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Abstract

The transistors in computers are decreasing in physical size for every genera-
tion resulting in an increased susceptibility to single event upsets. The rate of
single event upsets causing an error in a system intensifies when ascending from
sea level and to space. This increases the need for fault-tolerance implemen-
tations in modern computer systems. This project documents the process of
implementing a fault-tolerant virtual machine based on semantics defining the
virtual machine’s language as well as the fault model. The fault tolerance tech-
niques used for the virtual machine includes Hamming codes, AN-codes, and
Hamming distance. The fault-tolerance techniques has been carefully picked
out based on previous analysis and implemented into the virtual machine at
well defined areas. The virtual machine has been made in three different ver-
sions which are tested against each other for data on overhead in runtime. A
fault injection framework has been developed using aspect oriented program-
ming that can inject faults in our predefined areas. Results and findings are
discussed and lastly suggestions for improvements are provided.
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Chapter 1
Introduction

Each hardware generation brings increasingly better and faster processors and
micro controllers running at lower voltage levels, and features more transistors
arranged on a decreasing area. While this is a great evolution for performance
and cost it comes at a price. The susceptibility to faults caused by radiation
increases as well and therefore the requirement for fault-tolerance implementa-
tion becomes increasingly relevant. There are many examples of faults caused
by these seemingly random upsets that, if not taken seriously, can prove costly
to correct. An example of this is the AAUSAT3 [3] which was almost lost due to
a single event upset (SEU). The satellite stopped responding to requests from
the ground station because the electronic power supply failed. Any attempt to
restart was also impossible due to the weakened system. Only by consulting the
whole development team and some luck they where able to restart the satellite
by utilizing an exploit.

Another example was an incident reported by Sun Microsystems involving
servers of sites such as America Online and eBay which crashed due to radiation
[6]. For a company whose livelihood depends on server availability, randomly
occurring downtime can potentially prove costly which emphasizes the need for
reliable systems. Even though these kinds of upsets are increasing with each
generation they are still not very frequent for computers at ground level [19].
This is not the case in space however, where the radiation levels are much
higher than within the atmosphere. Because of this there is a much higher risk
involved when using software on space equipment. For non-critical missions less
sophisticated methods can be used to recover after faults, as is the case with
AAUSAT, which uses a watchdog that will restart the system if required. This
is however not a valid solution for safety-critical missions. A Credible source
tells that the satellite can restart multiple times an hour. By implementing
sufficient fault-tolerance it should be possible to significantly reduce the amount
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of restarts needed.

1.1 Project Description
The work done in [8] documents an investigation of different techniques to
implement fault-tolerance in a system. In this project we are building upon this
work, by implementing a VM that features fault-tolerance backed by semantics
of a fault-model. The goal is to provide a VM with high availability, The
definition of availability that we use is from [5].

We have chosen to implement a VM as it allows us to focus strictly on
software-only recovery with a layer of indirection to the hardware level, all
techniques will be working natively in the VM, and through the VM propagated
to an underlying hardware platform, potentially the VM could be implemented
directly on an FPGA.

To test our VM we are also including fault injection as a part of the project.
The fault injection should be implemented in a way that isolates the additional
code from the VM code to keep the VM clean. Since we need to test very
specific types of errors the custom injection frameworks is deemed necessary.

Fault-tolerance is already being used on some micro-controllers but it is
mainly based on hardware fault-tolerance. This increases the cost of each
unit, this price could be brought down by using software-only fault-tolerance
solutions executed on commodity hardware.

To sum up, we will implement software-only fault-tolerance techniques into
a VM to harden it against SEUs.
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Chapter 2
Project Scope

The following chapter defines the bounds of the project in the context of avail-
able hardware platforms, related work, a brief analysis of fault-tolerance tech-
niques, and our fault-model.

2.1 Platforms
According to the GOMspace website [10], CubeSat satellites which AAUSAT is,
features a processor with ARM7 architecture. We want to investigate different
platforms that have similarities with ARM7 to get a detailed understanding of
which features are provided by the different platforms and use this information
to conclude if fault-tolerance is already existing for such platforms and if so
how big the coverage is.

The ARM7 architecture: The ARM7 family was first introduced in 1994 and is
to date the most widely used 32-bit embedded ARM processor family. Its
main features is the low cost and low power consumption making it well
fit for many embedded systems. The ARM7 family features no build in
ECC i.e. Error Correcting Code, a hardware solution for fault-tolerance.
However today it is exceeded by newer generations of the ARM architec-
ture. On ARMs website [4] there is a road map for upgrading an ARM7
to a newer product that either excels in performance or efficiency. Among
these products are ARM9, ARM11, Cortex-M, Cortex-R, and Cortex-A.
Even though the AAUSAT is running on an ARM7 it could be argued
that in the near future an upgrade would be performed to one of the newer
versions since they provide more computational power and in some cases
with less power consumption.
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The ARM9 architecture: This processor family is a single core processor.
There are no fault-tolerance of the registers or cache. It features an MPU,
which provides the feature to divide memory into regions with protection
attributes associated with each region. The MPU only protects the cache
against permission violations and is not able to detect any bit-flips. The
area differs from 6.5 mm down to 0.2 mm however the smallest processor
area is on processors without cache memory.

The ARM11 architecture: This processor family performance has an surface
area varying from 1.17 to 3.26 mm. The ARM11MPCore processor has
the ability to support from 1-4 cores. ARM11 does not feature any fault-
tolerance or fault-protection. The ARM1156T2 also includes a MPU with
the same limitations as for ARM9.

The Cortex-M achitecture: This processor family has a wide range of speci-
fications and use. The Cortex-M0 and Cortex-M0+ has the lowest area
and power consumption respectively of any ARM processor. Area-wise
the processors starts at 0.56 mm and goes all the way down to 0.009
mm. None of the Cortex-M processors feature any fault-tolerance nor
any MPU.

The Cortex-R achitecture: This processor family is well suited for real-time
embedded systems which require a high availability and maintainability
as well as fault-tolerance. The family consists of Cortex-R4, Cortex-R5
and Cortex-R7. The area of the core, ram and routing is 0.5 mm for the
smaller processors and 0.7 mm for the R7 model. Most interesting for
our project is the fault-tolerance of this processor family. Included on
the cache and bus is the support for ECC. This means that the processor
is able to detect and correct a fault caused by an SEU. The detection
is done by utilizing a parity bit on each byte. Recovery involves forced
write-through to ensure that no lines are dirty, and then reloading the
faulty line from the original source. The correction system is limited to
1-bit errors.

The Cortex-A achitecture: This processor family consists of 7 processors used
for various systems. The area based on Cortex-A5 and Cortex-A8 is in
the range of 0.53 mm to just under 4 mm , the Cortex-A17 is claimed
to be 28 nm but it is not stated if that includes caches and RAM. Most
of the Cortex-A processors also includes ECC and parity checking in L2
memory, however it is not stated anywhere if the bus is also covered by
ECC as is the case with Cortex-R5.
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From our observations in the mentioned processors we can conclude that
ECC although possible is not featured in a lot of processors and most notably
not in the ARM7 processor used in AAUSAT. This gives us the motivation to
try and make some fault-tolerance installments at software level to compensate
for this lack of fault detection and correction within the processor.

2.2 Related Work
In this section we will describe other fault-tolerance projects that have similar-
ities to our own project as well as discuss how they differ from this project.

There are many areas to investigate within the boundaries of fault-tolerance
related to software. Besides the different way to introduce fault-tolerance us-
ing the different methods there are also other concerns like the effectiveness
and requirement of fault-tolerant software or the cost of using fault-tolerant
methods.

Shoestring
The article Shoestring: “Probabilistic Soft Error Reliability on the Cheap” [9]
brings up the problem about manageable error rates for commodity hardware.
A desktop computer or similar does not have the same requirements for avail-
ability, as the computer is not meant to run critical systems, which usually
means the owner is not willing to spend additional money for the necessary soft-
ware (or hardware) to avoid crashes. This calls for a requirement of very cheap
solutions with little to no performance overhead. To meet this requirement a
hybrid of two areas of research are used, namely symptom-based detection and
software-based instruction duplication. Software-based instruction duplication
provides a high coverage by duplicating every instruction and validating the
result, however the overhead is high. To prevent this, symptom based detec-
tion is used where possible, since it is has a lower performance overhead, and
only use instruction duplication when symptom based detection is not enough.
The method is based on additional compiler passes. During these passes the
instructions are analyzed and categorized by how vulnerable they are and if
they are likely to generate symptoms. Then an additional pass will insert du-
plicates of instructions that are still at risk. The effectiveness of shoestring
is reported to be around 80% of all unmasked faults. Unmasked faults has
been measured to 8.1% of all faults. This approach is focusing on the runtime
and minimal overhead while we are focusing on coverage and availability. The
effectiveness of 80% is great for home computers but since our case is related
to space equipment and satellites it would not be acceptable.
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KESO and jino

Another approach is mentioned in the article: “A JVM for Soft-Error-Prone
Embedded Systems” [23]. This approach focuses on the type safety of Java
and to keep the spatial isolation intact even in the presence of a fault. Their
fault model is also based around randomly occurring bit-flips. Fault-tolerance
is achieved through the use of the KESO JVM in conjunction with its compiler
jino. The approach is to lower the failure rate of the VM without taking a
massive performance hit by utilizing several techniques. The approach uses
many areas both at compiler level and runtime and it is based on an analy-
sis of the runtime system. The fault-tolerance is limited to type safety which
includes references, class identifiers, and virtual method tables as well as per-
protection-domain data including static fields and heaps for each domain. The
fault-tolerance is split into two categories: attack surface Reduction and refer-
ence checking. Attack surface is the term used in the article, and corresponds
to our vulnerability surface which is defined as the memory area that the VM
occupies that is vulnerable to bit-flips. The attack surface reduction is self
explanatory, by reducing the attack surface the chance for a transient fault
caused by radiation is also reduced. Reference checking uses a form of parity
encoding of references to do parity checks. For reference checking three dif-
ferent variants are presented, one of which is not used so it will be omitted.
Dereference checking(DRC) is decoding the reference every time it is deref-
erenced providing a high probability of detecting faults, however the checks
has a probability of making unnecessary checks if the reference is used multiple
times in a row. The alternative is load reference check (LRC) which checks
references as they are loaded from memory. Once they are stored they are en-
coded and upon loading from memory they are decoded. LRC needs fewer
checks than DRC but has a higher false-negative probability. The overhead in
code is roughly 20% and the runtime increase is 30.71% in their tests for LRC.
The method that they provide secures software based spatial isolation which is
needed in other fault-tolerance techniques such as replication, so the overhead
for a fully implemented fault-tolerant system is very likely to be higher than
the benchmarks in this article. The contribution of this method is targeting the
type safety and securing the spatial isolation in the presence of faults which is
important but only covers a part of the entire VM, also even if the type safety
is retained, values and instructions are still vulnerable to SEUs. The overhead
is quite small compared to more heavy fault-tolerance techniques but is to be
expected with the lower area coverage. We are aiming to also cover values, as
faults in values can be very devastating and hard to discover once they have
entered the system. The article tests the system by injecting bit-flips into each
word of the allocated heap space but are pruning out all ineffective bit-flips.
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We are also injecting faults in relevant memory areas but instead of using a
predefined benchmarks we are creating our own fault injection using AspectJ
to test exactly those areas that we cover with fault-tolerance.

State Machine Approach

The article: "A Fault-Tolerant Java Virtual Machine" [18] takes a different
approach. They work with a state machine approach by defining a deterministic
state machine which they replicate. Unfortunately a state machine of a JVM
features non-determinism, so the paper suggest how to identify and eliminate
the effects of non-determinism in the JVM. The fault-tolerance is introduced
in the form of a redundant copy of the state machine. Each state machine will
perform the same actions on the same input, and get the same results once non-
determinism is eliminated. The state machine approach includes an abstraction
of the output data by some internal way of determining the correct result in
case of disagreement. The solution is based on a primary-backup architecture
which means that the backup state machine logs the recovery information from
the primary, and only runs if the primary fails. Compared to our project this
approach is using a more theoretical approach by modeling the system as state
machines. The faults covered in the state machine approach is more generally
fail-stop failures while we are focusing on SEUs only. The Overhead of having
two JVMs for fault-tolerance is depending on the application and was anywhere
between 1-600%.

Fault-Tolerance Techniques

Besides these full VM solutions more general techniques for introducing fault-
tolerance which are related to our project will now be described. The article [21]
mentions three methods for fault-tolerance implemented at instruction level.
While these are meant for implementing in a compiler it can also be modified
to work with a VM. In [7] recovery blocks are mentioned, which is also related to
fault-tolerance but contrary to the relatively low level instruction duplication,
recovery block are more abstract and rely on an acceptance test to detect faults.
Our fault-tolerance implementation is restricted to encoding and duplication of
instructions and values. Recovery blocks higher abstraction level adds a layer
of complexity in recovering from faults that we want to avoid.
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2.3 Fault Model
Faults can be divided into two groups: Hard errors and soft errors. Our defini-
tion of soft errors are based on [16] and are errors in memory devices that are
not permanent meaning that they can be corrected using software solutions.
Our fault model is focused on SEUs caused by random external interferences.
An SEU is defined as a single bit flipped at a random location in either main
memory or a register. This bit-flip is caused by a small particle intersecting
with a memory area. We are assuming that only a single bit-flip will happen
in a word within the time interval it takes to correct it, which means that we
will not deal with multiple flips at any time. We state that the action that
causes an SEU has to be random. This means that we are not able to tell
where in the system that the fault will happen. To make it more attainable we
are slightly limiting the areas of the VM where an SEU can happen based on
analysis of the VM to be able to focus on the most relevant areas. This also
means that the fault location is not entirely random within the whole VM but
will be random within the chosen areas.

We are only considering naturally caused faults by radiation, human at-
tempts to attack the VM is not within the scope of this project. We assume
that the fault caused by an SEU will have an impact of such caliber that it will
generate a visible error and not simply be masked by the system.

Our fault model is based on our case and resembles a real space environ-
ment with cosmic radiation that can affect electronic equipment and hardware.
However in order to limit the project’s size to a manageable level we have made
some assumptions and restrictions in the fault model. These restrictions are
based on data from different papers about fault rates and fault occurrences.
The assumption of a single bit-flip per correction cycle is based on [24]. This
article is accounting for the fault rate of the Cassini spacecraft and the results
are showing that the spacecraft could expect a fault rate of 280 errors a day
with an increase to four times that amount during a solar flare. This fault rate
is further categorized into single bit-flips and double bit-flips within the same
word. The double to single bit-flip rate was about 0.7% so it is a negligible
fault rate. We are also assuming that faults will not be masked which means
that they will manifest as an error visible to the user. It is not all faults that
becomes visible. In [26] it is mentioned that only 8 percent of faults within a
computer system becomes visible to the user while the remaining 92 % is being
masked by the system. Lastly we are assuming that SEUs will only happen in
specific areas of the VM. This assumption might be naive but we are trying to
target the most relevant and common faults to get the best availability.
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2.4 Vulnerability Analysis
The overall goal of this project is to create a VM that can run even in the
presence of SEUs. However, it is not easy to fully cover the entire VM without
suffering a considerable overhead in both runtime and memory. An analysis
of components of the VM is required to identify the vital points and what the
benefits of implementing fault-tolerance are. In this section we will cover the
different areas of the black one sugar Virtual Machine (bosVM) and point out
the potential consequences of an SEU in each area.

Our VM ,bosVM, consists of a translator and execution engine. The trans-
lator will be skipped since its primary purpose is to mimic pre-compilation
of TinyBytecode source files. We have divided the execution engine into the
following areas:

• Instructions

• Program counter

• Operand stacks

• Local variables

• Call stack

• Meta-data

The instructions are a central part of the system. A large amount of instruc-
tions can be executed each second and if one of these instructions includes a
bit-flip the system will be at risk of crashing or receive a silent data corruption
i.e. an fault invisible to the user. To investigate the instructions further they
can be split into opcodes and arguments.

Every instruction includes one opcode. There are also two other elements
with similarities to opcodes, aritcodes and ifcodes, while opcodes are used to
identify which type of TinyBytecode instruction is under execution, aritcodes
are used to identify arithmetic operations, and ifcodes in the same way used to
identify conditional branching operations, in parts of this report all the code
types will be referred to by the common term codes. Common for all these
codes are their sizes of one byte. During an SEU every bit in these bytes
can be flipped resulting in a different code. Such upset in instruction opcodes
can have two outcomes. The first is an unknown opcode resulting in the VM
crashing, and the second would be that the new opcode is similar to an already
existing opcode resulting in a different instruction being executed, which may
also lead to a crash if the new opcode is not aligned with the old in terms
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of arguments and stack variables. The aritcodes and ifcodes face the same
consequences when a bit-flip occurs, as instruction opcodes, either the VM will
crash or another code will be run instead. If a bit-flip results in another code
being used there is a chance of a silent data corruption. If for instance the VM
executes an arithmetic instruction, but a bit-flip has occurred in the aritcode
add making it a sub aritcode, the instruction will still be able to run because
subtraction takes the same arguments as addition, but the result is not what
is expected. Codes are present in every instruction and the effect of an SEU
can be severe so this area will need fault-tolerance.

Values are of the type int, boolean, byte, or a reference. Each of these
types can be expressed as an integer. SEUs can occur in every bit of an integer
effectively changing its value. The consequence of changed values are hard
to predict and depends on what the changed value is used for. A value used
for arithmetic operations will produce a wrong result also called a silent data
corruption which is quite severe. Values used for conditional branches can lead
the program down an unexpected execution path which makes the execution
unpredictable and can lead to both silent data corruptions or crashes. Some
instructions have no values while others have two or more so the amount of
values within the VM is dependent on the program, and with the severity
of silent data corruptions that SEUs can cause it is desirable to also include
fault-tolerance for values.

The program counter represents a small part of the overall virtual machine.
However, if this is changed due to an SEU the outcome is very hard to predict.
In some cases the program will be able to continue operating, but the state
of the program is unknown and chances are that you have skipped important
operations leading to an inconsistent state which might lead to other errors
later in the execution. In other cases the VM will crash right away due to
missing arguments or references since some instructions are skipped or run
twice. Lastly there are rare cases where the system will continue running and
no faults will be present leading to the fault being masked out. The severity
of SEUs in the program counter calls for fault-tolerance even if the possibility
of an SEU hitting the program counter is quite small.

The operand stack contains values of a frame and depending on what these
operands will be used for the impact on the system can be anywhere between
unnoticeable and disastrous. It is also varying how much space an operand
stack will occupy as some frames can have many elements on the operand stack
while other frames can have none. As described SEUs in values can lead to
silent data corruptions. Overall throughout an execution of a VM the operand
stacks from all the frames sums up to become a large enough part of the system,
combined with the impact that SEUs can have, to require fault-tolerance.
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The local variables consist of variables which are bound to values. As
mentioned for values they will require fault tolerance due to the severe impact
that an SEU can cause. Some local variable faults might be able to pass the
system unnoticed but others can cause silent data corruptions or crashes, so
they need to be able to tolerate faults.

The call stack is a stack with all the frames currently under execution. A
frame consists of a program counter, operant stack, local variables and method.
All these elements are covered earlier except for method which will be covered
in meta-data.

Meta-data

The meta-data consists of a map of classes. This map uses keys to locate the
values of the map. If the key is compromised due to an SEU a lookup in the
map with the altered key would fail, or in the rare case of a match with another
key a lookup would return the wrong class which could be viewed as a silent
data corruption. The keys should therefore include fault-tolerance.

The meta-data classes contain a lot of additional information. In Figure 2.1
an overview is provided of the elements. Each element is analyzed in regards
to the impact of an SEU.

Element Sub-elements
Class Name

Super class
Methods
Fields

Method Name
Class
Type

Instructions
Number of arguments

Field Name
Class
Type

Figure 2.1: Meta data elements

Classes in the meta-data contain several elements these being the name of
the class, a list of methods the class contains, a list of the fields contained
by the class, and a super class that the class is derived from if such exists.

11



A class’ name and its super class are connected in that the super class of a
class is referenced by the name of that super class so by securing the name
element of every class their super class element is also secured. The method
list is also referenced by the name of the methods and the same goes for fields.
The meta data is a substantial part of the system meaning a high vulnerability
surface. The consequence of a bit-flip will result in an unknown name when
referenced which will halt the VM, or in the rare case of a change of the name
into another valid name the VM will reference the wrong class. Therefore it is
of high priority to implement fault-tolerance.

The methods contains a method name, a type, the class which it came from,
its instructions, and the number of arguments that it takes. The name needs to
be tolerant to faults since a mismatch in a reference will halt the VM. The class
from which it came is already covered by the class name already mentioned, as
are the instructions. The number of arguments is simply an integer, meaning
that the vulnerability surface is relatively small, but the impact of an SEU
could be quite severe. If more arguments are expected than provided the VM
will take whatever is left on the operant stack which can even create silent
data corruptions. The type element is not utilized in our VM implementation
so implementation of this as well as the related fault tolerance will be future
work.

The last part of the meta-data are fields. They consist of a field name, a
class from which they are derived, and a type. As mentioned just above the
type element is irrelevant for the current implementation of the VM. The name
is important because the consequences in the presence of an SEU are the same
as with class and method names. The class from which it is derived is already
covered by class name.

With this knowledge in mind we have decided that our fault tolerance im-
plementation should be focusing on codes, values, and meta-data (with the
exception of types).

2.5 Fault-Tolerance Analysis
With the areas defined in section 2.4, it is now relevant to look into different
fault-tolerance methods and decide which can be of use in each area. The areas
will be discussed in greater details and with regards to fault-tolerance below.

As mentioned in Chapter 1 the Cassini spacecraft [24] experienced and cor-
rected about 10 SEU’s pr hour. With this in mind we have decided on a phi-
losophy for bosVM which focus on fault detection with low run-time overhead,
while accepting slow fault-recovery.
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2.5.1 Codes
Codes are a very simple structure and consist of only one byte. We have
considered two techniques, using a parity bit or exploiting Hamming distances.
A parity bit is an additional bit which will be set to 0 or 1 depending on if the
amount of 1 bits are even or odd. In Figure 2.2 a parity bit, in parentheses,
is added to the original string and set to 1 because the amount of 1 bits is 3.
If a bit-flip would occur at one of the bits, including the parity bit, the parity
integrity would be broken and thus a fault is detected.

Original Parity bit
10010010 → (1)10010010

Figure 2.2: A parity bit, in parenthesis, added to a bit pattern.

There is, however, an even simpler method that is suitable for this area,
Hamming distance. Hamming distance is not directly a method but merely an
expression for a difference in bit patterns. Hamming distance can be utilized
by making sure that a fault caused by a bit-flip will result in an error instead of
being flipped to the code value of another instruction. A Hamming distance of
two makes sure that in case of a single bit-flip it will not be possible to reach a
valid code value. Neither parity bits nor Hamming distances have inherent error
correction, however we can exploit the fact that bit patterns with a Hamming
distance of two will always be more than a single bit-flip from each other. The
reason for choosing Hamming distance is that the original codes does not have
to be altered or extended with more bits for fault detection. Fault recovery can
be done by consulting a reference copy of that particular part of the program,
since codes are never intentionally modified.

2.5.2 Values
For value fault-tolerance three methods are considered. The three methods are
Swift-R, Trump, and Mask [21]. These three methods are originally used in
conjunction with a compiler and are based on the instruction level. Swift-R
is a version of the original Swift introduced by [22]. and utilizes redundant
instructions when loading and storing variables in the processor’s registers.
These redundant instructions ensures that if an SEU occurs it is possible to
detect it. Swift uses one redundant instruction each time while Swift-R uses
two redundant instructions, and Swift-R also includes a majority vote that
makes recovery possible. Trump uses the same concept as Swift-R but instead
of using two redundant copies it uses only one. This copy is then encoded using
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AN-codes, which is a simple and efficient way to detect and correct errors in
numeric values. AN-codes are arithmetic codes that are defined as

C = {AN |N ∈ Z, 0 ≤ N < B}

Arithmetic operations, here addition but any apply, on two integers N0 and N1
are then

AN0 + AN1 = R

Decoding is done by dividing
R/A

if the result is not a factor of A an error has occurred. The choice of A impacts
how many errors can be corrected and the storage overhead. We use AN-codes
only for error detection, and for this A = 3 is sufficient and cause minimal
storage overhead [21].

Mask is a little different and only works on values that are statically known
prior to their use. By setting these values right before use, potential SEUs that
has happened prior to the execution will be masked and further problems can
be avoided. A boolean value for instance can be presented as a byte and the
first bit is determining if it is true or false, the remaining bits are 0s. By setting
this boolean to the known value right before use all bits that should be 0 will
be set to 0 negating any earlier SEUs.

Of the three methods described only Swift-R and Trump would be able to
detect and correct a number of faults, while Mask is very cheap to run but
also not able to recover non-static value faults. The primary argumentation
for using Swift-R over Trump is that it can be used for all instructions whereas
Trump can only be used on arithmetic expressions. Trump has a smaller over-
head however so if we can use Trump or part of Trump instead of Swift-R we
are able to reduce the required memory overhead. Our values are integers,
booleans, bytes, and references, and while booleans will not normally be com-
patible with Trump in our bosVM a boolean is just a byte with all bits set
to either 0 or 1, so by treating booleans as integer values as well we are able
to encode the values. As Trump is specifically minded for instruction dupli-
cation and should be implemented in the compiler we cannot use Trump as it
is, but what we can do is to use the fundamental encoding that Trump uses.
AN-encoding stores enough information to be able to both detect and correct
a potential fault, thus it is suitable for covering values with relatively little
memory overhead.
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2.5.3 Meta-data

The meta-data consists of names and values and while values are already cov-
ered the names also need to be fault-tolerant. Names are strings so AN-
encoding cannot be used for these. In the context of the coding discussed
in this section, the message is the uncoded data and the block is the coded
message.

Two techniques for string encoding was considered, either to use variety
of fault-tolerant CRC, or to encode all strings with Hamming codes. CRC
is remainder division on a bit pattern or bit stream, which adds a minimal
overhead and has simple error detection [20], it does however not have any
inherent error correction. Error correction using CRC [17] requires a corrective
bit pattern to be created and XOR’ed over the message. In contrast Hamming
codes [25] is self-contained and support single error-correction or double error
detection, the trade-off is simplicity in the error detection algorithm where
Hamming codes are slower. We decided to implement Hamming codes for the
purposes of this project as it was deemed counterproductive to add a potentially
large vulnerability surface in the form of error correction tables which vary in
size for each individual length CRC polynomial. Also, not all CRC polynomials
can be used for error correction, which means new error correction viable CRC
polynomials need to be calculated on the fly if encoding of strings above the
length of pre-defined CRC polynomials is needed.

Hamming codes

Hamming codes is a class of linear binary codes. It works by adding a number
of parity bits to the string that is being encoded. In Figure 2.3 is shown an
example of the encoding of the string "aa" in the ASCII-US charset where
the question marks represent the parity bit positions. The block length of a
message encoded with Hamming codes is

2r − 1

where r is the number of parity bits in the block, which means the messages
max length is

(2r − r)− 1

.
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Input string: aa
Bit pattern: 11000011100001
Parity bits: 5
Block(? on parity bit): ??1?000?0111000?011

Figure 2.3: Hamming code example, encoding "aa".

Each parity value is calculated based on the bit’s position in the block by
starting at the bit’s position in the block, adding the following bits equal to the
bits position including the bit itself i.e. one bit for p1, two bits for p2 and so
on. After adding bits, continue by skipping bits equals to the bits positions and
then adding and skipping in this manner until the end of the block is reached.
When all parity values are calculated, by counting the amount of 1’s, write a
1 in place of the parity bit if the parity value is an odd number, or write a 0
if it is even. Using even or uneven parity bits has no practical implications.
Encoding the String "aa" will then become "x\tab", tab as in the horizontal tab
character. the parity bit calculation of "aa" is shown in Figure 2.4.

p1 = ?100010001
3→ 1

p2 = ?100110011
5→ 1

p4 = ?0001000
1→ 1

p8 = ?0111000
3→ 1

p16 = ?011
2→ 0

message = 1111000101110000011

Figure 2.4: Calculating parity bits p1...p16 for input string "aa".

Decoding the message is a simple as removing the parity bits, doing so will
however not detect any errors. In order to detect errors the process described
above is essentially reversed. For the sake of this example the bit at position 7
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in the block will be flipped from 0 to a 1, making it

1111001101110000011

The parity values are then calculated in the same manner as when encoding,
by adding and skipping bits, only this time the parity bit has a value. The
parity value calculation is shown in Figure 2.5.

p1 = 1101010001
5→ 1

p2 = 1101110011
7→ 2

p4 = 10011000
3→ 4

p8 = 10111000
4→ 0

p16 = 0011
2→ 0

Figure 2.5: Calculating parity values.

The difference from encoding is that each parity bit which parity value is
an uneven number is marked, and the parity bit’s position is added with any
other parity bits position with uneven parity value, in this example this is the
p1,p2, and p4 parity bits. It follows that

1 + 2 + 4 = 7

which indeed is the bit position flipped in the block.
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Chapter 3
TinyBytecode

In this chapter we introduce the semantics of our fault model, as well as the
VM language TinyBytecode. The semantics serve the purpose of defining cor-
rect behavior of TinyBytecode programs, and expected fault occurrences and
will serve as base for the implementation of our VM. This project is expanding
on the semantics of the language TinyBytecode defined in the report [8]. The
original TinyBytecode did not include exceptions and no fault model. For com-
pleteness sake we have included the domains of TinyBytecode. The following
definitions, up until 3.4 are adopted from [8] with some additions. The method
definition has been expanded with exception handlers which were not included
in the original definition, also the syntax table in 3.2 has been expanded with
a throw instruction which has also been added to the original syntax.

3.1 Structure
In this section a formal description of the notation used and the program struc-
ture will be presented. Following the notation of Hansen [12], programs are
represented as abstract data structures which are accessed by special access
functions. This provides a convenient way to extract relevant information as
shown in Section 3.1.1.

3.1.1 Notation
Hansen defines a domain to be a set. With this set corresponding access func-
tions are given to access and modify different elements of the set. For con-
venience the record notation is used to specify a domain with all its access
functions:
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Dom = (f1 : Dom1)× . . .× (fn : Domn)

The above equation defines the domain Dom with access functions fi :
Dom → Domi for 1 ≤ i ≤ n. The notation used to access an element fi
of d ∈ Dom is written d.fi and changing the value of an element is written
d[fi 7→ v].

3.1.2 Types

Like Java bytecode, TinyBytecode is a strongly typed language. In the version
of TinyBytecode presented here the primitive types are treated as is, the se-
mantics have no special support for varying lengths or bounds. The complete
type-system of TinyBytecode is shown in Figure 3.1. This includes a few select
primitive types, reference types, and the method type. This should be sufficient
for our purposes, while being easily expandable, if needed.

Type ::= RefType | PrimType
PrimType ::= boolean | int | byte
RefType ::= ArrayType | ClassType
ClassType ::= ClassName
ReturnType ::= Type | void
MethodType ::= Type∗ → ReturnType
ArrayType ::= array ElemType
ElemType ::= PrimType | ClassType

Figure 3.1: The type system TinyBytecode.

3.1.3 Program

In the JVM specification [15] packages are used to distinguish class implemen-
tation and support portability. For TinyBytecode the idea of packages was
left out because the complexity of the program structure was to be as low as
possible. Instead the program only contains a set of classes:

Program = (classes : P(Class))
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3.1.4 Class
Classes in Java are the main components constituting a program. Classes
are instantiated as objects and provide ways of accessing the encapsulated
information. A class is defined by a class name and the methods and fields
defined by the class are accessed by their respective components. Furthermore,
a class keeps reference to the class hierarchy by a super component. The class
hierarchy is encoded by a function super : Class→ Class⊥ which returns the
superclass of a given class. In Java a special class exists, namely Object, which
is implicitly the superclass of all classes except itself. Therefore by convention,
using the super function defined before on the Object class will return the
bottom value ⊥.

Class = (name : ClassName)×
(methods : P(Method))×
(fields : P(Field))×
(super : Class⊥)

A class inherits fields and methods of its superclass. In the Java specification
[15] methods and fields can be static as well. For TinyBytecode this option has
been removed for simplicity as well as abstract classes and interfaces. A class
can provide its own implementation of an inherited method, and when such a
virtual method is invoked, a lookup is performed at runtime to determine the
class in the class hierarchy from which the implementation is to be found. This
is also called dynamic method dispatch [15].

3.1.5 Method
Methods are identified by a class, a method name and its argument types.
where the method has been defined and its type. In TinyBytecode the methods
provide the functionality of a program by containing instructions needed to
execute the method. These instructions are accessible through the function
instruction : PC→ Instruction⊥ which takes a program counter as parameter
and returns the instruction at that program counter or the bottom value ⊥, if
no instruction is present. For later use a function numArgs is defined which
returns the number of arguments the method has. The notation N0 is used to
denote positive integers including zero. Also included are exception handlers
which, as the name suggests contains the exception handlers if any is available
from this method. This is an addition to the original adopted definition.
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Method = (class : Class)×
(name : MethodName)×
(type : MethodType)×
(instruction : PC→ Instruction⊥)×
(numArgs : N0)×
(Exceptionhandlers : N0 → ExceptionHandler)

The first instruction of a method is defined to be at program counter 0. To
advance a program counter pci the program counter is incremented as pci+1.

3.1.6 Field

A field is identified by the class where it was defined, the name of the field and
the type.

Field = (class : Class)×
(name : FieldName)×
(type : Type)

3.2 Syntax

The syntax of TinyBytecode is a reduced set of Java bytecode instructions with
a few modifications for simplicity. The JVM specification defines 149 instruc-
tions [14] that make up the Java bytecode language, these 149 instructions have
been reduced to 20 instructions in TinyBytecode. Some instructions are gen-
eralized versions of their Java bytecode counterpart while others retain their
Java bytecode format. The TinyBytecode language includes the basic stack
operations, a notion of objects, as well as arrays and methods. The complete
set of instructions is listed in Figure 3.2. Note that the throw instruction has
been added to the adopted syntax.
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Imperative Core
TinyBytecode ::= nop No operation.

| push t v Push v onto the stack; type t.
| pop [n] Pops n elements off the stack.
| load t vi Load local variable vi; type t.
| store t vi Store in local variable vi; type t.
| dup Duplicate the top element of the stack.
| swap Swaps the two top elements of the stack.
| goto pc Jump to program counter pc.
| if op goto pc Conditional jump.
| inc vi v Increment local variable vi by v.
| arit op Number operation with operator op.

Objects
| new c Instantiate new object of class c.
| getfield field Get value of object field.
| putfield field Set object field.

Methods
| invokevirtual m0 Invoke virtual method m0.
| return [t] Return from a method with optional type t.

Arrays
| anew t Create a new array; element type t.
| alength Length of an array.
| aload t Load a value from an array; type t.
| astore t Store a value in an array; type t.

Exceptions
| throw Throw exception

Figure 3.2: TinyBytecode instructions

3.3 Semantics
In Section 3.2 the syntax of TinyBytecode was introduced and in this section
a formal semantics of that syntax will be provided. The constructed semantics
is a small step structural operational semantics [13]. In the following sections
the formal notation and domains will be introduced followed by the four parts
of the semantics: imperative core, objects, methods and arrays.

Because the semantic rules here are all adopted from [8], only semantic
rules for program counter manipulation is shown here for reference. The rest
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are included in the appendix A.

3.3.1 Domains
TinyBytecode is modeled according to the specification for the JVM [15] with
some simplifications. A value is defined as either a number or a reference.

Value = Ref + Number

A number in TinyBytecode is simply expressed as an integer.

Number = Z

A reference is a location on the heap or a null reference.

Ref = Location ∪ {null}

Like the JVM, heap locations contain both arrays and objects.

Heap = Ref→ (Array + Object)

An object is the instantiation of a class and thereby defined by it. Further-
more, an object contains the fields of its class which can be accessed by the
function fieldV al : Field→Value.

Object = (class : Class)×
(fieldV al : Field→ Value)

In TinyBytecode arrays are treated similarly to objects. The array object
stores information about the element type and length of the array, as well as
an access function get for retrieving elements of the array.

Array = (type : ArrayType)×
(length : N0)×
(get : N0 → Value)

While the heap contains arrays and objects a separate area is needed for
local variables in methods. Local variables can be primitive types, or references
to heap elements, and they are stored in an area called local memory. Elements
in local memory are not accessed by name, but simply by a number.
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LocalMemory = N0 → Value

TinyBytecode is modeled with two stacks: one local stack, the operand
stack, for each method and the global stack which hold the frame under exe-
cution, as well as frames in queue. The operand stack is used for calculations
and hold temporary values.

CallStack = Frame∗

OperandStack = Value∗

We use two different notations for elements already on the stack and an
element which is pushed on the stack as a result of a semantic rule. The
notation sti : stn is used for existing elements and the notation sti :: stn is used
for newly pushed elements. Additionally the notation st1 : · · · : stn is used to
denote a range of elements.

A frame is written 〈m, pc, lv, os〉, its components are the current method
under execution, the program counter, local memory and the operand stack.
The program counter is a positive integer that points to next instruction of the
method under execution.

PC = N0

Frames can now be defined as:

Frame = Method× PC× LocalMemory×OperandStack

A TinyBytecode program will continue to execute as long as there are frames
on the call stack. A running configuration can be defined as:

RunConf = Heap× CallStack

A terminating configuration can be defined as:

TermConf = Heap× {ε}

The symbol ε denotes an empty stack. These two sets of configurations
together give the definition of all valid configurations:

Conf = RunConf ∪ TermConf
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Finally, we can define the general form of the semantic reduction rules for
TinyBytecode. For a program P ∈ Program, the reduction rules are of the
form:

P,CP ` C ⇒ C ′

In this rule C,C ′ ∈ Conf. The CP element is the constant pool which is
treated as a global object in TinyBytecode, and it contains information about
types of methods and fields in classes.

3.3.2 Imperative Core
The core segment of TinyBytecode includes the instructions for stack manipu-
lation as well as handling variables and values.

The instructions for manipulating the program counter are nop, goto, and
if. The nop instruction does nothing but advance the program counter. The
goto and if instructions both change the program counter to a specified value,
with if only doing so if a conditional check succeeds. This check has the form
v1 op v2, where op ∈ {equals, nequals, grth, lsth}. In Figure A.3 the semantic
rules for program counter manipulation are shown.

nop
m.instruction(pci) = nop

P,CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, os〉 : CS〉

goto
m.instruction(pci) = goto pc′

P,CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pc′, lv, os〉 : CS〉

if

m.instruction(pci) = if op goto pcn
exp = v1 op v2

op ∈ {equals, nequals, grth, lsth}, pc′ =
{
pcn exp = true
pci+1 exp = false

P, CP ` 〈H, 〈m, pci, lv, v1 : v2 : os〉 : CS〉 ⇒
〈H, 〈m, pc′, lv, os〉 : CS〉

Figure 3.3: Semantic rules for program counter manipulation.

The rest of the semantics can, as mentioned, be found in appendix A.
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3.4 Exceptions
Exceptions in TinyBytecode are only supported with user defined exception
handlers. If no such handler is defined within the call stack the system will
stop. An exception handler consists of a type of the exception, start and end
address which defines where the exception will happen, and a handler address
which is where the exception handler is located. This is formally written as

ExceptionHandler = (catchType : Class)×
(startAddress : pc)×
(endAddress : pc)×
(handlerAddress : pc)

An exception frame is a frame with an exception type, σ.

Exception frame =< σ >

The throw instruction is included in the TinyBytecode syntax. Excep-
tion handlers are treated as objects which belong to a subclass of the class
Throwable. The throw instruction will put an exception frame on top of the
operand stack. This state where an exception frame is the top element of an
call stack will then check if the current method includes a valid handler. If so
it will jump to that location and execute the exception handler, otherwise it
will pop the top frame from the call stack and try to rethrow to the new top
frame. The semantics for the throw instruction is shown in 3.4.

throw

m.instruction(pci) = throw
σ = H[loc].class � throwable loc 6= null

P ` 〈H, 〈m, pci, lv, loc : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, os〉 : CS〉

handler(m, pci, σ) =⊥
P ` 〈H, 〈σ〉 : 〈m, pci, lv, os〉 : CS〉 ⇒

〈H, 〈σ〉 : CS〉

handler(m, pci, σ) = pcx

P ` 〈H, 〈σ〉 : 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pcx, lv, os〉 : CS〉

Figure 3.4: Semantic rules for the throw instruction.
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There are several problems that must be addressed before we can proceed.
First we need to know if the exception handler is even able to handle the
exception type. Next we need to get the first handler that is able to handle
the exception in case more than one handler is present. Last we want to get
the handler’s handlerAddress. Three helper functions, shown in Figure 3.5, are
used to ensure that all these criteria are fulfilled.

EHT = handler table

h = specific handler

handler(m, pci, σ) =


EHT (i).handlerAddress

if EHT = m.handlers∧
∃i : isF irstHandler(EHT, i, pci, σ)

⊥ otherwise

isF irstHandler(EHT, n, pci, σ) = canHandle(EHT (n), pci, σ) ∧
(∀j : canHandle(EHT (j), pci, σ)⇒ j ≤ n)

canHandle(h, pci, σ) = h.startAddress ≤ pci ≤ h.endAddress ∧
σ � h.catchType

Figure 3.5: Exceptions helper functions.

3.4.1 Runtime Exceptions
Besides the exceptions thrown by the programmer runtime exceptions are also
defined in the semantics. Runtime exceptions are handled in the same way as
user thrown exceptions by adding an exception frame to the call stack. This
also implies that a user defined handler must be present or else the system will
fail.

Run time errors can be of different types depending on which condition
causes the exception, in TinyBytecode we have defined 4 different types:

AritExc includes arithmetic exceptions such as division by zero.

NullPointExc includes all references that may be null, such as object and
class references
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NegArraySizeExc includes exceptions introduced when trying to create a
new array with a negative length

IndexOutOfBoundExc includes exceptions caused by trying to write or read
outside an array’s boundary

Formally expressed as:

RuntimeException = {AritExc,
NullPointExc,

NegArraySizeExc,

IndexOutOfBoundExc}

Here are the semantic rules of runtime exceptions. They are all handled
somewhat similar by adding an exception frame to the call stack, note that
aload and astore have two possible exceptions namely NullPointExc and In-
dexOutOfBoundExc. Runtime exceptions semantics where applicable are shown
in Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9.

new

m.instruction(pci) = new c
c = null σ = NullPointExc
P ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, os〉 : CS〉

getfield

m.instruction(pci) = getfield field
obj = H[ref ] ref = null σ = NullPointExc

P ` 〈H, 〈m, pci, lv, ref : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, ref : os〉 : CS〉

putfield

m.instruction(pci) = putfield field
obj = H[ref ] ref = null σ = NullPointExc

P ` 〈H, 〈m, pci, lv, ref : val : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, ref : val : os〉 : CS〉

Figure 3.6: Runtime exceptions semantics for concerning objects.
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aritbinary

m.instruction(pci) = arit op
op ∈ {div, rem} v2 = 0 σ = AritExc

P ` 〈H, 〈m, pci, lv, v1 : v2 : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, v1 : v2 : os〉 : CS〉

invokevirtual

m.instruction(pci) = invokevirtual m0
obj = H[ref ] ref = null σ = NullPointExc

P ` 〈H, 〈m, pci, lv, ref : v1 : · · · : vn : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, ref : v1 : · · · : vn : os〉 : CS〉

Figure 3.7: Runtime exceptions for arithmetics and method invocation.

anew

m.instruction(pci) = anew t
size < 0 σ = NegArraySizeExc

P ` 〈H, 〈m, pci, lv, size : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, size : os〉 : CS〉

alength

m.instruction(pci) = alength
aref = null σ = NullPointExc

P ` 〈H, 〈m, pci, lv, aref : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, aref : os〉 : CS〉

Figure 3.8: Runtime exception semantics for anew and alength.

30



aload

m.instruction(pci) = aload t

σ =
{
NullPointExc if aref = null
IndexOutOfBoundExc if len < 0 ∨ len ≥ H(aref).length

P ` 〈H, 〈m, pci, lv, aref : index : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, aref : index : os〉 : CS〉

astore

m.instruction(pci) = astore t

σ =
{
NullPointExc if a = H[null]
IndexOutOfBoundExc if len < 0 ∨ len ≥ H(aref).length
P ` 〈H, 〈m, pci, lv, aref : index : val : os〉 : CS〉 ⇒
〈H, 〈σ〉 :: 〈m, pci, lv, aref : index : val : os〉 : CS〉

Figure 3.9: Runtime exception semantics for aload and astore.

3.4.2 Fault Model Semantics

Our fault model is defined as SEUs occurring at random areas in a system.
We have made some semantic rules for where the SEUs can happen and what
effect it will have on the system.

Once an SEU occurs the configuration of the program is altered written as:
P ` C ⇒φ C

′

φ ∈ Fault

We have defined the locations in a VM where SEUs can happen:

SEUIOC are SEUs happening in an instruction’s codes.

SEUIV are SEUs happening in values in the stack.

SEULV are SEUs happening in the local variables of a frame

SEUPC are SEUs happening in the program counter

Formally written as
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Fault = {SEUPC,
SEUIOC,
SEULV,
SEUIV}

The semantic rules for the various SEUs types are shown in figures 3.10,
3.11, 3.12, 3.13, 3.14, and 3.15. Note that the faults are changing the program
state and will persist in the system until corrected. This means that we assume
that corrective action must be taken in order for the VM to continue execution,
and faults will not be masked by the system, which follows our fault model
defined in 2.3

An element E altered by a bit-flip is written as E(b)

A bit-flip, E ≡1 E
(b), means that E is differing from E(b) by one bit such

that E xor E(b) = 2i where i is the bit that has been flipped.

SEUIOC
P ′ = P [m.instructionAt(pci).opcode→ m.instructionAt(pci).opcode(b)]

` 〈P,H, 〈m, pci, lv, os〉 : CS〉 ⇒SEUIOC

〈P ′, H, 〈m, pci, lv, os〉 : CS〉

Figure 3.10: SEUIOC semantic rule: opcode.

SEUIOC

P.m.instructionAt(pci) = arit op
op ∈ {add,mul, div, rem, shl, shr, ushr, and, or, xor}

P ′ = P [m.instructionAt(pci).op→ m.instructionAt(pci).op(b)]
` 〈P,H, 〈m, pci, lv, os〉 : CS〉 ⇒SEUIOC

〈P ′, H, 〈m, pci, lv, os〉 : CS〉

Figure 3.11: SEUIOC semantic rule: aritcode.

32



SEUIOC

P.m.instructionAt(pci) = if op goto pc
op ∈ {equals, nequals, lsth, grth}

P ′ = P [m.instructionAt(pci).op→ m.instructionAt(pci).op(b)]
` 〈P,H, 〈m, pci, lv, os〉 : CS〉 ⇒SEUIOC

〈P ′, H, 〈m, pci, lv, os〉 : CS〉

Figure 3.12: SEUIOC semantic rule: ifcode.

SEUIV
P ` 〈H, 〈m, pci, lv, os1 : v : os2〉 : CS〉 ⇒SEUIV

〈H, 〈m, pci, lv, os1 : v(b) : os2〉 : CS〉

Figure 3.13: SEUIV semantic rule.

SEULV

lv : N→ N
∃!n ∈ N

lv′ = lv[n→ lv(n)(b)]
P ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒SEULV

〈H, 〈m, pci, lv′, os〉 : CS〉

Figure 3.14: SEULV semantic rule.

SEUPC
P ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒SEUPC

〈H, 〈m, pc(b)
i , lv, os〉 : CS〉

Figure 3.15: SEUPC semantic rule.

This concludes the chapter on semantics. The semantics now consists of
rules for the imperative core, object manipulation, methods, arrays, and ex-
ceptions both thrown and runtime exceptions. The fault model has also been
specified with semantics clarifying where faults can enter the VM. These se-
mantics are used as the foundation for implementing the VM.
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Chapter 4
The bosVM Virtual Machine

This chapter documents the bosVM prototype implemented as part of this
project. The name, bosVM is shorthand for black-one-sugar Virtual Machine,
this name was given as it follows the Java tradition of coffee related naming,
with black being a metaphor for the simplest of coffees, in this case a Java style
byte-code language, upon which we have added some sugar, the fault-tolerance
techniques.

4.1 The bosVM: a TinyBytecode VM

The bosVM implements a subset of the semantics of language as described in
chapter 3, and adds upon this, various fault-tolerance techniques. The bosVM
is implemented in Java 7 which is also the minimum version required for exe-
cution.

The implemented components of the VM, which in varying detail will be
addressed in this chapter, are:

• Code interpretation

• Fault handling on operation codes

• Fault handling on computed values

• Integrity of meta-data fields
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4.2 Baseline VM

We will first give a brief description of the implemented baseline, no fault-
tolerance, bosVM. The following section will describe the implemented fault-
tolerance techniques in the context of bosVM.

4.2.1 Code Interpretation

This section will briefly cover the interpretation and internal translation of
TinyBytecode in bosVM, as it will help ease understanding of the implemen-
tation of some of the fault handling techniques.

The bosVM accepts input in the proper TinyBytecode format, as previously
described. The internal translator parse the source file line by line, subtracting
meta-data information, such as classes and their contained fields and methods,
and attributes associated with these. The translator also translates, in essence
compiles, the TinyBytecode source to the internally used bosVM byte-code for-
mat, which is an essential component in our implementation of fault-tolerance
in the program code, this will be described in detail in subsection 4.3.1. The
bosVM byte-code format is similar to that of TinyBytecode, and is stored in
an map on a per method basis, which maps from the pc of an instruction to
the actual instruction line, internally an object array. The bosVM byte-code
format is shown in Figure 4.1.
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bosVM byte-code format:
Core
nop: [pc] → [opcode]
push: [pc] → [opcode, typeCode, value]
pop: [pc] → [opcode, arg(optional)]
load: [pc] → [opcode, typeCode, addr]
store: [pc] → [opcode, typeCode, addr]
goto: [pc] → [opcode, int]
if: [pc] → [opcode, ifCode, int]
arit: [pc] → [opcode, aritCode]
Methods
invokevirtual: [pc] → [opcode, string]
return: [pc] → [opcode, typeCode(optional)]
Objects
new: [pc] → [opcode, string]
getfield: [pc] → [opcode, string]
putfield: [pc] → [opcode, string]
Exception
throw: [pc] → [opcode, string] (NYI)

Figure 4.1: The bosVM byte-code format

The entries in Figure 4.1 should be read as: A given instruction will at
program counter pc map to an object array with the elements listed. Listing 4.1
shows a simple TinyBytecode method and Listing 4.2 shows the corresponding
bosVM byte-code translation and mappings of the method.

1 method int pusher()
2 push int 42
3 return int

Listing 4.1: A basic example of TinyBytecode

1 [0] -> [4,1,42]
2 [1] -> [19,1]

Listing 4.2: bosVM byte-code example

In the example in Listing 4.2, the instructions have been translated in ac-
cordance with Table 4.1, except for the value, 42, of the first line, which is
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maintained. The values in Table 4.1 all have a Hamming distance of two on
the bit pattern level. This property is not used for anything in the baseline VM
implementation, but was implemented this way for convenience as it does not
have any impact on lookups or general functionality and performance of the
VM. The columns, Instruction, aop, ifop, and type show only operations
and instructions supported in the latest revision of bosVM. The aop column
are arithmetic operations, used with the arit instruction, ifop are conditional
branches used with the if instruction, and finally the type column represents
type annotations.

Instruction aop ifop type (op)code byte value
nop add equals void 00000001 1
push sub nequals int 00000010 2
pop mul grth byte 00000100 4
load div lsth bool 00000111 7
store - - ref 00001000 8
goto - - - 00001011 11
if - - - 00001101 13
arit - - - 00001110 14

invokevirtual - - - 00010000 16
return - - - 00010011 19
new - - - 00010101 21

getfield - - - 00010110 22
putfield - - - 00011001 25

Table 4.1: the bosVM machine code Hamming distance 2 codes

4.2.2 Meta-data
The meta-data area in bosVM contains data needed for creating objects and
frames for execution, and is created during the translation step. The meta-
data object contains a map from class strings, obtained from the TinyBytecode
source code of the program under execution, to bosClass objects, which in turn
holds maps of methods and fields tied to this class as well as other class related
data. Meta-data for fields and methods are contained in the bosField and
bosMethod objects respectively. The bosField objects holds the name and
type of the field, as well as the containing class. The bosMethod objects holds
the method name, return type, containing class, and argument data, as well as
the instructions of the method. Argument data is the number of arguments as
well as their variable names.
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4.3 The Fault-tolerant bosVM
The fault-tolerant bosVM implements several fault detection and fault recovery
techniques, targeting different area of the VM. This section will cover the im-
plementation of these techniques. Each techniques will be described and their
pros and cons evaluated.

4.3.1 Hamming Distance for Operation Codes: Ham2
As mentioned in subsection 4.2.1, the TinyBytecode source code is translated
into an internally used bosVM byte-code format for instructions, if operations,
arithmetic operations, and type annotations, all individually sharing the prop-
erty of having a Hamming distance of two to the nearest value on the bit pat-
tern level. We use this property to detect errors in the instructions of method
frames. Since there is a Hamming distance of two to the nearest value we can,
under our fault-model, easily detect if an error has occurred as the code will
not be recognized by the VM. If an error is detected the VM will fetch a backup
copy of the line in question and replace it and continue execution. A simple
example of a bit-flip in a POP opcode is shown in Figure 4.2, changing the
byte value from 4 to 12, which in the lookup tables will return the enumerated
opcode type UNREC, which represents an unrecognized opcode.

POP UNREC
00000100 flips to 00001100

Figure 4.2: A bit-flip in the pop opcode, making it unrecognizable

Pros: Fault detection using Ham2 is very simple, assuming only a single
bit-flip will occur, and if no faults occur this technique is practically free as it
does not come with any code overhead.

Cons: Using a Hamming distance of two, means there is no inherent fault
correction, which requires a Hamming distance of three, this would in turn
mean that the amount of instructions we can support would be severely limited
if we assume codes are a single byte value. The error correction used in context
with Ham2 comes with a memory or storage overhead, which can become an
issue if storage space is a valuable resource on the target system. Also, in the
current revision of bosVM we assume the backup copy of the instructions are
stored in a safe storage area, which may not be viable in a real-life scenario.

Considering the almost non existent cost of using Ham2, and that the down-
sides will only be a concern if the complexity of TinyBytecode is vastly in-
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creased, Ham2 is an fine candidate for protecting our codes. We assume that
a satellite will need some kind of protected storage for its payload, and in turn
assume it should be possible to use said protected storage for a redundant copy.

4.3.2 Fault Handling of Computed Values
The AN-code implementation is encapsulated in the
bosVM2.FaultHandling.AnCodeFaultHandler class which handles encod-
ing, decoding, and validity checks. Listing 4.3 shows the Java code for the
TinyBytecode arit add instruction, with added AN-coding. The variables v1
and v2 are bound to the parameter values and vc1 and vc2 are bound as en-
coded values. The function first adds the coded values and does a validity check
of the result and uses it if true is returned, if false is returned the non-coded
values are added and used.

1 private void doAdd() {
2 int v1,v2,vc1,vc2,r;
3 v1 = pop();
4 v2 = pop();
5 vc1 = an.enCode(v1);
6 vc2 = an.enCode(v2);
7
8 r = vc1+vc2;
9 if(!an.valid(r)) {

10 push(v1+v2);
11 } else push(an.deCode(r));
12 }

Listing 4.3: arit add with an-coding

The AN-codes used in bosVM is rather a simplification of AN-codes, since
we do not implement the error corrective properties that are possible by calcu-
lating Hamming weight and arithmetic distance, however, with the fault-model
used as the basis for this project, the implementation presented here should be
sufficient for handling any of the expected SEUs.

4.3.3 AN-codes in Storage
AN-codes is not only used for calculated values, it is also used for stack storage,
the program counter, and for numeric values in the meta-data. The storage
solution is similar to a double redundancy solution, only that by encoding one
of the redundant copies it also provide error correction. The implementation of
the push instruction is shown in Listing 4.4. Whenever the push instruction is
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used, two values will be pushed upon the stack, one encoded, and the original.
This is also the case for pc and numArgs for methods in the meta-data, either
of which will also update both values when updated. The functions associated
with the pc is also shown in Listing 4.4.

1 private void push(Object a) {
2 os.push(an.enCode((Integer) a ));
3 os.push(a);
4 }
5
6 public int getpc() {
7 if(pc[0] == 0 && pc[1] == 0) { return 0;}
8 else {
9 if(pc[0] != an.deCode(pc[1]) ||
10 (pc[1]%3 != 0 && pc[0] == an.deCode(pc[1]))) {
11 return setpc(an.handleValueFault(pc[0], pc[1]));
12 }
13 else {
14 return pc[0];
15 }
16 }
17 }
18
19 private void pcInc() {
20 pc[0]++;
21 pc[1] = pc[1] + an.enCode(1);
22 }
23
24 //returns the new pc
25 private int setpc(int pc) {
26 this.pc[0] = pc;
27 this.pc[1] = an.enCode(pc);
28 return pc;
29 }

Listing 4.4: TinyBytecode push and pc Java code

Pros: The way we have used AN-codes is somewhat lightweight, as it re-
quires only little calculation, code, and memory overhead. For bosVM which
only operates with numeric types, there is no operations where we can not use
it.

Cons: The approach used is troublesome with zero values, and can cause
overflow errors if the values are sufficiently large. Additionally, we skip the
redundant calculation if no fault is detected, as we assume only one bit-flip will
occur, as by the definition of our fault model. If no fault occurs this will have
no consequence, in the unlikely event that a bit-flip occurs in both the coded
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calculation and in the uncoded values, we have no defense. By the definition
of our fault-model, we are sufficiently covered.

In summary AN-codes have been included as they provide an efficient and
easy way to detect single bit-flips without much overhead. With the fault-
model defined for this project, we can provide satisfactory error detection and
correction by using a light-weight implementation of AN-codes and redundant
value copies.

4.3.4 Integrity of Meta-data Fields
The third and final area we have touched upon is the meta-data of the VM.
The meta-data of the VM is slightly different in that faults in this area will
persist for the duration of the execution and thus potentially cause cascading
faults. The meta-data consist of a variety of fields, and as already mentioned in
subsection 4.3.2 the numeric fields of the meta-data is already handled by using
the AN-code implementation. However, the meta-data area primarily consists
of several maps which save its key values as strings, and some objects in the
meta-data also have string fields, on which we can not use AN-codes. Shown in
Table 4.2 is an overview of the meta-data objects and their contained fields as
well as their types. The numArgs field in the BosMethod object is an Integer
array and as mentioned earlier handled through AN-coding. The BosField
and BosMethod objects both contain a type field of the enumerated type
Type, as bosVM completely ignores types in the current revision there has not
been implemented any fault handling for these fields. However, the values of
Type are in the Ham2 format, and in a future revision this technique could
potentially be used. Finally there are several fields containing String values
or String keys

4.3.5 Hamming Codes in bosVM
The Hamming codes string encoder and decoder is implemented in the
bosVM2.Faulthandling.StringEncoderDecoder class, details will be omit-
ted here but can be found in Appendix B.

Hamming codes are used for the meta-data area, which is constructed before
execution of any program and receives no running updates. This means that
the error detection and correction performed using Hamming codes must not
only correct retrieved elements, but also make correcting actions in the meta-
data area. Hamming codes applies to two variations of string fields in the meta
data: String fields that hold names of objects, and strings which are keys in
the classes, methods, and fields maps. The code in Listing 4.5 shows the
get and set functions of class names in bosClass objects, with the added
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Java object Fieldname Java type
Meta-data Classes map<String,BosClass>
BosClass cname String

_super BosClass
methods map<String,BosMethod>
field map<String,BosField>

BosMethod clss BosClass
methodName String
type Type
numArgs Integer[]
args String[]
ins map<Integer,Object[]>

BosField clss BosClass
fieldName String
type Type

Table 4.2: Overview of meta-data objects and contained fields

error correction measures. The ham.deCode(cname) call in line 3 returns
an object array, the error array, containing a boolean value on index 0, and the
decoded and corrected string on index 1. The boolean value tells if there has
been corrected an error or not, and the meta-data field is corrected if necessary.

1 //ClassName
2 public String getClassName() {
3 Object[] temp = ham.deCode(cname);
4 if((boolean) temp[0]) {
5 cname = ham.enCode((String) temp[1]);
6 }
7 return (String) temp[1];
8 }
9
10 public void setClassName(String s)
11 {
12 cname = ham.enCode(s);
13 }

Listing 4.5: Handling names in the meta-data area

The error array returned from the decoding function will also have the
faulty string on index 2, if an error has been detected. The faulty string is
used to correct faults in strings that serve as keys in the classes, methods,
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and fields maps of the meta-data. If a method is requested and is not located
by the getMethod(String b) function shown in Listing 4.6, the method-
sMapsKeyErrorCheckAndCorrection() functions is called, which will re-
turn a boolean value depending on if a fault has been found or not. After the
corrective measures have been performed a new attempt at locating the method
is tried, if the method is not found null is returned, which consequently will
halt execution.

1 public BosMethod getMethod(String b) {
2 String name = ham.enCode(b);
3 BosMethod out = methods.get(name);
4 if(out == null) {
5 if(methodsMapKeyErrorCheckAndCorrection()) {
6 out = methods.get(name);
7 } else { return null; }
8 }
9 return out;

10 }

Listing 4.6: The getMethod function with error correction

At any time the methodsMapKeyErrorCheckAndCorrection() func-
tion, shown in Listing 4.7, is called all possible single bit-flips in the keys of
the map will be corrected as all keys will have to be checked since we can not
know beforehand which string it is that is in error. Any key found to be in
error will have its error array passed on to the methodsMapKeyErrorCor-
rection(object[] errorArray) function which will locate the faulty string in
the map, using the faulty string passed on in the error array, and replace it
with the value of correct key on index 1 in the error array.
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1 private boolean methodsMapKeyErrorCheckAndCorrection() {
2 ArrayList<Object[]> error = null;
3 for(String s: methods.getKeys()) {
4 Object[] temp = ham.deCode(s);
5 if((boolean) temp[0]) {
6 if(error == null) {
7 error = new ArrayList<Object[]>();
8 }
9 error.add(temp);
10 }
11 }
12 if(error != null) {
13 for(Object[] o: error) {
14 methodsMapKeyErrorCorrection(o);
15 }
16 return true;
17 } else { return false; }
18 }

Listing 4.7: Error correction function for keys in maps

4.4 Aspects
It is desirable to be able to inject faults at random areas of the VM at random
time intervals, thus there needs to be a way of accessing and altering the exe-
cuting code at runtime. This is because we try to simulate a running satellite
which will be exposed to cosmic radiation resulting in SEUs. As mentioned
earlier SEUs are unpredictable as to where they will strike and at what time.
Another wanted feature is that the injection part is kept isolated from the VM
meaning that we do not have to alter the VM in order to inject faults. This
is for testing purposes and means that we will be able to run the tests on a
VM that features no fault injection to compare the runtime overhead, as this
overhead will not be present in a real world application. At first we tried using
multi threading by having a thread running on the side of the main thread.
The main thread would execute the VM while the side thread would randomly
choose a moment to inject a fault at a random location. The problem was to
get the timing synchronized and making the two treads run concurrently and
still execute in an intertwined manner. One thread would usually finish before
the other would start to run. Instead we shifted our focus to aspect oriented
programming. Aspects has the advantage of being able to intercept method
calls at runtime as well as returning relevant data be it variables or objects
and it is completely isolated from the original code. All these features are well
suited for our requirements.
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Aspect oriented programming, as the name implies, is focusing on aspects
of a program. A good example of an aspect is metrics. Metrics that are used
for instance for generating logs for a running program are not concerning the
application, it is just a functionality running on the side and the application
should be unaffected by it. It is called a crosscutting concern because it is
a functionality that are cutting across multiple different points in an object
model. Metrics can be implemented by adding the needed code into the ex-
isting methods, however this causes some problems like maintaining the code
or maybe turning certain functionality off, because the code belonging to met-
rics is sprinkled throughout the rest of the code. Aspects makes it possible
to keep such code gathered at one place while still being able to dealing with
crosscutting concerns.

Java has its own extension to aspect oriented programming called As-
pectJ [1]. AspectJ provides additional functionality to Java concerning cross-
cutting and other aspect oriented features. As seen in Figure 4.3 the code
contained in aspects are injected in a program through an aspect weaver that
inserts the desired code at specified join points.

Original

Program
Aspect

Aspect

Weaver

Final

Program

Figure 4.3: Model of the an aspect inserted into a source program

A program features several join points which are well-defined points during
the execution of a program [2]. Such point includes method calls, exception
handler calls and more, all these join points can be accessed by a pointcut.
Pointcuts are very useful to inject additional code at runtime but needs another
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1 public Object executeFrame() {
2 while(!(m.instructionAt(getpc()) == null))
3 {
4 //AspectJ hack: Makes fault injection possible
5 getMethodFrame();
6 ...
7 }
8 }
9
10 public MethodFrame getMethodFrame()
11 {
12 return this;
13 }

Listing 4.8: The getMethodFrame() function and where it is inserted

concept before being able to do so, this being advises. Advises are associated
with a pointcut and contains the desired code that will be injected. There
are also different types of advises, the before advice for example will run right
before the associated pointcut while an after advice will run right after.

By using AspectJ we are able to keep the injection of faults as well as logging
separated from the rest of the code and thereby being able to easily turn it on
and off.

Our random fault injection works by generating a random number every
time an instruction is read and if the value rolled is below a threshold we inject
a fault. The MethodFrame class executes these instructions within the method
executeFrame(). We are not able to do a pointcut for executeFrame and
get a cut at each instruction because these are organized within a loop, so to
circumvent this we have made the method getMethodFrame() that will simply
return the MethodFrame object and call it as the first thing from within the loop,
as can be seen in Listing 4.8. This is an alteration of the original VM for the
purpose of fault injection which we was trying to avoid, however it was deemed
necessary and it is the only alteration leaving the rest of the VM untouched.
With this new method it is possible to cut at each instruction executed, giving
us the possibility to inject faults in the areas that we are targeting, the pointcut
is shown in Listing 4.11. The method also returns the MethodFrame object
which we can use to get access to all the required data that is to be injected.
The injection is done in an after() returning(MethodFrame m) advice to
use the returned MethodFrame as argument for the inject(MethodFrame m).
The inject method will then randomly select an injection type based on the
input. An opcode injection is always applicable but aritcode an ifcode are
only applicable if the instruction is a arit or if instruction respectively. Value
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1 public int flip (int input)
2 {
3 int positionbyte = 1;
4 positionbyte = positionbyte << rnd.nextInt(8);
5 input = input^positionbyte;
6 return input;
7 }

Listing 4.9: Flip function

injection is only applicable if there is at least one value pushed to the operand
stack so a check must be made before choosing this option. Since opcode
injection is always an option this is the default injection type in case one of the
others does not apply for the current instruction.

4.5 Fault Injection

Fault injection is important for our project for testing purposes. We need to
be able to inject faults in order for the VM to detect and correct them. First
we need to define which faults we want to be able to handle. Once we have
specified that we need to be able to inject those faults. As stated in our fault
model we are only concerned about SEUs. We also assume that we are able to
correct the fault before a new one will enter the system.

The areas defined in section 2.4 are also the targets that we want to inject
with SEUs. An SEU is defined in our fault model as a bit-flip in a random lo-
cation of the VM. We are not targeting the VM completely at random though,
but rather targeting our injection at the protected areas, in order to demon-
strate that the implemented techniques have an affect. To help us flip a bit in a
random location we have made a function called flip(int input). The function
can be seen in Listing 4.9. The function takes an integer as input rather than a
byte, since we treat all internal numeric values in the VM as integers to avoid
clashes with signed values, we will refer to the input as a byte. The variable
positionbyte will start out as a byte of the value 00000001 which will then
be left-shifted a random number of bits. The bit is flipped through an XOR of
the position byte over the input byte, an operation demonstrated in Figure 4.4,
the resulting byte is returned.
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1 public String stringHandler(String s)
2 {
3 char[] a = s.toCharArray();
4 int index = rnd.nextInt(a.length);
5 a[index] = (char)flip((int)a[index]);
6 s = String.valueOf(a);
7 return s;
8 }

Listing 4.10: String handler

Input: 01100010 00000111
XOR XOR

Position byte: 00100000 00000100
Result: 01000010 00000011

Figure 4.4: XOR function on bytes

The flip(int) function is the fundamental function in all injection methods.
The only difference is the acquisition of the input byte. For program counter
injection the program counter is send to the flip(int) function directly. For
value injection each value is pushed on the stack two times and once required
they are both popped. During this action they are compared to each other,
therefore the whole operand stack is acquired to randomly select a value from
both the originals and their copies. Instructions are organized in object arrays
consisting of opcodes in the first position and depending on the instruction
the remaining elements are put as the second position, third position etc. By
getting the instruction at a certain program counter it is possible to get the
opcode from the first position of the resulting object array. The opcodes are
represented by a byte so it can be used by the flip(int) function. The arit-
codes and ifcodes are similar to opcodes only they are located in an instruction
at the second position of the resulting object array. These types of codes are
only relevant in arit and if instructions respectively. The meta data is con-
sisting mostly of strings so an assisting method has been created to deal with
strings. The function can be seen in Listing 4.10, it takes a string and breaks
it into a char array. Then selects a randomized index in that array to get a
random character from the original string. This character is then flipped using
the above mentioned flip(int) function resulting in a character flipped in a
randomized bit location. The String is then reconstructed however with the
flipped character.

With the string handler function it is easy to flip a string from the meta-
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data. This requires that there are getters and setters for the meta-data. We
have provided these to be able to easily alter the meta-data. These functions
however should not be available outside of fault injection. Another part of the
meta-data are the keys used for the maps that contain all the meta-data. These
keys are also vulnerable to bit-flips and should be injected for testing purposes.
The string handler is used for this as well however the procedure of setting the
value is a little different. If a key is set using traditional setters the new value
will just be added as a new key for the map. Instead of setting the key directly
must first delete the key and its value, and then creating a new entry with the
new key which is flipped at a random bit location.

All injection related functionality is put into nine different methods that
all utilizes the flip and string handler functions. These nine methods are then
evenly distributed, as pseudo random numbers allow it, in a switch case that will
randomly select an injection method to use. This function is called inject()
and is called from the aspect.

4.6 The Logger
For output we have made a logger that will write a log containing information
of detected and corrected faults during execution. This system also utilizes the
aspect to cut at each fault handler method which can be seen in Listing 4.11
At the end some statistics are provided with information on how many faults
where found and corrected of each fault type as well as the overall number of
fault corrected and runtime to of the overall run through.

The log entries are consisting of a time of occurrence measured in millisec-
onds followed by a small text describing which type of fault was corrected at
that specific time. The log entries are created in an after advice that is based
on the logging pointcut. Whenever a fault handler is called the advice will be
run, creating a log entry and sending the join point as a string as argument.
This argument is then used to determine which of the eight fault handlers was
run and create an appropriate log entry as well as increasing the count of faults.
The final pointcut shown in Listing 4.11 called done() is used in an after advice
that will generate the end of the log where all fault types are added and the
final runtime of the run through is logged. All the log entries are written to an
external log text file using a PrintWriter.
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1 pointcut MethodFrame(): //used for injecting fault at every
instruction

2 call(MethodFrame getMethodFrame());
3
4 pointcut logging(): //used for logging purposes
5 call(void handleOpcodeFault(int, BosMethod,

ExecutionEngine )) ||
6 call(void handleAritcodeFault(int, BosMethod,

ExecutionEngine)) ||
7 call(void handleIfcodeFault(int, BosMethod,

ExecutionEngine)) ||
8 call(int handleValueFault(int, int)) ||
9 call(char[] correctBitFlip(int ,char[]))||
10 call(void mapKeyErrorCorrection(Object[])) ||
11 call(void methodsMapKeyErrorCorrection(Object[])) ||
12 call(void fieldsMapKeyErrorCorrection(Object[]));
13
14 pointcut done(): //used to finish the log with statistics
15 call(void execute());

Listing 4.11: All Pointcuts
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Chapter 5
Benchmarking

In this chapter we introduce some test cases which test the VM in both per-
formance and abilty to correct faults.

5.1 Test Cases
To gauge the performance of our VM we have made three different test cases
each based on the different versions of our VM. The different cases are:
Test case 1 - The baseline VM: This test case is performed on the baseline

VM. We are interested in the runtime of a VM without any form of fault-
tolerance or injection. We are also testing with injection enabled to see
if the VM will actually crash as expected or the fault will somehow be
masked by the VM.

Test case 2 - The Clean VM: This test case is performed on the Clean
VM, we are interested in the runtime of the VM with fault-tolerance
but no injections, this is important because our approach is to minimize
the overhead in runtime as long as there are no faults present in the
system.

Test case 3 - The VM with injection: This test case is performed on the
VM with injection and logging enabled. This test is where the VMs fault-
tolerance is tested through fault injection. Here we are interested in the
fault rate at which faults are being injected as well as the runtime for
completeness sake.

Each test case uses the same test input to be able to compare the results.
This input is a test program written in TinyBytecode that exercises each pos-
sible operation available. The test program is then run a number of times
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in succession to simulate a longer runtime in order to come closer to a real
world case. The test input can be seen in Listing 5.1. It instatiates three
different objects and invokes their methods to extend the run time of a sin-
gle run through and to increase the chance of rare faults happening. The
first method bubbleSort.bubbleMain.sort, is a traditional bubble sort algo-
rithm that greatly increases the runtime as well as using several if-statements
which increases the chance of an ifcode fault which is very rare. The second
method simpleCalc.calc.fibonachi, is calculating the Fibonachi number
until reaching a certain threshold set to one million in this example. This
method uses a lot of if-statements as well as arithmetic expressions thereby
increasing the chance of an ifcode or aritcode injection. The last method
bos.sys.langtest.instest includes the full instruction subset of TinyByte-
code implemented in bosVM, to test that all valid instructions are able to run.

1 class testMain
2
3 method void main()
4 new bubbleSort.bubbleMain
5 store ref bmain0
6 load ref bmain0
7 invokevirtual bubbleSort.bubbleMain.sort
8 new simpleCalc.calc
9 store ref calc0

10 push int 1000000
11 push int 2
12 push int 1
13 load ref calc0
14 invokevirtual simpleCalc.calc.fibonachi
15 new bos.sys.langtest
16 store ref ltest0
17 push int 0
18 load ref ltest0
19 invokevirtual bos.sys.langtest.instest
20 return

Listing 5.1: Test input main function

The tests are run on a Lenovo T520 with an intel i5-2430M quad core CPU
running at 2.40 GHz x 4 and 4 GB of RAM. The operating system is Ubuntu
14.04. The tests are set up to run the the test program a number of times in
succession.
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5.2 Runtime Tests
First we look at the runtime of each version of the VM. Each test is run 10000
times in succession. The first round of runs is done by using a shell script to
run the test program 10000 times. These results can be seen in Figure 5.1, all
values are in milliseconds, which is the case for all test cases.

Baseline Clean Aspect
Worst 84ms 259ms 362ms
Best 58ms 212ms 299ms

Average 63ms 231ms 320ms

Figure 5.1: Runtimes in milliseconds for 10000 continuous runs with Jit en-
abled.

Another test we did was to run the program 10000 times within a loop
in a Java program to simulate a continuous execution run. For this to work
properly the just-in-time compiler has been disabled since it would make each
consecutive run faster and the data would not be comparable to the other test.
The results can be seen in Figure 5.2.

Baseline Clean Aspect
Worst 89ms 408ms 671ms
Best 63ms 382ms 403ms

Average 65ms 387ms 414ms

Figure 5.2: Runtimes in milliseconds for 10000 continuous run with Jit disabled.

These two tests shows that the difference between a baseline implementation
of our VM and the clean implementation is roughly 6 times worse on average
for when just-in-time is disabled and roughly 3.5 times worse on average with
just-in-time enabled. Figures 5.3, 5.4, and 5.5 shows the spread of the results
of Jit disabled runs, the red lines indicating the mean value. The plots are
reduced to the first 1000 runs for the sake of readability. All the plots show
fairly steady run times with a few spikes, The AspectJ runs have a far wider gap
between its best and worsts run, also if ignoring spikes in the plot, which is not
unexpected as the AspectJ runs include injection, detection, recovery, logging,
and noise from AspectJ code. Since Jit disabled runs are the most realistic in
a real world use case, we have not included the spread for Jit enabled runs.
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Figure 5.3: BaseLine Spread of runs.

Comparing the Jit enabled and disabled runtimes shows us that there is still
things that can be improved in the implementation or on compile time.

5.3 Fault-tolerance Tests

Next we test the VM to see if it is able to tolerate the faults that we inject. In
this test case we run the test program 15000 times in succession by looping the
test program. Our fault rate is set to 2. This means that for each instruction
executed by the VM there is a 2 in 10000 chance that the injector will inject
a randomized fault, all in all this roughly translates to 1 injection every three
seconds. This fault rate is much higher than a real world scenario so if the VM
can handle this test it should also be able to handle a real world situation. The
results of the test can be seen in Figure 5.6
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Figure 5.5: AspectJ Spread of runs.
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Opcode faults corrected: 501
Value faults corrected: 298
AritOpcode faults corrected: 9
IfOpcode faults corrected: 26
String faults corrected: 88
Map key faults corrected: 65
Total faults corrected: 987
Total runtime: 185502

Figure 5.6: Results from VM test

During the test the VM would occasionally crash. Through analysis of
various debugging outputs it was concluded that they are caused by double
bit-flips. The high fault-rate is partly to blame for this, but also that we base
our injection on each instruction rather than a time window. This and the
fact that we use randomly generated numbers means that we will occasionally
experience double bit-flips. We have not counted the exact rate, but through
observations alone it was deemed to happen in less than 15 of 15000 runs. Even
though we make sure to only inject one bit-flip for each instruction, meta-data
injection will not be detected immediately as this data is checked only when
referenced, with the higher fault rate it is possible for a meta-data element to
become injected twice before it is referenced making it unrecoverable for our
VM.

5.4 Baseline Failure Tests

As mentioned we also injected faults into our baseline bosVM implementation
to show that bit-flips in the expected areas does in fact cause trouble. The most
obvious of faults are caused by opcode, aritcode, and ifcode faults as these will
cast Java exceptions, and consequently crash the Java VM, the stack traces
as well as old and new values of these types of faults are shown in Figure 5.7,
Figure 5.8, and Figure 5.9. The stacktraces have been reduced to their last
line for easier readability, the content is likely unintelligible for anyone but the
authors.
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opcode
old 21
new 53
java.lang.Exception: Syntax error
at bosVM2.Engine.Frames.MethodFrame.executeFrame(MethodFrame.java:96)
...

Figure 5.7: An opcode fault stacktrace with old and new value.

aritcode
old 1
new 33
Error detected in Arit Operation
java.lang.Exception: Arit code fault
at bosVM2.Engine.Frames.MethodFrame.doArit(MethodFrame.java:180)
...

Figure 5.8: An aritcode fault stacktrace with old and new value.

ifcode
old 4
new 36
Error detected in If operation
java.lang.Exception: ifCode fault
at bosVM2.Engine.Frames.MethodFrame.doIf(MethodFrame.java:160)
...

Figure 5.9: An ifcode fault stacktrace with old and new value.

The results of injecting a key error is shown in Figure 5.10, where a bit-flip
alters the key bos.sys.langtest to bos.óys.langtest, resulting in the heap
attempting to allocate a null value, causing a Java exception to be thrown.
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key
old bos.sys.langtest
new bos.óys.langtest
java.lang.NullPointerException
at bosVM2.meta.Objects.BosObject.<init>(BosObject.java:12)
at bosVM2.Engine.Heap.Allocate(Heap.java:17)
...

Figure 5.10: Map key bit-flip, cause an allocation error on the heap.

The resulting stacktrace caused by en EmptyStackException is shown
in Figure 5.11, this trace is a little more interesting as it actually has two
pc bit-flips. This should emphasize the importance of the pc fault-tolerance
implemented, from the first bit-flip we do not know what the current state of
the program actually is. Ultimately a pop is attempted on an empty operand
stack, causing the exception and crashing the VM. From the stacktrace it can
be deduced that the pc is set to a getField instruction which did not have its
associated reference pushed upon the stack beforehand.

pc
old pc 76
new pc 108
old pc 0
new pc 4
java.util.EmptyStackException
at java.util.Stack.peek(Stack.java:102)
at java.util.Stack.pop(Stack.java:84)
at bosVM2.Engine.Frames.MethodFrame.doGetField(MethodFrame.java:103)
...
Unknown execution error

Figure 5.11: EmptyStackException caused by pc bit-flips.

It may not be immediately clear why a value fault caused the resulting
stacktrace shown in Figure 5.12, even more so considering that four additional
value bit-flips occurred prior to the crash. There have been marked two bit-flips
in the trace, as the bit-flips is most likely caused by a reference for a field that
has been altered to a different value. The two is likely the same reference that
has been flipped twice in between stores and loads, this is not an impossible
scenario with the fault rate used. While this is an unlikely scenario, it does
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show us that a fault happening may not have immediate consequences, as is
also evident by the other three bit-flips. From this trace alone we can not tell
if they are references or values used in some arithmetic operation, but common
for them all is that they will very likely cause the outcome of the method to
be erroneous.

value
old 0
new 4
old 4
new 5
old 1 <-
new 65 <-
old 9
new 8
old 65 <-
new 193 <-
java.lang.NullPointerException
at bosVM2.Engine.Frames.MethodFrame.doPutField(MethodFrame.java:108)
...

Figure 5.12: Value fault stacktrace.

Shown in Figure 5.13 is the stacktrace for a bit-flip in the name of a method
in the meta-data. This type of fault is identical and have similar consequences
to bit-flips in classes and fields, and for this reason they have been omitted. The
method called is pushint of the simpleCalc.calc class, the bit-flip altered the
name to pushant which does not exist, leading to a NullPointerException.

method
Methodname before: pushint
Methodname after: pushant
java.lang.NullPointerException
at bosVM2.meta.Objects.BosMethod.<init>(BosMethod.java:27)
at bosVM2.Engine.Frames.MethodFrame.<init>(MethodFrame.java:30)
at bosVM2.Engine.Frames.MethodFrame.doInvokeVirtual(MethodFrame.java:124)
...

Figure 5.13: Method name bit-flip.
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To sum up, the outcome of injecting faults into a VM with no defenses,
caused pretty much exactly what we expected. A VM unable to perform any-
thing sensible.
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Chapter 6
Recapitulation

In this chapter we will comment and evaluate our results and findings as well
as discuss the possible reasons of the results including suggestions for improve-
ments. We will also conclude on the project and touch upon possible future
work that this project leads to.

6.1 Discussion
The discussed fault-tolerance techniques and their implementation, at least
for the Hamming distance and value protection fits well the idea of a VM
with relatively low overhead in the presence of no faults. Our major loss of
performance was observed with the addition of the Hamming codes to the
VM. One of the reasons for this is obviously the nature of the algorithm ,which
compared to the job it does, have quite a bit of implementation code. That said,
we could possibly reduce the overhead suffered from Hamming codes since we
use the encoder rather aggressively in our implementation. We decode a string
every time that it is retrieved or accessed, this leads to a number of redundant
decoding. An alternative approach would be to keep everything encoded and
do comparisons on encoded values and rely on missed map accesses or failed
comparisons for initial fault-detection before attempting to decode or error-
correct strings.

Regarding the implemented VM and TinyBytecode and the associated se-
mantics and language definitions, the TinyBytecode subset implemented in
bosVM does not include exceptions. This is not an oversight but rather a
choice of focus, the implemented techniques covers much of the areas of the
VM for general use. Exceptions is not strictly needed for core usage of bosVM
and TinyBytecode, but could provide an extra dimension regarding masking of
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faults and defensive programming.
The results of our testing has shown that we have implemented a VM which

can in fact catch a number of faults in expected areas. The bosVM does however
have considerable run-time overhead, as much as up to 350% with the Java
jit compiler enabled and 600% without, from the baseline bosVM. We have
already mentioned that we expect to be able to decrease the overhead from
Hamming codes. It is also worth considering that these numbers should be
compared to running the baseline bosVM in dual or triple redundancy which
have an inherent overhead of at least 200% or 300% respectively, and then
arbiter implementation is added upon this. We are not trying to argue that
600% is an acceptable run-time, but we have provided a VM solution with build-
in error recovery, though not on all components yet. With this done, focus can
be moved on to optimizing the solution in regards to run-time. Fault-tolerance
is and should be the prime concern. With regards to overhead on the AspectJ
enabled bosVM, it is also worth noting that AspectJ does add some noise, we do
however not know how much of an performance impact AspectJ has. Regarding
AspectJ being used as a fault injection tool, it has come to our attention in
the final stages of the project that Hadoop, an open-source software framework
for storage and large-scale processing, has developed some kind of AspectJ
injection framework [11], the scale of which has not been further studied at
this time.

6.2 Conclusions
We have extended the bytecode language TinyBytecode by formalizing seman-
tics for exceptions, as well as behavior of the language under a semantically
formalized fault model. A subset of this semantic has been implemented in the
VM bosVM, with added fault-tolerance techniques, designed to protect against
the faults that we expect to encounter under said fault model. The bosVM
has fault detection as well as fault correction and can correct any single bit-
flip error in its coverage area, it does however run with a significant runtime
overhead. Furthermore we have implemented a fault injection framework using
AspectJ targeting the specific fault types of the fault model. AspectJ has also
been used to implement logging of corrective measures engaged.

6.3 Future Work
Following is a few suggestions for work that could be done with this project at
its base.
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Formalizing the last few instructions of TinyBytecode, namely the instruc-
tions for arrays should be the first order of business, as well as implementing
these in the bosVM and add support for exceptions. The semantics could also
be extended to encompass the heap area of the VM. Revisiting the implemen-
tation of the bosVM for the purpose of runtime optimization would be a logical
next step.

The TinyBytecode language is a very simple language, and we wish to keep
it this way. We have considered adding VM specific extensions that would add
commonly used mechanics with inherent fault-tolerant design, examples could
be monitors, semaphores, lists, maps or anything you might expect from a high
level programming language.
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Appendix A

Semantics of TinyBytecode

A.1 Imperative Core

The core segment of TinyBytecode includes the instructions for stack manipu-
lation as well as handling variables and values. The instructions for direct stack
manipulation are push, pop, and dup which duplicates the top element of the
stack, and swap which swaps the top two elements of the stack. The instruction
pop has an optional parameter, which is used to pop multiple variables at a
time. The semantic rules for stack manipulation are shown in Figure A.1.
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push
m.instruction(pci) = push t v

P, CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, v :: os〉 : CS〉

pop1
m.instruction(pci) = pop

P,CP ` 〈H, 〈m, pci, lv, osh : ost, 〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, ost〉 : CS〉

pop2
m.instruction(pci) = pop n

P,CP ` 〈H, 〈m, pci, lv, os1 : . . . : osn : ost, 〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, ost〉 : CS〉

dup
m.instruction(pci) = dup

P,CP ` 〈H, 〈m, pci, lv, osh : ost, 〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, osh :: osh : ost〉 : CS〉

swap
m.instruction(pci) = swap

P,CP ` 〈H, 〈m, pci, lv, os1 : os2 : os3−n〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, os2 : os1 : os3−n〉 : CS〉

Figure A.1: Semantic rules for stack manipulation.

Instructions for loading and storing values in local memory are load and
store, the inc instruction is included for directly incrementing a stored local
variable. Figure A.2 shows the semantic rules for local memory manipulation.
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load
m.instruction(pci) = load t vi

P,CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, lv[vi] :: os〉 : CS〉

store
m.instruction(pci) = store t vi

P,CP ` 〈H, 〈m, pci, lv, osh : ost〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv[vi 7→ osh], ost〉 : CS〉

inc
m.instruction(pci) = inc vi v

P, CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv[vi 7→ lv[vi] + v], os〉 : CS〉

Figure A.2: Semantic rules for local memory manipulation.

The instructions for manipulating the program counter are nop, goto, and
if. The nop instruction does nothing but advance the program counter. The
goto and if instructions both change the program counter to a specified value,
with if only doing so if a conditional check succeeds. This check has the form
v1 op v2, where op ∈ {equals, nequals, grth, lsth}. In Figure A.3 the semantic
rules for program counter manipulation are shown.

nop
m.instruction(pci) = nop

P,CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, os〉 : CS〉

goto
m.instruction(pci) = goto pc′

P,CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H, 〈m, pc′, lv, os〉 : CS〉

if

m.instruction(pci) = if op goto pcn
exp = v1 op v2

op ∈ {equals, nequals, grth, lsth}, pc′ =
{
pcn exp = true
pci+1 exp = false

P, CP ` 〈H, 〈m, pci, lv, v1 : v2 : os〉 : CS〉 ⇒
〈H, 〈m, pc′, lv, os〉 : CS〉

Figure A.3: Semantic rules for program counter manipulation.
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The instruction used for logical and arithmetic operations is arit. This
instruction handles both unary and binary operations. Unary operations take
the form op v where op ∈ {neg}. Binary operations take the form v1 op v2
where op ∈ {add, sub,mul, div, rem, shl, shr, ushr, and, or, xor}. Figure A.4
shows the semantic rules for logical and arithmetic operations.

aritunary

m.instruction(pci) = arit op
op ∈ {neg}
res = op v

P,CP ` 〈H, 〈m, pci, lv, v : os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, res :: os〉 : CS〉

aritbinary

m.instruction(pci) = arit op
op ∈ {add, sub,mul, div, rem, shl, shr, ushr, and, or, xor}

op ∈ {div, rem} ⇒ v2 6= 0
res = v1 op v2

P,CP ` 〈H, 〈m, pci, lv, v1 : v2 : os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, res :: os〉 : CS〉

Figure A.4: Semantic rules for logical and arithmetic operations.

A.1.1 Objects
In this section the semantic rules concerning objects will be presented. The
first rule is new which is used for instantiation of objects. As a helper function
alloc is introduced which takes care of allocating a new heap location for the
object. This function takes as parameters the class to be instantianted, as well
as the heap, and returns a reference to the instantiated object, as well as a
modified heap that contains this object. The new instruction takes a class as
a parameter and it is required that instantiated object is an instance of that
class. It is also required that the heap location found is not already in use and
that the reference returned by alloc is mapped to the instantiated object on
the heap. The use of the new instruction results in the reference to the object
being pushed on to the operand stack, and the heap being modified to include
the new object.

Another aspect of the object semantics is fields. Objects contain fields and
they store values on the heap in the respective objects. To fetch a field the
getfield instruction is used and to modify a field the putfield instruction is
used. The use of getfield requires a reference to an object as the top element
on the operand stack. The reference is popped, the object reference is resolved
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and the specified field value is fetched and pushed on the operand stack. The
use of putfield requires a reference followed by the new value to be the top
elements of the operand stack. The reference and the value are popped from
the operand stack and the object reference resolved. The specified field is then
mapped to the new value on the heap.

The semantic rules concerning objects are shown in Figure A.5.

new

m.instruction(pci) = new c
(ref,H ′) = alloc(c,H) obj = H ′[ref ] ref /∈ dom(H)

c ∈ P.classes obj.class = c

P, CP ` 〈H, 〈m, pci, lv, os〉 : CS〉 ⇒
〈H ′, 〈m, pci+1, lv, ref :: os〉 : CS〉

getfield

m.instruction(pci) = getfield field
obj = H[ref ] val = obj.fieldV al(field)
P,CP ` 〈H, 〈m, pci, lv, ref : os〉 : CS〉 ⇒

〈H, 〈m, pci+1, lv, val :: os〉 : CS〉

putfield

m.instruction(pci) = putfield field
obj = H[ref ] obj[field 7→ val]

P,CP ` 〈H, 〈m, pci, lv, ref : val : os〉 : CS〉 ⇒
〈H[ref 7→ obj], 〈m, pci+1, lv, os〉 : CS〉

Figure A.5: The semantic rules concerning objects.

A.1.2 Methods
In this section the semantic rules concerning method invocation and return
will be presented. As mentioned earlier a choice was made to leave out static
methods, static fields and interfaces. For this reason the only instruction con-
cerning method invocation is the invokevirtual instruction. As discussed in
Section 3.1.4 the actual method invoked is resolved at runtime. To resolve this
method a function called lookup is used. This function is based on a procedure
with similar functionality in the JVM specification [15]. This function takes
the method identification and a class as parameters. The method identification
in this case is considered to be the method’s name and parameter types. First
a check is made whether or not the provided class contains an implementation
of that method. If it does, then that particular method is returned, but if it
does not, then a recursive call is made on the class’ superclass with the same
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1 lookup(methodId, class):
2 if(class contains methodId)
3 return method
4 elseif(class has superclass)
5 return lookup(methodId, superclass)
6 else
7 fail

Listing A.1: Pseudocode for the lookup function.

method identification. If no method has been found and the current class does
not have a superclass, then the function will fail. By performing this lookup
the most specialized version of the method will be returned as desired. The
pseudocode for the function lookup is shown in Listing A.1.

To be able to use the invokevirtual semantic rule some conditions have to be
fulfilled. On the stack it is required to have a reference to the object where the
method is to be invoked followed by the parameters for that method. It is also
required that the reference on the stack is not null. The number of parameters
for the method is obtained by using the function numArgs, introduced in
Section 3.1.5, on the method returned by lookup. When this semantic rule is
used, a new frame is created and pushed onto the call stack. The reference
and parameters are popped from the stack of the calling frame and placed into
local variables of the newly created frame. The method of the new frame is set
according to the method returned by lookup. The program counter is set to 0
as by convention and the operand stack will be empty.

For return an optional parameter was specified in the syntax which is re-
flected in the semantic rules. In total there are four different semantic rules for
return. Two rules to handle when returning without a specified parameter, also
known as void, and two rules for handling when returning with a parameter.
The reason for having two rules for each is to handle the special case when
returning from the last frame on the call stack. This case needs to be handled
differently since the program is to be terminated when this case occurs. When
returning without a parameter and the call stack is empty, the frame configu-
ration is changed to Terminate. If the call stack contains more than one frame
then the current frame is popped and control is transferred to the next frame
on the call stack.

In the cases where the optional type parameter has been specified, a return
value is expected on top of the operand stack. If there are more than one frame
on the call stack when returning, the return value is then popped and pushed
on top of the operand stack of the next frame on the call stack. The current
frame is then popped off the call stack and control is transferred again. In the
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case where the operand stack only contains one frame, then the return value
is popped and the frame configuration is again changed to Terminate. The
semantic rules concerning method invocation and return is shown in Figure A.6.

invokevirtual

m.instruction(pci) = invokevirtual m0
lv′ = ref : v1 : · · · : vn ref 6= null obj = H[ref ]
m′ = lookup(m0, obj.class) n = m′.numArgs()

P,CP ` 〈H, 〈m, pci, lv, ref : v1 : · · · : vn : os〉 : CS〉 ⇒
〈H, 〈m′, 0, lv′, ε〉 :: 〈m, pci, lv, os〉 : CS〉

return1
m.instruction(pci) = return

P,CP ` 〈H, 〈m, pci, lv, os〉 : ε〉 ⇒ 〈H, 〈Terminate〉〉

return2
m.instruction(pci) = return

P,CP ` 〈H, 〈m, pci, lv, os〉 : 〈m′, pc′, lv′, os′〉 : CS〉 ⇒
〈H, 〈m′, pc′, lv′, os′〉 : CS〉

return3
m.instruction(pci) = return t

P, CP ` 〈H, 〈m, pci, lv, v : os〉 : ε〉 ⇒ 〈H, 〈Terminate〉〉

return4
m.instruction(pci) = return t

P, CP ` 〈H, 〈m, pci, lv, v : os〉 : 〈m′, pc′, lv′, os′〉 : CS〉 ⇒
〈H, 〈m′, pc′, lv′, v :: os′〉 : CS〉

Figure A.6: The semantic rules concerning method invocation and return

A.1.3 Arrays
In TinyBytecode support for arrays is limited to creating a new array objects,
accessing array elements, and returning the lengths of arrays. The instruction
anew creates a new array with a given length and allocates space on the heap,
a reference to the array is pushed on the stack upon completion. To aid in this
the function allocA is used. This function is similar to the alloc function, and
takes the size of the array, its type, and the heap as parameters, and returns a
reference to the allocated array, as well as a modified heap containing the array.
The instruction aload is used to load a value from an array at a given index,
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while the instruction astore is used to store a given value at a given index in an
array. Finally, the instruction alength pushes the length of a given array onto
the stack. The semantic rules for arrays are shown in Figure A.7.

anew

m.instruction(pci) = anew t
(aref,H ′) = allocA(size, t,H)
a = H ′[aref ] size ≥ 0

a.type = t a.length = size

P, CP ` 〈H, 〈m, pci, lv, size : os〉 : CS〉 ⇒
〈H ′, 〈m, pci+1, lc, aref : os〉 :: CS〉

alength

m.instruction(pci) = alength
len = H[aref ].length

P,CP ` 〈H, 〈m, pci, lv, aref : os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, len :: os〉 : CS〉

aload

m.instruction(pci) = aload t
elem = H[aref ].get(index)

P,CP ` 〈H, 〈m, pci, lv, aref : index : os〉 : CS〉 ⇒
〈H, 〈m, pci+1, lv, elem :: os〉 : CS〉

astore

m.instruction(pci) = astore t
a = H[aref ] a′ = a[get 7→ a.get[index 7→ val]]

H ′ = H[aref 7→ a′]
P,CP ` 〈H, 〈m, pci, lv, aref : index : val : os〉 : CS〉 ⇒

〈H ′, 〈m, pci+1, lv, os〉 :: CS〉

Figure A.7: Semantic rules for arrays
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Appendix B
The bosVM Implementation

This appendix will contain some general documentaion regarding the bosVM
implementation code.

Full source

The full source code of bosVM can be checked out from the repository

https://code.google.com/p/sfmaster/

Hamming Code Implementation

The Hamming Codes encoding is conducted by retrieving the bit pattern of
the input, calculating the number of parity bits needed, creating the message,
and calculating and writing the parity bit information before returning as an
UTF-16 string. The source for the primary encoding function is shown in
Listing B.1
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1 int byteLength = 16;
2 String encoding = "UTF-16";
3 //Hamming codes encoding of a string
4 public String enCode(String s) {
5 char[] block = getBitPattern(s,false);
6 //retrieve the bit pattern
7 int n = block.length;
8
9 //calculate the needed amount of parity bits

10 int parityBits = calculateEncodingParityBits(n);
11 //create message
12 char[] message = new char[n+parityBits];
13
14 int nextPower = 4 ,powerIndex = 2;
15 int blocki = 0;
16 for(int i = 0; i < message.length; i++) {
17 if(i+1 == nextPower) {
18 message[i] = ’0’;
19 powerIndex++;
20 nextPower = (int) Math.pow(2, powerIndex);
21 } else if ( i < 2 ) {
22 message[i] = ’0’;
23 }
24 else{
25 message[i] = block[blocki];
26 blocki++;
27 }
28 }
29
30 //calculate each parity bit
31 for(int bit = 0; bit < parityBits; bit++) {
32 int skip = (int) Math.pow(2, bit);
33 int val = 0;
34 for(int i = skip-1; i < message.length; i = i + skip) {
35 for(int j = 0; j < skip && i < message.length; j++) {
36 val = val + Character.getNumericValue(message[i]);
37 i++;
38 }
39 }
40 //Write the parity bit
41 if(val % 2 == 0) {
42 message[skip-1] = ’0’;
43 } else { message[skip-1] = ’1’;}
44 }
45 return toASCII(message);
46 }

Listing B.1: Hamming Codes encoding function

76



The getBitPattern(String,boolean) retrieves the bit pattern using the
Integer.toBinaryString(string) function, for calculation purposes the in-
dividual chars are padded with 0s to match the byte length of 16. This is
necessary as we can only retrieve a bit pattern to the most significant 1 bit,
which would make decoding impossible as 0 bits after the most significant 1
bit could be parity bits, but we would have no way of telling where in the
string it should be without storing redundant information, the source code is
shown in Listing B.2. Notice that we return the bit pattern in reverse order,
the order is reversed again when storing, this serves the purpose preserving 0
bits in the last byte of the encoded message. The second part of the getBit-
Pattern(string,boolean) function, after else, on line 14 bit pattern retrieval
of encoded strings.
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1 private char[] getBitPattern(String s, boolean encoded) {
2 String temp = "";
3 //Get byte array of the message, convert to bit string
4 if(!encoded) {
5 for(char b: s.toCharArray()) {
6 String bin = Integer.toBinaryString(b);
7 if(bin.length() < byteLength) {
8 temp = temp + String.format("\%0"+(byteLength-bin.length()+"d"

+"\%s"), 0, bin); }
9 else {

10 temp = temp + bin;
11 }
12 }
13 }
14 else {
15 boolean first = true;
16 for(char b: s.toCharArray()) {
17 String bin = Integer.toBinaryString(b);
18 if(first)
19 { temp = temp + Integer.toBinaryString(b); first = false; }
20 else {
21 if(bin.length() < byteLength) {
22 temp = temp + String.format("\%0"+(byteLength-bin.length()

+"d"+"\%s"), 0, bin); }
23 else {
24 temp = temp + bin;
25 }
26 }
27 }
28 }
29 return reverseOrder(temp.toCharArray());
30 }

Listing B.2: getBitPattern(string,boolean) source code

Calculating the parity bits needed is done with a call to the calculateEn-
codingParityBits(int) function which takes the message length as a param-
eter, and returns the number of parity bit needed to reach the block length,
the source code is in Listing B.3

The calculation of parity bit values is already shown in Listing B.1, at the
very end of this listing the return line is found, reading return toASCII(message).
This functions, as implied by the name, convert the bit pattern back to a Java
string, despite the name of the function of the name, the string is in UTF-16
encoding, and not ASCII. This is simply a leftover name from an early revision
of the algorithm implementation.

Due to the nature of Hamming Codes the decoding algorithm is almost
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1 public int calculateEncodingParityBits(int length) {
2 int parityBits = 0;
3 while((Math.pow(2, parityBits)-parityBits-1) < length) {
4 parityBits++;
5 }
6 return parityBits;
7 }

Listing B.3: Function which calculates number of needed parity bits for
encoding

1 public int calculateDecodingParityBits(int length) {
2 int parityBits = 0;
3 while((Math.pow(2, parityBits)-1) < length) {
4 parityBits++;
5 }
6 return parityBits;
7 }

Listing B.4: Functions which calculates number of parity bit for decoding

identical to encoding, and varies only in the details as evident by comparing
Listing B.3 to Listing B.4, which shows the function for calculating the number
of parity bits in an encoded message. The differences in the code is comparable
in magnitude to this. Where the decoding function is a different is that it
corrects errors in the returned string, the source for the decoding functions is
shown in Listing B.5

79



1 public Object[] deCode(String s) {
2 boolean error = false;
3 //retrieve the bit pattern of the input string
4 char[] message = getBitPattern(s, true);
5
6 //Calculating the number of parity bits needed for the string
7 int parityBits = calculateDecodingParityBits(message.length);
8
9 //error detection and correction

10 //Calculation of parity bit values
11 int pv = calculateParityValues(parityBits,message);
12
13 //If a fault was found, correct it
14 if(pv > 0) {
15 error = true;
16 message = correctBitFlip(pv-1,message);
17 }
18 //Remove parity bits and build output string
19 message = removeParityBits(parityBits, message);
20
21 Object[] out;
22 if(!error) {
23 out = new Object[]{error, toASCII(message)};
24 } else { out = new Object[]{error, toASCII(message),s}; }
25 return out;
26 }

Listing B.5: Hamming codes decoding function

When decoding the parity value is calculated which tells if any bit is in
error, the value will then be an integer larger than 0 corresponding to the bit
in error. The parity value is passed on to the correctBitFlip(int,char[])
function which takes the parity value and the string as input, returning the
corrected string, source code is shown in Listing B.6

1 //Corrects a single bit flip in a char array.
2 public char[] correctBitFlip(int pv,char[] message)
3 {
4 if(message[pv] == ’1’) {
5 message[pv] = ’0’;
6 } else { message[pv] = ’1’; }
7 return message;
8 }

Listing B.6: The correctBitFlip(int,string) function
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Appendix C
Resumé

This project covers the process of implementing a virtual machine that can
resist faults caused by single event upsets. Single event upsets are relevant
because the project is based on a case with a satellite. Satellites’ deployment
environment have a higher rate of single event upsets than at sea level, so a
program running on a satellite must be hardened to not run the risk of crashing
or get silent data corruptions. To get an overview of the distribution of fault-
tolerant components an investigation has been made featuring a collection of
micro-controllers to see what kind of fault-tolerance they include if any at
all. Related work has also been explored to see what solutions already exists.
The VM is based on TinyBytecode which semantics have been expanded to
include exceptions and a suiting fault model. The VM implemented based on
the semantics features fault-tolerance through encoding, using AN-codes and
Hamming codes, as well as duplication of values for recovery in case of a fault.
For testing purposes a testing framework has been implemented using AspectJ
to keep the testing code separated from the VM code. The additional overhead
for runtime has been estimated, through testing, to 6 times the base runtime.
This massive overhead is partly because of an aggressive encoding politic. The
ability to correct single event upsets is also tested with great success, the VM
is able to handle way above a realistic fault rate.
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