
Network Light Control Protocol
Design and study of a novel real-time network

protocol

Networks and Distributed System

Kai Benjamin Heinz - 10th semester

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7
DK-9220 Aalborg

Department of Electronic Systems

Fredrik Bajers Vej 7
DK-9220 Aalborg Ø

http://es.aau.dk

Title:
Network Light Control Protocol
- Design and study of a novel real-time net-
work protocol

Theme:
Master Thesis

Project Period:
10th semester
Networks and Distributed System
February – June, 2014

Project Group:
14gr1023

Participants:
Kai Benjamin Heinz

Supervisors:
Jimmy Jessen Nielsen
Lars Mikkelsen

Copies: 4

Page Numbers: 149

Date of Completion: June 3, 2014

Abstract:

This project designed a new network pro-
tocol to control stage units like lamps,
moving heads and fog machines. Re-
lated protocols had been discovered to get
an idea of the current market situation.
Based on this knowledge a problem had
been formulated, that states the limited
address space and cable connection as the
most challenging topics. The cable con-
nection had than been replaced by a wire-
less 802.11g connection. The two most
interesting measurements for this wireless
network are range and number of lights.
To find these limits a simulation had been
programmed in OMNeT++ and a field
test had been performed. A controller had
been developed in Java and an adapter had
been constructed to transform from this
new to the DMX protocol. This way cur-
rent stage lamps that do not understand
this new protocol could be driven. The
result of this project is a new stage light
control protocol designed for wireless com-
munication.

Preface

This is a report of a student project, on the 4th semester of Networks and Distributed
Systems, at Aalborg University. This project serves as a Master Thesis for this programme.
The topic of this report is to develop a novel network protocol to control stage units like
lamps, moving heads, fog machines, and so on.

The work is based on current standards, like DMX, and compared to it. Besides design,
a simulation in OMNeT++ had been performed to find the maximum number of units in
the network. A field test had been done to find the maximum range. A sample controller
and receiver had been built.

The work had been supervised by a professor and PhD-student from Aalborg University,
who did a great job and helped a lot when work got difficult and leaded me straight to
the finish line.

Aalborg University, June 3, 2014

Kai Benjamin Heinz
<kheinz12@student.aau.dk>

v

Contents

1 Introduction and Motivation 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Conclusion . 6

2 Related Protocols 7
2.1 DMX-512 . 7

2.1.1 DMX Devices . 7
2.1.2 Network Architecture . 9
2.1.3 Physical Layer . 10
2.1.4 Data . 10
2.1.5 Summary . 12

2.2 W-DMX . 13
2.2.1 Network Devices . 13
2.2.2 Network Architecture . 14
2.2.3 Robust Data . 15
2.2.4 Wireless Data . 16
2.2.5 Wireless Communication . 16
2.2.6 Communication Delay . 16
2.2.7 Summary . 18

2.3 Art-Net . 20
2.3.1 Devices in Art-Net . 20
2.3.2 Topology . 21
2.3.3 Art-Net Packets . 23
2.3.4 Summary . 25

2.4 Conclusion . 27

3 Problem Formulation 29
3.1 Address-Space . 29
3.2 Reliable Communication . 29
3.3 Topology . 30
3.4 Transmission . 30

3.4.1 Physical Layer . 30
3.4.2 Application Layer . 30

3.5 Synchronization . 31
3.6 Conclusion . 31

vi

4 Requirement Analysis 33
4.1 Address-Space and Data Resolution . 33
4.2 Topology and 802.11 . 34

4.2.1 Perfomance in 802.11s . 34
4.2.2 Performance in 802.11b/g/n . 35
4.2.3 Summary . 36

4.3 Application Layer . 36
4.4 Conclusion . 40

5 Network Light Control Protocol 41
5.1 Network Devices . 41

5.1.1 Controller . 41
5.1.2 Lamps . 41
5.1.3 Network Devices . 42

5.2 Packet Definition . 43
5.2.1 Overview . 43
5.2.2 Packet Header . 43
5.2.3 Device Allocation Table . 44
5.2.4 Dimmer . 46
5.2.5 RGB(W)-Lights . 47
5.2.6 Moving Lights . 47
5.2.7 OEM-Packets . 49
5.2.8 Network Discovery . 49
5.2.9 Network Discovery Reply . 49

6 Evaluation 51
6.1 Simulation . 51

6.1.1 System Design . 51
6.1.2 Expected Results . 53
6.1.3 Simulation Results . 54
6.1.4 Summary . 58

6.2 Field-Test . 60
6.2.1 Test Network . 60
6.2.2 Test Location . 61
6.2.3 Test Execution . 62
6.2.4 Test Results . 63
6.2.5 Pathloss . 64
6.2.6 Summary . 66

6.3 Conclusion . 67

7 Implementation 69
7.1 Controller . 69

7.1.1 Responsive User Interface . 70
7.1.2 Bin Packing Problem . 71
7.1.3 Continuous Sending . 72
7.1.4 Summary . 74

vii

7.2 NLCP – DMX-Adapter . 74
7.2.1 Function . 75
7.2.2 Summary . 76

7.3 Conclusion . 76

8 Future Work 77

9 Conclusion 79

Bibliography 81

A Results of Field Test 83

B 23 ms Test Script 91

C Art-Net Protocol 93

D Art-Net OEM Codes 131

E CD 149

viii

1 Introduction and Motivation

This chapter shall provide an initial overview of stage lights and gives background infor-
mation for the reader in order to classify this work. The introduction will focus on a very
general description of stages and how the are lighted. This will be done by presenting
a little bit of history, which will lead from ancient, over past to modern times. During
this review the used technologies for stage lights will be presented and how they had been
evolved. A special focus will be set upon current technologies and the area of currently
used communication protocols, their drawbacks and why further development is needed. As
said, this is only a very brief overview to give an understanding of the working area. The
motivation section shows the personal, technological and the scientific interest in the devel-
opment presented in this work. Lastly the chapter will be concluded and main points will
be recapitulated. All the information will be used in order to present one main-question,
which will be used as a guideline throughout this project and will finally be answered in
this report.

1.1 Introduction

Since centuries mankind used stages to present and perform acts in front of an audience.
The roots are going back to the ancient Greek culture [6] and further. From these first days,
stages had been built in- and outdoors. Both had their advantages and disadvantages but
at some point they had a common problem: Actors need to be presented in proper light.
While outdoor stages had no problem solving this issue during day, it became a problem in
the dark hours. For indoor stages solutions had to be found even earlier, for example while
planning the building, which needed a lot of knowledge about architecture and natural
sciences. The earliest solution people found is also probably the most dangerous one:
open fire. Candles and gas lamps are the mostly known representatives of this group.
The danger of this technology could be seen in the “Ringtheaterbrand” (Ringtheater Fire)
where on December 8, 1881 the Ringtheater in Vienna burnt down and 384 people perished
[12]. During the same time a new technology for lighting came up by the inventor Thomas
Alva Edison. He was not the first one to show that electricity could be used to made
materials to emit light, but he improved the technology a lot what lead to a patent in
1880[10]. The rise of electricity and electric lights was a large step towards a safer, more
user friendly stage lighting technology.

Today’s Stage lights are highly specialized devices improved for robustness, weight and
easy handling. Stage lights may consist of a single light source like a high power light-bulb

1

2 Chapter 1. Introduction and Motivation

or hundreds or thousands of small Light Emitting Diodes (LED). Beside the ‘old’ task of
providing plain light to the stage, modern devices allow a stage director to choose from a
variety of colours, brightnesses, angles and forms. However, the available functions may
differ heavily dependant on the actual specialization of the device. While ancient lamps
just needed to be enlightened by a stage worker (dependant on the lamp by fire or by
switching them on), modern lamps need beside a ground power supply, a communication
interface to send and receive control signals from a remote controller. This controller can
be a special light control board or a PC/Laptop, which is running a specialized application.
The connection to the lights is usually realised by a DMX-bus system. While controllers
are already specialized to send out DMX signals, a PC often needs an adapter, which can
be as small as a USB-Memory stick. The commonly used DMX offers advantages and
disadvantages, which will be discussed in the coming section.

1.2 Motivation

DMX is the de-facto standard in inter stage light communication. Its abbreviation stands
for Digital Multiplex and had been standardized in 1986 [7] for the first time with the
goal to provide a robust, yet easy to handle network protocol to control stage lights. At
this time the focus of the developers were to control dimmers, which are simple, single
coloured lamps. Today, however, the market provides lamps that can do much more than
shine or not shine. It is possible that a light changes its colour, brightness, focus or even
the angle in up to 3-axes. To control all these features a single lamp uses more than one
byte of data, which is the maximum amount of data provided for a single channel in DMX.

A channel can be seen as the address of a lamp or one of it features. DMX had been
defined to support 512 channels, this is why it is officially called DMX-512. To give an
example of how channels are used in a stage lamp, a simple RGB-lamp will be taken
as an example. This device has obviously one red, green and blue channel. So at least
three channels are already used. On top a master and strobe channel are assumed to be
available. The master is used to set a maximum value for all channels, so that the amount
of available red, green or blue values will increase from 28 to 216 values. This allows for
a finer control of brightness by the cost of one channel. The Strobe channel is used to
provide flashing lights. The value received on this channel by the lamp will indicate the
frequency the lamp has to flash at. This is convenient, since the lamp can independently
set (and adjust if new values are received) the frequency of the strobe, which allows the
controller to use its computational power for other tasks. Together this simple lamp uses
five channels. Scanners†, moving heads‡, light panels and other devices designed for use
in light shows are much more complex, so that one of these devices can have easily more

†A scanner has a single light source, which beams onto a mirror, that is attached at an angle to a
motor. By rotating the mirror the light beam moves around the room. Usually different light shapes, so
called gobos are provided as well as different colours.

‡‘Moving heads’ have a special mounting of the light source, allowing to move the light beam to nearly
every position, covering full 360 ◦ in 3-axes. Like scanners different shapes and colours are provided.

1.2. Motivation 3

than 50 channels†. Figure 1.1 shows a modern concert where moving heads are used. The
pure amount of devices shows that a limit of 512 channels is not longer acceptable.

Figure 1.1: Lightshow during the concert “The Voice of Germany” January 7 - 2014, Schleyerhalle
Stuttgart, c© mpc/Michael Brabender

Beside the limitation of channels, DMX is specified with a special cable on layer one.
Connection of lamps is done via the daisy chain principle, meaning that every device has
two connectors. One for input data, the other one for output data. The output port of a
lamp will be connected to the input port of the next lamp and so on. In this chain the
controller is meant to be the first device, so it does not need any input connector. Hence,
it is expected to forward every piece of data that arrives at an input port, the last lamp
in a chain has to terminate the control line with an end-resistor. The advantage of this
bus system is that every device receives all the data and can filter it through its own rules
(e. g. the pre-programmed channel number). This way all the lamps are synchronized and
always have the latest values available. The down side of this approach is a practical one.
Cables are heavy and for a big concert a huge amount of cables are needed. Beside the
cost of transportation, the length of this cable-connection is limited, meaning that it can
become very difficult to distributes lamps in a large area. Hence transport and installation
has to be done regularly, it would be much more efficient to replace the cable with a radio
connection. Beside lowering the costs of transportation and installation (basically no time
needed for connecting lamps), the health of the stage worker might be protected by lifting
less weights.

One example of an event where long distance cabling was needed will be shown in figure
1.2. It is a small stage on a Christmas market in a town in central Germany‡. Compared

†ELAR QUAD PANELTMfrom Elation Professional uses between 4 and 64 channels, dependant on
the operating mode.

‡City of Kreuztal in the state North Rhine-Westphalia. GPS: 50.961728 N, 7.988142 E

4 Chapter 1. Introduction and Motivation

to the scenario from figure 1.1, it can be seen that much less lights are used, so addressing
becomes a secondary role in this case. However, the stage itself is only half of the light
concept, where it had been planned to support the stage with lights distributed off-stage
to create a nice, Christmas-like feeling. Figure 1.3 displays an example of the distribution
of lights. It might be pointed out that the stage cannot even be seen from this point,
indicating how far away they actually are. The problem addressed here is the one of
large distances. For long distances, meaning heavily distributed lights also long cables are
needed, which needs to be transported and installed. Again a wireless solution would be
more efficient and easier to deploy.

These two basic difficulties are actual problems in real light applications. Technicians
developed workarounds in the last years to handle it somehow. However, the problems
are not gone and will probably increase over the next years. This calls for development of
new network protocols especially for the lighting industry. Replacing the physical wire by
a wireless radio communication yields for advantages by lowering costs of transportation,
installation and maintaining the light set-up. The health of stage workers might be pro-
tected and less resources are needed. This master thesis will therefore discover existing
protocols and propose a solution for these practical problems.

1.2. Motivation 5

Figure 1.2: Stage on a christmas market, December - 2012, Dreslers Park, Kreuztal, Germany,
c© kreuztalkultur/Alexander Kiß

Figure 1.3: Surroundigs of a christmas market, December - 2012, Dreslers Park, Kreuztal, Germany,
c© kreuztalkultur/Alexander Kiß

6 Chapter 1. Introduction and Motivation

1.3 Conclusion

The introduction gave a brief history of stages and how important stage lights are. Lamps
were originally used for the purpose of just producing plain light. In the last century this
role changed from a simple light source to a high-tech device that is able to change colours,
brightness, angles, and so on. It had been shown that modern lamps are connected to each
other in order to receive orders from a central controller. DMX is the de-facto standard
in this working area; standardized first in 1989 [7] it is not longer the optimal protocol for
stage lighting. The small address space of 512 available addresses is one problem of DMX.
The fact that physical wires are needed seems to be not optimal, especially in large light
applications as shown in figures 1.1, 1.2 and 1.3. A wireless solution might be more flexible
and cheaper to transport. The given example of the Christmas-market will therefore be
used throughout this report as a sample set-up to evaluate protocols. In the end of this
thesis a solution will be provided to solve these common problems (see chapter 3) that
occur with current protocols.

2 Related Protocols

In this project research is made in the field of stage light protocols. The first step in
this process is to look around and find related protocols already available. This section
covers the three most important network protocols for stage light applications and show
their advantages and disadvantages. This will lead to a good understanding of what is
currently done and where are the main points which can/should be improved in a newly
proposed protocol. The three protocols that are examined are DMX, W-DMX and ArtNet.
The only standardized protocol is DMX, however, the others are also used and built a
de-fact standard in the lighting industry. The conclusion will compare the results of the
independent chapters and will form the basis of the further work.

2.1 DMX-512

DMX-512, often just called DMX, is a standard in the stage lighting industry. It is defined
as a network protocol containing a physical and application layer. DMX can nowadays be
found in many lights and a lot of DIY-projects have been developed around it because of
its simplicity.

DMX had been initially developed for controlling dimmers, which are drivers for uni-
coloured stage lights. As technology developed, a single control signal could not deliver
enough information to control all the functionalities of these modern lamps. This problem
had only been partially solved and is still today one of the major challenges in stage
lighting.

DMX had been developed in the USA and was standardized by the ‘United States Institute
for Theatre Technology’ (USITT) in 1989 [7]. The name USITT:DMX512 had been chosen,
which refers to the technology (Digital Multiplex) and the address space of 512. Since than
a number of other authorities standardized this technology as well. In 2000 The German
Institute for Standardization (German: Deutsches Institut für Normung e. V., short: DIN)
set up the standard DIN 56930 (Bühnenlichtsysteme, English: stage light systems), which
will be used throughout this report. This seems legal since all devices labelled regarding
to [4, sec. 5] are interchangeable, and therefore this standard is as good as any other.

2.1.1 DMX Devices

DMX Controller

A DMX Controller forms the heart of a light fixture. Its main task is to convert a user
input into DMX format and send it to the lights. The connection is done by a special cable

7

8 Chapter 2. Related Protocols

connection described in [4, sec. 4.2]. Being more specific a controller is a device a light
technician or another trained person works on in order to control the appearance of the
light fixture. This can be done by pressing buttons and dragging faders on a physical light
board or by setting up a light show in a special software on a computer/laptop. Throughout
the report it is not important what actual controller is used, as long as it generates an
output signal that complies to DMX-512. A DMX Controller has one physical connector
to the DMX network called DMX out.

DMX Devices

Most other devices in a DMX network are lamps or lamp alike devices able to display
light in any form. However, also other devices, like fog machines might belong to this
group. A DMX device has 2 physical connectors (input and output) which connects the
device to the DMX network. This is done by the daisy chain principle, so that the output
port of one device is connected to the input port of the next one, and so on. The end
of a DMX control line must be terminated. Every DMX Device can be addressed by a
number between 1 and 512, what is usually called a channel. If a device uses more than
one channel, only the first address will be set. The other channels are continued from this
point on.

Example: A common RGB-lamp has 5 channels, one for each colour plus master channel
and flash light. The lamp is programmed to channel 8, which leads to the following
adddresses: Red: 8, Green: 9, Blue: 10, Master: 11, Flash light: 12.

It is often sufficient that one property belongs to one channel, like in the example above.
However, it might happen that some properties need a finer data granularity. In this case
it is possible to use more than one channel for this property. This is the case for moving
heads where for a full 360 ◦ 256 values result in a minimum resolution of 360

◦

256 steps
= 1.41

◦

step
.

This can be unsatisfying and can only be solved by using a second channel (216 = 65536),
giving a much higher resolution of 360

◦

65536 steps
= 0.0055

◦

step
.

Other DMX Devices

Terminator: Every DMX control line must be terminated with a 120 Ω/0.25 W resistor.
However, many modern lamps can recognize if they are forming the end of a line and if so
set up a terminating resistor be itself. No need for an external terminator is given then.
The details are described in [4, sec. 4.2.2.4].

Splitter: A Splitter is used to build an intersection in a DMX line. This is sometimes
useful for literally split the signal into two dependant lines. It must be mentioned here,
that the incoming DMX signal is not changed in any regard. It is just copied and send to
two or more outputs. A splitter is not explained in detail in [4].

Repeater: A DMX line is restricted to a certain length, which cannot be exceeded. The
control line also limited to a number of attached lamps, which is much less then 512. The
restriction is due to a voltage drop on every lamp. To overcome this problem a repeater
can be used to amplify the control signal. Like a splitter, the output is an exact copy
of the input, meaning that the DMX signal is not modified in any regard. A repeater is
described in [4, sec. 4.2.2.3, image 4].

2.1. DMX-512 9

2.1.2 Network Architecture

DMX operates on a field bus. Every device (controller, lamp, terminator) is connected to
this bus. The most basic network structure can be seen as a line, starting at a controller
going through all the lamps and ending at a terminator (see figure 2.1). This kind of
connection is called daisy-chain, since the control signal is looped through every single
device until the end. If this line exceeds a certain length a repeater must be included.
This length is 1,200 m [4, sec. 4.2.2.5] or 32 lamps [4, sec. 4.2.2.6].

Figure 2.1: Sample DMX network, basic line architecture. The terminator is not shown and should be
attached at the last light.

If a splitter is used, the line architecture shown in figure 2.1 changes to a real star network
(see figure 2.2). As described above, the splitter just copies the signal and makes it possible
to increase the number of control lines. This might be very handy in some applications
where otherwise much more cable must had been installed. However, the splitter does
not create a new address space, so that still all restrictions apply like in a simple line
architecture. There are no restrictions on where, or how many splitters are installed.

Figure 2.2: Sample DMX network with a splitter (black box) in the centre. Star architecture

10 Chapter 2. Related Protocols

Pin Description

1 Ground (GND)

2 Data channel 1, negative potential (D1-)

3 Data channel 1, positive potential (D1+)

4 Data channel 2, negative potential (D2-)

5 Data channel 2, positive potential (D2+)

Table 2.1: Connections of a 5 pin XLR plug.

2.1.3 Physical Layer

DMX relies on the EIA-485 standard, also known as RS-485 [8]. It describes how the
data are transmitted within the wire and what physical properties the wire has to fulfil.
Without going to deep into the specifications of RS-485, it shall only be mentioned that
the signal is transmitted in two data lines, where the signal is transmitted on one line and
the inverted signal on the other line. The advantage of that is that even if the voltage
drops at any point in cable, the potential between the two lines will stay the same. This
makes the physical layer more robust. In a DMX network at least 3 lines must be used
in a cable. Beside the two data line just mentioned there exists a common ground signal.
The standard also defines a second pair signal lines, but they are marked as optional [4,
table 2]. Table 2.1 gives an overview of the signals used in a DMX wire.

Beside the wire a common connector is described in [4]. It is usually called an XLR
connector and is available with 3 and 5 pins. It must be mentioned here, that even if 3
pin connectors are available and often used in stage craft, they are not officially allowed.
[4] explicitly asks for 5 pin plugs.

Because of the relation to RS-485 some restriction occur that must be fulfilled in any DMX
application. This is that on a single DMX line as seen in figure 2.1 a maximum length of
1,200 m cannot be exceeded [4, sec. 4.2.2.5]. If the application needs longer control lines,
a repeater must be included. The same applies for the amount of DMX devices listening
on a single control line. If more than 32 devices [4, sec. 4.2.2.6] are connected, the signal
must be amplified in order to guarantee a proper function. A splitter can be used if no
repeater is available.

2.1.4 Data

Data sent over DMX control line must agree on two points. First, they have to follow
a certain format, which will be explained next. Second, all devices in a DMX network
must have the same understanding of how long a bit is. The standard DIN 59630-2:2000
has defined the length of 1 bit as 4 µs [4, sec. 4.4.1]. This gives a data-rate of 250 kbit/s
meaning that 250,000 bits can be sent per second.

The basic format of a DMX packet can seen in figure 2.3. By looking closer into this
packet it can be seen that no channel numbers are transmitted. They are given implicitly
by their position of the data in the bit-stream. However, a packet starts with the BREAK
signal that clears the control line and gives the DMX devices the chance to prepare for
the coming signals. The BREAK signal is sent as a logic zero and must be at least 88 µs

2.1. DMX-512 11

long (this is the length of two data words). An upper time limit is not defined. For DMX
devices this signal means that every pending operation must be cancelled.

The Mark After Break (MAB) separates the BREAK from the start code (SC). It is
not clearly defined how long this signal is, but it must be between 8 µs and 1 s. Devices
that can handle a shorter 4 µs MAB signal are allowed to add “(4 µs)” to the signature,
like “DMX512/DIN(4 µs)” [4, sec. 5].

The Start Code (SC) is the first information that is actually delivered (see figure 2.4).
It consists like the channel data of one start bit, which is transmitted as logic zero, the
actual data byte which is defined as 0x00 [4, sec. 4.3.4.1] and two stop bits, transmitted
as logic one. The start code 0x00 identifies the following data as light values and shall be
interpreted from a DMX device accordingly. The codes 0x01 to 0xFF have been declared
for future use. If a DMX device receives any start code different than 0x00 it is not allowed
to treat the following data as light values [4, sec. 4.3.4.2]. This shall prevent the lights
from displaying data that are meant to be displayed†. Altogether 11 bits are transmitted,
which makes it 44 µs long.

����� ��� �� �	
���� ����� �	
���� ����

	���������

Figure 2.3: Structure of a DMX data packet. It is not mandatory to send all 512 channels so n can be
chosen to be 1 < n ≤ 512 [4, img. 5]

��������
����	
�� ��������

�����������������������

�����������

�����

�����������

Figure 2.4: Structure of DMX start code (SC) and channel data (CD). Total of 11 bits: The actual data
are represented by 8 bits.

Channel Data (CD) have the same structure as the start code, which is shown in figure
2.4. The difference lies in the transmitted data. These data are describing the value of a
certain DMX channel and must be interpreted accordingly. Here it becomes visible that
per channel only one value can be transmitted in a range between 0x00 and 0xFF, which
is 256 values. If a greater range of values is needed it is possible to split the signal to two
or more channels as described in the section DMX Devices. This, however, reduces the
available channels.

Every data frame (start code or channel data) is followed by a Mark Time Between
Packets (MTBP) signal (except the last frame, which is followed by MTBF). This signal

†Amendments of this standard define start codes different from 0x00, which are used, for example,
for remote device management (RDM) and shall not be interpreted as light signals. RDM is not covered
further throughout this report.

12 Chapter 2. Related Protocols

is very generic and can be transmitted as 0 up to 250 kbit, which leads to a delay between
0 and 1 s. If it is transmitted it must be sent as logic one. Usually this signal is not used
[4, table 1].

For the Mark Time Between Frames (MTBF) applies the same as for the before
mentioned MTBP. It can be sent as 0 up to 250 kbit. If the size is larger than 0, it is
required to send it as logic one. However, the BREAK signal will be transmitted as logic
zero so that the beginning of a new data packet can be identified.

Like figure 2.3 shows, the number of supported channels is limited to 512. A channel can
be seen as the address of a DMX device. If more addresses are needed it is possible to
set-up a second DMX-line (or even more). Since the control lines are independent, every
line has its own address space, which is often called a DMX universe. The number of
universes is obviously not limited because of the independence of each other.

Devices that comply to the standard DIN 56930:2000 are allowed to carry the signature
“DMX512/DIN”, “DMX512/1990” or “USITT DMX512/1990”. If a device can handle
short MAB signals the note “(4 µs)” can be added: “DMX512/DIN(4 µs)”,
“DMX512/1990(4 µs)”, “USITT DMX512/1990(4 µs)”.

2.1.5 Summary

DMX is a standardized protocol, designed for controlling stage devices such as plain lamps,
scanners, moving heads and so on. Every DMX device is connected to a control line which
fulfils the requirements of RS-485. The line starts at a DMX controller and is looped
through all stage devices. The end of the control line is terminated with an end-resistor.
The line itself cannot exceed a length of 1,200 m and cannot host more than 32 light
units. If the number of devices or the length of the line is exceeded an amplifier has to
be included. It is possible to split the signal line into several lines. This is useful in some
applications and might save wire. The architecture of a DMX network is star based, but
in can be reduced to a line architecture. The data send over a control line are introduced
with a start code (0x00) and followed with a maximum of 512 bytes representing the data
of the individual channels. One start-bit and two stop-bits are transmitted to signalize
the start and end of a data byte and start code, respectively. The data rate of the bus
is set to 250 kbit/s by the standard. A full data packet with 512 channels (assuming
that MTBF and MTBP is as small as possible) has a length of 5667 bit†. This leads to
a maximum of 44.1 DMX packets per second. In other words a refresh rate of 44.1 Hz.
Beside the actual data no bits for error correction are transmitted, which can lead to
corrupted data. Since only one device can send data to the network there is no need for
collision avoidance/collision detection. A DMX network is restricted to 512 channels. If
a greater amount of channels is needed a second, independent network can be set-up. A
network is also known as a DMX universe.

†BREAK + MAB + SC + 512·CD = 22 bit + 2 bit + 11 bit + 512 · 11 bit = 5667 bit

2.2. W-DMX 13

2.2 W-DMX

W-DMX is a proprietary protocol maintained by Wireless Solution Sweden AB. The com-
pany had been founded in 2003 by top professionals from the lighting industry and wireless
communication engineers [13]. Due to the proprietaryness, it is not possible to get tech-
nical details of the network protocol, others than they offered through their marketing
brochures and on-line. However, Wireless Solution calls W-DMX itself an “unofficial stan-
dard” [13], which shows a need for discovering the technology in more detail. The following
details will show what principles are used in order to get a good picture of the technology.
Details cannot be provided as long as they are not freely available. Even if the market-
ing material has a big focus on hardware like connectors, etc. The focus of the coming
paragraphs are on the technical details, meaning working principles, and not on physical
restrictions like connector plugs or similar.

2.2.1 Network Devices

The term W-DMX covers two aspects. The first one is the W-DMX network protocol which
is used for transmission and of most interest. The second one is the special hardware that
is sold by Wireless Solutions. Both aspects belong together since the network protocol has
to take physical restrictions into account. To get an image of what W-DMX can do both
sides will be shown but the focus will be set to the upper layers of the protocol. However,
this section will give a brief overview of the devices in a W-DMX network.

W-DMX Transmitter

The W-DMX Transmitter receives a DMX signal from a DMX line and sends them wire-
lessly to its connected receivers. The incoming data must be processed to form the desired
package. One part of this processing is called marshalling, which orders the received data
regarding to a certain structure. It will be discovered later in this chapter that the in-
coming data are processed in a way that an exact copy of the incoming signal can be
regenerated at the receiver. Some additional data will be included to allow error correc-
tion in the receiver. The transmitter is displayed as a black-box with an antenna, labelled
as “Tx” in the following images.

W-DMX Receiver

A W-DMX Receiver is the counterpart to the W-DMX Transmitter. One or more receivers
will be connected to one transmitter in order to receive DMX data over air. Note here that
multiple receivers can be attached to one transmitter but every receiver can only belong
to one transmitter. This is why the network principally looks like a star-network with the
controller/the transmitter as centre-point. The received data are processed in order to
retrieve the DMX values and corrects them if necessary. From the received data a DMX
signal is created and send over a DMX line to the light fixtures. A receiver is displayed as
a black–box with an antenna, labelled “Rx” in the following images.

W-DMX Repeater

W-DMX Repeaters are a combination of the two device mentioned above. It is connected
to a W-DMX Transmitter like any other receiver. The difference is that no DMX signal

14 Chapter 2. Related Protocols

will be created, hence the received data will be sent to another receiver or transmitter.
This allows the bridging of longer distances or obstacles. Because a repeater contains a
usual transmitter multiple receivers can be attached. repeaters will not be used further in
this chapter, therefore no image description will be given.

2.2.2 Network Architecture

W-DMX is designed in a way that it is compatible to DMX-512. The main advantage
is the wireless communication that replaces (at least) one cable connection as shown in
figure 2.5 and called Point to Point operation mode. This wireless transmission is
very useful in concerts where the light operator with the light controller is located in front
of the stage and has to bridge the crowd of people between him and the stage somehow.
Like the image shows, the light controller is connected to a W-DMX transmitter (using
a standard DMX connection) and the receiver on the other side is connected to the light
fixtures (again with DMX). This leads to the first observation that W-DMX just acts as
a wrapper for raw DMX signals. It could be seen as an alternative physical layer for the
data.

Figure 2.5: W-DMX Point to Point Operation [14]

Beside from this, a Point to Multipoint operation mode is available as seen in fig-
ure 2.6. The set-up is similar to the one before, but a second receiver is listening to the
same radio channel. In [13] this behaviour is described as a “big, virtual DMX splitter”,
where the number of receivers is not limited. This means that light fixtures can be freely
distributed, as long as they are in range of the radio signal. The wired connection of the
individual lamps is from that point on bound to the restrictions of DMX. This network
architecture is star based, meaning that all the communication is initiated from the con-
troller and than forwarded through W-DMX to its destination. This is generally nothing
new, since in DMX has the same network set-up. However, in DMX a special Y-connector,
also called splitter, is needed to perform a similar operation. The observation here is that
again W-DMX is not offering new technology, but just replacing the wired connection.
The physical properties of a wireless system, however, allows for less network devices.

2.2. W-DMX 15

Figure 2.6: W–DMX Point to Multipoint Operation [14]

The third way W-DMX can operate is in Multipoint to Multipoint mode. Figure 2.7
is showing the working principle. It can be easily seen that this is simply an application of
the Point to Multipoint operation mode and more a marketing gimmick than a technical
detail. By using this kind of operation mode two controllers are used, meaning that two
DMX universes are operating simultaneously, which increases the number of available
channels for every transmitter by 512. On the other hand this set-up allows to infer that
W-DMX is actually just transmitting the 512 channels of DMX and does not add any
further data (except error detection, which will be described next).

Figure 2.7: W-DMX Multipoint to Multipoint Operation (base image from [14])

2.2.3 Robust Data

Wireless Solutions promotes W-DMX with the term “Data-Safe” [13] to allow the cor-
rection of broken data in a receiver. The actual method is not described, only that it is
patented [13]. It is also mentioned that any corrupted data will be corrected before for-
warded. This seems like they are using an error correction algorithm, meaning that beside
the DMX data additional information must be provided to do error correction. Doing
this seems like a very good idea and should be considered in the proposed protocol that

16 Chapter 2. Related Protocols

will be described later in this report. However, error correction works always just up to a
certain limit. If data is totally destroyed or a packet gets lost this technique is not longer
providing the desired result.

2.2.4 Wireless Data

Another feature used for promotion is called “Invisi-Wire”, described as the “industry’s
true wireless replacement for a wire” [13]. It is mentioned that all DMX signals are
recreated. That is not just the actual light-data, but also all the DMX marks like “break,
mark after break, interslot timings and slot count parameters” [13]. This gives another
insight into the W-DMX system, namely that an exact copy of the incoming DMX signal is
created, transmitted and recreated. This information is essential in a way that the actual
network protocol that they use (which is not published!) can be reverse-engineered.

2.2.5 Wireless Communication

For wireless communication a radio frequency must be chosen and hardware must be
developed around this. W-DMX uses the 2.4 GHz and 5.8 GHz band [13]. These bands
are freely available for industrial, scientific and medical use and are therefore refereed to as
ISM-band [2]. In [14] the frequency of the 2.4 GHz band is given in more detail, saying that
“2402 to 2479 MHz” are used for transmission. The same source mentions that the output
power is restricted to 100 mW up to 300 mW†. More precise information about the 5.8 GHz
band that W-DMX uses had not been found. The advantage of using the ISM-band is that
it can be used worldwide without any license‡. On both bands (2.4 and 5.8 GHz) “adaptive
frequency hopping (AFHSS)” [13] is used. It is further described as “interference free”
meaning that “W-DMX will not be interfered with, or cause interference with other radio
systems [...]”. It might be questioned how true this statement is, since wireless-routers and
mobile phones are using the same frequency spectrum. This observation is also made in
[13], saying that the 5.8 GHz band is preferred in indoor applications§. 5.8 GHz might be
not available everywhere due to national restrictions.

The technical information given here are interesting, since they comply, at least in parts,
with the IEEE 802.11-standard. However, Wireless Solution does not say that they are
actually using this technology standard or not.

2.2.6 Communication Delay

The DMX signal that is created at any receiver will comply with the specifications of
DMX-512. This includes a full 512 channel packet, a refresh rate of 44 Hz and a maximum
number of 32 devices on a DMX line [13]. The number of W-DMX Receivers for a single
W-DMX Transmitter is not limited [13, 14]. It seems obvious that a wireless connection
has some kind of delay. Just from a physical point of view it is not possible to send
anything over a distance without any time delay. The brochures are talking a little bit
around this topic and goes from “without any delay” down to “virtually no delay” [13].

†“Only in FCC output power mode.” [14]
‡Restriction may be made in some countries.
§“[. . .] when additional [. . .] protection against interference is required, the 5.8 GHz band is the ideal

choice. 5.8 GHz is also the best choice when operating inside TV Studios or Live Recording environments
[. . .].” [13, p. 42]

2.2. W-DMX 17

How long “virtually no delay” is, in terms of seconds, is not mentioned. However, this
value might vary depending on the set-up infrastructure. Especially when it comes to
large distance fixtures where a lot of repeaters are needed this delay can sum up to an
observable time. The example in figure 2.8 will show a sample application with a high
level of delay caused by W-DMX. This set-up is legal, because a transmitter does not
care about who creates the DMX signal, it just sends it to its connected receiver. The
delay which is generated during transmission, as well as for marshalling/un-marshalling
accumulates over time. The time needed until all data are received by the first lamp can
be expressed as

∆t1 = ttransmission + tmarshalling + tunmarshalling + 2 · tdmx

= 1 · (ttransmission + tmarshalling + tunmarshalling + tdmx) + tdmx

(2.1)

where ttransmission is the time needed to send the data from a W-DMX transmitter to its
connected receiver(s), and tdmx is the time needed for transmitting the data over a DMX
line. The latter has to be used two times, simply because the two DMX lines are used
(controller to transmitter and receiver to lamp). tmarshalling and tunmarshalling are the times
needed for marshalling and un-marshalling the data in a transmitter/receiver. This value
could be equal to zero, if the received bits are directly put in the right position and not
buffered before. However, a delay can occur here and should therefore be mentioned.
The calculation of the delay time is an assumption and can be seen as worst-case. It is
used anyway to demonstrate how the delay could accumulate since no better formulae is
provided by wireless solutions. So it might be possible that ∆t1 is actually less or equal
to the time calculated here.

The interesting thing here is that the time of the DMX packet has to be counted twice.
This is because it is sent from the DMX controller through the wire to the transmitter,
which cannot operate before the full packet is available, what can be justified by the
assumption mentioned right before. The same counts for the receiver, who has to wait
for the whole packet to arrive to construct a new DMX packet. By adding a light to the
control network from figure 2.8, the time for transmission is increased by ∆t1 − tdmx. The
term −tdmx comes in because of the assumption that DMX line is looped through the
lamp and no additional delay occurs here. With this in mind a general form n lights can
be given as

∆tn = ∆tn−1 + ∆t1 − tdmx

= n · (ttransmission + tmarshalling + tunmarshalling + tdmx) + tdmx

(2.2)

The most interesting question is how large the delay between the first and the last light
fixture is. This can be easily calculated by

∆tlarge = ∆tn − ∆t1

= nT + tdmx − (T + tdmx)

= nT + tdmx − T − tdmx

= nT − T = (n − 1)T

(2.3)

where T = ttransmission + tmarshalling + tunmarshalling + tdmx. Since there are no information
available about the actual times needed for marshalling and un-marshalling, as well as

18 Chapter 2. Related Protocols

for the transmission (in the above calculations it had been assumed that the ttransmission

is equal for every transmission), only this abstract description of the delay can be given.
However, it can be seen that the delay between the first and last light is depending on the
number of lights. This is not a problem as long as it can be guaranteed that ∆tlarge < ε,
where ε is the time that a human being is able to recognize as a delay. However, there is
no official limit for n and therefore one could potentially create a network where the delay
sums up to a recognizable time, without having the intention to do this.

Even if this situation seems to be a little bit theoretic, it might be become a real problem
when lighting a larger area like a whole city or a long ski slope observed from distance.

Figure 2.8: A case where W-DMX might generate high delays. The number of moving heads is not
explicitly limited by DMX. Every lamp is set to channel #1. The DMX data must therefore be forwarded
up to the last device.

2.2.7 Summary

W-DMX is a proprietary network protocol to transmit DMX values wirelessly. Beside the
software special hardware is needed, which is sold by Wireless Solutions Sweden AB and
partners.

The specialized hardware consists of transmitters, receivers and repeaters. Transmitters
are usually connected to a light controller which will provide the data in DMX format.
The data will be processed and prepared to be sent wirelessly to the attached receivers or
repeaters. Receivers are connected to one transmitter or repeater and via a DMX control
line to a number of lights. The received data is used to reconstruct the DMX data and
once this has been done it is sent to the lights. Repeaters are middle devices and used to
increase the operating range of W-DMX. All the time one receiver can be connected to one
transmitter/repeater, but one transmitter/repeater can have multiple receivers attached
to it. This way a W-DMX network always has a star architecture; In some special cases
this can reduce to a line architecture.

The actual sending is done in the 2.4 GHz or 5.8 GHz band, also referred to as ISM-band.
The output power is restricted to 100 mW (300 mW†). Adaptive Frequency Hopping Spread
Spectrum is used. W-DMX supports a 44 Hz refresh rate, which is the same as in DMX.

†“Only in FCC output power mode.” [14]

2.2. W-DMX 19

The delay in a W-DMX network is not given explicitly anywhere, but some small calcula-
tions shows that the actual delay will be dependant on the number of wireless links and
can potentially sum up to a visible amount (assuming a worst-case implementation).

Concluding: W-DMX comes close to what this project wants to cover, but it still lacks
some important features that might be needed to be future proof. This includes a better
handling of delays, a complete removal of control lines and an address space that is not
as restricted as DMX.

20 Chapter 2. Related Protocols

2.3 Art-Net

Art-Net is a UDP-based network protocol for controlling stage devices. In its current
version it is open, meaning that all details of the protocol is published. Art-Net had
been developed and is maintained by Artistic Licence Holdings Limited. The technical
description can be downloaded†, but is also included as version 1.4bf in appendix C. Unlike
DMX-512 or W-DMX, Art-Net does not define a physical layer and relies completely on
ready to use network hardware.

Art-Net had been developed to “transfer [. . .] large amounts of DMX512 data over a wide
area using standard networking technology” [1]. This will be examined by looking into
the network topology of an Art-Net network and its devices. The most important Art-Net
packages will presented briefly. Addressing of the Art-Net devices differs significantly from
DMX-512 and will be covered in section 2.3.2.

2.3.1 Devices in Art-Net

Art-Net relies on a standard computer network (usually a local area network) and on its
designated hardware. It is not restricted to a specific hardware or bandwidth, but it is
mentioned that dependant on the hardware the number of addressable universes changes
[1, p. 1]. Only in a 1000BaseT network the full range of 215 universes can be used.
Obviously, this is because the faster a network can deliver data packets, the more packets
can be potentially sent.

Network Devices

Since the basis of Art-Net is a classical computer network, all devices that are commonly
used can be included in an Art-Net set-up. This might include

• router

• switch

• hub

• bridge

• wireless access points

• repeater

• . . .

It must be said clearly, that those devices can be used, but do not have to be included.
The actual situation shows a demand for a specific network.

Controller

The Art-Net standard describes a controller as a device whose main task is to generate
control signals. It can be DMX controller with an DMX to Art-Net converter attached
or a special lighting console with the capability to output Art-Net data. A controller can

†http://www.artisticlicence.com/WebSiteMaster/User%20Guides/art-net.pdf [03-2014]

2.3. Art-Net 21

also be PC/laptop with a specific software running on it. Since a computer is usually
equipped with some kind of network card it is the preferred machine to use as a controller.
The huge amount of universes and therefore channels might be controlled better from a
computer than from a console.

Node

A node is any device whose main task is to receive Art-Net control signals. This is often a
small device converting Art-Net packages to DMX. However, a lamp that is able to receive
Art-Net signal immediately is also called a node in Art-Net.

Media Server

Media Servers are the third kind of device used in the Art-Net standard. It is described as
a device that is capable of generating control “signal based on the ‘mx’ Media Extensions
to Art-Net”[1]. However, this device will not play any role in the following paragraphs
and shall only included for completeness.

DMX Devices

Beside the computer network n plain DMX networks are needed in Art-Net (see figure
2.9). n is a value between 1 and the maximum number of universes described in [1, p. 1].
A plain DMX network is one as described in section 2.1. No additional restrictions for
these devices are introduced here.

2.3.2 Topology

Art-Net is defined as a protocol working on top of UDP. This allows to use standard
networking devices and network connections. The advantage of this is that already estab-
lished network technology can be used and does not need to be constructed individually.
Figure 2.9 shows a sample architecture for an Art-Net network. The heart of the set-up is
a common computer network. Within this figure it is assumed that the controller is able to
output an Art-Net signal. If not, for example a DMX controller is used, another converter
is needed to wrap the DMX signal into an Art-Net package. All packages are forwarded
trough the network to its destination node, which is an Art-Net to DMX converter, shown
as a small black box in the image. Art-Net knows two kinds to forward packages. Peer
to Peer and Controller to Peer. This is called a topology in the Art-Net standard and is
described in the following paragraph.

22 Chapter 2. Related Protocols

�������

��	���

�� ����	���������

����	��������	

�������������

��	������

����	��

��	���
�
�	��

���������������

Figure 2.9: Overview of an Art-Net network. Devices in the cloud are casual networking devices such as
routers, switches, and others. Devices in a DMX universe are plain DMX devices (W-DMX might also be
possible). A converter from Art-Net to DMX is necessary. The controller outputs an Art-Net signal. If a
DMX controller is used, another converter must be included. n ≤ max. number of universes in Art-Net.

Art-Net defines two topologies for their networks:

1. Peer to Peer is called an unmanaged network, where all devices are able to send
and receive data. For communication only ArtDmx are used which are always sent
to the directed broadcast address 2.255.255.255 (or 10.255.255.255 depending on the
network switch†). This means that all devices on the same local network will receive
the packet. Beside the direct broadcast a limited broadcast is known by Art-Net,
which has the address 255.255.255.255. Art-Net Packets shall not be sent to this
address [1, p. 2: Limited Broadcast].

2. The second topology described is called Controller to Peer. In this set-up one or
more controllers are used to manage the network and the respective traffic. Commu-
nication occurs only between controllers and Art-Net devices. In this operation mode
up to 215 = 32, 768 universes can be managed. However, the number of universes
is also dependant on the bandwidth of the network. To use all 32,768 universes a
bandwidth of 1000BaseT is needed.

Since UDP is used to sent and receive data, an IP address must be provided to allow the
Internet Protocol to work properly. This can be done dynamically by using DHCP‡ or
statically. If used the latter one, two possible modes must be considered:

1. Custom IP address (IP address and subnet mask can be programmed to own rules)

2. Default IP address (IP address chosen according to table 2.2, subnet mask is set to
255.0.0.0)

†The network switch is located at the actual Art-Net device and can be set to on or off. It is not
explained where the network switch is used for other than changing the first octet of the IP address from
2 to 10. Maybe this is introduced to avoid IP address conflicts.

‡DHCP: Dynamic Host Configuration Protocol, assigns network configurations (like an IP address) to
a client from a server.

2.3. Art-Net 23

Product Switch Settings A B C D Subnet Mask

Custom IP As Programmed As Programmed

Network Switch Off 2 x + OEM y z 255.0.0.0

Network Swith On 10 x + OEM y z 255.0.0.0

Table 2.2: Definition of IP address for Art-Net devices.

To arrange an IP address for an Art-Net device, the MAC address and a special OEM code
is used. The MAC address is a 6 byte number in the format u:v:w:x:y:z and is globally
unique. The first three bytes (u, v, w) are assigned to the vendor, the last three bytes (x,
y, z) form a unique number for every device[1]. OEM is a special 4 byte code provided
by Artistic Licence. A list of sample codes can be found in appendix D. The fields C and
D are taken directly from the MAC address. Field B is computed as B = x + OEM(high
byte) + OEM(low byte) to make it more robust against IP address conflicts.

2.3.3 Art-Net Packets

UDP uses ports to deliver the package to the right application. Art-Net uses port number
6454. However, the port is not officially registered at IANA†. Registered or not, potentially
every application could send datagrams to this port. To avoid messy data only packets
that comply with the specification can be accepted by a node. This includes a common
Art-Net header, shown in table 2.3. “Any other packets are ignored”[1].

Offset (bytes) 0 1 2 3

0 ‘A’ ‘r’ ‘t’ ‘-’

4 ‘N’ ‘e’ ‘t’ ‘\0’

8 OpCode Protocol Version (14)

Table 2.3: Characters in quote signs are ASCII encoded. ‘\0’ is the null character. OpCode describes the
purpose of the packet numerically. DMX values will be sent in a packet with the code OpDmx (0x5000).
A list of OpCodes can be found in appendix C, table 1. Current protocol version is 14.

Art-Net defines 16 packets for discovery, operation and management of the network. Two
packets shall be shown in more detail, namely that is ArtPoll (and ArtPollReply) and
ArtDmx. The first one is interesting, since it discovers the network and gets information
from the devices back and the second one because it is directly related to the 2 chapters
covered before. The other packets have their right to exist but do not influence the
operation of the Art-Net network other than by producing traffic. However, this is not
the focus of this analysis.

ArtPoll / ArtPollReply

When a network set-up is started the first time none of the units in the network know
anything about the other devices. To change that a controller sends out an ArtPoll
request to the directed broadcast address 2.255.255.255 (subnet mask 255.0.0.0, Art-Net
port 6454). The intention of this message to spread out the information about the different

†http://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml?search=6454 [accessed 14-03-2014]

24 Chapter 2. Related Protocols

devices into the network. This will be told the devices with the data field OpCode in the
Art-Net header (OpCode OpPoll (0x2000) has to be used). Only two more fields are
included in this packet. TalkToMe which has three flags, indicating if the sender of the
message wants to receive diagnostic data, if these data are sent as broadcast or unicast
or if only ArtPollReply messages shall be sent in response to an ArtPoll or ArtAddress
packet. Lastly, the priority of this message can be set by a user to low (0x10), medium
(0x40), high (0x80) or critical (0xE0) in the Priority field.

Figure 2.10 shows a sequence chart of the ArtPoll request. It can be seen that it is
broadcast and because of this received by the sender itself. Every unit receiving this
request has to reply with an ArtPollReply message to the directed broadcast address,
even the sender. This allows that after a single request all Art-Net devices have sent their
information to the network and no further service discovery is needed.

���������� ��	�

������

����������

������

������

����

Figure 2.10: Packet flow of an ArtPoll request

The Response to an ArtPoll packet is called ArtPollReply. It is sent to notify the network
about important information about this unit. The packet itself has 41 named data fields,
many of them are used for general purposes such as status, firmware version or name†.
Four fields are of major interest: IP Address[4], Port, MAC and Port-Address, which
is not a single field, but split to the three individual fields: NetSwitch, SubSwitch and
SwIn[4]/SwOut[4].

IP Address[4] contains the IP address of the device sending this message, Port is the port
that it uses for listening to Art-Net packets. The port is fixed to 6454. These information
are very important for further execution. This way a command for a specific universe can
be sent directly to an Art-Net node without a need for broadcast, which will reduce traffic
and increase performance. This operation mode must be used if more than 40 universes
shall be hosted in an Art-Net network [1, p. 1]. To address a universe, the scheme in table
2.4 is used. Net (bit 14 – 8 from table 2.4) is transmitted in the 7 least significant bits of
the NetSwitch field in the ArtPollReply packet. The same applies for bit 7 to 4 (named
Sub-Net in table 2.4), which is transmitted in the SubSwitch field. The Universe (bit 3 to
0 in table 2.4) is sent in two fields identically: SwIn[4] and SwOut[4]. Since this field is
an array of length 4, up to four different universe addresses can be sent per output-, input
connector. This is a smart option, since a single Art-Net node can have more than one
DMX output/input. This way all gateways can be addressed by this packet. By looking
closer to table 2.4, it can be seen that 15 bits are used to encode a DMX universe, what

†It seems not necessary to describe every single field in detail here. For a full list of fields please see
appendix C

2.3. Art-Net 25

brings a total of 215 = 32, 768 universes that can be addressed. On a device this address
can be set and reset.

Bit 15 Bit 14 – 8 Bit 7 – 4 Bit 3 – 0

0 Net Sub-Net Universe

Port Address

Table 2.4: Definition of Port Address for Art-Net universes. 2
15 universes can be addressed.

ArtDmx

���������� ��	�

����

Figure 2.11: Packet flow of ArtDmx

The ArtDmx packet is described in detail by [1, p. 20ff.]. The most important fields are
OpCode, Length and Data[Length]. The OpCode for this kind of packet is 0x5000. Length
describes the number of values transmitted in the Data field, which contains the actual
DMX values. Since up to 215 universes can be addressed and a node can potentially send
data to more than one universe, the port address described in table 2.4 is included in the
packet in the Net and SubUni fields.

Image 2.11 show the data flow of an ArtDmx packet. It is sent from a controller to a node.
This can be done by unicast or broadcast, where unicast is generally recommended. It is
mandatory if more than 30 universes shall be driven in one network.

To say that an ArtDmx packet is always sent from a controller to an Art-Net node is a little
abstraction. It is possible to use a DMX controller which outputs a DMX signal, input it
to an Art-Net node which forwards it over a network to the specified node to un-marshal
the packet and create a new DMX signal. In this case the communication would be node
to node communication. However, the behaviour is the same. One node/controller sends
an ArtDmx packet and the other one receives it. No acknowledgement will be sent.

It must be mentioned here, that the ArtDmx packet does not transport any information
for error correction, neither does the underlying UDP packet (The packet gets dropped
if an error is detected). This might speed up the communication, but it also makes it
unreliable. Especially in an environment where wireless paths are included and a lot of
traffic occurs this might have an impact on the quality of data. This might be a drawback
of Art-Net.

2.3.4 Summary

Art-Net is an application layer protocol that is based on UDP to control stage devices.
The promising advantage is that it relies completely on standard network techniques as
known from local area networks. The protocol itself describes 16 packets all starting

26 Chapter 2. Related Protocols

with a standard Art-Net header. Since Art-Net relies directly on an computer network,
it is simple to write computer applications that can control stage lights. Almost every
programming language offers direct support for creating and sending UDP packets. This
might be a big advantage because it can be abstracted from the actual value to more
descriptive methods like a GUI on a computer screen. For example this can be a colour
wheel instead of three numeric values.

The communication between the devices is strictly regulated by the standard and an
example of ArtPoll and ArtDmx had been given. One observation here is that ArtDmx
has no methods included for error correction, neither has the underlying UDP protocol.

Art-Net has the largest range of available addresses for DMX. Even if the DMX standard
is not touched, the introduction of 15 bits for describing the address of the universe gives
a total of 215 · 512 = 215 · 29 = 224 = 16, 777, 216 DMX addresses in theory. However,
this is only available if the network fulfils a certain bandwidth and unicast is used. But
because Art-Net is connected to DMX control lines, it has to take the restrictions of DMX
into account.

2.4. Conclusion 27

2.4 Conclusion

This chapter gave an overview of the DMX-512, W-DMX and Art-Net protocol. DMX-512
is the only protocol of the three that had been standardized through an official authority.
As a result DMX-512 has a high influence on other protocols. W-DMX and Art-Net are
coming from the business sector and follow own goals. While W-DMX had been created to
replace one or more wires, Art-Net wanted to get rid of the restrictions of addresses that
is given by DMX-512. Both reach their aim, but none of them brings in fundamentally
new concepts. Both rely on the principles of DMX-512 and its restrictions though. To
increase the number of addresses both introduce a technique to drive separate universes
side by side.

W-DMX introduces error correction, which seems to be a very good idea in order to avoid
corrupted data. This is an advantage over pure DMX-512. However, once the data packets
are corrected they are transmitted as plain DMX packets, which makes W-DMX applicable
for a wide range of devices already on the market, but also less safe for data. W-DMX
forms a first step towards a completely wireless stage lighting but it is still restricted to
limits of DMX-512.

DMX-512 W-DMX Art-Net

Topology line, star line, star depends on network

Physical Layer RS-485 RS-485 + wireless RS-485 + network

Devices - Controller
- Splitter
- Repeater
- Lamp

- Controller
- Transmitter
- Receiver
- Repeater
- Lamp

- Controller
- Lamp
- Art-Net to DMX
converter (node)
- network devices

Addresses 512 per universe, un-
limited universes

512 per universe, un-
limited universes

512 per universe,
max. 215 universes

Data Trans-
mission

1 to 512 channels,
position = address

like DMX like DMX

Resolution 8 bit/channel 8 bit/channel 8 bit/channel

Reliable Data? no in wireless part no

Reliable
Transmission

no wireless: unknown
DMX: no

network: no (UDP)
DMX: no

Synchronization within universe† within universe† within universe†

max. distance ≤ 1, 200 m
≤ 32 units

like DMX plus wire-
less path

like DMX plus net-
work

Table 2.5: Comparison of DMX-512, W-DMX and Art-Net

Art-Net is based on UDP, which allows to use standard network devices such as routers,
switches and so on. This is a clever idea since these devices are relatively cheap to buy

†Signals for multiple universes can be externally synchronized by sending data to the universe at the
same time. After sending it is not possible to synchronize data any further, since communication between
universes is not possible.

28 Chapter 2. Related Protocols

and maintain them. However, Art-Net has nothing like error correction and has to follow
the restrictions from DMX-512.

The most important features are compared in table 2.5. It can be seen, that W-DMX and
Art-Net are dependant on DMX-512, but also that both protocols introduce new ideas to
extend the existing DMX-512 standard.

3 Problem Formulation

Chapter 2 gave a detailed overview of three existing protocols in the area of stage lighting.
This chapter will use the discovered results to address problems which might occur in
practical and theoretical applications. The given problems will be listed and prioritized.
This list of problems will then be used to formulate the main problem(s) that this master
thesis aims to cover. Therefore this chapter is of utmost interest because it will indicate
an overall direction of the following parts of this report.

3.1 Address-Space

DMX has a maximum of 512 addresses per universe. A universe is an independent network
and no communication to other universes is possible. The same restriction applies for W-
DMX. Art-Net, however, includes in its packets a port address, which addresses a universe.
This allows for one controller to send signals to multiple universes. Some light control
manufacturer developed control panels for DMX that allows for direct connection to a
second (third, fourth, . . .) universe. This allows for more channels.

A drawback of current systems is that values have an 8-bit resolution. This makes 256
possible values per channel. Once more values are needed, like for moving heads or coloured
lights, a second channel needs to be used.

A single network with more addresses would allow for simpler maintainability and better
synchronization of lights. By providing a higher resolution of date, for example 16-bit, the
number of necessary channels drops and more units can be driven in a network.

3.2 Reliable Communication

The term reliable communication means that a value is definitely be delivered over a
network and delivered correctly. None of the mentioned protocols include mechanisms to
provide this. Only W-DMX has an error correction in its wireless part. This is good,
but once it had been received the signal is forwarded over a DMX line which is again
unreliable.

A mechanism that acknowledges transmissions and checks data for correctness would pro-
vide a more reliable network protocol. It could than potentially be used for applications
that directly affects safety and health, such as pyrotechnics.

29

30 Chapter 3. Problem Formulation

3.3 Topology

DMX and W-DMX use a line/star topology. This is because of the physical cable of DMX,
which has to be looped through each lamp. Art-Net uses a computer network which is
not further described. It can be potentially anything, including the internet.

A star topology with the control panel in the centre, seems to be well suited for most
applications. Only in special cases, such as shown in figure 1.3 this topology is not optimal
and a mesh network is better suited. Section 4.2 will deal with different topologies and
bring up the best one for general purposes.

3.4 Transmission

This is the point where all three protocols are using a different approach. All three will
be studied at their physical and application layer. Layers in-between are of less interest.

3.4.1 Physical Layer

DMX uses a physical cable as defined in RS-485. It has four data lines, one ground line
and a robust XLR-plug. The cable path starts at the controller, going to the first lamp,
to the second and so on until all lamps are connected. Lamps do not have to be in any
specific order.

W-DMX uses DMX plus a wireless connection to remove one part of the wire. The cable
starts here at a controller and ends in the W-DMX transmitter. On the other side a W-
DMX receiver gets the signal and forms a new DMX signal from it which is then forwarded,
like DMX, through each individual lamp.

Art-Net replaces like W-DMX one part of the control line. However, this part can be
more or less any computer network that is able to send UDP packages. It can be wired,
wireless, fibre or anything else. Usually the signal comes from a controller and is inserted
into the network. At the end of the network an Art-Net node converts the signal into a
DMX signal and sends it to the individual lamps over a DMX control line.

For modern applications with a large number of light devices and possibly multiply uni-
verses, a lot of cables are needed. A wireless solution would reduce the cost of transporta-
tion and helps providing a better work environment for technicians setting up and down
stages.

3.4.2 Application Layer

All three protocols follow the same approach on the application layer. This is collecting
all data for a universe, from a light console usually, and sending them in a bulk to the
lamps. This way every lamp receive 512 values, many of them are not needed. However,
this makes it easy to change an address of a lamp or even to set more than one lamp
to the same address. On the other hand the length of a DMX packet as shown in figure
2.3 together with the data-rate of 250 kbit/s results in refresh rate of around 44 Hz. By
sending more channels in the packet, the refresh rate would drop.

3.5. Synchronization 31

In order to keep a refresh-rate of 44 Hz, a new application layer must be developed.
Especially when the data resolution is going to increase, this bulk approach must be
reconsidered.

3.5 Synchronization

Within a DMX network data synchronisation is done physically. Since all lights listen to
the same control line, all lights will receive the same data at the same time. The largest
delay here is between the first channel, which receives the light value at first and the last
channel. This delay is td < 1/44 s < 22, 73 ms and therefore small enough to be ignored.
Appendix B provides a small script that shows the impact of 23 ms delay. Manufacturers
of stage lamps might include a small waiting period, so that the first and last lamp will
display at the same time.

As good as the synchronization is within a universe, the bad it is between universes. Since
no communication between universes can exist, no synchronization can be performed. It is
still possible to send signal to multiple networks immediately, but it cannot be guaranteed
that lamps will display light values at the same time. Additional delays could occur (e. g.
a W-DMX or Art-Net path in a second universe) that do not affect the universe itself, but
the synchronization of the different universes.

Synchronization is today and still will be in the future an important part of a network
protocol designed for light applications.

3.6 Conclusion

The problems that are caused by current light control protocols have been shown. This
following listing will show these problems point by point:

• Only 512 channels (addresses) available

• More channels are available by introducing another independent network

• No synchronization between networks (universes)

• Data sent over DMX, W-DMX or Art-Net are not reliable, nor can it be ensured
that they are delivered

• All data is sent at the same time to all lamps

• Data is sent over a physical cable

This master thesis will work on these problems and will propose a new network protocol
to control stage lights. That is mainly

• the increase of possible addresses in a network to allow a bigger amount of lamps,

32 Chapter 3. Problem Formulation

• and wireless communication between lights to save costs for transportation and con-
nection.

It will be studied if the transmission of data will be still performed, as DMX does, in a bulk,
or if an individual addressing might be more suitable. The same applies for the network
topology. It must be worked on the question, if a new topology must be introduced, or if
existing ones are still suitable for the changing application layer.

4 Requirement Analysis

This section will analyse the problems from chapter 3 in more detail and offers solutions.
These solutions will then be used for further development in the following chapters. This
chapter is of much interest, because decisions made here will have impact on the rest of
the project.

4.1 Address-Space and Data Resolution

In the presented protocols, the addresses are limited to 512 per universe. Simply increasing
the number of channels that are transmitted will result in a lower refresh rate. As a
reminder: the data-rate of the DMX bus is set to 250 kbit/s and cannot be changed. The
size of a DMX packet is a function of the number of channles:

fdmx(n) = BREAK + MAB + SC + n · CD

= 22 bit + 2 bit + 11 bit + n · 11 bit

= 35 bit + n · 11 bit

(4.1)

By sending all 512 channels the size of the packet is fdmx(512) = 5667 bit. The refresh
rate ρ can be expressed as a function of the number of channels

ρ(n) =
250 kbit/s

fdmx(n)
=

250 kbit/s

35 bit + n · 11 bit
(4.2)

For 512 channels a refresh rate of ρ(512) ≈ 44.1 Hz can be calculated. This is the same
as mentioned in [4]. A simple boundary value analysis shows that ρ will become smaller
and smaller the larger n gets.

lim
n→∞

ρ(n) = 0 (4.3)

This shows that it is not feasible to send more channels (and therefore more data) via
DMX, since this causes the refresh rate to drop. To be compatible with existing DMX
devices, a refresh rate of 44 Hz should be kept.

The solution to the problem of not enough addresses could be solved by addressing in-
dividual lamps and not just the features within a lamp. This way a RGB-lamp with six
channels needs only one address. However, this is a major change and needs beside clearly
defined packages another, faster physical layer. This can be seen by equations 4.2 and

33

34 Chapter 4. Requirement Analysis

4.3, where fdmx has to be exchanged by another function f̂ , describing the size of the new
packages. However, this new function is still dependant on the number of units in the
network (also the type of units, since different units request different packets) and will
increase with the number of devices in the network. Therefore the equation 4.3 will yield
for the same result.

The advantage of this new approach is that features of a light within a package are not
longer restricted to an 8-bit resolution. Features can than have individual numerical data
types such as BOOLEAN, INT-8, INT-16 or even higher. This will provide a more suitable
data format. Certain features can be turned on and off, just by setting a specific flag and
other, more complex parts can retrieve data in an 16 or 32-bit resolution. However, this
approach will only work on a physical layer that has a much higher data-rate, since this
will be a fixed value for calculating the maximum number of devices for the wanted 44 Hz
refresh rate.

4.2 Topology and 802.11

Section 4.1 already showed that another physical layer is needed when more addresses shall
be supported in a light control network. Chapter 3 also mentioned that a cable connection
must be transported and set-up/teared-down for every event. A wireless connection would
solve these problems. On the other hand a topology must be chosen for a certain physical
layer.

Since the controlled stage lights have to be connected through a network, it seems a small
step to use standard wireless network devices. It is assumed that each lamp has a wireless
network card, which will not be the case for most device today. That standard network
devices works in principle is shown by Art-Net, who are using this technology already. By
going over to a completely wireless network, a topology must be chosen to operate on.
IEEE 802.11 defines two operating modes:

1. Infrastructure networks

2. Ad-Hoc

Infrastructure networks rely on a central device that organizes the network and per-
forms routing. This device is known as an access point [2, p. 11]. Ad-Hoc networks do
not need this central device, since it organises itself. This makes the network more secure
(one device less used means one device less that can malfunction), but also more com-
munication is needed for maintaining the network. However, in ad-hoc networks routing
usually takes place in layer 3. To improve the performance the IEEE standard 802.11s
for mesh networks had been developed. It basically defines another MAC-layer that is
capable of routing on layer 2.

4.2.1 Perfomance in 802.11s

For mesh networks using 802.11s a physical layer must be chosen. [15] compares the
performance of 802.11b/g and 802.11n in an 802.11s mesh network. The results can be

4.2. Topology and 802.11 35

seen in figure 4.1. Two results can be extracted from that image. First, 802.11n performs
better, meaning a higher throughput could be measured compared to 802.11b/g. Second,
the throughput drops dramatically with an increasing number of hops. In [15, sec. 5.6] it is
therefore recommended to not exceed four hops. This limitation is a major point to reject
the idea of a mesh network of stage lights. In a practical application, like shown in figure
1.1, much more than 4 lamps exist close together. In a worst case scenario the 802.11s
routing protocol (HWMP†) could decide to hop over every light, which would result in a
unreliable and unpredictable low throughput.

Even in a set-up where lights are distributed sparsely (like shown in figure 1.3), an 802.11s
mesh network is not optimal. By taking the 802.11n physical layer, a distance of 300 m can
be covered, in theory. By building a chain of four lights, a maximum distance of 1,200 m
could be reached. However, 300 m is quite a far distance for lights. More realistic would
be a distance of less than 50 m. This would result in maximum length of less than 200 m,
which is far less than DMX can potentially do today (1,200 m) without amplification of
the signal. For these reasons a mesh network is not any longer considered.

Figure 4.1: Comparison of TCP throughput of 802.11b/g/n physical layers. Copied from [15, fig. 4b]

4.2.2 Performance in 802.11b/g/n

802.11b/g/n networks are popular today and the mostly known ones for wireless local
area networking. The performance varies through a large amount of parameters, such
as the modulation (FHSS, DSSS, OFDM, . . .), the collision avoidance/detection scheme
and others. In [3] these parameters are listed and compared for 802.11a/b/g, with the
aim to show the theoretical maximum throughput of 802.11 networks. Unfortunately
802.11n is missing in this paper. However, the two most important results are that the
actual throughput that can be performed will be less than the net data-rate. Much less.
Secondly, the throughput is dependant on the amount of data sent in a package (see figure
4.2). This makes sense, since every new data frame has an overhead and by sending many

†HWMP is the satndard routing algorithm used in 802.11s. It is hybrid, so that it can work on static
and mobile networks. HWMP stands for Hybrid Wireless Mesh Protocol.

36 Chapter 4. Requirement Analysis

small data packages more overhead than data is transmitted, which causes the throughput
to drop.

Figure 4.2: Theoretical Maximum Throughput (TMT) on 802.11 networks with FHSS, DsSS, HR-DSSS
all with CSMA/CA (left) and HR-DSSS, OFDM with CSMA/CA (right). Copied from [3, fig. 4 and 6]

An infrastructure mode must be chosen to complete the topology. On a first glance ad-hoc
mode seems to be the best approach, since no additional hardware is needed. This is true.
But an infrastructure network offers some nice features that can make it more generic for
general purposes. One of this feature is that one is not restricted to wireless, as it would be
in an ad-hoc network. This way a fast backbone network could be established that helps
to increase the range, without causing interference. Additionally network devices can be
used which are not capable of ad-hoc networking, such as Android smartphones/tablets,
or similar.

4.2.3 Summary
Mesh networks do not offer the degree of freedom as it seemed in the beginning. “Normal”
802.11 wireless networks perform in most cases better. The choice between 802.11b, g and
n will go to the g standard. It might be sufficiently fast to support a large number of devices
and good assumptions can be made upon the results from [3]. It is further assumed that
every lamp and other device that shall be controlled, is able to receive wireless control
signals, meaning that it has a radio receiver built-in. If this is not the case, an adapter as
shown in chapter 7.2 can be used.

4.3 Application Layer

The application layer of DMX is held very simple. Every channel has only one value
in the range of [0, 255]. By changing the addressing from feature wise to unit wise, the
application layer has to be changed accordingly.

Since a standard wireless network will be created between the lamps, UDP will be used to
deliver packets. UDP seems to be a good choice, since it delivers fast (compared to TCP)
and has only a small overhead. The data inside the datagram will be the actual values for
the lamp(s). Two basic ideas must be considered when it comes to sending the data.

4.3. Application Layer 37

1. Send data for each lamp in an individual packet

2. Send data for multiple lamps in one packet

The first approach seems to be more sophisticated and draws a clear line between itself and
DMX. The second one is closer related to DMX. With the results from [3] both approaches
can be compared. In [3, eq. 5] is shown that the maximum throughput depends on the
amount of bytes transmitted per packet (here equation 4.4). For the formula it is chosen
a = 0.14815, b = 159.94 (OFDM, CSMA/CA @ 54 Mbps).

TMT (x) =
8x

ax + b
· 106 bps (4.4)

The following calculations want to show how many dimmers can be operated at a data
rate of 54 Mbps. Equation 4.5 will show the size of a single packet. This includes the
overhead of the lower layers up to MAC layer. It is assumed that the value for the dimmer
is 1 byte.

x = IP Header + UDP Header + Light data

= 20 byte + 8 byte + 1 byte = 29 byte
(4.5)

With this as a starting point, the theoretical maximum throughput can be calculated next.

TMT (29) =
8 · 29

0.14815 · 29 + 159.94
· 106 bps

≈ 1.4126 Mbps
(4.6)

Since a refresh rate of 44 Hz should be kept, the throughput per 1/44 second is of more
interest. The time of 1/44 second, which is approximately 23 ms, will be called in interval
and represented with the unit i in the following equations.

1.4126 Mbps

44
= 32104.55 bpi (4.7)

From this value the maximum amount of packages that can be send will be computed in
equation 4.8. This is done by dividing by the size of a single packet.

32104.55 bpi

29 b/Packet
≈ 1107 Packets/interval (4.8)

The result of 1107 Packets maps directly to 1107 lamps that could be driven. Compared
to DMX that is 1107 channels or 2.16 universes.

Computing the maximum amount of lamps with equation 4.4 by sending every time
1500 byte, the throughput will change to:

TMT (1500) =
8 · 1500

0.14815 · 1500 + 159.94
· 106 bps

≈ 31.4 Mbps
(4.9)

38 Chapter 4. Requirement Analysis

Again the throughput per interval is of major interest:

31.4 Mbps

44
= 713.63 kbpi = 713636.363 bpi (4.10)

The maximum amount of packets can be computed similar to equation 4.8. However, since
the number of packets is not mapped directly to number of lights, it must be calculated
how many lights can be driven with each packet. To distinguish between the light data, a
new light header is introduced. It contains the address of the device and is 2 byte for this
calculation†. Because the nature of

x = IP Header + UDP Header + n · (Light Header + Light data)

= 20 byte + 8 byte + n · (2 byte + 1 byte) ≤ 1500 byte; n ∈ N

⇒ n = 490

(4.11)

With the knowledge that a single packet can drive up to 490 dimmers, the total amount of
lights that could potentially be driven can be calculated. Equation 4.12 uses the theoretical
maximum throughput per 1/44 second divided by 1500 bytes, the size of the packet.

713636.363 bpi

1500 b/Packet
≈ 475 Packets/interval (4.12)

By combining the results from equations 4.11 and 4.12, a maximum amount of 232,750
units can be driven. Compared to DMX this is 454.5 universes. The results shows that
the second approach is better. However, a practical problem arises here: Only 2 bytes
had been used in the example to address devices. This is a maximum of 216 = 65, 536
addresses. To give every of the 232,750 potential units a unique identifier, the address
field must be at least 18 bits long.

Combining the results to each other, it shows clearly that the latter approach gives a much
higher throughput and therefore a much larger number of potential units in a network.
Since these calculations are for demonstration purposes only, the numbers itself are of small
significance. The calculations will be repeated, once the packets are designed. Even if the
second approach uses a little bit more space for addressing, the result is clearly better.
The application layer of the proposed solution will therefore take the second approach,
sending multiple values in a single packet, into account. Packets containing multiple light
values will be sent as broadcast. This way all network units will receive the message and
pick the information that is intended for them (indicated by the address field).

Synchronization is another important feature that the protocol must consider. Two
points are of interest though. First, all lights have to display the new value at the same
time. Second, packets must arrive within a certain time. Any Packet that arrives after
that time should be refused. The term “weak real time” can be used here. This condition
is necessary, because light values in a show are strictly bound to a certain time. If a packet
arrives delayed, it is not longer part of the show and must be ignored. However, in some
cases it is more important for a packet to arrive, rather than arrive in time. Think of the
end of a concert where from one moment to the other all lights are blacked out. If in this

†This is only for comparison. The definition of the protocol will redefine most of these values!

4.3. Application Layer 39

case a packet would be refused, the lamp stays switched on. So accepting packets with a
‘small’ delay is acceptable in some cases.

To achieve the first constrained, all lights must have the same internal time. Synchronizing
the time of all lamps is a task of the controller, since this is the central device that can
talk to any other unit in the network. When a packet with light data is sent, a display
time is included. The time can be potentially any time in the future, but it must be kept
in mind that the further to the future it is set, the larger a buffer has to be designed.
This is necessary because packets that arrive after the first packet had been received and
before it is displayed, must be buffered. On the other hand, a large delay makes the
system unreliable for an operator. He assumes that an action happens immediately after
a button is pressed and not at some point in the future. The maximum delay should never
be greater than 450 ms (see [5]).

Figure 4.3 shows how this synchronization of display will be achieved. The controller sends
two packets to the lamps (to all lamps, since it is all broadcast). All lamps will check if the
packet contains information for itself and if not discard the packet. If the packet contains
data, they will be buffered and displayed once the time reaches the display time. In figure
4.3 Lamp #1 and 2 represents each a bunch of lamps that retrieve their information from
the same packet. The important thing here is that the ordering of the packets is not
important. Even if the packets arrive in a different order each time, the correct values will
be retrieved and displayed. Note that the packets are not forwarded by lamp #1, it is a
single packet that will be received by different units.

���������� �	
���

�����	����
����

�	
���

�

�
����
������	

�����	����
����

�

���
�����
��
��

���
�����
��
��

���
�����
��
��

Figure 4.3: Synchronisation of display time. Red: waiting after packet had been received. Star: display

To take the real time constraint into account the controller has an upper limit of messages
that can be sent. If the amount of messages stays below this value, it is guaranteed by the
lower layers that packets are delivered in time. For important messages the controller can
set a flag that indicates this packet as important. A so called importance factor δ can be
computed as the difference between the old and new light value (see equation 4.13). This
function is an indicator function, returning one if the value is important (major change in
the value) and zero if not (only a small change occurred). The function is a proposal and
had been introduced for completeness. There might be other functions that does this job

40 Chapter 4. Requirement Analysis

better or faster.

1A

(

|vk−1 − vk|

max
> θ

)

(4.13)

It is assumed that the parameters vk−1 and vk are from the interval [0, max]. θ is a thresh-
old value and from the interval [0, 1].It can be set accordingly to different requirements.
So for example, if θ = 0.2 all changes in the light values that are larger than 20% will be
handled as important.

4.4 Conclusion

This chapter dealt with a first analysis of the problems stated in the problem formulation.
It investigated the address space in more detail and showed that addressing of lamps is
more efficient than addressing features within a device explicitly. Beside from that it had
been shown that RS-485 is not capable of transmitting more data than it does today, if
the refresh rate of 44 Hz shall be kept. To overcome this and remove annoying cables, a
standard wireless network is suitable as a new basis. It will be driven in infrastructure
mode. Packets in the network will always be filled up as much as possible (1,500 bytes)
to achieve a throughput as high as possible. This allows to install and drive more lamps
than DMX could do now. Lastly the network had been bound to real time constraints.
To achieve a reliable delivery, a maximum number of packets, and therefore light units,
has to be defined. If packets contain an important message they might be accepted by the
lamp even when they arrive to late. To show the significance of a packet an importance
factor is computed and a flag in the packet is set accordingly.

5 Network Light Control Protocol

5.1 Network Devices

The Network Light Control Protocol is a new protocol based on the ideas of DMX, W-DMX
and Art-Net. It is designed to perform better in most scenarios. This is done by using
standard network technology and wireless connections between controller and lamps. This
section will give an overview of the devices used in a NLCP-network and what hardware
requirements they have to fulfil. The requirements are made with a look forward to the
application layer and the network topology.

5.1.1 Controller

Like the three other protocols, a controller is needed. This device will take a user input and
send it to the lamps. A controller can be a specific hardware console that had been designed
just for this task or a computer program that is providing these functions. Anyway, a
controller needs a wireless network interface, which connects to an access point which
needs to be set up. The access point is the central device in the network and is necessary
in infrastructure mode. Manufacturers can include an access point into the device’s case,
so that controller and access point appear as one physical unit.

Since a packet that is sent from the controller to the lamps includes usually multiple data
packets for different receivers (compare to the calculations in section 4.3 ff.), the controller
has to transmit its packets to the broadcast address. Every lamp will receive the packet
and picks the data that is intended for it. If the amount of devices is to huge to be sent in
one package, multiple packets will be sent out. This would result in some messages that
do not contain any data for a specific lamp. To overcome this problem multicast can be
considered in the future. However, this makes the application more difficult to set up and
to maintain for operators. Broadcast will be preferred by now.

5.1.2 Lamps

Beside the controller, lamps are the most important devices. Their task seems to be clear
and must not be described further. In all three protocols studied before, no special interest
was put on the lamp. Connections had been done by the DMX-interface, which was the
only requirement for a lamp to be controlled.

In the proposed protocol, a cable connection is no longer preferred. This is because a
wireless network interface is required. The lamps will act as a server, waiting for signals
from the controller. The lamps are connected to the access point. At least for the set-up

41

42 Chapter 5. Network Light Control Protocol

period a bi-lateral communication is required. In this phase the controller discovers the
network and scans for controllable stage units. After this point an uni-lateral communi-
cation from the access point to lamp is allowed. This way the range can be increased by
transmitting with more power from the access point to the lamps. The lamps do not need
this feature of changing transmission power, since no backward communication is designed
in operation phase.

A lamp will receive the message from the controller as a broadcast message. It then has
to open the message and search for the data that is intended for this device. To make the
search faster within the packet, a hash table with addresses and positions will be included
in the packet (see section 5.2).

5.1.3 Network Devices

The defined network is wireless and based on the 802.11g standard. The network interfaces
from the controller and the lamps have to follow this standard. At least one access point
must be included in the network. This is because of the infrastructure mode that had
been chosen. However, this allows to create a wired backbone network that can connect
to multiple access points. This way the covered range can be increased to a practically
unlimited size. By building the backbone network, which will not be covered any further,
the transmission speed must be much higher, so that it does not affect the light show.
Basically any standard network device can be used here. This is all the devices that also
Art-Net uses.

5.2. Packet Definition 43

5.2 Packet Definition

The packets defined in this section are forming the application-layer and contain therefore
the most important data for the stage devices. Packets had been defined generically for
the three most common types of lamps. In a real world more packets might be needed for
different types of lamps. Throughout this report only the proposed packets will be used.

5.2.1 Overview

The defined packets are based on UDP. Like Art-Net, nodes are only allowed to process
packets that comply with the following defined packets. Since different vendors have a
large variety of function built-in the units, it is not an easy task to find a general format
that fits generically for every lamp. The following packets are based upon devices from
EuroLite†. An overview of the designed packets is given in figure 5.2.

The general structure of a multi-packet is shown in figure 5.1. It contains a header, that
is unique for this kind of packets and some global information, which are of interest of
all included single-packets. Because the different kinds of lamps could be driven with one
multi-packet, an address scheme must be introduced to find the data that are of interest
for a lamp. This is done by a table that is placed directly after the header. It contains the
address of a lamp and its location in the packet. Lastly the single-packets are included,
which contain the actual light data.

������ ��� 	
��	
� ����� 	
��

������
�����

Figure 5.1: Structure of a multi-packet designed to control lights. The total size is always ≤ 1472 bytes.
DAT: Data Allocation Table; SP#n: single-packet number n.

5.2.2 Packet Header

Every packet has the same header, which includes a preamble, the Version number and
the purpose of the packet. It is similar to the one Art-Net uses, but not identical. In
figure 5.2 it can be found in the abstract class NLCP-Header.

Offset (bytes) 1 2 3 4

0 ‘N’ ‘L’ ‘C’ ‘P’

4 VersionMajor VersionMinor DescCode

8 displayTime

Table 5.1: Characters in quote signs are ASCII encoded. DescCode describes the purpose of the packet
numerically. Current protocol version is 1.0.

DescCode is one of table 5.2 and used to describe the purpose of the packet. Throughout
this report only 0x00 will be used, which is the code for single-packets containing light

†EuroLite is a vendor of stage lights. http://www.eurolite.de

44 Chapter 5. Network Light Control Protocol

values defined in the next sections. It is not possible to send single-packets for different
purposes in a multi-packet. Since every lamp knows how to interpret a packet with a
given DescCode a further, finer description is not necessary. In all packet descriptions an
italic font indicates that this is just a place holder for a numeric value. Normal font is
used when exactly this value should be transmitted. Letters in quotation marks shall be
transmitted as the numeric value of this letter, ASCII encoded.

The size of the header is 12 bytes.

Value Description

0x00 Packet containing light values as specified here

0x01 Packet for network discovery

0x11 Reply packet of network discovery

0x02 Packet for time synchronization

Table 5.2: Values for the field DescCode

Figure 5.2: Definition of packets as class-diagram. Details can be found in the related sections. Device
Management is not defined, yet. Thew field Value of the Dimmer class is the Red value for derived packets

5.2.3 Device Allocation Table

Since multiple single-packets are included in one multi-packet, a way to address the indi-
vidual packets must be found. Inspired by the File Allocation Table, FAT, an table will
be included directly after the header. The structure is shown in table 5.3. This table
provides a fast way to locate the interested single-packet within the multi-packet.

The flags-field is used to store some additional information for the device, which are not

5.2. Packet Definition 45

Offset (bytes) 1 2 3 4 5 6

0 tableSize modulo spare

6 Address of Lamp #1 absolute Position in bytes flags

12 Address of Lamp #2 absolute Position in bytes flags

.

6 · n Address of Lamp #n absolute Position in bytes flags

Table 5.3: Characters in quote signs are ASCII encoded. ‘\0’ is the null character. DescCode describes
the purpose of the packet numerically. Current protocol version is 1.0.

directly related to the light values. To position them in the DAT allows for a semantically
clearer definition of the single-packets.

Bit Description

7 – 4 not set

3 important packet yes/no

2 Light values are interpreted as 0: 8-bit/1: 16-bit resolution

1 Interpret displayTime as timestamp or frame number

0 Synchronize lights on/off

Table 5.4: Specification of the bits in the Flags-field

If bit 2 in table 5.4 is set, the light values are transmitted as 16-bit. This is the normal
case. To make the system downward compatible to DMX, the flag can be set to zero,
what indicates an 8-bit resolution. In this case only the LSB† are set and the MSB‡ are
all zero and not used. For a converter it is no difference if it should use the first or second
byte, but for a human it might be more intuitive to set the higher byte to zero.

Bit 3 can be set by the controller (sender of the packet) to show that this packet is of
high importance. This can be the case if the value changes dramatically or this is the last
packet for a longer time. In both cases the packet will be accepted even if it arrives out
of time and no newer packet had been already received.

To store and retrieve data in the multi-packet, an entry in the device allocation table
must be generated. To do that a hash function is introduced which maps the address of
the device to a field in the table. A field is shown as a row (containing the address, the
position and flags) in table 5.3 and as class DAT-Entry in figure 5.2. A row is addressed by
a multiple of 6, starting at zero. A good hash function should fulfil the following criteria
[11]:

• small probability of collisions

• chaos, similar elements should result in very different hash values

• surjective

• efficient, fast computation with small memory footprint

†LSB: Least significant Bit
‡MSB: Most significant Bit

46 Chapter 5. Network Light Control Protocol

Based on this criteria, a suitable hash function would be 5.1.

h(x) = x mod m (5.1)

To function in the best way, m should be prime and equal to the number of entries in the
hash table. Since only in special cases both requirements can be fulfilled at the same time,
m should be chosen larger or equal than the maximum amount of entries in the table.
If a value is computed that is larger than the maximum number of entries, it should be
treated as collision.

Collisions can be easily and reliably handled by linear probing. So if the field is already
used, take the next one that is free. This way all elements will be stored in the table.
Usually the element can be found directly by calculating h(x). In some cases it becomes
necessary to search for the right entry. This way the complexity for storing and receiving
is O(n), but if no collisions occur, the best case is Ω(1), constant time. In practice the
complexity will be in-between the two boundaries, but often tending to the lower one.

Yielding forward to the definition of single-packets, the smallest one will be the one for a
Dimmer. It contains only a single value and its size is 2 bytes. Since it is known that the
multi-packet will be filled up to 1,472 bytes, an upper limit for m can be determined. The
size of the Packet Header is 12 bytes, which is counted only once. The same applies for
the first row of the DAT, which is another 6 bytes. The size for a single DAT entry is six
bytes and put inside the parenthesis, such as the size for the light value itself (2 bytes).

n(2 + 6) + 12 + 6 ≤ 1472

n ≤
1454

8
n ≤ 181.5

(5.2)

n = 181 is the maximum number of single-packets in a multi-packet. This allows to
set an upper limit of m = 181. This is suitable, since 181 is by itself a prime number.
Taking a number that is prime, allows for a greater chaos in the generated hash value.
The controller might compute a suitable prime number before sending the packet. It will
be included, so that the receiver knows which number had been used for calculating the
hashes. Additionally the size of the table will be included, so that the receiver knows when
to handle a a collision due to overflow. In order to save computational time at the sender,
a list of prime number might be calculated before a light show begins. Alternatively, prime
numbers can be stored in a database and just loaded on start-up. Since the maximum
number is known (181), this should be an easy task.

The size of the DAT is 6(n + 1) bytes, where n is the number of entries in the table.

5.2.4 Dimmer

Dimmers are the most basic device and require only a single value. The packet is defined
as shown in table 5.5. The field Value contains a 16-bit unsigned integer value. The 16-bit
resolution allows for a much finer control of the light as DMX-512 does. However, a flag
in the devcie allocation table can be set that allows to send 8-bit encoded values instead.

Total size of this single-packet is 2 bytes.

5.2. Packet Definition 47

Offset (bytes) 1 2

0 Value

Table 5.5: Dimmer Packet with a single field.

5.2.5 RGB(W)-Lights

A device commonly used in stage lighting is a RGB-light. The ‘W’ stands for white, which
could be displayed by RGB-values alone, but sometimes a white LED is used instead. This
allows for a much clearer white light. RGB(W)-lights have the ability to change its colour,
but cannot move or do anything else than output light. Table 5.6 shows a packet for this
kind of lamp. As In every packet, not supported fields shall be transmitted as zero.

Offset (bytes) 1 2 3 4

0 Red Green

4 Blue Spare/White

8 Master Strobe

Table 5.6: Packet for a RGB(W)-light

Total size of this single-packet is 12 bytes.

5.2.6 Moving Lights

Moving lights are commonly used and had already been discussed in the Introduction and
Motivation chapter. Scanners and Moving Heads are the most commonly known ones and
will be covered by this packet†. Since from a protocol point of view they have a lot of
common features, only one packet had been designed to support both kind of devices.
Details can be seen in table 5.7 and figure 5.2 (class MovingLight).

Offset (bytes) 1 2 3 4

0 Red/ColourWheel* Green

4 Blue Spare/White

8 Master Strobe

12 Pan Tilt

16 PanSpeed TiltSpeed GoboWheel** GoboIndexing

20 PrismFunction PrismRotation

24 Focus Iris

28 DeviceManagement

Table 5.7: Packet for a Scanner or Moving Head.

The fields Red, Green, Blue and Spare/White are used in a dual way. This is because some
scanners use only a single light source together with a colour wheel to display a certain
colour. In this case only the Red value is used and the other three values are ignored.
Red indicates the position of the colour wheel. However, if the light has a multicolour

†The packet is based on the features of scanner ‘Futurelight DSC-60 LED-Scan’ and moving head
‘Futurelight DMH-100 RGBW LED’

48 Chapter 5. Network Light Control Protocol

light source, all fields can be used to set a specific colour. The lamp itself knows how
to interpret the fields. However, the operator needs to know how the lamps react before
starting a light show.

Pan and Tilt fields are used to control the motion of the head/mirror. PanSpeed and
TiltSpeed indicate how fast the light beam moves from one point to another. The following
fields are there to modify the light beam. This can be done with a gobo, a prism, the
focus and the iris. A gobo is a metal or glasplate that goes between the light source and
the opening of the case (The word gobo is short for ‘GO Between light and Opening’). It
covers a part of the light beam, so that a special shape is displayed instead of a round
beam. The shapes are often stars, arrows, triangles and similar. The gobos are mounted
on a gobo wheel and to activate a specific one, the field GoboWheel will be used. The field
is explained in detail in table 5.8 where it can be seen that only the first nibble† is used for
addressing of a gobo. The last four bits are flags for the gobo wheel.GoboIndexing instead
can be turned on and off and used to position the gobo correctly. This way an arrow, or
somthing else, can be made to point to a certain position.

A prism is a function that duplicates a light beam. Depending on the actual implementa-
tion, one or more prism exist, which can rotate forward or backwards. These settings can
be made in the field PrismFunction and explained in more detail in table 5.9. Frost is a
flag to show a blur effect.

Focus makes the field to focus and Iris can be used to set a diameter of the beam. Many
devices might not support all functions mentioned in this packet. Those values should
than be set to zero.

Bit Description

7 GoboIndex on/off

6 GoboShake on/off

5 Rotate gobo wheel forward/backward

4 Normal gobo change/black-out at change

3

Position of Gobo Wheel
2
1
0

Table 5.8: Description of the bits used in the field GoboWheel in table 5.7. 15 positions can be addressed.

This study of Scanners and Moving Heads showed how difficult it is to describe generic
packets which are capable of all functions for specific kind of light device. Since the main
purpose of this report is not to define packets, the three presented packets will be used as
a basis for the further work. The task of specifying packets is left over for further research.

The total size of this packet is 30 bytes.

†A nibble is half of a byte. That is four bits.

5.2. Packet Definition 49

Bit Description

15 . . . 8 Not used

7 Rotate on/off

6 Rotate prism forward/backward

5 Frost mode on/off

4 Prism on/off

3

Prism Address
2
1
0

Table 5.9: Description of the bits used in the field PrismFunction in table 5.7. 15 different prisms can
be addressed. Bit 8 – 15 are not used, yet.

5.2.7 OEM-Packets

Manufactures of light devices might want to design own packets that are optimized for
a certain light series. This can be done by derive packets from the SinglePacket class
in figure 5.2. All vendors shall use fields with 16 bit resolution, as long as there are no
technical reasons to avoid this.

5.2.8 Network Discovery

Packets for network discovery do not need to carry any other data, than the information
that this message is for network discovery. This can be encoded in a single bit and is
done by setting the descCode to the value 0x01. No additional DAT or any other data is
transmitted. The displayTime field is not used can carry any data; all zero is preferred.
When a lamp receives a network discovery message, it shall reply with a Network Discovery
Reply, described next.

The size is therefore the same as for the header, 12 bytes. Is is the only packet that will
not be transmitted as a 1472 byte packet. Since this and the Network Discovery Reply
are sent before the light show is started, no real-time constraints are set here.

5.2.9 Network Discovery Reply

The Reply to a network discovery is a very small packet, comparable to a dimmer. Ba-
sically only the kind of the device is transmitted. Table 5.10 shows it in detail. The
IP-address, which is used as address can be collected from the IP-layer immediately.

Offset (bytes) 1 2

0 Kind

Table 5.10: Network Discovery Reply Packet with a single field.

The kind of the packet is to describe the functionality of the device, so that a controller
knows how to structure the data. Table 5.11 shows the details of this field.

50 Chapter 5. Network Light Control Protocol

Value Description

0x00 Dimmer

0x01 RGB(W)-Light

0x02 Moving-Light

Table 5.11: Details of the Kind field of the Network Discovery Reply packet.

6 Evaluation

The protocol designed in the previous chapter is by itself just a combination of bytes.
The real-time requirements that had been discussed have to be proved by other techniques.
Two tests have been done to achieve this. First a simulation in the network simulator
OMNeT++ had been performed to see how many packets can bee sent until the network
is overloaded. Second a field test with the prototype from section 7.2 had been used to
see which area can be covered by the system until the radio signal becomes too weak to be
received.

6.1 Simulation

The simulation of the network is a crucial part of the evaluation process. It gives an under-
standing of how the network behaves in different situations without building it physically.
Main idea of this simulation is to send more and more data, until the network is overloaded
and cannot process any more packets. Finding this point, allows for telling until which
point the network operates successfully and when it starts to get unpredictable.

The tool of choice was the OMNeT++† network simulator (version 4.4.1) together with
the INET framework.

6.1.1 System Design

The simulated system is close to the network described in the previous chapter, but not
identical. It consists of a controller, a wireless access point but only one Lamp (see figure
6.1). This is an abstraction to the real world, but it does not change the results. Since
all packets are sent as broadcast messages, all lamps would receive every packet. The
data that is extracted from the packet (sending and receiving time) will be identical on
every device. With this in mind the abstraction to use only a single lamp in the simulated
network is a feasible abstraction.

The simulation does not cover all possible communication scenarios, since many of them
are only of minor interest. For operating the lights, it is of major interest that the data
arrive in time, meaning that an operator can rely on the network. This real-time constraint
must be fulfilled at any time. The simulation is intended to show when this constraint
will break, so that a maximum number of light that can de driven can be determined.

†http://omnetpp.org/

51

52 Chapter 6. Evaluation

Figure 6.1: Simulated network

The controller sends packets, via the access point to the lamp. The behaviour of the
controller is similar to an actual controller. Every 23 ms a number of packets are sent.
The number of packets is increasing with every run starting with a single packet. The
simulation is executed as long as the network can process the packets. Every packet has a
size of 1,500 bytes, as they would have in a real application. Figure 6.2 shows the behaviour
of the simulation. From the application layer of the controller n packets are sent (n ≥ 1).
The packets are created at the same time and pushed to the MAC-layer, which is queueing
the packets. One packet at a time is then sent to the lamp. If the number of packets (n)
gets too large, the MAC-layer is not able to send all packets before new packet arrive from
the application layer. This will cause packets to arrive too late at the lamp (indicated
by the red arrow). Another problem is the limited size of the queue. Packets might get
discarded when the queue is full, which will cause packets to be dropped. To find this
point, the simulation is executed several times with an increasing number of packets (n)
per 23 ms interval.

��������� ��	�
��������

���������

��

�
�
�	
�

�������
�������
��������

���
���

���

��������

���

� ��������
��������
�

Figure 6.2: Behaviour of the simulated network

The data-rate of the wireless network might have an effect of the number of packets that
can be delivered. To take this into account, the simulation had been run several times with

6.1. Simulation 53

changing data-rates. The data-rates selected to simulate are 6 Mbps, 18 Mbps, 36 Mbps
and 54 Mbps to get an understanding of how the network performs when changing this
parameter. The expectation is that if the data-rate increases, the number of packets in
the network will increase, too.

The lamp is the second important part of the simulation. It acts as a sink that retrieves
all packets sent by the controller. After receiving the data packet it will be recorded when
it had been created and when it had been received. This way it can be analysed if the
packet had been arrived in time (if treceived ≤ tcreated + 23) or too late. As shown in figure
6.2, the creation time (tcreated) is the same for all packets in an interval.

The access point is a necessary device in an infrastructure network. Its only task is to
receive and forward messages from the controller to the lamp. No recording is done here,
since it is not of any interest by now to see how many packets are received/sent by an
access point. However, this could be of interest in future improvements and can easily be
implemented if desired.

channelControl is used to control the channel. Settings like the carrier frequency
(2.4GHz), number of channels (1) and the propagation model (Free Space Model) can
be set here. The default values had been usually used.

configurator is a module that is used to make global settings to the network. In this
simulation it just be used to set the subnet-mask of all devices to 255.255.255.0 and the
address of the network to 10.0.1.0.

The INET framework does provide easy access to the UDP protocol and offers a lot
of examples. The controller is a modified UDPBasicApp module, the lamp a modified
UDPSink module. The modifications in the controller influence how many packets are
sent in an interval (the sending procedure had been wrapped in a for-loop, so that multiple
packets are sent). For the lamp only the recording had been added. All values are left as
default, except the data-rate.

Because INET does not implement broadcasts by itself, an RTS/CTS scheme had been
chosen, where the retry limit is set to one, meaning that every packet is only sent once.
The acknowledgement frame had to be sent, in order to fulfil the requirements of RTS/CTS
scheme. To drop the effect of this frame, the transmission duration had been set to zero.
This way the simulation is close to real broadcast.

6.1.2 Expected Results

As mentioned before there are two parameters that might have an impact on the perfor-
mance of the network. The number of packet sent in a 23 ms interval and the data-rate
that is used for transmission.

To determine the maximum number of packets, the theoretical maximum throughput
(TMT) as shown in [3] can be calculated and from that how many packet possibly could
be sent. Assuming OFDM modulation, RTS/CTS-scheme (a function for broadcast does
not exist in this paper) and a data-rate of 54 Mbps, the TMT can be calculated as:

TMT (x) =
8x

0.14815x + 225.94
× 106bps (6.1)

54 Chapter 6. Evaluation

For a given packet size of 1,500 bytes, the TMT (1, 500) = 26.7759 Mbps. Hence in NLCP
data must be retransmitted every 1/44 s ≈ 0.023 s = 1 interval, a maximum throughput
of 26.7759/44 = 0.6085 Mbpi can be achieved. This maps directly to a maximum of 405.7
packets per interval.

For a 6 Mbps data-rate, a maximum of 175 packets could be sent.

However, these results are just theoretical, not taking the topology of the network into
account. Because of the access point, which is forwarding every single packet, and therefore
blocking the channel, any packet must be counted twice (first when it is transmitted to the
access point and second when it is forwarded from there to the lamp). Also this approach
does not take any other packets into account that might occupy the channel. So this result
is a maximum value, but in reality this might be much smaller.

6.1.3 Simulation Results

The whole simulation takes 120 seconds, which is not very much, but taking into account
that 44 intervals are generated per second, this number seems to be efficient. Because the
network is doing some initial set-up in the beginning, the sending of light data packets
starts at t = 20 s. This results in a recording time of 100 seconds, which is 4348 intervals
per simulation.

Figure 6.3: Packet loss in the simulation in percent

On a first glance the packets that had been sent can be compared to the packets that

6.1. Simulation 55

had been received on the other side. This gives a rough estimation on how the network
behaves. Figure 6.3 shows the packet loss in percent of the total amount of packets that
had been sent. It can be seen that the there is no packet loss if one or two packets are sent
in an interval. After that the packet loss increases slowly. Depending on the data-rate, the
packet loss increases heavily at one point. This point marks the upper maximum limit.
In a real application, one does not want to go beyond this point.

A view to the absolute values in figure 6.4 shows clearly why the packet loss increases so
strongly. All simulations behave very similar in the beginning. They show differences in
their maximum capacity. Of course the higher the data-rate is, the more packets can be
handled. All curves go flat after a while. This is the point where the network is overloaded
and any additional packet will be dropped.

Figure 6.4: Packet loss in the simulation (absolute values)

However, this is only a very rough estimation. Just because a packet arrives does not
mean that it arrives in time. Figure 6.5 shows how many packets arrived too late, based
on the total amount of packets sent in the according simulation run. Packets that had
been lost are counted also as too late. This way the plot provides a correct image of the
performance of the network

The interesting thing to see here is that the number of delayed packets increases heavily
after a single point. The same had been observed in figure 6.3. The point where the graph
changes its direction is identical in both diagrams.

56 Chapter 6. Evaluation

Figure 6.5: Delayed packets (in %)

Of course there must be a relation between the graphs from figure 6.3 and 6.5. Because
all the packets that had been dropped are counted as delayed, the number of packets
that actually arrived, but delayed, is greater or equal to the number of dropped packets.
Therefore, if the number number of dropped packets increases, the number of delayed
packets must increase, too. The question is: why is the number of delayed packets going
to 100%? Why isn’t there at least a small amount of packet that arrive in time? One
answer to this might be in the structure of the queue in the MAC-layer. It works after
the First In – First Out (FIFO) principle. When more packets arrive, than there can be
sent, the queue will overflow after a while. The new packets are dropped and the packets
in the queue are already outdated. At the receiver they will be counted as ‘too late’.

To overcome this problem, it must be possible to send a signal to the MAC-layer that the
queue must be cleared and all data that are still there must be discarded. However, such
a signal is not defined and for software developers everything below the transport-layer is
a black-box and no access granted.

Up to now, the packets had been only sorted into the categories in-time and too late.
This might be legal since, this is the most important measurement. However, it will be
interesting to see when they actually arrive. This will provide a better picture of the
behaviour of the network. Figures 6.6 and 6.7 display the end-to-end delay of the packets
that arrived at the receiver as histograms. Dropped packets are not counted. The plot in
the centre shows the simulation where most of the packets still arrived in time, the one

6.1. Simulation 57

above is the simulation with one packet less per interval, the one below is with one packet
more per interval. The solid red line shows the mean delay in this simulation, the dotted
line shows the maximum delay of 23 ms.

Figure 6.6: Detail view on the distribution of packets at 6 Mbps. Top: 3 packets/interval, Centre: 4
packets/interval, Bottom: 5 packets/interval. Solid red line: mean; dotted red line: 23 ms

Comparing the diagrams of figure 6.6 shows that the one at the top and at the centre are
very equal, except that in the centre there is a fourth (large) bar. In this two diagrams
the number of the highest bars is the same as the number of packet per interval. The
three/four high bars represent each around 4000 packets. An interpretation of this result
could be done as followed. All three/four packets are sent at t = 0. The MAC-layer buffers
them and send them one by one to their destination. This is supported by the minimum
delay of 4.60 ms in both simulations.

The diagram at the bottom is the first one where large delays occurred, regarding to figure
6.5. It can be seen that only a very small amount of packets arrive within the 23 ms time
frame. Most of the packets have delays of 500 - 600 ms. The delay goes up to 996 ms.
An explanation of this might be, that packets gets queued in the sender, before they are
actually sent and in the access point, which has to handle them. The size of a queue is
100, so that 100 packets can be stored there. The minimum delay of 4.6 ms and the queue
size of 100 leads to maximum waiting time in the queue of 460 ms, which is exactly the
point where the histogram starts to show a larger amount of packets. Since packets can
get queued twice, the maximum delay of 920 ms can occur. This is the second peak in the

58 Chapter 6. Evaluation

plot.

Figure 6.7, recorded with 54 Mbps, draw a similar picture. In the upper two diagrams,
most packets arrive within time. Packets are distributed uniformly here. This changes in
the diagram at the bottom. Again, only a minority of the packets arrive within the 23 ms
time frame. Most of the packets arrive at t ≈ 120. The huge difference here is that the
packets are normally distributed and not as chaotic as in figure 6.6 – bottom. This could
be explained by the fact that the data-rate is much higher in this application and one of
the queues does not fill completely. In this case the total delay for a packet is the sum of
both queueing times, but cannot exceed a certain limit.

Figure 6.7: Detail view on the distribution of packets at 54 Mbps. Top: 16 packets/interval, Centre: 17
packets/interval, Bottom: 18 packets/interval. Solid red line: Mean; dotted red line: 23 ms

6.1.4 Summary

This section showed the expected results and the one observed by the simulation. These
data shall give an upper bound after which the network becomes unpredictable. The ex-
pected results had been calculated with the formula of the theoretical maximum through-
put. It had been shown that, depending on the data-rate of the network, a maximum
of 175 to 405 packets could be sent per 23 ms interval. The number had already been
mentioned to be too high and the simulation of the network proved this expectation. In
the case that not more than 10 % of the packets are allowed to be too late, a maximum 4
to 17 packets can be sent securely.

6.1. Simulation 59

What does this mean compared to DMX? One packet sent with this new protocol is
1,500 bytes of size. Minus 28 bytes headers for the IP- and UDP-header means that
1478 bytes are left for light data. The NLCP-header needs another 12 bytes plus 6 bytes
overhead for the DAT. Every entry needs another 6 bytes. Table 6.1 shows how many
lights can be driven, if all lamps are of the same kind and shows how many DMX channels
would be needed to drive the same amount of lamps in a standard DMX-network

Dimmer RGB(w)-Light Moving-Light

Size (byte), Single Packet + DAT-Entry 2 + 6 12 + 6 30 + 6

Max. Devices per Packet (1460 bytes) 182 81 40

DMX-Channels 1 6 33

Max. Devices @ 6 Mbps (4 Pkt/Interval) 728 324 160

DMX-Channels 728 1944 5280

Max. Devices @ 18 Mbps (9 Pkt/Interval) 1638 729 360

DMX-Channels 1638 4374 11880

Max. Devices @ 36 Mbps (14 Pkt/Interval) 2548 1134 560

DMX-Channels 2548 6804 18480

Max. Devices @ 54 Mbps (16 Pkt/Interval) 2912 1296 640

DMX-Channels 2912 7776 21120

Table 6.1: Maximum number of devices that can be driven by NLCP compared to DMX

Taking the lowest value of 728 devices, that could be sent at 6 Mbps, maps to 728 DMX-
channels. That is 1.42 universes. Doing the same for the highest value, 640 Moving
Lights, that would need 21,120 DMX-channels. That is 41.25 universes. Always keep in
mind that delayed packets will occur when driving this many lights. But the number of
delayed packets will be much smaller than 10 %. If a higher lower probability of packet
loss is necessary, less lamps must be driven.

60 Chapter 6. Evaluation

6.2 Field-Test

It is described by the pathloss models that the strength of radio signal decreases the further
away the receiver is placed. The question is how large the distance between the sender
and receiver can be without loosing to much information. On the other hand the previous
section had shown that the maximum amount of lights in a network is dependant on the
data-rate that is used for transmission. In order to answer this question, a field test had
been performed. The target was to measure the packet loss at the receiver at different
data-rates and distances.

6.2.1 Test Network

The network that had been used for the test is similar to the one from the simulation. One
controller (a laptop) is connected to an wireless access point. The receiver, a prototype
implementation with an Arduino (see chapter 7.2), had been placed on different positions,
increasing the distance to the access point every time.

The controller/laptop is a Dell XPS L502X with an Intel i7-2670QM CPU (2 2.2 GHz
64-bit cores), 6 GB RAM and Windows 7 SP1. The program used for the test was a
Java application, written with Netbeans. Its task is to send 2000 UDP-packets to the
broadcast address. The size of the packet had to be limited to 90 bytes due to limitations
on the Arduino†. Between the sending of packets a 2 ms delay had been built in, so that
the packets have a real chance to be sent through the network. The source code of the
program can be found in appendix A.1.

The receiver is an Arduino with an Adafruit wireless shield attached to it. It had been
programmed to count the packets that it receives. The counter is stored in the EEPROM
of the microprocessor, so that it can be read later. The Arduino had been reset after every
test run, so that a new, clean connection is available every time. The code written for the
Arduino can be found in appendix A.2. Details of the hardware implementation of this
device will be covered in section 7.2. Its initial purpose was not to count packet, instead
it should act as a converter from NLCP to DMX. But the only difference between the two
application scenarios is just the software running on it.

The central device of this network is the access point. A CISCO 871W wireless router
had been used for this task. It had been configured to act as a root device in the network
that allows others to connect to it. DHCP had been activated. The two most important
settings are the transmission power, which had been set to 3 dBi (2 mW) and the data-rate,
which had been changed regularly to 6 Mbps, 18 Mbps, 36 Mbps or 54 Mbps.

The transmission power had to be set to such a low level so that the measurements could
be performed with the given equipment. The limit here was the length of the power
cord (45 m) that was available and the length of the footpath. A first test run had been
cancelled after the first measurement showed no significant packet loss at the end of the

†The RAM of the Arduino UNO is limited. Changes to allow packets > 95 bytes must be made in one
of the imported libraries, which might have unpredictable side effects. The effect of this reduced packet
size might be a slightly smaller packet drop, since a smaller packet has less bits that can be potentially
toggle.

6.2. Field-Test 61

road. It is assumed that this parameter will have an effect only on the distance and the
other result will stay the same.

6.2.2 Test Location
Searching for a suitable location is not an easy task. A lot of things must be considered.
First, the location must be close to a building, to be able to have access to electricity.
Second, the location should be free of disturbing W-LAN and radio signals. Lastly, the
location should be similar to the one that might host the system in the future. This will
allow for good assumptions about how the network behaviour in reality.

The problem is that those points are often contrary and not all can be fulfilled at the
same time. Usually every house has a wireless access point installed nowadays. But the
closeness of a building is important to have electricity. On the other hand the test shall
be close to reality, but in reality most people on a concert are having smartphones, which
are using the same frequencies as NLCP does.

Figure 6.8: Positions of the sender and receiver. The position of the receiver changed during the test.
The positions of the blue and red dots are rough estimations.

The decision had been made to stay close to the university, but a bit hidden behind trees,
so that the signal from the access point is higher than the other ones. Secondly, the access

62 Chapter 6. Evaluation

point had been configured to use the least congested channel, so that collisions become
more unlikely. The exact location can be seen in figure 6.8. The red dot is indicating the
position of the laptop and the access point. Both are placed on a table, around 80 cm
above ground. The distance between the access point is circa 40 cm. The blue dots on
the map approximates the location of the receiving module. The exact distances will be
described in the following paragraphs.

6.2.3 Test Execution

Figure 6.9: Images of the field test. Top: close-up of the antenna positions. Bottom: Measurement
of packet loss in 1 m distance. Right: Location of the measurements. The receiver had been placed on
different spots on the path, always on the right side to allow traffic to pass by.

The test had been performed on Saturday, 17th of May 2014 between 10 am and 4 pm.
The measurements had been made at distances of 1, 15, 20, 25, 30, 35, 40 and 45 m from
the access point for all data-rates. After a certain point the receiver could not connect
to the access point any more, in this case no more measurements had been performed on
further away distances and the packet loss had been registered as 100 %. But to get a
better picture, few measurements had been done between the last possible distance and
here. This way measurements at distances of 22, 27, 32, 42 and 46 m had been made, but
only for single data-rates. While the measurements at the main distances had been made
all at the same time (one after another), the tests in between those distances had been
performed at the end of the field test.

The execution of a test was always the same. At first the receiver had been started. After
a while a red LED flashed three times and than turned permanently on. This is the signal
that the receiver had been successfully connected to the access point. The program on
the laptop had been started than. After the first packet that had been received, the LED

6.2. Field-Test 63

switched off and a countdown of 35 s had been started. For every packet that had been
received a counter had been incremented. After the countdown had been reached zero,
the counter was written to the EEPROM, so that the results are not lost after the receiver
had been reset for the next test run.

This procedure had been performed five times for every data-rate and distance. If the
receiver could not connect to the access point within five minutes, the test had been
cancelled and a packet loss of 100 % had been counted.

6.2.4 Test Results

During the test a set of data had been collected. Since for every distance/data-rate test
5 results had been produced, the mean value over those values had been calculated. Only
for a single measurement, namely the one with 36 Mbps at 1 m distance, curious results
had been observed (386, 403, 391, 395, 1996 received packets, out of 2000). On every
other data-rate the amount of received packets is close to 100 %. In this case the first
four measurements had been treated as measurement error and not used for calculating
the mean. The mean values are plotted as dots in figure 6.10.

Figure 6.10: Results of the field test. The measurements are marked and connected.

The test results show a relation between the packet loss and the distance between sender
and receiver. They also show that the packet loss depends on the data-rate. The larger the
distance between sender and receiver, the higher the packet loss will be. Also the slower
the sender transmits data, the further it can send while keeping the packet loss constant.

64 Chapter 6. Evaluation

6.2.5 Pathloss

By looking towards the 6 and 18 Mbps graph at figure 6.10, it seems odd that the measured
packet loss increases first and drops again immediately after that. This section will try
to give an explanation for this behaviour. The first thing that can be realized is that this
phenomenon happens not at very close distances, but on larger distances. A first thought
is that reflection, as displayed in figure 6.11, could be responsible for the fast increase of
packet loss at a certain distance.

���������	
�����������	

�� ��

Figure 6.11: If the distance between sender and receiver gets too larger, the signal can reflect on the
ground.

To see when reflection happens, a so called Fresnel-Zone can be determined. Fresnel-
Zones describe the propagation of radio waves between a sender and receiver. The zones
are layered, meaning that there exist many of them. However, higher zones are wrapping
lower ones, so that the first Fresnel-Zone is the smallest possible. Zone 1 is also the most
important one, since the most energy is transmitted in this zone [9]. Obstacles in this zone
have an heavy impact on the transmission. The other effect is that once a Fresnel-Zone
reaches a size where it touches an obstacle, the radio waves reflect from it. In this test,
the ground is the most important obstacle and might reflect from the point on where the
first Fresnel-Zone touches the ground. A sample Fresnel-Zone with the letters used in the
formula is given in figure 6.12.

Figure 6.12: Sample Fresnel-Zone between sender and receiver over an hilly area.[9]

6.2. Field-Test 65

The radius r can be calculated with the formula 6.2 for the first Fresnel-Zone. For this
test r can be seen as given by the height of the table (0.7 m); λ is the wave length and
can be computed by equation 6.3.

r =

√

λ · d2

2 · d
(6.2)

λ =
c

f
(6.3)

To find the proper wave length, it is assumed that c (the phase speed) is equal to the speed
of light (c = 299, 792, 458 m/s) and the frequency is 2.448 GHz, which is not defined as
any channel, but is exactly the centre value between the first and last channel. With these
values the wave length can be calculated as 0.122464 m.

To find the maximum distance between sender and receiver, where the first Fresnel-Zone
will not touch the ground, equation 6.2 must be re-ordered to compute D = 2d.

r =

√

λ · d2

2 · d
⇓

r2 =
λ · d

2
⇓

2 · r2

λ
= d ⇓

2d =
4 · r2

λ
= D ⇓

D =
4 · (0.7 m)2

0.122464 m
≈ 16.0 m

In figure 6.10, it can be seen, that the packet loss increases after ≈ 15 m. Both results
match.

To understand how the signal behaves after this point, the Two-Ray Model can be used.
It is a simple model that takes reflection from the ground into account. The principle
is already shown in figure 6.11. The received power (Pr) can be calculated by equation
6.4. ht, hr are the heights of the transmitter and receiver (ht = hr = 0.7 m), Gt, Gr are
their antenna gains (Gt = 2.2 dBi, Gr = 0.5 dBi). Pt is the transmission power of the
transmitter (Pt = 3 dB). An plot of the equation is given by figure 6.13. It can be seen
that the received power drops, as the distance becomes larger. This can be directly related
to an increasing packet loss. Unfortunately, the digram does not show any deep gaps, as
they appear below 10 m, after the 16 m mark. The idea of this diagram was to show that
the increasing packet loss at 25 and 30 m could had been explained by such a gap.

Pr =
λ2

(4πD)2
· 4 · sin2

(

2π

λ

hthr

D

)

GtPtGr (6.4)

66 Chapter 6. Evaluation

Figure 6.13: Pathloss based on the Two-Ray Model. Solid red lines: Measurement points; dotted red
line: 16 m, the point where the first Fresnel-Zone touches the ground.

All test data are presented in appendix A.3.

6.2.6 Summary

The field test gave a good picture of the behaviour of the radio signal over distance and
the packet loss that results from it. The further away a receiver is, the more likely is it
to lose packets. Also the higher the data-rate is that is used for transmission, the more
likely it is to lose packets. Unfortunately the test could not be executed with the same
packet size as defined in the protocol. It will be more likely to lose packets the larger they
are. However, the results displayed in figure 6.10 show a general behaviour of a wireless
network.

With the path loss model and the Fresnel-Zone an idea of the packet drop had been
introduced. It had been shown that the packet loss might be not just related to the
distance (which had been shown by the physical test), but also from the position of the
antenna. By placing the antenna on another, higher, spot the transmission will be affected
less by obstacles, including the ground.

Another point to mention is the transmission power. The test had been done with the
lowest possible power, which is 3 dBi (2 mW) at the used access point. If this parameter
will be changed, the observed distances will change, which is the reason why the distances
are shown in figure 6.10, but not taken as a result here. The result is the observed pattern,

6.3. Conclusion 67

saying that the higher the data rate is, the smaller is the range of the application. Also
the choice of the antenna will affect the results. A directed antenna might be able to sent
much further than the one used in this experiment. However, the pattern stays the same.

6.3 Conclusion

This chapter showed the simulation for the Network Light Control Protocol, trying to find
the maximum number of devices that can be driven in an application. The simulation had
been made in the OMNeT++ simulator with the INET framework. Unfortunately, INET
does not support broadcast, this is why RTS/CTS had been used instead. To come close
to broadcast, the retry limit had been set to 1, meaning that every packet can only be sent
once and the duration of an acknowledgements had been set to zero, so that this frame
does not have an effect to the simulation. The results show that the higher the data-rate
of the radio signal is, the more packets can be delivered in time.

To get an understanding of the range that can be potentially be covered a real world field
test had been performed. As a receiver a self-made device had been used. It consists of
an Arduino board and an Adafruit CC3000 wireless shield. The program was written in
C. The task was to count the amount of packets that had been received. This can be
directly translated to the number of packet that had been lost. In order to provide a
stable network, the packet loss must be kept minimal, which results in a certain distance
that cannot be exceeded. Because there are a lot of parameters that can change (position
of antenna, kind of antenna, transmission power, interference with other radio signals),
the main result is that the higher the data-rate of the radio is, the lower is the distance
that can be used.

The different results had been collected and presented in figure 6.14. For the distance, a
maximum packet loss of 5 % had been chosen, whereas less than 10 % was the criteria for
the maximum amount of delayed packets. All values are rounded.

�
�
�

�
��
�
�
�

�
�
��
�
�
�

	
�
��
�
�
�

�

�
�
�
�

������

�	
��

�

�

Figure 6.14: Maximum values for distance and number of packets, for a given data rate

68 Chapter 6. Evaluation

7 Implementation

The NLCP protocol was designed to drive lamps and overcome current problems. Simula-
tion can produce data that belongs to a certain scenario, but it does not cover anything that
is related to usability or any practical restrictions. To see how the protocol performs in a
real application, a controller had been programmed and a converter from NLCP to DMX
had been built. This section will show these two parts and show what had been learned by
building them.

7.1 Controller

The task of a controller is to provide a user interface, that allows a user to ‘insert’ data and
to send these data in a specified interval to the lamps. Since this project relies completely
on standard networking technologies, it was a small step to decide for programming a
controller and running it from a laptop. During implementation, some thoughts came
up that shall be described here. One is the choice of the programming language, how to
structure the packet and a fundamental change in the user interface, compared to existing
solutions.

As a programming language, Java had been chosen. Java offers good support for network-
ing. It is easy to send and receive packets1 and its object oriented programming paradigm
allows for easy implementation of the NLCP packets. For the user interface Swing was
used, but instead of programming every piece manually, the Netbeans window builder
was used. One main window had been made, that offers support for connecting to the
lamps. This is done by sending a Network Discovery packet to the broadcast address. The
received Network Discovery Reply packets are buffered. After a time out (here 4 seconds
had been used. This is enough to send one and receive two packet. See chapter 6.1.3)
the buffered packets are evaluated and the controller is built upon these responses. The
4 seconds must be change to a higher value, if a lot of lamps are in a network.

All packets had been implemented regarding the class diagram from figure 5.2. To trans-
form the fields of the packets to bytes, a function public byte[] toByteArray(); was
included in every class. This way the class will handle the correct order of its fields. Ad-
ditionally a method public int getPacketSize(); was included in every packet. This
was necessary because it is not always clear how many space must be allocated for a cer-
tain packet. Listing 7.1 shows these two methods implemented for the Dimmer packet.
The complete source code can be found on the enclosed CD.

69

70 Chapter 7. Implementation

1 @Override
2 pub l i c byte [] toByteArray () {
3 ByteBuffer b u f f e r = ByteBuffer . a l l o c a t e (2) ;
4 b u f f e r . putShort (va lue) ;
5

6 re turn b u f f e r . array () ;
7 }
8

9 @Override
10 pub l i c i n t getPacketS i ze () {
11 re turn 2 ;
12 }

Listing 7.1: toByteArray() and getPacketSize()-method from the Dimmer packet

Packets are created based on the values set at the graphical user interface. However, the
mapping from a fader to a packet is not an easy task. To overcome this problem, the
controller had been programmed in a way that it creates fader based on the type of a
lamp.

7.1.1 Responsive User Interface

Classic control panels provide a number of faders, one for each channel, see figure 7.1. The
controller logic will create the DMX signal based on the position of the fader. This works
perfectly good, because every feature of a lamp is mapped to a channel. In this approach
the controller has no information about the network at all. A signal is generated, even if
there is not a single receiver connected to it. This way a DMX controller can be called a
‘dumb’ unit.

� �� �� �

Figure 7.1: A simple DMX control panel, each fader controls exactly one DMX channel.

NLCP follows a different approach. A lamp is addressed by a single packet, not a feature
as DMX. DMX addresses channels, that can represent any feature of a lamp. To map a
fader to this feature, the controller needs to know which feature is meant in which lamp.
This means that a certain amount of knowledge must be given to the controller. This
is done by the Network Discovery Response packet sent by the lamp to the controller.
Based on this information, the controller can do this mapping. The question is still how

7.1. Controller 71

many fader should be created for the control panel? This question is difficult to answer,
and maybe an answer is not even necessary. Since the controller is a piece of software, it
can change its user interface due to user needs, or the number of lamps in the network.
Figure 7.2 shows how the user interface changes when a dimmer and a RGB lamp had
been detected in the network.

Figure 7.2: Empty controller after start (left) and with two dummy control areas (right)

So, where is the advantage of doing something like this? First, the number of faders will
always fit the number of lamps, independent of their kind. Second, once a fader is created,
it will always be mapped to the correct feature of the correct light. Third, lamps with a
lot of features, like moving lights, have fields of type on/off. A fader is far from optimal
for such a feature. Buttons or check boxes are much better for this task (unfortunately,
this is not represented in figure 7.2).

7.1.2 Bin Packing Problem

The last section showed how the value of a fader can map to features of a lamp. By digging
a bit deeper, the values must be set in a single packet and then be wrapped in a multi
packet. There is no problem as long as all single packet can be placed in one multi packet,
but if there are more single packets, a strategy must be chosen, so that the number of
packets stays as small as possible. This can be expressed as the bin packing problem.

In the original bin packing problem, the task is to fill k bins, each of size b ∈ N with n
objects, each of size a1, 12, ...an < b, so that the none of the bins is overfilled. The bins
in this scenario are the multi packets. Their number (k) is not defined, but should be
as small as possible. The size of a multi packet is given as b = 1460 bytes. The single
packets are the objects, that have to fit into the bins and are of size (2+6), (12+6) and
(30+6) bytes. The number of single packets depends on the actual set-up.

72 Chapter 7. Implementation

Unfortunately, the bin packing problem is a NP-hard problem and as long as science
cannot prove that P = NP, no best solution can be found for that problem that can be
executed in polynomial time. However, there are ways to calculate a good solution, that
comes close to a best solution. One way is to use a heuristic called »first fit decreasing«.
What it does is to order the objects decreasingly (according to their size) and takes the
largest object first. It continues until an object is too large to place it in the remaining
space of the bin. In this case the next object is chosen. For the leftover objects, a new
bin is created and they are placed in there. This procedure will be repeated until all
objects are placed in bins. Listing 7.2 shows the pseudo code for this heuristic. By using
a heuristic like this, the amount of multi packet can be kept small.

1 ALGORITHM f f d (o b j e c t s) RETURNS bins
2 BEGIN
3 o b j e c t s . s o r tDec r ea s ing () ;
4

5 WHILE NOT o b j e c t s . isEmpty ()
6 DO BEGIN
7 s i z e = o b j e c t s . s i z e () ;
8 bin ;
9

10 FOR i = 0 . . s i z e
11 DO BEGIN
12 IF bin . capac i ty > o b j e c t s [i] . s i z e
13 THEN BEGIN
14 bin . add (o b j e c t s [i]) ;
15 o b j e c t s . remove (i) ;
16 END
17 END
18

19 bins . add (bin) ;
20 END
21

22 RETURN bins
23 END

Listing 7.2: Algorithm filling bins with the performing First Fit Decreasing Heuristic

7.1.3 Continuous Sending

The application was designed to send the NLCP packets in 23 ms interval. But the
question is if this is really necessary. Of course data must be sent if it change, but what
if it stays the same? In this case unnecessary data would be sent, which increases the
network load and might increase the chance of packet loss.

To implement this feature, packets are created by the user interface and send downwards to
the sender object. Once they have been sent, the packet is removed. The NetworkFaçade,
which hides the functionality of the sender, will notify the sender when new data are
available. The sender will collect the new packets and send them to the network. However,
the sender keeps the 23 ms interval, so that changes that occur faster are omitted. If this
would not be the case the network could be flooded by one fast changing packet and
the refresh rate would not be 44 Hz. Listing 7.3 gives a programming example of this
modification. Figure 7.3 shows this principle.

7.1. Controller 73

1 // imports are not inc luded in t h i s example , as we l l as ge t t e r , s e t t e r
c o n s t r uc t o r . . .

2 pub l i c c l a s s Sender extends Thread {
3

4 p r i v a t e boolean changed = f a l s e ;
5 p r i v a t e boolean stop = f a l s e ;
6

7 @Override
8 pub l i c void run () {
9

10 whi le (! stop) {
11 send () ;
12

13 synchron ized (t h i s) {
14 long t1 , t2 ;
15 t1 = t2 = System . cur rentTimeMi l l i s () ; // get the cur rent timestamp
16

17 whi le ((t2 − t1) < 23 && ! stop) { // catches e a r l y n o t i f i c a t i o n s
18 t ry {
19 wait (23 − (t2 − t1)) ; // c a l c u l a t e new wait time
20 } catch (Inter ruptedExcept ion e) {}
21 t2 = System . cur rentT imeMi l l i s () ;
22 }
23 }
24

25 synchron ized (t h i s) {
26 whi le (! changed) { // catches a f a l s e n o t i f i c a t i o n
27 t ry {
28 wait () ; // Wait u n t i l n o t i f i c a t i o n
29 } catch (Inter ruptedExcept ion e) {}
30 }
31 }
32

33 changed = f a l s e ;
34 }
35

36 }
37

38 // n o t i f y the thread that new data are a v a i l a b l e
39 pub l i c void doNoti fy () {
40 changed = true ;
41 synchron ized (t h i s) {
42 n o t i f y A l l () ;
43 }
44 }
45

46 // stop the thread
47 pub l i c void k i l lThread () {
48 stop = true ;
49 doNoti fy () ;
50 }
51

52 }

Listing 7.3: Programming example that avoids continuous sending

74 Chapter 7. Implementation

�� ������	
���� �����

�����

���������	�

������	
�����	�

���

���

�������
���

���
�����������

�������
�����

Figure 7.3: Packets are only send if the value has changed. But a minimum 23 ms interval is kept.

7.1.4 Summary

By programming the controller, some knowledge concerning practical problems had been
earned. The problem of mapping a fader to a feature had been elaborated and imple-
mented. To reduce the number of packets, the bin packing problem can be used and by
going one step further, packets need only to be sent if a values for this lamp change. The
bin packing problem had been implemented, since the test network hosts only two lamps,
so that the result would be the same every time. The last approach had been implemented
in the sender thread.

7.2 NLCP – DMX-Adapter

NLCP makes a very strong assumption, when it demands a wireless connection on every
lamp. This request can be fulfilled only by a very small amount of light nowadays. To
overcome this problem, an adapter had been built that converts NLCP signals to DMX.
This way a common stage light can be driven by NLCP. Figure 7.4 shows the adapter.

The adapter is based on an Arduino Uno R3. It is a very convenient, open source, pro-
totyping platform with an own IDE. The micro controller on the Arduino board is an
ATmega 328. It can be programmed in C/C++, the IDE compiles the source code and
allows for easy uploading to the board via USB. The structure of an Arduino program
differs slightly from usual C-programs. The main()-function is not visible for a developer
and all the work is done the functions void setup() and void loop(), where ‘setup’ is
only called once in the beginning and ‘loop’ is called again and again in an endless loop.

To make the Arduino receive wireless signals, a wireless shield had been placed on top. A
shield is an hardware extension to Arduino adding more functionality. The wireless shield
is an Adafruit CC3000. Ready to use libraries are provided by Adafruit, allowing for a

7.2. NLCP – DMX-Adapter 75

fast development. Unfortunately, the needed functionality was not directly available as an
example and some time had been put into socket programming in C.

Figure 7.4: NLCP – DMX-Adapter

The Arduino is able to create a DMX signal (meaning the bit string), but this signal
needs a little transformation so that it is compatible to RS-485, that is used by the DMX
standard. To achieve this, a SN75176 RS-485 driver chip had been used. It is connected
to one pin on the Arduino and to power. Depending on the level of the Arduino pin,
the bus driver will generate an RS-485 suitable high or low signal. To generate a valid
DMX signal, the DMXSimple† library had been used. It is really simple to use, only two
settings must be made in order to get started. This is the pin that will output the signal
and the number of channels that shall be created in a DMX packet. Additionally, a LED
had been placed on the board, so that a visual information about connection or error can
be displayed.

Unfortunately, this adapter is not able to receive full 1,500 byte packets. This is the
problem of a setting in the CC3000 library. The maximum packet size is 95 bytes‡.
However, for 2 lamps this is sufficient and for a prototype implementation this limitation
can be made.

7.2.1 Function

The Arduino tries to connect to the specified access point, after this had been successfully
performed, the NLCP server is started. Basically a socket is bound here to a specific port,
so that all received packets on this port can be handled. A green LED shows that the the
server is ready to receive packets.

The receive method from the server class is the first executed statement in the ‘loop’. The
execution of code is stopped until a packet arrives. Once the method returns, the packet
can be found in the buffer. It is than checked if the message can be handled, that means

†https://code.google.com/p/tinkerit/wiki/DmxSimple
‡https://forums.adafruit.com/viewtopic.php?f=31&t=53841

76 Chapter 7. Implementation

if the first 6 bytes match the specification. If this check returns true, the message will be
handled, which means that a Network Discovery Reply will be sent or that the light data
will be forwarded to the lamp.

If the packet contains light data, the DAT is searched for the an entry that belongs to
this device. If there is none, which can happen when more than one packet is send per
interval, the code will return without doing anything. But if there is such an entry, the
data are fetched and written to the DMX bus.

The full source code can be found on CD in appendix E

7.2.2 Summary
The NLCP – DMX adapter is a prototype implementation of a NLCP receiver. It does
not act directly as a stage light, but provides a DMX interface, so that a common lamp
can be driven by it. The adapter is based on an Arduino Uno and an Adafruit CC3000
wireless shield. It provides a basic set of features, so that it can work in an NLCP
network. Unfortunately, the packet size must be limited dramatically when working with
this device, meaning that not as many lights can be driven as it had been shown in the
previous chapter. To overcome this, a micro controller with more RAM can be used, since
this problem is just a problem of the available memeory, not the software running on it.

7.3 Conclusion

This chapter showed practical aspects of NLCP on the controller and receiver side. The
programmed controller showed that a classical fader layout with a fixed amount of faders
is far from optimal for NLCP. This is due to the changing addressing scheme. While DMX
addressed every single feature in a network, NLCP addresses only the lights itself. This
leads to the problem which fader maps to which feature on which lamp. To overcome this
problem a responsive user interface had been proposed, that recognises the kind of a lamp
and generates as many faders, button and check boxes as necessary. It keeps an eye on
the values and creates packets for a specific lamp.

While implementing the controller the thought came up, how a multi packet must be
structured in order to keep the amount of multi packets as small as possible. This problem
can be expressed as the bin packing problem and cannot be solved optimal due to the NP-
hardness of the problem. However, a heuristic can be used to find a good solution.

The amount of packets can be further reduced, and therefore the probability of packet
loss, if packets are only sent when a value change. At least some of the lights might keep
their data for a while, before getting new instructions. During this time no data needs to
send to these lamps.

An adapter had been built to convert a NLCP packet into a DMX signal. The converter
is based on an Arduino Uno and an Adafruit CC3000 wireless shield. Implementing this
device showed that it is not always as easy as it seems. Memory constraints might be a
problem when working with embedded systems. The packet size must therefore be limited
to maximum 95 bytes when sending to these devices.

8 Future Work

This chapter will show points that should be explored further to improve this work. This
can be amendments to proposed ideas and points that had been worked on due to time
restrictions.

One important thing to consider is synchronization of lights in the NLCP network. Figure
4.3 shows how the displaying can be synchronized. However, this is only possible if the
internal clock of the light is working very precisely. A problem here is that this internal
clock might fade, when used in a long running application. Methods for synchronization of
clocks must be developed and shown how these will affect the overall network performance.

The size of a multi packet had been set to 1,500 bytes to avoid fragmentation. It should
be explored if this size can be increased. Regarding to figure 4.2, the throughput can be
further increased if the size of the packet can be increased. This way the more lights can
be operated in a NLCP network.

In this project only a small amount of packet had been defined. These packets are based
on the functions of actual lamps out on the market today. More and more general packet
should be defined in the future. This way more kinds of stage device can be driven, allow-
ing the NLCP protocol to work in more scenarios.
Packets for backwards communication from the lamp to the controller should be defined
an tested. This way notifications can be sent to the operator, informing him about mal-
functions or the general status. However, this feature might influence the performance of
the network dramatically, especially when all lamps implement this kind of communica-
tion. Defining a proper communication model and simulation seem to be very important
before releasing this feature.

The field test should be repeated to test how different antennas, antenna positions and
transmission power will affect the network performance. In some scenarios it might be
sufficient to send a direct radio signal from the access point to the stage, covering a great
distance, but only a small area. With these test information can be gained how the network
behaves with different equipment.

The simulation should be further analysed, so that the packet loss can be described in
more detail. It seems a bit too precise, that simulations on all 4 data-rates have exactly
the same packet loss.
Throughout this project, it had been assumed that the controller is connected wireless to
the access point and positioned close to it, while the lamp had been based on different
positions. It would be very interesting to see how the network behaviour change when the

77

78 Chapter 8. Future Work

controller is a mobile device and moving around. The questions might be how will the
range be affected by this and will the packet loss change?

Reliable Communication had been mentioned in the problem formulation. It would be
a good idea to introduce methods for error correction in the NLCP protocol. This way
errors can be detected and corrected, by now UDP props the packet when errors occur.
Error correction would make the protocol more reliable, but also slower. It must be tested
how error correction effects the delays.

9 Conclusion

This chapter is going to conclude the work that had been done in this project. It will review
the problem formulation and compare it to the gotten results.

The problem formulation (chapter 3) formulated problems of current stage light protocols.
That is:

• Only 512 addresses available per network

• No synchronization between networks

• Data are not reliable and no guarantee for delivery is given

• A physical cable connection is used for data transmission

Further on, the main focus of this work is set to increase the maximum amount of addresses
per network and a wireless communication between stage lights and the controller.

To increase the number of addresses, the explicit address scheme of DMX (which gives
every feature an individual address) had been dropped. By addressing always a complete
lamp, the number of needed addresses will be reduced. To make all features still available
for a controller, new packets had been defined.

The number of addresses is only one part of the solution, the physical layer must also
be able to transmit these data. Since a wireless solution had been preferred, the 802.11
standard had been explored. Three approaches came to a topic:

• Wireless mesh network (802.11s)

• Wireless ad-hoc network

• Wireless network in infrastructure mode

An infrastructure network seemed to be most promising for this task. Due to restrictions on
some hardware (i.e. Android), which do not allow ad-hoc mode, the small additional effort
of setting up an access point might be justified. With this as a basis, it had been explored
how the controller can structure the data packets. The initial idea of sending individual
packets to each lamp had been discarded. Instead a multi packet of size 1,500 bytes had
been introduced that wraps a number of individual (so called single-) packets. Multi
packets are always sent to the broadcast address. This approach is similar to DMX. The
advantage is that the theoretical maximum throughput is dependant on the packet size
and increases with larger packets.

79

80 Chapter 9. Conclusion

To see how the network behaves and to find the maximum number of devices that can
be driven, a simulation had been programmed. The OMNeT++ simulator, together with
the INET framework, did a good job for this scenario. The simulation had bee performed
with four different data-rates (6, 18, 36 and 54 Mbps), because the assumption was that
with a higher data-rate more packet can be sent. This had been proved. The results of
the simulation is that a maximum of four packet can be handled at 6 Mbps, so that the
packets arrive still in time. Nine packets at 18 Mbps, 14 at 36 Mbps and 16 packets at
54 Mbps.

To see the maximum range that can be covered, a field test had been performed. At
different data-rates packets had been sent from a laptop, via an access point, to a receiver.
The test should show how many packets get lost when the distance between the access
point and the receiver increases. Different data-rates might have an impact on this. It
had been showed that with a lower data-rate a larger area can be covered than with a
high data-rate. A maximum of 8m at 54 Mbps can be accepted, 14m at 36 Mbps, 23m
at 18 Mbps and 28m at 6 Mbps. However, the distances can be increased when a higher
transmission power or different antenna is used.

All these test produced a lot of data, that abstract from the actual problem. To see how
the protocol works in the real world, a controller and receiver had been implemented. The
controller is a Java application and run from the laptop. It generated packets based on
the NLCP specification. While implementing, it had been discovered, that the amount of
packets can be reduced, and therefore the probability of packet loss, by sending only data
to the lamps which actually changed. Also the ordering of the single packets (bin packing
problem) can have an impact on the number of multi packets. The idea of a responsive
user interface is not directly related to networking, but shows that a new protocol will
affect the way a controller is designed.

For the receiver, a C-program had been written in order to receive and process NLCP
packets. The device itself is based on an Arduino and a wireless shield. Implementing it,
showed practical problems concerning the RAM can occur and must be considered when
building similar units.

Concluding, the project was successful. A protocol had been defined and tested. These
test showed that the address range increased and the communication is all wireless.

Bibliography

[1] Artistic Licence Holdings Ltd. Art-Net 3, Specification for the Art-Net 3 Ethernet
Communication Protocol. Document Revision 1.4bf 3/3/2014, 03 2014.

[2] M. S. Gast. 802.11 Wireless Networks – The Definite Guide. O’Reilly, first edition
edition, 2002.

[3] Jangeun Jun, Pushkin Peddabachagari, Mihail Sichitiu. Theoretical Maximum
Throughput of IEEE 802.11 and its Applications. In Proceedings of the second IEEE
International Symposium on Network Computing and Applications (NCA’03), 2003.

[4] Normenausschuß für Bühnentechnik in Theatern und Mehrzweckhallen (FNTh).
DIN–Taschenbuch 368, Veranstaltungstechnik 2 – Theater,– Studio– und Hallentech-
nik, pages 489 – 497. Beuth, DIN Deutsches Institut für Normung e.V., Mar. 2000.
Part 1: Begriffe und Anforderungen, Part 2: Steuersignale.

[5] Simon Thorpe, Denis Fize, Catherine Marlot. Speed of processing in the human visual
system. Nature, 1996. volume 381.

[6] Wikipedia. Bühne (Theater). http://de.wikipedia.org/wiki/B%C3%BChne_

(Theater), 2014. [Online; accessed 11-March-2014].

[7] Wikipedia. DMX512. http://en.wikipedia.org/wiki/DMX512, 2014.
[Online; accessed 10-March-2014].

[8] Wikipedia. EIA–485. http://de.wikipedia.org/wiki/EIA-485, 2014.
[Online; accessed 11-March-2014].

[9] Wikipedia. Fresnelzone. http://de.wikipedia.org/wiki/Fresnelzone, 2014.
Online; accessed 27-May-2014.

[10] Wikipedia. Glühlampe. http://de.wikipedia.org/wiki/Gl%C3%BChbirne, 2014.
[Online; accessed 11-March-2014].

[11] Wikipedia. Hashfunktion. http://de.wikipedia.org/wiki/Hashfunktion, 2014.
[Online; accessed 11-April-2014].

[12] Wikipedia. Ringtheater. http://en.wikipedia.org/wiki/Ringtheater, 2014.
[Online; accessed 11-March-2014].

[13] Wireless Solution Sweden AB, Stureparksvägen 7, SE-45155 Uddevalla, Sweden.
W–DMX 2013, G4 CATALOG, 2013. Revision 1.

81

82 Bibliography

[14] Wireless Solution Sweden AB, Stureparksvägen 7, 45155 Uddevalla, Sweden.
W–DMXTM BlackBox, user manual, 2014? Release v3.0g.

[15] Ying-Dar Lin, Shun-Lee Chang, Jui-Hung Yeh, Shau-Yu Cheng. Indoor deployment
of 802.11s mesh networks: Lessons and guidlines. Ad Hoc Networks, 2011.

