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Abstract

Classifying Brain Computer-Interface (BCI)
data can require identification and labeling of
relevant signal characteristics. To aid this pro-
cess, the mode-seeking algorithm Quick Shift
creates a hierarchical structure of clusters from
covariance matrices of BCI data; enabling data
exploration at different levels of granularity.
For accurate clustering, covariance matrices are
measured in their Riemannian space. To ap-
proximate and speed up calculations of Quick
Shift, Metric Trees are used in a Dual Tree
approach. Presenting new construction meth-
ods in the Metric Tree’s Agglomeration Phase,
a high performance exploration tool was de-
veloped, testing these methods on our newly
recorded data set. Results showed that the
presented methods greatly reduced computa-
tion time, mostly on lower channel dimensions.
Quantitative clustering capabilities, using our
tool, show that relevant signal patterns can be
found from clustered BCI data.

1 Introduction

When analyzing BCI data, popular techniques such
as the Common Spatial Pattern (CSP) [5] can be
used to derive filters for better classification in mul-
ticlass problems [4]. Before a classification problem
can be formally stated, it is often necessarily to ex-
plore and clean the data. As a pre-step, data ex-
ploration is the basis to which data can be labeled
and classified upon; such as the case of exploring
and identifying eye blinks. Labeling can however
be can be expensive and potentially require a great
deal of training samples. Aiding this, data explo-
ration can be used as a sanity check to determine
whether a more expensive labeling experiment is
worth investigating.

With the motivation of exploring unlabeled data,
this paper will be presenting a tool, BCI Explorer,
able to cluster and visualize brain signals in a sen-
sible way. For the exploration of data on different
levels of abstraction, a hierarchical approach will
be taken. We achieve a hierarchical clustering by
using the Quick Shift algorithm to create a tree
structure of clusters from the covariance matrices
of windowed BCI data. To the best of our knowl-
edge, no such tool exists.

Quick Shift relies on distance measurements be-
tween covariance matrices, for which this study will
use Riemannian geometry. This choice was inspired
by the work of [4], presenting superior classification
accuracy of BCI covariance matrices using Rieman-
nian geometry, compared to Euclidean geometry.
In turn, Riemannian geometry will yield more accu-
rate clustering. However, the switch to Riemannian
geometry comes with a cost. Compared to distance
computations in an Euclidean space, measuring dis-
tances in a Riemannian space is computationally
expensive because it induces eigenvalue decompo-
sitions. This is made worse by the running time
of Quick Shift requiring N2 measurements, mak-
ing it impossible to explore large datasets within
a reasonable time frame. To alleviate this prob-
lem, Metric Trees will be used in a Dual Tree ap-
proach to approximate distances, reducing the to-
tal number of computations required. The Metric
Trees will be constructed using the Anchors Hier-
archy method [14] which has been well described
for the Euclidean space. Since working in a Rie-
mannian space, this paper will propose new con-
struction methods with respect to the limitations
of a non-vector space.

Lastly, the paper will be presenting a new dataset
recorded from 70 subjects using the Emotiv Epoc
headset. The proposed tool and its algorithms will
be tested against this dataset to verify the perfor-
mance and illustrate its usage.

2 Background

This section introduces terms and theories in a rel-
evant context as a basis for the rest of the paper.
It will be covering Covariance Matrices from BCI
Data, Quick Shift, and Riemannian Geometry.

2.1 Covariance Matrices from BCI
Data

BCI data contains the recordings of brain activity
through a number of channels over time. Using
a Electroencephalography (EEG) device to record
data, a channel can be defined as the electrical po-
tential between a recording electrode and a refer-
ence electrode, on the scalp. Described by [15],
EEG electrodes can be placed according to the 10-
10 system shown in Figure 1. The red circles marks
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the electrodes used by the Emotiv Epoc headset [1],
used during the dataset recordings described by
Section 5.

Figure 1: 10-10 System
Spatial channel layout of the 10-10 elec-
trode system as shown in [15]. Red cir-
cles correspond to the electrodes used by
Emotiv Epoc.

The analysis of BCI data, is often segmented into
temporal windows defined as epochs. An epoch of
length T will be defined in the following matrix
form Xe = [x(t), x(t+1), ..., x(t+T )], where e is the
epoch index and x(t) a column vector containing
one sample from each channel at time point t.

A spatial covariance matrix can be used to de-
scribe the relationship between channels in an
epoch. For a given epoch, a spatial covariance ma-
trix is defined as

Σ = E{(x(t)− E{x(t)})(x(t)− E{x(t)})>} (1)

where E denotes expected value over time and >

denotes transpose.
By assuming that the samples of each channel

have been time-centered around zero, the expected
value over time E{x(t)}, can be eliminated from
Equation 1. Hence, one can define the Sample Co-
variance Matrix (SCM) of an epoch as

Pe =
1

T − 1
XeX

>
e (2)

The SCM is an unbiased estimate of the covariance
matrix assuming that the sample size, T , is much

larger than the number of channels [17]. A SCM
reflects the current state-of-mind interpreted from
a set of channels, within a time-window. SCMs
will therefore be used as the basis feature values
for distance calculations in Section 2.3.

2.2 Quick Shift

Quick Shift [18] is a mode seeking algorithm
which can be used for the purpose of hierarchical
clustering. The algorithm uses the kernel density
estimates of each data point to create a density
landscape. As illustrated in Figure 2, Quick Shift
uses this landscape to join all points in a space into
a single tree structure by connecting each point to
its nearest neighbor at higher density. As a result,
the root of the tree will always have the highest
density. Clusters can afterwards be retrieved by
breaking off branches having greater distance
than a threshold τ . Adjusting τ will therefore
increase/decrease the number of clusters, hence
making the clustering hierarchical. A decrease
in τ yields more clusters until each cluster only
contains one point. Likewise, an increase in τ
will yield less clusters until eventually one cluster
contains all points.

Figure 2: Quick Shift
Tree structure created by connecting each
point (black dot) to its nearest neighbor at
higher density. Clusters can be retrieved
by breaking of large connections, exempli-
fied by the red line [18].

The kernel density estimate, p, for a given point,
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i, is calculated as the weighted sum of kernels, as-
suming uniform weighting of the kernels, defined as

p(i) =
1

N

N∑
j=1

K(D(i, j)) (3)

with N being number of points and K the kernel
function depending on the distance between points
i and j. We will in the following use a normal
distribution as our kernel, but the theory pre-
sented in this paper does not depend on this choice.

Compared to other mode seeking algorithms such
as Medoid Shift [16] and Mean Shift [6, 9, 7], Quick
Shift [18] is simpler to implement and faster to com-
pute. Arising from the density estimate in Equa-
tion 3, computed for each data point, Quick Shift
has a complexity of O(dN2) with d being the di-
mensionality of the data such as the number of
channels. The constant d relates to the complexity
of the distance calculation D(i, j), in the evalua-
tion of a kernel. In a Euclidian space with few di-
mensions, this constant might be computationally
insignificant. However, since each data point is a
SCM for a potentially large amount of channels,
this computation becomes expensive, because the
accurate distance between two SCMs must be com-
puted using Riemannian geometry (Section 2.3).
Making matters worse, multiplying a significant d
with N2 density estimates, yields an impossible
problem when exploring dataset consisting of many
epochs. A solution yielding a better complexity will
be described later in Section 3, with the use of Met-
ric Trees.

2.3 Riemannian Geometry

In Riemannian geometry, differentiable geometry
is used to study Riemannian manifolds. The mini-
mum length curve, the Riemannian distance, be-
tween two points on such a manifold is defined
as the Riemannian geodesic. The motivation for
measuring Riemannian distances as opposed to Eu-
clidean is that we study SCMs of epoched channel
data. Since a SCM has the property that it is sym-
metric positive-definite (SPD), it lies on a Rieman-
nian cone-shaped manifold [13]. This manifold lies
in a Euclidian subspace [8], containing the set of all
SPD matrices P(n), with n denoting the number of
channels.

Figure 3: Riemannian manifold
Riemannian SPD manifold [4], M, with
Si as tangent vector to P . Γ(t) de-
notes the Riemannian geodesic between
P and P i.

Figure 3 illustrates a SPD manifold, M, and
a Euclidean tangent space, TP, to the point
P ∈ P(n). This tangent space is also a vector space
consisting of all n× n symmetric matrices. The
Riemannian geodesic, Γ(t), between P and P i fol-
lows the curvature of the manifold,M. Translating
points between the space of the manifold and the
tangent space, can be done using the exponential
and logarithmic mapping.

Using the exponential mapping, a tangent vector
Si at P can be mapped to a point on the manifold,
P i, reached at time 1 for the geodesic Γ(t) [4, 10].
The exponential map it given by

ExpP (Si) = P i = P
1
2 exp(P−

1
2SiP

− 1
2 )P

1
2 (4)

The inverse of the exponential mapping, the log-
arithmic mapping, is given by

LogP (P i) = Si = P
1
2 exp(P−

1
2P iP

− 1
2 )P

1
2 (5)

producing a tangent vector Si, with respect to
P . This vector is equal to the tangent distance
between P i and P .

Compared to the Riemannian geodesic, the Eu-
clidian geodesic between points on an SPD man-
ifold would be shorter and incorrect, as it trav-
els through space outside the manifold. Described
by [13], the Riemannian geodesic between two SPD
matrices, P 1 and P 2, can be calculated by the fol-
lowing

δR(P 1,P 2) =‖ log(P−11 P 2) ‖F =

[
n∑

i=1

log2λi

]1/2

(6)
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where λi, i = 1, ..., n, are real and positive eigen-
values of P−11 P 2.

The Riemannian geodesic satisfies the usual ax-
ioms for being a valid metric in a metric space [12].

1) δR(P 1,P 2) ≥ 0

2) δR(P 1,P 2) > 0, iff P 1 6= P 2

3) δR(P 1,P 2) = δR(P 2,P 1)

4) δR(P 1,P 3) ≤ δR(P 1,P 2) + δR(P 2,P 3)

These axioms are important to establish. Com-
puting the Riemannian geodesic between two
SPD matrices, requires computationally expensive
eigenvalue decompositions, logarithm and square
root operations. By ensuring these properties, Met-
ric Trees (Section 3) can be constructed allowing
distances to be approximated. This approxima-
tion reduces the number of measured points, N ,
in Quick Shifts O(dN2) complexity (Section 2.2);
thus lowering the significance of d and providing
faster computation times.

3 Metric Trees and Anchors
Hierarchy

A Metric Tree is a hierarchical representation of
points bounded by a range in the metric space.
In this study, Metric Trees will be used as ba-
sis for distance approximation between points to
avoid the worst case alternative, of measuring N
points against each other; the Naive method, which
has a complexity of O(N2). As described by [14]
and illustrated with an intuitive focus on the Eu-
clidian space, Metric Trees can efficiently be con-
structed using the Anchors Hierarchy method. A
Metric Tree constructed using the Anchors Hierar-
chy method, contains a tree structure of anchors
and will in what follows simply be referred to as
an Anchor Tree. In [3], this method is further ex-
panded upon for general metric spaces, yielding a
construction complexity of O(N1.5 logN) on bal-
anced data. This complexity accounts for the num-
ber of distance measurements done during the tree
construction. The Anchors Hierarchy method is
useful when no notion of a coordinate system are
available, as is the case for the space of SPD ma-
trices. The method relies purely on the relative

distances between points. It is however required of
the distance metric to satisfy all metric axioms, as
is the case for the Riemannian geodesic on SCMs.

Figure 4: Growing Phase
Initial

√
N anchors A, B and C created

from points closest to their pivot.

Following the general tree construction described
in [14], Anchor Trees are constructed in two phases.
In the first phase, the Growing Phase,

√
N anchors

are constructed from the total set of points, N , il-
lustrated by Figure 4. An anchor, A, has a center
point, denoted Ap and referred to as pivot. During
the growing phase, points are added to the anchor
with the closest pivot. These anchor points will
be denoted as Apoints for future reference. In an
Euclidean space, an anchor pivot can be computed
as half the distance between the two anchor points
furthest away from each other. However, as dis-
cussed later, other approaches are needed for find-
ing a pivot in the Riemannian space. Lastly, an
anchor has a radius, denoted Ar, which is set to
cover all its anchor points.

In the second phase, Agglomeration Phase, an-
chor pairs obtained from the Growing Phase are
recursive merged into parent anchors, forming a hi-
erarchy. As seen in Figure 5, a parent anchor con-
tains references to a pair of child anchors, which
yields the smallest radius. All agglomerated an-
chors in the tree have the same properties as the
original anchors; that is a pivot, a radius and the
points that the anchor contains. At the lowest tree
level, an anchor will cover a single point.

In the following Section 3.1, the Growing Phase
will be explained as described by [14]. Next, in Sec-
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Figure 5: Agglomeration Phase
Hierarchy of anchors constructed bottom-
up from the nodes at leaf level.

tion 3.2 the Agglomeration Phase will be outlined
and expanded upon. This section introduces spe-
cific algorithms for efficiently merging anchors into
a tree structure, which has been left unspecified by
the authors of [14].

3.1 Growing Phase

As described by Algorithm 1, the first step in the
Growing Phase assigns all points to an initial seed
anchor with a random point as pivot. Points in an
anchor are always sorted by distance to pivot in
descending order. Hence, the anchor radius cover-
ing all children is set as the distance to the first
contained point.

In Algorithm 2, a tree structure is recursively
built from sub-trees. At each tree level,

√
N an-

chors are created from N number of points in the
seed anchor. This creation continues recursively
subdividing each new anchor until reaching leaf
level; when a seed anchor contains only one point.
If points in the seed are evenly distributed, each
new anchor will contain approximately

√
N points.

Algorithm 3 describes the step of creating a new
anchor. From the set of

√
N anchors, the point

furthest away in the anchor with the largest ra-
dius, is selected as pivot for a new anchor, A. For
all points in all anchors, those closest to A’s pivot
are assigned to A and removed from the contain-
ing anchor. Measuring distances between points is
computationally expensive (see Section 2.3). As an
efficiency gain to avoid unnecessary measurements,
the Anchor Tree construction method introduces
the following threshold

t =
Dist(anchorp, Ap)

2
(7)

which defines t as half the distance between the
pivot of an existing anchor, anchorp, and the new
anchor A. With points sorted by distance on an ex-
isting anchor, reaching a point than t, subsequently
means that it and all remaining points are clos-
est to their containing anchor; hence the iteration
can be stopped. To maintain efficiency, the Dist(.)
function caches all computations ensuring that the
distances between points cannot be computed more
than once.

Lastly, the recursively constructed anchors are
merged into one tree structure by the Agglomera-
tion Phase (Section 3.2).

The tree construction complexity arises from the
recursive anchor sorting, described in the appendix
of [2]. The seed anchor is sorted in O(N logN).
With the recursive calling of

√
N created anchors,

the complexity becomes
√
N ·O(N logN), and

hence, the final complexity becomes O(N1.5 logN)
on balanced data.

Algorithm 1 Growing Phase - First Anchor
1: procedure BuildTree(Points)
2: Let SeedAnchor be a new anchor
3:
4: SeedAnchor.Add(Points)
5: SeedAnchorp ← random p ∈ Points
6: SeedAnchor.SortPointsDescending()
7: SeedAnchorr ←Dist(SeedAnchorp, SeedAnchorpoints[0])
8: SeedAnchor ← BuildAnchors(SeedAnchor)
9: end procedure

Algorithm 2 Growing Phase - Recursive Build
1: procedure BuildAnchors(SeedAnchor)
2: if IsLeaf(SeedAnchor) then
3: return SeedAnchor
4: end if
5:
6: Let Anchors be a new empty set
7: Let N be a counter
8: Anchors.Add(SeedAnchor)
9: N ←Len(SeedAnchorPoints)
10:
11: while Len(Anchors) <

√
N do

12: Anchors.Add(NextAnchor(Anchors))
13: end while
14:
15: for each anchor in Anchors do
16: anchorr ←Dist(anchorp, anchorpoints[0])
17: anchor ← BuildAnchors(anchor)
18: end for
19:
20: return Agglomerate(Anchors)
21: end procedure
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Algorithm 3 Growing Phase - Get Next Anchor
1: procedure NextAnchor(Anchors)
2: Let A be a new anchor
3: Ap ←MaxRadius(Anchors).PopPoint()
4:
5: for each anchor in Anchors do

6: t←
Dist(anchorp, Ap)

2
7:
8: for each p in anchorpoints do
9: distToCur ←Dist(p, anchorp)
10: distToNew ←Dist(p,Ap)
11:
12: if distToNew < distToCur then
13: A.Steal(p)
14: else if distToCur ≤ t then
15: Break to next anchor
16: end if
17: end for
18: end for
19:
20: A.SortPointsDescending()
21: return A
22: end procedure

3.2 Agglomeration Phase

Described by Algorithm 4, the Agglomeration
Phase, creates a tree structure bottom-up from a
set of anchors by merging the pairs which results
in the smallest radius. The pair (A, B) is assigned
to a new parent C and removed from the set. C
is assigned a pivot and a radius encapsulating all
points in A ∪B. The merging continues until only
one anchor is left in the set.

Algorithm 4 Agglomeration Phase
1: procedure Agglomerate(Anchors)
2: while Len(Anchors) > 1 do
3: Let A and B be anchors
4: Let C be a new anchor
5:
6: A,B ← SmallestRadius(Anchors)
7: C.AddChild(A)
8: C.AddChild(B)
9: Cp ← GetPivot(A,B)
10: Cr ← GetRadius(Cp, Apoints, Bpoints)
11:
12: Anchors.Remove(A)
13: Anchors.Remove(B)
14: Anchors.Add(C)
15: end while
16:
17: return Anchors[0]
18: end procedure

In general, the Agglomeration phase can be
described in three main steps.

Pair Selection: An initial best anchor pair is
selected among all

√
N anchors, based on a rough

pivot and a rough radius estimation.

Pivot Selection: Given the pair selection, an
improved pivot is found among their containing
points, also yielding a better radius.

Radius Selection: From the pair and the
improved pivot, an even better radius can be
computed from the points in the pair.

For illustration purposes, the figures in the fol-
lowing sections build on the intuition of a Euclidean
space, but should however be imagined in the cone-
shaped Riemannian space.

3.2.1 Pair Selection

For performance reasons, we resort to an approxi-
mated way of selecting the pair of anchors with the
smallest radius, described as

argmin
A,B∈Anchors

max{Ar +Dist(Ap, Bp),

Br +Dist(Ap, Bp)}
(8)

The intuition behind this equation is further
elaborated in Figure 6.

Figure 6: Anchor Pair
Pair of anchors from an approximated ra-
dius.

The approximated radius encapsulating an an-
chor pair is taken from the distance between their
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pivots, as well as the maximum radius of the two
anchors. This encapsulating radius is an upper
bound to the smallest possible radius. As clearly
seen in Figure 6, this radius can become very large
compared to the best possible encapsulating radius.
With N as the number of all points in a sub-tree
branch, the Growing Phase yields R =

√
N an-

chors, with each anchor containing approximately
R points. Computing an exact radius to deter-
mine the smallest anchor pair would require check-
ing all anchor points against each other, giving a
O(R4) = O(N2), for finding the best anchors to
merge. At this step, it would not only be too costly
but also defeat the purpose of constructing Metric
Trees to alleviate Quick Shifts O(dN2) complexity
(Section 2.2).

For the proposed approximate best pair se-
lection, the set of R anchors contains one less
anchor after each merge. Equation 8 therefor
amounts to R2 + (R− 1) + (R− 2) + · · ·+ 2 + 1
uncached computations. This yields a complexity
of O(R2) = O(N) for the merging decision during
the construction of the full sub-tree.

3.2.2 Pivot Selection

Working in an Euclidian space, the mean of all
points in A ∪ B could serve as pivot for C. How-
ever, computing an Euclidian mean in a Rieman-
nian space would likely yield an invalid point lying
outside the space of the SPD manifold. Two meth-
ods are presented for selecting valid pivots for C.

The first method finds the point closest to A
and B’s shared center, an approximate centroid,
as given by

Cp = argmin
x∈{A,B}

max{Ar +Dist(x,Ap),

Br +Dist(x,Bp)}
(9)

Equation 9 is valid as the triangle inequality
holds for the Riemannian SPD space (Section 2.3,
Axiom 4). Illustrated by Figure 7, the centroid is
found by iterating through each point, x, in A∪B.
By taking the maximum distance between x and
the two anchor pivots plus radius, the centroid is
determined as the x with the minimum of these
max distances.

Figure 7: Pivot Selection
Anchor C with Cp set from centroid; the
point, x, in A∪B with the minimum max
distance to either pivots, plus radius.

At each level in the tree, R anchors are used
to find 1

2R parent anchor pivots. This amounts
to a complexity of O(R2 logR), translating into
O(N log

√
N) for the full tree construction.

The second method constructs a valid pivot by
linearly interpolating between points within the
Riemannian space [10]. Using the logarithmic map-
ping (Equation 5), the distance between two SPD
matrices in the tangent space is defined as

−−−−→
P 1P 2 = LogP 1

(P 2) (10)

A function for Riemannian linear interpolation
can then be defined as

Int(P 1,P 2, ω) = ExpP 1
(ω
−−−−→
P 1P 2 ) (11)

with the interpolation amount as ω : [0, 1]. The ex-

pression ω
−−−−→
P 1P 2 , interpolates between P 1 and P 2

in the tangent space. Using the exponential map-
ping (Equation 4), the interpolated tangent dis-
tance can then be projected back onto the mani-
fold, yielding a valid point to use as pivot.

When computing a center pivot for a pair of an-
chors, the anchor sizes must be taken into account.
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Figure 8: Interpolated Center
From the anchor pairs total diameter,
T d, an interpolated center can be deter-
mined using the total radius, T r.

Illustrated in Figure 8, let T d be the total diam-
eter covering the entire metric span of A and B,
defined as

T d = Ar +Dist(Ap, Bp) +Br (12)

with the exception that one anchor completely cov-
ers the other; to which T d = max(Ar, Br). The
total radius, T r is thus defined as

T r =
T d

2
(13)

The following equation describes how a midpoint
ratio, r : [0, 1], is found by

r =
Br −Ar +Dist(Ap, Bp)

2Dist(Ap, Bp)
(14)

which leads to the correct interpolated center be-
tween two anchors in a Riemannian space as

Cp = Int(Ap, Bp, r) (15)

For finding the ratio r in Equation 14, a single
distance measure between pivots is required. As
this computation has already been cached during
anchor creation in the Growing Phase (Section 3.1),

the interpolation method has a low complexity of
O(1). However, creating the interpolated point on
the manifold (Equation 15), does in our implemen-
tation, require three (worst case) eigenvalue decom-
positions. This yields a high constant with respect
to computation time.

A perfect pivot for all points in A ∪ B can be
taken as the interpolated center between the pair
of points having the largest distance, as seen by
Figure 9. This would however bring the tree con-
struction complexity back to O(N2).

Figure 9: Perfect Pair Pivot
A perfect pivot, x, as the interpolated
center between the pair of points with
largest distance in A ∪B.

3.2.3 Radius Selection

Using either the centroid or interpolation pivot
methods, a measured radius for C can be found
from the point furthest away. This is illustrated in
Figure 10 and given by

Cr = max
x∈{A,B}

{Dist(x,Cp)}, (16)

using the max distance (worst case) between Cp

and all points in A ∪ B as radius. In the case
where one anchor is completely contained within
the other, the radius is set as the maximum of the
two radiuses. The complexity of a measured radius
is the same as the one for the centroid method, de-
scribed by Equation 9; at O(N log

√
N) for the full

tree construction.
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Figure 10: Measured Radius
Anchor C with Cp set from centroid and
Cr from the point furthest away.

With respect to a measured radius, the inter-
polation method is not guaranteed to produce a
better pivot than the centroid method. From Fig-
ure 11, good and bad cases of both pivot methods
are shown when their radius is set from the point
furthest away.

Figure 11: Pivot Radius Compared
Left: Interpolation produces the best
pivot (black circle point) by being clos-
est to the perfect center x. This yields a
narrow radius (green line), compared to
the centroid (red dot). Right: Here the
centroid (blue dot) yields the smallest ra-
dius, as it is now closest to the perfect
center.

As seen from the anchor pair to the left in Fig-
ure 11, no point in A ∪ B is close to their per-
fect center, x. The centroid pivot (red dot) there-
fore fails to produce the best radius compared to
the interpolated pivot (black circle point). In this

case, the interpolated pivot is closer to the perfect
center, hence yielding a superior minimal radius.
From the anchor pair to the right, the centroid
(blue dot) measures a better radius than the in-
terpolated pivot, because it is slightly closer to the
perfect center of all points in A ∪B.

Because the interpolation pivot selection method
creates an entirely new point, finding a radius for
this new pivot, using Equation 16, will result in
2
√
N new (uncached) distance calculations for each

anchor pair. Optionally, an approximated radius
can be computed avoiding new measurements to
interpolated pivots by taking the distance of T r,
defined by Equation 13 and seen in Figure 8. As
computing T r only requires one cached distance,
the complexity becomes O(1).

Selecting a minimal radius is important as it
leads to better performance and cluster approxi-
mation, which is further explained in Section 4.

The centroid and interpolation pivot methods
as well as the measured and approximated radius
methods, will be referred to by these names in the
BCI application interface described in Section 6.

4 Dual Trees

In a Dual Tree traversal algorithm [11], explored
for fast kernel density estimates in [2], two partition
trees referred to as data and kernel partition trees,
are constructed. In this study, the data partition
tree is the constructed Metric Tree (Section 3) with
each leaf node being a data point on a Riemannian
SPD manifold. The kernel partition tree is a copy
of the data tree and together they are used to con-
struct a block partition. If the kernel evaluations
for a set of kernel and data points do not vary in
any significant way, they can be represented by a
single value in a block partition.

As detailed in [2], a Marked Partition Tree
(MPT) contains references to data and kernel par-
tition nodes yielding a block partition. Figure 13
illustrates the structure of a MPT which represents
the data and kernel trees in Figure 12. With green
leaf numbers pointing to data tree nodes and red
numbers pointing to kernel tree nodes, a block par-
tition can be derived from these references. Kernel
blocks 1−2 and 5−6 exists in data columns 3 and 4.
Data columns 3 and 4 each has separate blocks for
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Figure 12: Dual Tree
Block partition (matrix) for data (top)
and kernel (left) partition trees. For il-
lustration purposes, the kernel tree has
been transposed.

the 3, 4 kernel items.

A block partition is constructed by comparing
data and kernel nodes. Non-overlapping nodes are
grouped together whereas overlapping ones are par-
titioned into separate blocks. In the Anchor Tree,
a given anchor encapsulates all its descending sub-
anchors within its radius. The basic intuition be-
hind the block construction is that if A does not
overlap with B, then A and all its descendants are
unlikely to significantly affect the density of B, or
any of B’s descendants; hence A and its descen-
dants can be represented by a single value, with
respect to B. Likewise, if A overlaps with B, then
A will need further refinement as A might contain
descendants which could affect the density of B sig-
nificantly enough to be represented by a separate
value.

Figure 13: Marked Partition Tree
MPT representing block partitions from
Figure 12. Color-coded numbers corre-
spond to the data and kernel partition
tree nodes.

The amount of blocks represents the level of
point approximation. By recursively refining over-
lapping nodes and checking for overlap between
sub-nodes, more blocks can be constructed. Fewer
blocks yield a less accurate representation of
points, in return for less distance measurements.
Likewise, more blocks yields a more accurate rep-
resentation at the expense of computation speed,
as more points will be measured. A maximum of
N2 partition blocks can be acquired to which no
performance gain is achieved.

By using a MPT with approximated distances,
the time complexity O(dN2) for Quick Shift (Sec-
tion 2.2) can be improved. The significance of d for
density estimates (Equation 3) becomes less with
fewer blocks. Likewise, more blocks will make d
more significant giving more accurate density esti-
mates, at the expense of computation speed.

5 BCI Recordings

A BCI experiment was conducted in cooperation
with the Department of Computer Science and De-
partment of Humanistic Informatics at Aalborg
University. Here, test subjects were asked to watch
an unknown series of video clips while having their
brain activity recorded. The clips selected were
picked to evoke a wide range of emotions, span-
ning from happiness to shock. The experiment took
place during two days using three Emotiv Epoc
headsets, a consumer grade EEG device. The Emo-
tiv Epoc is capable of recording brain activity at
128 Hz from 14 electrodes and has a built-in Notch
filter at 50− 60 Hz. Along with channel data, the
contact quality for each electrode is also included
in the recordings, which for most subjects were per-
fect at all times.

Subjects had little or no knowledge of EEG. Out
of 70 subjects the experiment resulted in 65 com-
plete datasets. An incomplete dataset is defined
as a prematurely ended recording. The gender dis-
tribution is approximately 1/3 males and 2/3 fe-
males. In groups of one to three, subjects were
isolated with one or more test-leaders quietly posi-
tioned in the back. Each subject was instructed to
sit relaxed while watching a 10 minute video con-
sisting of smaller commercial clips. A 30 second
black screen marked the beginning and end of the
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video. All clips within the video were separated by
10 seconds of black screen.

Since recordings happened on up to three sub-
jects at a time, it is possible that they have af-
fected each other. It is also possible for subjects
to previously have seen some of the presented com-
mercial clips, which might affect their reaction to
seeing them again. Also, data sometimes contain
noise from activities such as head movement and
eye blinks. This makes for a realistic case as any
algorithm analyzing BCI data in a real scenario,
would have to resolve noisy recordings.

5.1 Synchronization

For convenience, the BCI recordings were initiated
before the video start. Once all subjects were ready,
the test leader would mark the actual video begin-
ning in each recording; done on up to three sepa-
rate PCs (one per headset). Since this marking was
done by hand, the marker has a slight delay rela-
tive to the video start (up to 8 seconds). To remove
this delay, each dataset has been synchronized by
finding an approximate video start, based on sig-
nal peaks within each dataset. Using approximated
times for three distinctive scare events, the chan-
nel peeks were analyzed within windows expected
to capture the events. The largest peak across all
channels within a time window is assumed to be
the beginning of the event. An offset is then calcu-
lated by subtracting peak time with expected event
time. The intuition is that scare scenes would cause
a symmetrical spike in EEG activity, mostly due to
head movement. Computed averages for all offsets
from the three events according to peaks, yields an
approximation of the actual video start.

Synchronized versions of the source datasets were
created removing non-video EEG readings from
the beginning of each dataset. Each synchronized
dataset then becomes exactly 9 minutes 51 seconds
long.

6 Application

As part of this study, the application BCI Explorer
was created. This program is able to visualize a
BCI dataset with the intent of exploring brain pat-
terns, using the theory and algorithms described by

this paper. An overview of the application interface
is given by Figure 14.

Figure 14: BCI Explorer: Interface
The middle blue window, the Signal
View, contains channel data. Remaining
windows have been docked and hidden.

The main blue window, the Signal View, visual-
izes data across all recorded channels, horizontally
over time; referred to as the timeline. From the Sig-
nal View, channel data can be dragged in the main
window using the left mouse button, and zoomed
in/out using the scroll wheel. Hovering the cursor
on the timeline will highlight a given epoch. With
a flexible interface, all sub-windows can be docked,
hidden, resized and rearranged at the users’ conve-
nience.

6.1 Settings

From the Settings window (Figure 15) filtering and
clustering options can be changed.

To remove noise or isolate certain frequencies,
BCI Explorer has built-in customizable Low-Pass,
High-Pass, Band-Pass and Band-Stop Butterworth
filters.

The temporal window size (epoch), used to com-
pute SCMs (Section 2.1), is defined in milliseconds
by EpochMs. To our experience, important signal
patterns are often not aligned with fixed window
segmentations; such as an eye-blink artifact be-
ing split in half between epochs. To avoid missing
important patterns due to bad epoch partitioning,
the option of running multiple sliding-windows was

XI



Figure 15: BCI Explorer: Settings
All filter and cluster settings can be
changed from this window.

introduced, set from WindowsPerEpoc in the Set-
tings window. According to the number of sliding-
windows, epochs will be started at an offset. Set-
ting this to 2, will start a new epoch halfway into
the previous; 3, will start a new epoch one third
into the previous, etc. More epochs will of course
result in a longer computation time, as these be-
come points on the Riemannian manifold to which
distances are measured.

Described by Equation 6, measuring the distance
between two SCM matrices requires their eigen-
values. In BCI Explorer, the eigenvalues of two
SCMs are computed from a generalized eigenvalue
problem. However, due to floating point round-
ing errors, this problem becomes computationally
unstable on matrices with little variance. One op-
tion to solve this would simply be to exclude SCMs
with little variance. However, since a SCM with
little variance might still represent usable informa-
tion on some channels, this issue was solved by
constructing computationally stable versions of the
original SCMs. By adding a positive offset to each
computed eigenvalue from a single SCM, a compu-
tationally stable SCM can be constructed almost
identical to the original. The CovarianceEpsilon
option controls this positive eigenvalue offset. Ide-
ally, this should be set as close to zero as possible,
without yielding unstable SCMs.

The ApproximationType selects the approxima-
tion algorithm to use during Anchor Tree construc-
tion, as described by Section 3. To perform com-
parison experiments, the Naive method is also in-
cluded as an option.

As described in Section 4, the level of point ap-
proximation can be refined with the number of
block partitions. The target block partition size
is set from the TargetBlocks setting. This does not
guarantee a certain partition size, e.g. a partition
size of 1 is not possible, but will yield the mini-
mum possible number of partitions. This option
does not apply when using the Naive method, as
this method does not rely on the estimations of an
Anchor Tree.

6.2 Hierarchical clustering

Once the dataset has been filtered and clustered,
the hierarchical representation of data can be ex-
plored from the Signal View window.

Figure 16: BCI Explorer: Clusters
Signal View after clustering. The color-
coded cluster bars in the top shows which
epochs belongs to which clusters.

As shown in Figure 16, channel data is aligned
underneath each other in the bottom part of the
window. Color-coded cluster bars are shown in the
top of the window. In this case, channel data has
been partitioned using two sliding windows yielding
two cluster bars. Each color on the bars represents
a unique cluster of epochs. The cluster locations
correspond to channel data on the timeline, visual-
izing what data belongs to which cluster. Hovering
a cluster on the timeline will highlight and outline
the epochs which are part this cluster.

Clustering statistics, such as method, time,
epochs, etc. are output to the Log window shown
in Figure 17

XII



Figure 17: BCI Explorer: Log
Log window outputting clustering statis-
tics.

The tree structure created by Quick Shift (Sec-
tion 2.2), can hierarchically be explored by adjust-
ing the sliders in the Cluster Refinement window,
shown in Figure 18.

Figure 18: BCI Explorer: Cluster
Refinement Quick Shifts kernel vari-
ance and the threshold for breaking off
tree branches, can be refined from this
window.

Using the cluster slider, tree branches longer
than the specified distance are broken off, yield-
ing clusters. Likewise, the kernel variance slider
controls the variance on the normal distribution
used by Quick Shift, to estimate kernel densities
(Equation 3). Changing this slider will imply a re-
calculation of the estimated kernel densities. This
is however fast as all distances are cached at this
stage. The approximation methods tries to esti-
mate a reasonable variance, based on the average
distance between k random points and their k’th
nearest neighbor, where k =

√
N . The kernel vari-

ance slider is therefore only enabled for the Naive
method, for the option of manually controlling vari-

ance.
Adjustments made with these sliders will, in real

time, change the colors of the cluster bars in the
Signal View; making data exploration fast and re-
sponsive.

7 Results

This section presents the evaluations for the de-
scribed methods in Section 3 using BCI Explorer.
Section 7.1 will present the quantitative evaluations
of each method according to computation factor,
number of partition blocks and time. The following
Section 7.2 visually presents a qualitative demon-
stration of the hierarchical clustering capabilities
using Quick Shift.

7.1 Quantitative Evaluation

The quantitative performed tests were run on a
2.1 Gz AMD Athlon (tm) II P320 Dual-Core Pro-
cessor machine with 6 GBs of RAM. Throughout
this section, we evaluate each of the three approx-
imation methods to the Naive method; described
in Section 3. As all methods have been imple-
mented to take advantage of a multi-threaded en-
vironment, their performance can vary greatly de-
pending on processor. The approximation meth-
ods will for simplicity be referred to by the abbre-
viations: Centroid Measure Radius (CMR), Inter-
polated Measured Radius (IMR) and Interpolated
Approximated Radius (IAR).

For each method test, the results are presented
in terms of computation factor, computation time
and partition blocks. Computation factor, referred
to as c-factor , denotes the number of computed
distances compared to the naive method. Given

N points, the naive method computes N ·(N−1)
2

distances, equal to a c-factor of 1. A c-factor of 2 is
equivalent to half the naive computations. Time is
highly correlated with c-factor, however time may
also reflect performance overhead and additional
time consuming operations from each method. Ex-
plained in Section 4, fewer partition blocks means
less anchor overlap. With the goal of producing
the least amount of blocks, the first set of tests
were run against an interval of 100, 500, 1000 and
3000 epoch, on 2 and 14 channels. Few epochs and
channels will emphasize potential overhead from
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Figure 19: Performance at low dimensionality
Performance results at 100, 200, 1000 and 3000 epochs, using 2 channels.

Figure 20: Performance at high dimensionality
Performance results at 100, 200, 1000 and 3000 epochs, using 14 channels.

the method implementations. Higher numbers will
highlight the general tendencies of each method.
These results are seen in Figure 19 and 20. Note
that some scales in these figures are logarithmic.

Looking at time and c-factor, the three approx-
imation methods are far superior to the naive
method on 2 channels. Although only doing half
the computations of the naive method, the approx-
imation methods are slower than the naive at 100
epochs. This indicates a minor performance over-
head, most likely originating from the Anchor Tree
construction process. Compared to CMR, the in-
terpolated pivots of IMR and IAR yields fewer
blocks implying smaller anchor radiuses with less
overlap. The measured radius of IMR further re-
duces anchor overlap resulting in the least amount
of blocks.

On 14 channels, CMR performs best on all
scales. Opposite the results using 2 channels,
CMR is now producing fewest blocks. The ad-
ditional uncached measurements introduced by

IMR and IARs interpolated pivots, results in
no significant c-factor improvement compared to
other methods. Combined with a low c-factor,
the expensive computational constant related to
creating new points on the Riemannian manifold,
makes the computation time of these methods
worse than the naive.

With parameters ranging from 1 to 14 channels
at a fixed epoch count of 1500, the next perfor-
mance tests was conducted with the intent of high-
lighting method trends, at increased dimensional-
ity. Again, the approximation methods must pro-
duce the least amount of partition blocks. Seen
in Figure 21, at few channels, all approximation
methods have far superior c-factors compared to
the naive. This however declines rapidly with the
increased dimensionality. At 4 channels, the declin-
ing c-factor slowly breaks off for the CMR method,
keeping a steady c-factor of around 2.5, up to 14
channels. IMR and IAR keep declining until they
are just as bad, or even worse than the naive. Re-
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Figure 21: Performance vs dimensionality
Performance results at 1500 epochs, using 1 to 14 channels.

sults show that the increased dimensionality greatly
impacts both time and c-factor for all approxima-
tion methods. Because more dimensions increase
the probability of points having a greater spread,
we suspect that the threshold distance, introduced
in the Anchor Tree’s Growing Phase by Equation 7,
fails to uphold efficiency. As a result, more points
are measured during Anchor Tree construction thus
reducing the c-factor. Furthermore, the increased
overlap will also impact the Dual Tree step. If two
anchor nodes do not overlap, any further measure-
ments to child nodes can be omitted. As more an-
chors overlap, more child nodes will also be mea-
sured.

Interestingly, on lower dimensions the naive
method has a big overhead, to which it performs
worse than on higher dimensions. At 4 channels,
the naive times begin to increase, although still
performing better at 14 channels compared to 1.
This overhead has been observed to originate from
the programming library used to compute eigen-
value decompositions1. At few channels, IMR and
IAR produce fewer blocks than CMR. Interestingly,
at higher channels CMR starts yielding the least
amount of blocks implying overall smaller anchor
radiuses.

7.1.1 Quantitative Conclusion

Compared to other methods, test results show that
CMR performs substantially better at higher di-
mensions, across all parameters. At varying epoch
intervals CMR is just as good, or better, than IMR
and IAR. Despite CMR performing marginally

1 Microsoft Research: Sho 2.1
http://research.microsoft.com/en-us/projects/sho/

worse at lower dimension, mostly in terms of blocks,
it is still a good all-around choice which in most
cases yields the highest performance. On lower
dimensions, IMR and IAR produces fewer blocks
making them a considerable choice if higher levels
of approximation are desired.

7.2 Qualitative Evaluation

Using the naive method in BCI Explorer, the qual-
itative performance of the Quick Shift based hier-
archical clustering has been evaluated. Clustering
unknown data leaves little predetermined answers
about cluster formations. Clusters must therefore
be visually explored based on a given set of param-
eters. A simple case of clustering of eye-blinks is
evaluated.

7.2.1 Eye-blink Evaluation

From the recorded BCI datasets (Section 5), all
subjects are expected to produce eye-blink artifacts
during the almost 10 min of video watching. Identi-
fying these eye-blinks thus makes for a simple case
of testing clustering capabilities. Figure 22 shows
a chunk of data over a period of approximately
35 sec, containing eye-blink spikes from subject 1.
Muscle activity is expected to appear on lower fre-
quencies [19]. Data from the frontal channels (AF3,
AF4) close to the eyes, has therefore been Low-Pass
filtered at 8 Hz to isolate eye-blink activity. As
eye-blinks are expected to happen over a short pe-
riod of time, the epoch size was set at 300 ms.
Furthermore, the data has been partitioned using
three sliding windows to maximize the chances of
capturing all eye-blinks, at the right moments.
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Figure 22: Hierarchical clustering
First emerging clusters at a high thresh-
old distance.

As described in Section 2.2, clusters are retrieved
from the tree structure created using Quick Shift,
by breaking of branches greater than a specified
threshold distance. When gradually reducing this
threshold, the first emerging clusters separates the
data (blue cluster), from the Butterworth filter cal-
ibration at the beginning (red cluster).

In Figure 23, the next cluster to appear further
segments the blue cluster by isolating most eye-
blink activity (orange cluster).

Figure 23: Hierarchical clustering
Emerging cluster of eye-blinks segmented
from the blue cluster.

It makes sense for eye-blinks to appear very early
into the hierarchical structure, as these are the
epochs (points) with the biggest covariance and
hence has the greatest distance to more subtle
epochs with less covariance.

Further down into the hierarchy, the last eye-
blinks are capture by the green cluster, seen in Fig-
ure 24.

Figure 24: Hierarchical clustering
The last slightly different eye-blinks are
capture by the green cluster.

Noticeably, all eye-blink are now split between
two clusters. A possible explanation for them be-
ing split is that the eye-blinks in the green cluster
appear to exhibit slightly different patterns than
those captured by the orange cluster. This vari-
ance could place the green eye-blinks closer to the

epochs of the blue cluster, on the Riemannian man-
ifold. The distance threshold therefore has to be
low to separate the green and blue clusters; sub-
stantially lower than the threshold for separating
orange and blue clusters.

In Figure 25, a very low threshold distance re-
trieves the clusters being far down into the hier-
archical structure. The most subtle epochs (high-
lighted in white) are now separated from eye-blinks
and other epochs with high covariance.

Figure 25: Hierarchical clustering
At a small threshold distance, epochs with
low covariance are clustered separately
from epochs with high covariance.

The hierarchical approach has in this case shown
effective at clustering eye-blinks and other sources
of noise. On the Riemannian manifold, points with
high covariance have relatively large distances to
points with low covariance, thus resulting in an
early separation when reducing the threshold dis-
tance.

8 Conclusion

This paper has presented the high performance
tool, BCI Explorer, enabling visual exploration of
clustered BCI data. The mode-seeking algorithm
Quick Shift, has been used to create a tree struc-
ture of BCI data points, which is used to hierar-
chically retrieve clusters. We have shown that the
slow O(dN2) complexity of Quick Shift can be al-
leviated through an approximative solution. With
d as the computational constant of each distance
measure between N points, reducing N through ap-
proximation will thus produce fewer measurements
and decrease Quick Shifts tree construction time.

A Dual Tree approach has been used to achieve
this approximation, with the intuition that distant
points can be represented by the same value. As
each of our data points belong to the non-vector
space of a Riemannian manifold, Metric Trees has
been constructed using Anchors Hierarchy which
does not require data coordinates. These Metric
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Trees was then used as a set of Dual Trees. For the
creation of Metric Trees, we have presented three
methods of constructing anchors in the Agglomer-
ation Phase: Centroid Measured Radius (CMR),
Interpolated Measured Radius (IMR) and Inter-
polated Approximated Radius (IAR). With Met-
ric Trees constructed from these methods, we have
evaluated the quantitative performance of the Dual
Tree.

Compared to the naive method, the presented
methods have been shown to greatly improve
computation times on lower channel dimensions.
At the greatest level of approximation, the CMR
method performs overall best resulting in 2.5 to 25
times fewer distance measurements than the naive
method. At lower dimensions, the IMR and IAR
methods yields fewer blocks than CMR, at the
cost of computation speed. CMR is however best
at producing fewer blocks on higher dimensions.
Increased dimensionality has a poor effect on these
methods as this increase the likelihood of bigger
anchor radiuses, which increases computation time.
Tested on our own dataset, visual demonstrations
have shown the hierarchical clustering capability
of a Quick Shift based approach. In a simple case,
we have seen how clusters of eye-blinks and noise
were separated from clusters of brain activity.
This exploration of BCI clusters could be used as
a potential pre-step to a classification problem.

In future works we would like to further experi-
ment with distance approximations in the Rieman-
nian space. By constructing a KD-Tree from points
projected to the Euclidian tangent space, an ap-
proximative solution might be possible without the
use of Metric and Dual Trees. Many enhancements
could also be made to BCI Explorer. Currently
the tool can only explore a single dataset. Allow-
ing the exploration of multiple datasets at once,
might reveal interesting data clusters across sub-
jects. Another interesting option would be to clus-
ter data based on variable epoch sizes. Imagined
as a hierarchy, epochs might be largest at the root
while gradually decreasing in size until reaching leaf
nodes. At varying sizes, bigger epochs would high-
light general tendencies over long periods, while be-
ing segmented by the smaller epochs representing
short local tendencies.
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