11].

2.2.2 Timbre, Tone and Note

Timbre, also addressed as sound quality, corresponds to the properties of
sound that allow humans to distinguish between different sources of sound.
It is the collection of sinusoidal components produced by a source or instru-
ment, and it consists of several frequencies with different strengths [13]. It
also corresponds to the dynamic characteristics of the sound, like vibrato or
the sound envelope, further explained in Subsection 2.2.4.

As shown in Figure 2.2, the individual sinusoids that comprise a pitch
produced by a source are called partials or components. The first component
is the fundamental frequency. Other frequencies and their corresponding
amplitude, along with the sound’s dynamics, make a timbre characteristic,
therefore allowing a human to classify it as a specific instrument or any other
known source [11].

Figure 2.2: Harmonic Overtone Series.
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Tone is characterized by three qualities, pitch, musical loudness and tim-
bre. Then the addition of temporal qualities, like onset and notation create
a note [11]. Tone, because it includes timbre, can also be understood a as
the particular sound of a specific instrument or sound source with the ad-
dition of a defined volume and pitch. This encompasses all parameters or
components of the sound that make it differentiable or distinguishable from
other sounds [13].

2.2.3 Fundamental Frequency and Harmonics

The lowest of all the frequency components in a tone corresponds to the
fundamental frequency and it usually is the predominant, most discernible
sound in the combination of partials. All the other components above the
fundamental frequency are also called overtones.

Overtones can be classified as harmonic or inharmonic. If the over-
tones are positive integer multiples of the fundamental then they are har-
monic. Otherwise, overtones are considered inharmonic. Harmonic sources
are normally melodic or harmonic instruments and carry tunes and notes
throughout songs. Figure 2.3 shows different signals over time and their
corresponding overtones. Note that the representation of a signal in the
frequency domain is defined as spectrum. The amplitude of a wave is the
distance from its peak height to zero, while the magnitude is defined as the
absolute value of the difference between the positive and negative peak.

Figure 2.3: Harmonics Waveform and Spectra [11].

Inharmonic sources are normally percussions, drums, and other noises
containing overtones that are non-integer multiples of the fundamental fre-
quency and therefore not agreeable to diatonic scales and pitches. An ex-
ample of inharmonic source is shown in Figure 2.4
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Figure 2.4: Example of an inharmonic spectrum.

A spectral analysis of all the components of a tone over small periods of
time is showed in Figure 2.5. In this Figure it is possible to observe the rela-
tionship between fundamental frequency, overtones and their corresponding
strength and decay overtime.

Figure 2.5: Dynamic spectrum. The amplitude variation over
time is showed by the dashed lines that connect the partials for
each frequency [11].

2.2.4 ADSR Envelope

As stated before, a tone can be represented as the sum of all its partials
over time. As shown is Figure 2.5, each partial has a different, changing
amplitude over time. The average amplitude of all the partials over time
is called an amplitude envelope [11] or attack-decay-sustain-release (ADSR)

14



envelope. Figure 2.6 shows the amplitude envelope of the sound represented
in Figure 2.5.

Figure 2.6: Amplitude envelope of waveform [11].

The amplitude envelope can be divided in four segments. The attack
is the time between the onset or first energy release of a source until the
source is at maximum dissipation of energy. The decay is the time between
the maximum energy and the decline to a sustained level of energy. The
sustain is the time the sound is maintained as a stable dissipating energy
that matches the exciting force of the source. The last fraction of the en-
velope is the release and it represents the time from the moment no more
sound is produced until all the energy has dissipated and there is silence [11].

2.2.5 Loudness

Loudness is a measurement of the intensity of a sound. The intensity of a
sound is the energy with which the sound waves flow through the eardrums
and into the inner ear [11]. Because human ears are sensitive to pressure, and
because pressure is easier to measure, it is used as a measure of loudness [13].

Sound pressure is directly related to the amplitude of the sound wave,
and it has a wide range of variation. The sound pressure for sound sources
can vary from 20µPa to 20Pa. Thus sounds can vary over a range of am-
plitudes which is greater than a million. Because of this, and the way we
perceive sound, the sound pressure level (SPL) is usually expressed in dB,
on a logarithmic scale [13] [11]. The scale uses the actual pressure level in
Pa, and a reference pressure level of 20µPa at 1kHz [13] [14] [11].

dB(SPL) = 20 log(
Pactual

Pref
) (2.1)

The range of values between 0dB and 120dB is easier and clearer for
expressing variations in loudness that can be perceived by the human ear,
without pain or damage for the auditive system [13]. This scale uses a small
set of values that describe a wide range of intensities [11]. For example, the
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useful range of musical intensities is between 45 dB to 95 dB considering the
wide range of timbres and frequency ranges of all instruments [11]. Using
this scale, Figure 2.7 shows the threshold of human hearing and the upper
limit, when loudness is no longer perceived and replaced by pain.

Figure 2.7: The average threshold of hearing and threshold of
pain with approximate musical and speech ranges [13].

Differently from the physical world, where the analog sounds are mea-
sured using the dB scale, digital sounds are measured using a different scale,
referred as dB Full Scale or dBFS. It is usually measured down from the
limit of the loudest sound that can be reproduced with no distortion. This
scale still measures loudness as pressure but it is relative to the hardware
that reproduces and records it. A reference loudness is selected and assigned
a dB value of 0dBFS [11], this reference is the highest possible loudness in
the system. Any other sound in the system is measured compared to the
reference, thus all sounds are assigned either 0 or a negative dBFS value.

2.2.6 Perception of Sounds

Amongst all the parameters that define different sounds, there are some ob-
jective parameters that are measured in the world outside the listener and
other subjective parameters that depend on the perception and experience of
the listener. An objective measurement of the subjective perception of the
listener is hard to obtain, not only because of the subjectivity of the listener’s
descriptions, but also because of the nonlinear nature of sound parameters.

Pitch and loudness for example, are not linearly proportional to fre-
quency and intensity [11]. The nonlinear nature of these parameters requires
a transformation between their real-world scale to scale representative of hu-
man perception. Besides nonlinearity, sound parameters are all related to
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each other in a nonorthogonal manner [11]. Therefore the influence between
parameters is a complex relationship that is not to be considered lightly in
the measurements of sound perception.

Loudness Perception

Perception of loudness is not as straightforward as perception of pitch. While
intensity is the most important factor affecting loudness, it is also affected by
other factors, especially frequency [11]. The ear is a pressure sensitive organ
that divides the audio spectrum intro a set of overlapping frequency bands
whose bandwidth increases with frequency [13]. In other words, the pressure
amplitude of a sound wave does not only relate to its perceived loudness, our
hearing capabilities are different for different frequencies. In Figure 2.8 the
curves show how loud a sound has to be (dB), to be perceived to have the
same loudness as a base reference.

Figure 2.8: Loudness contours for the human ear [13].

A scale used to measure loudness in terms of both frequency and ampli-
tude is the phon scale [13]. The loudness level in phon of a sound is defined
as the sound pressure level (SPL) in decibels (dB) of a standard 1kHz pure
tone when the sound and the standard tone are equally loud [14]. The phon
scale identifies equal loudnesses across all perceivable frequencies and inten-
sities. As can be observed in Figure 2.8, sounds with a low frequency need
to have a higher intensity (or dB level) to be perceived as clearly as sounds
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with a frequency close to 1kHz. Note that the change of sensitivity of the
human ear above 1kHz, shown in the curves in Figure 2.8, is due to the
construction of the external ear, which amplifies certain frequencies better.

2.2.7 Diatonic and Chromatic Scale

The diatonic scale is commonly used as the prototype for all other scales. It
contains seven pitches per octave named: C, D, E, F, G, A, B. It has two
different interval sizes a whole tone and a semitone, a whole tone is equal to
two semitones. The chromatic scale extends the diatonic scale by breaking
the whole tones into semitones, producing a scale with 12 pitches per octave:
C, (C] or D[), D, (D] or E[) E, F, (F] or G[), G, (G] or A[), A, (A] or B[),
B [11].

To further specify the tuning of each pitch in the scale, the equal-tempered
scale specifies all the frequencies using the same uniform semitone interval.
Choosing A440 as a frequency reference, A in the 4th octave of a piano, all
the intervals in the octave are calculated. Further octaves are calculated
using that octave as a reference. Equation 2.2 shows how to calculate each
frequency using the octave k and interval v [11].

fk,v = fR · 2v+k/12 (2.2)

Using equation 2.2 it is possible to calculate all notes in all octaves with-
out inconsistencies. By using this system, music based on different scales
and instruments can be played with the same tuning [11].

2.3 Emotional Response to Sound Parameters

2.3.1 Loudness

There is a wide variety of studies concerning the different effects of loudness.
It has been shown that changing pressure level or loudness of a sound can
directly affect both emotion valence and intensity [15] [16]. Other studies
also found that an increase in intensity is also perceived as a warning cue [17].

Furthermore, tests have shown that the perception of loudness is influ-
enced by the emotional state of the subject [18]. Some states cause the
subject’s auditory stimuli to be perceived as louder and fear-inducing. For
example, when sound stimuli are paired with a hostile environment or when
a frightening memory is recalled [19].
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In works more closely related to the objective measurement of sound
perception, using a Functional Magnetic Resonance Imaging (fMRI), exper-
iments show that the loudness level of a stimuli is related to the cortical
activation of the brain [20].

2.3.2 Frequency

Studies concerning frequency and pitch can be found across many different
fields of studies. This is due to the diverse applications and strong effects
that pitch have on humans. For example, pitch is a discriminant factor in the
design of warning sounds for dangerous situations. These studies show that
a high pitch sound suggests more urgency than a low pitch sound [21][22].
Other studies show that an increase in sharpness (combination of higher fre-
quencies and pure tones) provokes major discomfort and negative effects on
the listener [9][15].

In the context of horror games, it has been found that there is an instinc-
tive fear reaction to certain frequencies. Frequencies within a very low range
or very high range produce a fear response. The low range frequencies are
associated with predators while high range frequencies are associated with
human screams [9][23].

2.3.3 ADSR

The ADSR envelope has also been found to affect the emotional response of
the listener [24]. Previous research has shown that different sound energy
events are associated with different affects [24]. For example, in a video
game context, it was demonstrated that an audio signal with fast attack and
release give a perception of urgency [25] while long attack periods can be
used to create tension [23].

2.3.4 Sound Source And Localization

In the past years it has been argued that a central aspect of human inter-
action with sound is the ability to perceive the position of a sound source
[26] and the surrounding auditory space[27]. For example, sounds positioned
behind the listeners are more arousing than sources in front of the listeners
and this effect is more pronounced for natural sound sources, compared to
artificial sources.

In the context of horror games intentional ambiguity of a sound’s source
and location builds suspense and terror in the player [28]. Beyond the specific
position of the sound, variation in the dimension of the space surrounding
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the listener can also modulate the emotional response.

2.3.5 Sound Effects

Sound effects are artificial processes that modify certain properties of a
sound. A sound effect could modify any of the sound parameters explained
above and create a very clear reaction or emotional response. For example,
effects like reverberation or delay can reproduce the same emotional response
as being placed in a large environment [26].

It has been demonstrated that applying an effect like low-pass filter to a
musical sample, produces a relaxed state. In contrast the use of a high-pass
filter effect produces a more agitated state [29].

2.3.6 Signal to Noise Ratio (SNR)

In order for a sound to be heard it needs to be greater in strength than the
ambient noise. A measurement of this criteria is the signal to noise ratio
(SNR).

SNR = Signal intensity level
Ambient noise intensity level

The SNR is another sound parameter that can determine variation in
the listener emotional state. For example low sound quality or low SNR may
rise an uncertain sensation due to the difficulty in identifying and localizing
the signal sources [30] [25].

2.4 Emotional Response to Music

It is important to distinguish between the emotional response to music and
the emotional response to sound. Although they are related and similar in
many ways, the context is different and therefore the emotions and reactions
of the subjects are different.

The musical features, parameters and properties presented below cor-
respond to musical fragments, musical instruments and voices. Therefore,
some of these features are comparable to sound parameters while others are
exclusively musical. Nevertheless, research of the emotional response to mu-
sic enables a more general understanding of the effect sounds have on the
human brain. Some of the findings presented below are helpful to understand
the expected emotional reaction to different sounds parameters. Note that
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in the following subsections some of the characteristics directly related to
the loudness and frequency sound parameters, investigated in this project,
are highlighted.

2.4.1 Musical Features

In the field of music theory, it is possible to find research that determines
which musical structures create the emotional expressions in a western mu-
sical piece or score [31] [32] [33]. For example, it has been found that tempo,
mode, pitch level, harmony and rhythm are the features that affect a listener
more intensely [31].

Happiness vs Sadness

Juslin encapsulates the musical features that are more discriminating in the
expression of sadness and happiness [34].

Sadness features: Slow mean tempo, several tempo variations, low sound
level, legato articulation, slow vibrato, small-uniform articulation vari-
ability, slow tone attacks, flat micro-intonation and end-of-phrase ri-
tardando.

Happiness features: Fast mean tempo, few tempo variations, fairly high
sound level, staccato articulation, contrasting articulation variability,
little sound level variability, bright timbre, fast tone attacks and rising
micro-intonation.

Classification of Five Emotional Targets

The relationship between emotions and musical-audio features has been
tested by Laurier [35]. In this experiment, 110 film soundtrack excerpts,
fifteen seconds each, were evaluated by the participants using 5 emotional
targets (fear, anger, happiness, sadness, tenderness) and a three dimensional
model (valence, energy arousal and tension arousal) [35]. Different types of
audio features based on temporal and spectral representation of the audio
signal were extracted:

• Timbral: Barkbands, Mel Frequency Cepstral Coefficients, pitch va-
lence, loudness.

• Spectral: Flatness, flux, complexity, skewness, crest, decrease, speed.

• Tonal: Dissonance, chords change rate, mode, key strength, tuning,
diatonic strength.
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• Rhythmic: Bpm, zero-crossing rate, silence rate, onset rate, dance-
ability.

From the evaluation of all the different audio features, several showed a
high correlation with different emotional states.

• Dissonant sounds have an high correlation with anger.

• Major mode has a high correlation with happiness and tenderness,
while minor modes have an high correlation with sadness and fear.

• It confirms the hypothesis that faster tempo is correlated with happi-
ness [34].

• Loudness is more highly correlated with happiness than anger.

Expression of Single Tones

A similar study, based an opera singer’s voice, explores the features that
contribute mostly to the emotional expression of single tones. Note that
most of the features also applicable to wind instruments [36]:

• Onset of phonation (voicing).

• Vibrato.

• Excitation of higher harmonic partials.

• Gradual pitch increase from the onset to the sustained stage (transi-
tion).

• An abrupt pitch increase at the very onset of the tone.

• Pitch change within the tone.

• Unit pulse (a feature produced by the vocal cords).

2.5 Brain and Emotion

Several studies have shown that there is a lateralization in the brain’s acti-
vation, related to emotional response [37]. Recent studies demonstrate that
positive emotions, like happiness, produce a greater EEG activity on the left
hemisphere. In contrast to negative emotion, like anger, that yields a greater
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EEG activity in the right hemisphere [38][39][40].

Furthermore, there are also some studies conducted with musical samples
that support this theory. It was found that pleasant music produces greater
left-frontal activity in the listener while unpleasant music produces greater
right-frontal activity [41]. Other studies, using music samples, have been
conducted on the theta band (4-8 Hz), the studies show that there is ample
variation in the frontal mid-line (Fm) theta power. An increase of power is
associated with pleasant music while a decrease of power is associated with
unpleasant music [42] [38].
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Chapter 3

EEG Technology

In a BCI system using EEG technology, the signals are read by a series of
electrodes, normally placed on a headset. The data collected by the headset
can be analyzed to find how the brain reacts to external stimuli. The amount
of information that can be obtained from the headset depends on the quality
and resolution of the headset’s hardware.

3.1 Emotiv EPOC

This project uses the consumer grade EEG device, Emotiv EPOC shown in
Figure 3.1.

Figure 3.1: The Emotiv EPOC Headset

The Emotiv EPOC has a sample resolution of 128 Hz and it is composed
of 14 recording electrodes and 2 reference electrodes. The voltage difference
between each of the 14 recording electrodes and their corresponding refer-
ence electrode defines a channel. Besides the electrodes, the Emotiv EPOC
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headset has a two axes gyroscope that can be used to detect head movements.

The Emotiv EPOC sends the electrode’s readings to a computer through
a wireless Bluetooth USB port. The headset comes with a proprietary soft-
ware called TestBench. Through the TestBench, showed in Figure 3.2, it is
possible to verify the contact quality of each of the 14 measuring electrodes
and the 2 reference electrodes. The same program records the EEG signals
and exports them to European Data Format (EDF) or Comma Separated
Values (CSV) files.

Figure 3.2: TestBench

3.2 Electrode Placement

Conventionally, the human brain is divided into six main areas called lobes
[3]. It is possible to visualize four of these lobes, as seen in Figure 3.3, from
a lateral point of view of the cerebral cortex. The limbic lobe and the insular
cortex are located on the interior part of the brain and therefore not shown
in Figure 3.3.
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Figure 3.3: A side view of the human brain. The Frontal lobe is
located above the the eyes and nose, the Temporal lobe is located
around the ears and the Occipital lobe is located on the back of
the cranium.

The electrodes of a EEG device are mapped on the human head using
the different lobes as reference. Normally the electrodes are identified by
using one or two letters corresponding to the nearest brain lobe(s) or region,
as seen in Table 3.1 [3].

Electrode Brain Area

Fp Frontal polar site

F Frontal

AF Antero-Frontal

T Temporal

C Central

P Parietal

O Occipital

Table 3.1

Note that the letter C is only used as a reference. The region letters
are then followed by a number or a lowercase letter z [3]. Even numbers
are used for the electrodes placed on the right side of the scalp, while odd
numbers are used for the left. The letter z identifies electrodes placed on
the mid-line of the scalp. The higher the number the farther the electrode
is located from the mid-line. For example FC5 is located on the left side of
the brain between the Frontal lobe and the central area.
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A commonly used electrode placement convention is the 10-10 System
[43], this system follows the same notation explained before. This system,
showed in Figure 3.4, derives from the 10-20 System and adds electrodes to
increase its spatial resolution [44].

Figure 3.4: The 10-10 system electrodes in gray and black, the
black circles represent the electrodes of the 10-20 System [43].
The Nz, Fpz, Oz and Iz circles are used as references for placing
the other electrodes. The line from Nz to Iz is the mid-line.

The 14 electrodes placed on the Emotiv EPOC headset correspond to
locations in the 10-10 System. These electrodes are AF3, AF4, F7, F8,
F3, F4, FC5, FC6, T7, T8, P7, P8, O1 and O2 as shown in Figure 3.5.
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Figure 3.5: Emotiv EPOC electrodes, based on the 10-10 Sys-
tem [45]. The electrodes denoted as CMS and DRL represent the
two reference electrodes P3 and P4 respectively.

3.2.1 Brain Rhythms

The EEG signals obtained from the scalp are composed of several signals
at different frequency bands. These different frequency bands are called
rhythms. The sum of all frequency bands is referred as rhythmic activity.
Each of these rhythms can be associated with different activities. Table 3.2
gives an overview of these rhythms and activities. Variations in a specific
rhythm indicates activity in its corresponding brain function [3].

Rhythm Frequency Location Associated Activities

Delta (δ) <4 Hz [46] Thalamus Sleep/Unconsciousness, Concentration [47]

Theta (θ) [48] 4–7 Hz Neocortex Sleep and spatial navigation [49]

Alpha (α) [50, 46] 8–14 Hz Occipital lobe Resting and Relax

Mu (µ) [51] 8–13 Hz Sensorimotor Cortex Motor Imagery (MI)

Beta (β) 14–30 Hz [52] Sensorimotor Cortex MI, active thinking, high alert

Table 3.2: Brain rhythms, location and some of their associated
activities [3].
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3.3 Notation

The following section introduces the basic notation used to describe and ma-
nipulate the information obtained from the EEG headset.

3.3.1 Channels, Samples and Trials

A complete data set contains all the information obtained from one or more
experiments and any number of subjects. It is comprised of all the samples
over time of all the channels.

A channel represents the electric potential measured between an elec-
trode and its reference electrode [5] [3]. The set of all channels is defined as
CALL = {c1, c2, · · · , cN}, where N is the total number of channels used to
construct the data set. Every sample corresponds to a time point t ∈ TALL,
where TALL = {t1, t2, · · · , tT } is the set of all sampled time points T .

A data set can be divided into a set of I trials. Each trial i, 1 ≤ i ≤ I
contains a subset of samples T ∈ TALL that corresponds to a specific time
interval. Furthermore, a trial i may contain the information of all channels
CALL or a subset of channels C ∈ CALL.

Let us define the row vector containing a set of samples T for one channel
as xn(T ), where n is the channel number and 1 ≤ n ≤ N . A trial i using a
set of N channels is represented in the form of a matrix Xi:

Xi =


x1(t1) · · · x1(tS)

...
. . .

...

xN (t1) · · · xN (tS)

 (3.1)

where t1 is the first sample in the time interval T and S is the number of
samples in trial i.

3.3.2 Spatial Covariance Matrix and Sample Covariance Ma-
trix (SCM)

Let us define xC(t) as the column vector containing the samples at time t
for the set of channels C ⊆ CALL and xCALL

(t) ∈ RN as the column vector
containing the samples at time t of all N channels. The Spatial Covariance
Matrix is defined by [5]:

Σ = E
{

(xCALL
(t)− E {xCALL

(t)}) (xCALL
(t)− E {xCALL

(t)})T
}

(3.2)
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where T denotes matrix transposition and E {·} denotes the expected value
over time. An unbiased estimator for the covariance matrix

∑
is the Sample

Covariance Matrix (SCM).

The SCM for trial i, Pi ∈ RN×N is defined as [5]:

Pi =
1

S − 1
Xi XT

i (3.3)

Note that the SCM matrix Pi can be also defined for a subset of n channels,
Pi ∈ Rn×n, with 1 ≤ n ≤ N .
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Part II

Theory
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Chapter 4

Riemmanian Geometry

At the end of the XIX century, Georg Riemann presented a new type of ge-
ometry that allowed the description of non-Euclidean geometric structures.
Euclidean geometry sets the foundations for studying a Vector space. As
shown in Figure 4.1, in this space it is possible to draw a straight line be-
tween any pair of points. This line is unique and can be infinitely long in
both directions. The internal segment between these two points is the short-
est possible curve between the two points [53] [54].

Figure 4.1: Two points, A and B, represented on Euclidean
space. The line that connects A and B is the shortest distance
between them, a straight line.

In contrast with Euclidean geometry, Riemannian geometry is the subset
of geometry that studies curved spaces. In a Riemannian space, the sup-
position is that the space has a positive curvature, like a sphere or cylinder
[55]. An example of a space with a positive curvature is shown in Figure
4.2. In this space, the shortest line that connects two points is no longer a
straight line but a curve. This curve, which connects two points locally, is
called geodesic and its length represents the distance between these points.
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Figure 4.2: Two point, A and B, on a Riemannian space. The
minimum curve that connects these two points is called geodesic.

The next section will give an overview of the mathematical operations in
a Vector space used for the project. Section 4.2 presents the framework of
the Riemannian manifold and Riemannian distance is explained in Section
4.3. The last part of this chapter is centered on the computation of the
geometric mean on the Riemannian manifold.

4.1 Operations on Vector Space

The following sections present some valid mathematical operations in a Vec-
tor space that will be useful for intermediate computations in the more re-
stricted Riemannian space.

4.1.1 Inner Product on a Vector Space

Let V be a Vector space. An inner product on V is a mapping g : V ×V → R
that has the following properties [56]:

Linearity
g(u1 + u2, v) = g(u1, v) + g(u2, v), ∀ v, u1, u2 ∈ V

g(αu, v) = αg(u, v), ∀ u, v ∈ V and ∀ α ∈ R

Symmetry
g(u, v) = g(v, u), ∀ u, v ∈ V

Positiveness
g(u, u) ≥ 0, ∀u ∈ V with g(u, u) = 0⇔ u = 0

4.1.2 Frobenius Norm

Let M be the Vector space of the m× n matrices. The Frobenius norm (or
vector norm) is a matrix norm of a matrix P ∈M , defined as [57] [58]:

‖P‖F =

√√√√ m∑
i=1

n∑
j=1

|pij |2 (4.1)
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where pij are the elements of the P matrix, with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This definition is equivalent to [5] [57]:

‖P‖F =
√
Tr(PPT ), (4.2)

where Tr(PPT ) represents the matrix trace of PPT and PT is the conjugate
transpose [57].

4.1.3 Vectorizing a Matrix

As explained in Section 1.1, the aim of this project is to find a relationship
between a single sound-parameter variations and the brain’s response using
a regression model. For this purpose, the vectorization of a matrix is needed
to transform covariance matrices into features for the regression model. Fur-
ther description of regression methods will be presented in Chapter 5.

Given a n × n symmetric matrix P, it is possible to represent it as a
column vector of size n(n+1)

2 by vectorizing the upper triangular section of
the matrix, as shown in Equation 4.3 [59].

vect(P) = p =
[
p(1,1),

√
2p(1,2), · · · ,

√
2p(1,n), p2,2,

√
2p(2,3), · · · ,

√
2p(2,n), · · · , p(n,n)

]T
(4.3)

Here, p(i,j) represents the (i, j)th elements of the matrix P and the term
√

2
is applied to all non-diagonal elements of P to preserve the norms relation:
‖P‖F = ‖vect(P)‖2 [59]. The term ‖·‖2 denotes the L2 norm of a vector [5]
[60].

Equally, it is possible to apply the inverse operation unvect(p) to obtain
the matrix P without loss of information [59]:

unvect(p) = P =


p(1,1) p(1,2) · · · p(1,n)

p(1,2) p(2,2) · · · p(2,n)
... · · · . . .

...

p(1,n) p(2,n) · · · p(n,n)

 (4.4)

The following sections address the main theory behind the Riemannian
manifold and its practical applications in BCI.
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4.2 Differentiable Manifold

By definition, a differentiable curve can be locally approximated to a straight
line. The same logic applies to an n-dimensional differentiable manifoldM.
This manifold can be locally approximated to an n-dimensional Euclidean
space. For differentiable manifolds, it is possible to define the derivatives at
a point P. These derivatives lay on the vector space TP, which is the tangent
space at point P of the manifoldM.

4.2.1 Riemannian Metric

A Riemannian metric g on a differentiable manifold M is a function that
defines for every point P in M, an inner product gP in the tangent space
TP [56]. Thus, a Riemannian metric on M is a family of inner products
gP : TP × TP → R, ∀P ∈ M. Using this metric it is possible to define
the length of a curve (or geodesic) between two points, which represents the
Riemmanian distance between these two points, as described in Section 4.3.

4.2.2 Riemannian Manifold

A Riemannian manifold is a pair (M, g) whereM is a differentiable manifold
and g is a Riemannian metric onM [56].

4.2.3 Symmetric Positive Defined Matrices

Let us define M(n) as the space of n × n real matrices, S(n) as the space
of all symmetric matrices in M(n), and let P(n) be the set of all n × n
symmetric positive-definite (SPD) matrices [61] [5]. Formally,

S(n) =
{

S ∈M(n), ST = S
}

(4.5)

P(n) =
{

P ∈ S(n), aTPa > 0, ∀ a ∈ Rn
}

(4.6)

Note that the Sample Covariance Matrices (SCM) ∈ P(n).

4.2.4 Logarithm and Exponential of a Matrix

Given a matrix P ∈ P(n), a matrix U of P’s eigenvectors and the eigenvalues
σi of P, where 0 < i < n, σi > σi+1 and σn > 0. The exponential matrix of
P can be computed as [5]:

exp(P) = U diag(exp(σ1), · · · , exp(σn)) UT (4.7)
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Similarly, the inverse operation is computed using the logarithm, as
shown in Equation 4.8:

log(P) = U diag(log(σ1), · · · , log(σn)) UT (4.8)

The following section will present a method to compute the distance be-
tween two points on the Riemannian manifold. Successively, after defining
this distance, it is possible to compute the mean between a set of points that
lay on a manifold.

4.3 Riemannian Distance

In the space of SPD matrices, where P(n) is a differentiable Riemannian
manifoldM, every matrix P can be represented as a point inM. For each
point P ∈ P(n), there is a set of tangent vectors S ∈ S(n) defined as the
derivatives of P on M [5]. The tangent space TP at point P is comprised
of P(n), the set of all tangent vectors S [61]. Note that an element of the
tangent space is usually denoted as a tangent vector even if S represents
symmetric matrices [62].

It is possible to define, for each tangent space, a local inner product
〈 , 〉P. The natural metric on the manifold of SPD matrices is defined by the
positive local inner product, shown in Equation 4.9, and its induced norm,
shown in Equation 4.10 [5]:

〈Si, Sj〉P = Tr(SiP
−1SjP

−1) (4.9)

‖S‖2P = 〈S, S〉P = Tr(SP−1SP−1) (4.10)

Note that for P = I, the identity matrix, this norm is equal to the squared
vector norm or Frobenius norm:

〈S,S〉I = ‖S‖2F =

n∑
i=1

n∑
j=1

|sij |2 = Tr(SST ), (4.11)

where S is a matrix of size n × n, and sij elements of the S matrix, with
1 ≤ i ≤ n and 1 ≤ j ≤ n.
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As illustrated in Figure 4.2, the geodesic is the shortest curve that con-
nects two points on a manifold. Similarly, the Riemannian distance δR,
between two SPD matrices Pi and Pj is given by the length of the geodesic,
as shown in Figure 4.3. It can be computed as [5] [61] [63]:

δR(Pi,Pj) =
∥∥log(P−1i Pj)

∥∥
F

=

[
n∑

i=1

log2 λi

]1/2
, (4.12)

where λi are the real eigenvalues of P−1i Pj .

4.3.1 Logarithmic and Exponential Map

Let γ(t) be the geodesic between P and Pi. For each point Pi ∈ P(n) it is
possible to identify a tangent vector Si ∈ S(n) . The logarithmic map, as it
is showed in Figure 4.3, locally projects all the covariance matrices Pi into
the tangent space:

Si = LogP(Pi) = P1/2 log(P−1/2PiP
−1/2)P1/2 (4.13)

while the exponential map allows to project an element from the tangent
space back into the manifold:

Pi = ExpP(Si) = P1/2exp(P−1/2SiP
−1/2)P1/2. (4.14)

It turns out [5] that we can rewrite the Riemannian distance shown in
Equation 4.12, by projecting the matrices P into the tangent space using
the logarithmic map and applying the vectorization of a matrix shown in
Equation 4.3 [5]:

δR(P,Pi) = ‖LogP(Pi)‖ = ‖Si‖P
=
∥∥∥vect(P−1/2LogP(Pi)P

−1/2)
∥∥∥
2

≡
∥∥∥vect(S̃i)

∥∥∥
2

(4.15)

If Pi is locally distributed into the manifold and P is the mean of all Pi,
then it is possible to state that [5]:

∀i, j δR(Pi,Pj) ≈
∥∥∥vect(S̃i)− vect(S̃j)

∥∥∥
2

(4.16)

Hence, the projection into the tangent space allows us to approximation of
the Riemannnian distance using the Euclidean distance in tangent space.
The following sections will discuss the advantage of projecting the SPD ma-
trices into the tangent space to compute the geometric mean.
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Figure 4.3: ManifoldM and the tangent space TPa at the point
Pa. The red curve γ(t) is the geodesic between Pa and Pb. The
logarithmic map projects the point Pb into TPa with the relation:
Sb = LogPa

(Pb). The exponential map projects the tangent vector
Sb back in the manifoldM with the relation: Pb = ExpPa

(Sb)

4.4 Means of SPD Matrices

Analogous to Euclidean space, the geometric mean of a set of points on
the Riemannian manifold is the point onM that minimizes the sum of the
squared Riemannian distances δR [64]. Thus, the tangent space T related
to the geometric mean gives the best local approximation for the projected
points P from the manifold [59].

The following sections will explain how to compute the Arithmetic Mean
and the Geometric Mean on a manifold.

4.4.1 Arithmetic Mean

For a set of I positive numbers and a vector xi where 1 ≤ i ≤ I. The arith-
metic mean of x is defined as [63]:

x̄ =
1

I

I∑
i=1

xi (4.17)

The concept of arithmetic mean can be extended to matrices. For a set
of I matrices, Pi ∈ P(n), where 1 ≤ i ≤ I, the arithmetic mean A, using
Euclidean distance on the manifoldM is defined as [63] [5]:
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A(P1, · · · ,PI) = arg min
P∈P (n)

I∑
i=1

δ2E(P,Pi) =
1

I

I∑
i=1

Pi, (4.18)

where δE = ‖P1 − P2‖F is the distance induced by the Frobenius norm.

4.4.2 Geometric Mean

Using Riemannian geodesic distance (Equation 4.12, Section 4.3) instead of
Euclidian distance, the same concept can be applied to find the geometric
mean. Given a set of I matrices Pi ∈ P(n) with 1 ≤ i ≤ I the geometric
mean G can be defined as [5]:

G(P1, · · · ,PI) = arg min
P∈P (n)

I∑
i=1

δ2R(P,Pi), (4.19)

where δR uses the geodesic distance instead of Euclidean.

4.5 Computing the Mean on the Tangent Space

As shown in Section 4.3.1, the logarithmic map can be used to project the
points from the Riemmanian manifold into the tangent space. Since the
tangent space is an Euclidean space, it is possible to compute the arithmetic
mean A. Moreover, if the locality condition is respected, the relation in
Equation 4.16 is valid allowing the computation of the geometric mean G by
using the properties of the arithmetic mean A.

The iterative process to compute the geometric mean consists of the
following steps [59].

1. Project the covariance matrices Pi ∈ P(n) into the tangent space TP
using the logarithmic map in Equation 4.13

2. Estimate the arithmetic mean A in the tangent space

3. Project A back into the manifold using the exponential map in Equa-
tion 4.14

These steps are repeated until convergence, as shown in Algorithm 1.
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Algorithm 1: Geometric Mean of I SPD matrices
Data: ε > 0 and a set of I SPD matrices Pi ∈ P(n) where 1 ≤ i ≤ I
Result: G the estimated geometric mean in P(n)

Initialization, G =
1

I

∑I
i=1 Pi;

repeat

A(P1, · · · ,PI) =
1

I

∑I
i=1 LogG(Pi);

G = ExpG(A);
until ‖A‖F < ε;

return G

The geometric mean G, computed by Algorithm 1, is used as reference
point, noted as Pref . Since the Riemannian distance between two points is
approximable to the Euclidean distance only locally, as stated in Equation
4.16, the geometric mean represents an appropriate reference point, given
that on average it is at the smallest distance from all other points.

The tangent space is computed at Pref in the manifold M and all the
Pi matrices are projected into this tangent space using the logarithmic map,
shown in Equation 4.13 with Pref as a base (see Section 5.1 of Chapter 5).
Finally, the symmetric matrices Si are vectorized, in order to be used as
features for th regression models [59].

Thus, the projection of the covariance matrices into the tangent space
enables the use of both traditional regression methods based on Euclidean
distance and the Dual Representation of the regression based on the kernel
method.
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Chapter 5

Regression

Regression is a method used to predict the value of continuous variables y
given the value of input vector variables x [65]. This chapter will describe the
main theory of regression and in particular two regression learning methods,
Least Square Regression with Ridge Regularization and Dual Representation
with Riemannian-based kernel.

The regression process has two main steps, training and runtime. During
the training step, the regression function, which predicts the known output
y, is trained based on a dataset containing labeled data. Afterwards the
trained model is used to predict the unknown target value y given an unla-
beled data vector x.

Given the training data {(x1, y1), · · · , (xi, yi), · · · , (xI , yI)} with input
data xi ∈ Rn, 1 ≤ i ≤ I, and target values yi ∈ R. The regression method
aims to find a function f(x), f : Rn → R, that predicts the target yi,
minimizing the error ε, as shown in Figure 5.1.
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Figure 5.1: Example of linear regression. The points represent
the input data. The red line represents the regression function
f(x) obtained by the regression analysis. The blue line represents
the error ε, which is the distance between the predicted and actual
value.

The function f(x,w) approximates the target variable y with an additive
Gaussian noise ε that has a mean of zero and a variance equal to σ2, p(ε) =
N (0, σ2) :

y = f(x,w) + ε (5.1)

For a linear regression, the function f of Equation 5.1 can be defined as:

f(x,w) = w0 + w1x1 + · · ·+ wIxI , (5.2)

where w = {w1, · · · , wI} ∈ Rn is the weight vector, w0 ∈ R is the bias
and x represents the input vector x = {x1, · · · , xI}T . The model written in
Equation 5.2 is a linear function of weights and input variables.

In many cases there is not a linear relationship between the input data
and the target data, which leads poor estimation of the targets. A possible
solution is to transform the input data through a non-linear feature trans-
formation, while f remains linear in w [65].

This feature transformation is a map φ : X → F where X is the input
space and F is the feature space, as shown in Figure 5.2.
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Figure 5.2: The left graph represents the input data in the input
space X . The right graph represents the input transformed into
the feature space F through the function φ. The nonlinear input
data is linearized in the feature space.

Using a feature transformation it may be possible to apply linear regres-
sion models with success on input that is nonlinear in the original input
space.

5.1 Our Feature Function

For this project the output or target variable y is given by the loudness
or frequency levels defined in the experiments, while the input data is the
symmetric positive definite (SPD) matrices Pi on the Riemannian manifold
M obtained form the brain’s signals. First, the Pi matrices are mapped
through the function [59]:

φ(Pi) = LogPref
(Pi) = S̄i (5.3)

The feature transformation in Equation 5.3, projects the Pi matrices
into the tangent space at the reference point Pref . Successively, the feature
φ(Pi) is transformed to the normalized tangent space at Pref , creating the
symmetric matrix S̃i:

S̃i = P
−1/2
ref S̄i P

−1/2
ref

= P
−1/2
ref LogPref

(Pi) P
−1/2
ref

= P
−1/2
ref P

1/2
ref log(P

−1/2
ref Pi P

−1/2
ref ) P

1/2
ref P

−1/2
ref

= log(P
−1/2
ref Pi P

−1/2
ref )

(5.4)
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Note that matrix S̃i is used in Equations 4.15 and 4.16 for the distance com-
putations between SPD matrices.

Then, to be able to apply the regression method, matrix S̃i is vector-
ized (Equation 4.3). Thus, the regression method is applied on vect(S̃i). To
simplify the notation in this chapter, we use φ(xi) to denote the vectorized
feature vector.

In the model proposed in Equation 5.2, there is a linear relationship be-
tween every observed target yi, 0 < i < I and φj(xi), 0 < j < P predictors,
where P depends on the dimension of vect(S̃i).

yi = w0 + w1φ1(xi) + · · ·+ wjφj(xi) + · · ·+ wPφP (xi) + ε (5.5)

where φ0 ≡ 1.

Since this relationship is valid for every observation, Equation 5.5 can be
rewritten in matrix form y = Φw + e, or equivalently [66]:


y1

y2
...

yN

 =


1 φ1(x1) φ2(x1) · · · φP (x1)

1 φ1(x2) φ2(x2)
...

...
. . .

...

1 φ1(xI) · · · · · · φP (xI)




w0

w1

...

wP

+


ε1

ε2
...

εI

 (5.6)

where y = [y1, · · · , yI ]T , w = [w0, · · · , wP ]T , e = [ε1, · · · , εI ]T and Φ is
a matrix of I × P dimension, whose elements are the features φj(xi), with
0 ≤ j ≤ P and 1 ≤ i ≤ I.

5.2 Regression on the Feature Transformed Input

Using the feature function φ, the model in Equation 5.2, can be reformulated
as:

f(x,w) =
P∑

j=0

wjφj(x) = φ(x)w (5.7)

The ability of the model to predict the output depends on the dimension
of φ and w. High dimensionality creates a better fit for the training set but
might cause errors int he runtime set. Figures 5.3, 5.4 and 5.5 show that
increasing the number of parameters w in the regression model creates a
better fit for the training data.
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Figure 5.3: The function f(x) illustrated by the red line ap-
proximates the output y of the training data given the input x
and weights w.

In other words, a higher dimension of the weight variables w allows the
regression function to be more representative of the training dataset.

Figure 5.4: The function f(x) approximates data better than
the previous function, shown in Figure 5.3

Increasing the dimensionality of the predictors’ reduces the error on train-
ing data. Nevertheless, it could cause large errors on the unlabeled data,
shown in Figures 5.5 and 5.6. This phenomenon is known as overfitting and
it is caused by the dependance of the function f(x) on the structure of the
training set, allowing large errors for the runtime set.
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Figure 5.5: The function f(x) affected by overfitting. The gen-
erated model is complex and dependent on the training set, which
leads to large errors in the runtime set, represented by the green
circles.

Thus, as showed in Figure 5.6, it is important to choose the parameters’
dimension P appropriately in order to minimize the errors in both sets.

Figure 5.6: Variation of the prediction error in relation to the
predictors’ dimension. The blue line represents the Error on the
training set, the red line the runtime error on a separate test set.
The error of the training tends to decrease as we increase the
predictors’ dimension, while the error on the unlabeled runtime
data tends to increase after a given threshold. It is important for
the quality of the model to choose a number of predictors near to
the threshold, that represent an appropriate model complexity.
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5.3 Least Square Regression and Ridge Regulariza-
tion

Given a set of input vectors X = {x1, · · · ,xI} and their corresponding tar-
gets y = {y1, · · · , yI} we can compute the weight vector w of the linear
regression function f(x,w) by minimizing the term ED(w), which is the
squared sum of the difference between each target data and the estimation
or output of the model [65]:

ED(w) =
1

2

I∑
i=1

(yi − f(xi,w))2 (5.8)

ED(w) is also denoted as the Least Squared Error. Thus Equation 5.8
will be minimized respect to w :

arg min
w

ED(w) =
1

2

I∑
i=1

(yi − f(xi,w))2

=
1

2

I∑
i=1

(
yi −wTφ(xi)

)2
=

1

2

(
(y −Φw)T (y −Φw)

)
(5.9)

The analytic solution to Equation 5.9 is found by setting the gradient
with respect to w to zero and solving the resulting equation:

∂

∂w
ED(w) =

1

2

∂

∂w

(
(y −Φw)T (y −Φw)

)
=

1

2

∂

∂w

(
(y −Φw)T (y −Φw)

)
=

1

2

(
(Φw − y)TΦ + ΦT (Φw − y)

)
= ΦTΦw −ΦTy = 0

(5.10)

which implies that
w = (ΦTΦ)−1ΦTy (5.11)

To control overfitting it is possible to regularize the ED(w) function in
Equation 5.9 by adding a penalty term Ew(w). The penalty term aims to
reduce the feature dimension by pushing the weights to zero. Therefore the
objective function becomes [65]:

J(w) = arg min
w

ED(w) + λEw(w)

=
1

2

(
(y −Φw)T (y −Φw)

)
+ λEw(w)

(5.12)
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with λ ≥ 0.

Two of the most used regularization terms are the Lasso (L1) regulariza-
tion, where [67]:

Ew(w) =

P∑
i=0

|wi| = |w| (5.13)

and the Ridge (L2) regularization [65], where:

Ew(w) =
1

2

P∑
i=0

w2
i =

1

2
wTw (5.14)

L1 regularization is more suitable if there are many irrelevant features.
In contrast, the Ridge regularization behaves better if most of the features
are relevant. This project uses the L2 regularization, thus, the following
theory uses this regularization term.

The objective function J(w) for this case can be rewritten as shown in
Equation 5.15, also known as Ridge Regression [68] [65]:

J(w) = arg min
w

1

2
((y −Φw)T (y −Φw)) +

λ

2
wTw (5.15)

As in the previous case, the solution of the Equation 5.15 is found by
setting the gradient with respect to w to zero.

∂

∂w
J(w) =

∂

∂w

[
1

2
((y −Φw)T (y −Φw)) +

λ

2
wTw

]
=

1

2

[
ΦT (Φw − y) + (Φw − y)TΦ)

]
+
λ

2
w

(5.16)

Setting
∂

∂w
J(w) = 0 we obtain

1

2

[
ΦT (Φw − y) + (Φw − y)TΦ)

]
+
λ

2
w = 0

ΦTΦw −ΦTy + λw = 0

w(ΦTΦ + λ I) = ΦTy

(5.17)

which implies that

w = (ΦTΦ + λ I)−1ΦTy (5.18)

Finally w is substituted in the linear regression model defined in Equa-
tion 5.2 to predict the output given the input x.
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Thus, the training set is used to find the weight vector w. Then the
training set is discarded and the prediction on the new input x is based only
on w [65].

There is another type of regression model that does not compute the
weight vector w for all the trials. This type of regression model is the Dual
Representation of the regression function. This non-parametric technique
uses the training set during the runtime step. The following section de-
scribes how to express the regression model in dual form, which allows the
application of implicit feature transformations via the kernel trick.

5.4 Dual Representation with Riemannian-Based
Kernel

A standard linear parametric model f(x,w) depends on the parameters w.
These weights are computed from the training dataset and are used to pre-
dict the targets in the runtime step. Thus the prediction of the target data
in the runtime step depends only on w.

Alternatively it is possible to reformulate the regression model in terms
of a dual representation that allows to use the data directly. This is accom-
plished by using a kernel function given by the relation [65]:

k(xi,xj) = φ(xi)
Tφ(xj) (5.19)

The kernel function used in this project is the Riemannian-based ker-
nel. Considering the input vectors as points Pi in the manifold M, the
Riemannian-based kernel is defined by combining the Equations 5.3 and 4.9
to obtain [59]:

kR(vect(Pi), vect(Pj); Pref ) = 〈φ(Pi), φ(Pj)〉Pref

= Tr
[
LogPref

(Pi)P
−1
refLogPref

(Pj)P
−1
ref

]
= Tr

[
log(P

−1/2
ref PiP

−1/2
ref ) log(P

−1/2
ref PjP

−1/2
ref )

]
,

(5.20)

Equation 5.20 can be rewritten as [59]:

kR(vect(Pi), vect(Pj); Pref ) = Tr
[
P
−1/2
ref LogPref

(Pi)P
−1/2
ref P

−1/2
ref LogPref

(Pj)P
−1/2
ref

]
=

〈
S̃i, S̃j

〉
F

= vect(S̃i)
T vect(S̃j)

(5.21)
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Now, the solution of the linear regression model in Equation 5.15 can be
rewritten as:

w = − 1

λ

I∑
i=1

(wTφ(xi)− yi)φ(xn) =
I∑

i=1

aiφ(xi), (5.22)

where ai =
1

λ

∑I
i=1(w

Tφ(xi)− yi).

In matrix form, Equation 5.22 can be expressed as

w = ΦTa, (5.23)

where the vector a = (a1, · · · , aI).

Substituting w = ΦTa into Equation 5.12, we can now redefine the
regression model in the Dual Representation, based on the vector a [65]:

J(a) =
1

2
aTΦΦTΦΦTa− aTΦΦTy +

1

2
yTy +

λ

2
aTΦΦTa (5.24)

Let us define the matrix K = ΦΦT . This matrix, called the Gram
matrix, is a symmetric I × I matrix whose elements Ki,j are given by the
kernel function:

Ki,j = φ(xi)
Tφ(xj) = k(xi,xj) (5.25)

Thus, the objective function can be written as:

J(a) =
1

2
aTKKa− aTKy +

1

2
yTy +

λ

2
aTKa (5.26)

It is possible to find the solution by evaluating the gradient of Equation
5.26 with respect to a and setting it to zero, obtaining:

a = (K + λI)−1y (5.27)

where I is the indentity matrix of size I × I.
Let us define the column vector k(x) with I elements ki(x) = k(xi,x),

1 ≥ i ≤ I. By substituting the vector parameter a found in the linear
regression model of Equation 5.2 we obtain the prediction for an input x
[65]:

f(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λI)−1y (5.28)

The Dual Representation presented in this section produces the same
results as the Ridge Regularization model, since an explicit feature transfor-
mation, φ(xi) = LogPref

Pi, is used.
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It is possible to construct any other type of kernel on top of the presented
model, for example a Gaussian kernel [65]. Since this is a preliminary study,
during the implementation of the project we chose not to apply any further
transformation on top of the Riemannian-based kernel. Nevertheless, the
following section presents how to apply a Gaussian kernel on top of the
Riemannian-based kernel.

5.5 Constructing a Gaussian Kernel

The Dual Representation based on the kernel method, as seen in Section
5.4, is not computationally convenient with respect to the Least Squared
Regression. The non-parametric regression method computes the regression
function by inverting the Gram Matrix of dimension I× I, while the compu-
tation of the weights’ vector w is based on the inversion of the ΦTΦ matrix
of dimension P × P . Because generally the number of trials I >> P , the
Dual Representation does not seem to be a convenient method [65].

Nevertheless, this computational inefficiency originates from the explicit
data transformation φ(x), and expressing the Dual Representation only using
the kernel function will avoid the explicit transformation. Thus, the kernel
representation allows to implicitly use a feature space of high dimensionality
or eventually applying a new kernel function on top of an existing one [65]
[69]. This last property is particularly attracting since it allows to implicitly
transform the data in a new feature space.

Let a valid kernel, as the Riemannian-based kernel, be given. The
Riemannian-based kernel is a valid kernel since it respects the condition
in Equation 5.19 or alternatively since the Gram Matrix, generated from the
Riemannian-based kernel, is a positive semi-definite matrix.

It is possible to apply another valid kernel on top of the Riemmanian
one, for example, the Gaussian kernel defined as:

kG(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(5.29)

Using the following kernel properties [65]:

• Given a valid kernel k(xi,xj) and any function h, k1 = h(xi)k(xi,xj)h(xj)
is a valid kernel.

• Given a valid kernel k(xi,xj), k1 = exp(k(xi,xj)) is a valid kernel.

and the expansion of the square ‖xi − xj‖2 = xT
i xi − 2xT

i xj + xT
j xi, it is

possible to verify that the Gaussian kernel is a valid kernel:
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kG(xi,xj) = exp

(
−xT

i xi

2σ2

)
exp

(
xT
i xj

σ2

)
exp

(
−

xT
j xj

2σ2

)
(5.30)

As it is possible to see from the relation in Equation 5.19, the elements
xTx represent a valid kernel, thus the Gaussian kernel can be rewritten as:

kG(xi,xj) = exp

{
− 1

2σ2
(k(xi,xi) + k(xj ,xj)− 2k(xi,xj))

}
(5.31)

In this way it is possible to apply a Gaussian kernel on top of a valid ker-
nel k. The kernel k inside the exponential function in Equation 5.31 can be
substituted with the Riemannian-based kernel kR(vect(Pi), vect(Pj); Pref ) =
vect(S̃i)

T vect(S̃j).
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Chapter 6

Estimation Of Covariance
Matrices

By applying a linear regression method, as shown in Figure 6.1, it is possible
to estimate the loudness or frequency level for a given BCI covariance input.

Figure 6.1: The function f(x) estimates the loudness level of
a given input φ(x).

Nevertheless, the purpose of this project includes also the inverse cal-
culation, namely to be able to estimate the mental state of a user given a
particular loudness or frequency level. The following sections discuss the
interpolation method that enables the estimation of the covariance matrix P
given a target point y.
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6.1 Interpolation

The interpolation is a mathematical method that allows us to find new data
points from a limited set of known data points. Therefore in this project,
interpolation can be used to estimate the covariance matrix of any frequency
or loudness level from a given set of covariance matrices. To contextualize
the interpolation of covariance matrices, we first consider interpolation in
Euclidean space and then progress into the interpolation in the appropriate
Riemannian space.

6.1.1 Interpolation in the Euclidean Space

Let us define the subtraction between two points Pi and Pj in Euclidean
space as

−−→
PiPj = Pj − Pi, shown in Figure 6.2

Figure 6.2: Two points in the Euclidean space. The green line
denotes the position of Pi with respect to 0 and the red line the
position of Pj. The blue line identifies the subtraction of Pj−Pi.

It is possible to estimate the position of a point Pr, between Pi and Pj ,
using linear interpolation [70].

P̂r = Pi + γ
−−→
PiPj (6.1)

with γ ∈ [0, 1]. As shown in Figure 6.3.

Figure 6.3: Estimation of the point Pr, between Pi and Pj,
through the interpolation method. The green line identifies Pi

while the blue line represent the subtraction between Pj and Pi

conveniently shrinked by the γ parameter .

6.1.2 Interpolation in the Riemannian Manifold

Correspondingly, Riemannian Interpolation aims to estimate the value of a
variable that falls in between two measurements in a Riemannian manifold.
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As explained in Chapter 4, given two Covariance Matrices, Pi and Pj , laying
in the Riemannian manifold, it is possible to compute the tangent vector Sj

related to the geodesic between Pi and Pj by applying [70]:

Sj = LogPi
(Pj) (6.2)

Compared to Euclidean space, Sj represents the subtraction between Pj

and Pi:
−−→
PiPj = Pj − Pi. For notational purposes we use

−−→
PiPj to denote Sj .

It is possible to estimate the position of a Sample Covariance Matrix P̂r

based on the Riemannian Linear Interpolation between the two covariance
matrices Pi and Pj [70]. This method applies the interpolation in the tangent
space and then projects it back into the Riemannian manifold:

P̂r = ExpPi
(γ
−−→
PiPj), (6.3)

with γ ∈ [0, 1] and ExpPi
being the exponential map.

6.1.3 Interpolation In Our Project

In this project the Riemannian interpolation method is used to estimate the
Covariance Matrices at any possible frequency or loudness value. Let the
input set P(n) = {P1, · · · ,PI} of Covariance Matrices be defined for the
observation set y = {y1, · · · , yI}.

Given an observation yi, it is possible to find the related inputs Pi. There
could be multiple Pi related to the observation yi as shown in Figure 6.4.
For example in the frequency experiment there are 80 matrices P related to
each target frequency y.

Figure 6.4: The black dots represent the covariance matrices P
related to the same target y.
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Therefore, for each yi the geometric mean Pmeani of the P matrices related
to that target value has been computed using the Algorithm 1 in Chapter 4,
as shown in Fiugre 6.5.

Figure 6.5: The red dots represent the geometric mean between
the P matrices of three target values y1, yi and yj

It is possible to estimate the Pr covariance matrix of a new unobserved
point yr that falls between two observations yi and yj . Using the geometric
mean, as seen previously, each of these two observations yi and yj has a
related geometric mean, Pmeani and Pmeanj , respectively.

It is possible to apply the Logarithmic map between Pmeani and Pmeanj ,
as seen in Equation 6.2:

Sj = LogPmeani
(Pmeanj ) (6.4)

Finally, we can estimate the covariance matrix Pr related to yr by ap-
plying the Riemannian Interpolation as seen in Equation 6.3:

P̂r = ExpPmeani
(γ
−−−−−−−−−→
PmeaniPmeanj ) (6.5)

Note that it is necessary to chose the γ parameter carefully. If the locality
condition is respected and the relation in Equation 4.16 is valid, γ depends
from the position of yr respects to yi and yj , as shown in Figure 6.6:

γ =
yr − yi
yj − yi

(6.6)
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(a) γ computed from Equa-
tion 6.6 is small.

(b) γ computed from Equa-
tion 6.6 is large

Figure 6.6: The value of γ is related to the position of yr.

57



Note that it is possible to apply the interpolation method only after that
a valid linear regression is found. If there is not a linear regression function,
the interpolation method estimates the wrong covariance matrices, as shown
in Figure 6.7.

Figure 6.7: An interpolation method applied on covariance ma-
trices without a linear relationship. The estimated point P̂r, rep-
resented in blue, is far from the actual value of Pr, in red.
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Part III

Sound Parameter Variation
Analysis
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Overview of the Analysis

This chapter will give a description of the steps developed to analyze the in-
formation obtained through the loudness and frequency experiments. Figure
6.8 shows the procedure divided in four main steps.

Figure 6.8: The 4 main steps that compose the analysis of the
data.

1. Signal Acquisition: During the experiments, each subject is exposed
to audio stimuli while the Emotiv EPOC records his/her EEG signals.
The raw signals are then saved to an external file using the TestBench
software. Chapter 7 gives a detailed description of the experiments.

2. Pre-Processing: The raw EEG signals from each subject are cut into
trials. Only trials that contain no head movement, blinks, connection
problems or low contact quality are selected. The trials are then fil-
tered and specific brain rhythms are chosen. Chapter 8 describes the
implementation for this step.

3. Data Analysis

• Feature Transformation: Each trial is used to compute the
Sample Covariance Matrices. The geometric mean is then calcu-
lated using the theory explained in Chapter 4. The features are
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obtained from the vectorization of the symmetric matrices S̃i in
the tangent space. The implementation is described in Chapter
9.

• Regression: The transformed features are used as predictors
for the Least Square Regression with Ridge Regularization and
Dual Representation with Riemannian Based-kernel methods, as
explained in Chapter 5. A description of both regressions’ imple-
mentation can be found in Chapter 9.

4. Interpolation: Once a linear regression has been found it is possible
to apply the Interpolation method to estimate the covariance matrices
of any given frequency or loudness level between the minimum and
maximum observed values, as shown in Chapter 6. The implementation
for the interpolation method is shown in Chapter 10.
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Chapter 7

Signal Acquisition:
Experiments

This chapter presents the implementation of theSignal Acquisition phase of
the project, namely the experiments. Figure 6.8 shows an overview of the
experiment’s development.
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Figure 7.1: Overview of the Signal Acquisition phase. Both
Loudness Experiment and Frequency Experiment follow this
pipeline. The raw EEG data obtained form the expeirments is
used in the next phase of the analysis, Pre-processing.

The experiments created for this project were constructed in order to find
a statistical linear regression, on Riemannian space, from the state of the lis-
tener’s brain to specific sound parameter variations. They were designed
to expose the listener to different sounds, measuring the brain’s reaction
through an EEG device and recording all the information.

7.1 Experiment Design

As explained in Chapter 2, a sound is comprised of several parameters that
change the construction of the sound and the way we hear it. All sounds have
a fundamental frequency and it usually is the predominant, most discernible
sound in the combination of partials. Nevertheless, our perception of the
sound is strongly influenced by the rest of the partials, every combination
of harmonics and overtones create a particular sound. Human perception
of fundamental frequency is also strongly influenced by the ADSR envelope.
For example, a sound with very fast attack and short sustain is not perceived
to have a clear pitch, like drums or non-tonal percussions. All sounds also
have a volume or loudness, and this parameter can vary from imperceptible
to painful, causing the perception of the fundamental frequency and timbre
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to change.

The relationship between the sound parameters is nonorthogonal. There-
fore, in order to understand how sound affects the human brain it is necessary
to simplify and observe the main effect of a single parameter. If single pa-
rameter variation is understood for all sound parameters then the effect of
combinations of parameters can be inferred and studied with a better un-
derstanding. In order to obtain information concerning a single parameter,
all other parameters need to be static.

For this project two parameters were chosen, loudness and frequency.
This selection was based on choosing simple parameters that have clear,
perceptible distinction when the level is changed. Also, changes in loudness
or frequency can be perceived without affecting drastically the perception
of the other parameters. Another reason for selecting these two parameters
is that there is research showing an evident reaction to both loudness and
frequency changes in music, games and audio. Therefore we could expect
the EEG signals to show a response to these parameters.

The following section elaborates on the contents and procedures followed
for the two experiments.

7.1.1 Loudness Experiment

This experiment was designed to measure the brain’s reaction to changes in
the volume of a sound. Therefore, loudness is the variable parameter, while
frequency, timbre, and ADSR are fixed.

Frequency is limited to three values, each from a different range: low,
middle and high. The selection of the frequencies was based on a musical
chromatic scale, the notes are separated by 33 semitones from each other.
The three notes, D2, B4 and G#7 correspond to the following frequencies:
73.416Hz, 493.883Hz and 3322.44Hz respectively.

Timbre is fixed to four values, contrastingly different from each other.
The four selected timbres are: scream, choir, wind instrument, and pure si-
nusoidal wave. The selection was based on covering both comfortable and
uncomfortable, natural, and artificial sounds. We define a natural sound as
a sound that can be produced by non-digital sources. Table 7.1 shows the
classification of the selected timbres.
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Comfortable Uncomfortable

B4-Choir B4-Scream

Natural D2-Wind Instrument G#7-Choir

B4-Wind Instrument G#7-Wind Instrument

D2-Sine Wave

B4-Sine Wave

Artificial D2-Choir G#7-Sine Wave

D2-Scream

G#7-Scream

Table 7.1

The ASDR envelope of each sound is the original natural envelope of
their corresponding timbre.

Loudness is set to 9 different values and then applied to each of the twelve
sounds (4 timbres × 3 frequencies). The selected loudness levels range be-
tween 0dBFS and -48dBFS with a step of -6 dBFS. Note that dB Full Scale
is used instead of dB for the digitally generated sounds.

Every sound lasts five seconds followed by three seconds of silence to
separate each sound from each other clearly and let the subject relax.

Table 7.2, synthesizes the experiment’s setup.
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Frequency Timbre Loudness

36.7081Hz (D2) Scream 0dBFS

246.942Hz (B4) Choir -6dBFS

1661.22Hz (G#7) Sine Wave -12dBFS

Wind Instrument -18dBFS

-24dBFS

-30dBFS

-36dBFS

-42dBFS

-48dBFS

Table 7.2

7.1.2 Frequency Experiment

This experiment was designed to measure the brain’s reaction to changes
in the frequency of a sound. Therefore the only variable sound is frequency
while loudness, timbre and ADSR are fixed. Note that sounds can vary from
a simple sine wave to complex sounds with several partials. In this exper-
iment we understand frequency as the fundamental frequency of the sound,
all the selected sounds have a fundamental frequency that is clear and dis-
tinguishable from all the partials.

The frequency variation selected for the experiment is based on the mu-
sical chromatic scale. Three tones were selected per octave, every tone sepa-
rated from each other by four semitones. The range of selected frequencies is
{C1, E1, G#1, C2, ..., E7, G#7, C8}, their frequency in Hz is shown in Table
7.3.

Timbre is fixed to four values, all with an ADSR envelope that allows
the production of a clear, sustained frequency. The four selected timbres
are: piano, harp and two different virtual sounds 303FM8 and Embracer.
The ADSR envelope of each sound is the original natural envelope of their
corresponding timbre. Loudness was set to 0dBFS. Thus, the experiment
has been conducted for each of these timbres.

Every sound lasts five seconds followed by three seconds of silence to
separate each sound from each other clearly and let the subject relax.

A synthesis of the experiment’s setup is shown in Table 7.3.
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Frequency Timbre Loudness

32.7032Hz (C1) 415.305Hz (G#4) Piano 0dBFS

41.2034Hz (E1) 523.251Hz (C5) Harp

51.9131Hz (G#1) 659.255Hz (E5) 303FM8

65.4064Hz (C2) 830.609Hz (G#5) Embracer

82.4069Hz (E2) 1046.50Hz (C6)

103.826Hz (G#2) 1318.51Hz (E6)

130.813Hz (C3) 1661.22Hz (G#6)

164.814Hz (E3) 2093.00Hz (C7)

207.652Hz (G#3) 2637.02Hz (E7)

261.626Hz (C4) 3322.44Hz (G#7)

329.628Hz (E4) 4186.01Hz (C8)

Table 7.3

All the sounds, except for the scream, were generated using virtual in-
struments (VST). The scream file was obtained online, and is royalty free.
All audio files were exported in WAV format with a sampling frequency of
44100Hz and bit-rate of 2822kbps.

7.2 Experiment Implementation

A program was designed to play the sounds in random order. The program
controls the synchronization with the TestBench for recording and saving of
all EEG readings from the Emotiv EPOC headset.

Afterwards, another program uses the CSV from the TestBench to cut
the data into trials and sort them by subject. Then it eliminates the trials
that have low contact quality, sudden head movements, blinks or connection
problems. Finally, it saves the matrix containing the trials and the vec-
tor with the frequency or loudness target values into files ready to load in
MATLAB.

7.3 Experiment Execution

The experiments were executed in a small sound-isolated room of approxi-
mately 25 m2. Each subject was placed in an arm chair, facing two Bow-
ers&Wilkins DM7 MKII speakers [71]. The speakers and chair were placed
as vertices of an equilateral triangle, each side with a length of 115cm. A
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total of 20 subjects volunteered for the experiments. The age of the subjects
ranges between 12 and 55 years old, with an average age of 30 years. All
subjects are healthy and do not have any hearing disabilities.

The experiments were conducted over two days, the hardware setup and
environment were maintained as stable as possible. The loudness of the both
experiments was measured using a dB meter placed at ear height in the po-
sition of the subject. For the frequency experiment all the sounds’ loudness
levels fall between 75dB and 86dB with no drastic loudness changes between
sounds. For the loudness experiment the measurement of each sound is
shown Table 7.4.

Sound Loudness

D2-WindInstrument (-0dBFS) 102.3dB

D2-WindInstrument (-6dBFS) 97.0dB

D2-WindInstrument (-12dBFS) 90.7dB

D2-WindInstrument (-18dBFS) 84.5dB

D2-WindInstrument (-24dBFS) 79.7dB

D2-WindInstrument (-30dBFS) 73.7dB

D2-WindInstrument (-36dBFS) 67.7dB

D2-WindInstrument (-42dBFS) 61.8dB

D2-WindInstrument (-48dBFS) 56.0dB

B4-WindInstrument (-0dBFS) 104.2dB

B4-WindInstrument (-6dBFS) 98.3dB

B4-WindInstrument (-12dBFS) 92.6dB

B4-WindInstrument (-18dBFS) 86.2dB

B4-WindInstrument (-24dBFS) 81.2dB

B4-WindInstrument (-30dBFS) 75.4dB

B4-WindInstrument (-36dBFS) 69.2dB

B4-WindInstrument (-42dBFS) 63.2dB

B4-WindInstrument (-48dBFS) 57.4dB

G#7-WindInstrument (-0dBFS) 97.4dB

G#7-WindInstrument (-6dBFS) 91.6dB

G#7-WindInstrument (-12dBFS) 84.4dB

G#7-WindInstrument (-18dBFS) 81.3dB

G#7-WindInstrument (-24dBFS) 78.0dB

G#7-WindInstrument (-30dBFS) 75.1dB

G#7-WindInstrument (-36dBFS) 64.7dB

G#7-WindInstrument (-42dBFS) 60.0dB

G#7-WindInstrument (-48dBFS) 54.7dB

Sound Loudness

D2-Choir (-0dBFS) 96.9dB

D2-Choir (-6dBFS) 90.2dB

D2-Choir (-12dBFS) 83.3dB

D2-Choir (-18dBFS) 79.1dB

D2-Choir (-24dBFS) 73.0dB

D2-Choir (-30dBFS) 67.3dB

D2-Choir (-36dBFS) 62.8dB

D2-Choir (-42dBFS) 55.6dB

D2-Choir (-48dBFS) 53.6dB

B4-Choir (-0dBFS) 105.6dB

B4-Choir (-6dBFS) 100.2dB

B4-Choir (-12dBFS) 93.6dB

B4-Choir (-18dBFS) 86.3dB

B4-Choir (-24dBFS) 83.8dB

B4-Choir (-30dBFS) 77.9dB

B4-Choir (-36dBFS) 71.8dB

B4-Choir (-42dBFS) 65.4dB

B4-Choir (-48dBFS) 59.7dB

G#7-Choir (-0dBFS) 101.0dB

G#7-Choir (-6dBFS) 95.5dB

G#7-Choir (-12dBFS) 88.7dB

G#7-Choir (-18dBFS) 82.4dB

G#7-Choir (-24dBFS) 80.6dB

G#7-Choir (-30dBFS) 73.2dB

G#7-Choir (-36dBFS) 66.9dB

G#7-Choir (-42dBFS) 64.0dB

G#7-Choir (-48dBFS) 53.7dB
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Sound Loudness

D2-Scream (-0dBFS) 109.0dB

D2-Scream (-6dBFS) 102.9dB

D2-Scream (-12dBFS) 96.3dB

D2-Scream (-18dBFS) 89.3dB

D2-Scream (-24dBFS) 82.2dB

D2-Scream (-30dBFS) 79.6dB

D2-Scream (-36dBFS) 73.5dB

D2-Scream (-42dBFS) 67.4dB

D2-Scream (-48dBFS) 61.0dB

B4-Scream (-0dBFS) 109.6dB

B4-Scream (-6dBFS) 104.9dB

B4-Scream (-12dBFS) 98.9dB

B4-Scream (-18dBFS) 92.3dB

B4-Scream (-24dBFS) 85.7dB

B4-Scream (-30dBFS) 81.7dB

B4-Scream (-36dBFS) 75.8dB

B4-Scream (-42dBFS) 69.8dB

B4-Scream (-48dBFS) 63.4dB

G#7-Scream (-0dBFS) 105.2dB

G#7-Scream (-6dBFS) 99.3dB

G#7-Scream (-12dBFS) 92.6dB

G#7-Scream (-18dBFS) 86.0dB

G#7-Scream (-24dBFS) 79.8dB

G#7-Scream (-30dBFS) 75.8dB

G#7-Scream (-36dBFS) 70.3dB

G#7-Scream (-42dBFS) 63.3dB

G#7-Scream (-48dBFS) 58.2dB

Sound Loudness

D2-SineWave (-0dBFS) 96.1dB

D2-SineWave (-6dBFS) 90.0dB

D2-SineWave (-12dBFS) 81.1dB

D2-SineWave (-18dBFS) 75.5dB

D2-SineWave (-24dBFS) 69.3dB

D2-SineWave (-30dBFS) 62.5dB

D2-SineWave (-36dBFS) 56.1dB

D2-SineWave (-42dBFS) 52.4dB

D2-SineWave (-48dBFS) 48.6dB

B4-SineWave (-0dBFS) 109.4dB

B4-SineWave (-6dBFS) 103.5dB

B4-SineWave (-12dBFS) 97.6dB

B4-SineWave (-18dBFS) 91.6dB

B4-SineWave (-24dBFS) 85.5dB

B4-SineWave (-30dBFS) 82.5dB

B4-SineWave (-36dBFS) 77.1dB

B4-SineWave (-42dBFS) 68.0dB

B4-SineWave (-48dBFS) 62.2dB

G#7-SineWave (-0dBFS) 110.5dB

G#7-SineWave (-6dBFS) 104.3dB

G#7-SineWave (-12dBFS) 98.9dB

G#7-SineWave (-18dBFS) 92.3dB

G#7-SineWave (-24dBFS) 85.6dB

G#7-SineWave (-30dBFS) 79.6dB

G#7-SineWave (-36dBFS) 73.9dB

G#7-SineWave (-42dBFS) 67.8dB

G#7-SineWave (-48dBFS) 62.2dB

Table 7.4

The final number of trials obtained for the loudness experiment is 20 ×
4 × 3 × 9 = 2160 (subjects × timbres × frequencies × loudnesses). The
final number of trials for the frequency experiment is 20 × 4 × 22 = 1760
(subjects × timbres × frequencies). Nevertheless, from the 2160 loudness
and the 1760 frequency trials some will be removed because of noise and
connection problems. The exact number of removed trials will be specified
in the next chapter.
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Chapter 8

Pre-Processing

The loudness and frequency experiments produced a set of EDF files saved
from the TestBench. The EDF files were converted to CSV files and the
converted files were used to pre-process the acquired signal. The following
chapter addresses the implementation constructed for cleaning and prepar-
ing the signal and the different tools used to develop this implementation.

8.1 Ordering and Cutting the Trials

Each experiment produced one file per subject. From the 40 experiment
files taken from 20 subjects, 2 loudness experiment files and 2 frequency
experiment files were removed from the dataset. The signals in these files
contained a very high level of noise due to connection problems with the
headset, therefore, all relevant information was lost.

Each subject’s file contains from 12 to 14 minutes of EEG signals with
a sampling rate of 129 1 samples per second. An ordering/cutting program
was created to extract the trials from the subject’s files and save them as
text files. Furthermore, the program organizes the target values in corre-
spondence to the trials and saves them as a text file. The content of each file
was ordered by subject and different files were created for each timbre. Addi-
tionally, the program removes the trials with low contact quality or markers.
Note that the markers were inserted during the execution of the experiments
to indicate blinks or connection problems.

Each trial corresponds to one specific sound. The total length of a sound
is approximately five seconds and the ordering/cutting program was designed

1Initially a sampling rate of 128 samples per second was selected in the TestBench
program. Nevertheless, this selection generated 129 samples per second in the CSV files
and therefore a sampling of 129 was used for the analysis.
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to extract the signal contained in an specific interval within those five sec-
onds. An interval of 3000 ms seconds was selected for the frequency trials,
from 150ms to 3150ms, resulting in 387 samples per trial. An interval of
2000ms was selected for the loudness trials, from 0ms to 2000ms, resulting
in 258 samples per trial. This selection of intervals was based on experi-
ence from previous research about the human perception of loudness and
frequency.

A sensation of a frequency, measured in cycles per second or Hz, can be
established about four to eight cycles after the onset of a sound and there
is a certain level of recognition just from the onset. Nevertheless, certainty
about the frequency of a sound requires a minimum duration. Achieving a
finer frequency resolution requires a corresponding longer time interval [11].
An interval of three seconds was selected to allow a fine frequency resolution
for all the experiment frequencies and the onset of the sound was removed to
eliminate the original uncertain perception of frequency based on the onset.

The perception of loudness is biased for sounds shorter than 200ms. The
ear averages over approximately 200ms to determine the loudness of a sound.
For a shorter sound, loudness is perceived as proportional to the sound du-
ration [11]. Therefore a two second interval was selected to ensure that the
perceived loudness corresponded to the measured loudness of the sustain of
the sound and cutting out the release of the different timbres.

A summary of the trials obtained from the cutting/ordering program is
shown in Table 8.1. Note that the dataset size corresponds to the number
of channels and the size of the trials (channels×(trials∗samplesPerTrial)).

Experiment Trials Duration Interval Samples Per Trial Dataset Size

Frequency 1519 2000ms 0ms− 2000ms 387 14× 587853

Loudness 1890 3000ms 150ms− 3150ms 258 14× 487620

Table 8.1

8.1.1 Filtering

The loudness and frequency datasets were filtered to remove noise. The first
filter applied to the datasets was a band-pass filter between 1 and 50Hz.
This filter was implemented in MATLAB with EEGLab [72] using an elliptic
infinite impulse response filter, also known as Cauer filter [73].

71



After the first band-pass filter, the datasets were filtered in order to sep-
arate the different brain rhythms. This separation was used to determine,
during the data analysis, which rhythm contains the more relevant infor-
mation about frequency/loudness processing and perception. The rhythms
selected for this filtering process were Delta (1-4Hz), Theta (4-7Hz), Alfa
(8-14Hz) and Beta (14-30Hz). Additionally, the interval from 1Hz to 50Hz
was saved to determine if there is relevant information in the frequencies
that were not included in the selection of rhythms.

8.1.2 Transformation of the Target Values

For the frequency experiment, the target values, originally measured in Hz
were transformed from their exponential scale to a more natural scale. This
transformation linearized the targets based on the human perception of
tones, as exemplified in Equation 2.2.

The targets were transformed using the equation yscaled = 10 (log10(yoriginal))−
14, this equation transforms the frequencies shown in Table 7.3 into a linear
scale between 1 and 22, with each frequency separated by approximately
1.0.
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Chapter 9

Data Analysis Implementation

This chapter will address the implementation of the data analysis phase of
this project. Data analysis covers the transformation from the trials to Sam-
ple Covariance Matrices (SCMs) in Riemannian space and the projection of
the SCMs into tangent space, where different regression learning methods
can be applied. Afterwards, Ridge regression and Dual Representation Re-
gression are used to find a linear model relating the SCMs in tangent space
to their target frequency or loudness values.
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9.1 Feature Transformation: Riemannian Space to
Tangent Space

The implementation of the feature transformation process was constructed
in MATLAB [74] using the Covariance Toolbox [75]. This process covers the
transformation of all the trials into SCMs in Riemannian space and all the
necessary calculations to project this matrices into tangent space, where the
regression is computed. Algorithm 2 shows a summary of the Riemannian
theory in Chapter 4 and the pseudocode of the feature transformation im-
plementation.

Algorithm 2: Feature Transformation
Data: I trial matrices Xi (Equation 3.1)
Result: I feature vectors vect(S̃i)

Calculate Sample Covariance Matrices;
forall the trials Xi do

Pi =
1

s− 1
Xi XT

i (Equation 3.3);

Calculate Geometric Mean G (Algorithm 1);

Pref = G;

Feature Transformation (S̃i = φ(Pi));
forall the Pi do

S̃i = log(P
−1/2
ref Pi P

−1/2
ref ) (Equation 5.3 and 5.4);

Vectorization;
forall the S̃i do

S̃i = vect(S̃i) (Equation 4.3);
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9.2 Ridge Regression

The ridge regression implementation was constructed using MATLAB [74].
This process covers the steps necessary for the calculation of the weights
for the features. The features are contained in the vectors S̃i produced by
the feature transformation. A summary of the regression theory explained
in Section 5.3 and the pseudocode of this implementation is shown in Algo-
rithm 3.

Algorithm 3: Ridge Regression
Data: I feature vectors S̃i, N runtime feature vectors S̃run

i , λ value,
vector y of I targets

Result: A vector yest of N estimations

Construct feature matrix Φ;
Φ = concatenateRows(S̃1, S̃2, . . . , S̃I);
Add column of 1’s to Φ (Equation 5.6);

Construct feature matrix Φrun;
Φrun = concatenateRows(S̃run

1 , S̃run
2 , . . . , S̃run

N );
Add column of 1’s to Φrun (Equation 5.6);

Calculate weights w;
w = (ΦTΦ + λ I)−1ΦTy (Equation 5.18);

Calculate estimations;
yest = Φrunw ;
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9.3 Dual Representation Regression with Riemannian-
based kernel

The Dual Representation Regression with Riemannian-based kernel was im-
plemented using MATLAB [74]. This process covers the steps necessary for
the estimation of the target frequencies or loudness levels. This target values,
and their corresponding trials, were separated from the data set in order to
evaluate the regression model. Algorithm 4 shows a summary of the theory
covered in Section 5.4 and the pseudocode of this implementation.

Algorithm 4: Dual Representation Regression with Riemannian-based
kernel
Data: I feature vectors S̃i, N runtime feature vectors S̃run

i , λ value,
vector y of I targets

Result: A vector yest of N estimations.

Construct feature matrix Φ;
Φ = concatenateRows(S̃1, S̃2, . . . , S̃I);
Add column of 1’s to Φ (Equation 5.6);

Construct feature matrix Φrun;
Φrun = concatenateRows(S̃run

1 , S̃run
2 , . . . , S̃run

N );
Add column of 1’s to Φrun (Equation 5.6);

Construct Gram Matrix K;
K = ΦΦT (Equation 5.25);

Construct kernel k;
k = ΦrunΦT ;

Calculate estimations;
yest = k(K + λIdent)−1y (Equation 5.28);
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Chapter 10

Interpolation Implementation

The implementation of the Riemannian Interpolation process was constructed
in MATLAB [74] using the Covariance Toolbox [75]. The process covers the
steps necessary to estimate a covariance matrix given a frequency or loud-
ness level between the minimum and maximum observed targets. Algorithm
5 shows a summary of the pseudocode of the Riemannian Interpolation ex-
plained in Chapter 6.
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Algorithm 5: Riemannian Interpolation
Data: I Sample Covariance Matrices Pi, vector y of I targets, yr

target
Result: SCM Estimation P̂r.

Get the two closest targets to yr, ∀ yi < yr and ∀ yj > yr, with
yi, yj ∈ y;

y1 = minimumDistance(yi, yr);
y2 = minimumDistance(yr, yj);

Compute the Geometric Means G1 and G2, (Algorithm 1);
Calculate the G1 of all Pi with target value y1;
Calculate the G2 os all Pj with target value y2;

Set Pmean1 and Pmean2 as;
Pmean1 = G1;
Pmean2 = G2;

Calculate the distance ratio γ;

γ =
yr − y1

y2 − y1
(Equation 6.6);

Project the Pmean that is furthest away into the tangent space of the
closest Pmean;
S2 = LogPmean1

(Pmean2) (Equation 6.4);

Estimate of the Pr matrix ;
P̂r = ExpPmean1

(γ S2) (Equation 6.5);
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Part IV

Results and Conclusion
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Chapter 11

Results

The feature transformation and regression implementations were tested to
determine the validity of the model generated from the brain’s response to
single sound-parameter variation.

The following tests were executed using the Ridge Regression prediction
method exclusively. Note that for this project’s case, the Dual Representa-
tion Regression is equivalent to the Ridge Regression because of the use of
an explicit feature transformation.

Different subsets of channels and different frequency bands were tested
in order to improve the results of the regression and cross validation models.
Table 11.1 shows a summary of the frequency bands and the channels’ subset
size used for this model selection.

Channels’ Subset Size Frequency Band

14 channels 1-50Hz

8 channels 1-4Hz

6 channels 4-7Hz

1 channel 8-14Hz

13-30Hz

Table 11.1

To improve the results, all combinations of channels’ subsets sizes and fre-
quency bands shown in Table 11.1 were tested in order to determine what
channels and frequency bands contained more relevant information for the
regression model. The model selection was executed using cross validation
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results as the selection criteria.

11.1 Visual Interpretation of the Results

The results presented throughout this chapter are illustrated with different
graphs. These graphs show a visualization of the results obtained from the
regression and cross validation methods applied to the different datasets.
Coordinate systems with three different combinations of axes are used, trials
against targets, targets against estimations and targets against residuals.

The first combination, trials against targets, can only be used for the
datasets containing one channel. The calculation of the SCMs for one chan-
nel trials produces a scalar number per trial. This scalar value in Riemannian
space also corresponds to a scalar value in tangent space. The scalar value
in tangent space of each trial is plotted in the x-axis of the coordinate sys-
tem and its corresponding target is plotted in the y-axis. In this coordinate
system, the regression function w can also be plotted, for scalar trials the
regression is a linear function of the form w1x+ w0.

For the analysis of datasets containing trails with multiple channels, the
preceding combination cannot be visualized in two dimensions because the
trials are vectors or multi-dimensional points. Therefore, the validity of the
regression model is shown by plotting the target values in the x-axis, against
their corresponding estimation in the y-axis. An accurate regression would
create estimation values that are close to their corresponding target. There-
fore, the accuracy of the regression function is proportional to the distance
between the points and the diagonal created by the function y = x.

The third axes combination can be used for any number of channels and
it shows how well each target value was estimated by the regression function.
The target values are plotted in the x-axis and the residuals in the y-axis.
An accurate regression would create y-values close to zero.

11.2 Cross Validation

Cross validation is a validation method that determines how well a model
generalizes to external data sets. For this project, it evaluates how well the
regression model predicts unseen values.

A k-fold cross validation method divides the dataset into k subsets. One
of the subsets is excluded from the dataset and the remaining k − 1 subsets
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are used to compute the regression model. Afterwards, the excluded subset
is used to evaluate the regression model using the mean squared residual
(MSR).

MSR =
1

N

N∑
i=1

(yi − yesti )2 (11.1)

where yi is the target value and yesti is the estimated value for the i− th trial
of the excluded subset.

This k-fold separation process is repeated k times excluding a different
subset in each iteration. After this process is finished an average error is
calculated using the MSR of every iteration.

Eavg =
1

k

k∑
i=1

MSRi (11.2)

where k is the number of subsets. This averaged error represents an estima-
tion of the regression model’s quality. The functionality and implementation
of the k-fold cross validation method is summarized in Algorithm 6.

Algorithm 6: k-Fold Cross Validation
Data: Dataset of I trials, vector y of I targets, number of folds k
Result: Average error Eavg

split_folds = split(Dataset into k folds);
split_targets = split(y into k subsets);

forall the f in split_folds and t in split_targets do
1 runtime_trials = f ;
2 yruntime = t;

3 training_trials = (k − 1) folds, excluding f ;
4 ytraining = (k − 1) target subsets, excluding t;

5 Calculate the weight vector w using the training_trials and
ytraining;

6 Calculate the yestimations for the runtime_trials using w;

7 Calculate MSR between yruntime and yestimations (Equation 11.1);

Calculate the error Eavg of all the MSRs (Equation 11.2);
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Leave One Subject Out Cross Validation (LOSO)

One of the k-fold cross validation methods applied in this project is the Leave
One Subject Out (LOSO) cross validation. This cross validation method was
used to evaluate the regression model created for the complete dataset. This
dataset contains all the subjects and all the timbres.

For the frequency experiment, the size of each fold is between 85 and 88,
depending on the amount of trials removed because of noise and artifacts
during the pre-processing phase. For the loudness experiment, the size of
each fold is between 100 and 108 depending on the amount of trials removed
in the pre-processing phase.

Leave One Trial Out Cross Validation (LOTO)

Another k-fold cross validation method used in this project is the Leave One
Trial Out (LOTO) cross validation. This cross validation method was used
to evaluate the regression model created for each subject.

LOTO cross validation is accomplished by using Algorithm 6, with the
number of folds equal to the number or trials (k = I) and consquently mak-
ing the size of each fold equal to 1.

Leave One Timbre Out Cross Validation (LOTiO)

A k-fold cross validation method that is very relevant for this project is the
Leave One Timbre Out (LOTiO) cross validation. Each experiment was de-
signed with four different timbres and this timbres were selected to produce
different sensations in the subject. Therefore, based on the results, assump-
tions could be made about the subject’s reaction to the different timbres.
In other words, we could either observe a general reaction to loudness/fre-
quency changes for all the timbres or we could observe that the reaction is
timbre dependent.

In this k-fold cross validation method the size of each fold is approxi-
mately 25% of the trials, making k = 4. This cross validation method was
used to evaluate the regression model created for the dataset of all the sub-
jects and the regression model created for each subject.
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11.3 Loudness Experiment - All Subjects

This section presents the results obtained from the loudness experiment using
the dataset of all the subjects. First, the results of the analysis using 14
channels and all the timbres is shown. Afterwards, the analysis using 1
channel and all timbres is presented. Finally, the analysis using 14 channels
and separate timbres is discussed.

11.3.1 LOSO Cross Validation, 14 Channels, All Timbres

LOSO cross validation using the set of all 14 channels was applied to the
dataset containing all the subjects and timbres. Figure 11.1 shows the target
values of the training set (ytraining) against their corresponding estimation
in the first LOSO iteration.

Figure 11.1: Loudness Experiment - Training targets ytraining

against their corresponding estimation. The regression function
was estimated using the trials of subjects 2-18 with all 4 timbres
and a frequency band of 1-50Hz.

The estimations shown in Figure 11.1, demonstrate that the calculated
regression function is unable to predict the target values of the training
set (ytraining). We chose to plot the estimations for the training targets
(ytraining) instead of the runtime targets (yruntime) in order to show the be-
havior of majority of the dataset. Note that the estimations of the training
set and runtime set show analogous behaviors. LOSO cross validation with
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14 channels and all four timbres produces similar results for all the different
frequency bands.

The inaccuracy of the regression function can be induced by one or more of
the following reasons:

Low Spatial Resolution Not enough spatial information about the brain
is obtained by the headset. In other words, the restricted number
of channels may cause the information to be concentrated in specific
regions of the brain. If relevant information about the relationship
between loudness and the brain’s state is in other regions, the headset
may not be able to read the necessary information.

Nonlinear Relationship between Loudness and the Brains’s State
If the relationship between loudness and the state of the brain is non-
linear in Riemannian space, further feature transformation may be
required to find a linear relationship. One could imagine that apply-
ing another kernel to transform the features into another space, as
explained in Section 5.29, might yield better results.

Loudness to Brain’s State Relationship is Timbre Dependent Each
timbre may cause different effects in the brain’s state. This would ren-
der the regression model unable to find a linear relationship between
the loudness and the brain’s state if more than one timbre is involved.

Loudness to Brain’s State Relationship is Subject Dependent Each
subject has a different perception of loudness that may induce different
reactions in the brain. This would render the regression model unable
to find a linear relationship for more than one subject at a time.

11.3.2 LOSO Cross Validation, 1 Channel, All Timbres

In order to evaluate if any of the channels contained relevant information for
the regression model, LOSO cross validation using all timbres was executed
for every channel. Furthermore, a coordinate system showing trials against
targets, as explained in Subsection 11.1, was used to visually inspect each
channel’s regression. Figure 11.2 shows an example of the obtained results.
The plot shows the training trials for the first iteration of the LOSO cross
validation using Channel FC6.
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Figure 11.2: Loudness Experiment - Training trials against
training targets (ytraining) for Channel FC6. The regression
function, depicted as a red line, was estimated using the trials
of subjects 2-18 with all 4 timbres and a frequency band of 1-
50Hz.

From Figure 11.2 we can observe that the trials are scattered in a pattern
that does not show a linear behavior. Given the nonlinear distribution of
the trials the constructed regression function is unsatisfactory. Figure 11.3
shows the estimations by target and the residuals by target that correspond
to Figure 11.2.

Figure 11.3: Loudness Experiment - Left plot shows training
targets against training estimations. Right plot shows training
targets against training residuals. Both plots correspond to the
regression function shown in Figure 11.2.
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All other channels and all frequency bands show results analogous to the
previous example. After running all the combinations of channels and fre-
quency bands we concluded that the signal contained in one single channel
does not provide enough information to create a linear regression.

11.3.3 LOSO Cross Validation, 14 Channels, Separate Tim-
bres

All previous attempts at finding a linear regression use the dataset containing
all subjects and all timbres. For each timbre, a LOSO cross validation using
14 channels was computed in order to verify if the inaccuracy of the previous
regressions was induced by combining all four different timbres. Figure 11.4
shows the estimations of the training set for the first iteration of the LOSO
cross validation of each timbre.

Figure 11.4: Loudness Experiment - Training targets ytraining

against their corresponding estimation. Separate timbres. All
regression estimations were calculated using the trials of subjects
2-18 with a frequency band of 1-50Hz.

From Figure 11.4 we can infer that combining timbres was not the cause
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for the inaccuracy of the previous regression functions. Each separate tim-
bre shows different estimations that do not suggest a linear behavior for all
subjects.

11.4 Loudness Experiment - Separate Subjects

For every subject, it is possible to find a representative linear regression
model relating loudness level and the brain’s state. This section presents the
results obtained from the dataset separated by subject. First, the results of
the LOTiO cross validation analysis using 14 channels is shown. Afterwards,
LOTO cross validation is applied to different sets of channel. Throughout
this section, cross validation error is used as the selection criterion for the
model selection executed to improve the accuracy of the regression.

All the above mentioned cross validation analyses were executed for all
frequency bands. The frequency band with the smallest cross validation er-
ror for all the different analyses was the θ rhythm (4-7Hz), shown in Table
3.2. Note that this is consistent with the research studies shown in Related
Works, Section 2.5. Therefore, all the following cross validation analyses are
applied to the θ rhythm filtered dataset.

11.4.1 LOTiO Cross Validation, 14 Channels

After determining that a linear relationship could be found for the training
set of all the subjects, LOTiO was applied in order to observe if the relation-
ship between loudness and the brain’s state is timbre independent. Figure
11.5 shows the results of the LOTiO cross validation for Subject 16, first
iteration.
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Figure 11.5: Loudness Experiment - Training Targets ytraining

against their corresponding estimation in blue. Runtime targets
yruntime against their corresponding estimation in red. The re-
gression function was estimated for Subject 16 using the timbres
Choir, Scream and Sine and a frequency band of 4-7Hz. The
runtime estimations were calculated using the Winds’ trials.

Figure 11.5 shows that the regression function estimates the training
targets very accurately, but estimates the runtime targets loosely. All four
iterations of the LOTiO cross validation show similar results. The inabil-
ity of the regression function to predict the runtime set accurately may be
caused by overfitting or because the the relationship between loudness and
the brain’s state is timbre dependent. In order to determine if the regression
function is overfitting to the training set, LOTO cross validation is applied
to each subject instead of LOTiO cross validation.

11.4.2 LOTO Cross Validation, 14 Channels, All Timbres

LOTO cross validation using the set of all 14 channels was applied to the
dataset of each subject, using all four timbres. Figure 11.6 shows an example
of the estimations of the training targets and the estimation of the runtime
target of every interation.
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Figure 11.6: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 8,
λ = 1 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 8 has a cross validation error
(Eavg) of 476.76. Table 11.2 shows the error Eavg of each subject. The
average cross validation error for all 18 subjects is 787.08.

Subject Cross Validation Error

1 1385.80

2 676.04

3 196.45

4 796.10

5 1013.50

6 1364.50

7 648.43

8 476.76

9 383.73

Subject Cross Validation Error

10 754.44

11 1618.00

12 1287.90

13 556.41

14 337.52

15 493.73

16 323.68

17 1137.30

18 717.16

Table 11.2

The results obtained for the LOTO cross validation suggest that the re-
gression function of every iteration overfits on the training set causing the
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runtime estimation to be inaccurate, as explained in Section 5.2. Further-
more, the results obtained for the LOTO cross validation are similar to the
results of LOTiO cross validation. This suggests that the error (Eavg) in
LOTiO cross validation is not induced by the timbre dependence but by
overfitting.

The complexity penalty parameter (λ) of the regression model can be
tuned in order to balance the overfitting and underfitting of the model.
Increasing the value of λ causes the regression to decrease the number of
features used. Further experimentation revealed that λ = 15 decreases the
Eavg significantly and higher λ values do not produce a significant decrease.
Figure 11.7 shows the result of setting λ = 15 for the LOTO cross validation
shown in Figure 11.6.

Figure 11.7: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 8,
λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 8, using λ = 15, has a cross val-
idation error (Eavg) of 168.48. Table shows the error (Eavg) of each subject.
The average cross validation error for all 18 subjects is 285.69.
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Subject Cross Validation Error

1 399.75

2 249.29

3 144.48

4 275.02

5 389.12

6 421.62

7 379.84

8 168.48

9 148.33

Subject Cross Validation Error

10 282.92

11 453.59

12 402.92

13 233.21

14 163.46

15 207.40

16 118.67

17 376.95

18 327.45

Table 11.3

As shown in Table 11.3, tuning the λ parameter achieves a significant
improvement. Nevertheless, other approaches that decrease the number of
features/predictors for the regression model may yield better results.

11.4.3 LOTO Cross Validation, 8 Channels, All Timbres

The number of predictors, for the regression function, generated by using
all 14 channels is 106. The number of trials per subject is in average 104.
Therefore, a contributing factor to the overfitting of the regression function
is that the number of predictors surpasses the number of observations.

Reducing the number of channels decreases the number of predictors for
the regression function significantly. Model selection with cross validation
error as the selection criterion was used to determine which pairs of channels
contain the most relevant information for the regression model. The ranking
of each pair of channels was used to select the subset of eight channels that
yields the best results. Figure 11.8 shows the scalp map for the eight selected
channels.
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Figure 11.8: Subset of eight channels selected for the loudness
experiment.

LOTO cross validation using the set of channels shown in Figure 11.8
was applied to each subject, using all four timbres. Figure 11.9 shows an
example of the estimations of the training targets and the estimation of the
runtime target of every iteration.

Figure 11.9: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 8,
λ = 1 and a frequency band of 4-7Hz.
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The LOTO cross validation for Subject 8, using eight channels, has a
cross validation error (Eavg) of 227.34. Table 11.4 shows the error (Eavg) of
each subject. The average cross validation error for all 18 subjects is 267.61.

Subject Cross Validation Error

1 304.93

2 259.45

3 184.82

4 208.95

5 315.00

6 370.78

7 371.76

8 227.34

9 156.07

Subject Cross Validation Error

10 307.64

11 313.84

12 341.64

13 263.42

14 120.43

15 245.88

16 135.97

17 328.49

18 360.54

Table 11.4

As shown for the 14 channel LOTO cross validation, tuning the complex-
ity penalty parameter of the regression improves the accuracy of the model
significantly. Figure 11.10 shows the result of setting λ = 15 for the LOTO
cross validation shown in Figure 11.9.
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Figure 11.10: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the esti-
mation of the runtime target for all the LOTO iterations. The
regression function of every iteration was calculated using Subject
8, λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 8, using eight channels and
λ = 15, has a cross validation error (Eavg) of 190.04. Table shows the
error (Eavg) of each subject. The average cross validation error for all 18
subjects is 227.57.

Subject Cross Validation Error

1 260.09

2 216.18

3 156.22

4 187.14

5 268.32

6 319.78

7 314.78

8 190.04

9 133.70

Subject Cross Validation Error

10 250.98

11 263.74

12 289.55

13 224.47

14 104.05

15 214.77

16 119.89

17 273.07

18 309.43

Table 11.5
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11.4.4 LOTO Cross Validation, 6 Channels, All Timbres

To further reduce the number of predictors for the regression model, the
three pairs of channels that contained the most relevant information were
selected. Figure 11.11 shows the scalp map for the six selected channels.

Figure 11.11: Subset of six channels selected for the loudness
experiment.

LOTO cross validation using the set of channels shown in Figure 11.11
was applied to each subject, using all four timbres. Figure 11.12 shows an
example of the estimations of the training targets and the estimation of the
runtime target for every iteration.
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Figure 11.12: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 8,
λ = 1 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 8, using six channels, has a cross
validation error (Eavg) of 141.48. Table 11.6 shows the error (Eavg) of each
subject. The average cross validation error for all 18 subjects is 239.60.

Subject Cross Validation Error

1 272.50

2 199.62

3 213.42

4 227.22

5 279.37

6 320.10

7 173.19

8 141.48

9 272.98

Subject Cross Validation Error

10 278.00

11 276.91

12 341.64

13 263.42

14 255.60

15 134.198

16 209.77

17 286.05

18 256.78

Table 11.6

As shown for the 14 channels and eight channels LOTO cross validation,
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tuning the complexity penalty parameter of the regression improves the ac-
curacy of the model significantly. Figure 11.13 shows the result of setting
λ = 15 for the LOTO cross validation shown in Figure 11.12.

Figure 11.13: Loudness Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the esti-
mation of the runtime target for all the LOTO iterations. The
regression function of every iteration was calculated using Subject
8, λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 8, using six channels and λ = 15,
has a cross validation error (Eavg) of 161.54. Table shows the error Eavg of
each subject. The average cross validation error for all 18 subjects is 221.59.

98



Subject Cross Validation Error

1 255.42

2 183.81

3 188.21

4 213.34

5 259.16

6 297.39

7 287.78

8 161.54

9 131.70

Subject Cross Validation Error

10 248.15

11 259.41

12 259.25

13 231.85

14 125.02

15 193.13

16 194.27

17 255.85

18 243.43

Table 11.7

11.5 Separate Subjects - Summary

A summary of the results obtained for the loudness experiment using sepa-
rate subjects is shown in Table 11.8.

λ Channels’ Subset Size Average Cross Validation Error

1 14 787.08

15 14 285.69

1 8 267.61

15 8 227.57

1 6 239.60

15 6 221.59

Table 11.8
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11.6 Frequency Experiment - All Subjects

This section presents the results obtained from the frequency experiment
using the dataset of all the subjects. First, the results of the analysis using
14 channels and all the timbres is shown. Afterwards, the analysis using 1
channel and all timbres is presented. Finally, the analysis using 14 channels
and separate timbres is discussed.

11.6.1 LOSO Cross Validation, 14 Channels, All Timbres

LOSO cross validation using the set of all 14 channels was applied to the
dataset containing all the subjects and timbres. Figure11.14 shows the target
values of the training set (ytraining) against their corresponding estimation
in the first LOSO iteration.

Figure 11.14: Frequency Experiment - Training targets
ytraining against their corresponding estimation. The regression
function was estimated using the trials of subjects 2-18 with all
4 timbres and a frequency band of 1-50Hz.

The estimations shown in Figure 11.14, demonstrate that the calculated
regression function is unable to predict the target values of the training set
(ytraining). Analoguos to the loudness experiment, we chose to plot the es-
timations for the training targets (ytraining) instead of the runtime targets
(yruntime) in order to show the behaviour of majority of the dataset. The
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estimations of the training set and runtime set show analogous behaviors.
LOSO cross validation with 14 channels and all four timbres produces simi-
lar results for all the different frequency bands.

The inaccuracy of the regression function may be induced by similar reasons
to the ones explained for the loudness experiment in Section 11.3. One or
more of the the following reasons may cause the regression to be inaccurate:

• Low Spatial Resolution

• Nonlinear Relationship Between Frequency and the Brain’s State

• Timbre Dependent Relationship Between the Frequency and the Brain’s
State

• Subject Dependent Relationship Between the Frequency and the Brain’s
State.

11.6.2 LOSO Cross Validation, 1 Channel, All Timbres

In order to evaluate if any of the channels contained relevant information for
the regression model, LOSO cross validation using all timbres was executed
for every channel. Furthermore, a coordinate system showing trials against
targets, as explained in Subsection 11.1, was used to visually inspect each
channel’s regression. Figure 11.15 shows an example of the obtained results.
The plot shows the training trials for the first iteration of the LOSO cross
validation using Channel F7.

101



Figure 11.15: Frequency Experiment - Training trials against
training targets (ytraining) for Channel F7. The regression func-
tion, depicted as a red line, was estimated using the trials of
subjects 2-18 with all 4 timbres and a frequency band of 1-50Hz.

From Figure 11.15 we can observe that the trials are scattered in a pat-
tern that does not show a linear behavior. Given the nonlinear distribution of
the trials the constructed regression function is unsatisfactory. Figure 11.16
shows the estimations by target and the residuals by target that correspond
to Figure 11.15.

Figure 11.16: Frequency Experiment - Left plot shows training
targets against training estimations. Right plot shows training
targets against training residuals. Both plots correspond to the
regression function shown in Figure 11.15.
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All other channels and all frequency bands show results analogous to the
previous example. After running all the combinations of channels and fre-
quency bands we concluded that the signal contained in one single channel
does not provide enough information to create a linear regression.

11.6.3 LOSO Cross Validation, 14 Channels, Separate Tim-
bres

Following the same procedure as the loudness experiment, LOSO cross vali-
dation using 14 channels was computed in order to verify if the inaccuracy of
the previous regressions was induced by combining all four different timbres.
Figure 11.17 shows the estimations of the training set for the first iteration
of the LOSO cross validation of each timbre.

Figure 11.17: Frequency Experiment - Training targets
ytraining against their corresponding estimation. Separate tim-
bres. All regression estimations were calculated using the trials
of subjects 2-18 with a frequency band of 1-50Hz.
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From Figure 11.17 we can infer that combining timbres was not the cause
for the inaccuracy of the previous regression functions. Each separate tim-
bre shows different estimations that do not suggest a linear behavior for all
subjects.

11.7 Frequency Experiment - Separate Subjects

Coherently, on what has been found in the loudness experiment, it is possible
to find a representative linear regression model relating frequency and the
brain’s state of single subjects. This section presents the results obtained
from the dataset separated by subject. First, the results of the LOTiO cross
validation analysis using 14 channels is shown. Afterwards, LOTO cross
validation is applied to different sets of channels. Throughout this section,
cross validation error is used as the selection criterion for the model selection
executed to improve the accuracy of the regression.

All the above mentioned cross validation analyses were executed for all
frequency bands. Similarly to the loudness experiment, the frequency band
with the smallest cross validation error for all the different analyses was the
θ rhythm (4-7Hz), shown in Table 3.2. Note that this is consistent with the
research studies shown in Related Works, Section 2.5. Therefore, all the fol-
lowing cross validation analyses are applied to the θ rhythm filtered dataset.

11.7.1 LOTiO Cross Validation, 14 Channels

After determining that a linear relationship could be found for the training
set of all the subjects, LOTiO was applied in order to observe if the relation-
ship between loudness and the brain’s state is timbre independent. Figure
11.18 shows the results of the LOTiO cross validation for Subject 7, first
iteration.
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Figure 11.18: Frequency Experiment - Training Targets
ytraining against their corresponding estimation in blue. Run-
time targets yruntime against their corresponding estimation in
red. The regression function was estimated for Subject 7 using
the timbres Embracer, Harp and Piano and a frequency band
of 4-7Hz. The runtime estimations were calculated using the
303FM8’s trials.

Figure 11.18 shows that the regression function estimates the training
targets very accurately, but estimates the runtime targets loosely. All four
iterations of the LOTiO cross validation shows similar results. Analogous
to the loudness experiment, in order to determine if the regression function
is overfitting to the training set LOTO cross validation is applied to each
subject instead of LOTiO cross validation.

11.7.2 LOTO Cross Validation, 14 Channels, All Timbres

LOTO cross validation using the set of all 14 channels was applied to the
dataset of each subject, using all four timbres. Figure 11.19 shows an ex-
ample of the estimations of the training targets and the estimation of the
runtime target of every iteration.
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Figure 11.19: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 1,
λ = 1 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 1 has a cross validation error
(Eavg) of 101.81. Table 11.9 shows the error Eavg of each subject. The
average cross validation error for all 18 subjects is 127.12.

Subject Average Model Error

1 101.81

2 141.67

3 82.64

4 178.91

5 96.37

6 68.16

7 89.63

8 275.45

9 87.63

Subject Average Model Error

10 127.68

11 97.379

12 115.61

13 69.27

14 105.59

15 106.38

16 239.16

17 136.21

18 168.56

Table 11.9

Akin to the results obtained for the loudness experiments, the LOTO
cross validation results show that the regression function overfits to the run-
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time set. For this experiment the LOTO and LOTiO cross validation results
are also similar, signifying that the error in LOTiO cross validation is mainly
due to overfitting and not timbre dependence.

Experimentation reveals that tuning the complexity penalty parameter,
also yields a significant improvement in the frequency experiment. Values
below 15 achieve important improvements while values above 15 do not pro-
duce a significant gain. Figure 11.20 shows the results for the LOTO cross
validation shown in Figure 11.19 using λ = 15.

Figure 11.20: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 1,
λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 1, using λ = 15, has a cross
validation error (Eavg) of 49.78. Table 11.10 shows the error (Eavg) of each
subject. The average cross validation error for all 18 subjects is 69.91.
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Subject Average Model Error

1 49.78

2 69.49

3 47.66

4 87.18

5 53.85

6 60.71

7 70.30

8 105.49

9 63.91

Subject Average Model Error

10 63.20

11 64.72

12 77.35

13 59.76

14 64.14

15 71.14

16 98.92

17 76.97

18 73.87

Table 11.10

As shown in Table 11.10, tuning the λ parameter achieves a significant
improvement. Nevertheless, other approaches that decrease the number of
features/predictors for the regression model may yield better results.

11.7.3 LOTO Cross Validation, 8 Channels, All Timbres

The number of predictors, for the regression function, generated by using
all 14 channels is 106. The number of trials per subject is in average 86.
Therefore, a contributing factor to the overfitting of the regression function
is that the number of predictors surpasses the number of observations.

Reducing the number of channels decreases the number of predictors for
the regression function significantly. Model selection with cross validation
error as the selection criterion was used to determine which pairs of channels
contain the most relevant information for the regression model. The rank-
ing of each pair of channels was used to select the subset of eight channels
that yields the best results. Figure 11.21 shows the scalp map for the eight
selected channels.
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Figure 11.21: Subset of eight channels selected for the fre-
quency experiment.

LOTO cross validation using the set of channels shown in Figure 11.21
was applied to each subject, using all four timbres. Figure 11.22 shows an
example of the estimations of the training targets and the estimation of the
runtime target of every iteration.

Figure 11.22: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 1,
λ = 1 and a frequency band of 4-7Hz.
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The LOTO cross validation for Subject 1, using eight channels, has a
cross validation error (Eavg) of 61.54. Table 11.11 shows the error (Eavg) of
each subject. The average cross validation error for all 18 subjects is 72.20.

Subject Cross Validation Error

1 61.54

2 64.12

3 49.38

4 64.66

5 64.37

6 91.08

7 68.08

8 65.05

9 80.38

Subject Cross Validation Error

10 66.46

11 54.71

12 79.88

13 122.37

14 69.50

15 72.39

16 68.11

17 65.45

18 92.18

Table 11.11

As shown for the 14 channel LOTO cross validation, tuning the complex-
ity penalty parameter of the regression improves the accuracy of the model
significantly. Figure 11.23 shows the result of setting λ = 15 for the LOTO
cross validation shown in Figure 11.22.
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Figure 11.23: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the esti-
mation of the runtime target for all the LOTO iterations. The
regression function of every iteration was calculated using Subject
1, λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 1, using eight channels and
λ = 15, has a cross validation error (Eavg) of 47.85. Table 11.12 shows
the error (Eavg) of each subject. The average cross validation error for all
18 subjects is 54.73.

Subject Cross Validation Error

1 47.85

2 50.75

3 39.12

4 50.04

5 51.47

6 69.30

7 54.83

8 51.37

9 65.62

Subject Cross Validation Error

10 51.83

11 48.19

12 63.06

13 64.36

14 53.13

15 56.05

16 51.66

17 50.86

18 65.61

Table 11.12
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11.7.4 LOTO Cross Validation, 6 Channels, All Timbres

To further reduce the number of predictors for the regression model, the
three pairs of channels that contained the most relevant information were
selected. Figure 11.24 shows the scalp map for the six selected channels.

Figure 11.24: Subset of six channels selected for the frequency
experiment.

LOTO cross validation using the set of channels shown in Figure 11.24
was applied to each subject, using all four timbres. Figure 11.25 shows an
example of the estimations of the training targets and the estimation of the
runtime target for every iteration.
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Figure 11.25: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the estima-
tion of the runtime target for all LOTO iterations. The regres-
sion function of every iteration was calculated using Subject 1,
λ = 1 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 1, using six channels, has a cross
validation error (Eavg) of 47.55. Table 11.13 shows the error (Eavg) of each
subject. The average cross validation error for all 18 subjects is 54.82.

Subject Cross Validation Error

1 47.55

2 49.62

3 38.98

4 56.52

5 52.90

6 60.25

7 57.35

8 52.90

9 54.13

Subject Cross Validation Error

10 51.65

11 48.36

12 57.72

13 58.53

14 53.97

15 58.15

16 71.07

17 55.37

18 61.80

Table 11.13

As shown for the 14 channels and eight channels LOTO cross validation,
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tuning the complexity penalty parameter improves the accuracy of the re-
gression model significantly. Figure 11.26 shows the results of setting λ = 15
for the LOTO cross validation shown in Figure 11.25.

Figure 11.26: Frequency Experiment - Blue Circles show the
training targets (ytraining) against their corresponding estima-
tion, for the last LOTO iteration. Red crosses show the esti-
mation of the runtime target for all the LOTO iterations. The
regression function of every iteration was calculated using Subject
1, λ = 15 and a frequency band of 4-7Hz.

The LOTO cross validation for Subject 1, using six channels and λ = 15,
has a cross validation error (Eavg) of 49.94. Table shows the error Eavg of
each subject. The average cross validation error for all 18 subjects is 48.29.
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Subject Cross Validation Error

1 49.94

2 44.86

3 35.22

4 49.39

5 47.99

6 53.39

7 51.72

8 49.95

9 48.79

Subject Cross Validation Error

10 47.42

11 43.14

12 51.70

13 48.94

14 48.15

15 52.33

16 52.32

17 48.72

18 55.31

Table 11.14

11.8 Separate Subjects - Summary

A summary of the results obtained for the frequency experiment using sep-
arate subjects is shown in Table 11.15.

λ Channels’ Subset Size Average Cross Validation Error

1 14 127.12

15 14 69.91

1 8 72.20

15 8 54.73

1 6 54.82

15 6 48.29

Table 11.15

11.9 Interpolation Results

Once a linear regression was found for every subject, we can assume that
interpolation can be used to find an accurate approximation of the brain’s
state given any loudness level or frequency. This section exemplifies the re-
sults obtained by executing Algorithm 5 for an unknown loudness level and
an unknown frequency.
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11.9.1 Loudness Interpolation

An interpolation for the unknown loudness level r = 52.8 and 14 channels
was calculated using Algorithm 5. Figure 11.27 shows a visual representation
of the results obtained by the interpolation.

Figure 11.27: Loudness Interpolation - Unknown loudness level
r = 52.8. Closest known loudness levels are 52.4 and 53.6 with
SCM P2 and SCM P3 respectively.

Figure 11.28 shows the heat maps for the SCMs used in Figure 11.27.

Figure 11.28: Loudness Interpolation - The leftmost figure
shows the heat map of the SCM P2. The central figure shows
the interpolated heat map of the SCM Pr. The rightmost figure
shows heat map of the SCM P3.

116



11.9.2 Frequency Interpolation

An interpolation for the unknown scaled frequency r = 2.7 and 14 channels
was calculated using Algorithm 5. Scaled frequency 2.7 corresponds to a
frequency of aproximately 46.77Hz, which is slightly higher than the note
F#1. Figure 11.29 shows a visual representation of the results obtained by
the interpolation.

Figure 11.29: Frequency Interpolation - Unknow scaled fre-
quency r = 2.7. Closest known scaled frequencies are 2 and 3
with SCM P2 and SCM P3 respectively.

Figure 11.30 shows the heat maps for the SCMs used in Figure 11.29.

Figure 11.30: Frequency Interpolation - The leftmost figure
shows the heat map of the SCM P2. The central figure shows
the interpolated heat map of the SCM Pr. The rightmost figure
shows heat map of the SCM P3.
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Chapter 12

Conclusion

The main objective of this project is to provide a preliminary analysis of
the relationship between single sound-parameter variation and the brain’s
response. The goal of this analysis is to find a linear regression function that
models the behavior of the brain while exposed to single sound-parameter
variation. If a linear regression can be found, then interpolation methods
can be applied to approximate the brain’s reaction to any sound parameter
level within the range of known observations.

First, a general introduction to audio, music theory, and emotion research
is presented. This knowledge is used for the design and implementation of
two single sound-parameter variation experiments, loudness and frequency.
Afterwards, the experiments are executed on 20 subjects, using the Emotiv
EPOC headset.

The raw data from the experiments was pre-processed to create trials
free of noise and artifacts. Successively, a measure of the distance between
trials was estimated by calculating the Sample Covariance Matrices (SCM)
of the trials. Since the SCMs lay in Riemannian space, Riemannian geome-
try and distance were used to extract the relevant features from the SCMs.
The features were then used as the input for the regression model.

The first regression model was calculated for all the subjects and all the
timbres using a LOSO cross validation method. Since this regression model
was inaccurate, different combinations of frequency bands, timbres and chan-
nels were tested to determine if any of them contained relevant information
for the regression function.

Afterwards, the dataset was separated by subject and other cross valida-
tion methods were applied. Accurate linear regression functions were found
for every subject using a LOTO cross validation method. After obbserving
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all the different regression calculations, we concluded that both loudness and
frequency have a subject dependent linear relationship to the subject’s brain
state.

Nevertheless, the accuracy of each subject’s regression model for unseen
values was lower than expected due to overfitting of the regression function.
The original assumption of the project was that a linear regression between
single sound-parameter variation and the brain’s reaction could be found for
all subjects. Therefore, the number of trials per subject is limited. This
causes the number of predictors of the regression function to be higher than
the number of observations per subject, thus, overfitting.

Tuning of the complexity penalty parameter λ of the regression function,
decreases the number of predictors and yields significant improvements for
the estimation of unseen values. Model selection using cross validation error
as a selection criterion was executed for selecting the best channels and the
best frequency band. A reduction in the number of channels used for the
SCMs decreases the number of predictors drastically and also improves the
accuracy of the regression functions.

For the loudness experiment, the smallest average cross validation error
for all subjects is 221.59. This LOTO cross validation method uses a subset
of 6 channels, λ = 15 and a frequency band of 4-7Hz. For the frequency ex-
periment, the smallest average cross validation error for all subjects is 48.29.
This LOTO cross validation method uses a subset of 6 channels, λ = 15 and
a frequency band of 4-7Hz.

Since the cross validation error represents an average MSR, the square
root of the average cross validation error

√
Eavg represents a measure of

distance. This measure can be used to compare the results obtained for the
loudness and frequency experiments.

The square root of the minimum average error for the loudness experi-
ment represents a distance of 14.88dB. If we compare this distance to the
scale used for the loudness experiments (45-110dB) then the error repre-
sented by 14.88dB is approximately 22%, (14.88/(110 − 45)) ≈ 0.22. The
square root of the minimum average error for the frequency experiment rep-
resents a distance of 6.94 scaled frequencies. If we compare this distance
to the scale used for the frequency experiments (1-22 scaled frequencies)
then the error represented by 6.94 scaled frequencies is approximately 33%,
(6.94/(22− 1)) ≈ 0.33.

As stated before, the high percentage of error for unseen values is due
to overfitting. Therefore, an experiment designed to obtain a higher num-
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ber of trials per subject might yield a more accurate and general regression
function. Nevertheless, the fact that a linear regression could be found for
every subject enables the assumption that interpolation can be used to es-
timate the SCM of any audio parameter level within the known observations.
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Chapter 13

Future Works

The methodologies and theories used throughout this project open multiple
possibilities for continuing the analysis of the effect that sound has in the
human brain.

The first element needed to improve the models proposed in this project,
is an experiment that generates a greater number of trials. Since both the
loudness and frequency parameters were found to be subject dependent, a
more extensive dataset per subject may yield significantly better estimations
for unseen values.

Other sound parameters could be tested to determine if they have a lin-
ear behavior. For example, changes in the ADSR envelope of a sound could
be analyzed to further understand how the brain processes surprise and un-
expected changes in sounds.

More extensive studies could analyze the emotional implications of the
model selection executed for this project. For example, most of the relevant
information for the regression model is found in the frontal cortex, but a
linear model could not be found for frequency without the pair of channels
P7 and P8 located in the Parietal Lobe. This could be studied more in-depth
to determine if certain emotional states are induced by the sound parameters.

A systematic analysis of all different sound parameters might yield enough
information to be used by the entertainment industry. By analyzing the ef-
fect each parameter and combination of parameters have in the brain’s state,
a generalization of the emotional effects of sounds can be achieved and used
to induce emotion in an audience.

In the gaming industry, using BCI technology to achieve an understand-
ing and control of the emotional state of the user can be used to create a
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completely different, more immersive, gaming experience. In the music ther-
apy field, a deeper understanding of the brain’s emotional reaction to sound
could be used to improve the mood of the patient or induce a beneficial
mental state.

Furthermore, the information on how the brain perceives a certain level
of loudness or frequency can help obtain a more objective understanding of
how the human brain processes sound and music.
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