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Synopsis:

This thesis investigates the need for including dy-
namic inflow in Model Predictive Control (MPC) of
wind turbines. The main design drivers are gener-
ated power and tower fatigue. The project has been
proposed and partly supervised by Vestas Wind Sys-
tems A/S in Aarhus, Denmark.
The wind turbine used in this thesis to generate re-
sults is the NREL 5 MW wind turbine, which is a 3
bladed onshore upwind HAWT simulated in FAST.
An analysis of the system and the problem is made
that clarifies, which things that should be addressed
in the design of an MPC including dynamic inflow.
Furthermore, an initial evaluation is made of the pos-
sible improvements from including dynamic inflow.
In this analysis the rainflow counting method is also
shown as a measurement of fatigue, where a Damage
Equivalent Load is found.
A model including aerodynamics, drivetrain, tower
dynamics, pitch actuator and generator is estab-
lished. From here the model is split into two models.
One where the aerodynamics is a quasi-steady model
and one where the aerodynamics contain a simple
dynamic inflow model. These models of the wind
turbine are used for two MPCs, which are then com-
pared. The comparison are done as Pareto fronts,
as there exist a trade-off between power generation
performance and tower fatigue.
The results show significant improvements just above
rated wind speed, where dynamic inflow is most out-
spoken. The MPC with dynamic inflow information
is able to improve the fatigue by more than 20%,
while also improving the mean absolute error from
the reference of the power at about 5%.
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Synopsis:

Denne afhandling analyserer behovet for inkluder-
ing af dynamisk inflow i modelprediktiv regulering af
vindmøller. De undersøgte hovedområder er effekt-
produktion og tårntræthed. Projektet er foreslået og
delvist vejledt af Vestas Wind Systems A/S i Aarhus,
Danmark.
I denne afhandling anvendes en 5 MW vindmølle
fra NREL, som er en 3-vinget landbaseret opvinds,
horisontal-akset vindmølle, der simuleres i FAST.
Der er lavet en analyse af systemet og problemet, der
klarlægger hvilke ting, der skal med i designet af en
modelprediktiv regulator, der inkluderer dynamisk
inflow. Derudover er der lavet en evaluering af de
mulige forbedringer, som kan vindes ved inkludering
af dynamisk inflow. I analysen er metoden rainflow
counting undersøgt og anvendt til at udregne tårn-
træthed, hvor en skadesækvivalent belastning bliver
udregnet.
Der opstilles en model, som inkluderer aerodynamik,
drivtog, tårndynamik, vingeaktuator og generator.
Herfra bliver modellen delt op i to modeller. En der
anvender en quasistatisk inflow model og en som an-
vender en simpel dynamisk inflow model. Modellerne
er anvendt i to modelprediktive regulatorer, som er
sammenlignet. Denne sammenligning er lavet ved
hjælp af Pareto kurver, da der eksisterer en afvejn-
ing imellem effektproduktion og tårntræthed.
Sammenligningen viser en markant forbedring lige
over rated vindhastighed, hvor dynamisk inflow er
mest markant. Den modelprediktive regulator med
information om dynamisk inflow er i stand til at
forbedre træthedsækvivalentet med mere end 20%,
samtidig med en forbedring på 5% i den gennem-
snitlige absolutte effektfejl.





Preface

This report is written to document the work, which has been made on the 4. semester on the
Master of Science (MSc) in Engineering, Control and Automation. The title of the project is
”Inclusion of Dynamic Inflow in Model Predictive Control of Wind Turbines”. The project is
made in cooperation with the Danish company Vestas that develops and produces wind turbines.
The project has been proposed by Peter Fogh Odgaard and Lars Finn Sloth Larsen [Odgaard
and Larsen, 2014], who also supervise along with Torben Knudsen.

The main objectives of this semester, related to the project, are as follows [The Faculty of
Engineering and Science Aalborg University, 2011]:

• have knowledge, at the highest international level of research, of at least one of the core
fields of the education

• have comprehension of implications of research (research ethics)
• are able to reflect on a scientific basis on their knowledge,
• can argue for the relevance of the chosen problem to the education including specifically

account for the core of the problem and the technical connections in which it appears
• can account for possible methods to solve the problem statements of the project, describe

and assess the applicability of the chosen method including account for the chosen
delimitation and the way these will influence on the results of the product

• can analyse and describe the chosen problem applying relevant theories, methods and
experimental data

• are able to describe the relevant theories and methods in a way that highlights
the characteristics and hereby document knowledge of the applied theories, methods,
possibilities and delimitations within the relevant problem area

• have the ability to analyze and assess experimental data, including the effect the assessment
method has on the validity of the results.

• are able to communicate scientific problems in writing and orally to specialist and
nonspecialist.

• are able to control situations that are complex, unpredictable and which require new
solutions,

• are able to independently initiate and to perform collaboration within the discipline and
interdisciplinary as well, and to take professional responsibility,

• are able to independently take responsibility for his or her own professional development
and specialization.

The documentation of the project is written in English. It documents the chronology, methods,
results and conclusions. In each chapter, except for summarizing chapters, tops and tails are
made. Tops and tails are text parts written in italic which respectively explains the objective of
the chapter and the results gathered from the chapter. A nomenclature is made to explain terms
and abbreviations of words, which might be unclear to the reader. References to documentation
is made according to the Harvard-method, where a link is made in the text pointing to a specific
source in the bibliography. On the CD attached references to electronic documents, references
and various other material can be found. The symbol will tell, when there is material to be
found on the cd.
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Nomenclature

Abbreviations

AAU Aalborg University
BEM Blade Element Momentum
DEL Damage Equivalent Load
DI Dynamic Inflow
DOF Degree Of Freedom
EKF Extended Kalman Filter
FFT Fast Fourier Transform
GDW Generalized Dynamic Wake
IEC International Electrotechnical Commission
KKT Karush–Kuhn–Tucker
LKF Linear Kalman Filter
LQR Linear Quadratic Regulator
MA Mean Absolute
MAE Mean Absolute Error
MMPC Multiple Model Predictive Control
MPC Model Predictive Control
NREL National Renewable Energy Laboratory
ODE Ordinary Differential Equation
PEM Prediction Error Method
PI Proportional-Integral
PID Proportional-Integral-Derivative
QP Quadratic Programming
RPM Rotations Per Minute
TSR Tip Speed Ratio
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Introduction 1
Wind energy is one of the fastest growing renewable energy sources [GWEC, 2012] and is a
rather new area in the energy production. Wind turbines are becoming larger, more complex
and operates in many different environments, which gives rise to challenges in controlling
and optimizing the power production and reducing the fatigue of the system. As this area
of technology is fairly new, there are many techniques and phenomena, which still are to be
investigated.

A common used method of control is presented in [Johnson et al., 2006], where the optimal
setpoint for optimizing the power production is calculated continuously without knowledge of
the wind speed. A classic controller is typically used in combination with this as in [Hwas and
Katebi, 2012].

More advanced control methods as optimal, adaptive and nonlinear control has been investigated
as well. In [Bossanyi and Hassan, 2003] optimal control is introduced in the form of a LQG
controller for individual blade pitch control with the aim of load reduction. Furthermore, good
results are obtained in [Friis et al., 2010] using repetitive control combined with MPC, which
focus on damping structural vibrations and thereby structural fatigue.
In [Jafarnejadsani et al., 2013] an adaptive control strategy is proposed for maximizing the
power production. The adaptive control is combined with a neural network and shows better
performance, than an optimized gain-scheduled PI controller.
[Kumar and Stol, 2009] addresses the highly nonlinear behaviours in the system by combining
feedback linearization and a LQR to optimize power production and reduce fatigue loads in the
drive-train, blades and tower.

These proposals works on static models concerning the wind inflow on the blades. [Henriksen
et al., 2012a] shows the significance of including the dynamic states in the modeling and suggests
a simplified model of dynamic inflow for model based control. However, not much research
has been made combining dynamic inflow and MPC, only reference found is [Henriksen et al.,
2012b]. In [Henriksen et al., 2012b] it is found that inclusion of dynamic inflow is beneficial, if
the bandwidth of the controller is high enough and the dynamic inflow effect is most influential
around rated wind speed. [van Engelen and van der Hooft, 2004] investigates the use of linear
filters compensating for dynamic inflow in blade pitch control and shows good results in doing
so.

Combining dynamic inflow and MPC is an interesting area to investigate, due to the limited
research done in the field. Per request from Lars F. S. Larsen from Vestas, this thesis wishes
to investigate this in regard to the trade-offs, between power production and structural fatigue,
in the tuning of controllers. In [Henriksen et al., 2012b] promising results were shown, for the
inclusion of dynamic inflow. However only two set of controller weights were investigated, where
this thesis will show results from a larger set of controllers.
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1.1 Objective

This master’s thesis wishes to investigate the possibility of including dynamic inflow models in
a Model Predictive Control setup for wind turbines, with the aim of reducing structural fatigue.
So far quasi-steady aerodynamic models have been used in MPC schemes to estimate free mean
wind speed. Quasi-steady aerodynamic models estimate the free mean wind speed in steady
state operations, thus non-precise when dynamic changes happen, such as a change of pitch
on the blades. Dynamic inflow models offer a method of describing the dynamics, when the
operating point of the wind turbine changes. This knowledge of dynamic behaviour can be used
in a MPC scheme. The result of this work should clarify, if a MPC with dynamic inflow models
is able to improve on power production and/or fatigue levels under dynamic conditions. With
regard to fatigue the focus will be on active tower dampening.

Problem statement:
Does adding dynamic inflow to an MPC improve power generation and/or decrease fatigue of
the tower?

1.2 Process

This report will not only cover the results, but also some of the process of getting there. This
opens up for the reader to better understand, which choices were made leading up to the final
results.

The general steps taken into accomplishing the objective:

Analysis

These subjects are to be analysed in an explorative manner giving a knowledge foundation for
the further work. This analysis ends in a conclusion of what decisions are made regarding further
development.

• Key components of a wind turbine.
• Experience with FAST.
• Classic wind turbine control.
• Fatigue analysis.
• Wind and wind speed estimation.
• Inflow models.
• Frequency analysis of a wind turbine.
• Effect of Dynamic Inflow in Wind Turbine Control.

2



Modelling

A model suitable for a model predictive control structure has to be developed. Creating a
model also has the advantage of increasing the understanding of the system, which will help in
the controller design. The modelling will consist of the following general steps.

• A basic nonlinear model including dynamic inflow is derived and parameters are estimated
using the NREL 5 MW wind turbine.

• A linear model, which is suitable for MPC, is linearised from the nonlinear model.
• Step 1-2 is repeated without dynamic inflow.
• The different models obtained are compared with the high fidelity model from FAST to

analyse any potential improvement.

Design of Model Predictive Control

The main goal is to merge the model understanding of dynamic inflow into a control scheme,
improving power generation and/or active damping of the tower deflections. This is done through
model predictive control. To represent a real world wind turbine the higher fidelity model
simulation tool FAST is used. All the developed control schemes will be tested via this tool.
The part objectives of the control design will be as follows.

• Implementing MPC on a gradually more and more complex representation of the system
until it works with FAST.

• Tune the MPC to a satisfying performance.

Results

At this point two controllers are designed and tuned: one containing dynamic inflow and one
which does not. Now these controllers can be compared in regard to various features. The main
results will be a comparison of both power generation and tower fatigue.

3



Part I

Analysis
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Introduction to Analysis 2
This thesis does not only contain results, but also the process leading to these. In the beginning
of the project a lot of documentation was read, regarding control of wind turbines in the present
and what research has been done in the area. This was done especially in regard to the topics
of dynamic inflow and model predictive control. From this work subjects which needed to be
covered in an analysis, before a design phase could be undertaken, was established to be:

• Key components of a wind turbine.
This is to give a general understanding of a wind turbine. This knowledge is used
throughout all other subjects.

• Experience with FAST.
To be able to use FAST for simulations and to understand how FAST simulates wind
turbines. This knowledge is needed to test the problem statement that this thesis
investigates. Knowledge is also needed of FAST to understand the capabilities of this
simulation tool and just as important the deficiencies.

• Classic wind turbine control.
Get an understanding of what is typically controlled in a wind turbine and how. Knowledge
of what is done at the present is needed, to be able to develop new control methods.

• Fatigue analysis.
Understanding what fatigue is regarding a wind turbine and how it can be measured.
Knowledge of fatigue is needed in a controller that wishes to minimize this. Furthermore,
a measurement of fatigue is needed to be able to compare methods of control.

• Wind and wind speed estimation.
Acquiring knowledge of the different wind phenomena. This knowledge is needed, since
realistic wind needs to be generated for the simulation to use. Apart from this, it is also
basic knowledge that is needed in many aspects, when working with wind turbines.

• Inflow models.
Since dynamic inflow is the phenomena that is investigated in this thesis, knowledge is
needed of this and how it is typically modelled. These learnings are needed to establish
what model is going to be used in a control scheme.

• Natural frequencies of a wind turbine.
When dealing with control in a structure, such as a wind turbine, natural frequencies will
be present, so knowledge of these is needed. This knowledge can be used to ensure that the
model used in MPC contains information of the relevant natural frequencies.

• Effect of Dynamic Inflow in Wind Turbine Control
An initial analysis is done to asses the potential improvement of using dynamic inflow in
a control scheme.

In this analysis part of the thesis these areas are documented in a cursory manner, such that
the reader gets an understanding of the acquired knowledge, which leads to certain decisions
throughout the thesis.

5



Wind Turbine 3
The main components in a wind turbine will be explained in this chapter, to establish atleast a
cursory understanding of these. Furthermore the wind turbine which will be tested on throughout
this project will be presented. This is done since the wind turbine and simulation tool used to
get the results will obviously have an impact.

A wind turbine is a mechanical device, which is able to convert the kinetic energy of the wind
into electrical energy. Wind turbines come in varying shapes and sizes. Wind turbines can
be divided into either horizontal axis (HAWT) or vertical axis wind turbines (VAWT). This
thesis will revolve around the HAWT, as this is the is the most commonly used wind turbine.
Other key features that set wind turbines apart are the number of blades and whether the rotor
is upwind or downwind. The HAWT type, which will be investigated, is 3 bladed and is an
upwind wind turbine. Wind turbines can be placed in varying places. On the sea, wind speeds
are often higher, which makes it a desirable area to place wind turbines. This opens up for a new
problem, namely the platform structure. Wind turbines with floating structures are made and
opens a whole new area of control problems involving balancing the structure while maintaining
the power production. However, the focus of this thesis will be on grounded wind turbines,
which makes movement of the platform structure negligible.

An illustration naming some of the main components of a HAWT 3 bladed upwind variable
speed wind turbine can be seen in Figure 3.1.

Pitch

Wind
Direction

Low-Speed
Shaft

Rotor

Brake

GearHBox

YawHDrive

YawHMotor

Blades Tower

High-Speed
Shaft

Nacelle

WindHVane

Controller

Generator
Anemometer

Figure 3.1. Illustration of key components of a windturbine [Johnson et al., 2006].

Functionality of some of these main components will here be explained:

Tower - The tower is the support of the nacelle and the rotors. The nacelle and the rotor are
placed on top of the tower with a yaw drive in between, which enables it of active control of the
yaw to ensure the rotor is facing the wind. A high tower makes it possible to have longer blades
and therefore a larger wind area to harvest energy from. Another advantage of a high tower is
that the shear effect of the wind is diminished. Since the tower is affected by a force from the
wind, deflections of the tower will occur giving rise to fatigue of the structural material.
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Nacelle - The nacelle is the construction containing the components, which converts the kinetic
energy from the rotor into electrical energy, such as the generator, shafts and gearbox.

Rotors - The rotor is the combination of the three blades. The kinetic energy of the wind,
moving mostly in a translational direction, is transformed into rotational kinetic energy by the
wind hitting the blades, making them turn in the rotor plane. The rotor blades can change
their rotation angle, called pitch. Changing the pitch affects the efficiency of the wind power
extraction. The rotor is connected to the shaft via the hub.

Gearbox - The gearbox changes the lower angular velocity of the rotor connected low-speed
shaft (LSS) into the higher angular velocity of the high speed shaft (HSS). This is done to get
an angular velocity, which is more suitable for the generator.

Generator - The generator transforms the kinetic power into electrical power. Power control
is added to be able to run at variable speed on the generator, while keeping constant power
quality on the AC output.

3.1 Simulation

Due to the scope and financials of this project the methods developed will not be implemented
on a real wind turbine. Instead the simulation tool FAST is used. FAST has the ability to
linearise the nonlinear models that are used and compute these for model dependent control
schemes. This feature will not be used for model used in Model Predictive Control, since it is
assessed that a better understanding of the system can be gained, by making a model specific for
the project fitting the desired MPC structure. FAST will be used to estimate parameters of this
model and to validate it. Furthermore, the developed MPC scheme using the developed model
will be tested through FAST. FAST has a MATLAB Simulink interface making it very suitable,
since especially quadratic programming tools from MATLAB will be used when creating the
model predictive controller. More information about FAST can be found in Appendix A on
page 122.
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3.2 Verification Model

For verification purposes a specific wind turbine model has to be used. A 5 MW 3 bladed
onshore and upwind HAWT developed by NREL will be used, since this model has been used
in numerous state of the art articles, concerning modern wind turbine control, mentioned in
Chapter 1 on page 1. The 5 MW NREL wind turbine has the following key specifications
[Jonkman et al., 2009]:

Parameter Value Unit
Rated electrical power 5 [MW]

Rotor diameter 126 [m]

Hub height 90 [m]

Hub diameter 3 [m]

Cut-in wind speed 3 [m/s]

Rated wind speed 11.4 [m/s]

Cut-out wind speed 25 [m/s]

Rated rotor speed 12.1 [rpm]

Rated tip speed 80 [m/s]

Rotor mass 110000 [kg]

Nacelle mass 240000 [kg]

Tower mass 347460 [kg]

Rated generator speed 1173.7 [rpm]

Gearbox ratio 97:1 [−]

Number of blades 3 [−]

Table 3.1. Principle data of the test wind turbine NREL 5 MW.

The basics of structural and technical components of a wind turbine has been presented. The
wind turbine used for testing is a 5 MW onshore upwind HAWT, which has been developed
by NREL. This wind turbine will be used in the simulation software FAST. The control issues
associated with this kind of wind turbine are now to be presented.
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Classic Control 4
This chapter describes the classic control objectives associated with a 5 MW wind turbine as
presented in Chapter 3 on page 6. This is done to determine, which control objectives lies within
the scope of this thesis.

The main goal to optimize in a wind turbine is to be profitable. Profitability of a wind turbine
can generally be described as:

Profit =

∫ td

ti

Q(t)J(t)−R(t)W (J(t), t) dt− C (4.1)

Where: ti is the time of installation of the wind turbine.
td is the time of dismantling the wind turbine.
Q(t) is the earnings per energy production (in Denmark [dkk/kWh]).
J(t) is the energy production (typically [kWh]).
R(t) price of maintenance per fatigue.
W (J(t), t) fatigue of the wind turbine.
C contains the one time costs such as construction, installation
and dismantlement the wind turbine.

This is a very simplified profitability analysis, but shows some of variables which can be
influenced. Besides lowering the one time costs the goal is to maximize Q(t)J(t) −W (J(t), t).
This optimization is very complex, since correlation between J(t) and W (j(t), t) is very high
meaning that to produce more energy, the wind turbine needs to be stressed more, increasing
the fatigue. The optimization becomes even more complex, since both Q(t) and R(t) are time
dependent and hard to mathematically model. From this knowledge the two general objectives
of wind turbine control is to maximize power generated and minimize fatigue. These objectives
are described more detailed in Section 4.1 on page 12 and Chapter 5 on page 14.

With the introduction of variable speed generators, variable rotor speed was suddenly possible.
Since the power gained from the wind is dependent of the wind speed and rotor speed, the power
gain can be optimized by changing the speed of the rotor. This new kind of generator meant
that a high quality of power, in regard to phase, frequency and amplitude could be maintained,
while running at variable speed. Nowadays, variable speed generators are the most common
type used.
Power quality is another control objective. Control of power quality is mainly about controlling
the voltage and frequency. A wind turbine operated at variable speed works by rectifying the
AC generated into DC and then inverting it back into AC delivered on the grid. Power control is
typically also an issue, when controlling wind farms of multiple wind turbines, where the supply
and demand also need to be matched. Control of the power quality is not within the scope of
this project and will not be investigated further in this thesis.

Most variable speed wind turbines has three main actuators, which can be used for control. The
first is a yaw actuator, which can be used to turn the nacelle and rotors to be pointing into the
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wind. This actuator is usually controlled very slowly to avoid loads stemming from a gyroscopic
movement. Next the angle of the blades can be controlled by pitch actuators. These actuators
turn the whole or parts of the blade to change the aerodynamic load on the rotor. Pitch can be
controlled either collectively or individually. An advantage of individual pitch control is better
load compensation with regard to inhomogeneous wind fields. Creating control to compensate
for inhomogeneous wind fields is not focus of this thesis, so a collective pitch scheme is used.
The last main actuator is generator torque, which can be used to optimize the angular velocity
of the rotor. In this thesis, control of the yaw is omitted due to it being a much slower control
routine, compared to the two others.

By having the weighing between power generated and fatigue in mind, a classic control strategy
is to divide the area of operation into different control regions. These regions are here described
and can be seen in Figure 4.1.

Control Regions:

1. In this region the wind turbine is stopped or just starting up due to low wind speeds.
Below the cut-in speed the operation cost of the wind turbine is higher, than what can be
gained.

2. The objective of this region is to maximize wind power extracted from the wind. Variable
speed control is usually used in this region, where pitch is kept constant and torque on the
generator is controlled. This region is typically called partial load region due to the wind
turbine operating at lower than rated load.

3. The power extracted is limited and kept constant to avoid loads larger, than what the
wind turbine is rated to. Constant speed control is often used in this region, where pitch
is controlled (either collectively or separately) and generator torque is kept constant. This
region is referred to as full load region since the wind turbine is operated at the rated
power. The objective of the control in this region is the minimize the variance in power
generation. Too little power is less profitable and too much power increases fatigue on the
wind turbine.

4. This region starts when hitting wind speed larger, than the cut-out threshold and the wind
turbine is brought to a stop. Here the blades are pitched out to minimize the resulting
aerodynamic torque and the brakes are enabled to stop movement of the rotor.

Region 1 and 4 which involves start up and shut down of the wind turbine is out of the scope of
this project and will not be analysed in this thesis. The focus will be on control at the beginning
of region 3, where dynamic inflow has the largest influence.

In Figure 4.1 the different control regions are depicted with an illustration of total energy
contained in the wind and extracted power of the wind turbine as a function of the wind speed.
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Figure 4.1. Illustration of power generated in the different control regions.

As mentioned a compromise between power extraction and fatigue on the wind turbine has to
be implemented. A classical control scheme is to make individual controllers on fatigue and
power generation, which can be seen on Figure 4.2.
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Figure 4.2. Classis control here switched to control in region 3. W is non-specified measurement of
fatigue.

This control scheme consist of both region 2 and 3 control. In region 3 the fatigue controller
pitches out of the wind, when the stress on the wind turbine gets too large. In region 2 the fatigue
controller acts on the generator torque to decrease the stress. A multitude of different control
schemes exists dealing with this weighing between fatigue and power generated. Since these
control schemes consists of different individual controllers it can be hard to ensure optimality of
the control actions. A control scheme combining both the power control and fatigue control is
investigated in the project.
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4.1 Power Optimizing

There are multiple objectives, when controlling a wind turbine. The first is optimizing the
capture of the kinetic energy in the wind. How efficient power is extracted from the wind is
described by the power coefficient Cp:

Cp(λ(t), β(t)) =
Pr(t)

Pw(t)
(4.2)

Where: Cp(λ(t), β(t)) is the power coefficient [-].
λ(t) is the Tip Speed Ratio (TSR) [-].
β(t) is the pitch of the blades [°].
Pr(t) is the aerodynamic rotor power [W].
Pw(t) is the wind power [W].

Betz’ limit Cp,opt(λ(t), β(t)) = 59.26% is the highest percentage of energy that can be extracted
from an ideal wind stream. Betz’ limit can be derived relatively simply from mass flow
rate balances as seen in [Ragheb and Ragheb, 2011]. A specific wind turbine has a specific
Cp(λ(t), β(t)) function dependent of pitch and TSR. Tip speed ratio is the ratio between the
speed at the tip of the blades compared to the wind speed:

λ(t) =
ωr(t)R

vw(t)
(4.3)

Where: ωr(t) is the angular velocity of the rotor
[

rad
s

]
.

R is the radius of the rotor, the blade length [m].
vw(t) is the wind speed

[
m
s

]
.

The characteristics of the power coefficient Cp(λ(t), β(t)) for the NREL 5 MW wind turbine can
be seen in Figure 4.3 and 4.4:
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Control to optimize energy gained from the wind is therefore a question of controlling the wind
turbine in such a way that Cp(λ(t), β(t)) is at its maximum. In region 2 this can be done by
controlling the torque as a function of the rotor rotational velocity by using a gain determined
from the maximum Cp at the given pitch angle and the optimal TSR. This means that wind
speed does not need to be known, only the rotor rotational velocity, which is easier to measure.
This is described further in Appendix B on page 126.

This chapter explains the classic control objectives in wind turbine control and narrows down
the scope of the project to involve: Power and fatigue control using collective blade pitch and
generator torque as control inputs. Furthermore, knowledge about the different region of power
control a wind turbine goes through, along with learnings of power coefficients, is acquired for
use, when moving forward with the project.
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Fatigue 5
The loads exerted on a wind turbine wear on the structure, which can cause failure. In the effort
of increasing the life time of the structure, an analysis is made to establish a measure for fatigue,
which is used in the assessment of a controller.

Wind turbines are exposed to large variations in wind speed, which exerts varying loads to the
structure. These loads causes weakening/fatigue of the structure and increases the probability of
failure over time. A controller can change the fatigue loading significantly and thereby prolong
the lifetime of the wind turbine.

The fatigue increases with bigger loads, which
means that it is not always possible to extract
maximum power from the wind, as the struc-
tural damages might make it non-profitable.
In order to incorporate this in a controller, a
measure for fatigue has to be established. Mul-
tiple modes of the structure is influenced by
the wind, but some of the prominent parts are:
Tower deflections, blade deflections and drive-
train torsion. The wind acts on the tower and
rotor with a force deflecting the tower, leading
to a displacement of the nacelle.

Fw

Ta

Figure 5.1. The wind acting on the wind turbine
causes deflection and oscillations in
the tower and blades.

The blades are exposed to a force, which results in deflections of the blades. Furthermore, the
drivetrain will have two torques acting on it from the rotor and the generator, which will induce
a torsion load. In this thesis only tower tower fore-aft deflections are addressed.

The most common thing to use for fatigue calculations is the torque in bottom of the tower,
which makes sense, if the tower is modelled as a mass, spring, damper system and the spring is
assumed linear. Then by Hooke’s law the distance in steady state will be proportional to the
applied force and thereby the torque in the bottom of the tower.

5.1 Measuring Fatigue

There are several methods for measuring the fatigue effect from these cyclic loads. [ASTM
International, 2011] describes standard procedures for cycle-counting employed in fatigue
measurements. The methods used in these analyses includes level-crossing counting, peak
counting, simple-range counting, range-pair counting and rainflow counting. Other approaches
as Dirliks method has been investigated e.g. in [Ragan and Manuel, 2007], where it is compared
to a rainflow counting approach. It shows good performance for some particular loads. However,
rainflow counting is a well known and accepted way of determining the number of cycles, thus
used in this thesis as well (see Appendix C on page 129). MCrunch is a set tools delivering
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methods for fatigue analysis and will be used in this thesis. It performs a rainflow count of the
time series data and calculates a fatigue measure from it.

5.2 Fatigue Calculation

The cycles, which are counted by the rainflow count algorithm, indicates how often the system
is exposed to a range of amplitudes and at which mean. With increasing amplitude, the fatigue
increases as well. Often a damage equivalent load (DEL) is used, when evaluating the damage.
The DEL is a measure of a constant-amplitude fatigue load, which comes at fixed load-mean
and frequency [Hayman, 2012b]. This results in an equivalent damage to a varying frequency
and amplitude of the loads. This means that the varying cycles are converted into equivalents.

The DEL is given by [Hayman, 2012b]:

DEL =

(∑
i

(
ni
(
LRF
i

)m)
nSTeq

)1/m

(5.1)

Where: ni is the damage count for cycle i.
nSTeq is the equivalent cycle counts.
LRF
i denotes the Goodman-corrected load range about a fixed-mean for cycle i.

m denotes the Wöhler constant.

The Goodman-correction is given by (5.2) and ensures that the fatigue cycle load ranges are
represented as if they occured around a fixed mean load.

LRF
i = LR

i

(
LUlt − |LMF|
LUlt − |LM

i |

)m
(5.2)

Where: LR
i denotes the load range for cycle i.

LM
i is the mean load of cycle i.

LUlt is the ultimate load.
LMF denotes the mean load.

Further elaboration on the calculations can be found in Appendix D on page 131.
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5.3 Simulations

A simulation in FAST with open loop has been made with at mean wind speed of about 12 m/s.
The time series data is shown in Figure 5.2. Here it is easily seen that there is a correlation
between the tower displacement and torque at the bottom of the tower. MCrunch fatigue
analysis is used on this torque, which produces a cycle count on the tower deflections as seen in
Figure 5.4.
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Figure 5.2. Time series data from FAST simulation with a mean wind speed of about 12 m/s. The
start up is omitted as the focus is in running condition. It is easily seen that there is a
correlation between the displacement and the torque at the bottom of the tower.
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Figure 5.4. Rainflow cycles of tower deflections,
where the cycles at same range are
summarised.

Figure 5.3 shows how the most significant cycles are distributed regarding mean and range. The
majority of cycles is according to Figure 5.4 less than 2 kNm. When calculating the damage-
equivalent loads, MCrunch use Equation (5.1). In this thesis the fatigue calculations are only
used for comparison of two or more controllers. The mean load LMF is found experimentally by
looking at data with common controllers. The ultimate load LUlt where the tower fails was not
able to be found. However, MCrunch comes with scenarios, where LUlt consequently is set 10
times higher than LMF. As no better values have been found, this is done as well. The Wöhler
constant is a material constant. The tower is made of steel of which the Wöhler constant is
in the interval 3-5 [Danish Standards, 2007], which is why it is set to 4. This value is used in
[Hammerum, 2006] as well.

LUlt [Nm] LMF [Nm] m [-]
525600 52560 4

Table 5.1. Constants used in MCrunch fatigue analysis.

The DEL is here calculated to 1923000 Nm.

This measure is used in order to compare controllers developed in Part III and IV. It is not
used directly in the MPC, as it is a tools to apply for longer time series. Therefore another
measure for minimising tower fatigue has to be found. The DEL measure relies on a cycle count
correlated to the deflections. Thus the cycles can be seen as changes in deflection, which in turn
corresponds to velocity. This means that the DEL must be correlated to the tower velocity,
which will be used in the MPC. Reducing the tower velocity reduces the tower fatigue.

The force from the wind affects the structural integrity and increases the fatigue, which with time
leads to failure. This chapter presents a method of calculating fatigue in order to compare fatigue
results from different controllers. The chosen method is rainflow counting in a combination
with damage calculations from [Hayman, 2012b], which are implemented in MCrunch [Hayman,
2012a]. This implementation is used in the further work.
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Wind 6
This chapter will introduce how wind is generated and some of the special wind phenomena,
which needs to be considered when designing wind turbines. A lot of the wind phenomena is not
within the specific scope of this project, which is the effect of dynamic inflow, so these are only
explained here in low detail to get an initial understanding of effects of the wind.

Wind is generated as certain areas of the globe get more sunlight than others, which causes the
air pressure to increase. The sunlight is most intense around equator and as the earth spins
around its axis, the zone with hot air is constantly moving [Burton et al., 2001, P. 12]. This
means that high and low pressure zones are generated. When the pressure tries to equalize, air
will be moving from the high pressure to the low pressure zone.

An estimate of the average wind speed, at a height of 100 m in the northern part of Denmark,
can be seen in Figure 6.1.

Figure 6.1. An estimate of the average wind speed in northern part of Denmark at 100 m height.
Modified version of [RISØ and og Miljødata, 1999].

As seen in the figure, the average wind speed varies in different locations. This knowledge of
average wind speed is taken into account, when choosing a wind turbine for a specific location.
Taking the northern part of Denmark as an example a wind turbine running at higher rated wind
speeds should be chosen for the west coast. When exploring a spot for a wind turbine a wind
model for the mean wind of that spot is made. These models are often a Weibull probability
distribution.
In 1957 Van der Hoven constructed a wind spectrum plot for Brookhaven, to show how the
energy distribution for the frequencies in the wind. Figure 6.2 illustrates the wind spectrum
plot.
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Figure 6.2. Wind Spectrum at Brookhaven, New York [Burton et al., 2001, P. 12]. Original work by
Van der Hoven (1957). The synoptic contribution resembles passage of weather systems
and the diurnal contribution resembles time of day variations in the wind.

From Figure 6.2 it can be seen that changes in wind can be described as three parts. Synoptic
changes which are caused by the different weather systems passing around on earth. Diurnal
changes is the daily routine of the weather, e.g. in average there is only sunlight 12 hours each
day. In the 1 hour range and higher frequencies, the all dominating energy is in the turbulence.

6.1 Wind Shear

The wind experienced on the surface of the earth is different from the one that is experienced
a hundred meters up into the air. This is mainly due to the friction, which the earth creates
for the air, but also because of obstacles like mountains, forests or houses. The difference in
wind speed from the surface of the earth and vertically up is known as the speed shear effect.
There are three types of wind shear effects. Directional, speed and a combination of the two, as
illustrated in Figure 6.3.
The shear effects gives a different load on the blade, when it is pointing down compared to when
its pointing up.
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Figure 6.3. Types of wind shear [WeatherQuestions, 2010].
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The fast variations in the wind speed from the shear effects can put an extra stress on the rotor
blades and thereby also cause extra fatigue [Bayne and Giesselmann, 2000]. The variations can
also give oscillating power output from the wind turbine, if the variations are faster or larger
than what the control system can compensate for.

There are different mathematical models to describe the wind shear effect. One of these are the
Prandtl logarithm law [Bianchi et al., 2007, P. 10]:

Vm(z)

Vm(zref )
=

ln
(
z
z0

)
ln
(
zref
z0

) (6.1)

Where: z is the height above ground [m].
z0 is the roughness length [m].
zref is the reference height [m].

An illustration of the effect of the roughness parameter can be seen in Figure 6.4. The bigger
the roughness parameter is, the faster the wind speed will decrease at a lower height, compared
to the wind speed at the reference height.
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6.2 Turbulence

In fluid dynamics turbulence is used to describe a chaotic nature of e.g. wind. Talking about
turbulence in wind speed refers to relatively fast fluctuations in the wind speed often less than 10
min on a time scale [Burton et al., 2001, P. 17]. A stochastic approach to describing turbulence is
often used, because a mathematical model of the wind turbulence would become very complex,
Furthermore small deviations in the initial conditions could make a large difference in the
predictions after a short time [Burton et al., 2001, P. 17].
Turbulence is primary caused by two components. The first component is friction from the earth
surface, where e.g. hills and mountains are creating flow disturbances, by forcing the wind in
certain directions. The second component is thermal effects, where temperature variations can
cause e.g. vertical air flow. Turbulence can have a large influence on the energy output from
wind turbines and cause increased stress on the structural loads.

Measured wind speeds are often collected in intervals of 10 min and a Gaussian approximation
can then be made of that interval. From this approximation the turbulence intensity factor can
be defined as [Burton et al., 2001, P. 17]:

I =
σ

Ū
(6.2)

Where: I is the turbulence intensity factor [−].
σ is the standard deviation in the time interval

[
m
s

]
.

Ū is the mean wind speed in the time interval
[
m
s

]
.

The size of the intensity factor depends on multiple features, such as surface roughness, obstacles
or local thermal alterations. Since the interaction with the earth’s surface is a large contribution
to intensity factor, this decreases at higher altitudes.

Different ways of describing the spectrum of turbulence has been developed, some of these can
be seen in Figure 6.5.
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Apart from the eurocode spectrum, which is shifted a little in frequency, the frequency containing
most energy in all the models lies around 0.02 Hz.

Wind used for testing in this project is made with TurbSim from NREL. In TurbSim a multitude
of spectrum models for the turbulence can be used. It is chosen to use the IEC Kaimal model
when generating wind files. By generating such a wind file and doing a Fast Fourier Transform
(FFT) of the wind the following result is found:
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Figure 6.6. FFT of wind file generated through TurbSim.

The area containing the most energy is centred around 0.006 Hz, with contribution into the
range of 0.1 Hz. This changes a bit in regard to randomisation depending on seeding in the
wind generation. A specific seeding is decided on for later test to ensure repeatability.
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6.3 Wake Effect

The wake effect in wind turbines origins in the wind ”escaping” a running wind turbine. When
the wind has passed a wind turbine, it will have a reduced wind speed and an increase turbulence
level [Burton et al., 2001, P. 35]. This means it will create an irregular load on any wind turbine
placed behind it, which can become a problem in wind farms. Wakes will give reduced power
output and increase structural load on wind turbines operating downstream from the wake
creating turbine [Burton et al., 2001, P. 35].

An illustration of the wake effect in a wind farm can be seen in Figure 6.7. The figure illustrates
an extreme example of the wake effect, but it is easily seen that all the wind turbines down wind
are affected.

Figure 6.7. The wake effect at Horns Rev 1 [Aeolus, 2014]. Photo by Christian Steiness.

Here a strong downwind wake is being generated in the direction of the subsequent wind turbines,
affecting the performance of these.

23



6.4 Tower Shadow

The energy transfer from wind to rotor in a wind turbine is also affected by the tower, which
supports the nacelle and blades. This happens because the wind speed at the tower will be
slowed down, compared to the rest of the rotor disk. The effect is called tower shadow and its
effect on a three blade wind turbine can be illustrated as seen in Figure 6.8.

0 1 2 3 4 5 6
θ [rad]

T
a [N

m
]

Figure 6.8. A sketch of the tower shadow effect on the aerodynamic torque [Bianchi et al., 2007, P.
27].

This is a simplified model, because while the wind speed in front of the tower is slowed, wind
speed at both edges of the tower increases. The tower shadow is a repetitive disturbance and as
such repetitive control can be used to minimize the effect of such disturbance. This was done
in [Friis et al., 2010], to reduce structural vibrations from tower shadow.

The origin of wind and its characteristics regarding wind turbines has been explained. The scope
of this project is the dynamic inflow phenomena, so tower shadow, wind shear and wakes will
not be considered in the further work. The spectrum of the turbulence used in the further work
was chosen to be IEC 1400-1 Kaimal.
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Estimation 7
When creating an MPC input, output and state information is needed. The scope of this project
is not to develop means of acquiring this information, but since the information is used, ways
of deriving this information are here shown.

Information about input (disturbances), output and states can be measured by using sensors.
If the desired information is not directly available through measurements, or the measurements
are noisy, an observer or estimator can be used. Throughout this project it is assumed that all
the states and outputs are available. This is normally not the case for wind turbines, as e.g. the
velocity and position of the tower is not available. Wind turbines is normally only fitted with
an accelerometer, to measure how the forces affect the acceleration of the tower.

An example of this is information about wind speed in front of the wind turbine. The wind
speed is normally measured after it has passed the wind turbine, via an anemometer on top
of the nacelle. The measurement from the anemometer cannot be used directly as free wind
speed, since it is not located in the rotor plane. Besides this the blades passes in front of the
anemometer at a 3P frequency. This measurement is therefore converted into an estimate of the
free wind speed as described in [Smith et al., 2002].

Free wind speed estimation techniques that does not use an anemometer has also been developed.
[Østergaard et al., 2007] has created an estimation procedure, where the estimation process is
done in two steps. Given a system model of the wind turbine, it is possible to create an observer,
which can estimate the resulting aerodynamic torque, originating from the wind. Given this
torque estimate, another estimator can be used to estimate the wind speed hitting the rotors.
The structure of the first estimation process can be seen in Figure 7.1.
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Figure 7.1. The observer structure for estimation of aerodynamic torque [Østergaard et al., 2007].

The error between the estimated angular velocity of the generator and the measured angular
velocity is fed into a PI-controller, which then regulates the aerodynamic torque estimate, so
there is no estimation error on the angular velocity. The observer can also be looked at as a
Kalman estimator, where the gain L is the Kalman gain.
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The second estimator is generated from the function describing the aerodynamic torque. By
using the definition for the torque in (B.5) and rearranging the equation, the estimator can be
formulated as [Østergaard et al., 2007]:

2Ta(t)

ρπR5ω2
r (t)

=
Cp(λ(t), β(t))

λ3(t)
(7.1)

From (7.1) it is possible to find the TSR that satisfy the relation, given the current pitch angle
β. Knowing the TSR, R and ωr the wind speed can be found. The result of the estimation
can be precompiled as a look-up table, such that it has a similar structure to Cp and Ct. A
requirement on (7.1) is that no two equal values of the TSR λ can be created from a specific
value of Cp(λ(t),β(t))

λ3(t)
.

As described here a Kalman filter is used for wind estimation. In this project full state
information is assumed available, which would be acquired by using a Kalman filter on sensor
data. Kalman estimation is further described in Appendix F.

Inclusion of dynamic inflow in an estimation scheme is also desirable to get a better estimation
of the free wind speed, while the wind turbine is in a transient movement. This has been
investigated in [Henriksen et al., 2012a] and has been shown to improved the estimate.

The Kalman filter technique for acquiring state information and specific methods for finding the
free wind speed was introduced. These methods will not be implemented, but has been shown here
to justify that full output, input and state information is available.
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Inflow Models 8
Aerodynamical models are here described to give an initial understanding on how the wind
interacts with the rotor. Particularly an understanding of where dynamic inflow models diverge
from the normal quasi-steady approach is in focus.

Blade Element Momentum (BEM) theory is the aerodynamical model, which calculates the
forces on the blades, as a result of the wind. In this approach the blade is divided into a finite
number of elements along the blade. The forces are calculated for each of these elements and
then integrated to give the full force acting on the rotor.

How the wind acts on the blade can be seen in Figure 8.1.
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Figure 8.1. Rotor with cross section of a blade. The blade is pointing out of the figure (Modified
version of figure from [Henriksen et al., 2012a]).

The wind velocity experienced at the blade is a combination of the free wind and the movement of
the blade. The free wind gives rise to a velocity component in the nominal direction, depending
on a induction factor. The speed of the blade in the rotor plane contributes with a velocity
in the tangential direction, depending on a induction factor. This gives rise to the equations
[Henriksen et al., 2012a]:

Vn = Va(1− an) (8.1)

Vt = ωrr(1 + at) (8.2)

Where: Va is the ambient wind speed.
Vn is the speed of the nominal velocity component.
Vt is the speed of the tangential velocity component.
an is the induction factor in the nominal direction.
at is the induction factor in the tangential direction.
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An element situated at the radius r has the absolute value (speed):

W =
√
V 2
n + V 2

t (8.3)

Where: W is the absolute speed of the wind experienced.

Since the nominal and the tangential components are perpendicular, the angle of the inflow can
be calculated as:

φ = arctan

(
Vn
Vt

)
(8.4)

Where: φ is the angle of inflow [rad].

Another angle is the angle of attack, which is the angle of the inflow compared to the pitch:

α = φ− β (8.5)

Where: α angle of attack [rad].
β is the pitch of the blade [rad].

From the lift and drag coefficients of the blade element, the lift and drag can be found as:

L =
1

2
ρW 2CL(α)c (8.6)

D =
1

2
ρW 2CD(α)c (8.7)

Where: L is the lift [N].
D is the drag [N].
CL is the lift coefficient [−].
CD is the drag coefficient [−].
c is blade chord length [m].

The lift and drag coefficients vary with the angle of attack. Typical data for these coefficients,
retrieved from the airfoil data of one of the elements from the blades of the NREL 5 MW wind
turbine, can be seen in Figure 8.2.
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Figure 8.2. Typical airfoil data taken from a blade element of the NREL 5 MW wind turbine.

Lift and drag together results in the resultant force. The resultant force can be divided into
force components normal and tangential to the rotor plane:

Fn(r) = L cos(φ) +D sin(φ) (8.8)

Ft(r) = L sin(φ)−D cos(φ) (8.9)

Where: Fn(r) is the force component normal to the rotor plane [N].
Ft(r) is the force component tangential to the rotor plane [N].

The combined aerodynamic torque and thrust on can be calculated, by integrating over the
whole wing and combining all the blades:

Ta = nb

∫ R

0
rFt(r)dr (8.10)

Fthrust = nb

∫ R

0
Fn(r)dr (8.11)

Where: Ta is the aerodynamic torque [Nm].
Fthrust is the thrust force on the rotor [N].
nb is the number of blades [−].
R is the radius of the blade [m].
r is the radius at the element [m].

By using quasi-steady values for the induction factors an and at the rotor torque and thrust
can be calculated using tables of the power coefficient Cp and thrust coefficient Ct. These
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calculations are only true in steady state as the quasi-steady induction factors was used. This
means that for varying rotor speed, wind speed or pitch the dynamics are not captured.

8.1 Dynamic Inflow

To capture these dynamics a model of dynamic inflow is introduced. When changing the
operating point of the aerodynamics the wake takes time to settle before the aerodynamical
forces are in steady state. Several models have been suggested for modelling this behaviour. An
approach is to model the behaviour with a first order dynamic model [Øye, 1986]. The model
affects the induced velocities, which for the quasi-steady BEM model were:

vqsn (r) = Vaa
qs
n (λ, θ, r) (8.12)

vqst (r) = ωrra
qs
t (λ, θ, r) (8.13)

Where: vn and vt are the induced velocities in the normal and tangential direction.
aqsn (λ, θ, r) and aqst (λ, θ, r) are the quasi-steady induction factors in the normal
and tangential direction.
Va is the ambient wind.
ωr is the angular velocity of the rotor.
r is the radius which the calculation is done at.

The induced velocities are the changes to the free wind speed in the respective directions after
the wind has touched the blade element.

In the model proposed by [Øye, 1986] the quasi steady induced velocities are first computed,
then changed according to a first order dynamic of the wake to create intermediate values. These
intermediate values are then used again in radius dependent dynamic model which ensures that
the tip elements reacts faster than the root. So the effect is gained by using two first order filters
in succession, the first which is alike across the whole rotor and one which is radial dependent.

The inclusion of the first order dynamics of the wake gives rise to the state equations for the
induced velocities:

v̇n,int(r) =
1

τ1
(vqsn (r) + kτ1v̇

qs
n (r)− vn,int(r)) (8.14)

v̇t,int(r) =
1

τ1
(vqst (r) + kτ1v̇

qs
t (r)− vt,int(r)) (8.15)

Where: k = 0.6

From this intermediate value the radius dependent dynamics are computed to give the final
difference equations for the induced velocities:

v̇n(r) =
1

τ2
(vn,int(r)− vn(r)) (8.16)

v̇t(r) =
1

τ2
(vt,int(r)− vt(r)) (8.17)
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The time constants are calculated as:

τ1 =
1.1

1− 1.3a

R

Va
(8.18)

τ2 =

(
0.39− 0.26

( r
R

)2
)
τ1 (8.19)

These calculations have to be done for every blade element on all the blades to compute the
resultant rotor torque and thrust having this dynamic behaviour. This makes the model complex
and numerically heavy. A simpler model for dynamic inflow have been made, which are better
suited for modern control scheme. This will be investigated in the Section 8.3 on page 34.

AeroDyn can be set to use different inflow models. First option is BEM with quasi steady
calculations. The next option is calculating inflow using another model than BEM called
Generalized Dynamic Wake. GDW is a model, which describes the pressure distribution across
the rotor plane. If FAST is set to use the GDW model it only uses it to calculate the norminal
induced velocites, while BEM is still used to calculate the tangential induced velocities. For
more information about GDW read [Moriarty and Hansen, 2005]. The GDW model developed
for FAST was tested on data from a three-bladed 2 MW experimental wind turbine at Tjæreborg,
Denmark [Suzuki, 2000]. Different test cases of data was used to test the model performance of
the GDW model. One of the results can be seen in Figure 8.3.

Figure 8.3. Test case for comparison of the GDW model with data from the three-bladed 2 MW
experimental wind turbine at Tjæreborg. Averaged hub height wind speed was 10.5 m/s
at the time of data gathering [Suzuki, 2000, P. 47 and 64].

Here the result show that the GDW does model some of the ”overshoot” from the quasi steady
case. Only one of the results is here shown, but it should be noted that there are still differences
between the measurement data from the Tjæreborg wind turbine and the GDW model. Since
no wind turbine can be tested on in this project, GDW is the model used to represent a real
wind turbine.
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In Figure 8.4 the comparison between running FAST with BEM-quasi steady and GDW, when
a change of operating point is performed.
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Figure 8.4. Comparison of AeroDyn equilibrium and dynamical model for inflow resulting in rotor
torque and rotor thrust induced by changes in pitch and wind speed.

Here it is seen that one of the differences between GDW and quasi steady BEM calculations is
the overshoot of the rotor torque and thrust before returning slowly to the steady state value.
All though hard to see on Figure 8.4, there is a difference also in steady state values of the torque
and thrust between the two models. This difference becomes more pronounced at lower pitch
angles. This difference will be taken into account when using a simple dynamic inflow model.

8.2 Dynamic Stall

Dynamic Stall occurs on an airfoil, when a motion that takes the angle of attack above the
critical angle of attack [Holierhoek et al., 2013]. In such a motion the aerodynamics experienced
differ from the quasi-steady stall situation. The critical angle of attack is where the lift starts
to decrease. An example of the critical angle can be seen on Figure 8.2 on page 29 around 9°,
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where the lift reaches a maximum. When dynamic stall occurs a vortex is generated on the
leading edge of the airfoil. This vortex which consist of fast moving air induces a brief increase
of lift. As the vortex travels down the upper edge of the airfoil past the trailing edge, the lift
decreases rapidly and the airfoil reaches steady state stall.

FAST uses the Beddoes–Leishman method to model this behaviour. Read [Beddoes, 1983] for
more information on how this model works. A comparison of FAST responses with and without
dynamic stall can be seen in Figure 8.5.
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Figure 8.5. Comparison of AeroDyn steady and Beddoes model for stall resulting in rotor torque and
rotor thrust induced by changes in pitch and wind speed.

Dynamic stall is not the focus of this project and no further investigation is done to include this
phenomenon.
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8.3 Simple Dynamic Inflow Model

The simple dynamic inflow model shown here is the one presented in [Knudsen and Bak, 2013].
The dynamic inflow model described earlier involved calculating the forces on every element
spanning the blade leading to a numerically heavy approach. This simple model combines all
the elements into one resulting in one induction factor. This induction factor is then extended
with first order dynamics to capture the behaviour of dynamic inflow.

The dynamic change of induction factor used in the simple model can be explained with Figure
8.6 as a reference.

Va(1-an
-)

Va(1-an
+)

ωrr(1+at
-)

ωrr(1+at
+)

Figure 8.6. The stationary speeds before and after a change in pitch here shown on the cross section
of a blade. The blue represents the initial position and red the final position.

In the blue case the wind speed is steady and the aerodynamics are in a quasi steady state.
Then the pitch is changed instantaneously to the red position. Now the aerodynamics will
slowly change from the blue towards the red case, until it fully reaches the steady red case. This
transition is done by introducing a fictive ambient wind speed:

Vf = Va
1− a−a
1− a+

a
(8.20)

Only the change in the axial induction is used since it is assessed that the change in tangential
induction factor is less important. The change in axial induction factor is modelled as a first
order system:

ȧ−a =
1

τs
(a+
a − a−a ) (8.21)

The time constant is approximated as:

τs =
3Dr

2Va
(8.22)

Where: Dr is the rotor diameter.
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To find the axial induction for the new steady state a+
a the following approximation is made

from the Ct table:

Ct = 4a+
a (1− a+

a ) ∧ 0 ≤ a+
a ≤

1

2
(8.23)

m

a+
a =

1

2

(
1−

√
1− Ct

)
(8.24)

Where: Ct(λ(t), β(t)) is the thrust coefficient [−].

From the fictive ambient wind speed the rotor force and rotor torque can now be calculated as:

Ta(t) =
1

2ωr(t)
ρV 3

f (t)ACp(λ(t), β(t)) (8.25)

Ft(t) =
1

2
ρV 2

f (t)ACt(λ(t), β(t)) (8.26)

This simple model is implemented and compared to the GDW model of FAST. Step responses
of pitch changes at rated wind speed can be seen in Figure 8.7. Only the responses for rotor
torque and not thrust is shown as the show same behaviour in regard to comparison between
the simple dynamic inflow model and GDW.
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Figure 8.7. Comparison of GDW with simple dynamic inflow model.
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There are two main differences - firstly the dynamics of GDW are nonlinear and is not a neat
first order response. That said, a first order response seems to model the overall influence on
the torque decently. The next difference is that the time constant is too long. A parameter
estimation has been done on the time constant changing it from τs = (3 · 136 m) (2 · 11.4 m/s) =

16.58 s to the revised time constant τsr = 2.89 s at rated wind speed. This gives the following
result:
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Figure 8.8. Comparison of GDW with simple dynamic inflow model at changes in pitch with a revised
time constant.

This time constant gives the best fit, both in regard to changes in pitch and changes in wind
speed. The simple dynamic inflow model with a revised time constant results in a good fit for
changes in pitch, though less precise at higher pitch angles. The simple dynamic inflow model
however does not provide the same results as GDW when changing wind speeds. This is most
pronounced at changing wind speed at lower constant pitch angle. On Figure 8.9 step responses
to change in wind at a constant pitch of 2° is seen.

36



0 25 50 75 100 125 150 175 200 225
0

1

2

3

4

5

6

7
x 10

6

V
a
:10 → 11.5

↓

V
a
:11.5 → 12.5

↓

V
a
:12.5 → 14

↓

V
a
:14 → 8

↓

Time [s]

A
er

od
yn

am
ic

 T
or

qu
e 

[N
m

]

 

 
GDW
Simple Model τ

sr

Figure 8.9. Comparison of GDW with simple dynamic inflow model at changes in wind speed with a
revised time constant.

This discrepancy is not as important when used in the controller since no prediction model of
changing wind is implemented in the controller. In other words, the controller will calculate the
control inputs considering the wind to be constant in the future, so a model describing changes
in the wind will have no effect.

Since the time constant of the simple dynamic inflow model was lower than expected as per
[Knudsen and Bak, 2013] it was tested on another wind turbine in FAST, the 1.5 MW Windpact
wind turbine. This showed similar result of a faster time constant fitting the smaller length of
the blades. By also comparing to the time constants of simple dynamic inflow model described
in another work [Henriksen et al., 2012a], where the 5 MW NREL wind turbine was tested
via HAWC2 instead of FAST, the reduced time constant found here is deemed fitting. It is
hard to say, if the data gained by these simulations for dynamic inflow would fit that of a real
wind turbine, without having access to a wind turbine for test. Since the model for the 5 MW
NREL wind turbine have been used in various peer-reviewed articles and the dynamic inflow
phenomenon for the wind turbine have been tested through both HAWC2 and FAST, they are
deemed fit to describe the reality of dynamic inflow on a wind turbine.

Dynamic inflow has the largest contribution at lower pitch as seen in Figure 8.8. This means
the operating area that is of most interest in this thesis is in the start of region 3, where the
pitch is low but changed often to reject disturbances in the wind. The operating point which
the controller is designed for is at 12 m/s, which is in the lower part of region 3. The rated wind
speed for the 5 MW NREL wind turbine is 11.4 m/s.

A quasi steady, dynamic and a simple dynamic inflow model was presented and compared. The
simple dynamic inflow model with a decreased time constant was concluded to be precise enough
to be used in the control scheme. An operating point is established to be at 12 m/s. which is close
to rated speed, but still allows for fluctuation around this without going below rated wind.
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Structural Natural
Frequencies 9

The wind turbine has structural natural frequencies. If resonance increases the energy of
oscillations at these frequencies, it can lead to damage of the structure. To minimize structural
damage an analysis is made, such that it is ensured that knowledge of the relevant modes is used
in the controller.

In every mechanical system the components have natural frequencies at which there will be
unforced oscillations, when no damping factor is present. When forced oscillations occur at
these frequencies, the amplitude of the oscillations will increase, which is known as resonance.
Oscillations in a wind turbine can be critical, as oscillations with large amplitude in particular
causes fatigue, which eventually leads to failure (see Chapter 5 on page 14).

FAST has the ability to compute linearised models. This is used to get an initial understanding
of the system in the frequency domain. Unfortunately FAST can only compute these models
when using quasi steady BEM models for the aerodynamical forces. The difference between a
linearised dynamic inflow model and a quasi steady BEM model has been shown in Figure 10.1
on page 43.

A bode plot of the linearised model going from pitch as input to tower fore-aft 1. mode deflection
in output, gained from FAST, can be seen in Figure 9.1:
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Figure 9.1. Bode plot of the linearised model describing the relation between blade pitch and tower
fore-aft 1. mode deflection.
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Here it can be seen that the natural frequency appears at 0.324 Hz. Depending on the bandwidth
of the control loop, this frequency may or may not be of interest. By comparing this to
information of necessary bandwidth of the control system gained in Chapter 10 the natural
frequency of the 1. mode deflection of the tower is deemed to be of importance.

It is important that the model used for MPC contains these natural frequencies, which appear
below the control bandwidth, such that the controller can take them into account, when
calculating the optimal control action. On the basis of the fatigue analysis, minimizing fatigue
leads to active damping of tower deflections, which means that this mode is crucial to represent
in the models.

By going through the wind turbine making linear models for the structures movement the
following natural frequencies is found:

Mode Description Frequency [Hz]

1 1st Tower Fore-Aft 0.3240
2 1st Tower Side-to-Side 0.3120
3 1st Drive train Torsion 2.222
4 1st Blade Asymmetric Flapwise Yaw 0.6664
5 1st Blade Asymmetric Flapwise Pitch 0.6675
6 1st Blade Collective Flap 0.6993
7 1st Blade Asymmetric Edgewise Pitch 1.079
8 1st Blade Asymmetric Edgewise Yaw 1.090
9 2nd Blade Asymmetric Flapwise Yaw 1.934
10 2nd Blade Asymmetric Flapwise Pitch 1.922
11 2nd Blade Collective Flap 2.021
12 2nd Tower Fore-Aft 2.900
13 2nd Tower Side-to-Side 2.936

Table 9.1. Full-System Natural Frequencies [Jonkman et al., 2009].

The linear model shown was the relation between blade pitch and tower fore-aft deflection.
Obviously the frequencies from the other moving parts can resonate to these natural frequencies.
When deciding on the rated speed of the rotor, natural frequencies also has to be taken into
account. This can be done by using a Campbell diagram. Normally in a Campbell diagram the
eigenvalues change as a function of rotational speed, but in this, generated from the retrieved
linear data, the eigenvalues will be constant. The Campbell diagram of the rotor speed shown
in Figure 9.2 gives an overview of how to choose an appropriate rotor speed.
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Figure 9.2. Campbell diagram of rotor speed. The diagram shows natural frequencies of the structure
(blue) and the harmonics (black). Resonance occurs, where the blue and black lines
crosses depending on the energy in the given harmonic. The rated rotor speed is in this
wind turbine set to 12.1 rpm = 0.202 Hz (red).

The first harmonic (1P) carries alot of energy and is of greatest importance in regard of hitting
the natural frequencies. Which other harmonics that carry energy depends on the design. In a
three bladed wind turbine the 3P, 6P, 9P and 12P harmonics can for instance also contain a lot
of energy. Since the rated rotor speed is already designed for the chosen wind turbine at 12.1
rpm = 0.202 Hz this can be checked, as seen in Figure 9.2, against the natural frequencies. It
is seen that the 10P harmonic 2. mode blade collective flap and 11P harmonic of the drivetrain
torsion are very close to the rated speed of the rotor. However, these are deemed insignificant,
due to the high order harmonic frequency. In Figure 9.2 the natural frequencies of the different
modes are considered constant in regard to rotational speed. The is not completely true since
the structures are affected by the operation, such that the natural frequencies changes slightly
as a function of rotational speed. A more in depth analysis of the changing natural frequencies
as a function of wind speed can be found in [Bir and Jonkman, 2007]. As an example the tower
1. mode fore-aft natural frequency changing at different rotational speeds of the rotor can be
seen in Figure 9.3 - extracted from FAST.
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Figure 9.3. 1. mode tower fore-aft natural frequency changing slightly at different rotational speeds
of the rotor for the 5 MW NREL wind turbine.

I can be seen that the natural frequency changes only slightly as a function of rpm of the rotor.

The natural frequencies of the 5 MW NREL wind turbine has been found. Depending on the
desired bandwidth of the controller, more or less of these should be taken into account when
designing the control scheme. The drivetrain torsion and 2. mode blade collective flap natural
frequencies are located close to the rated speed of the rotor, but are deemed insignificant, due to
the high order harmonic frequency and are furthermore not in the scope of this project.
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Effect of Dynamic Inflow
in Wind Turbine Control 10

An initial analysis of the relevance of including dynamic inflow in the control scheme is here
presented. One of the important questions is, if the bandwidth of the control system is comparable
to the dynamic inflow phenomenon, since only then does it make sense to include knowledge of
dynamic inflow in the control scheme. First the effect of dynamic inflow on the rotor torque and
thrust, later it is analysed how this effect propagates through the rest of the wind turbine and
alters the angular velocity of the rotor and the movement of the tower.

10.1 Actuator Influence

By having a high bandwidth better disturbance rejection can be achieved. The main disturbance
on the control loop is changes in the wind. The bandwidth of the wind determines how fast the
control system has to be to properly reject this disturbance. The spectrum of turbulence can be
seen in Section 6.2 on page 21. The spectrum shows that the main energy is centred around 0.02
Hz and flattens out around 10 Hz. Considering this the bandwidth of the control system needs
to be in the vicinity or higher than this for proper disturbance rejection. A limiting factor on
the bandwidth of the control system is the pitch actuator control loop. This will limit how fast
the control loop can be and thus how much of the wind disturbances that can be rejected. The
resultant achievable bandwidth will determine if dynamic inflow is relevant. At what bandwidth
dynamic inflow is relevant is estimated in the dynamic inflow section of this chapter.

A linear model representing the relation between a pitch reference and torque on the rotor
including dynamic inflow and a first order model for the actuator system is made. This linear
model is made by linearising the simple dynamic inflow model as described in Chapter 15. It
is important to notice that at this point no model of the rest of the wind turbine is used,
only the aerodynamical parts. This means that the rotation speed is kept constant. This is a
simplification since by changing pitch, rotation speed of the rotor naturally changes, which in
turn changes the aerodynamical torque. This simplification is done to give an initial estimate,
without going into too great detail of the model, whether it makes sense to include dynamic
inflow. The inclusion of the rest of the wind turbine is done later in the chapter.

By neglecting the pitch actuator dynamics (β(t) = βref (t)) and only looking at the dynamics of
dynamic inflow the bode plot from pitch to rotor torque can be drawn as seen on Figure 10.1.
The line plotted in the magnitude plot is an illustration of the BEM quasi steady model, which
has a magnitude, but infinite bandwidth.
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Figure 10.1. Difference between linearised dynamic inflow model and the quasi steady BEM model
(has infinite bandwidth) on rotor torque.

At higher frequencies it can be seen that the magnitude of the torque varies 6 dB between the
two models, which is a significant impact and is the reason dynamic inflow has to be incorporated
in the control, when operating at a high enough bandwidth. The point where the two models
differ is the critical frequency, which the actuator control system has to exceed in bandwidth
for inclusion of dynamic inflow in the model to start to have an effect. This critical frequency
is at 0.003 Hz. At 1 Hz the full 6 dB difference occur. Since the main energy in the turbulence
spectrum was at 0.02 Hz, and there is still a contribution from higher bandwidths, dynamic
inflow needs to be included in a system which seeks to reject the disturbance from turbulence.
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The actuator system puts a limit on how fast a bandwidth of the control system that can be
achieved. An illustration of how faster or slower actuator systems respectively makes information
about dynamic inflow relevant and irrelevant can be seen in Figure 10.2.
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Figure 10.2. System including dynamic inflow and first order pitch actuator with different time
constants.

With the slow time constant on the pitch actuator control system, the dynamic inflow is irrelevant
with regard to control, where a faster time constant means that dynamic inflow is relevant.

Another way of illustrating this is by making the rotor torque controller, which finds the optimal
pitch control inputs that minimizes the tracking error and seeing the effects of inclusion of
dynamic inflow. The controller used is a MPC - more information about MPC can be found
in Chapter 18 on page 82. Two controllers are made. One which takes dynamic inflow into
consideration in the optimizing of the trajectory and one which does not. Both of these are
applied to the linearised dynamic inflow system, see Figure 10.3.

Step
LineardDynamicdInflowdModel

MPC

Step
LineardDynamicdInflowdModel

MPC

x'=Ax+Bu
y=Cx+Du

MPCdController

MO

Ref
MO

Figure 10.3. The setup for the MPC test on the linearised dynamic inflow model.
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With a fast time constant on the pitch actuator control system, it can be seen that the
controller, which takes dynamic inflow into account, performs best, see Figure 10.4. With a slow
time constant both controllers perform equally, as expected, since the additional knowledge of
dynamic inflow can only be used at higher bandwidth.
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Figure 10.4. Comparison of controllers with and without inclusion of dynamic inflow knowledge acting
on a system with dynamic inflow first with a fast time constant on the actuator and then
with a slower one.
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This simple MPC can also be used to test, if dynamic inflow is relevant, while using a specific
actuator with constraints such as slew rate and saturation. As an example the difference between
including and not including dynamic inflow in the control, when the actuator has a time constant
of 1 s and a slew rate of 10 °/s can be seen on Figure 10.5.
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Figure 10.5. Comparison of controllers with and without inclusion of dynamic inflow knowledge acting
on a system with dynamic inflow and a pitch actuator with a time constant of 1 s and
slew rate of 10 °/s.

With this actuator the controller with dynamic inflow knowledge can suppress the overshoot by
some, but not completely because of the limitations of the actuator system. No specific actuator
parameters are chosen for the test of the later MPC, since these parameters will be altered in
different test to see the implications of changing these.

Now a comparison of wind turbulence, dynamic inflow and actuator system has been carried
out with regard to the rotor torque and thrust (only torque shown here, since thrust was almost
identical). The center frequency of wind turbulence lies at 0.02 Hz, with contribution ranging
into 10 Hz. Contribution from dynamic inflow starts from 0.003 Hz and continues to have
influence upwards. No specific dynamic parameters was chosen for the actuator system, but
impact by using a slow and faster system was shown.
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10.2 Dynamic Inflow in Power and Tower Movement

Now it is analysed how rotor torque and thrust propagates through the rest of the wind turbine
and alters respectively the angular velocity of the rotor and the movement of the tower. Where
before the effects were shown using only models for aerodynamics, the next is shown using models
from FAST. By using models in FAST containing the tower and the power system, consisting
of drivetrain and generator, the effects of dynamic inflow on rotor - and tower velocity can be
shown. When keeping the generator torque constant, these two states represent the two main
outputs that later will be controlled: power and tower velocity.

The models used from FAST are without any effect of a pitch actuator system. The bode plots
shown are taken from linearised models of there system, whereas the transient responses are
from the FAST model which is non-linear.

First the effect of adding dynamic inflow to the fast model from pitch to rotor speed is
investigated in the frequency domain:
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Figure 10.6. Bode plot from pitch to rotor speed with and without dynamic inflow.

Here it is seen that the frequency where the change from dynamic inflow appear at a higher
frequency than the cut off frequency of the rotor speed rotational dynamics. This leads to
the conclusion that dynamic inflow will not have any relevant impact on they dynamics of the
rotational system and therefore the power system on this wind turbine. This could be different
on another wind turbine, where the dynamics of the rotational system is faster due to e.g. lower
inertia.
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In Figure 10.7 the rotor speed with and without dynamic inflow can be seen in the time domain.
The rotor speed is changed by applying a step in pitch from 4° to 2°.
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Figure 10.7. Rotor speed response to a step in pitch using FAST with and without dynamic inflow.

As explained in Chapter 8 on page 27, there is a steady state difference in the two models FAST
use. This steady state difference is the only difference suggesting that dynamic inflow does not
have any noticeable effect on the dynamics of the power system, as determined from looking at
the frequency domain. This is due to friction and inertia of the drivetrain and the generator.
The extra torque added from dynamic inflow right after the change of pitch does not contain
enough energy to cause any significant difference. This suggest that no improvement of the
control of power generation on this wind turbine can be made by adding knowledge of dynamic
inflow to the control.
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Now the same analysis process is made on tower deflections, to get an initial understanding of
the impact of dynamic inflow. In Figure 10.8 the frequency response of tower deflections from
changes in pitch can be seen.
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Figure 10.8. Bode plot from pitch to tower deflections with and without dynamic inflow.

Here the dynamics of the tower deflections are fast enough that the changes from dynamic inflow
influences both the amplitude and the phase within the bandwidth. To further investigate the
changes, which dynamic inflow imposes on the velocity of the tower deflections, a step is done on
the pitch in time domain. This tower velocity occurring from this step can be seen in Figure 10.9
on the next page.
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Figure 10.9. Tower velocity response to a step in pitch using FAST with and with dynamic inflow.

Here it can be seen that the added force at that dynamic inflow adds right after the step
increasing the first fluctuations of the tower velocity. After that the fluctuations decreases faster
than the system without dynamic inflow. This difference suggest that using a controller with
knowledge of dynamic inflow can improve active tower damping. Exploring this possibility
further is the objective of this thesis.

At first it was shown how dynamic inflow, wind and control bandwidth determine what effect
dynamic inflow has on rotor torque and thrust. The effect of having faster or slower pitch
actuator in the loop also determines if having dynamic inflow information is necessary. Here
it was shown that rate constraints and generally slow dynamic of the actuator can lead to the
control system becoming slower than the point where dynamic inflow matters. Dynamic inflows
effect on rotor speed and tower velocity was also shown. Only tower velocity was noticeable
effected where a difference in the oscillations can be noticed. When developing a model it is
important that these effects are covered.
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Summary of Analysis 11
Throughout the analysis the system has been described and issues concerning control has been
addressed. These topics will in here be summarized.

The scope of this project is to investigate the possibility of using MPC with dynamic inflow
models and following implementing the concept. The system used in the project is a simulation
of a 5 MW onshore upwind HAWT, which has been developed by NREL. The simulation of the
5 MW NREL wind turbine is done through the simulation software FAST.

There are several control objectives in wind turbines, which can be addressed. In Chapter 4 on
page 9 the common types of control are presented. The power production is typically divided
into 4 regions depending on wind speed. The region of interest in this project is the third, where
minimisation of fatigue, while producing rated power is the objective. These control objectives
are to be implemented in an MPC scheme, which will find the optimal control input based on
the model. It will be implemented with collective blade pitch and generator torque as control
inputs.

The fatigue aspect is addressed in Chapter 5 on page 14, where it is explained how a rainflow
count on the deflection will be used to calculate a measure for fatigue. This number will be
used, when comparing the fatigue-wise performance of the developed controllers.

The interaction between the wind and the wind turbine is analysed in Chapter 6 on page 18 in
order to identify the correct phenomena to include in the project. Tower shadow, wind shear
and wakes are investigated, but are found negligible to the scope of the project. This way only
dynamic inflow models are the focus. A quasi steady, dynamic and a simple dynamic inflow
model was presented and compared. The simple dynamic inflow model with a decreased time
constant was concluded to be precise enough to be used in the control scheme.

In order to ensure the relevance of including dynamic inflow in a control scheme, it is
investigated if the bandwidth of the system is comparable to the bandwidth of the dynamic
inflow phenomenon. This investigation shows that it indeed is favourable to include dynamic
inflow, if the dynamics of the actuator is fast enough.

The foundation of an understanding of the system has been made and knowledge of necessary
modelling has been found. In addition to modelling the dynamic inflow, it has been chosen to
model the 1st tower fore-aft movement. The following part will address the modelling in detail,
which in turn is used in the construction part, when developing the MPC.
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Part II

Modelling
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Introduction to Modelling 12
In order to get an understanding of the wind turbine system and make a basis for the control
of it, a model has to be established. The model should describe how the wind affect the states
and how the control signals, pitch of the blades and generator torque, influence the system.

Creating a model, which can be used in a Model Predictive Control scheme is done through the
following steps:

1. Model description - A nonlinear model describing the relevant modes is developed.
2. Parameter estimation - Parameters of the nonlinear model are found by comparing with

results from the higher fidelity models from FAST.
3. Linearisation - A linear model is needed for the Model Predictive Control scheme.
4. Validation - A validation of the developed models.
5. Comparison - Comparison of the linear models with and without dynamic inflow.
6. Enabling all DOF - Comparison of the FAST model, where all modes are used with the

developed models.

It is important to keep in mind that the intent of the developed model is not to contain all DOF
and the complexity of the full FAST model with all modes activated, but only to the degree and
complexity relevant to the desired control scheme.

12.1 FAST

As explained in Appendix A on page 122, FAST is a high fidelity simulation tool, which in this
thesis represents the reality and is used to verify results. The model described in this chapter
will be a simplified edition of the full FAST model, both in regard to included modes, but also
in regard to complexity of the included modes. Since FAST can be set up to include more or
less degrees of freedom, the parameter estimation is done by comparing the developed model
against FAST, with only the same modes activated.

The verification of the model will also be done against FAST, where only the modes described
in the developed model are activated. This is done to make sure that these modes, which are of
interest in the control scheme, are properly described. Another comparison is done afterwards
to see the effect of the neglected modes.
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Model 13
The components of interest in regard to the control scheme are here modelled. The model is
divided into subsystems, which will be combined to form the entire model. The model is later
completed with parameter estimation in Chapter 14 and verified in Chapter 16.

To establish a model, the wind turbine will be divided into a set of subsystems that will be
modelled. The subsystem models are then combined to create a model of the entire wind turbine.
The chosen subsystem represent a certain amount of fidelity for the model. What to include
and what not to include in the model is based an assessment based on knowledge of controller
objectives and frequency bandwidth of the control system. The chosen model structure can be
seen in Figure 13.1, which divides the system into natural subsystems of mechanical nature.

Aerodynamics

Pitch
Actuator

Tower

Drivetrain Generator
Pg(t)

Tg(t)

ωg(t)

Ta(t)

ωr(t)
Ft(t)

β(t)

βref(t)

Σ
vw(t)

vt(t)

-

Tg,ref(t)

va(t)

Figure 13.1. Overview of the model structure. The input signals are vw(t), Tg(t) and βref , where only
the last two are controllable.

13.1 Aerodynamics

The power available in the wind can be expressed as [Bianchi et al., 2007, P. 19]:

Pw(t) =
1

2
ρAv3

w(t) (13.1)

The wind speed experienced at the rotor va is dependent of the tower fore-aft movements:

va(t) = vw(t)− vt(t) (13.2)

The power transfered to the rotor is dependent on the power coefficient factor and is described
as:

Pr(t) = Pw(t)Cp(λ(t), β(t)) (13.3)

The Cp function for the NREL 5 MW wind turbine can be seen in Figure 4.3 and 4.4 on page 12.
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The aerodynamic torque acting on the rotor can be expressed by power and angular velocity
[Johnson et al., 2006]:

Ta(t) =
Pr(t)

ωr(t)
(13.4)

Using the torque definition in (13.4), it is possible to combine (13.1) and (13.3), to express the
torque as:

Ta(t) =
1

2ωr(t)
ρAv3

a(t)Cp(λ(t), β(t)) (13.5)

The wind also creates a force acting on the tower through the blades. The force with which the
wind is acting on the tower is [Bianchi et al., 2007, P. 19]:

Fw(t) =
1

2
ρAv2

a(t)Ct(λ(t), β(t)) (13.6)

Where: Fw(t) is the force acting on the tower [N].
Ct(λ(t), β(t)) is the thrust coefficient [−].

The characteristics of the Ct coefficient for the NREL 5 MW wind turbine can be seen in Figure
13.2 and 13.3.
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Figures illustrating the Cp table can be seen in Figure 4.3 and 4.4 on page 12. The equations
used here to calculate rotor torque and tower force are derived from quasi steady blade element
theory, which is better explained in Chapter 8 on page 27.
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Dynamic Inflow

The simple dynamic inflow model used here was introduced in Chapter 8 on page 27. From
here the induction factors a−a and a+

a will be known as af and as respectively. This model
uses an ambient fictive wind, which contains the dynamic inflow behaviour. The equations for
calculating rotor torque and tower force are:

λ =
ωrR

va
(13.7)

as =
1

2

(
1−

√
1− Ct

)
(13.8)

ȧf =
1

τDI
(as − af ) (13.9)

vf = va
1− af
1− as

(13.10)

Ta(t) =
1

2ωr(t)
ρAv3

f (t)Cp(λ(t), β(t)) (13.11)

Fw(t) =
1

2
ρAv2

f (t)Ct(λ(t), β(t)) (13.12)

13.2 Drivetrain

The drivetrain will be modelled as a simple one mass system, without any friction, drivetrain
torsion and with an ideal gear to transfer the rotational energy. By assuming there is no loss of
energy in the gear and omitting drivetrain torsion, all the inertias in the system can be lumped
into one inertia. The dynamics of the drivetrain can thereby be described as:

ω̇r(t) =
Ta(t)−NTg(t)

J
(13.13)

Where: Tg(t) is the torque applied by the generator [Nm].
J is the inertia of the lumped components

[
kgm2

]
.

N is the gear ratio.

The lumped inertia is the inertia of the rotor, gearbox, low- and high-speed shaft. The inertia
can be found in [Jonkman et al., 2009], but to allow the model a potential better fit, it is assumed
unknown. The parameters will be estimated in Chapter 14 on page 60.

From ωr(t) the generator angular velocity is found as:

ωg(t) = Nωr(t) (13.14)

Where: ωg(t) angular velocity of the generator [ rad
s ].
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13.3 Tower Dynamics

The tower is affected by the force the wind exerts on the rotor and tower. This causes the tower
to bend, which in turn increases the fatigue of the system. In order to be able to minimise the
fatigue, a model is made describing the deflection of the tower. The wind turbine can be seen
as an arm with a force acting in the top, it could be modelled as an inertia, spring damper
system. As the deflections are assumed small, the deflections are instead modelled as a mass
spring damper system, neglecting the change in height.

Bt

Kt

Figure 13.4. The deflection of the tower is mod-
elled as a mass, spring, damper sys-
tem.

Kt

Bt

Mt

Fw(t)

dt(t)

Figure 13.5. Tower deflection modelled as a mass,
spring, damper system.

The system is modelled from the disturbance input namely the wind to the deflection of the
tower. The model in Figure 13.4 is simplified to a mass, spring, damper system as seen in
Figure 13.5, where Mt covers the lumped mass of the tower, rotor and nacelle. Assuming the
oscillations are small, this is considered an acceptable approach for the tower modelling. The
forces acting on the mass comes from the damper, spring and the disturbance input from the
wind:

at(t)Mt = −Btvt(t)−Ktdt(t) + Fw(t) (13.15)

Where: at denotes the acceleration of the lumped mass
[

m
s2

]
.

Bt denotes the friction coefficient
[

Ns
m

]
.

Kt denotes the spring coefficient
[

N
m

]
.

Mt denotes the mass of the lumped mass [kg].

The total mass of the wind turbine can be found in [Jonkman et al., 2009], but the modelling
approach assumes that the mass is collected into one point, instead of being distributed over
the entire height and fixed in the bottom. How much of the mass that should be used in the
model is therefore unknown and it will be estimated to get the best model fit. The values of Bt
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and Kt are also unknown and will also be estimated.

13.4 Pitch Actuator

The pitch actuators on a wind turbine controls the pitch by rotating the blades. The actuators
are typically either hydraulic systems or electric servo motors. In this project no specific
modelling, going into the physics and mechanics, of the actuator systems will be made. The
response of the actuators is modelled as a first order system. Besides this linear representation
the nonlinear attributes slew rate and saturation is added to better depict the physical limitations
of the pitch actuator system. Pure time delays from communication between the controller and
the actuators are omitted, since they are assumed minuscule.

The continues time model therefore becomes:

β̇(t) =
1

τp
βref (t)− 1

τp
β(t) (13.16)

βmax ≥ β(t) ≥ βmin (13.17)

β̇max ≥ β̇(t) ≥ β̇min (13.18)

Where: β(t) is the pitch angle [°].
βmax is the maximum pitch angle [°].
βmin is the minimum pitch angle [°].
β̇max is the positive slew rate for the pitch angle [°/s].
β̇min is the negative slew rate for the pitch angle [°/s].
βref (t) is the reference signal for the pitch angle [°].
τp is the time constant [s].

13.5 Generator

The other control input to the system is the generator torque. The dynamics of the generator
torque system is assumed to be much faster, than of the rest of the control system. However
to have the have the possibility to change the dynamics of the generator model, a simple first
order model is used. The time constant of the model will be set low compared to the rest of the
system, to avoid dominating dynamics from the generator model.

The continuous time model of the generator system is:

Ṫg(t) =
1

τg
Tg,ref (t)− 1

τg
Tg(t) (13.19)

Where: Tg(t) is the generator torque. [Nm].
Tg,ref (t) is the reference for the generator torque [Nm].
τg is the time constant [s].
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The power output of the generator is described as:

Pg(t) = ηgTg(t)ωg(t) (13.20)

Where: Pg(t) is the generator power [W].
ηg is the efficiency of the generator [−].

13.6 Summary

The models can now be gathered into a nonlinear state space model, which is used for further
work. The state equations are shown in (13.21):

f(x, u) =

˙

af
ωr
dt
vt
β

Tg


=



1
τDI(vw)(as − af )

1
J (Ta −NTg)

vt
1
Mt

(Ft −Ktdt −Btvt)
1

τp
(βref − β)

1

τg
(Tg,ref − Tg)


(13.21)

Where: Ta = 1
2ωr

ρv3
fACp (λ, β)

Ft = 1
2ρv

2
fACt (λ, β)

The output equations are described by (13.22):

h(x, u) =

Pgvt
ωr

 =

NωrTgvt
ωr

 (13.22)

The submodels have been derived and combined into a larger nonlinear model. Some parameters
are unknown, which is why these are subject to a parameter estimation in the following chapter.
The model is then linearised in Chapter 15 on page 65 for use in the MPC.
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Parameter Estimation 14
In this chapter the parameter estimation for the nonlinear model will be done. Four parameters
are estimated using the Prediction Error Method.

The lumped inertia and mass of the turbine, spring and friction coefficients are either unknown
or assumed unknown and needs to be estimated for the model. From now on, the lumped
parameters, inertia and mass of the turbine, will just be referred to as drivetrain inertia and
tower mass for simplicity and as this is the way they are modelled.

FAST has no pitch actuator model included, which means the user is free to choose any kind
of input dynamic desired. The dynamics of the pitch actuator has previously been described
as a first order system. The time constant for the first order system will in this case be user
defined and therefore no estimation of that parameter is necessary. The pitch actuator model is
not implemented in FAST during this modelling part, in order to simplify the real world. The
model is first included in the FAST model, when the MPC is applied.

The estimation will be done in MATLAB, with the PEM function. It is a prediction error
method that can handle linear and nonlinear models. Furthermore it is possible to set initial
values and constraints for both parameters and states. The estimation will be done using a
nonlinear grey box model.
Given a specified input signal, the PEM function will search for the parameter(s), which
minimizes the error between a measured output and a predicted output. The PEM function
automatically chooses the fastest search algorithm, among the following algorithms:

• Gauss-Newton method
• Adaptive Gauss-Newton method
• A gradient method
• Levenberg-Marquardt search method
• Nonlinear least-squares method

The output of the wind turbine can be written as:

ẋ(t) = G(t, x(t), u(t)) + w(t) (14.1)

y(t) = H(t, x(t), u(t)) + e(t) (14.2)

Where: y(t) is the output from the wind turbine.
u(t) is the inputs to the wind turbine.
w(t) and e(t) are noise affecting the wind turbine.
G and H are nonlinear dynamics that describe the wind turbine.

In general the PEM finds the parameters that minimizes the sum of squared prediction errors
in (14.3) [Mathworks, 2014].
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VN (G,H) =
N∑
t=1

ε(t)2 (14.3)

Where: ε(t) is the error between the measured and predicted output.

14.1 Operating Area

The control scheme is being implemented in region 3. The operating point for the wind speed
is chosen as 12 m/s. This leads to the following operating points:

v̄w = 12 m/s (14.4)

ω̄r = 12.1 rpm (14.5)

T̄g = 43093.5 Nm (14.6)

β̄ = 4° (14.7)

To avoid going into the transition area between region 2 and region 3 the operating area for the
wind is chosen as 11.5-12.5 m/s. This is obviously not the full operational area, but having a
small operating area will increase the correctness of especially the linear model. If an MPC can
achieve better control by using information about dynamic inflow in a small operating area, it
can be expanded to worker over a larger area by using e.g. Multiple Model Predictive Control
(MMPC). This leads to the following area:

Operating point Operating area
vw 12 m/s 11.5-12.5 m/s

β 4° 2°-6°

Table 14.1. Operating area for the developed model.

This information will be used when deciding the amplitude of the input signals for parameter
estimation and for linearising the model.

14.2 Input Signals

The input signal for the parameter estimation is as seen in Figure 14.1 on the following page.
The outputs used to compare the model output will be rotor speed, tower displacement and
velocity.

First the pitch and wind speed is changed simultaneous to approximately keep the rated rotor
speed. Secondly only the pitch is changed, before only the wind speed is changed. For the
parameter estimation the torque is kept constant, as this primarily will cause changes in the
rotational speed, whereas pitch both will gives changes in rotor speed and tower position. Later
in Chapter 16 on page 67 it will be investigated, how the developed model follow torque changes.
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Figure 14.1. The input signal for parameter estimation with PEM.

Applying the PEM function results in the following parameters. The parameters are estimated
where all submodels combined, to create the full nonlinear model of the wind turbine.

Estimated Parameter Value Unit
Drive train inertia - J 41430600

[
kgm2

]
Tower spring coefficient - Kt 1873530

[
N
m

]
Tower damper coefficient - Bt 65190.4

[
Ns
m

]
Tower mass - Mt 447825 [kg]

Table 14.2. Estimated values for the nonlinear model of the NREL 5 MW wind turbine.

In [Jonkman et al., 2009] the total wind turbine mass is stated to be 697460 kg and the total
inertia of the blades, hub, generator and low speed shaft taken around the low speed shaft is
40469564 kgm2. The inertia is close to the reported number and the estimated mass of the wind
turbine is about two thirds of the real value, which is expected as the mass gets more static
closer to the ground. The spring and damper values are not stated in [Jonkman et al., 2009]
and no comparison can therefore be made with those.
All the estimated parameters are therefore considered to be both valid and realistic for the
modelling approach taken.
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14.3 Nonlinear Model Fits

The model fits, using the estimated parameters, can be seen in Figure 14.2 and 14.3. The model
was estimated based on rotor speed, tower displacement and velocity. For further comparison
the generator power is plotted, due to its importance in the final setup. Specific fit percentage
will not be given in this chapter, as the model is evaluated later in Chapter 16 on page 67.
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Figure 14.2. A comparison of the rotational frequency of the rotor and generator power between FAST
and the nonlinear model.
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Figure 14.3. A comparison of the displacement and velocity of the tower between FAST and the
nonlinear model.

All details of the fit can be hard to see at this range, so a closer visual comparison of the nonlinear
model to the FAST output will be done under the validation in Chapter 16 on page 67. How
well the nonlinear model fits will be described in the validation chapter.

In this chapter a parameter estimation was made for the nonlinear model derived in Chapter
13. The parameters will be used to generate a linear model in the following chapter, which can
be used for an MPC.
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Linearisation of Wind
Turbine Model 15

In this chapter a linear model with and without dynamic inflow is presented. The linear model
with dynamic inflow is linearised from the nonlinear model derived earlier. The model without
dynamic inflow is linearised from a simplified nonlinear model without dynamic inflow, before
its parameters are estimated again.

In order to have a model, which is usable in a normal MPC setup, the nonlinear model has to be
linearised. This is done using a first order Taylor approximation. The equations are linearised
around the operating point and the partial derivatives are evaluated at the steady state.

15.1 Linear Model With Dynamic Inflow

The linearisation can be found in Appendix E on page 133 and the result is here shown in a
state space representation:
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The partial derivatives are shown in the appendix.

How well the linear model fit will be shown in the validation chapter, see Chapter 16 on page 67.
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15.2 Linear Model Without Dynamic Inflow

In order to see if the effect of the inclusion of dynamic inflow models is significant, a linear
model without dynamic inflow is made. The model will be made by removing the af state and
associated equations from the model described previously. Furthermore the partial derivatives
are recalculated, as described in Appendix E on page 133. The parameters estimated in
Chapter 14 on page 60 are then re-estimated, to allow the best fit. This way the model can
attempt to follow as much of the dynamics as possible with the reduced number of states.

The model structure, for the linear model without dynamic inflow, can be seen in (15.2).
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The input signal for the parameter estimation is shown in Figure 14.1 on page 62, which is
the signal that is used for the nonlinear parameter estimation. The outputs are also the same,
namely rotor speed, tower displacement and tower velocity. The PEM function is again given a
grey box model to make the parameters estimation on. This time the grey box model can be a
linear model, which therefore will be used.

The resulting parameters are:

Estimated Parameter Value Unit
Drive train inertia - J 42170000

[
kgm2

]
Tower spring coefficient - Kt 1719000

[
N
m

]
Tower damper coefficient - Bt 9025

[
Ns
m

]
Tower mass - Mt 405400 [kg]

Table 15.1. Estimated values for the linear model without dynamic inflow.

This linear model without dynamic inflow will be used in Section 16.3 on page 71, where the
linear models with and without dynamic inflow are compared.

Two linear models for use in MPC have been derived. They will form the basis for a comparison,
where the difference between a model with and without dynamic inflow is investigated. In the
following chapter a validation of the nonlinear model and the linear models will be made.

66



Validation 16
In this chapter a validation of the derived models will be made. This is done to see the effects
of the linearisation and how large a difference it makes to include dynamic inflow into a linear
model. Furthermore it will be investigated what difference there is, when enabling all the DOF’s
in FAST.

Validation results of both the nonlinear and the linear models will be shown. The models are
validated through how well they fit in terms of generator power, rotor rotational velocity, tower
displacement and tower velocity. How well a model fit is done through visual inspection and
through computation of the error calculated as following:

errn =

N∑
k=0

(yr(k)− y(k))2

N∑
k=0

(yr(k)− yavg)2

· 100 (16.1)

Where: errn is the normed mean square output error [%].
y(k) is the output from the nonlinear model.
yr(k) is the output from FAST.
yavg is the average of the output from FAST.

Validation is done by creating a new set of data by applying another input signal, than used for
estimation to the FAST model and seeing that the models fit. At first only the nonlinear model
and linear model with dynamic inflow is considered. The input is as follows:
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Figure 16.1. Input Signal for model validation.

67



The input signal consists of parts, where the model is exposed to respectively wind and pitch
changes, only pitch changes and then only wind changes. This is done to make sure to cover
the full operating area of the models. Initially the torque is kept constant, in order to focus on
just wind and pitch changes. Later it is investigated how well the models fit, when there are
changes in input torque. The investigated outputs are power, rotor speed, tower displacement
and velocity.

Applying the input signal seen in Figure 16.1 produces the following results:
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Figure 16.2. Rotational frequency of the rotor and Generator Power from FAST, nonlinear and linear
model.
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Figure 16.3. Tower deflection and velocity from FAST, nonlinear and linear model.

The calculated errors can be seen in Table 16.1.

Output Nonlinear Model Error Linear Model Error
Rotational frequency 0.43% 1.01%
Generator Power 0.43% 1.01%
Tower displacement 0.30% 1.73%
Tower velocity 2.05% 7.40%

Table 16.1. Error from the nonlinear and linear models in the output data shown in Figure 16.2 and
16.3.

The errors are generally small, which indicate a good model fit. As expected the error of the
linear model are greater, than those of the nonlinear model. The error made by the models
consists of both steady state errors and errors in the dynamic behaviour.

16.1 Steady State

Steady state errors in the linear model occurs due to the linearisation. This is primarily seen
in the tower displacement, rotor speed and power. Especially the linearisation of the highly
nonlinear Cp and Ct tables causes an error, when moving away from the operating point. This

69



error can be seen in Figure 16.4 where the gradient plane is plotted against the Cp table along
with Figure 16.5 containing a contour plot of the relative error.

Figure 16.4. Cp table with gradient plane used for
linearisation. The magenta mark in-
dicates the operating point.
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Figure 16.5. Contour plot of the relative error
between the Cp and the linearised
gradient plane. The red rectan-
gle indicates the operating area and
the dashed magenta rectangle is en-
larged in Figure 16.6.
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Figure 16.6. A close up of the contour plot, where it is possible to see a more detailed view of the
operating area and its associated error. In the middle, there is small area where the error
is zero (where the magenta dot is at).

The steady state errors within this operating area are deemed small enough for use in MPC. If
this is shown not to be the case a smaller operating area can be used.
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16.2 Dynamics

The dynamics of the rotational frequency and the generator power are suitable for both the
nonlinear and the linear model.

To better examine the dynamics of the tower deflections and velocities, a zoom is performed in
Figure 16.7:
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Figure 16.7. Validation of tower movements in the timerange 0-300 s for easier examination of
dynamics.

As seen in Figure 16.7 the tower oscillations are consistent along the three transients. These
oscillation are with the tower fore-aft natural frequency (0.324 Hz as seen in Table 9.1 on
page 39).

16.3 Linear Models With and Without Dynamic Inflow

In Chapter 10 on page 42 the differences between FAST models with and without dynamic
inflow were shown. The major difference is the amplitude of the fluctuations of the tower and
the damping of these fluctuations. To get an idea of the developed linear model better resembles
these features, than a linear model without dynamic inflow, a linear model without dynamic
inflow was made in Section 15.2 on page 66. This model was made by taking the linearised
model in Chapter 15 on page 65 and removing the af state and all relating partial derivatives.
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Then a parameter estimation was done directly on the linear model without dynamic inflow to
see if adjustment of the remaining parameters can ”help” cover for the missing state. Figure
16.8 shows a close up of the comparison of the models in the fluctuations which are created by
respectively wind and pitch change, wind change and pitch change.
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Figure 16.8. Three zooms on the validation data of tower velocity compared against a linear model
with and without dynamic inflow. The three different zoom regions are from respectively:
wind and pitch step, wind step only, pitch step only.

From this it can be seen that a linear model containing dynamic inflow better reaches the
amplitude of the first fluctuations, when exposed to wind and pitch or a pure pitch step.
Furthermore the damping is a better match, when including dynamic inflow.
In the scenario where only wind is changed the linear model without dynamic inflow actually
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performs better in the first fluctuations, but the dampening in the linear model with dynamic
inflow matches better. This specific part, where only wind was changed, does not behave better
with dynamic inflow accounted for, as hoped, but since the system will be controlled, a scenario
where wind changes without the pitch changing too will not occur. It was already shown in the
initial analysis in Chapter 8 on page 27 that the simplified dynamic inflow model, which is used,
has some deficiencies, when wind changes are applied. Since the MPC scheme will not have any
knowledge of future wind changes the wind will be constant in the horizon, meaning that the
deficiency will not have an effect.

When taking all the output data from tower movements and comparing the calculated error,
the result is:

Output Error Linear Model DI On Linear Model DI Off
Tower displacement 1.73% 2.07%
Tower velocity 7.40% 7.76%

Table 16.2. Error from the linear models with and without dynamic inflow.

Here it is seen that the error is improved a little when using dynamic inflow. As mentioned
before the MPC scheme will consider the wind constant within the horizon, so the model only
needs to match changes in pitch and torque. By taking only the part of the output data, where
pitch was changed alone, the calculated errors become.

Output Error Linear Model DI On Linear Model DI Off
Tower displacement 1.82% 2.33%
Tower velocity 5.54% 7.01%

Table 16.3. Error from the linear models with and without dynamic inflow from data with only pitch
changes.

Here the improvement from using dynamic inflow is more expressed. This encourages the idea
of an MPC, which includes dynamic inflow being able of decreasing tower movements compared
to an MPC without dynamic inflow.

The linear model is to be used for Model Predictive Control. The linear model have been shown
to contain the desired dynamics of the system. Steady state errors are deemed small enough
for control. In case of problems due to errors in steady state in the linear model the operating
range can be decreased.

16.4 Torque Changes

So far the validation has been done, without focus on changes in torque. It will now be tested
how the nonlinear model and linear model with DI handles a change in input torque. The input
signal can be seen in Figure 16.9 on the next page.
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Figure 16.9. The input signal for the torque test.

The torque changes three times stepwise to see how it affects the wind turbine. The result of
this stepwise input can be seen in Figure 16.10 and 16.11.
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Figure 16.10. Comparison of rotational fre-
quency and power output between
FAST, the nonlinear and linear
model for the torque test.
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Figure 16.11. Comparison of tower displacement
and velocity between FAST, the
nonlinear and linear model for the
torque test.

From Figure 16.10 and 16.11 it can be seen that both the nonlinear model and linear model is
capable of handling these torque changes.
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16.5 Enabling All DOF

Since only the modes represented in the model was used in FAST for validating, a comparison is
done where all modes are enabled in FAST, see Appendix A on page 122 for a description of all
the DOF in FAST. The reason why some modes have been neglected from the model is first of
all that the other modes have been deemed negligible, by having a higher natural frequency. In
this section the error made by neglecting these mode are visualised. This is done by applying a
step in pitch, from 5° to 6°, to the different models and make a comparison in the time domain.
By applying a step all frequencies will be tested, meaning that the error might be worse, than
what would actually be experienced in a control scheme with lower bandwidth. It is only the
effect of the two main outputs used in this project, namely generator power and tower velocity,
which will be examined.

By turning on all degrees of freedom in FAST and applying a step in wind and pitch, while
comparing to the linear model constructed from fewer DOF, the error can be assessed. First of
is the comparison in generator power.
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Figure 16.12. Wind and pitch step applied to FAST model with all DOF, FAST with only the DOF
used in the model and the linear model comparing generator power.

In regard to generator power a slight constant difference can be experienced. Apart from this,
when examining closer as in Figure 16.13, it can be seen that fluctuations happen just after the
step stemming from the natural frequencies of the other modes, such as the drivetrain. These
minor differences are deemed small enough to neglect in the model. If this shows to not be the
case this can be re-evaluated.
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Figure 16.13. Wind and pitch step applied to FAST model with all DOF, FAST with only the DOF
used in the model and the linear model comparing generator power. Zoomed in at the
start of the response to see fluctuations on the FAST model with all DOF.
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Figure 16.14. Wind and pitch step applied to FAST model with all DOF, with only the DOF used in
the model and the linear model comparing tower velocity.
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The error made by the simplified models in regard to tower velocity can be seen in Figure 16.14.

FAST with model DOF and the linear model is quite similar in frequency and phase. However,
they differ a bit in frequency from FAST with all DOF. This minor error in tower velocity is
also deemed small enough to support using the simplified model. Again if this turns out to be
an incorrect assessment, the simplified model will be extended.

Estimation with All DOF Enabled

Another way to do the estimation process could be to have all DOF enabled in FAST while
estimating parameters. To investigate how big a difference it makes for the result, the linear
model with DI has been fitted to the data given by FAST with all DOF enabled. The estimation
is done with the same input signal as seen in Figure 14.1 on page 62. The resulting parameters
were:

Estimated Parameter Model DOF All DOF Unit
Drive train inertia - J 41430600 51710000

[
kgm2

]
Tower spring coefficient - Kt 1873530 1877000

[
N
m

]
Tower damper coefficient - Bt 65190.4 89600

[
Ns
m

]
Tower mass - Mt 447825 454000 [kg]

Table 16.4. Comparison of estimated parameters for nonlinear estimation process.
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Generally the model based on FAST with all DOF is as good as the model based on model DOF.
To illustrate this, a transient for a single pitch changes is plotted in Figure 16.15.
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Figure 16.15. Comparison of tower velocity caused by a pitch change. The models have parameters
as shown in Table 16.4.

In Figure 16.15 it can be seen that the model based on FAST with all DOF has a larger damping
(as expected based on the parameters). This means it hits the first period better, than the model
based on just model DOF, however on the rest of the periods it is worse. The frequency of the
oscillations is also slower, than both FAST and the initial model. It is therefore decided to stick
with the initial model, based on model DOF, as no decisive advantage is seen from the model
based on ALL DOF.
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16.6 Observability and Controllability

To see if the model developed can be used for control it is tested for observability and
controllability.

There can be multiple reasons why a state cannot be measured e.g.:

• A sensor is not present at the needed state, either due to not being physically reachable
or economically feasible.

• The state is a so called ”dummy” state which does not describe anything real and
measurable.

In this case the missing state information can be estimated through and observer, as described
in the estimation chapter, by using a model that is observable. As mentioned in the estimation
chapter full state measurements, except for the dynamic inflow state, are used in this project,
since estimation is not the main focus of this work. The model is tested for observability to verify
that the dynamic inflow state can be estimated by using input output data from the system.

A model with n states is observable, if the following holds true:

rank(Q) = n (16.2)

Where the Q matrix can be found as:

Q =
[
C CA · · · CAn−1

]T
(16.3)

The model is found to be observable since rank(Q) = 6.

To make sure the system model is controllable via the inputs, the model is tested for
controllability.

A model with n states is controllable, if the following holds true:

rank(C) = n (16.4)

Where the C matrix can be found as:

C =
[
AB A2B · · · An−1B

]
(16.5)

The model is found controllable since rank(C) = 6.

The model without DI is also both observable and controllable.

Throughout this chapter a validation and comparison of the developed models have been made.
The models show to follow the wanted output from FAST. Inclusion of a simple dynamic inflow
model showed to improve the model fit and there is therefore a strengthened basis for using this
in an MPC. The following part will go through the basic MPC theory and the setup, before the
results obtained using the developed model in an MPC is shown.
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Part III

MPC Design
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Introduction to MPC
Design 17

In this part theory, implementation and tuning of an MPC is shown.

This project works on combining a simple dynamic inflow model with the already existing
method of MPC. This means that the MPC theory is only described in a cursory manner, since
the MPC format used is described in Appendix G and in even more detail in [Maciejowski, 2002].

With regard to implementation the important features of the tools used here are that they are
well tested and used, such that only limited development time is used on errors using the tool.
Computation time is often of great importance, when the algorithm is implemented on a real
time system. This is not the case, now that the system is simulated and computation time
therefore ”only” is a matter of not having to wait too long for simulation results. The process
of implementing MPC was done first using the same linear model as used in the controller for
the system. The next step was implementing it with the nonlinear model as the plant and
only after this worked sufficiently, then it was implemented on the full model in FAST. This
was done to slowly increase the complexity of the controlled system, so potential errors in the
implementation of MPC were easier to deduce a solution for.

A tuning of the implemented MPC is done, with regard to horizon lengths, estimation gain, and
weights in the cost function. The goal of this project is not to find the optimal tuning of an
MPC. It is to find good tuning parameters for the MPCs (with and without dynamic inflow)
that operates well and then compare the two. As long as the tunings are comparable, e.g. using
same input weights, the MPCs can be compared.
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Theory 18
The theory used for the implementation of the MPC is here presented. The basic functionality
and concept are described and the means of tuning the controller is clarified.

The motivation for using an MPC scheme is the ability to optimize the trajectories of a multi
variable system, while staying within critical constraints. These features, especially the formal
way of handling constraints, has made MPC one of the only control strategies, which is more
advanced than PID, to be spread into the industry. Using an MPC for control of a wind turbine
gives the advantage of controlling not only power generation, but also handling fatigue of the
construction in an optimal way, while ensuring that no constraints are surpassed.

MPC is a family of predictive control methods, which all has the use of a model in common.
These methods are often used in combination with a linear model and produces a linear control
law. The explicit use of a model predicts future outputs of the plant given some input, within
a certain horizon. An optimizer routine calculates the input, which gives the optimal predicted
trajectory according to a described cost function and constraints. An illustration of an MPC
scheme can be seen in Figure 18.1 [Camacho and Bordons, 1995].

Model

Optimizer

-

+

Reference 
Trajectory

Predicted
Outputs

Past Inputs
and Outputs

Future 
Inputs

Cost 
Function Constraints

Future Errors

Figure 18.1. Concept of MPC [Camacho and Bordons, 1995]. The use of a model makes it possible to
estimate the future outputs given future control inputs and past inputs and outputs.

The future of the plant trajectories are predicted within a prediction horizon of Np time steps.
This prediction is dependent of the assumed future control inputs in the prediction horizon. The
future control inputs are applied in the control horizon of Nc time steps as seen in Figure 18.2
on the facing page and after that considered constant for the prediction.
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Figure 18.2. The future output of the plant is estimated, based on future control inputs and a model
of the plant.

The objective is to reach the set point and by this the future control signals are calculated by
optimizing some specific criteria given by an objective function, subject to constraints. The
optimal control sequence, in the control horizon, giving the best predicted output trajectory, in
the prediction horizon, is calculated in the optimizer. When the optimal trajectory is calculated
only the first control input is applied to the plant. This is done every time step. This method
of calculating forward a constant horizon every time step online is called receding horizon.

In the following description a linearized, discrete time, state space model is used:

x(k + 1) = Ax(k) +Bu(k) (18.1)

z(k) = Czx(k) (18.2)

Where: x are the states.
u are the control inputs.
z are the controlled outputs.

The notation and method for MPC used in this project is based on the works of [Maciejowski,
2002].
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18.1 Objective Function

The optimization of the control input is done according to an objective function, which penalizes
parameters of interest, e.g. the deviation from the desired trajectory and the control effort. A
commonly used objective function is used [Maciejowski, 2002, P. 41]:

V (k) =

Np∑
i=Nw

||ẑ (k + i|k)− r (k + i|k) ||2Q(i)) +

Nu−1∑
i=0

||∆û (k + i|k) ||2R∆(i)

+

Nu−1∑
i=0

||û (k + i|k) ||2R(i) (18.3)

Where: ẑ denotes the predicted output.
r denotes the reference trajectory.
û denotes the control input.
∆û denotes the changes in the control input.
Np is the prediction horizon.
Nw is the start of the prediction window.
Nu is the control horizon.

The weights Q, R∆ and R are here respectively weights on the trajectory error, the input rate
of change and the input size. By adjusting these weights the controller can be tuned towards a
desired performance. Nw is often set to 1, meaning that the penalizing of the trajectory from
the reference starts immediately. Alterations from this are seen if e.g. the effect of the control
input is delayed, such that it only affects the trajectory later in the horizon.

Variations in MPC are often introduced, as the system might be time varying, varying with
a parameter or convergence to non-zero states is desired. This way the controller can have
different behaviour at a different operation point.

This was a cursory description of the form of the MPC used in this project, for more information
about how subjects such as handling constraints or disturbances read Appendix G on page 142.
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18.2 Estimation

Even though full state information was said to be used in Chapter 7, this is not true for the
MPC with dynamic inflow, where the dynamic inflow state af is estimated. Apart from this
integrated white noise disturbances are used on the outputs which results in integral action.
These output disturbances also needs to be estimated. A Kalman filter is used for this, read
Appendix F for further information on this. The setup including the Kalman filter is as seen in
Figure 18.3.
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System
model

Update

u(k-1)
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PredictorOptimizer
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MPC Kalman filter
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Figure 18.3. Location of the estimation in regard to the control structure.

The general form of how estimation, prediction and optimization is coupled into the complete
control scheme was here described. Each of these three subjects were described in a very cursory
form with pointers to where more information can be found.
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Implementation 19
This chapter will go through the specific MPC implementation used throughout this project. The
Simulink setup and quadratic programming solver used will be explained.

Different tools such as ”quadproc”, ”CVX” and ”Model Predictive Control Toolbox” are available
for when implementing MPC in MATLAB. Having experience with the three mentioned tools
”Model Predictive Control Toolbox” was chosen since it fulfils the needs of this project while
being a well tested and documented tool. Since FAST runs in the Simulink environment the
MPC related code is collected into what is called a MATLAB interpreted function as seen in
Figure 19.1.

An overview of the Simulink file can be seen in Figure 19.1.

Wind Turbine Model

80 Hz

20 Hz

Figure 19.1. The Simulink implementation of the MPC.

The red box indicates where the limits of the wind turbine model is. The model is used as a
replica of a real world wind turbine. Inside the pitch actuator block is the defined model for
the actuator, which includes a first order model, slew rates and actuator movement constraint.
The green block is the model supplied by FAST, where the high-fidelity wind turbine model is
being run.

The MATLAB interpreted function is where all MPC related code is running. The block takes
the reference values for power generation and tower velocity and the wind turbine measured
outputs as input. It then outputs a control signal. The reference is made in MW, in order to
get MPC weights that are closer to unity. If it had been in W, a similar output power weight
would have to be scaled by a factor 10−6 in order to create the same level of cost. This is done
on all the forthcoming results.

The sampling time of the simulation is set to fixed time - 0.0125 s. The Runge-Kutta solver
method is the used ODE solver. This is the ODE solver that NREL advises since FAST is build
around this. The sampling time of the MPC is set equal to 0.05 s. The highest frequency looked
described in the model used in fast is the tower frequency, at 0.324 Hz. Setting the sampling
frequency to 20 Hz, should be more than enough to allow for good control performance.
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To recapitulate the input, states and output of the model used for MPC are:

u =

Tg,refβref
vw

 x =


ωr
dt
vt
β

Tg

 y =

Pvt
ωr

 (19.1)

In the input only Tg,ref and βref are manipulated variables, since the system have no control
over the wind. In the cost function a rate constraint is applied to βref and on the size of Tg,ref .
Using the actuators has a cost e.g. power for the actuators and increased wear and tear. The
size of the real cost of using these inputs compared to the output costs are unknown. The size of
the chosen pitch rate and generator torque weights are discussed further in the tuning of these.

Weights are added to the errors between the references and the outputs for all the outputs. Power
and tower velocity references are respectively set to the rated power and zero tower velocity. If
only weights were added to these two outputs, the system would be able to find an equilibrium,
where the rotor speed and generator torque are not at their rated values, e.g. generator torque
being lower and rotor speed faster. This is solved by adding the rotor rotational velocity as
an output and applying a reference on the rated velocity. Something similar could be done by
applying soft constraints around rated generator torque. From trying both of these methods in
simulations the former was chosen.

19.1 Solver

The QP solver used is the ”QPKWIK” described in [Schmid and Biegler, 1994]. This algorithm
requires the Hessian to be positive definite. The karush kuhn tucker conditions are used as
described in (G.76) (see Appendix G on page 142) as the necessary and sufficient conditions for
the found solution being a global minimum. KWIK uses the cholesky factorisation for faster
calculations of the inverse of a matrix which is used in the optimization. For calculating the first
control input, the KWIK algorithm uses a cold start, where the initial guess is the solution to
the unconstrained problem. From there on the initial guess at each control step is made using a
warm start, where the set of active constraints are the one used in the solution of the previous
control step.

It has here been described how MPC is interfaced with FAST in MATLAB using the MPC
Toolbox and Simulink. FAST is sampling at 80 Hz, where the MPC is sampling with 20 Hz. The
general form of the MPC, in regard to input, states and output was shown with and explanation
of which are weighed in the cost function. The tuning of the MPC will now be addressed.
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MPC Tuning 20
The MPC is now implemented with FAST and needs to be tuned to provide satisfactory control.
This chapter describes methods used in the process of tuning the MPC. As explained the objective
is not to ensure that the controller controls some parameter to some given standard. The objective
is to tune a controller such that it has an overall control performance that can be assessed to be
a good basis for comparison.

It is chosen to tune with only the DOF enabled in FAST which are present in the model used
in the MPC. In this way it is easier to decipher cause and effect in the tuning process. Here
another option could have been to tune on FAST with all DOF, since this is what the final results
will be made on, such that a controller with general better performance on that system maybe
could be found. As long as the controllers are tuned alike some relative small improvement in
performance would not improve the final results which is the comparison, not the individual
controllers performance.

The tuning is chosen to be done on realistic wind turbulence with the Kaimal spectrum. Since
the tuning is done on time limited wind data, different seeding of the generated wind data gives
small variations in spectrum. So if tuning is only done on one wind data file with generated
from one seeding then it might not be optimal for other seeding. This is deemed a negligible
as long as the wind files generated and tuned on are over a long enough time period. Another
option could have been to do the tuning on step responses, but this means tuning for higher
bandwidths than the control system experiences.

There are several parameters in the MPC, which can be tuned in order to change performance
of the controller - constraints, horizons and weights. The implementation of these are here
presented. The color coding of the plots is kept the same between different plots, when tuning
a specific weight. This means that the transient plot of a controller has the same color as the
corresponding controller in Pareto front plots.

The results during the tuning process is here only shown for the MPC with DI to make the plots
simpler. The tuning of the MPC without DI is tuned following the same process and the results
is shown in the end of the chapter.

20.1 Disturbance Signal

The disturbance signal will be the incoming wind with turbulence. The disturbance signal is
generated with TurbSim and is set to have a mean wind speed of 12 m/s. The wind transient is
inspected to make sure that it stays within the operating area. The disturbance input can be
seen in Figure 20.1. During the first 60 s, the pitch is controlled by a PI-controller in the effort
of driving the system to steady state before enabling the MPC. MCrunch is used for fatigue
calculations (see Chapter 5 on page 14) and is started at 130 s to allow the MPC some settling
time.
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Figure 20.1. The disturbance input - wind velocity with kaimal turbulence spectrum. The start up
is done using a PI-controller, which is active the first 60 s. The MPC is then activated.
The fatigue is calculated with MCrunch from 130 s.

20.2 Constraints

Constraints are used in order to specify acceptable inputs and outputs to the controller.
Constraints on the input are here determined from the physical specifications of the system,
whereas the output constraints have been determined from a mix of physical limits and design
goals. The generator power constraint should be determined by a damage analysis of generator
over-power. This is however out of scope of this project, which is why a soft constraints is
applied at 5.1 MW. The implementation of the MPC is done with the MATLAB MPC toolbox,
which require constraints specified for all inputs, input rates and outputs. Constraints are shown
in Table 20.1.

Parameter Upper Lower Unit Type
Generator torque 47403 0 [Nm] Hard

Generator torque rate - - [Nm/s] Hard
Pitch 90 0 [°] Hard

Pitch rate 10 -10 [°/s] Hard
Generator power 5.1 0 [MW ] Soft
Tower velocity - - [m/s] Soft

Rotor angular velocity 0.207 0 [Hz] Soft

Table 20.1. Constraints used for the MPC tuning.

All the constraints related to inputs are hard constraints, as this is physical limits of the
actuators. The upper constraint on the torque is set 10% higher than rated torque, as done
in [Jonkman et al., 2009]. The output constraints are all set as soft constraints by the MPC
toolbox. A constraint is added to the rotor angular velocity, as it is important the rotor is
not spinning too fast, because this will cause extra stress on the blades and if extreme enough
possibly destroying them.
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20.3 Integral Action

In order to ensure that there are no steady state errors on the power reference, integral action
is added to the MPC setup. An output disturbance model is added to the setup, extending the
model with two extra states - one on power and one on rotor speed. The output disturbance
model is integrated white noise, meaning white noise on the changes of the output. This is done
to give offset free tracking [Maciejowski, 2002, P. 202]. Due to the nonlinearities of the wind
turbine, e.g. the DC gain of the linear model will never be exactly like the one at the plant
giving rise to a disturbance which is the error between model and plant. The added disturbance
states on the output will help remove this difference between model and plant.

The difference between an MPC with and without integral action with a step in wind can be
seen in Figure 20.2.
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Figure 20.2. Comparison of MPC with and without integral action. When integral actions is enabled,
steady state errors are rejected.

As can be seen from Figure 20.2, the green power trajectory converges to the 5 MW as wanted,
whereas the blue trajectory is stuck around 4.95 MW having a steady state error. The tuning
of the covariance matrix Q and R in the Kalman filter is done, such that the filter treats the
disturbances more as system disturbances and than measurements noise.
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20.4 Horizons

The prediction horizon for the MPC is normally a very specific implementation issue, depending
on the hardware chosen, since each MPC move needs to be computed within the sampling time.
Simulation does not have such problems, as the time it takes for each iteration will just be
increased. If the horizons are extended towards infinity the controller converges towards the
control of an LQR (considering no active constraint) which can be shown to be stable. If the
prediction horizon becomes too low instability can occur. In general the horizons are choices
based on the sampling time and the time period of the dynamics, which are to be addressed.
The natural frequency of the tower is of most interest, as the aim of the control is to minimize
fatigue on the tower, while keeping power production performance. The highest frequency, which
should be taken into account in the MPC, is assumed to be around 1st tower fore-aft natural
frequency at 0.324 Hz. To ensure that the system is able to react on these oscillations, the
sampling rate of the controller should be much larger (at least twice the frequency to avoid
aliasing), than the highest frequency of interest. Based on this a sampling rate of 20 Hz was
chosen. The control horizon should at least cover a period of the 1st tower fore-aft oscillations,
which is 20

0.3240 ≈ 62 samples. This ensures that the MPC is able to predict a control move for
the entire period and thereby capable of suppressing these oscillations. The prediction horizon
should be larger than the control horizon. The prediction horizon is used to see if any constraints
are violated, which makes it interesting having it long. The prediction horizon is chosen to 10
s, which is 200 samples.
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Figure 20.3. Transients of generator power and tower velocity, when changing the control horizon.
The test is done applying a step as wind disturbance from 12 to 11.5 m/s.

91



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
4.992

4.993

4.994
x 10

6 Mean Generator Power
M

ea
n 

G
en

er
at

or
 P

ow
er

 [W
]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
3500

4000

4500
MAE of Power

M
A

E
 [W

]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
1.82

1.83

1.84
x 10

6 Damage Equivalent Load of Tower Displacement

D
E

L 
[N

m
]

Control Horizon [samples]

Figure 20.4. Variations in performance measures, when changing the control horizon. The test is done
applying a step as wind disturbance from 12 to 11.5 m/s, equal to that shown in Figure
20.2.

In order to find a suitable control horizon, a simple test has been made. The test is done
applying a step as wind disturbance from 12 to 11.5 m/s. The test is run several times with
different control horizons, but the same prediction horizon of 200 samples. The results are
plotted in Figure 20.3 and 20.4, where it can be seen that when approaching the 62 samples
as calculated, the transients starts to show same performance. Furthermore, the performance
measures (mean generator power, MAE of power and tower fatigue) starts converging.

Based on the test, the horizons are set as following:

Horizon Samples Time [s]
Prediction 200 10
Control 65 3.25

Table 20.2. Horizons used for the MPC Tuning. The sample rate is 20 Hz.
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20.5 Weights

Weights can be used on the two control variables, pitch βref and generator torque Tg,ref and
each of their rate. Furthermore, the outputs, generator power Pg, tower velocity vt and rotor
speed ωr can be weighted. In order to simplify the tuning process, the generator torque weight
is set to 0.01, as this input generally is considered free to use. The pitch position is weighted
to zero, as it is the movement - pitch rate that is causing wear and tear on the pitch actuator.
The pitch rate weight is therefore initially set to 1. The rotor speed weight is in the beginning
also set to 1. Further tuning of these are then addressed later on.
In the beginning the interesting weights are for the output variables, Pg and vt. The velocity is
assumed to have direct influence on fatigue (see Chapter 5 on page 14). It is further assumed that
there is a trade off between power generation and tower velocity, thus the choice of weights on Pg
and vt will introduce a trade-off between the tracking of the power reference and minimisation
of fatigue. The weights used in this initial setup are:

Parameter Weight
Generator torque 0.01

Generator torque rate 0
Pitch 0

Pitch rate 1
Generator power Variable
Tower velocity 1
Rotor Speed 1

Table 20.3. Weights used for the initial MPC.

20.6 Tuning

It is the weights times the states that determines the influence of a state in the cost function,
which is to be minimised. Thus it is the weights, normalized with regard to state size, relative to
each other that matters. That is why the weight on the tower velocity is kept constant, when the
weight on the generator power is variable. The before mentioned trade-off can be seen in Figure
20.5, where the transient of two controllers (with DI) with different weight on power is plotted.
The system is applied the disturbance seen in Figure 20.1 on page 89 and the weights given
in Table 20.3 are used. As seen on the figure, the dark red favours the tracking of the power
reference, but has larger oscillations on the velocity, which leads to a higher fatigue (measured
by damage equivalent load): 2844100 Nm for dark red and 2393800 Nm for the blue.
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Figure 20.5. The trade-off between tracking of the power reference and minimisation of fatigue. The
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blue.
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20.6.1 Generator Power

In order to show the performance changes, when tuning the weights, a Pareto front is made
showing mean power and fatigue. Figure 20.6 shows results from controllers with weights on the
power output in the interval [0.1; 20]. The value of the weight is represented by the colorbar.
The magenta square will throughout this chapter indicate, which controller is chosen to continue
with further tuning.
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Figure 20.6. Pareto front showing the trade-off
between mean power production and
fatigue calculations. It is desired
to have a mean power of 5 MW
and smallest possible fatigue. The
weights are represented by the col-
orbar.
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Figure 20.7. Pareto front showing the trade-off
between MAE on generator power
and fatigue calculations. It is de-
sired to minimise both MAE and fa-
tigue. The weights are represented
by the colorbar.

The mean power on the generator is an important design driver, but is not enough for choosing
a good controller. The mean power does not contain any information about how big an error is
made, since a positive and a negative error can cancel each other. To address this issue another
Pareto is shown in Figure 20.7 with the mean absolute error (MAE) vs. fatigue. In both Pareto
fronts it can be seen that the assumption of a trade-off between power performance and fatigue
is indeed correct.

In Figure 20.6 it is desired to find a controller with mean power as close to 5 MW and smallest
fatigue, whereas in Figure 20.7 it is desired to minimise both parameters. The mean power
is however the most important design driver. It is chosen to continue further work with the
controller marked with the magenta square in Figure 20.6. This controller is also the magenta
square marked controller in Figure 20.7, which is one of the best here as well. The transient of
a run with this controller is shown in Figure 20.8 on the next page.
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Figure 20.8. Transient plot of the chosen controller.

In Figure 20.8 it is seen that the generator power is oscillating around the desired 5 MW. The
pitch is generally following the slow trends of the wind, while also having smaller oscillations to
minimize the tower velocity. The generator torque is generally used very little in this transient
response.

The next step in the tuning process is to look at the weight on rotor speed, to see how it affects
the results in the Pareto front.
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20.6.2 Rotor Speed

A weight on the rotor speed is needed, such that the rated rotational velocity and generator
torque are the equilibrium at 5MW. Integral action was also added to this output. However
having a weight on the rotor speed is indirectly punishing deviations in power, as the rotor speed
is the foundation for the power generation. It is therefore kept low, while keeping an integrator
effect, such that the power weight still is the main cost for power in the cost function. It is
investigated what happens with the MPC, when the rotor weight is changed. The weights used
in this initial setup are:

Parameter Weight
Generator torque 0.01

Generator torque rate 0
Pitch 0

Pitch rate 1
Generator power 1
Tower velocity 1
Rotor Speed Variable

Table 20.4. Weights used for tuning of rotor speed weight.

Weights in the interval [10−3; 10] are investigated. The results can be seen in Figure 20.9 and
20.10. A black square indicates the previous chosen tuning that is the basis of this variable
tuning on rotor weight.
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between mean power production and
fatigue calculations. It is desired
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and smallest possible fatigue. The
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Figure 20.10. Pareto front showing the trade-off
between MAE on generator power
and fatigue calculations. It is de-
sired to minimise both MAE and
fatigue. The weights are repre-
sented by the colorbar.

As seen in the figures, the behaviour is like that of the power weight, which was to be expected.
As the weight is increased, so is the fatigue level, because the rotor speed starts to matter more
and tower velocity less. A weight for the rotor speed of 10−3 is chosen, because it gives the
lowest fatigue level, while sacrificing a negligible drop in mean power and increase in MAE of
power.
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20.6.3 Input Weights

As explained in the introduction pitch rate and generator torque are weighed, as the use of these
actuators demands power and causes wear and tear to the actuators. The real cost of using the
inputs compared to cost of the outputs are not known, so this becomes a tuning parameter.
However, the cost of the input is the same whether DI is considered or not.

Pitch rate is tuned first. By applying a high cost to pitch rate, the pitch is used less, which
causes the control bandwidth to be smaller. In the extreme case the pitch rate cost becomes so
large that the control system is slower than the critical frequency at where dynamic inflow does
not have an effect.

The weights used while tuning the pitch rate is:

Parameter Weight
Generator torque 0.01

Generator torque rate 0
Pitch 0

Pitch rate Variable
Generator power 1
Tower velocity 1
Rotor Speed 10−3

Table 20.5. Weights used for tuning of the pitch rate weight.

Use of the pitch actuator at different weights of pitch rate can be seen in Figure 20.11.
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Figure 20.11. Transients of the pitch for different weights on the pitch rate.
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The tuning of the pitch rate was done in a manner, where a cost high enough to have an influence,
but small enough to still be able to respond to the dynamic inflow properties of the tower. A
pitch rate weight of 2 was chosen.

Generator torque was tuned in the same fashion. Using the generator torque is deemed less
”costly” and the weight was therefore through tuning found to be 6.15 · 10−5. Remember the
input rate weight on pitch and generator torque cannot be directly compared in regard to
influence in cost function, as the states they act on are not the same numerical size.

20.6.4 Pareto with Final Tuning

The weights for the controllers have now been found. They turned out to be very similar, which
is why the tuning of the MPC with DI is used for both. The weights used, when creating results
in Part IV, are as seen in Table 20.6.

Parameter Weight
Generator torque 6.15 · 10−5

Generator torque rate 0
Pitch 0

Pitch rate 2
Generator power Variable
Tower velocity 1
Rotor Speed 10−3

Table 20.6. Weights used for the final MPC tuning.

Using the chosen wieght and running both MPCs again creates the results that can be seen in
Figure 20.12 and 20.13.
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Figure 20.12. Pareto front showing a comparison
between the MPC with the two lin-
ear models.
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Figure 20.13. Pareto front showing a MAE com-
parison between the MPC with the
two linear models.

These Pareto plots shows the initial results of the comparison between including and not
including dynamic inflow in an MPC. It can be seen that there is an improvement to be gained
by including dynamic inflow. The system tested on is, as explained earlier, FAST with only
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the DOF used in the model turned on, and therefore not a final result. Further analysis of the
results will be done in Part IV.

A tuning used for both the MPC with and without dynamic inflow was found. This tuning will
be used in the further work, where the controllers are tested and compared on the 5 MW NREL
wind turbine in FAST with all modes enabled.
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Part IV

Results
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Results 21
In this chapter it will be tested how well the two MPC setups perform in comparison to eachother.
The plant the controllers are tested on is the 5 MW NREL wind turbine simulated in FAST with
all DOF enabled. The input wind will contain realistic turbulence using the IEC 1400-1 Kaimal
spectrum running for 600 seconds. Besides comparing how the actuators perform on the key
values, power generation and tower fatigue, it will also be investigated how the two setups differ
in the use of pitch actuation.

So far the MPC has been tested on a simplified wind turbine, where only the modelled DOF
have been enabled. It will now be investigated what happens, when the full set of DOF are
enabled, emulating a wind turbine in the fullest degree FAST can deliver. Furthermore the
controller will be running for longer time, than in the tuning process. This is done to get more
data and thereby to better see the difference between the MPCs (with and without DI in the
linear model).
The wind signal for this comparison can be seen in Figure 21.1.
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Figure 21.1. Wind input this comparison of controller performance. The magenta line indicates where
the MPC starts. The black line indicates where the evaluation of data and MCrunch
starts.
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21.1 Comparison

Running the MPCs with weights, as shown in Table 20.6 on page 99, the Pareto front for the
input disturbance wind gives the following results:
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Figure 21.2. Pareto front showing a comparison
between the MPCs.
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Figure 21.3. Pareto front showing the MAE com-
parison between the MPCs.

In Figure 21.2 it can be seen that both controllers converge to a mean power of 5 MW as the
power weight increases. The error in mean generator power at the worst controller with the worst
weight regarding power, is 0.1h, which is so small that results regarding mean generator power
is deemed uninteresting. Instead the focus is on the MAE of the generator power compared with
tower fatigue, which is seen in Figure 21.3.

By looking at the dots, in Figure 21.3, which correspond to a weight with a specific controller
a tendency can be seen for both controllers, with and without dynamic inflow. An area
representing a curve (if interpolation is imagined between the dots for each controller) is present
at both controllers. This curve goes from low to high in power weight. In the lower and higher
(with regard to power weight) end of this curve it becomes respectively vertical and horizontal.
When the trend is horizontal the tower fatigue becomes worse, without gaining a lower MAE
in power generation. When the trend is vertical the MAE in power generation becomes higher
without gaining less fatigue on the tower. This is true, apart from the lower part of the curve
representing no dynamic inflow controller, where the trend is not completely vertical, such that
there is still some improvement to gain in tower fatigue on the cost of MAE on generator power.
The interesting area of Figure 21.3 is therefore in the area marked with a red dashed line, which
is depicted in Figure 21.4 on the next page.
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Figure 21.4. A close-up of Figure 21.3, where lines between controllers have been made. The
performance of these ”connected” controllers will be compared.

As seen in Figure 21.4 an improvement from using dynamic inflow is seen, both on the MAE
of the power and tower fatigue. To put numbers on these improvements specific controllers
are chosen for comparison. The controllers which are connected with a magenta line will be
compared. A comparison can be made in made many different ways, but is chosen to be done
with the following equalities of the controllers:
First two controllers with an equal MAE of power will be compared. Secondly two controllers
with equal level of fatigue of the tower will be compared. Finally controllers with equal power
weights are compared. For comparison 2 an extra controller point has been calculated for DI
on, such that the comparison is more equal in fatigue.

The comparison is done on the following data:

• Mean absolute error (MAE) of generator power - To see how well the power reference is
followed.

• Damage equivalent load (DEL) of tower - To see how well the tower fatigue is diminished.
• Standard deviation (σ) of rotor speed - To see how well the rated value for rotor speed is

followed.
• Standard deviation (σ) of the torque - To see how much generator torque is used.
• Mean absolute (MA) pitch rate - To see how fast pitch is changed.
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Figure 21.5. Comparison 1 represented in a spi-
der chart.

Comparison 1 Improvement [%]
DEL 24.02

MAE of Power 0
σ Rotor Speed 2.38
MA Pitch Rate 34.66

σ Torque 17.56

Table 21.1. Percentwise improvement between DI
On and DI Off for comparison 1.

In comparison 1 controllers with equal MAE of the generator power was compared. Since the
Pareto fronts of the two MPCs with different power weights, span over different areas and are
of different sizes, it is an interesting comparison. Here the controllers perform equal in regard
of following the power reference, but the DEL of the tower is 24% lower for the controller using
dynamic inflow. This is a clear result showing that in this setup dynamic inflow is important to
have. Emphasis must be put on the part ”in this setup”, since another MPC using a different
model form (maybe a higher fidelity model) or another tuning of the locked weights might give
different results.

Another point is that the MPC with dynamic inflow is able to maintain the same MAE of the
power and improving the fatigue of the tower, while using 34% less in MA pitch rate and less
changes in generator torque with a 17% lower standard deviation. Besides this σ of the rotor
speed is improved slightly, such that it lies closer to the rated speed.
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Figure 21.6. Comparison 2 represented in a spi-
der chart.

Comparison 2 Improvement [%]
DEL 0

MAE of Power 7.55
σ Rotor Speed -19.09
MA Pitch Rate -7.47

σ Torque -35.94

Table 21.2. Percentwise improvement between DI
On and DI Off for comparison 2.

In this comparison the controller with dynamic inflow offers the same level of fatigue as the
controller without, but performs 7.5% better on the MAE of the generator power. This comes
at the expense of using more pitch and torque. Using the torque more also leads to a higher
standard deviation of the rotor speed. The weight used to find controllers with equal DEL is
for the controller using dynamic inflow in an area, where only low performance increases on the
MAE of the generator power is traded for a high impact on the fatigue on the tower.

Comparison13

2u5 3 3u5 4

DEL1
[MNm]

38OO

45OO

53OO

6OOO

MAE1of1Power
[W]1

OuOO11

OuOO13

OuOO14

OuOO15σ Rotor1Speed
[Hz]1

OuO75

Ou1

Ou13

Ou15
MA1Pitch1Rate

[°Is]1

13O

15O

18O

2OO σ Torque
[Nm]1

DI1Off
DI1On

Figure 21.7. Comparison 3 represented in a spi-
der chart.

Comparison 3 Improvement [%]
DEL 22.28

MAE of Power 5.68
σ Rotor Speed 2.19
MA Pitch Rate 33.18

σ Torque 14.87

Table 21.3. Percentwise improvement between DI
On and DI Off for comparison 3.

For comparison 3 the power weight is set to 7 for both controllers, such that the controllers
have identical cost functions. In this comparison the controller using dynamic inflow is an
improvement across the board. To visualise this further the transients for comparison 3 is
shown in Figure 21.8.
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Figure 21.8. The transient response for comparison 3, where both controllers have a power weight of
7.
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From Figure 21.8 it can be seen that the power output from the two controllers follows the same
pattern. By inspection it can be seen that both controllers behave as expected, e.g. where power
errors lead to large, but slow in frequency, changes in pitch and tower velocity errors leads to
small, but faster in frequency, pitch changes. The main difference between the controllers is that
the MPC, which does not contain DI seem to ”overshoot” by applying too much torque and pitch.
Going back to the modelling chapter, remembering the difference between the models with and
without dynamic inflow in regard to tower velocity, this makes sense. In the comparison of the
models the model without dynamic inflow estimated the amplitude of the oscillations lower than
they were. In the controller this would lead to a prediction, where more input can be used in
controlling to power since lower cost in tower velocity is predicted.

21.2 Use of Pitch

The mean absolute (MA) pitch rate is investigated for both controllers for all the weights as
seen in Figure 21.2 and 21.3. The result can be seen in Figure 21.9.
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Figure 21.9. A comparison of the mean absolute pitch rate for the tested controllers (both with and
without DI).

In Figure 21.9 it can be seen that the MPC setup with DI generally has a lower pitch rate than
the counterpart (without DI, but same power weight). It is not until the power weight goes
beyond 30 that the MPC with DI overtakes the MPC without DI and one would normally never
take such a controller, as the reduction in MAE for high power weights are so small. This result
can be due to the fact that the MPC with DI has more information, when predicting the effects
of an input, which means that it does a better job in the prediction. When the MPC without
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DI has less information to predict the effects, it will produce a less optimal control input than
the MPC with DI. In the next iteration it will be fighting the error it has made.

21.3 Wind Seeding

To check that the MPC results are consistent, it will be tested how the MPC is performing with
a larger set of wind inputs. The wind inputs will be similar, in the sense that they have the
same mean wind, 12 m/s and stays within the operating area. When a wind signal is generated
in TurbSim, a seeding has to be specified (an initial number for the random number generator).
This number is changed to create different wind signals, which can be applied to the wind
turbine.

The result of four different wind signals with different seeding applied to the MPC setup can be
seen in Figure 21.10 and 21.11. The red line (and associated points) is the data found from the
wind signal shown in Figure 21.1.
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Figure 21.10. Pareto front showing a comparison
between the MPCs. The coloured
lines between the dots are indicated
a similar wind. So e.g. a red line
for DI On and DI Off have been
subject to the same wind.
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Figure 21.11. Pareto front showing the MAE
comparison between the MPCs.
The coloured lines between the
dots are indicated a similar wind.
So e.g. a red line for DI On and DI
Off have been subject to the same
wind.

In Figure 21.10 and 21.11 it can be seen that MPC where DI is included in all cases is better
than its counter part. As earlier the DI On MPC is better both in fatigue and MAE.
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21.4 Fatigue Sideways on Tower and on Blades

Since only fatigue on the fore-aft movement on the tower has been investigated and included in
the MPC scheme, it is interesting to see if other relevant deflections have increased or decreased
at the cost of adding dynamic inflow. To check that the MPC with DI is not introducing any
extra fatigue in the system, the fatigue sideways on the tower and on the blades is investigated.

The sideways fatigue on the tower plotted with MAE can be seen in Figure 21.12.
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Figure 21.12. Pareto front showing the MAE comparison with respect to fatigue in the sideways tower
direction.

In Figure 21.12 it can be seen that at lower power weights the DI off MPC is marginally
better, than the MPC with DI. When the power weight on the MPC with DI goes above 30,
its evaluated fatigue load stops to follow the increasing trend and starts to drop. This is an
unexpected phenomenon and no explanation for the behaviour can directly be given. However,
as the load is not increasing, further investigation will not be done. Since the change to the
DEL is so small it is concluded that the sideways tower fatigue level is not changing significantly
between the two controller setups.

To investigate the fatigue levels of the blades, the torque load at the bottom of a blade is
analysed. The blades for wind turbines are normally made of a combination of fiberglass and
other materials. This makes it hard to get a general Wöhler constant for a blade, as it is very
blade specific. A Wöhler constant for fiberglass is therefore used. In [Burton et al., 2001, P.
386] a Wöhler constant of 10.25 is found for fiberglass. It is therefore decided to use 10 as the
Wöhler constant, when analysing the fatigue on a blade.
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The following numbers are used when analysing the blade:

Blade Direction LUlt [Nm] LMF [Nm] m [-]
Edgewise 7750000 775000 10
Flapwise 83750000 8375000 10

Table 21.4. Constants used in MCrunch blade fatigue analysis.

The mean load and ultimate load is found by looking at the mean load for a simulated run
in FAST and then multiplying that with a factor 10 to get the ultimate load, as explained in
Chapter 5 on page 14.

The blade fatigue in flapwise and edgewise direction can be seen in Figure 21.13 and 21.14.
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Figure 21.13. Pareto front showing the MAE
comparison with respect to fatigue
in the blade edgewise direction.
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Figure 21.14. Pareto front showing the MAE
comparison with respect to fatigue
in the blade flapwise direction.

From Figure 21.13 and 21.14 it can be seen that MPC with DI has a lower fatigue level than
the MPC without DI both in the edgewise and flapwise direction. The flapwise relative fatigue
decrease between the two controllers match that of the tower fatigue, which makes sense since
it is mainly the power in the flapwise direction of the blades that leads to the rotor thrust.
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21.5 Assessment

The results showed remarkable improvements on the tower fatigue, with relative decrease of the
DEL in the 20% range, while still maintaining the same power performance. With such a result,
it is very important to highlight the following disclaimers:

• The results were achieved by using one general form of model for the MPC and then adding
a simple dynamic inflow model. Another model in the MPC containing more or less DOF,
or more advanced physics, may lead to a different result.

• The results were achieved using tuned weights and Kalman filter gain values, which apart
from power weights were kept constant. Another tuning may lead to another result.

• The specific wind turbine NREL 5 MW wind turbine with added pitch actuator with
dynamics and rate constraint was used in the FAST environment, which uses a General
Dynamic Wake model for the inflow. Changing any of these may also lead to a change in
the results.

To asses if the results differ by changing some of these items the results gain from the work
done in the article [Henriksen et al., 2012b]. In this article another model for the MPC is used
derived from Lagrangian mechanics and the added simple model for dynamic inflow is based of
local axial induced velocities. Two tunings are made in this work named ”MPC1” and ”MPC2”,
for further information about these tunings read [Henriksen et al., 2012b]. Both ”MPC1” and
”MPC2” are made with and without using dynamic inflow. The wind turbine used is also the
NREL 5 MW, but is simulated in HAWC2 instead.

By inspecting the results from this work, especially around wind speed used in this thesis of
12 m/s, the conclusion is the same as the results from this thesis conclude: By adding dynamic
inflow to the MPC scheme tower fatigue can be decreased, while maintaining the same power
performance. Furthermore, in these results the blade pitch is also used less in the controller
using dynamic inflow.

The size of the relative decrease in tower fatigue, by using dynamic inflow, varies between
”MPC1” and ”MPC2”. The relative improvement in ”MPC1” is greater, than seen in this work,
while the relative improvement in ”MPC2” is less, than in this work.

This leads to the assessment that results found in this project is reasonable for the type of MPC
and tuning that is used.

In this chapter a comparison of the two MPC were made. The results show that at the chosen
operating area around 12 m/s, the difference between the controllers are significant. The MPC
with dynamic inflow information is able to improve the fatigue by more than 20%, while also
improving the MAE of the power about 5%. The following part will go through the results obtained
throughout the entire project and what work that is natural to continue with, considering the
results that were obtained.
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Part V

Epilogue
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Conclusion 22
Throughout this thesis the goal has been to answer if, the inclusion of dynamic, is able to
improve power generation and/or decrease fatigue of the tower.

In the analysis part the difference between a quasi-static and dynamic inflow model was
investigated. It was shown that the dynamic inflow model has an increased gain from pitch
to torque and thrust at higher frequencies, while also having a phase change around the critical
frequency, see Figure 10.6 on page 47 and 10.8 on page 49. Furthermore, it was shown that
this difference had an impact, especially on the tower displacement, see Figure 10.9 on page 50.
These findings gave further incentive to investigate, if especially fatigue of the tower could
be minimized, by taking dynamic inflow into consideration in a linear model, which can be
implemented into an MPC setup.

A nonlinear model, incorporating a simple dynamic inflow model, of the wind turbine was
created. Unknown parameters for the model was estimated using PEM in MATLAB. This model
was then linearised and compared to a similar model without the dynamic inflow information.
The comparison showed a minor improvement in fitting for the linear model with dynamic inflow.

The two developed models were then incorporated into the MPC setup, where first horizons
and then weights were tuned. The MPCs were tested on a realistic wind in order to make
a comparison. Pareto fronts were made for different power weights, see Figure 21.2 and 21.3
on page 103, where it was shown that the MPC with dynamic inflow can improve the fatigue
levels more than 20%, while improving the mean absolute power tracking error with 5%. This
was further backed up by running other wind seedings, where it was shown that in all case
the fatigue was decreased. The fatigue for the sideways motion of the tower and edgewise and
flapwise on the blades were also tested. Regarding sideways motion no deterioration was found,
when including dynamic inflow in the MPC. Improvements were seen on both edgewise and
flapwise motion.

The answer to the problem statement is that inclusion of the dynamic inflow effect is beneficial
both for the power production and fatigue in the tower. The benefit of having knowledge of
dynamic inflow in the controller increases the closer the operating area is to rated wind speed
due to lower pitch angles, where dynamic inflow is more outspoken. Furthermore, the results
obtained indicated that it is possible to decrease the MA pitch rate, while still having the
improvement in performance. It is assessed that this improvement is possible, as the MPC with
dynamic inflow has a better model to describe the tower movement. This enables the MPC to
give a better prediction of the final cost in tower movement by using the pitch actuator, and
thereby minimizing any later correction movements.
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Perspective 23
As always, there are things that could be improved or tried with a different approach. The
things, which the authors would have continued with are here given in a prioritised list and
explained following.

• More detailed model of wind turbine dynamics

– 2nd tower fore-aft deflection mode
– Blade deflections

• Test using other platforms.
• Broader operating area.

23.1 Wind Turbine Dynamics

As is now, the mass of the rotor and tower is modelled as a lumped mass, which gives rise to an
error, when deflecting from the operating point. This can be addressed in several ways.
One way is to add the 2nd tower fore-aft deflection mode to the model. This could be done
by dividing the tower into two mass-spring-damper systems. This would distribute the mass of
the tower more evenly, which should reduce the error. Another approach could be to model the
tower as a multiple hinge model, dividing the tower into even smaller parts.
Furthermore, this could be addressed by modelling the rotor or even each blade as an individual
system connected to the tower by a spring and damper. This also opens up for modelling each
blade as a flexing system e.g. as a multiple of mass-spring-damper systems. This will take blade
deflections into account and should reduce the error caused by the lumped mass.

23.2 Test on Other Platforms

One of the big concerns in this thesis is the accuracy of the simulation tool FAST using GDW
for inflow calculations. If this aerodynamics model does not represent the real phenomenon
then the results are invalid. A lot of the aerodynamic models used in other works are validated
against data from the Tjæreborg 2 MW wind turbine which was published in 1995. Creating
new measurement data from a real wind turbine, to have more data to create models from would
increase the validity of the used models.

Without new data from a real wind turbine another approach to validate the results could be to
test against other simulation tools using other inflow models than GDW and see if the results
correspond.
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23.3 Broader Operating Area

Now that the inclusion of DI shows significant improvement in performance in the specified
operating area, it would off course be interesting to investigate if this has potential in a wider
operating area as well. This could entail minimising fatigue in region 2, at higher wind velocities
in region 3 or at the switching point between region 2 and 3. When region 2 are in play, the
theory from Appendix B on page 126 about calculating a set point with optimal TSR can used
for the reference to the MPC.

Widening the operating area also gives rise to a more complex model or several simpler linear
models. The latter has the advantage that they all are simpler and linear models often
describe the system very well in a narrow operating area. These can be used in MMPC, which
uses a bank of several models describing a wide operating area. It then switches between these,
as the operating point changes.
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FAST A
FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a wind turbine simulator
developed by ”National Renewable Energy Laboratory” under the ”U.S. Department of Energy”.
FAST is here summarized, for more information read [Jonkman and Buhl Jr., 2005]. FAST
consists of three different modules: FAST, AeroDyn and ADAMS. Shortly described FAST
contains all the structural models and the tools to runs simulations, AeroDyn does the
aerodynamical calculations and ADAMS can be used to extract linearized models and create
ADAMS datasets. Figure A.1 visualizes how these elements come together.
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Figure A.1. Illustration of how modules works together in FAST [Jonkman and Buhl Jr., 2005].

The Adams module will not be used in this project. When a simulation is run data is distributed
as seen in Figure A.2:
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Figure A.2. Illustration of input output relations while a simulation is run [Jonkman and Buhl Jr.,
2005].
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A.1 FAST

As mentioned FAST does all the structural computations. The FAST model for a 3 bladed
HAWT contains nine rigid bodies (earth, support platform, base plate, nacelle, armature, gears,
hub, tail, and structure furling with the rotor) and four flexible bodies (tower, two blades, and
drive shaft).

An illustration of a standard upwind 3 bladed wind turbine structure and the support platform
can be seen on Figure A.3:
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Figure A.3. Wind turbine and the support platform structure [Jonkman and Buhl Jr., 2005].

The model contains 24 DOF:

1-6 The translational (surge, sway and heave) and the rotational (roll, pitch and yaw) motions
of the support platform.

6-8 Tower motions, longitudinal and lateral for first mode.

8-10 Tower motions, longitudinal and lateral for second mode.

11 Yawing motion of nacelle.

12 Generator azimuth angle.

13 Compliance in the drivetrain between the rotor and the generator.

13-16 Blade flapwise tip motion for the first mode.

16-19 Blade flapwise tip motion for the second mode.

19-22 Blade edgewise tip displacement.

22-24 Rotor- and tail-furl.

123



The flexible elements consist of multiple nodes, how these nodes deflect are called modes. As
an example two modes for tower motions can be chosen. An illustration of the difference in
deflection between two nodes in one plane can be seen in Figure A.4:

Deflection

T
o

w
er

 H
ei

g
h

t

First Mode

Second Mode

Figure A.4. Two different deflection modes [Jonkman and Buhl Jr., 2005].

The DOF can be enabled or disabled depending on need and desired complexity.

A.2 AeroDyn

As seen in Figure A.2 AeroDyn takes in different files to compute the aerodynamics. Each of
the files are described here.

The primary file describes alot of the setup parameters such as which inflow model to use,
sampling time of the aerodynamical computations, what wind and aerofoil files to use, the
density of the air or how much tower shadow effect that is present.

A wind input file describing the wind is used by AeroDyn. This wind file can as an example
be a full-field turbulence wind data file. In this file velocities in all three directions for all wind
points (fidelity can be adjusted) is contained varying in space and time. A full-field turbulence
wind data file can be made with the program TurbSim. A hub-height wind file can also be used
as input. The difference between these two wind methods are that in the hub-height-formatted
files the wind is stored uniformly across the rotor disk (perhaps with shear), whereas the full-
field-formatted files store wind that varies spatially across the rotor disk. In both methods one
of the key points is that shear is taken into account and is therefore present in the wind-file. If
other phenomenons such as wake from another wind turbine is to be included it is also put into
the wind-file. An example of full-field turbulence wind data can be seen in Figure A.5 and A.6.
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Figure A.5. Wind data where color represents the resulting speed. Wind shear can be detected since
the velocity generally gets faster higher up.
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Figure A.6. Velocity of the wind seen from the side. It is noticed that only a little turbulence was
added when making this windfile.

The airfoil files describes the aerodynamical properties of the blades.

For more information about AeroDyn read [Laino and Hansen, 2002].
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Classic Region 2 Control B
A common way of optimizing energy extraction is addressed in [Johnson et al., 2006] and is here
summarized. In this region variable speed is used to ensure optimal power extraction from the
wind.

Since region 2 is about optimizing the energy extraction, the pitch of the blades are kept constant
at a low pitch angle. The torque on the generator is then controlled to achieve the TSR that
optimizes the Cp. This is usually done by using the following control law to calculate the set
point for the generator torque:

Tg(t) = Kω2
r (t) (B.1)

Where: Tg(t) is the torque applied by the generator [Nm].
K denotes the optimal gain

[
Nms2

]
.

The optimal gain is determined from the optimal TSR:

K =
1

2
ρAR3Cp,max

λ3
opt

(B.2)

Where: A is the area the rotor sweeps
[
m2
]
.

ρ is the density of the air
[

kg
m3

]
.

Cp,max is the maximum power coefficient at a given pitch angle [-].
λopt is the TSR that gives the maximum power coefficient [-].

Next it is shown that this optimal gain indeed controls the rotor speed to the optimal TSR.
Using a simple model of a rigid rotor, the change in the angular acceleration can be described,
as the difference between aerodynamic and generator torque acting on the combined inertia
(omitting gearing):

ω̇r(t) =
1

J
(Ta(t)− Tg(t)) (B.3)

Where: J is the combined inertia of the mechanical system, such as rotor, gears, shaft and
the generator

[
kgm2

]
.

Ta(t) is the aerodynamic torque [Nm].

Now Ta(t) is deduced starting with the expression for rotor power:

Pr(t) = Ta(t)ωr(t) (B.4)
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By inserting (4.2) into it and solving for Ta it becomes:

Ta(t) =
Cp(λ(t), β(t))Pw(t)

ωr(t)
(B.5)

The wind power can be calculated as:

Pw(t) =
1

2
ρAv3

w(t) (B.6)

By inserting the expression for the wind power and (4.3) into (B.5):

Ta(t) =
1

2
ρAR

Cp(λ(t), β(t))

λ(t)
v2
w(t) (B.7)

Now by inserting (B.7) and (B.1) with (B.2) into (B.3) the following can be obtained:

ω̇r(t) =
1

2J
ρAR3ω2

r (t)

(
Cp(λ(t), β(t))

λ3(t)
− Cp,max

λ3
opt

)
(B.8)

The last term is denoted F:

F =
Cp,max
λ3
opt

(B.9)

Since the other parameter are all positive, the sign of the acceleration is determined from the
difference of the terms in the parentheses. When λ(t) > λopt the acceleration will always be
negative due to the following always being true Cp(λ(t), β(t)) ≤ Cp,max. When λ(t) < λopt the
acceleration will be positive if the following holds true:

Cp(λ(t), β(t)) > Fλ3(t) (B.10)

>
Cp,max
λ3
opt

λ3(t) (B.11)

This means that λ(t) will go towards λopt except for the situation where λ(t) < λopt and the
inequality (B.11) is false. This can be illustrated by plotting (B.11) as seen in Figure B.1.
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Figure B.1. Cp(λ(t), β(t)) as a function of TSR at a constant pitch retrieved from the NREL 5 MW
plotted with (B.11).

The figure should be read in the way that whenever λ(t) < λopt and the Cp(λ(t), β(t)) plot
value is higher than F (λ) then the rotor accelerates. Whenever λ(t) > λopt and the Cp plot
value is lower than F (λ), then the rotor decelerates. In Figure B.1 this is always true, such that
λ(t) always converges to λopt. Having another Cp(λ(t), β(t)) characteristic could create an area
where λ(t) diverges as seen in Figure B.2.

2 4

0.4

0.3

0.2

0.1

0.0
6 8

P
ow

er
 C

oe
ffi

ci
en

t C
p

10 12 14

F(λ)

Tip-Speed Ratio λ

Figure B.2. Cp(λ(t), β(t)) as a function of TSR at a constant pitch plotted with [Johnson et al., 2006].

Here it can be seen that at a TSR below 3.3, the rotor would decelerate the rotor to a stop.
Separate control mechanisms are put in place to prohibit this behaviour.
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Rainflow Counting C
The algorithm for rainflow counting is described in [ASTM International, 2011] and is here
described in the flow diagram in Figure C.1. The algorithm is started at the first point in the
dataset. This point is at the start denoted S. X is defined as the present range. Y denotes the
previous range.

Read next peak 
or valley

Out of 
data?

< 3 
points?

No

Form X and Y of 3 
recent nodes not 

discarded

No

|X| < |Y|
Yes

Yes

No

S ∈ Y?

Yes

Y counts ½ cycle

Discard 1. point in Y 
and move Y to 2. point 

in Y

Y counts 1 cycle

Discard peak and 
valley of Y and move Y 

to 2. point in Y

Count each not-counted 
range as ½ cycle

Yes

No

Figure C.1. The rainflow algorithm is here depicted in a flowchart. Start at the top node (green).
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Figure C.2. Example of time series measurement
of a load causing fatigue [ASTM In-
ternational, 2011].

Range Cycle Counts Events
10 0
9 0.5 D-G
8 1 C-D, G-H
7 0
6 0.5 H-I
5 0
4 1.5 B-C, E-F
3 0.5 A-B
2 0
1 0

Table C.1. Rainflow count results from the load
time series in Figure C.2 [ASTM In-
ternational, 2011].

The algorithm produces a cycle count at the different amplitude ranges. The result can be
expressed by showing the counts in an amplitude-mean plot as seen in Figure C.3, where the
mean is taken on the start- and end value of a cycle. Figure C.3 is generated with MCrunch
[Hayman, 2012a], which is a widely recognised set of tools for fatigue analysis.
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Figure C.3. Example of rainflow count produced by the implementation generated with MCrunch
[Hayman, 2012a].
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Fatigue Calculation D
Often a damage equivalent load (DEL) is used, when evaluating the damage. The DEL is a
measure of a constant-amplitude fatigue load, which comes at fixed load-mean and frequency
[Hayman, 2012b]. This results in an equivalent damage to a varying frequency and amplitude
of the loads. This means that the varying cycles are converted into equivalents, where following
is true: ∑

i

ni
Ni

=
nSTeq

N eq (D.1)

Where: ni is the damage count for cycle i.
Ni denotes the number of cycles until failure for the load range of cycle i.
nSTeq is the equivalent cycle counts.
N eq denotes the number of equivalent cycles to failure.

Ni is given by:

Ni =

(
LUlt − |LMF|

1
2L

RF
i

)m
(D.2)

Where: LUlt is the ultimate load.
LMF denotes the mean load.
m is the Wöhler constant.
LRF
i denotes the Goodman-corrected load range about a fixed-mean for cycle i.

The Goodman-correction is given by (D.3) and ensures that the fatigue cycle load ranges are
represented as if they occured around a fixed mean load.

LRF
i = LR

i

(
LUlt − |LMF|
LUlt − |LM

i |

)m
(D.3)

Where: LR
i denotes the load range for cycle i.

LM
i is the mean load of cycle i.

Now N eq is calculated as:

N eq =

(
LUlt − |LMF|

1
2DEL

STF

)m
(D.4)

Where: DELSTF denotes the Goodman-corrected short-term damage equivalent load.

Combining Equation (D.1), (D.2) and (D.4) and solving for DELSTF gives:

DELSTF =

(∑
i

(
ni
(
LRF
i

)m)
nSTeq

)1/m

(D.5)

131



Again, this gives an equivalent damage to a varying frequency and amplitude of the loads. Now
Equation (D.4) forms an S-N curve, which tells how many cycles with Sx amplitude at a certain
mean load the system can tolerate before failure (Example in Figure D.1).

S2

Si

S1

Stress(S)

Cycles to failure(N)N2 Ni N1

Figure D.1. The S-N curve shows the relation between a stress at a certain mean load and how many
cycles before failure. These are usually based on constant amplitude tests [Ariduru, 2004].
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Linearisation E
This appendix will show the partial derivatives found for the linearised wind turbine models
from Chapter 15 on page 65.

E.1 Linearisation Procedure

The derivatives of the nonlinear model, can be described through a set of equations described
in Chapter 13 on page 54, from here called f(x,u).
The nonlinear model can be described as:

ẋ = f(x, u) (E.1)

y = h(x, u) (E.2)

To make the linear model the partial derivatives the following procedure is done for ẋ:

ẋ ≈ ∂f

∂xT
(x− x̄) +

∂f

∂uT
(u− ū) + f(x̄, ū) (E.3)

The linearisation is done at a state state point, meaning f(x̄, ū) = 0. When a variable is
indicated with a bar on top, it means it is evaluated to the value at the steady state point.

The output of the linear model will be linearised as:

y ≈ h(x̄, ū) +
∂h

∂xT
(x− x̄) +

∂h

∂uT
(u− ū) (E.4)

To simplify the derivation process, it is initially assumed that the tower velocity is not substi-
tuted from the incoming wind, see explanation before (E.42a). When the partial derivatives
have been found, the subtraction of the tower velocity is included again.

Only the derivatives that do not equal zero will be presented.
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E.2 Linear Model With Dynamic Inflow

The derivatives are as follows:

f1(x, u) = ȧf =
1

τDI(vw)
(as − af ) (E.5)

∂ȧf
∂af

= − 1

τDI(v̄w)
(E.6)

∂ȧf
∂ωr

=
1

τDI(v̄w)

∂as
∂ωr

(E.7)

∂as
∂ωr

=
1

4

1√
1− Ct

(
λ̄, β̄

) ∂Ct (λ, β̄)∂ωr
(E.8)

∂Ct
(
λ, β̄

)
∂ωr

=
∂Ct

(
λ, β̄

)
∂λ

∂λ

∂ωr
(E.9)

∂λ

∂ωr
=

R

v̄a
(E.10)

∂ȧf
∂β

=
1

τDI(v̄w)

∂as
∂β

(E.11)

∂as
∂β

=
1

4

1√
1− Ct

(
λ̄, β̄

) ∂Ct(λ̄, β)

∂β
(E.12)

∂ȧf
∂vw

=
2

3D

∂as
∂vw

(E.13)

∂as
∂vw

=
1

4

1√
1− Ct

(
λ̄, β̄

) ∂Ct (λ, β̄)∂vw
(E.14)

∂Ct
(
λ, β̄

)
∂vw

=
∂Ct

(
λ, β̄

)
∂λ

∂λ

∂vw
(E.15)

∂λ

∂vw
= − ω̄rR

v̄2
w

(E.16)

f2(x, u) = ω̇r =
Ta −NTg

J
, Ta =

1

2ωr
ρv3
fACp (λ, β) (E.17)

∂Ta
∂af

=
1

2ω̄r
ρA3v̄2

f

∂vf
∂af

Cp
(
λ̄, β̄

)
(E.18)

∂vf
∂af

= − v̄w
1− ās

(E.19)

∂Ta
∂ωr

= − 1

2ω̄2
r

ρAv̄3
fCp

(
λ̄, β̄

)
+

1

2ω̄r
ρA3v̄2

f

∂vf
∂ωr

Cp
(
λ̄, β̄

)
+

1

2ω̄r
ρAv̄3

f

∂Cp
(
λ, β̄

)
∂λ

∂λ

∂ωr
(E.20)

∂Ta
∂β

=
1

2ω̄r
ρA3v̄2

f

∂vf
∂β

Cp
(
λ̄, β̄

)
+

1

2ω̄r
ρAv̄3

f

∂Cp
(
λ̄, β

)
∂β

(E.21)
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∂vf
∂β

= v̄w
1− āf

(1− ās)2

∂as
∂β

(E.22)

∂Ta
∂vw

=
1

2ωr
ρA3

∂vf
∂vw

v2
fCp

(
λ̄, β̄

)
+

1

2ωr
ρAv3

f

∂Cp
(
λ, β̄

)
∂λ

∂λ

∂vw
(E.23)

∂vf
∂vw

=
1− āf
1− ās

+ vw
1− āf

(1− ās)2

∂as
∂vw

(E.24)

f3(x, u) = ḋt = vt (E.25)

f4(x, u) = v̇t =
Ft −Ktdt −Btvt

Mt
, Ft =

1

2
ρv2
fACt (λ, β) (E.26)

∂Ft
∂af

=
1

2
ρA2

∂vf
∂af

vfCt
(
λ, β̄

)
(E.27)

∂Ft
∂ωr

=
1

2
ρA2

∂vf
∂ωr

v̄fCt
(
λ̄, β̄

)
+

1

2
ρA2v̄2

f

∂Ct
(
λ, β̄

)
∂λ

∂λ

∂ωr
(E.28)

∂Ft
∂β

=
1

2
ρA2

∂vf
∂β

v̄fCt
(
λ̄, β̄

)
+

1

2
ρA2v̄2

f

∂Ct
(
λ̄, β

)
∂β

(E.29)

∂Ft
∂vw

=
1

2
ρA2

∂vf
∂vw

v̄fCt
(
λ̄, β̄

)
+

1

2
ρA2v̄2

f

∂Ct
(
λ, β̄

)
∂λ

∂λ

∂vw
(E.30)

f5(x, u) = β̇ =
1

τp
βref −

1

τp
β (E.31)

∂β̇

∂βref
=

1

τp
(E.32)

∂β̇

∂β
= − 1

τp
(E.33)

f6(x, u) = Ṫg =
1

τg
Tg,ref −

1

τg
Tg (E.34)

∂Ṫg
∂Tg,ref

=
1

τg
(E.35)

∂Ṫg
∂Tg

= − 1

τg
(E.36)
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h1(x, u) = Pg = NωrTg (E.37)

∂Pg
∂ωr

= NT̄g (E.38)

∂Pg
∂Tg

= Nω̄r (E.39)

h2(x, u) = vt (E.40)

h3(x, u) = ωr (E.41)

The wind speed hiting the rotors are va = vw − vt. To include the tower velocity into the state
space model, the partial derivatives for the incoming wind speed vw is used with a change in
sign in the forth column in the A matrix.

The state space representation therefore becomes:

˙

a∆
f

ω∆
r

d∆
t

v∆
t

β∆
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 (E.42a)

Pvt
ωr

 =

 P̄v̄t
ω̄r

+

0
∂Pg

∂ωr
0 0 0

∂Pg

∂Tg

0 0 0 1 0 0

0 1 0 0 0 0
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d∆
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+ 0
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ref
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w

 (E.42b)
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E.3 Linear Model Without Dynamic Inflow

The same procedure is applied to this linearisation.

f1(x, u) = ω̇r =
Ta −NTg

J
, Ta =

1

2ωr
ρv3
wACp (λ, β) (E.43)

∂Ta
∂ωr

= − 1

2ω̄2
r

ρv̄3
wACp

(
λ̄, β̄

)
+

1

2ω̄r
ρv̄3
wA

∂Cp
(
λ, β̄

)
∂λ

∂λ

∂ωr
(E.44)

∂Ta
∂β

=
1

2ω̄r
ρv̄3
wA

∂Cp
(
λ̄, β

)
∂β

(E.45)

∂Ta
∂vw

=
1

2ω̄r
ρ3v̄2

wACp (λ, β)− 1

2ω̄r
ρv̄3
wA

∂Cp
(
λ, β̄

)
∂λ

∂λ

∂vw
(E.46)

f2(x, u) = ḋt = vt (E.47)

f3(x, u) = v̇t =
Ft −Ktdt −Btvt

Mt
, Ft =

1

2
ρv2
wACt (λ, β) (E.48)
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∂Ct
(
λ, β̄
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(E.49)

∂Ft
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∂Ct
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∂β

(E.50)

∂Ft
∂vw
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2
ρ2v̄wACt
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)
− 1

2
ρv̄2
wA

∂Ct
(
λ, β̄

)
∂λ

∂λ

∂vw
(E.51)

f4(x, u) = β̇ =
1

τp
βref −

1

τp
β (E.52)

∂β̇

∂βref
=

1

τp
(E.53)

∂β̇

∂β
= − 1

τp
(E.54)

f5(x, u) = Ṫg =
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Tg,ref −

1

τg
Tg (E.55)

∂Ṫg
∂Tg,ref

=
1

τg
(E.56)

∂Ṫg
∂Tg

= − 1

τg
(E.57)
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h1(x, u) = Pg = NωrTg (E.58)

∂Pg
∂ωr

= NT̄g (E.59)

∂Pg
∂Tg

= Nω̄r (E.60)

h2(x, u) = vt (E.61)

h3(x, u) = ωr (E.62)

The state space representation for the model is (including the tower velocity subtraction, as
explained earlier):
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∂vw

)
1
Mt

∂Ft
∂β 0

0 0 0 − 1
τp

0

0 0 0 0 − 1
τg




ω∆
r

d∆
t

v∆
t

β∆

T∆
g



+


0 0 1

J
∂Ta
∂vw

0 0 0

0 0 1
Mt

∂Ft
∂vw

0 1
τp

0
1
τg

0


T∆

g,ref

β∆
ref

v∆
w

 (E.63a)

Pvt
ωr

 =

 P̄v̄t
ω̄r

+


∂Pg

∂ωr
0 0 0

∂Pg

∂Tg

0 0 1 0 0

1 0 0 0 0



ω∆
r

d∆
t

v∆
t

β∆

T∆
g

+ 0

T∆
g,ref

β∆
ref

v∆
w

 (E.63b)

138



Kalman Filtering F
This appendix will introduce the concept of Kalman filtering. The linear and extended Kalman
filter will be explained.

Whenever a sensor is sampled and used in a control system, noise will be present. If the signal
to noise ratio is low, the noise will affect the performance of the control loop. To minimize
the effect this noise, a Kalman filter can be used to estimate internal states, for better control
performance. Besides this the desired state information may not be directly measurable, but
is still observable through knowledge of the of the system using a Kalman filter. The Kalman
filter uses knowledge of the system and the sensor to generate the desired state information.

Assuming that a model of the control process is available and that Gaussian white noise is
affecting the states and sampled output signal, it can predict the current state in an optimal
fashion. This is done through the linear minimum mean square error, between the predicted
state and the actual state. The Kalman filter combines model estimations with noisy sensor
measurements, to make a stochastic estimation [Welch and Bishop, 2001].

The equations for the discrete state space system is:

xk = Φk−1x̂k−1 + Γkuk−1 +Gk−1Wk−1 (F.1)

zk = Hkxk +Dkuk + Vk (F.2)

Where: x is the state vector.
Φ is the system matrix.
Γ is the input matrix.
u is the control signal.
Z is the measured output(s).
H is the output matrix.
D is the feedthrough matrix.
W and V are white noise affecting states and measured output.

A block diagram of the linear Kalman filter (LKF) is as follows:

Sensor
model

System
predict

Update

u

z

x̂

x̂ ẑ

Figure F.1. A block diagram overview of the LKF. A prediction of the current state and measurement
values are made. These values are compared to the actual measurement and an update
process is made, to correct the prediction.
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The equations used in the LKF is (the superscript - and + indicates before and after the update
process):
Predict - A priori knowledge

x̂−k = Φk−1x̂
−
k−1 + Γk−1uk−1 (F.3)

ẑk = Hkx̂
−
k (F.4)

P−k = ΦkP
+
k−1ΦT

k +Qk−1 (F.5)

(F.6)

Update - A posteriori knowledge

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 (F.7)

x̂+
k = x̂−k +Kk(zk − ẑk) (F.8)

P+
k = (I −KkHk)P

−
k (F.9)

Where: x̂ is the estimate of the state(s).
ẑ is the estimate of the output(s).
P is the covariance matrix.
Q is the covariance matrix of the state noise.
R is the covariance matrix of the output noise.

The Q and R matrix is used for tuning purposes. The entries in R can be found by sampling
data from a constant output, to see how big the variance is. The Q matrix can be tuned by
hand or computationally based on simulations.
If e.g. the sampled outputs are very noise, the Kalman filter can be tuned to trust mainly on
the given system model, by having low values in the Q matrix. On the other hand, if only a bad
model is available it is possible to trust the measurement more, by having low values in the R
matrix.

The covariance propagation, in Equation F.5 is done through a linear map, as illustrated in
Figure F.2.

y=
g(

x)

y

p(
x)

p(y)

x

+
+

+

+ Mean μ

y = a x + bp(y)

Mean of p(y)

p(x)

Mean of p(x)

Figure F.2. Covariance propagation in the LKF. A linear map is mapping the probability distribution
of the previous states to the current states [Larsen, 2013a].

140



F.1 The Extended Kalman Filter

If the system model is not linear another type of Kalman filter is utilised. The extended Kalman
filter (EKF) predicts the states through the nonlinear model. However when the covariance is
propagated it makes a local linearisation around the current operating point. The Jacobian is
evaluated at each sample, given the current states. This of course requires that the nonlinear
model is differentiable. The principle is illustrated in Figure F.3.

y=
g(

x)

y

p(
x)

p(y)

x

+
+

+

+ Mean μ

Function g(x)

Taylor approx.

p(x)

Mean of p(x)

p(y)

Gaussian of p(y)

EKF Gaussian

Figure F.3. Covariance propagation in the EKF. A linear approximation of the nonlinear map is
mapping the probability distribution of the previous states to the current states [Larsen,
2013b].

The biggest issue with the EKF, is that stability is not guaranteed. This means that it can
become unstable, and thereby needs to be reinitialised. One way of keeping track of stability is
to compare the output, to another simpler but stable way of computing the state vector. If it
differ more than allowed (in percentage) the filter is reinitialised.
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MPC Theory G
G.1 Prediction Model

The prediction model that will be used is based on a state space model of the system with full
state measurements. Without full state measurement, full state knowledge could be obtained
through estimates as described in Chapter 7 on page 25. The model uses the present states and
the future control [Maciejowski, 2002, P. 54]:

x̂(k + 1|k) = Ax(k) +Bû(k|k) (G.1)

x̂(k + 2|k) = Ax̂(k + 1|k) +Bû(k + 1|k) (G.2)

= A2x(k) +ABû(k|k) +Bû(k + 1|k) (G.3)
...

x̂(k +Np|k) = ANpx(k) +ANp−1Bû(k|k) + . . . +Bû(k +Np − 1|k) (G.4)

Where: x̂ are the predicted states.
û denotes the future control inputs.
A and B are the model matrices.

The method that is going be used to solve the optimization problem splits the model up into
future and past, such that the optimization problem only is a function of the future. How this
is done will be shown later. For this reason the model will be put in a suitable form. First step
is to divide the control action into two terms:

The control moves can be expressed by:

∆u(k) = u(k)− u(k − 1) (G.5)

Combining the prediction equations with (G.5), the predictions can be written as:

x̂(k + 1|k) = Ax(k) +B(∆û(k|k) + u(k − 1)) (G.6)

x̂(k + 2|k) = A2x(k) + (AB +B)u(k − 1) +AB∆û(k|k)

+B (∆û(k + 1|k) + ∆û(k|k)) (G.7)
...

x̂(k +Np|k) = ANp x̂(k) +

Np−1∑
i=1

AiBû(k − 1)

+

Np−1∑
i=0

AiB∆û(k) + . . . +

Np−Nu∑
i=0

AiB∆û(k +Nu − 1|k) (G.8)
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If the states and control signals are stacked into vectors the prediction can be reduced to the
form:

X (k) =



x̂(k + 1|k)
...

x̂(k +Nu|k)

x̂(k +Nu + 1|k)
...

x̂(k +Np|k)


, ∆U(k) =

 ∆û(k|k)
...

∆û(k +Nu − 1|k)

 (G.9)

A =



A
...

ANu

ANu+1

...
ANp


(G.10)

Bu =



B
...∑Nu−1

i=0 AiB∑Nu
i=0A

iB
...∑Np−1

i=0 AiB


, B∆u =



B 0 · · · 0

AB +B B · · · 0
... AB +B · · · 0
...

...
. . .

...∑Nu−1
i=0 AiB

∑Nu−2
i=0 AiB · · · B∑Nu

i=0A
iB

∑Nu−1
i=0 AiB · · · AB +B

...
...

. . .
...∑Np−1

i=0 AiB
∑Np−2

i=0 AiB · · ·
∑Np−Nu

i=0 AiB


(G.11)

X (k) = Ax̂(k|k) + Buu(k − 1) + B∆u∆U(k) (G.12)

Now the future outputs can be described as:

Z(k) =

ẑ(k +Nw|k)
...

ẑ(k +Np|k)

 , X (k) =

 x̂(k + 1|k)
...

x̂(k +Np|k)

 (G.13)

C =


C 0 · · · 0

0 C · · · 0
...

...
. . .

...
0 0 · · · C

 (G.14)

Z(k) = CX (k) (G.15)
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Now a measurable input disturbance is added.

G.2 Disturbances

In the controller used for the wind turbine the wind is a measured disturbance. Measured
disturbances can be used for compensation in the controller as feedforward and can be
implemented as shown in Figure G.1. As the disturbance is in the prediction model, its size can
be determined as constant in the prediction horizon.

r(k)
C(z)

P1(z)
-1Pd(z)

P1(z) P2(z)

Pd(z)

+
+

+
-

-

+

dm(k)

y(k)

u(k)

Controller Plant

Figure G.1. Feedforward from measured disturbance [Maciejowski, 2002, P. 146].

The states of the plant can then be expressed as in (G.16), where the measured disturbance dm
affect the states through the Bd matrix.

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) +Bddm(k) (G.16)

By using the same stacking method as in the prediction model this becomes [Maciejowski, 2002,
P. 147]:

Dm(k) =


dm(k)

d̂m(k + 1|k)
...

d̂m(k +Np − 1|k)

 (G.17)

Bd =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...
ANp−1B ANp−2B · · · B

 (G.18)

X (k) = Ax̂(k|k) + Buu(k − 1) + B∆u∆U(k) + BdDm(k) (G.19)

As no additional information about the future wind is available it is considered constant having
the value that was last measured over the prediction horizon.

By defining Ψ = CA, Υ = CBu, Θ = CB∆u, Λ = CBd
Z(k) can now be written as:

Z(k) = Ψx̂(k|k) + Υu(k − 1) + Θ∆U(k) + ΛDm(k) (G.20)
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G.2.1 Disturbance Dynamics

With the form:

x(k + 1)=Ax(k) +Bu(k) + Γd(k) (G.21)

y(k)=Cx(k) (G.22)

No dynamics of the disturbance is shown. If the disturbance has dynamics and is on the form:

xw(k + 1)=Awxw(k) + Γww(k) (G.23)

d(k)=Cwxw(k) + w(k) (G.24)

This can be extended to the system like:[
x(k + 1)

xw(k + 1)

]
=

[
A ΓCw
0 Aw

][
x(k)

xw(k)

]
+

[
B

0

]
u(k) +

[
Γ

Γw

]
w(k) (G.25)

y(k)=
[
C 0

] [ x(k)

xw(k)

]
(G.26)

If white noise is added to the changes in input the controller through the estimation of this
integrated white noise leads to integral action.

G.3 Constraints

The optimization can be subject to constraints, which comes from the physical system e.g.
actuator range or slew rate or constraints that the designer wish to impose on the system.
Constraint are here given for control effort, control rate and output size. When expanded into
either the control or prediction horizon the matrix representations are respectively F, E and G.
F and E are control effort and rate and therefore needs to be expanded into the control horizon
Nu. G is the output constraints and therefore needs to be expanded into the prediction horizon
Np. The constraint can then be described as [Maciejowski, 2002, P. 81]:

E

[
∆U(k)

1

]
≤ 0 (G.27)

F

[
U(k)

1

]
≤ 0 (G.28)

G

[
Z(k)

1

]
≤ 0 (G.29)

Where: E denotes a matrix containing the constraints for change in control input.
F denotes a matrix containing the constraints of the values of control input.
G denotes a matrix containing the constraints of the values of the system output.
U(k) = [û(k|k)T , . . . , û(k +Nu − 1|k)T ]T .
0 is the null vector.
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The notation are alike for the representation of F, E and G so only F will be shown:

F =



1

umin,1
−1

1

umax,1
0

1

umin,2

...

1

umax,2
. . .

...

0 1

umin,Nu

1

umax,Nu

−1



(G.30)

As explained in the prediction section the control problem is solved for only the change in control
action, so all of the constraint needs to be rewritten as dependent of ∆U(k).

The constraint for control input needs to be changed since it is now dependent of U . This is
done by first writing (G.28) as:

0 ≥
Nu∑
i=1

Fiû(k + i− 1|k) + f (G.31)

The future control input is a combination of an older input plus the changes done since that:

û(k + i− 1|k) = u(k − 1) +

i−1∑
j=0

∆û(k + j|k) (G.32)

By inserting this into (G.31) it becomes:

0 ≥
Nu∑
j=1

Fj∆û(k|k) +

Nu∑
j=2

Fj∆û(k + 1|k) + ...+ FNu∆û(k +Nu − 1|k)

+

Nu∑
j=1

Fj û(k − 1) + f (G.33)

Now the following is defined Fi =
∑Nu

j=i and F = [F1, . . . ,FNu ] and it turns into:

F∆U(k) ≤ −F1u(k − 1)− f (G.34)

The right hand side of the inequality is a known vector at time k, which makes the constraint
now dependent of ∆U . Now the same has to be done for G. By inserting the expression for Z(k)

from (G.20) into the equation describing the output constraints, (G.29), it becomes:

0 ≥ G

[
Ψx̂(k|k) + Υu(k − 1) + Θ∆U(k) + ΛDm(k)

1

]
(G.35)
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By writing G = [Γ, g], g is the last column of G it turns into:

0 ≥ Γ[Ψx̂(k|k) + Υu(k − 1) + ΓΛDm(k)] + ΓΘ∆U(k) + g (G.36)

m
ΓΘ∆U(k) ≤ − Γ[Ψx̂(k|k) + Υu(k − 1) + ΓΛDm(k)]− g (G.37)

Now the output constraints are also described as dependent on ∆U(k). The constraints on the
input rate is obviously already dependent on ∆U(k), which only leaves to the rearranging by
defining E = [W,w] where w is the last column of E and inserting this into the equation for
input rate constraints, (G.28):

W∆U ≤ −w (G.38)

By assembling the newly constructed inequalities into a single results in: FΓΘ

W

∆U(k) ≤

 −F1u(k − 1)− f
−Γ[Ψx̂(k|k) + Υu(k − 1) + ΓΛDm(k)]− g

−w

 (G.39)

These constraints are now on the form that will be used when solving the optimization problem.

G.4 Softening Constraints

As the constraints are formulated now a problem can occur, where a large disturbance or
mismatch between the internal model and the plant makes the controller unable to keep the
plant within the constraints The optimization problem therefore becomes infeasible. In such a
situation no solution would be found from a standard quadratic programming controller, which
would leave the system without any control input. A way of handling this is simply to input the
old control input until the problem becomes feasible again or even the second horizon input from
last iteration. A different solution is to soften the constraints. When softening the constraint
the formulation moves from never being able to cross the constraints to in a strictly necessary
situation being able to cross the constraint at high cost penalty. Softening constraints is usually
only done on the output constraints, since input constraints are often determined by actuator
limitations. An easy way of adding soft constraints is adding so called slack variables to the
cost function. The slack variable increases, when the constraint is crossed and penalized in the
objective function so the controller has strong incentive to minimize the slack variable. With
added slack variables to the optimization problem it becomes:

min
θ,ε

1

2
θTΦθ+φT θ + ρ||ε||2 (G.40)

subject to Ωθ ≤ ω + ε

and ε ≥ 0

Where ρ is the weight on the slack variable determining how ”soft” the constraint is. Is ρ = 0

the constraints are hard.
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G.5 Optimization

As in the case with the constraint the optimization problem is solved in regard to ∆U , so the
problem needs to be reformulated before it can be solved [Maciejowski, 2002, P. 81].

The objective function was chosen to be:

V (k) =

Np∑
i=Nw

||ẑ (k + i|k)− r (k + i|k) ||2Q(i)) +

Nu−1∑
i=0

||∆û (k + i|k) ||2R(i) (G.41)

By adding the horizon stacked matrices for the weights (Q and R) and the stacked vector for
the reference (T (k)) as:

Q =


Q(Nw) 0 · · · 0

0 Q(Nw + 1) · · · 0
...

...
. . .

...

0 0
... Q(Np)

 , R =


R(0) 0 · · · 0

0 R(1) · · · 0
...

...
. . .

...

0 0
... R(Nu − 1)



T (k) =

r̂(k +Nw|k)
...

r̂(k +Np|k)

 (G.42)

The objective function can be rewritten as:

V (k) = ||Z(‖)− T (k)||2Q + ||∆U(k)||2R (G.43)

Remember that the predicted outputs can be written as:

Z(k) = Ψx(k) + Υu(k − 1) + Θ∆U(k) + ΛDm(k) (G.44)

and the following is defined:

E(k) = T (k)−Ψx(k)−Υu(k − 1)− ΛDm(k) (G.45)

Where E(k) is the tracking error over the prediction horizon, if no input changes are made.

From this the objective function can now be written as:

V (k) = ||Θ∆U(k)− E(k)||2Q + ||∆U(k)||2R (G.46)

= [∆U(k)TΘT − E(k)T ]Q[Θ∆U(k)− E(k)] + ∆U(k)TR∆U(k) (G.47)

= E(k)TQE(k)− 2∆U(k)TΘTQE(k) + ∆U(k)T [ΘTQΘ +R]∆U(k) (G.48)
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This can be formulated as:

V (k) = const−∆GTU(k) + ∆U(k)TH∆U(k) (G.49)

Where:

G = 2ΘTQE(k) (G.50)

H = ΘTQΘ +R (G.51)

Now neither the constant part, H nor G depends on ∆U(k) and the quadratic programming
(QP) problem with the constraints found before can be formulated as:

min
∆U

∆U(k)TH∆U(k)− GT∆U(k) (G.52)

subject to

 FΓΘ

W

∆U(k) ≤

 −F1u(k − 1)− f
−Γ[Ψx̂(k|k) + Υu(k − 1) + ΓΛDm(k)]− g

−w

 (G.53)

This is a standard QP with constraints, which can be written on the standard form:

min
θ

1

2
θTΦθ + φT θ (G.54)

subject to Ωθ ≤ ω

G.6 Solving the QP

Had the problem been without constraints the optimal input change could have been found by
letting the gradient equate to zero [Maciejowski, 2002, P. 88]:

∂V (k)

∂∆U(k)
= − G + 2H∆U(k) (G.55)

⇓

∆U(k)opt =
1

2
H−1G (G.56)

To establish if this minimum is indeed a global minimum the Hessian is examined:

∂2V (k)

∂∆U(k)2
= 2H = 2(ΘTQΘ +R) (G.57)

The Hessian needs to be positive definite (H < 0) for the problem to be solvable in this way
and for it to be convex, meaning that the minimum is indeed a global minimum. Now usually
the solution is not computed by using the inverse of the Hessian as here, since this can often
be ill conditioned due to Θ being ill conditioned. As an example if two control variables in Θ

behaves alike the rank of Θ would be less than full and ΘTQΘ becomes singular. Instead other
methods such as least squares can be used to solve it.
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Having an unconstrained problem is not the case in MPC, where constraints are in the very
core of the control problem, so another solver is needed. As per equation G.55 the problem is
on a standard QP formulation, which means it can be solved using a multitude of solvers using
different methods such as active set or interior point methods. Here a short explanation of the
active set method is done.

As long as no variable is hitting its constraint the solution is as in the unconstrained case. As
soon as one or more of the variable hits their constraint this set of constraints becomes active,
which means:

Ωaθ = ωa (G.58)

Where Ωa are the active constraints from Ω and ωa are the corresponding elements from ω. So
if knowledge was available of which constraints would be active, in the optimal solution before
solving, the problem the problem could be formulated as:

min
θ

1

2
θTΦθ + φT θ (G.59)

subject to Ωaθ = ωa

This problem could be solved by using Lagrange multipliers:

min
θ,λ

1

2
θTΦθ + φT θ + λ(Ωaθ − ωa) (G.60)

Where the gradients are:

∂L(θ, λ)

∂θ
= Φθ + φ+ ΩT

a λ (G.61)

∂L(θ, λ)

∂λ
= Ωaθ − ωa (G.62)

This can be put into matrix form:

OL(θ, λ) =

[
Φ ΩT

a

Ωa 0

][
θ

λ

]
−

[
−φ
ωa

]
(G.63)

By equating this to zero the optimal solution is found as:[
θ

λ

]
opt

=

[
Φ ΩT

a

Ωa 0

]−1 [
−φ
ωa

]
(G.64)

Now by remembering that Ω = [F ΓΘ W] and Φ = H/2 in the original problem, it can be
seen that none of these elements depend on the signals at time k. This means that the matrix
being inverted in the problem above is constant as long as the same constraints are active. Both
φ and ωa depends on the signal at time k. This results in the control problem being a linear
time invariant problem as long as the active constraints are constant. This opens up for the
opportunity of solving the inverse matrix for all combinations of active constraints in advance.
There are a number of reason why this is not feasible, one being the sheer amount of solutions
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as the number of constraints rise. This is were the active set method can be used.

For the further explanation the standard QP problem involving both equality and inequality
constraints will be used on the form:

min
θ

1

2
θTΦθ+φT θ (G.65)

subject to Hθ = h

and Ωθ ≤ ω (G.66)

The name active set stems from the use of an active set of constraints as in the formulation used
earlier:

Ωaθ = ωa (G.67)

In the active set method it is assumed that a feasible solution is available, where a set of
constraints are active and therefore hold with equality. This set can be empty, when none is
active. Now this method is used and is at iteration r, where the feasible solution θr is found. The
active set method then finds an improved solution θr + ∆θ, which still complies with Ωaθ = ωa
and Hθ = h, without caring about inactive constraints being violated. Then the improved
solution is tested for feasibility against all the constraints Ω(θr + ∆θ) ≤ ω. If it is feasible, it
is accepted as the next iteration, if not then a line-search is performed in the direction of ∆θ

to find the point, where feasibility is lost. The new iteration then becomes θr+1 = θrαr∆θ with
0 < αr < 1. Now the question is if the solution found θr+1 is an global optimal solution or
further iterations are needed.

Since the QP problem was convex, the necessary and sufficient conditions for a solution θ being
a global minimum are given by the Karush–Kuhn–Tucker (KKT) conditions: There must exist
vectors λ ≥ 0, ζ ≥ 0 and t ≥ 0, such that solutions can be found to:

Φθ +HT ζ + ΩTλ = − φ (G.68)

−Hθ = − h (G.69)

−Ωθ − t = − ω (G.70)

tTλ = 0 (G.71)

λ consist of elements for each constraint. The elements of the constraint that are inactive are
zero, so those does not need to be solved. The rest are solved and if λ ≥ 0 then a global solution
has been found, else more iteration are needed. If an element of λ is negative, this indicates
that the cost function can be improved by removing the corresponding constraint from the set.
This is then done and a new active set is found and the process is repeated.

Now by taking into account that the problem is solved iteratively by finding the best new cost
through a change the new cost function at iteration r would be:

V (θr + ∆θ) =
1

2
(θr∆θ)

TΦ(θ + ∆θ) + φT (θr + ∆θ) (G.72)

⇓

= V (θr) +
1

2
∆θTΦ∆θ + (φT + θTr )∆θ (G.73)
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And since only the active set of constraints are used the minimization problem becomes:

min
∆θ

1

2
∆θTΦ∆θ+(φT + Φθr)∆θ (G.74)

subject to Hθ = h

and Ωaθ = ωa (G.75)

Since only equality constraints are present now due to the active set only the following equations
from the KKT conditions are needed: Φ HT ΩT

a

H 0 0

Ωa 0 0


∆θ

∆ζ

∆λ

 =

−φrh
ωa

 (G.76)

This can now be solved. How this problem is solved varies between the different active
set methods. For documentation on the specific active set algorithm used for MPC see the
implementation chapter.
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