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Abstract

This project documents the development of a non-linear controller, estimator and
model to be used for dynamic positioning of a shuttle tanker. State-of-the-art
methods have been developed by [FG98], which employs a backstepping framework
for the control of a supply ship. This project is based on this work, and fosters to
improve on the outcome, by including the wave induced motions in the stability
analysis.

The estimator is based on the works of [FS99] who develops a wave filtering
estimator that is both stable and passive in a Lyapunov sense. The estimator is
based on the known non-linear model of the vessel, and through this, provides
the controller with an estimate of the position that is better than using raw GPS
and compass measurements. The estimator is shown to be exponentially globally
stable, and will thus provide an estimate that over time converges to the true
measurement. The stability properties and tuning of the filter is achieved using the
Kalman-Yakubovich-Popov lemma.

The end result is a uniform globally exponential stable controller that is able
to maintain the vessels position whilst under the influence of disturbances. The
benchmark of the controller is the linear system used at FORCE TECHNOLOGY to
test if various thruster configurations of ships are able to maintain the position
under specified disturbances. Results have shown that the non-linear controller
outperforms the linear counterpart, and as such could replace the system used at
FORCE TECHNOLOGY .

Besides the controller, initial steps to develop an on-line thrust allocating module
by solving a quadratic equation have been developed and tested, however, large
jumps in the control signal makes the allocating module unstable. The complexity
of the optimization problem is evident by the two azimuth thrusters mounted on
the vessel, which both requires an angle and an input force, and through this, can
be used to produce a force in the x- and y-direction as well as a moment about the
z-axis.

To the authors knowledge, no one have included the wave induced motion pa-
rameter in the stability analysis of ships - and these findings make way for a deeper
investigation into non-linear control of ships and other off-shore vehicles. Proposals
to make the system even more robust are discussed in the report.
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Resumé

Dette projekt dokumenterer udviklingen af en ikke-lineær controller, estimator samt
model, til brug i dynamis positionering af en shuttle tanker. State-of-the-art metoder
udviklet af [FG98], gør brug af backstepping metoder til kontrol af et forsynings
skib. Denne rapport er baseret på dette arbejde, og foreslår en metode hvormed de
forstyrrelser bølgerne inducerer på skibet kan inkluderes.

Estimatoren er baseret på [FS99], der har udviklet en bølgefiltrerende estimator
der både udviser Lyapunov stabilitet samt passivitet. Estimatoren er baseret på den
kendte ikke-lineære model af skibet, og gennem denne, udregnes estimater af skibets
attitude til brug i controlleren. Estimatoren viser at kunne forbedre på GPS samt
kompas målinger. Estimatoren vises at være eksponentielt global stabil, og vil derved
give estimater der over tid konvergerer mod den sande måling. Stabilitets egenskaben
samt tuningen af filtret sker ved brug af Kalman-Yakubovich-Popov lemmaet.

Slut resultatet er en uniform global eksponentiel stabil controller, der kan holde
fartøjets position under indflydelse af eksterne forstyrrelser. Sammenligningsgrund-
laget for controlleren er det lineære system der i øjeblikket anvendes hos FORCE
TECHNOLOGY . Dette system bruges til at teste thruster-konfigurationer under en
række givne forstyrrelser. Resultater viser at den ikke-lineære controller er bedre
end dens lineære modstykke, og foreslåes derfor som udskiftning til det system der
bruges hos FORCE TECHNOLOGY .

Udover controlleren, er start skridtet taget til at udvikle et on-line thrust alloker-
ings modul, der løser en kvadratisk ligning, og gennem dette giver en optimal løsning
på hvorledes de enkelte thrusters skal agere for at opnå den ønskede thrust. Store
udsving i kontrol signalet har desværre vist at den foreslåede algoritme ikke kan
håndtere store udsving i reference signalet. Kompleksiteten af problemet stammer
fra de 2 azimuth thrustere der er monteret på skibet. Disse kan både producere
en kraft i x- og y-retningen samt et moment omkring z-aksen, og allokeringen har
således svært ved at finde en endelig løsning.

Umiddelbart er der ikke nogen der tidligere har forsøgt at inkludere den bølge
baserede bevægelses parameter i stabilitets analysen for skibe, og dette forsøg lægger
op til en større undersøgelse af ikke-lineær kontrol af skibe og andre off-shore fartøjer.
Forslag der kan gøre systemet bedre bliver diskuteret i slutningen af rapporten.
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Chapter1Introduction

Throughout the last century, ships have been one of the primary methods of trans-
porting goods and people between continents. From back when the Vikings roamed
over Europe, to the large container ships sailing between Asia and America today,
ships have been a big part of keeping the world going. Over the past two centuries,
the study of ships and how they interact with the surrounding fluids have been the
subject of much study.

With the discovery of large oil reservoirs beneath the sea floor, a new use for
ships were found, and the birth of dynamic positioning algorithms were born.

Dynamic positioning algorithms have been used in the offshore industry since
the late 50’s, with the Cuss 1 being the first attempt at positioning a ship at sea. 4
rotatable thrusters combined with an underwater network of acoustic devices allowed
the Cuss 1 to maintain a position within a radius of 180 metres [Bas61].

Today, dynamic positioning algorithms are used aboard a large variety of ships,
from platform supply vessels to large fishing vessels and even some private yachts
have such a system installed. This thesis however focuses on shuttle tankers, and
their use of these algorithms. This thesis uses a shuttle tanker as an example, but
the derived theory could apply to all vessels.

Shuttle tankers are primarily used to transport crude oil from the oil fields to the
on-shore refineries, where pipe lines are to expensive or considered impossible to lay
due to a rocky sea beds, coral reefs and so forth. The shuttle tankers are operating
in three different "modes": shuttle, loading and offloading. This thesis focuses on
the loading procedure, as this is carried out at sea and involves the vessel being
connected to a loading bouy as depicted on figure 1.1. This operation is the most
critical, as the ship is being exposed to all the environmental disturbances, whilst
being connected to a flexible hose carrying the oil to the vessel.
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2 1. INTRODUCTION

In these operations, it is critical that the vessel does not deviate too much from
the desired position, as damage to the hose or bouy could cause vast and irreversible
environmental damages.

Shuttle Tanker

Loading Bouy

FPSO Vessel

Figure 1.1: Illustration of the loading operation. The FPSO is connected to a
seabed storage facility, where the vessel pumps its load aboard.

Over the years these control algorithms have improved as well as ship and thruster
design. On the Cuss 1, the 4 outboards were manually configured, whereas the systems
today are fully automatic. This also enforces stricter requirements to the vessels being
outfitted with theses systems. To compare when the systems were first introduced to
today, a list of requirements from Det Norske Veritas (DNV), [Ver12] to be certified
"DPS2"-capable the vessel needs to fulfil the following hardware requirements:

– Redundancy in electrical systems.
– Redundancy in the power management system.
– Redundancy in thrusters.
– Have 2 computer systems aboard.
– Have 3 individual position reference systems.
– Have 2 wind sensors.
– Have 3 gyro compasses.
– Have 2 vertical reference units.
– Have 2 utility power supplies.

Compared to the Cuss 1 that was powered by 4 manually controlled outboard
engines and one position reference system, the systems today are automated and
are far more complex. This also calls for far more complex algorithms to interpret
the measured data, react to the data compared to the desired position, compute
thrust allocation, compute power allocation and be able to do this in most weather
conditions.
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On top of hardware requirements, DNV also certifies systems through software
simulations. One such test is an Hardware-In-the-Loop (HIL) test. An HIL test,
connects the dynamic positioning system to a simulator that simulates all the
environmental conditions the ships might encounter, and the system response is
analysed. If it meets certain criteria, the system is certified.

Hydrodynamic theory does however not account for all the constants related
to the vessel, as some of the constants are hard to determine accurately. Hence
scaled tests are carried out at FORCE TECHNOLOGY , to verify that a given thruster
configuration can maintain the position through disturbances such as wind, currents
and waves. A software simulation does however remove the need for producing a
model of the vessel, and allows the ship owners to alter the design of the vessel at a
smaller cost.

Currently FORCE TECHNOLOGY carries out model tests of ships, to verify to
the ship owners that the vessels are able to maintain their position with a given
thruster configurations and given environmental disturbances. These tests are time
consuming, so the scope of this thesis will be to design an easy-to-tune system, that
provides better responses that the system currently used.





Chapter2Analysis

To give an idea of the problem at hand, the current configuration used at FORCE
TECHNOLOGY is analysed and improvements are suggested. Currently, the systems
run at FORCE TECHNOLOGY consists of 3 independent linear PID controllers, a
thruster lookup table and direct feedback of the measured signals. The tests are
carried out by placing a scaled model of the vessel in the wave tank, and then having
collinear disturbances perturb the vessel. This gives a worst-case answer of the
control configuration. The angle of the disturbances are then changed, and the same
test is carried out. This is done till the vessel cannot maintain the position, and from
this, a maximum angle of attack can be established.

One of the primary reasons to update this system, is that control theory have
come a long way since linear PID controllers, and employing a non-linear controller
should provide better results as well as reduce the time spent tuning the controllers.
Another benefit, is that once the model is developed a change in the angle of attack,
does not influence the control law.

2.1 Current Control Configuration

The current control configuration is depicted on figure 2.1, a controller for x, y and
ψ is used independently of one another. The thrust allocation module is a large
lookup table computed before the tests, and the measured position and attitude is
fed directly back to the control system with no noise cancellation or estimator used
in between.

As the controllers are linearised around a working point x0, both linear and
non-linear controllers should provide nearly the same answer close to this working
point, however - further away, the difference will grow non-linearly, and the control
signal will either be too large, too small or simply tend towards infinity. This is
undesirable for ships in station keeping operations, as safety is a primary concern for
ships at sea. The linear controller will provide a conservative estimate of the thruster

5



6 2. ANALYSIS

Wind

Wind 
Feedforward

Waves
Current

Surge
Controller

Reference Sway
Controller

Yaw
Controller

PID Controllers

Saturation

Force
Allocation

Simulation 
Model+ - +

+ Table Lookup

Figure 2.1: Illustration of the current control configuration used at FORCE
TECHNOLOGY .

configurations ability to maintain position, and the actual ship should thereby be
better than the test.

As the working point are are changed for each test, the controllers need re-tuning
for every angle of attack. This is time consuming - and a way to ease this tuning
process is desired.

2.2 Ship Primer

According to Encyclopaedia Britannica a ship is defined as:

Ship: any large floating vessel capable of crossing open waters, as opposed to a boat,
which is generally a smaller craft. The term formerly was applied to sailing vessels
having three or more masts; in modern times it usually denotes a vessel of more than
500 tons of displacement. Submersible ships are generally called boats regardless of
their size.

The study of ships and their interaction with fluid have been a subject of research
for a long time, and currently, no exact answer on their interaction with the fluid
exists. Advances in fluid mechanics does however enable researchers to provide models
that are accurate enough for use in control systems. The first simple studies of how
ships interacted with the surroundings started around the industrial revolution in
the 18th century to reduce the required thrust to move ships forward.

Nowadays, ships are generally mounted with one or two main propellers as the
ships main propulsion as well as a rudder to manoeuvre the ship about. For ships that
primarily operate in transit (cargo ships) this is sufficient, however, it is becoming
increasingly common to mount bow and stern thrusters to increase manoeuvrability
at low speeds, and to aid in docking operations. As the complexity of the operations
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the vessels undergoes increases, so does the complexity of the thrusters mounted.
Many ships today are mounted with so-called azimuth thrusters. An azimuth thruster
is able to rotate 360 degrees. The various thrusters are depicted on figure 2.2, where
the leftmost thruster is the main propeller, the second from the left the tunnel
thruster and the rightmost is the azimuth. The advantage of an azimuth thruster is
that this can act as both a main thruster to provide forward (or backward) thrust, as
well as be used to generate a moment about the z-axis of the ship in manoeuvring.

Figure 2.2: Illustration of the various thrusters mounted aboard ships.

The ship used in this project is 250+ metre long shuttle tanker fitted with a
combination of the thrusters. The thruster layout is as depicted on figure 2.3. The
thruster configuration is important as this will be used in the controller to compute
the influence each thruster has on the vessel, for instance, the sideways thrusters are
not able to alter the forward motion of the vessel.

Besides having the thruster configuration on figure 2.3 the weight of the ship is
approximately 175000 metric tonnes and is port-starboard symmetric. The latter is
common for ships as asymmetric ships are naturally course unstable.
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Figure 2.3: Configuration for the vessel used.

2.3 DEN-Mark 1

As described, hydrodynamic theory have been undergoing a big change over the last
century, and FORCE TECHNOLOGY have developed their own tool to simulate how
ships interact with fluid, named DEN-Mark1.

DEN-Mark 1 is a software simulator tool developed by FORCE TECHNOLOGY
which amongst can be used to simulate how ships interact with the waters around
them. The software tool is primarily used to educate crews, so they know how
the vessel acts once they are to board it. The simulator is based on measured
hydrodynamic coefficients of the vessel as well as the layout of the vessel, and then
computes how the fluid acts on the vessel.

Several settings can be specified in the simulator software, such as current, waves
and wind disturbances. The module used in this project is interfaced to Matlab to
ease testing and verification.



Chapter3Project Scope

Throughout the introduction and analysis, the emphasis have been on improving the
existing technologies. This chapter will try to create a scope for the project based on
the analysis.

The requirements to a DP system is hard to specify, but generally the ship owners
set some minimum bounds the vessel should stay within, to avoid wear and tear of
the pipeline connecting the ship to the oil field. As written in the analysis in chapter
2, FORCE TECHNOLOGY are currently verifying if these criteria are met.

3.1 Main Scope

TTo improve on the existing system, the following criteria can be specified as; develop
a non-linear model, a non-linear estimator as well as a non-linear controller. Dynamic
thrust allocation could prove beneficial, as the computation of the thrust lookup-table
is time consuming and if a small change is made (ex. disabling a thruster), the tables
are to be computed all over again.

– Develop a non-linear model
– Develop a non-linear controller
– Develop a non-linear estimator
– Extra: Develop a dynamic thrust allocating module

The old system was depicted on figure 2.1 and a figure with the suggested system
depicted on figure 3.1.

3.2 Verification Tests

To verify whether the suggested system works as intended and produce better results
than the current configuration. The following section will describe the test set-up

9
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Figure 3.1: Illustration of the proposed control configuration, it should be noted
that the optimization just serves as a map to the thrusters.

used to verify if and by how much the performance is improved.

To compare the two systems, a series of tests will be carried out. Currently, the
tests are carried out to determine the angle at which the system cannot maintain
its position when attenuated by waves, current and wind. This is done by changing
the angle of attack of the vessel with respect to the disturbances. The following test
specification is based on a representative scenario used at FORCE TECHNOLOGY for
model testing.

This test specification includes tests from different angles of attack as well as
failure scenarios (thruster failure modes). The thruster failures tests will however
not be performed as vessels normally abandon the operation if their thrusters are
failing. These tests will form the basis for the verification of the system. All of the
tests are carried out with the following environmental conditions:

– Wind: 15 m/s
– Current: 2 knots
– Waves: JONSWAP, Hs = 5, Tp = 8.6

These tests are then performed for different angles of attack ranging from 0 to 15
degrees in steps of 5. Giving a total of 7 tests for each control system. If the derived
model provides the same response as that of DEN-Mark1, this will serve as the test
bed of the systems.

3.3 Measure of Performance

To qualitatively be able to say something about the performance of the system as well
as compare them to the current control configuration used at FORCE TECHNOLOGY
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. Some sort of performance measure must be established. As the common objective
is to stay within some bound, no matter the disturbances, the first performance
measure will be the maximum deviation from the origin (0, 0, 0). This will serve
as a reference when comparing the two systems. This deviation forms the basis
for the deviation plots described in 3.3.2. The second performance measure are a
performance index based on a cost function. Both the estimator and the control
system will be evaluated and compared with that of the linear PID controller. The
estimator performance function is described in 3.3.1 and that of the control system
is described in the last part of 3.3.2.

3.3.1 Estimator Performance

The performance of the estimator will be evaluated using a simulation. The position
of the vessel should be better than the one with no filter, even though the system is
contaminated with noise. The plot will be an x, y-plot giving the vessels position
both with and without the estimator running.

3.3.2 Controller Performance

The controller performance will be evaluated in two ways. First, a deviation plot
that shows the biggest deviation with a box. The corners of this box is generated
by the biggest and smallest value along the x and y axis respectively, this is shown
on figure 3.2. The other performance criteria is a performance function, which is
described in (3.1).

Figure 3.3 shows an example of a deviation plot, where several disturbance angles
are plotted on the same figure. The performance functios are described below as
in (3.1). Deviation plots will be normalized with the ship length, for the x and y
axis respectively - as this will give a better impression of the performance of the
controller, rather than just the deviation in metres. The overall performance of the
controllers will be evaluated with the a performance measure, given as in (3.1).

J =
n∑
k=0

xTkQxk + uTkRxk (3.1)

With weights Q and R being symmetric and positive definite, with entries selected
using Bryson and Hos rule as defined in [GFFEN09], suggesting the following choice
of weights:

Qii = 1
max(xi)2 (3.2)

Rii = 1
max(ui)2 (3.3)
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-Lpp

Lpp

Lpp

-Lpp

Figure 3.2: An example position of a vessel, and the deviation box on top of it. The
maximum deviation points spanning the box is generated by the (x, y) coordinates
of the maximum and minimum points.

This will provide a performance index of the control system, as the control signal is
compared to the deviation, and everything is normalized with respect to the highest
deviation. Comparison of the two systems will be done both in the deviation plot,
but also the performance index.
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50m
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Figure 3.3: Example of a deviation plot, with the blue field being the configuration
currently used at FORCE TECHNOLOGY , and the green being the proposed algorithm.





Chapter4Kinematics

4.1 Notation

Throughout this chapter the geometrical aspects of the vessel modelling will be
described. The matrices presented in this chapter describes the rotation of a system
moving inside another system. Two main systems (or reference frames) of motion are
used. The body fixed frame (denoted BODY ) and the local fixed frame (denoted
NED for North-East-Down). The body frame is non-inertial, and rotates within the
inertial NED-frame.

A general model of the vessel in the two frames, are by [Fos11] defined as in (4.1)
and (4.2). The motion given by η in (4.1) is in the local frame, whereas the motion
by ν in (4.2) is in the body fixed.

η̇ = JΘ(η)ν (4.1)
Mν̇ +C(ν)ν +D(ν)ν + gη + g0 = τ + τwind + τwave (4.2)

With the state vectors η = [x, y, z, φ, θ, ψ]T and ν = [u, v, w, p, q, r]T being desribed
in 4.1. This equations states that BODY-fixed velocities ν, corresponds to NED-fixed
velocities η̇, through the rotation matrix JΘ(η). This chapter deals with these
rotations. To maintain a uniform notation in the report, the [SNA50] notation will
be used throughout. The following table 4.1 denotes the different variables used
throughout the report.
As with the notation used in the different coordinate systems, the rotation matrices
between the individual reference frames are noted by the following to keep track of
individual matrices.

xto = Rto
fromx

from (4.3)

To be interpreted as moving from one reference frame to another, through the
transformation matrix R with the to and from describing the frames being converted
to and from, with n denoting the NED-frame, and b denoting the BODY-frame.

15



16 4. KINEMATICS

Forces and Linear and Position and
Description moments angular velocities Euler angles
motion in x direction (surge) X u x

motion in y direction (sway) Y v y

motion in z direction (heave) Z w z

rotation about x axis (roll) K p φ

rotation about y axis (pitch) M q θ

rotation about z axis (yaw) N r ψ

Table 4.1: SNAME notation for marine vessels

4.2 Reference Frames

This project mainly concerns two reference frames, the NED and BODY frame,
several others exist, but are omitted due to the other two being sufficient to describe
the motion. Figure 4.1 depicts how the NED and BODY frame coincide.

NED-frame:
The inertial NED-frame (North-East-Down) is a tangent plane to the earth’s surface,
with the x-axis aligned to the north, the y-axis aligned east, and the z-axis pointing
downwards. This form of navigation is termed as flat earth navigation, and holds
true when the ship does not deviate too much from the origin of the plane due to
the curvature of the earth.

BODY-frame:
The BODY-frame is a non-inertial reference frame, with origin somewhere in the
NED-frame. This frame will be used to describe all linear and angular velocities.
The origin of the frame is denoted Centre of Origin (CO) and is chosen somewhere in
the waterline of the vessel. The calculations are however easier if this point coincides
with the CG.

4.3 Rotation Matrices

The rotation matrix JΘ(η) in (4.1) is the only equation in the model that includes
a kinematic term. This matrix describes the translation from one reference frame to
another. This matrix contains two sub-matrices on the diagonal, and is by [Fos11]
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NED-frame

BODY-framex

y

z

u

v

w

φ

θ ψ

p

q

r

Figure 4.1: The NED and BODY-frame and their interactions depicted.

given as:

JΘ(η) =
[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
(4.4)

With R(Θ) describing the rotation of the linear velocities, and T (Θ) describing the
rotation of the rotational velocities. The vector Θ contains the individual angle
elements [φ, θ, ψ]. The rotation matrices describing R(Θ) are based on the Euler
angle transformation which is based on 3 principle rotation matrices around the
individual axes, given by (4.5) for rotation about the x, y and z axis respectively.

Rx,φ =


1 0 0
0 cφ −sφ
0 sφ cφ

 ,Ry,θ =


cθ 0 sθ

0 1 0
−sθ 0 cθ

 ,Rz,ψ =


cψ −sψ 0
sψ cψ 0
0 0 1

 (4.5)

R(Θ) is given as a product of these 3 rotations. The order at which these rotations
are carried out are not random, as several combinations can give the same answer.
[SNA50] suggest using a zyx-rotation (rotation about the z-axis, then the y-axis and
then the x-axis), which gives the rotation matrix as the following product:

Rn
b (Θnb)Rz,ψRy,θRx,φ =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 (4.6)
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With c(·) and s(·) being cos(·) and sin(·) respectively. Rotation matrices are orthog-
onal of nature, which implies that when multiplied with their transpose they equal
the identity matrix, thus:

R(Θ)R(Θ)T = R(Θ)TR(Θ) = I (4.7)

Furthermore, the cross product operator S(x) can be used to compute the crossprod-
uct between two vectors. The operator S : R3 → R3 is defined as in equation
(4.8):

S(x) = −ST (x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (4.8)

As the rotation of linear motion is fairly straight forward, the rotation of the angular
positions are a bit harder to compute. The angular rotation matrix is a bit different
as the integral of the angular velocities in the body frame does not have any physical
interpretation. The rotation matrix is by [Fos11] defined as:

TΘ(Θnb) =


1 sφcθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 , θ 6= ±90◦ (4.9)

With t(·) being tan(·). In equation (4.9) the pitch of the ship θ should differ
from ±90◦, or else the equation becomes infinity and the equation does not hold.
This is known as a gym-ball lock, and can be countered by using unit-quaternions
instead. However, a ship should never encounter pitch angles of ±90◦. Thus, the
final rotation can be computed as:

η̇ = JΘ(η)ν ⇔
[
ṗnb/n

Θ̇nb

]
=
[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

][
vbb/n

ωbb/n

]
(4.10)

With η̇ = [ṗnb/n, Θ̇nb]T being the linear and angular velocities in the NED-frame,
and ν = [vbb/n,ωbb/n]T the velocities in the BODY-frame.

4.4 Concluding Remarks

Throughout this chapter, kinematics for the model in (4.1) have been derived and
described. This forms the basis for many navigation systems aboard vessels, as
different sensors are measuring in different reference frames. The dynamics of the
rotation matrices was also described, and a cross product operator was presented.

The following chapter will describe the kinetics of (4.2).



Chapter5Kinetics

The controller and estimator will be based on a model of the vessel, which should be
sufficiently precise without overcomplicating the computations carried out at each
iteration. For ease and to present the notation, a general vectorial model developed
by [Fos11] will be used throughout. The model consists of 2 parts, a static part
describing the forces that are directly linked to the mass and inertial properties of
the vessel, and a hydrodynamic part describing the forces acting on the vessel due to
the fluid affecting the vessel.

A general 6-DOF vessel can as in (4.1) and (4.2) be stated as:

η̇ = JΘ(η)ν (5.1)
Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ ctrl + τ dist. (5.2)

Where the kinematics chapter described the rotation matrix equation JΘ(η) were
described in the previous chapter, this chapter describes the individual matrices in
the kinetic model connected to (5.2) as well as the derivations hereof.

At the end of the chapter a control model will be derived from the general model
in (5.1) and (5.2), as heave, roll and pitch motions are uncontrollable during station
keeping operations for shuttle tankers, these are omitted. Also, as the velocity is
close to zero, assumptions about the hydrodynamic derivatives according to [Fos11]
and [ALdC98] can be made, using properties from the port-aft symmetry - thus
further reducing the order of the model.

5.1 Mass matrix

The mass matrix consists of two main parts. One describing general equations of
motionMRB and one that describes added mass and hydrodynamic derivativesMA.

19
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The static part, MRB are easily determined from equation Newtons second law
of motion Fx = mẍ and Newtons law of rotation τx = Ixαx, thus, when put on
matrix from as in (5.2) giving the static matrix as:

MRB =
[
mI3×3 03×3

03×3 Ib

]
(5.3)

Where: m is the mass of the vessel and Ib the inertial tensor matrix, with the
moments of inertia about the respective axes on the diagonal.

If the centre of gravity and the centre of floatation are misaligned, the matrix
MRB in equation (5.3) will contain additional moments and forces on the anti-
diagonal. These elements are given as the moment generated by this misalignment.
The moment is equal to the cross product of the two force vectors, which can be
represented by the vector cross-product operator in (4.8). To account for these forces
and moments, the cross product operand in (4.8) is added on the anti-diagonal with
the misalignment vector as input. This gives the final expression for the rigid-body
matrix MRB :

MRB =
[
mI3×3 −mS(rbg)
mS(rbg) Ib

]
(5.4)

The hydrodynamic part of the mass matrix MA consists mainly of added-mass
elements acting on the vessel as it pushes through the water. The derivations of these
elements are omitted from this thesis, as they are out of the scope of the project.
The derivations of the individual elements was derived by [Lam95] but converted to
matrix form in [Fos02] which gives the added-mass matrix as in (5.5):

MA =



−Xu̇ −Xv̇ −Xẇ −Xṗ −Xq̇ −Xṙ

−Xv̇ −Yv̇ −Yẇ −Yṗ −Yq̇ −Yṙ
−Xẇ −Yẇ −Zẇ −Zṗ −Zq̇ −Zṙ
−Xṗ −Yṗ −Zṗ −Kṗ −Kq̇ −Kṙ

−Xq̇ −Yq̇ −Zq̇ −Kq̇ −Mq̇ −Mṙ

−Xṙ −Yṙ −Zṙ −Kṙ −Mṙ −Nṙ


(5.5)

This leaves the final mass matrix as the sum of (5.4) and (5.5):

M = MRB +MA = MT > 0 (5.6)

As both (5.4) and (5.5) are symmetric, the sum of the two will also be symmetric and
positive definite. This corresponds to the assumption that the vessel is port-starboard
symmetric.
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5.2 Coriolis-Centripetal matrix

The Coriolis-Centripetal matrix represents the added forces and moments given by
the vessel rotating in an inertial frame, with the Coriolis term stemming from the
motion of a rotating system, and the centripetal term from the rotation of a rotating
system. It is possible to find a number of ways to represent this vector. For simplicity,
and keeping in line with the rest of the report, the derivation from [Fos11] will be
used.

Just as with the mass matrix given in (5.6) this matrix also consist of a static part
CRB and a hydrodynamic part CA - both of them are dependent on the body-fixed
velocity vector ν. The sum of these two can according to [FS91] however always be
parametrized from the mass matrix in (5.6) such that C(ν) = −CT (ν) as:

C(ν) =
[

03×3 −S(M11ν1 +M12ν2)
−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)

]
(5.7)

With S being the cross-product operand defined in (4.8) and the submatrices M ii

stemming from (5.6) as:

M =
[
M11 M12

M21 M22

]
(5.8)

With the velocity vectors νi defined as the first 3 and last 3 components of ν
respectively ν1 = [u, v, w]T and ν2 = [p, q, r]T respectively.

5.3 Damping

The damping forces are divided into two terms. One describing the non-linear parts,
and one describing the linear. The linear damping terms are determined from model
tests. The non-linear terms are however much harder to compute, as these depend
on several hydrodynamic parameters and phenomena that are hard to determine
accurately. For station keeping operations, the non-linear terms are relatively small,
and the linear damping terms will dominate as illustrated on figure 5.1.

The damping part is as the mass matrix M and the coriolis-centripetal matrix
C also defined by two parts a constant (linear) and a dynamic part (non-linear).
Generally, these two are defined as:

D(ν) = DLν + dNL(ν) (5.9)

With D being the linear coefficients defined as in (5.10) and dNL the non-linear
counterpart defined as in (5.11). However, the cross damping coefficients are hard to
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Figure 5.1: Plot of the drag forces around zero speed. As seen the linear part will
dominate the non-linear one at low speeds, so for station keeping purposes, the linear
damping matrix will add the largest contribution to the damping force.

define for the roll, pitch and heave motion, so generally these are only defined for 3
degrees of freedom, therefore the following matrices are only defined for 3 degrees of
freedom as:

DL =


−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr

 (5.10)

dNL(ν) =


−X|u|u|u| 0 0

0 −Y|v|v|v| −Y|v|r|v|
0 −N|v|v|v| −N|v|r|v|

 (5.11)

These two matrices (5.10) and (5.11) are only for 3 degrees of freedom, but as
will be described later, this will be sufficient for dynamic positioning operations.
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5.4 Restoring forces

The restoring forces, describes a vessels ability to return to its equilibrium after being
affecting in either pitch, roll or heave. This stability parameter can be defined by the
metacentre of the vessel, which is described by a line running through the Centre of
Buoyancy (CB), and then see how this changes once the vessel is moved away from
its equilibrium, this can be seen on figure 5.2.

Equilibrium

G

mg

BB

K

ρg

1

GMT

T
GMT sin(   )

M

g

y

z

 φ

 φ

Figure 5.2: Definition of metacentre of a tilted vessel.

From Archimedes and Newton, it is known that a vessel at rest will be acted
upon by no forces or two forces of equal magnitude, for submerged vessels this means
that the force generated down by the mass of the ship, is cancelled out by a force
of equal magnitude in the opposite direction. This makes way for the definition in ,
stating that the mass m multiplied with the gravitational acceleration g is equal to
the density of the water ρ multiplied with the gravitational acceleration g and the
fluid displaced ∇.

mg = ρg∇ (5.12)

If z is defined as the position in heave (with z positive downwards, and z = 0 being
the vessels equilibrium), the force acting on the vessel can be defined as a function of
a change in displacement, thus rewriting the Archimedian principle given in equation
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(5.12) as:

Z = mg − ρg[∇+ δ∇(z)] (5.13)
= −ρgδ∇(z) (5.14)

Where ∇(z) is a function of the change in displacement of the vessel when deviating
from the equilibrium (either resulting in a positive force downwards of a negative
force upwards pushing the vessel towards the equilibrium). According to [Fos11] this
force can be written as:

δ∇(z) =
∫ z

0
Awp(ζ)dζ (5.15)

With Awp(ζ) being a function of how the water plane area changes depending on
the height of the vessel. However, for small perturbations around the equilibrium
δ∇z, the water plane are of the ship can be assumed constant, so Awp(ζ) ≈ Awp(0).
Which collapses equation (5.14) to equation (5.16):

Z = −ρgAwp(0)z (5.16)

As these forces are acting on the body in the NED frame, they have to be translated
to the BODY-frame, by the inverse rotation matrix, thus:

δf br = Rn
b (Θnb)−1δfnr (5.17)

= Rn
b (Θnb)−1


0
0

−ρg
∫ z

0 Awp(ζ)dζ

 (5.18)

Which when computed, gives an expression for the restoring force in the body frame
δf b as:

δf b = −ρg


− sin(θ)

cos(θ) sin(φ)
cos(θ) cos(φ)

∫ z

0
Awp(ζ)dζ (5.19)

This computes the forces acting on the ship along the axes, however, the moments gen-
erated will be a function of the metacentric arms (the deviation from the equilibrium),
this vector can be given for roll and pitch as:

rbr =


−GMLsin(θ)
GMT sin(φ)

0

 (5.20)
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With the force given as the buoyancy (or the downwards force) acting along the
z-axis of the vessel. Thus defining the force f br in the body frame as:

f br = Rn
b (Θnb)−1


0
0

−ρg∇

 = −ρg∇


− sin(θ)

cos(θ) sin(φ)
cos(θ) cos(φ)

 (5.21)

Finally defining the restoring moments as the crossproduct between the force and
the distance between them, using the the cross-product operator defined in equation
(4.8) the moments are obtained as in equation (5.23):

mb
r = rbr × f

b
r (5.22)

= −ρg∇


GMT sin(φ) cos(θ) cos(φ)
GML sin(θ) cos(θ) cos(φ)

(−GML cos(θ) + ¯GMT ) sin(φ) sin(θ)

 (5.23)

Which then makes it possible to define the final restoring force vector g(η) as:

g(η) =
[
δf b

mb
r

]
(5.24)

5.5 Control and Estimator Model

To establish a model for the controller and the estimator, several assumptions can be
made, with the goal to reduce the model and thereby the complexity of the system as
a whole. Mainly, in station keeping operations the velocity of the vessel is (or close
to) zero, which negates all velocity dependent constants from the system defined in
(5.1) and (5.2).

The works of [YB98] have shown that the roll motion of a ship can be damped by
using the rudder, this does however require a forward velocity, so trying the control
the roll motion with zero forward velocity is impossible. The heave motion of the
vessel is also uncontrollable as well as the pitch motion. This reduces the original
6-DOF system to a 3-DOF system, with the new state space being defined as in
(5.25):

η =


x

y

ψ

 , ν =


u

v

r

 (5.25)

The assumption that the velocity of the vessel is close to zero, allows for the system
to be redefined into two parts as in [Fos11]; one containing the static hydrodynamics
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of the vessel and one describing the dynamic hydrodynamics. On matrix form, they
look like the following, given in (5.26) and (5.27) for the NED- and BODY -frame
respectively:

η̇ = R(ψ)ν (5.26)
Mν +CRB(ν)ν +N(νr)νr = τ + τwind + τwave (5.27)

WithN(νr)νr being the dynamic hydrodynamics as a function of the relative velocity
νr of the vessel to the current, as in (5.28):

N(νr)νr := CA(νr)νr +D(νr)νr (5.28)

The static matrices M and CRB can be reduced to (5.29) and (5.30) according to
[Fos02] for station keeping models in 3 degrees of freedom:

M =


m−Xdotu 0 0

0 m− Yv̇ mxg − Yṙ
0 mxg − Yṙ Iz −Nṙ

 (5.29)

CRB =


0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (5.30)

As the non-linear term of the damping matrices are hard to determine accurately for
station keeping operations, [ALdC98] suggests a method to estimate these non-linear
damping coefficients using a term called current coefficients. These stem from the
current acting on the vessel at zero speed, and thus becomes the "relative speed" of
the craft. For station keeping operations, this holds well, as the velocity (and thereby
also the acceleration) of the vessel itself, ν, is close to zero, and the main disturbance
on the vessel will thus be the current forces. These forces can according to [ALdC98]
be defined as:

Xcurrent = 1
2ρAFcCX(γc)V 2

rc (5.31)

Ycurrent = 1
2ρALcCY (γc)V 2

rc (5.32)

Ycurrent = 1
2ρALcLoaCN (γc)V 2

rc (5.33)

Which then gives a force component in each direction. These are dependent on
the relative velocity of the current Vrc and the current coefficients CX(γc). AFc is
the frontal projected area, ALc is the lateral projected area and Loa is the overall
length of the vessel. The current velocity components are determined by the absolute
velocity relative to the current Vrc and the angle of the current βc, relative to the
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heading of the vessel ψ:

Vrc =
√

(u− uc)2 + (v − vc)2 (5.34)
γrc = −atan2((u− uc), (v − vc)) (5.35)

With uc being the velocity of the current along the x-axis. However, for station
keeping operations (when u = v = 0), the relative current velocity Vrc = Vc and
the angle of attack can be computed as γc = ψ − βc − π. The current coefficients
CX(γc), CY (γc) and CN (γc), can be approximated by the vessels Reynolds number
and the relative angle of attack γc using trigonometric functions. [ALdC98] suggests
the approximation in (5.36)-(5.40) for the x,y and ψ axis respectively.

C1C(γc) ≈
(

0.09375
(log10(Re − 2)2)

S

TL

)
cos(γc) (5.36)

+ 1
8
πT

L
(cos(3γc)− cos(γc)) (5.37)

C2C(γc) ≈ (CY −
πT

2L ) sin(γc)| sin(γc)|+
πT

2L sin3(γc) (5.38)

+ πT

L
(1 + 0.4CBB

T
) + πT

L
sin(γc)| cos(γc)| (5.39)

C6C(γc) ≈ −
l

L

(
CY −

πT

2L

)
sin(γc)| sin(γc)| −

πT

L
sin(γc) cos(γc)

−
(

1 + | cos(γc)|
2

)2
πT

L

(
1
2 − 2.4T

L

)
sin(γc)| cos(γc)| (5.40)

With constants defined as in the following list:

– L is the length of the vessel.
– T is the draft of the vessel.
– B is the beam of the vessel.
– CB is the block coefficient.
– S is the wetted surface.
– Re is the Reynolds number.
– CY is the lateral force coefficient.

With these forces lumped together, [Fos11] then suggests using the following
non-linear control model:

η̇ = R(ψ)ν (5.41)
Mν̇ +CRB(ν)ν +Dexp(−αVrc)νr + d(Vrc, γrc) = τ + τwind + τwave (5.42)
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With the linear damping matrix D given as:

D =


−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr

 (5.43)

The α in (5.42) is a tuning parameter to ensure convergence in station keeping oper-
ations. If the vessel is manoeuvring the non-linear damping term will dominate the
linear, and this term becomes superfluous. The non-linear damping term d(Vrc, γrc)
defined as a function of the previously derived current coefficients:

d(Vrc, γrc) =


1
2ρAFcCX(γrc)V 2

rc

1
2ρALcCY (γc)V 2

rc

1
2ρALcLoaCN (γc)V 2

rc −N|r|r|r|r

 (5.44)

The last term in the r force is a stabilizer for the Munk moment which generates a
destabilizing effect when the current moves around the vessel. This is added as the
current coefficients does not include non-linear damping about the z-axis.

This sums up the modelling chapter, and a model, sufficient for the controller
and estimator have been developed.
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As the current test set-up at FORCE TECHNOLOGY , does not filter the measurements
of the vessel but feeds these back to the control system directly - an estimator is
developed to improve on these measurements, as well as provide filtering by exploiting
the already well known model of the vessel. For station-keeping operations, the only
two desired measurements are the position of the craft (x, y) as well as the heading
ψ as these are to be kept constant throughout the operation. The non-linear passive
observer, proposed by [Fos02] utilizes the already developed model of the vessel,
which eases tuning - and therefore complies with the "requirement" that the overall
system should be easy to tune.

6.1 Estimator Model

The model for the estimator will be based on the one developed for the controller
in section 5.5. However, instead of trying to determine the current coefficients, as
well as the non-linear dynamics given by the damping d(Vrc, γrc) (which around
zero is small compared to the linear damping) this as well as any other un-modelled
dynamics can be lumped together in a bias term b, which will have no physical
interpretation as it is a collection of forces not accounted for in the model of the
vessel. This replaces the damping term as:

D(−αVrc)νr + d(Vrc, γrc) ≈Dν +RT (ψ)b (6.1)

Where the bias term b can be described as a first order Markov model:

ḃ = −T−1b+w (6.2)

With w being a zero-mean Gaussian noise process driving the system, and T a matrix
of time constants determined from the eigenvalues of the vessel, these can be found

29
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in appendix B. A noiseless model of the vessel can then be developed as:

η̇ = R(ψ)ν (6.3)

ḃ = −T−1b (6.4)
Mν̇ = −D(ν) +RT (ψ)b+ τ + τwind (6.5)
y = η (6.6)

However, as the bias term accounts for un-modelled dynamics (possibly also wind
and currents), it does not account for the wave drift of the vessel which will move
the vessel about. This needs to be accounted for by a model of the waves, which will
influence the position of the vessel, thus altering the model to:

y = η +Cwξ (6.7)

ξ̇ = Awξ +w (6.8)

With Aw being a system matrix describing the first and second order wave motions
of the vessel and Cw being the output matrix, only giving the first-order motions
as the second order motions are undesirable to use as a control signal, and are thus
filtered out. w is a noise term driving the wave model. The development of the wave
model is described in 6.1.1.

To exactly copy the dynamics of the vessel, a feedback term is introduced for
each model parameter, with gains selected accordingly. The feedback term ỹ = y− ŷ
is the difference between the measured signal y and the estimate ŷ. The model for
the observer then becomes:

˙̂
ξ = Awξ̂ +K1(ω)ỹ (6.9)
˙̂η = R(ψ)ν̂ +K2ỹ (6.10)
˙̂b = −T−1b̂ +K3ỹ (6.11)

M ˙̂ν = −D(ν̂) +RT (ψ)b̂ + τ +RT (ψ)K4ỹ (6.12)

ŷ = η̂ +Cwξ̂ (6.13)

The structure of (6.9)-(6.12) is depicted on 6.1. The noise terms from the original
terms are changed with the error signal ỹ, assuming that the noise of the GPS and
compass are Gaussian zero mean.

6.1.1 Wave Model

As the waves will influence the position vessel, these are added to the estimator to
provide a more accurate position and attitude estimate. Generally, waves contain
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Figure 6.1: Structure of the Passive Observer.

two modes of motion, first and second order.

wwave = w1 +w2 (6.14)

Where the first order motion w1 are the wave drift and the second order w2 is
oscillatory motion of the vessel. The first order motions are dealt with by the
controller, and can thus be seen as a disturbance. The second order motion should
be filtered out, as little energy is present in these waves, but rather moves the
ship back and forth in an oscillatory manner. These two orders are by [SNA50]
termed low-frequency motion and wave-frequency motion for first and second order
respectively. The wave motions are depicted with an example on figure 6.2.

The purpose of the wave model, is to develop a wave filter that filters out the
second order motions, as these are undesirable to feed to the controller. Wave theory
is worth a whole study in itself, but as the main purpose is to determine the encounter
frequency - a linearised version of the wave model is sufficient. This allows to use
the works of [SJ83] and [BJMS80]. More on non-linear wave theory and motion can
be found in [Fos02]. The linear wave response can be computed as a second order
transfer function given by:

h(s) = Kws

s2 + 2λω0s+ ω2
0

(6.15)

With the gains Kw and λ the only two constants to be determined. The damping
term λ can be computed by fitting a non-linear least squares polynomial to the power
spectrum of (6.15). However, in [Fos02] the damping is computed for a range of
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wave periods, and all of them ≈ 0.1 for wave periods ranging from 4.4880s – 12.5664s.
The gain parameter Kw can be computed as:

Kw = 2λω0σ (6.16)

With σ being a parameter of the wave intensity. This parameter is dependent on the
wave spectrum being used. The approximation of the wave spectra, assumes that
the noise process driving the system has a unity gain over th frequency range. This
allows for the intensity parameter to be equal to the highest value of the spectrum
of the waves, if the approximation of the power spectrum follows the wave spectrum
perfectly, the following approximation holds:

σ2 = max
0<ω<∞

S(ω) (6.17)
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Thus, for the test frequency specified in the tests Tp = 8.4s the sigma value for the
JONSWAP spectrum can be computed to be:

σ2 =
√

max
0<ω<∞

S(ω) = 2.2010 (6.18)

From these definitions, it is possible to define a state space model of the wave spectra:

ẋw = Awxw + ewww (6.19)
yw = cTwxw (6.20)

With the state vector xw = [xw1, xw2]T being the first and second order motion
respectively, ww being a Gaussian white noise process and the system matrices
defined as:

Aw =
[

0 1
−ω2

0 −2λω0

]
, ew =

[
0
Kw

]
(6.21)

The output matrix cT = [0, 1] outputs only the second order wave motions (the
oscillatory WF motion), which are then to be filtered out by the estimator. A bode
plot of the frequency to be filtered out ω0 is depicted on 6.3 This is done by a
combination of a notch filter and a low pass filter, the transfer function of these are
presented in

hf (s) = s2 + 2λω0 + ω2
0

(s2 + 2ζω0 + ω2
0)(s+ ωc)

(6.22)

Where ωc is the frequency at which the low-pass filter should cut off and ζ determines
the notch. The parameters can be tuned to allow for small variations in the wave
frequency. The tuning of (6.22) will be carried out as part of the stability analysis
in 6.1.2.

6.1.2 Stability

The following error variables are defined ν̃ = ν − ν̂, η̃ = η − η̂ and b̃ = b − b̂,
subtracting (6.9)–(6.12) from (6.3)–(6.5) and (6.8) respectively, the following error
dynamics can be written:

˙̃ξ = Awξ̃ −K1(ω)ỹ (6.23)
˙̃η = R(ψ)ν̃ −K2ỹ (6.24)
˙̃b = −T−1b̃−K3ỹ (6.25)

M ˙̃ν = −D(ν̃) +RT (ψ)b̃−RT (ψ)K4ỹ (6.26)

ŷ = η̂ +Cwξ̂ (6.27)
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Figure 6.3: Bode diagram of the wave response of (6.15). The lobe represents the
second order wave motion.

Collecting the wave model in (6.23), the bias model in (6.25) and the position model
in (6.24) by defining the state vector x̃ = [ξ̃T , η̃T , b̃T ]T the following state space
representation of the vessels position can be established:

˙̃x = Ax̃+BR(ψ)ν̃ (6.28)
z̃ = Cx̃ (6.29)

With the system matrices A,B and C defined as:

A =
[
A0 −K0(ω)C0 09×3

−K3C0 −T−1

]
(6.30)

B =
[
B0

03×3

]
, C =

[
K4C0 −I3×3

]
(6.31)
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With sub-matrices defined as a sub-system excluding the bias b from the model:

A0 =
[
Aw 06×3

03×6 03×3

]
(6.32)

B =
[
06×3

I3×3

]
, C =

[
Cw I3×3

]
(6.33)

And the gain matrix K0 being defined as:

K0(ω) =
[
K1(ω)
K2

]
(6.34)

Reformulating the body fixed accelerations to:

Mν̃ = −Dν̃ −RT (ψ)z̃ (6.35)

With z̃ = K4ỹ − b̃. The stability can then be determined using the Kalman-
Yakubovich-Popov lemma, which states that:

Lemma 6.1. Let Z(s) = C(sI −A)−1B be an m ×m transfer function matrix,
where A is Hurwitz, (A,B) is controllable and (A,C) is observable. Then Z(s) is
strictly positive real if and only if there exist positive definite matrices P = P T and
Q = QT such that:

PA+ATP = −Q (6.36)
BTP = C (6.37)

This can be used to determine stability in a Lyapunov sense. If the gains are
designed so they yield the matrix A Hurwitz and the pairs (A,B) and (A,B)
controllable and observable, then the system is stable according to the following.
Consider the positive definite Lyapunov function candidate based on the pseudo-
kinetic energy:

V = ν̃TMν̃ + x̃TP x̃ (6.38)

Derived along the trajectories of ν̃ and x̃, gives the following Lyapunov derivative:

V̇ =
[
∂V
∂ν̃

∂V
∂x̃

] [−M−1Dν̃ −RT (ψ)z̃
Ax̃+BR(ψ)ν̃

]
(6.39)

Which then equals:

V̇ = −2ν̃TDν̃ − 2(ν̃TRT (ψ)z̃) + x̃T (PA+ PA)x̃
+ 2x̃TPBR(ψ)ν̃ (6.40)
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The last term of (6.40) can be transposed as the outcome is a number, thus giving:

2(x̃TPBR(ψ)ν̃)T = 2(ν̃TRT (ψ)BTP x̃) (6.41)

Using the Kalman-Yakubovich-Popov lemma, the derivative of the Lyapunov function
then becomes:

V̇ = −2ν̃TDν̃ − x̃TQx̃ (6.42)

Which indeed is negative definite, thus yielding the system Uniformally Global
Exponential Stable (as the angular transformation R(ψ) is time dependent).

6.1.3 Gain Determination and Wave Filtering

The last thing to determine is the gains of the system. The stability analysis will
hold, as long as the gains fulfil the Kalman-Yakubovich-Popov lemma in 6.1. In the
stability analysis, the system was put on state space form and the gains of Ki, can
be determined from the requirements, that A is Hurwitz, (A,C) is observable and
(A,B) is controllable.

As the systems in (6.29) describe 3 decoupled systems for surge, sway and yaw
motion, the gain structure suggests 3 decoupled transfer functions. This calls for
gain matrices that are diagonal as the systems are completely decoupled. Thus the
gains are defined as:

K1(ω) =
[
diag{K11(ωo,1),K11(ωo,2),K13(ωo,3)}
diag{K14(ωo,1),K15(ωo,2),K16(ωo,3)}

]
(6.43)

K2 = diag{K21,K22,K23} (6.44)
K3 = diag{K31,K32,K33} (6.45)
K4 = diag{K41,K42,K43} (6.46)

The desired transfer function is given in (6.22) which is depicted on figure 6.3
where the blue line represents the desired notch and low-pass characteristics to
properly filter out the second order wave frequency. The transfer function of the H2
block can be described by three decoupled transfer functions. [FG98] derives these
to be:

H0(s) = C0(sI +A0 −K0(ω0)C0)−1B0 (6.47)
HB(s) = K4 + (sI + T−1)−1K3 (6.48)
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Which according to [Fos11] can be re-written to the following transfer functions based
on diagonal structure of the gain matrices:

hi(s) =
s22λiωo,is+ ω2

o,i

s3 + (K1(i+3) +K2i + 2λiωo,i)s2 + (ω2
o,i + 2λiωo,iK2i −K1iω2

o,i)s+ ω2
o,iK2i

(6.49)

hB,i(s) =
s+ 1

Ti
+ K3i

K4i

s+ 1
Ti

≈ K4i
s+ K3i

K4i

s+ 1
Ti

, for Ti � 1 (6.50)

To achieve the desired shape (6.22), equalling (6.22) and (6.49), the following tuning
rules for the gains following 6.1 can be established. These gains will give a strictly
positive real system, and thus ensure stability.

K1i(ωo,i) = −2(ζn,i − λi)
ωc,i
ωo,i

(6.51)

K1(i+3)(ωo,i) = 2ωo,i(ζn,i − λi) (6.52)
K2i = ωc,i (6.53)

This will thus render the system stable.

Through an analysis of the eigenvalues of the system matrix A, the matrix can be
made Hurwitz by designing the notch filter with a ζn,i = 0.3 and the cut-off frequency
at ωc,i = 1.255ωo,i, yields eigenvalues with a strict negative real part. Using these
gains, the bode plot depicted on figure 6.4 shows the overall system response, with
the notch-lowpass configuration is used to filter out the wave response from figure
6.3. As seen, the bode plot shows that the filter is able to filter out the reponse of
the waves.
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6.2 Estimation Conclusion

To verify that the estimator are able to estimate the position, simulations are run in
both Matlab and SimFlex. The vessel is tested under two conditions, one with and
one without environmental disturbances, but both of them are with added Gaussian
noise on the measurements. The variances of the noise are found through tests
conducted in [CJsL12], and are given as:

σgps,X,Y = 1.0035 (6.54)
σmag = 4.9 · 10−4 (6.55)

The simulations are run for 30 minutes with a sampling time of 0.1 Hz. The
disturbances are wind, waves and current - as specified in 3.2.

6.2.1 Test using SimFlex

As the DEN-Mark1 simulator provides exact position measurements, these are
corrupted with zero-mean Gaussian noise. As seen on figure 6.5 the estimator is able
to track the position of the very well, even though the measurements are contaminated
with noise. The bias term is depicted on figure 6.7
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Figure 6.5: The position and heading of the vessel, the blue is the output from
DEN-Mark1 and the magenta is the estimate. As seen the estimator is able to track
the position of the vessel, even though the system is moved about violently.
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Figure 6.6: A zoomed version of figure 6.5. As seen the observer is able to track
the position of the system very well.

As seen on the figures 6.5 and 6.7 the estimator is able to track the position of the
vessel, even though the model does not include wave drift or current. This concludes
the development of the estimator, and allows for the controller to be developed, based
on these estimates.
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Figure 6.7: The bias term b of the simulation. As seen the bias term is relatively
small, this also expresses that the model is accurate. If the bias term b would have
been large, the model would have been inaccurate.





Chapter7Non-linear Control

This chapter focuses on the development of the non-linear controller. The controller
is based on the estimator developed in 6. An advantage of this approach, is that the
un-modelled dynamics are driven to zero in the bias term b, and will not contribute
to the error in the controller. A similar approach is found in [FG98], however, this
does not include the wave motions of the vessel, this approach includes the wave
motion in the control design, to produce better control signals, as the controller thus
acts on these, rather than see them as a disturbance.

7.1 Integrator Backstepping

The main objective of Backstepping, is to remove the bad non-linearities, while
keeping the good ones. An introduction to the theory behind backstepping control
can be found in appendix A.

Defining the error variable z1 as the error between the measured and the desired
allows for:

z1 = y − yd (7.1)

As was proven in the development of the estimator, this was exponentially stable,
and will thus make ŷ → y over time. Replacing y with the estimate ŷ will yield an
error variable z1 that includes the wave motion. This redefines (7.1) as:

z1 = ŷ − yd (7.2)

The virtual control input φ is chosen as:

φ = R(ψ)ν̂ = z2 +α (7.3)

With the stabilizing function α in (7.3). [FG98] suggests using the following function,
with C1 and D1 being positive definite design matrices. The latter is added to damp

43
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out the modelling error term K2ỹ:

α(z1) = −C1z1 −D1z1 + yd (7.4)

Deriving (7.1) gives:

ż1 = ˙̂y − ẏd (7.5)

Replacing ẏ in (7.5) with the derived output of the estimator yields:

ż1 = ˙̂η +K2ỹ − ẏd =⇒ R(ψ)ν̂ +K2ỹ +Cw(Awξ +K1(ω)ỹ)− ẏd (7.6)

The trajectory of the vessel is constant as ÿd, ẏd = 0 in station keeping operations.
Inserting the virtual control input in (7.6) yields:

ż1 = z2 −C1z1 −D1z1 +K2ỹ +Cw(Awξ +K1(ω)ỹ) (7.7)

Having defined the first error variable, the second can be solved for in (7.3) and gives:

z2 = R(ψ)ν̂ −α (7.8)

Given that Ṙ(ψ) = R(ψ)S(r) as derived in appendix C, the following derivative of
z2 can be found:

ż2 = R(ψ)S(r)ν̂ +R(ψ) ˙̂ν − α̇ (7.9)

= R(ψ)S(ψ)ν̂ +R(ψ) ˙̂ν +C1ż1 +D1ż1 + ÿd (7.10)

Inserting the estimator model ˙̂ν and ż1 into (7.10) yields the following:

ż2 = R(ψ)S(r)ν̂ +R(ψ)M−1(−Dν̂ +RT (ψ)K2b̂+RT (ψ)K4ỹ + τ )
− (C1 +D1)2z1 + (C1 +D1)z2 + (C1 +D1)(Cw(Awξ +K1(ω)ỹ)) (7.11)

Collecting terms for notational simplicity:

ż2 = (R(ψ)S(r))−R(ψ)M−1D)ν̂

+R(ψ)M−1(RT (ψ)K2)b̂
− (C1 +D1)2z1 + (C1 +D1)z2

+ ((C1 +D1)(Cw(Awξ +K1(ω)) +RT (ψ)K4)ỹ
+R(ψ)M−1τ (7.12)

Thus, selecting an input that cancel the bad non-linearities. For simplicity, an
expression that resembles that of z1 is wanted, thus choosing the input τ as:

R(ψ)M−1τ = −((R(ψ)M−1 +R(ψ)S(r))ν̂ +R(ψ)M−1RT (ψ)K2b̂
+ ÿd − (C1 +D1)2z1 + (C1 +D1)z2 +R(ψ)M−1RTK4ỹ

+ z1 + (C2 +D2)z2) (7.13)
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And then inserting (7.13) into (7.11) gives:

ż2 = −z1 − (C2 +D2)z2 + (C1 +D1)(CwAwξ̂ + (K2 +CwK1(ω)))ỹ) (7.14)

Which is resemblent to ż1 in (7.7). If a new state vector z is defined as z = [zT1 , zT2 ]T ,
the system can be re-written to:

ż = −(C̃ + D̃ − Ĩ)z + W̃1ỹ + W̃2ξ̂ (7.15)

With the matrices C̃, D̃ and Ĩ being defined as:

C̃ =
[
C1 03×3

03×3 C2

]
, D̃ =

[
D1 03×3

03×3 D2

]
, Ĩ =

[
03×3 −I
I 03×3

]
(7.16)

And the two column matrices W̃1 and W̃2 as:

W̃1 =
[

K2 +CwK1(ω)
(C1 +D1)(K2 +CwK1(ω))

]
, W̃2 =

[
CwAw

(C1 +D1)CwAw

]
(7.17)

If (7.15) can be proven stable in a Lyapunov sense, the proposed control strategy is
viable, and will provide a stable result.

7.1.1 Stability Analysis

To verify the stability of the controller, a Lyapunov stability analysis is performed.
The Lyapunov function candidate V (z) > 0,∀z 6= 0 is defined as:

V = 1
2z

Tz (7.18)

With the derivative

V̇ = Vzż = −zT (C̃ + D̃ − Ĩ)z + zTW̃1ỹ + zTW̃2ξ̂ (7.19)

The first term −zT (C̃ + D̃ − Ĩ)z is negative definite, due to C̃, D̃ > 0. The term
zT Ĩz = 0 and will not contribute to the definiteness. However, the two terms zTW̃1ỹ

and zTW̃2ξ̂ cannot be interpreted to be negative definite intuitively. However, the
form of the two matrices W̃ 1 and W̃ 2, given as in (7.17) are to be made negative
definite to ensure stability.

To render these two terms negative definite, the first term −zT (C̃ + D̃ − Ĩ)z
should dominate W̃ 1 and W̃ 2 to guarantee stability. This can be achieved by
designing the two gain matrices C2 and D2 to be larger than C1 and D1. To give a
qualitative measure of how large they should be, the norm of the matrices are used
to compute a scaling factor. The C1 and D1 matrices can be computed as:

C1 = 2I3×3||(K2 +CwK1(ω))|| (7.20)
D1 = 2I3×3||(K2 +CwK1(ω))|| (7.21)
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Which are then gained according to the norm of W̃1, as this is larger than the
norm of (C1 +D1)CwAw. Thus:

C2 = C1||(C1 +D1)(K2 +CwK1(ω))|| (7.22)
D2 = D1||(C1 +D1)(K2 +CwK1(ω))|| (7.23)

This will ensure stability, as these two matrices will dominate the two other. As
V̇ is negative definite through this scaling - the system has been proven to be
Globally Exponential Stable (GES). The 3 phases on figure 7.1 depicts that the three
error signals converges towards the equilibrium. The tests conducted are on the
control system simulated in Matlab for 100 seconds, with no disturbances on the
measurements, and a yd given as:

yd(k) = [0, 0, 0]T , for k = 0, . . . , 300 (7.24)
yd(k) = [5, 5, 2]T , for k = 300, . . . , 1000 (7.25)

The reference are smoothed out by a low pass filter with , as a step input is tooindsæt kon-
stanter
indsæt kon-
stanter violent for

Thus, the system have been simulated with a step input. If noise is added, the
phase plot on figure 7.2 is produced. As seen, the error variables also converge to
the equilibrium, or close to, even though the noise perturbs the system. The reason
for the error variables being larger in along the z2 axis, stems from the definition of
this. As z2 is a scaled version of z1 through the gain matrices C1 and D1.

This concludes the development of the controller. The following section will show
a proof-of-concept simulation in Matlab, to show that the system works as intended.
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Figure 7.1: Phase plot of the two error variables z1 and z2. Simulated in Matlab,
with no noise, and a yd as in (7.25).
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Figure 7.2: Phase plot of the two error variables z1 and z2. Simulated in Matlab,
with added noise, and a yd as in (7.25).



48 7. NON-LINEAR CONTROL

7.2 Control Allocation

This section will describe the development of an on-line thrust allocating module -
that in real-time is able to compute the most optimal thrust allocation. The reason
for an on-line module compared to a lookup table, is that the loss of a thruster can
be implemented directly in the controller by changing the weights of gain matrices.

7.2.1 Thruster Configuration

As seen in equation (7.13) the input to the system is termed as a force τ with a
component in the x-, y-direction as well as moment about the z-axis. However, the
shuttle tanker is mounted with 6 individual thrusters, which for a 3-DOF controller
could yield an infinite amount of configurations as the ship is over-actuated. The
goal is to find a solution that are as efficient as possible.

Table 7.1 describes the characteristics of the thruster configuration aboard the
vessel - with the numeration and naming as on figure 7.3. The offsets of the thrusters
are normalized with the length between the perpendiculars Lpp and the thrust have
been normalized with respect to the largest possible thrust delivered to the controller
max{Fmain}.

Fig. # Description x-offset/Lpp [-] y-offset/Lpp [-] Max/Min [-]
# 1 Main Propeller -0.481 0 1/-0.8133
# 2 Stern Tunnel Thruster -0.416 0 0.191/-0.191
# 3 Stern Azimuth -0.321 0 0.28/0
# 4 Bow Tunnel Thruster 1 0.477 0 0.191/-0.191
# 5 Bow Tunnel Thruster 2 0.492 0 0.191/-0.191
# 6 Bow Azimuth 0.385 0 0.28/0

Table 7.1: Table of thruster configuration aboard the used vessel.

The mapping from τ to a thrust f and angle α of the individual thrusters settings
can be done through the following matrix:

τ ctrl = T (α)f (7.26)

Where the matrix T denotes the mapping from a desired force to the thrusters. This
matrix is constructed from figure 7.3 and is a function of the forces and moments
acting on the vessel, given as:

T (α) =


1 0 0 0 cos(α1) cos(α2)
0 1 1 1 sin(α1) sin(α2)
0 lstern lbow1 lbow2 laz−stern sin(α1) laz−bow cos(α2)

 (7.27)



7.2. CONTROL ALLOCATION 49

ff

f
α

x1

y1

1

1
ff

f
α

x2

y2

2

2

lstern tunnel

lmain

lstern azimuth

lbow azimuth

lbow tunnel #2

lbow tunnel #1

#1
#2 #3 #4

#5

#6

Figure 7.3: Thruster configuration of the shuttle tanker. The drawing is not to
scale, but serves as a reference to where the individual thrusters are located.

The easy solution would be to solve the equation in 7.26, however, as T (α) is not
square, the solution is not straight forward. A proposal to a solution could be to
minimize a quadratic function with respect to the change in thrust and angle.

7.2.2 Cost Function and Constraints

As it is undesirable to change the thrust for each thruster too much at each time
step, the thrust allocation should minimize the change between each time step, in
this way, the optimization algorithm will ensure that the change at each iteration is
sufficiently small, and should ensure convergence towards a minima. This condition
also holds the physical property that the thrust is unable to change from 0 to 800
kN in one iteration.

This redefines the thrust f and angle α defined in (7.27) to:

f = f0 + ∆f (7.28)
α = α0 + ∆α (7.29)

The force components in (7.27) are linear and thus fairly easy to solve, the angular
components are not, and one solution will be hard to determine. This becomes
evident on figure 7.4, 7.5 and 7.6 where the force and moment are plotted for various
angles of the azimuth thrusters. From this it is desirable only to minimize the change
in angle, as a minimized angle would try to make the thrusters converge to zero
degrees, and thereby not produce any moment.

A term max{∆f} is added to minimize the biggest force, and thereby try to
use the thrusters as little as possible. With this in mind, the following convex cost
function in (7.30) is proposed:

J = fTQf + ∆αTP∆α+ max{∆f} (7.30)
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Figure 7.4: Normalized x-thrust from the azimuth thrusters as a function of the
angle.
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Figure 7.5: Normalized y-thrust from the azimuth thrusters as a function of the
angle.
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Figure 7.6: Normalized moment from the azimuth thrusters as a function of the
angle.

A quadratic cost function are in [NW99] defined as convex if the matrices Q and P
are positive definite matrices. As these are design matrices, they are designed as
Q = QT > 0 and P = P T > 0, and contains penalizing constants on the diagonal.
The constraints then take the form:

T (α0)(f0 + ∆f) =τ (7.31)
fmin − f0 ≤∆f ≤ fmax − f0 (7.32)
αmin −α0 ≤∆α ≤ αmax −α0 (7.33)

The equality constraint in (7.35) can however be hard to reach exactly, and an exact
solution would be too time consuming to compute, so a slack variable s is added to
both the constraint (7.35) and the cost function (7.30), thus reaching:

J = fTQf + ∆αTP∆α+ sTRs+ max{∆f} (7.34)

Subject to the following constraints:

s+ T (α0)(f0 + ∆f) =τ (7.35)
fmin − f0 ≤∆f ≤ fmax − f0 (7.36)
αmin −α0 ≤∆α ≤ αmax −α0 (7.37)

The purpose of the cost function is then to minimize the thrust output f0 + ∆f and
the change in angle ∆α.
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7.2.3 Verification

Even though the cost function in (7.34) is convex solutions for a reference thrust
vector τ that fluctuates, have made the problem unsolvable. However, if the noise is
removed from the system, the proposed algorithm is able to provide the following
solution for the yd given in (7.39). The results presented here, are with no noise on
the measurements and a very small step size. The control signal is computed with
the algorithm proposed in (7.13), and both the wind τwind and current τ current are
fed forward.

yd = [0, 0, 0]T , for k = 0 . . . 300 (7.38)
yd = [0.01, 0.01, 0]T , for k = 301 . . . 1000 (7.39)

The results show that the thrust allocator is able to provide a solution for the given
configuration. However, the steps are small - and tests in Matlab and DEN-Mark1
have shown that the allocator cannot cope with the changes induced on the vessel with
the simulation parameters described in 3.2. However, the optimizer have produced
the plots in figure 7.7 and 7.8, that depicts the thruster mapping between the control
signal and a figure of the comparison between the demanded and delivered thrust.
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Figure 7.7: Resulting thrust mapping from the optimization algorithm.

7.2.4 Concluding Remarks

Even though the optimiser have been implemented, tests have shown that the
algorithm tends to become affine when noise is introduced and when the changes in
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Figure 7.8: Demanded and delivered thrust.

the control signal are large (jumps from 0 to 105 to in two samples), which is clear,
as the controller is not saturated and the non-linearity of the controller allows for
fast and large changes. A way to cope with this, could be to implement an input
shaper (or a low pass filter), however, stability cannot be guaranteed.



54 7. NON-LINEAR CONTROL

7.3 Control Conclusion

The controller have been simulated in Matlab. However, a static tests of the system
provides no answer on how the controller responds, so the controller have been
simulated with a step input defined as.

yd(k) = [10, 10, 2]T , for k = 500, . . . , 5000 (7.40)
yd(k) = [0,−15, 2]T , for k = 5000, . . . , 7500 (7.41)
yd(k) = [0,−15, 0]T , for k = 7500, . . . , 10000 (7.42)

The input have been shaped using a second order low-pass filter, with a damping
coefficient λ = 10 and a natural frequency of ωn = 1. When simulated with and
without noise, the following position and phase plots are produced for the systems.
The input generated is not limited, and is fed directly to the observer, so no saturation
elements are enforced on it. This is not viable in a real system, as the engines are
not able to change thrust that fast.

The plots on figure 7.9 and 7.10 are noiseless simulations with the proposed
controller and estimator. And the plots on figure 7.11 and 7.12 are with added
Gaussian noise. The variance of the noise is given in (6.54) and (6.55) for the GPS
and the compass respectively.
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Figure 7.9: The position of the vessel with the proposed controller, the simulation
is noiseless and the desired trajectory yd is a lowpass filtered version of that in (7.42).

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5
x 105

Time [s]

Th
ru

st
 [k

N
]

x−thrust

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2
x 106

Time [s]

Th
ru

st
 [k

N
]

y−thrust

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5
x 108

Time [s]

M
om

em
nt

 [k
N

m
]

ψ−moment

Figure 7.10: The thrust inputs to the vessel with the proposed controller. This
simulation is noiseless.
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Figure 7.11: The position of the vessel with the proposed controller, the simulation
is with added Gaussian noise on the measurements y and the desired trajectory yd
is a lowpass filtered version of (7.42).
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Figure 7.12: The thrust inputs to the vessel with the proposed controller. This
simulation is with added Gaussian noise on the measurements y.



Chapter8Verification

The developed controller is tested against that of FORCE TECHNOLOGY . The
performance criteria are as specified in 3.3. As the software implementation of the
proposed controller in DEN-Mark1 have yielded problematic, the linear PID controller
have been implemented in Matlab, and the comparison and thus verification of the
proposed controller will be carried out on the model used in the estimator in 6.

The linear controller used at FORCE TECHNOLOGY does not contain any cross
terms in the gain matrices, and will thus be implemented as:

τ k = Kpz1 +Ki

k∑
i=0

z1 +Kdż1 + τwind (8.1)

With Kp,i,d being diagonal matrices of positive gain elements of the linear controller.

As the tests otherwise would have been conducted with a controllers that could
tend towards infinity to acquire the desired position of the vessel, a hard coded
saturation element have been enforced on both the controllers, with the highest
possible forward and reverse thrust as well as the highest positive and negative
torque set as the limits. This form of test is not ideal, it does however point towards
the performance of the controllers, and as both of them are tested under the same
circumstances, provides a reasonable comparison.

8.1 Performance of the Estimator

The estimator have been simulated. The data is from the simulation with an angle of
attack of -15 degrees, and the plot on figure 8.1 depicts the vessels measured position
as well as the estimated.
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Figure 8.1: A plot of the position estimate for the −15 degree test. As seen, the
estimator clearly provides filtering, and the estimates are better than the original
GPS measurement. The

8.2 Deviation Plots

The deviation plots for the proposed control strategy as well as the original controller
are presented here. A description of the plots and how they are interpreted can
be found in 3.3. The two plots 8.2 and 8.3 depicts the total deviation from all the
negative and positive angle tests combined.

8.3 Performance of the Controller

Another measure of performance is the performance index. The function used to
compute these, given in (3.1), takes into account the biggest deviation from the
origin, as well as the highest input. These weights are then multiplied with the
position and thrust at each time step - and will thus provide a performance of the
individual tests.

These are listed in the table below.
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Figure 8.2: A plot of the positive angles of attack. The non-linear controller
provides better results. As seen in 8.1 the performance is a lot better when looking
at the maximum deviation.

Test β J -PID-Control J -Non-linear maxPID{|y|} maxNL{|y|}
−15◦ 75789 125390 (44.86, 17.00, 83.41) (5.80, 13.61, 0.51)
−10◦ 74601 118500 (20.72, 25.14, 68.56) (5.43, 17.12, 0.57)
−5◦ 66468 118326 (38.17, 50.89, 35.80) (5.56, 11.81, 0.57)
0◦ 43554 117259 (415.30, 59.78, 0.63) (4.30, 11.85, 0.53)
5◦ 82611 119167 (34.35, 48.20, 19.38) (4.78, 8.78, 0.44)
10◦ 79118 117344 (32.29, 31.13, 43.78) (5.35, 9.36, 0.53)
15◦ 95514 117817 (28.15, 11.30, 57.15) (4.65, 13.43, 0.67)

Table 8.1: Performance index or the individual tests. The performance function
J is given in (3.1). The higher the performance index, the better the controller.
The non-linear controller outperforms the linear counterpart. Generally, the linear
controller performs better for positive angles of attack.
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Figure 8.3: A plot of the negative angles of attack. The linear controller has a
much higher deviation from the original point than the non-linear counterpart.
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This project have documented the development of a non-linear controller to be used
aboard a shuttle tanker. The controller is non-linear of nature, and should therefore
provide a response that are better than the linear counterpart currently being used
at FORCE TECHNOLOGY .

The proposed algorithm are based on 3 parts, a non-linear model, a non-linear
estimator and a non-linear controller. The model is derived for ships in station
keeping operations, and the resulting model is a simplified version of what was
derived in 5. The model does not include any velocity dependent matrices, which if
included could provide a better response. However, the output of these terms would
be small due to the velocity ν ≈ 0, and would thus only contribute to an increased
complexity of the model.

The model is verified through the estimator, as the bias term is small (varies within
2-3 Newton), the modelling error is small, compared to the output of DEN-Mark1.
Computational time is a lot faster using the proposed model, as a simulation of 9000
samples takes close to 30 minutes in DEN-Mark1, whereas the same computation
with the proposed model only takes around 8 seconds. The ease-to-tune comes from
only 3 matrices that needs to be tuned, whereMRB andDRB contains terms already
measured by FORCE TECHNOLOGY , the time constant matrix T is a function of the
two.

A non-linear estimator was developed, based on the works of [FS99]. The estimator
includes a linear wave model to filter out the second order wave induced motion, as
seen on figure 6.4, the proposed wave-filter removes the second order wave motion
from the system. The estimator is based on the derived model, and tuning is therefore
easy, the only extra component is the wave frequency ωo, which are determined from
a non-linear fitting to the JONSWAP wave spectrum. The estimator was derived
to be exponentially stable, and will thus provide an estimate that converges to the
actual value. The bias term b in the estimator expresses unmodelled dynamics, and
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the size of this term also serves as a measure of the quality of the estimator. Through
tests in DEN-Mark1 the bias term have been found to be small even when the vessel
cannot hold its position and the thrust input becomes unstable.

The proposed controller utilizes the exponential stability property of the estimator,
as ŷ → y. The proposed controller includes the wave motion parameter ξ, and
stability is proven for the controller by designing the two matrices C1 and D1 to be
larger than the wave motion matrices of ξ̇, this have to the knowledge of the author
never been done before. In 8 the non-linear controller have been proven to provide a
better response than the linear controller, and the hypothesis stated in the beginning
have been proven.
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This chapter serves to evaluate the project and discuss possible improvements to
the suggested controller. The suggestions have not been implemented, as the main
purpose is to develop a controller that is stable in a Lyapunov sense, and the stability
calculations are tedious and time consuming.

10.1 Project Discussion

As the current control methodology used at FORCE TECHNOLOGY employs a linear
controller to serve as a reference, the proposed could provide far better responses
for the system. This does however also have a drawback. The current control
configuration provides a very conservative response as to whether the vessel can
maintain its position with the thruster configuration, and will thereby guarantee that
the actual vessel is able to maintain the position.

An update to this system, would provide better responses, but if the actual ship
is fitted with another control system that uses linear techniques, the outcome of the
model test might not be realistic, however - this might push the industry in a more
non-linear direction.

10.2 Further Improvements

Through the project, possible improvements have been established. They have
however not been implemented as some of them are worth an entire study in them
selves. This section describes the possible improvement, and briefly discusses a
possible solution.

10.2.1 Wave inclusion in the thrust

As the controller currently does not include the wave induced motions, this could be
included in the computation of τ . An analysis of the expression yields would change
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τ from the one computed in (7.13) to:

R(ψ)M−1τ = −((R(ψ)M−1 +R(ψ)S(r))ν̂ +R(ψ)M−1RT (ψ)K2b̂
+ ÿd − (C1 +D1)2z1 + (C1 +D1)z2

+ z1 + (C2 +D2)z2)

+ (C1 +D1)(CwAwξ̂) (10.1)

However, the proposal would change the stability analysis and are therefore not done
in the project. A more tedious study could be carried out to see which terms are
good and which terms should be removed to have a less fluctuating control signal.

10.2.2 Adaptivity of Controller

Model imperfections should be removed by the bias term b in the estimator. However,
to further strengthen the robustness and output of the controller, an adaptive term
θ could be implemented to further remove the model errors, and have a controller
that would work on systems with model inaccuracies, and could serve to reduce the
time spent tuning the system, as the small model errors would be handled on-line.

[MKK96] suggests a method to include adaptivity in the control strategy. Such
an approach could help on the tuning time spent, as the controller would tune itself,
within reasonable bounds, and thus ease the tuning procedure.

10.2.3 Input Limitations

The main problem with the controller, is that the non-linear nature of it, allows
for rapid changes to the control signal, which is undesirable for ships, as the time
constants large, and fast motions are impossible to account for by the actuators. If a
limiting term were introduced on τ that could guarantee to never exceed a certain
value, whilst remaining stable, this could prove viable.

The works of [TGT09] shows that such a method could be to implement barrier
functions on the input, and penalise the input, and thus effectively saturate it.
Allowing it to remain within certain bounds. The bounds could be based on the
largest possible thrust deliverable in each direction, such as:

max{Fx} = 1550 + 420 + 420 = 2390[kN] (10.2)
max{Fy} = 287 + 287 + 287 + 420 + 420 = 1701[kN] (10.3)

max{Mz} = 287lstern − 287lbow1 − 287lbow2 + 420laz−stern sin(pi2 )− 420lazbow sin(
(10.4)

frac3π2) = 12144[kNm] (10.5)
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This constraint would allow the dynamic range of the input signal to be within
actual reach of the individual thrusters, and would also allow the thrust allocation
to produce results that were possible to reach. Another factor that could increase
robustness, could be to alter the dynamics of the input. Implementing a τ̇ term, and
limiting how the rate of change should be on this, could serve to increase the overall
result.

This would reduce the wear and tear of the system, as the dynamics of τ would
be slower, as an automatic low pass filtering of the signal would occur. The main
purpose of using barrier constraints, is that stability property of the controller can
be maintained.

10.2.4 Optimal Thrust Allocation

The thrust allocation should be altered so that it always provides a solution, and
to make it more robust. The works of [TAJB04] includes a term to cancel out
singularities. The cost function could also be extended to include parameters such as
engine wear and tear, the able to change thrust and the dead-zones of the thrusters
could be used to improve the response. Dead zones could be used to avoid the
Maratos effect, where the thrust is reduced drastically by the water being "sucked"
up to the bottom of the vessel.

Another dead-zone would be when the two azimuth thrusters face each other,
thus producing thrust that would negate one another, which would be a waste of
energy.

10.2.5 Non-linear Wave Model

Instead of using the linear wave model derived in 6.1.1 a non-linear approach to provide
a more accurate wave response could be used. This would be more computationally
heavy, but theory used to model wind-fields could be applied, as these resemble the
wave JONSWAP spectra. The non-linear wave model would provide a more accurate
response, but would be computationally more expensive.

An on-line computation of the Response Amplitude Operator (RAO)s could
provide the system with almost exact wave responses - this would improve on the
estimate ŷ, which would reduce fluctuations in the controller, and thus provide a
better response.
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AppendixANon-linear Backstepping

This chapter will describe general theory behind integrator backstepping to serve as
a reference for the derivation of the controller. Backstepping is based on Lyapunov
theory, and bears close resemblance to feedback linearisation. In feedback linearisation
all non-linearities are removed, whereas backstepping allows more freedom in the
design of the input, and thus allows to keep damping terms, rather than remove
them completely, this will be clear throughout this appendix.

This appendix is based on the works of [MKK96] and [Kha02]. Integrator
backstepping is motivated by the following proposition A.1.

Proposition A.1. Consider the system:

ẋ = f(x) + g(x)u, f(0) = 0, (A.1)

where x ∈ Rn is the state and u ∈ R is the control input. There exists a continuously
differentiable feedback control law

u = α(x), α(0) = 0, (A.2)

and a smooth, positive definite, radially unbounded function V : Rn → R such that

∂V

∂x
[f(x) + g(x)α(x)] ≤ −W (x) ≤ 0, ∀x ∈ Rn (A.3)

where W : Rn → R is positive semidefinite.

In proposition A.1, the choice of input can be designed to remove all non-linearities
in (A.1), as in feedback linearisation. However, some non-linearities might prove
beneficial to keep. If equation (A.1) contained a quadratic damping term, keeping
this might provide better responses than if it was included in the control signal,
backstepping allows good non-linearities to be kept, whereas the bad can be removed.
From [MKK96], lemma A.2 is proposed:
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Lemma A.2. Let (A.1) be augmented by an integrator.

ẋ = f(x) + g(x)ξ (A.4)
ξ̇ = u, (A.5)

and suppose that (A.4) satisfies A.1 with ξ ∈ R as its control input. (i) If W (x) is
positive definite, then

Va(x, ξ) = V (x) + 1
2 [ξ − α(x)]2 (A.6)

Is a Candidate Lyapunov Function (CLF) for the full system given by (A.4) and
(A.5), that is, there exists a feedback control u = αa(x, ξ) which renders x = 0, ξ = 0
the Globally Asymptotic Stable (GAS) equilibrium of (A.4) and (A.5). One such
control input is:

u = −c(ξ − α(x)) + ∂α

∂x
(x)[f(x) + g(x)ξ]− ∂V

∂x
(x)g(x), c > 0 (A.7)

(ii) If W (x) is only positive definite, then there exists a feedback control which renders
V̇a ≤ −Wa(x, ξ) ≤ 0, such that Wa(x, ξ) > 0 whenever W (x) > 0 or ξ 6= α(x). This
guarantees global boundedness and convergence of [x(t), ξ(t)]T to the largest invariant
set Ma contained in the set

Ea =
{[

x

ξ

]
∈ Rn+1|W (x) = 0, ξ = α(x)

}
(A.8)

The theory behind integrator backstepping is easier to understand when illustrated
with an example, thus consider the system:

f(x, u) = ẋ = cos(x)− x3 + u (A.9)

An easy choice of input, would be to choose u to remove the non-linearities u =
− cos(x) + x3 + x, and thus the remainder is a simple linear system ẋ = x. Closer
examination does however show, that x3 is negative, and will thus act as a quadratic
damping term, hence, a design method that would keep the damping term, and
remove the cosine would prove beneficial.

Augmenting (A.9) with an integrator, gives the new system with the virtual state
ξ:

f(x, ξ) = ẋ = cos(x)− x3 + ξ (A.10)
ξ̇ = u (A.11)

The system (A.10) is depicted on figure A.1.
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Figure A.1: Depiction of (A.10).

A desired control law ξ for (A.10) with the CLF V (x) = 1
2x

2 can be defined as:

ξdesired = −c1x− cos(x) , α(x) (A.12)

Where α(x) is defined as the stabilizing function for the virtual control ξ. However
to achieve that ξ goes to ξdesired, the error variable z is defined as the error between
the two:

z = ξ − ξdesired = ξ − α(x) = ξ + c1 + cos(x) (A.13)

The whole system is changed to (x, z) coordinates which then re-writes the system
in equation (A.10) to:

ẋ = cos(x)− x3 + ξ + c1x+ cos(x)− c1x cos(x) = −c1x− x3 + z (A.14)
ż = ξ̇ − α̇ = ξ̇ + (c1 − sin(x))ẋ = ubackstep + (c1 − sin(x))(−c1x− x3 + z) (A.15)

One key feature in backstepping design, is that the stabilizing function α(x) is known,
and therefore the derivative thereof is straight forward to compute. Thus, if the
input is chosen as:

ubackstep = −c2z − x− (c1 − sin(x))(−c1x− x3 + z) (A.16)

And a CLF as V (x, ξ) = 1
2x

2 + 1
2z

2, gives the Lyapunov derivative:

(̇V ) = −c1x2 − c2z2 (A.17)

Which indeed is negative definite, as the two integral constants c1 and c2 are positive.
The augmented system and the corresponding control law is depicted on figure A.2.

The last corraly to menition, is that if the system is a chain of integrators,
interpreted as the system has more "layers" - the theory still holds. [MKK96] writes
it as the following:
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Figure A.2: Depiction of the systems (A.14) and (A.15). The error variable is an
integrated difference between the input ξ and the stabilizing function α(x).

Corollary A.3. Let the system in (A.1) satisfying A.1 with α(x) = α0(x) be
augmented by a chain of k integrators so that u is replaced by ξ1, the state of the last
integrator in the chain:

ẋ = f(x) + g(x)ξ1 (A.18)
ξ̇1 = ξ2 (A.19)
... (A.20)

ξ̇k−1 = ξk (A.21)
ξ̇k = u (A.22)

For this system, repeated application of A.2 with ξ1, . . . , ξk as virtual controls, results
in the Lyapunov function:

Va(x, ξ1, . . . , ξk) = V (x) + 1
2

k∑
i=1

[ξ1 − αi−1(x, ξ1, . . . , ξi−1)]2 (A.23)

Any choice of feedback control which renders V̇ ≤ −Wa(x, ξ1, . . . , ξk) ≤ 0 with
Wa(x, ξ1, . . . , ξk) = 0 only if W (x) = 0 and ξi 6= αi−1(x, ξ1, . . . , ξi−1), i = 1, . . . , k,
guarantees that [xT (t), ξ1(t), . . . , ξk(t)]T is globally bounded and converges to the
largest invariant set Ma contained in the set Ea = {[xT , ξ1, . . . , ξk]T ∈ Rn+k|W (x) =
0, ξi = αi−1(x, ξ1, . . . , ξi−1), i = 1, . . . , k}. Furthermore, if W (x) is positive definite,
that is, if x = 0 can be rendered GAS through ξ1, then (A.23) is a CLF for (A.18),
and the equilibrium x = 0, ξ = · · · = ξk = 0 can be rendered GAS through u.

This concludes the theory used in the thesis for backstepping.



AppendixBVessel Data

System Matrices

The two system matrices for the model of the vessel MRB and DRB are computed
to be:

MRB =


0.1089 0 0

0 0.1975 0.8276
0 0.0032 0.0057

 (B.1)

DRB =


0.0077 0 0

0 0.1191 −0.0367
0 0.000215 3.5524 · 10−7

 (B.2)

These matrices are Bis-scaled. Bis-scaling allows to present the data without the
reader being able to interpret the directly, as they are dependent on other factors
that are confidential. Bis-scaling of forces and moments are given as:

Fx,Bis = Fx
µρg∇

(B.3)

Nψ,Bis = Nψ
µρ∇Lpp

(B.4)

Iz,Bis = Nψ
µρ∇L2

pp

(B.5)

Where µ is a density ratio, usually defined as 1 for ships or floating structures.

Time Constants

According to [FG98] the time constants of a vessel can be computed from the
eigenvalues of the MRB and DRB matrices as:

Ti = − 1
λi

√
Lpp/g (B.6)
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Where λi are the eigenvalues of M−1
RBDRB . Using (B.6) the following time constant

matrix is obtained:

T = diag{51688, 8.513, 73.2126}[s] (B.7)

As all the time constants are positive, the ship is naturally course stable, course
stability is depicted on figure B.1.
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FIGURE 6 
Pull-out Test 
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5.3 Tests for Straight-line Unstable Vessels 
If the vessel is found to be straight-line unstable by the pull-out test, one of spiral tests may also be 
performed: 

x The direct spiral maneuver (Dieudonné Spiral) is an orderly sequence of turning circle tests to 
obtain a steady turning rate versus rudder angle relation. The maneuver requires a very long time 
and therefore is not recommended for sea trial. 

x The reverse spiral (Bech Spiral) test may provide a more rapid procedure than the direct spiral test 
in developing the spiral curve and enables obtaining the dashed or unstable portion of the yaw rate 
versus rudder angle relationship in Section 2, Figure 5 which is not obtainable from the 
Dieudonné test. In the reverse spiral test, the vessel is steered to obtain a constant yaw rate, the 
mean rudder angle required to produce this yaw rate is measured and the yaw rate versus rudder 
angle plot is created. Points on the curve of yaw rate versus rudder angle may be taken in any 
order. A more detailed description of the reverse spiral is given in 4/3.5. 

Figure B.1: Depiction of course stability. (a) is a course stable ship, as seen the
ship converges towards the original heading, whereas the course unstable ship on (b)
continues turning.



AppendixCDifferential Kinematics

The derivative of a rotation matrix is not straight forward to compute, by using the
orthogonality of R(Θ) (and for simplicity writing this as R(t)), the following can be
stated:

I = R(t)RT (t) (C.1)

0 = Ṙ(t)RT (t) +R(t)ṘT (t) (C.2)

−R(t)ṘT (t) = Ṙ(t)RT (t) (C.3)

By using the cross-product operand in (4.8), the following definition is made:

S(t) = Ṙ(t)RT (t) (C.4)

The S(t) in (C.4) can be interpreted as the angular velocities of the system. By using
the skew-symmetry of S, and isolating for the derivative in (C.3), the derivative can
be computed as:

Ṙ(t) = R(t)S(t) (C.5)
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