
Fatigue Analysis and Design Optimisation of

Offshore Wind Turbine Support Structures

Master Thesis
Jonas Mathias Laustsen

Design of mechanical systems
Aalborg University

3 June 2014





School of-
Engineering and Science
Mechanical & Manufacturing
Engineering
Fibigerstraede 16

9220 Aalborg East

Title:

Fatigue Analysis and Design
Optimisation of Offshore Wind
Turbine Support Structures

Theme:

Master Thesis

Project period:
DMS4, spring semester 2014
3 February - 3 June

Project group:
2.217b - Fib16

Participant:

Jonas Mathias Laustsen

Supervisor:
Erik Lund

Pages: 60 (49)

Appendices: 4

Synopsis:

The aim of this project is to perform gradi-
ent based optimisation, with fatigue as con-
straint, on an offshore wind turbine support
structure, with the goal of minimising the
mass.
A finite element model, which utilises 3D
Bernoulli-Euler beam elements, has been
developed. The finite element model is
applied to perform the structural analysis
and determine the damage caused by the
applied nonproportional loading history.
In order to handle to nonproportional
loading, a modified Wang-Brown counting
method is applied, together with the Find-
ley critical plane fatigue model.
The optimisation is performed using an SLP
algorithm, with adaptive move limits, where
the goal is to minimise the total mass of the
structure subjected to a damage criterion,
which is the Palmgren-Miner sum.
A design sensitivity analysis is performed
in order to determine the gradient of the
constraint function, which is done using
a numerical and an analytical method.
The analytical design sensitivity analysis is
performed using the direct differentiation
method, which is verified by a numerical cen-
tral difference method.





Preface

This project report is written by Jonas Laustsen during 4th semester of the master program in
”Design of Mechanical Systems” at Aalborg University. The project concerns ”Fatigue Analysis
and Design Optimisation of Offshore Wind Turbine Support Structures”.

In this project, the Harvard reference method is used, where sources are referenced by surname
and year. Figures, tables, and equations are numbered according to the chapter number and
with ascending numbers throughout the chapter, e.g. the first table in chapter two is denoted
2.1. Equation numbers are written within parenthesis. Symbols which are vectors and matrices
are written within curly and square brackets, respectively. A global and local coordinate system
is used, which is denoted x, y, z and x’, y’, z’, respectively.

A list of bibliography is found at page 59. The used nomenclature is found on page XI. The
front page image is by Offshorewind.biz [2012].

The appendix and the appendix CD are included at the end of this document. The appendix
CD contains the report as a PDF file, MATLAB-scripts, and ANSYS-scripts, as described in
appendix D.
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Resumé

Dette projekt omhandler designoptimering af en støttestruktur til en vindmølle, hvor der tages
hensyn til et udmattelseskriterie.

Der er udviklet en finite element bjælke model, som benyttes til den strukturelle analyse af
støttestrukturen. I finite element modellen anvendes der 3D bjælke elementer som er baseret
på Bernoulli-Euler bjælke teori. Spændingerne evalueres i udvalgte punkter i tværnittet. Dette
gøres for begge knuder i alle elementerne. Tværsnittet er modelleret som et tyndvægget cirkulært
tværsnit. Finite element modellen er verificeret i henhold til en ANSYS model, hvor de globale
flytninger, spændingerne i tværsnittet og egenfrekvenserne er blevet sammenlignet. Der viste
sig at være god overensstemmelse mellem de to modeller. Dog følger ANSYS’ måde at regne
tværspændingerne i tværsnittet ikke bjælketeorien.

Støttestrukturen er pålagt en lastserie, som er simuleret for en generisk 5MW vindmølle.
Lasterne er ikke proportionelle, hvormed der skal anvendes en speciel tællemetode for at tage
hensyn til effekten af de ikke proportionelle laster. Her anvendens en modificerede Wang-Brown
rainflow tællemetode, hvilket er implementeret finite element koden. Tællemetoden anvendes til
at bestemme hvor mange gange et givet lastinterval optræder, ud fra den pålagte lastserie. Der
regnes en samlet skade i hvert evaluerings punkt i tværsnittet, dette gøres vha. Palmgren-Miners
lineære delskade.

Der anvendes en critical plane udmattelse model til bestemmelse af hvor mange belastninger
der skal til, før der opstår brud ved et given spændingsniveau. Denne critical plane model
kan bestemme hvornår materialet bryder og i hvilken vinkel brudplanet ligger. Her anvendes
Findley udmattelses modellen, den har til fordel at, antallet af belastninger før brud kan isoleres
i udtrykket, hvilket muliggør at skade sensitiviteten kan regnes analytisk.

Der er anvendt en gradient baseret optimerings metode, hvor objektfunktionen er en funktion
af den samlede masse for strukturen. Som bibetingelse skal det overholdes at skaden ikke må
overskride et givent niveau i et af evalueringenspunkter. Bibetingelserne er opstillet som en skade
der er beregnet vha. Palmgren-Miners delskade. Som input til den gradient baseret optimering,
kræves at gradienten af objektfunktionen og gradienten af bibetingelserne er bestemt. Disse
bestemmes vha. en følsomheds analyse, hvor gradienterne er regnet analytisk ved brug af en
direkte differentiations metode. De implementerede gradienter verificeres ved sammenligning
med gradienter bestemt vha. en approksimativ metode. Pga. en meget ulineær betingelses
funktion, har det været nødvendigt at anvende en SLP algoritme, der går ind og lineariseret
problemet i et lille interval, hvormed løsningen i dette interval dernæst bliver det nye startgæt.
For at afprøve implementeringen er optimeringen massen af en fast indspændt bjælke, som er
pålagt en ikke proportionel lastserie, blevet minimeret.
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Nomenclature
Symbol: Description: Unit:

Ae Cross-sectional area of element
[
m2]

E Young’s modulus [Pa]

G Shear modulus [Pa]

Iy Area moment of inertia w.r.t. the y-axis
[
m4]

Iz Area moment of inertia w.r.t. the z-axis
[
m4]

Jx Polar moment of inertia w.r.t. the x-axis
[
m4]

Le Length of the element [m]

My Moment about y’ axis [Nm]

Mz Moment about z’ axis [Nm]

Ne Number of elements [-]

Nx Normal force along x’ axis [N]

Qy First moment in the y-direction
[
m3]

Qz First moment in the z-direction
[
m3]

Rm Mean radius [m]

R Radius [m]

Tx Torque about the x’ axis [Nm]

Vy Shear force in the y’ direction [N]

Vz Shear force in the z’ direction [N]

[I] Identity matrix [-]

[K] Global stiffness matrix [-]

[M ] Global mass matrix [-]

[T ] Transformation matrix [-]

[Λ] Rotation matrix [-]

[gKe] Element stiffness matrix transformed [-]

[lKe] Local element stiffness matrix [-]

∆xi Perturbation of the ith design variable [-]

β Angle of sample point in the cross-section [deg]

γ Shear strain [-]

Continued on next page

Group 2.217b XI



NOMENCLATURE

Symbol: Description: Unit:

κy Curvature about y-axis [1/m]

κz Curvature about z-axis [1/m]

f General response function [-]

ν Poisson’s ratio [-]

ωi Natural frequency [rad/s]

ν Effective poisson’s ratio, [-]

ρ Density
[
kg
m3

]
σ Normal stress [Pa]

τ ′f Torsional fatigue strength [-]

τ∗f Corrected torsional fatigue strength [-]

τ Shear stress [Pa]

d Outer diameter [m]

f({x}) Cost function as a function of design variables [-]

f Fatigue constant for given material [Pa]

g0 Ideal value [-]

gj({x}) Constraint function as a function of design variables []

k Material constant which is related to the materials’ sensitiv-
ity to normal stresses

[-]

m Mass [kg]

p Coefficient to scale most violated constraint [-]

t Wall thickness [m]

wj Weight factor [-]

{De} Local element displacement vector [-]

{D} Global displacement vector [-]

{R} Global load vector [-]

{X} Eigenvector [-]

{c} Gradient of cost function w.r.t. design variables [-]

{x} Design variable vector [-]
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Introduction 1
This project examine the subject of how to perform a design optimisation, with fatigue as
constraint, of an offshore wind turbine support structure.

The offshore wind turbine is mounted on a support structure which is connected to a foundation
on the seabed. The foundation ensures that the wind turbine is securely fixed at the seabed.
There are mainly two ways of supporting offshore wind turbines, the first is to construct a
floating support structure which is by wires anchored at the bottom of the seabed. The second
way is to construct a support structure which is in contact with the seabed, either secured by a
foundation or by gravity. The support structures are typically welded steel structures. [LORC,
2011]

A popular support structure for shallow waters, 20-30 m, is the monopile support structure.
It is used because of its simple construction, where the tube has a diameter of 2-5 m with a
wall thickness of up to 100 mm. The limitation of this support structure type is the structural
strength compared to the production cost at greater water depths. To maintain the structural
requirements, such as bending stiffness, natural frequency, and mass at larger water depths,
the design of monopile structure will require the cross-sectional parameters to increase. The
increased cross-section and water depth increase the mass of the support structure, which
increases the cost of the support structure.

The tripod support structure is a modified version of the monopile support structure. The
loads at the foundation are distributed by three jackets, which increase the strength, where the
bending moment is highest, of the support structure.

The jacket structure is a commonly used offshore support structure in the oil and gas industry,
e.g. oil platforms. It is also used for supporting the offshore wind turbine at water depths of up
to 50 m. It is a frame structure with three or four legs, where trusses between the legs form a
grid, which stiffens the construction. This type of support structure is assembled onshore and
shipped out for installation. The frame structure is larger than the one of the monopile tubes,
but the dimension of each truss is much smaller, which makes it easier to handle during the
production.

For deep waters, a floating support structure can be used. However, the construction for
supporting the wind turbine has to be large, in order to stabilise the dynamic loads from the
waves and wind hitting the blades and carry the static load from the tower, nacelle, and blades.

The four support structure concepts described above are shown in figure 1.1. The first three
(from left to right) support structure concepts are in contact with the seabed, whereas the fourth
concept is a floating support structure which is secured by wires connected to the seabed.
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1. Introduction

Figure 1.1 Support structure concepts. From left to right: monopile, tripod, jacket, and floating
structure. [UpWind, 2011]

The cost of the support structure for a offshore wind turbine is approximately 20% of the total
cost [Lund and Overgaard, 2014]. This makes it crucial for the wind turbine manufacturers
to minimise the cost of one support structure in order to gain a better and more competitive
product. Since, a lot of material is used in making a support structure, the cost can be reduced
by minimising the mass of the support structure. Because of the harsh offshore environment, it
makes great demands to the support structure, that being time dependent wind and wave loads.
The wave loads would affect the whole support structure and the wave loads would mostly affect
the wind turbine which would transmit the transient loads to the support structure. The loads
are applied in the 3D space and the components will not be in-phase, which introduces the
concept of nonproportional loading. The nonproportional loading, from a fatigue point-of-view,
has an influence in the fatigue life of the structure, therefore a proper fatigue model has to be
used. Another thing which has a significant impact in the fatigue life, is corrosion. Since the
support structure is submerged in salt water and made in steel, corrosion can not be ignored.
Although, a high safety factor might be used to account for this, it is better to know the system
and include the right theory in order to obtain a useful model.

In this project a jacket type support structure is considered, where the geometry from the
UpWind project is used. The UpWind jacket support structure is designed to be used with
the NREL 5-MW baseline wind turbine in 50 m of water. The NREL 5-MW baseline wind
turbine has been developed as a standardised wind turbine model for easier comparison, which
is described in Jonkman et al. [2009]. The UpWind jacket support structure has four legs, where
the legs are connected by X-braces. The four legs are connected to four foundation piles, which
are 45 m into the seabed. The UpWind jacket structure is illustrated in figure 1.2. At the top of
the jacket structure a transition piece made of concrete is connecting the jacket structure with
the wind turbine tower, as shown in figure 1.3.[Vorpahl et al., 2011]
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1.1. Problem statement

Figure 1.2 Sketch of the UpWind jacket
support structure, where the yellow pipes
are embedded in the concrete, as shown in
figure 1.3. [Vorpahl et al., 2011]

Concrete block with embedded
verticale steel members

Figure 1.3 Concrete transition piece which is
connecting the jacket support structure with
the wind turbine tower. [Vorpahl et al., 2011,
Modified]

1.1 Problem statement

As stated in the introduction, the mass of the support structure has the potential to be reduced
considerably, with the benefit of using less material and therefore reducing the cost. The aim of
this project is to:

Perform gradient based optimisation, with fatigue as constraint, on an offshore wind turbine
support structure, with the goal of minimising the mass.

The framework by Jørgensen and Nissen [2013] is used as a reference for comparison, however
a new model is developed during this project period. The geometry from the UpWind jacket
support structure will be used, however the cross-sectional parameters are not preserved. A
linear FE model of the jacket structure is conducted and wind-based loads from a 600 s simulation
with HAWC2[Energy, N/A] is applied. Wave loads acting on the support structure are not
considered, even though they influence the fatigue life of the structure. A multiaxial rainflow
counting method, which is able to handle nonproportional loading conditions [Meggiolaro and
de Castro, 2011b] is used to count the stresses. The Findley fatigue model is used to access
the fatigue life of the multiaxial and nonproportional loads. The mass of the jacket support
structure is minimised by use of gradient based optimisation, where the gradients of the cost
and constraints are calculated analytically using the direct differentiation method and evaluated
in comparison with the overall finite difference method.
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FE Model 2
The jacket structure is a frame like structure, which is modelled with 3D beam elements. It is
assessed that the deformations of the jacket structure are small, by which the structural analysis
is performed by a linear finite element analysis (FEM). The FEM is coded in MATLAB and
verified by an equivalent analysis performed in ANSYS, as described in chapter 3.

The linear system of equations that has to be solved, in order to achieve the displacements, are
defined in equation (2.1). The assembly of the global stiffness matrix is desribed in section 2.2.

[K] {D} = {R} (2.1)

where:
[K] Global stiffness matrix, [-]

{D} Global displacement vector, [-]

{R} Global load vector, [-]

One of the advantages of using a linear model is that the principle of superposition is valid, by
which the displacements from multiple load configurations can be added together in order to
determine the resulting displacements. Another advantage is that the displacements are scalable
according to the loads, since the displacements and the applied loads are proportional as seen
in equation (2.1). By which the displacements of the model can be solved for six unity loading
configurations, e.g. one loading configuration is a unity force in the x-direction and another is a
unity moment about the x-axis. Afterwards, the displacements, from the unity loads, are scaled
according to the applied load. This way, the FE model only have to be solved for six times,
which results in low calculation times.

The unity scaling can be applied throughout the whole model, since the stresses are calculated
from the displacements and the fatigue life is calculated from the stresses. By which the
calculation of the sensitivities w.r.t. displacements, stresses, and fatigue life can be calculated
efficiently. The calculation of sensitivities are described in chapter 6.

2.1 3D beam element

The 3D beam element is a two node element with six degrees of freedom in each node, as seen
in figure 2.1.

v1

w1

u1θx1

θz1

θy1

v2

θy2

w2

θz2

u2 θx2

Figure 2.1 3D beam element dof.
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2. FE Model

The twelve degrees of freedom for the element are arranged in the displacement vector as follows:

{De} =
{
u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2

}T
(2.2)

2.1.1 Element stiffness matrix

The stiffness matrix of the 3D beam element is presented in equation (2.3). The element is based
on the Bernoulli-Euler beam theory, which assumes; small displacements and rotations, the cross-
section remain straight before and after deformation, the transverse normals are inextensible,
and that the transverse normals remain perpendicular to the neutral line.

The element stiffness matrix for the 3D beam element is derived based on the following shape
function interpolations. The lengthwise displacement and rotation are interpolated with a linear
variation, whereas the displacements in y’ and z’ and rotation about y’ and z’ are interpolated
with a cubic variation. This is due to the tangential requirement of the displacement field that
has to be continuous, whereas the lengthwise displacement and rotation fields only have to be
continuous.

[lKe] =



X 0 0 0 0 0 −X 0 0 0 0 0
Y1 0 0 0 Y2 0 −Y1 0 0 0 Y2

Z1 0 −Z2 0 0 0 −Z1 0 −Z2 0
S 0 0 0 0 0 −S 0 0

Z3 0 0 0 Z2 0 Z4 0
Y3 0 −Y2 0 0 0 Y4

X 0 0 0 0 0
Y1 0 0 0 −Y2Sym.

Z1 0 Z2 0
S 0 0

Z3 0
Y3



(2.3)

where [lKe] is the element stiffness matrix and X, S, Yi, and Zi are defined as:

X = AeE

Le

Y1 = 12E Iz
Le

3

Y2 = 6E Iz
Le

3

Y3 = 4E Iz
Le

Y4 = 2E Iz
Le

S = GJx
Le

Z1 = 12E Iy
Le

3

Z2 = 6E Iy
Le

3

Z3 = 4E Iy
Le

Z4 = 2E Iy
Le

(2.4)
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2.1. 3D beam element

where: [Cook et al., 2001, p. 27, φ = 0]
Ae Cross-sectional area of element,

[
m2]

Le Length of the element, [m]

E Young’s modulus, [Pa]

G Shear modulus, [Pa]

Iy Area moment of inertia w.r.t. the y-axis,
[
m4]

Iz Area moment of inertia w.r.t. the z-axis,
[
m4]

Jx Polar moment of inertia w.r.t. the x-axis,
[
m4]

2.1.2 Transformation matrix

In figure 2.2 the topology for the 3D beam element is presented. A third node is required to
define the orientation of the element, if the element is arbitrary oriented in space. The three
nodes define the beam plane, which in the figure is grey. It is assumed that global coordinates,
x y z, of the three nodes are known beforehand as shown by the {a}, {b}, and {c} vectors.

x

y

z

x’
y’

z’

a bc

v1

v13

v2

v3

1 2

3

Figure 2.2 Topology for the three node 3D beam element.

The method used for defining the local coordinate system, x’ y’ z’, of the beam element is
inspired by Stærdahl [2008] and is adapted to match the transformation used in ANSYS for
easier comparison. The local {x′}-axis is always collinear with the longitudinal axis of the beam
element and the local origin is at node 1. The vectors {v1} and {v13} are defined as:

{v1} = {b} − {a} (2.5)
{v13} = {c} − {a} (2.6)

which is used to determine the two perpendicular vectors with respect to {v1}:

{v2} = {v13} × {v1} (2.7)
{v3} = {v1} × {v2} (2.8)
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2. FE Model

The {v1}, {v2}, and {v3} vectors are collinear with the local {x′}, {y′}, and {z′}, by which the
unit vectors are found:

{x′} = {v1}
|{v1}|

{y′} = {v2}
|{v2}|

{z′} = {v3}
|{v3}|

(2.9)

The rotation from the global coordinate system to the local coordinate system is defined by the
following rotation matrix:

[Λ] =


{x′}T
{y′}T
{z′}T

 (2.10)

By applying the rotation matrix to displacements and rotation for both end nodes of the beam
element, the following transformation matrix is defined:

[T ] =


[Λ] 0 0 0
0 [Λ] 0 0
0 0 [Λ] 0
0 0 0 [Λ]

 (2.11)

The transformation matrix is applied to the local stiffness matrix, such that the local stiffness
matrix is transformed in accordance with the global coordinate system.

[gKe] = [T ]T [lKe] [T ] (2.12)

2.2 Assembly of global stiffness matrix

The assembly of the global stiffness matrix, [K], is conducted by a summation of all the element
stiffness matrices, [gKe]:

[K] =
Ne∑
i=1

[gKe]i (2.13)

where:
Ne Number of elements, [-]

The summation of the element stiffness matrices are performed by adding the nodal related
stiffness components from the element stiffness matrix into the global stiffness matrix.

In order to illustrate the assembly of the global stiffness matrix, the following example is given.
A simple 2D model with three truss elements where each element has two nodes is considered.
The simple 2D model is seen in figure 2.3. The truss element has four DOF’s, translation in
x and y-direction in each node, by which the element stiffness matrix is a 4 by 4 matrix. The
global stiffness matrix is constructed from the three element stiffness matrices, which results in
a 6 by 6 matrix.
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2.3. Element loads

1

2

3

A B

Cx

y

Figure 2.3 Simple 2D truss model with three elements. The node numbers are circled and the element
letters are squared.

The element stiffness matrices for the three truss elements are shown in equation (2.14). The
components in the matrices are named, in lower case, according to the figure above. The
actual values of the element stiffness matrices are not important in the process of describing the
assembly of the global stiffness matrix. However it is necessary to locate the nodal relation of
the matrix components with the associated DOF, which is why the associated DOF is listed at
the upper and left borders of the element stiffness matrices.



u1 v1 u2 v2

u1 a11 a12 a13 a14

v1 a21 a22 a23 a24

u2 a31 a32 a33 a34

v2 a41 a42 a43 a44





u2 v2 u3 v3

u2 b11 b12 b13 b14

v2 b21 b22 b23 b24

u3 b31 b32 b33 b34

v3 b41 b42 b43 b44





u1 v1 u3 v3

u1 c11 c12 c13 c14

v1 c21 c22 c23 c24

u3 c31 c32 c33 c34

v3 c41 c42 c43 c44


(2.14)

The global stiffness matrix of the 2D truss model is shown in equation (2.15). The three
element stiffness matrices from equation (2.14) have been summed, by which the associated
matrix components are added.



u1 v1 u2 v2 u3 v3

u1 a11 + c11 a12 + c12 a13 a14 c13 c14

v1 a21 + c21 a22 + c22 a23 a24 c23 c24

u2 a31 a32 a33 + b11 a34 + b12 b13 b14

v2 a41 a42 a33 + b21 a34 + b22 b23 b24

u3 c31 c32 b31 b32 b33 + c33 b34 + c34

v3 c41 c42 b41 b42 b43 + c43 b44 + c44


(2.15)

2.3 Element loads

The applied loads on the element and parameters used in the calculation of the cross-sectional
stresses are presented in this section. All loads are in accordance with the local coordinate of
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2. FE Model

the element. The axial and shear forces and the torque about x’ are given as:

Nx = Ae
u2 − u1
Le

(2.16)

Vz = E Iy
d3w

dx3 (2.17)

Vy = E Iy
d3v

dx3 (2.18)

Tx = GJx
θx2 − θx1

Le
(2.19)

where the derivatives of w(x) and v(x) are given as:
d3w

dx3 = −12
Le

2 w1 + 6
Le

θy1 + 12
Le

2 w2 + 6
Le

θy2 (2.20)

d3v

dx3 = 12
Le

2 v1 + 6
Le

θz1 + −12
Le

2 v2 + 6
Le

θz2 (2.21)

The moments about z’ and y’ are given as:

Mz = E Iz κy (2.22)
My = E Iy κz (2.23)

where the curvatures of w(x) and v(x) are given as:

κz = 12x− 6
Le

2 v1 + 6x− 4
Le

θz1 + −12x+ 6
Le

2 v2 + 6x− 2
Le

θz2 (2.24)

κy = −12x+ 6
Le

2 w1 + 6x− 4
Le

θy1 + 12x− 6
Le

2 w2 + 6x− 2
Le

θy2 (2.25)

2.4 Calculation of cross-sectional stresses

In this section the calculation of the cross-sectional stresses are described. The stresses are
evaluated by use of beam theory. Since the FE model is linear, the principle of superposition
can be applied and thereby the normal stress contribution from the axial load and bending
loads can be summed. Likewise, torsional and shear force shear stresses can be summed. The
cross-section shown in figure 2.4 illustrates where the stresses are calculated.

y’

z’

x’

rmean

t

β

Figure 2.4 Sketch of thin walled circular cross-section, where the angle β is used for the sample points
around the cross-section.

The normal and shear stresses are evaluated by the following equations:

σN = Nx

Ae
− Mz Rm cos (β)

Iz
+ My Rmsin (β)

Iy
(2.26)

τtot = τxy + τxz (2.27)
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2.4. Calculation of cross-sectional stresses

where the shear stress components are given as a sum of the contribution from the shear force
and the torque:

τxy = Vy Qy
Iz 2 b(β) + TxRm sin (β)

Jx
(2.28)

τxz = Vz Qz
Iy 2 b(90◦ − β) + TxRm cos (β)

Jx
(2.29)

The first moments Qy and Qz are the first moment of the cross-sectional above the point where
the shear stress is evaluated. For the circular hollow tube, the first moments are given by:

Qy = 2β tRm
2 sin (β)
β

(2.30)

Qz = 2 (90◦ − β) tRm
2 sin (90◦ − β)

90◦ − β (2.31)

[Gere and Goodno, 2009, p. 945]

The effective width of the cross-section is derived as a piece-wise function, where figure 2.5 shows
the two parts. The expression for a circle is used, where the horizontal width of the inner circle
is subtracted from the outer circle, by which the following is derived:

b(β) =


√
R2 − (Rm cos (β))2 −

√
r2 − (Rm cos (β))2 , Rm cos (β) ≤ r√

R2 − (Rm cos (β))2 , r < Rm cos (β) ≤ R
(2.32)

The effective width is plotted as a function of β in figure 2.6.

y’

z’

x’

r
R

b(β)

β

Figure 2.5 Sketch of thin walled circu-
lar cross-section, which illustrates where
width, b(β), is measured.
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W
id

th
,b

(β
)

[m
]

Rmean cos (β) ≤ r

r < Rmean cos (β) ≤ R

Figure 2.6 The width, b(β), is plotted as a function of
the angle β. The red curve is the first part of the piece-
wise function in equation (2.32) and the green curve is the
second part. The nomenclature and colours are illustrated in
figure 2.5.
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2. FE Model

2.5 Jacket model

The jacket support structure is modelled with 108 elements. All elements are assumed to be
perfectly welded together, by which they transfer force and moment loads at the nodes. The
model is shown in figure 2.7, where the red spots are the four nodes (1, 6, 11, 16) which are
fixed in all DOF’s. This does not take the stiffness of the piles, which is hammered into the
seabed, into account. Since this is the location with the greatest bending moment, it may
have en compliant influence of the global response of the jacket structure due to the piles being
independent of each other. However, it is assessed that by fixing the nodes at the seabed, it
will yield reasonable results with respect to the global response and estimation of fatigue of the
jacket structure. The loads, which are presented in section 2.5.1, are applied at node 57 (pink
dot). Although, the loads from the wind turbine tower would be applied over a greater area, it
is assessed that by increasing the stiffness of the nearby elements, the loads will be distributed
in a decent manner, as described below.

The cross-sectional parameters of the UpWind jacket structure are shown in figure 2.8. The
following material data is used for all elements in the model: Young’s modulus of 210 GPa,
Poisson’s ratio of 0.3, and density of 7800 kg/m3. However, the green lines are the elements
(101-108) which have a 100 times larger Young’s modulus than the other elements. This ensures
that the applied loads are distributed to the whole structure. These elements are also cast
into the transition piece, as described in chapter 1, and therefore the cross-sectional data of
these elements remain unchanged during the optimisation. The cross-section of each element
is modelled as a uniform circular tube, where the cross-sectional data does not change along
the length of the element. Although there will be overlapping cross-sections near the joint of
multiple elements.

− 5 0 5 − 5 0 5

− 40

− 30
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− 10

0
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z [
m
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Figure 2.7 Sketch of jacket model
with boundary and load conditions.
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D=1.2, t=0.05
D=1.2, t=0.035
D=0.8, t=0.02
D=1.2, t=0.04
D=1.2, t=0.04

Figure 2.8 Initial sections of the UpWind jacket struc-
ture. The color of the element represent sectional dimen-
sions in meters, which is seen in the legend box.
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2.5. Jacket model

2.5.1 Loading history

In order to simplify the model, only resulting loads from a simulation of a wind turbine tower
are applied. The HAWC2 program from the Risø National Laboratory has been used to perform
a 600 s simulation of a Wind turbine. It is DTU Wind Energy Group who has performed the
simulation and provided the resulting forces at the bottom of the wind turbine tower.[Jørgensen
and Nissen, 2013] This is obvious because the jacket structure is submerged in the sea, by which
wave loads should be considered. However, these loads have been neglected, in order to develop
a simple linear model.

The applied wind speeds in the HAWC2 simulation are shown in figure 2.9. However, the
applied wind speeds are assessed as the normal wind conditions, since no extreme wind speeds
have been included in the simulation. The estimated fatigue life of the jacket structure is based
on the loading from these wind speeds and therefore it should be considered if it is necessary to
include more load cases in order to represent the real loading conditions. However, this is not
considered in this project, but it could be included in the optimisation problem and written as
a multi objective problem.

0 100 200 300 400 500 600

5

10

15

Time [s]

v w
in

d
[m

/s
]

Figure 2.9 Applied wind speed in the HAWC2 simulation.

The loading history is shown in figure 2.10. It is nonproportional, since the components vary
out-of-phase. The concept of nonproportional loading is described in section 4.1. The resulting
vertical force, Fz, and the moment about the vertical axis,Mz, have not been available. However,
it would be possible to estimate the mass of the wind turbine and apply it as a static vertical
load, but since it is a linear FEM which is performed, this would contribute an equal amount
at all loading conditions. Although, the compressive load may lead to compressive stresses in
some of the elements, which does have an beneficial effect on the fatigue life. In the analysis
of the jacket structure the loadings shown in figure 2.10 are applied. The loads are applied at
node 57 (pink dot in figure 2.7).
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2. FE Model
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Figure 2.10 Applied load history at TP of jacket structure.

The load history is sampled at 100 Hz, by which the load components contain 60,000 samples
each. In order to reduce the computational time, since the displacements of the jacket structure
would have to evaluated for each sample, the loading history is reduced. Jørgensen and Nissen
[2013] reduced the size of load history by only including the turning point samples. However if
this is applied to the loading components individually, the turning points of each load component
may not be at the same time-samples. Therefore, the load history is reduced by searching for
turning points in an equivalent load history, which is seen in equation (2.33).

Feq =
√
Fx

2 + Fy
2 + Fz

2 +Mx
2 +My

2 +Mz
2 (2.33)

The load history is reduced from 60,000 samples to 3,032 samples by only including the turning
points found in the equivalent load history, Feq.

A 10 s segment of the equivalent load history (blue) is seen in the left-hand graph in figure 2.11,
along with the reduced equivalent load history (red). It is clear that the reduced load history
only includes the turning point samples. The right-hand side of the figure, shows the force in
the x-direction, where a 10 s segment of the full load history is compared with the reduced load
history. Most of the small spikes from the full load history have been removed from the reduced
load history, although the extreme spikes have not been preserved in the reduced load history.
This is because the reduction is conducted for the equivalent load history.
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2.5. Jacket model
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Figure 2.11 Comparison of full and reduced load history. Left: 10 s segment of the equivalent load
history, Feq. Right: 10 s segment of the load, Fx.
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Verification of FEM code 3
In this chapter the FEM code written in MATLAB is verified. The model of the jacket structure,
presented in chapter 1, is used during the verification. The MATLAB code is compared with
an ANSYS model, which uses an element stiffness matrix that is derived for the Timoshenko
beam element, whereas the MATLAB FE code is based on a Bernoulli-Euler beam element.
The mass matrix for both models are identical. Even though the element stiffness matrices are
not the same, it is assessed that, due to the long and slender beams, it will not produce major
differences in the results. In appendix A is the ANSYS model described, including a description
of the utilised element, BEAM188. In the preceding sections, the jacket structure is evaluated
w.r.t. natural frequency and global displacement. The verification of stress calculation is done
with a simpler structure that consists of two elements, as described in section 3.3.

3.1 Natural frequency

In this analysis the jacket model, described in section 2.5, is used but with no loads applied. The
natural frequency of the jacket structure is obtained by the eigenvalue problem in equation (3.1).
The nontrivial solution is that the expression in the parenthesis must be equal to zero. By taking
the determinant of the expression in the parenthesis and equating it to zero, the eigenvalues λ
is found.

([K]− λi [M ]) {Di} = {0} where λi = ω2
i (3.1)

where: [Cook et al., 2001, p. 378]
[K] Global stiffness matrix, [-]

[M ] Global mass matrix, [-]

{Di} Mode shape, [-]

λi Eigenvalue,
[
(rad/s)2]

ωi Natural frequency, [rad/s]

When the eigenvalues, λi, and thereby the natural frequencies,ωi, are known, the associated
mode shapes, {Di}, can be determined. For each natural frequency, a corresponding mode
shape exists. The mode shape is determined by solving equation (3.1) w.r.t. {Di} for the current
natural frequency, ωi. The vector {Di} is the mode shape which describes the configuration of
the jacket structure for the corresponding natural frequency, ωi.

In the analysis of the jacket structure, a consistent mass matrix is used. The consistent mass
matrix, which is shown in equation (3.2), has the same form as the element stiffness matrix
and thereby includes dynamic couplings between translations and rotations. If a lumped mass
matrix was used, only the translational DOF of the diagonal will be included. The eigenvalue
problem in equation (3.1)is faster to solve, when using the lumped mass matrix, however since
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3. Verification of FEM code

the natural frequencies are only used as a verification the calculation time is not considered.

[lMe] = ρAe Le



X 0 0 0 0 0 2X 0 0 0 0 0
Z1 0 0 0 Z2 0 Z4 0 0 0 −Z5

Y1 0 −Y2 0 0 0 Y4 0 Y5 0
2S 0 0 0 0 0 S 0 0

Y3 0 0 0 −Y5 0 Y6 0
Z3 0 Z5 0 0 0 Z6

X 0 0 0 0 0
Z1 0 0 0 −Z2Sym.

Y1 0 Y2 0
2S 0 0

Y3 0
Z3



(3.2)

where [lMe] is the element stiffness matrix and X, S, Yi, and Zi are defined as:

X = 1
3

Y1 = 13
35 + 6 Iy

5Ae Le2

Y2 = 11Le
210 + Iy

10Ae Le

Y3 = Le
2

105 + 2 Iy
15Ae

Y4 = 9
70 −

6 Iy
5Ae Le2

Y5 = 13Le
420 −

Iy
10Ae Le

Y6 = −Le
2

140 −
Iy

30Ae

S = Jx
6Ae

Z1 = 13
35 + 6 Iz

5Ae Le2

Z2 = 11Le
210 + Iz

10Ae Le

Z3 = Le
2

105 + 2 Iz
15Ae

Z4 = 9
70 −

6 Iy
5Ae Le2

Z5 = 13Le
420 −

Iz
10Ae Le

Z6 = −Le
2

140 −
Iz

30Ae

(3.3)

where: [Przemieniecki, 2012]
Ae Cross-sectional area of element,

[
m2]

Le Length of the element, [m]

Iy Area moment of inertia w.r.t. the y-axis,
[
m4]

Iz Area moment of inertia w.r.t. the z-axis,
[
m4]

Jx Polar moment of inertia w.r.t. the x-axis,
[
m4]

The assembly of the global mass matrix, [M ], is similar to the assembly of the global stiffness
matrix, which is described in section 2.2.

In table 3.1, the first ten natural frequencies are presented and compared with the ANSYS model.
The two lowest natural frequencies shows good correlation between the two models, which are
bending modes of the structure. Afterwards, there are a deviation of about 3% between the
two models. The mode shape of these natural frequencies have more local effects, which may
be estimated better with the Timoshenko stiffness matrix that takes shear deformation into
account. The ability to deform in shear will take more energy of the system, by which lowering
the natural frequency, as seen in the table. The mode shapes are the same in both MATLAB
and ANSYS for all ten natural frequencies.
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3.2. Global displacement

Number MATLAB
[Hz]

ANSYS
[Hz]

Difference
[%]

Mode shape

1 2.618 2.6122 0.22 Bending about y
2 2.618 2.6122 0.22 Bending about x
3 5.7169 5.6349 1.4 Twisting about z
4 8.1591 7.9332 2.8 Bending about y with local

out-of-plane deflection
5 8.1591 7.9332 2.8 Bending about x with local

out-of-plane deflection
6 8.9475 8.614 3.7 Diagonal warping
7 9.3638 9.0858 3 Local out-of-plane deflection 1
8 9.9389 9.5566 3.8 Local out-of-plane deflection 1
9 10.24 9.9098 3.2 Local out-of-plane deflection 2
10 10.24 9.9098 3.2 Local out-of-plane deflection 2

Table 3.1 Comparison of natural frequencies calculated by ANSYS and the MATLAB code.

3.2 Global displacement

The global displacements are calculated by the MATLAB code and compared with the ANSYS
model. The displacements of the nodes at z = 20.15m, according to figure 2.7, are compared in
table 3.2. The jacket structure is applied force and moment loads at node 57 of; 10 kN in the x,
y, and z direction and 10 kNm about the x, y, and z axes. The differences in the displacements
are small. It is likely caused by the different element stiffness matrix used in the ANSYS model,
which uses a Timoshenko beam element, as described in appendix A, whereas a Bernoulli-Euler
beam element is used in the MATLAB code. It is assessed that the results produced by the
MATLAB code, w.r.t. displacements, are valid.

Node Type u
[mm]

v
[mm]

w
[mm]

3-Norm Difference
[%]

53
MATLAB code 0.268 0.271 -0.0417 0.384

1.6
ANSYS 0.267 0.264 -0.0416 0.378

54
MATLAB code 0.268 0.257 0.00668 0.371

0.71
ANSYS 0.266 0.255 0.0067 0.369

55
MATLAB code 0.283 0.271 0.00323 0.392

2.5
ANSYS 0.276 0.264 0.00324 0.382

56
MATLAB code 0.283 0.257 0.0516 0.385

1.6
ANSYS 0.276 0.255 0.0515 0.379

57
MATLAB code 0.276 0.264 0.00524 0.382

1.6
ANSYS 0.271 0.26 0.00528 0.376

Table 3.2 Comparison of global displacements calculated by ANSYS and the MATLAB code.
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3. Verification of FEM code

3.3 Stress

The stresses around the cross-section of an element is evaluated and a comparison between the
MATLAB FE model and an ANSYS model is conducted. The model is shown in figure 3.1,
where the local coordinate system of the two elements are shown in figure 3.2. Each element in
the model is 1 m and is perpendicular to each other. Node 1 coincides with origo in the global
coordinate system and is fixed in all DOF’s. The results are presented according to the local
coordinate system and the angle, β, is according to figure 2.4. The stresses in the MATLAB
model is evaluated at the mean radius, whereas the ANSYS stresses are the average of the stress
at the outside and inside of the tube, e.g. node 1 and 2 in figure A.1. Each element has been
modelled with the following cross-sectional and material datas: outer diameter of 50 mm, wall
thickness of 5 mm, Young’s modulus of 210 GPa, and Poisson’s ratio of 0.3.

The internal forces, for each element, have been compared and showed no difference between
MATLAB and ANSYS. These results are not shown below.

x

yz

FyFz

Mx

1

2

3

Figure 3.1 Simple 3D beam model with two
elements, three nodes and it is fixed at origo.

  ‘x1   ‘z1

  ‘y1

  ‘z2
  ‘x2  ‘y2

Figure 3.2 The local coordinate system of the
two elements are the green x’-y’-z’ coordinate
systems.

3.3.1 Normal stress

The normal stresses are compared at node 2 in element 2, where a shear force of Fy = 1000 N
is applied, according to figure 3.1. The results are shown for a cross-sectional division of 8, this
is the minimum allowed number of section divisions in ANSYS.

There is a negligible difference between the normal stresses in the cross-section calculated by
ANSYS and the MATLAB FEM. The difference decreases with increasing number of section
divisions and it is not influenced by multiaxial loads.

Element 2, node 2
β [deg] 0 45 90 135 180 225 270 315
MATLAB [MPa] 0 -87.8 -124 -87.8 0 87.8 124 87.8
ANSYS [MPa] 0 -88 -124 -88 0 88 124 88
Difference [%] 0 -0.207 -0.207 -0.207 0 -0.207 -0.207 -0.207

Table 3.3 Normal stress in cross-section by ANSYS and the MATLAB model. Normal stresses as a
function of angle β for node 2 in element 2.
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3.3. Stress

3.3.2 Shear stress

The comparison of the shear stresses are conducted for three load cases, where the loads, in the
following, are applied according to figure 3.1.

Load case 1: Shear force of Fz = 1000 N

Load case 2: Torque of Mx = 1000 Nm

Load case 3: Shear force of Fz = 1000 N and Fy = 1000 N

The results for each load case is presented in figure 3.3 to 3.5, where the shear stress in node 2 of
element 2 is plotted as a function of the angle β in figure 2.4. For all load cases a cross-sectional
division of 80 is used.

Load case 1

The MATLAB xz shear stress variation in the cross-section is consistent with the ANSYS xz
shear stress, as shown in figure 3.3. Since only a shear force in Fz is applied there should not
be any stresses in xy, but somehow ANSYS calculates a variation in the xy shear stress. The
xy shear stress by ANSYS has a phase-shift of 45◦ and oscilates about the stress level of 0 MPa
with an amplitude of exactly half the maximum value of the xz shear stress. The reason for this
has not been available in ANSYS [2011].

The non-continuity of the xz shear stress at approximately 60◦ to 120◦ is caused by the width
b(β), used in equation (2.28), which is a piece-wise function due to the hollow circular cross-
section. The non-continuity is only noticeable with a large number of cross-sectional divisions
and therefore the deviation is assessed to be negligible.
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Figure 3.3 Shear stress as a function of the angle β shown in figure 2.4. A shear force of Fz = 1000 N
is applied according to figure 3.1, and stresses are shown for node 2 in element 2.

Load case 2

The shear stresses from pure torque are shown in figure 3.4. There is no difference between the
shear stresses calculated by MATLAB or ANSYS, by which the torsional related shear stress
calculation is verified.
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Figure 3.4 Shear stress as a function of the angle β shown in figure 2.4. A moment of Mx = 1000 Nm
is applied according to figure 3.1, and stresses are shown for node 2 in element 2.

Load case 3

The third load case is biaxial, but since the model is linear elastic, the principle of superposition
is valid and the shear stress contribution can be separated. The results from ANSYS have a
phase-shift compared with MATLAB and the amplitudes are higher, whether this is due to
the oscillating shear stress in load case 1 is not clear. This disagreement in shear stresses
may by investigated further, but since the MATLAB FE model is able to calculate the correct
displacements, natural frequencies, and normal stresses, this has been omitted.
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Figure 3.5 Shear stress as a function of the angle β shown in figure 2.4. A shear force of Fz = 1000 N
and Fy = 1000 N is applied according to figure 3.1, and stresses are shown for node 2 in element 2.
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Fatigue 4
This chapter describes the methods which are used to perform the fatigue analysis of the jacket
structure. The nonproportional loading of the beam elements is handled with use of a multiaxial
rainflow counting method, presented in section 4.2, which counts the mean- and alternating stress
reversals. The fatigue life is estimated using a multiaxial fatigue model by Findley, described
in section 4.3 which is able to handle nonproporsional loading, as well. The applied loading
history, which is utilised in the fatigue analysis, is described in section 2.5.1.

4.1 Proportional and Nonproportional loading

When selecting a fatigue model, it is necessary to identify the loading type. Two types of
loading are considered, proportional and nonproportional. They are described by considering
a uniform bar which is applied a force, P, and a torque, T, as shown in figure 4.1. The stress
components in the element on the circumference of the uniform bar are plotted as a function
of time in figure 4.2. If the force and torque are applied in-phase such that the maximum and
minimum normal and shear stress occur simultaneously, then the loading type is considered as
proportional. Whereas, if the force and torque are applied out-of-phase then the loading type
is considered as nonproportional. The proportional and nonproportional loadings are shown in
figure 4.2b and 4.2d, respectively. [Stephens et al., 2001]

The proportional loading is often present in simple and controlled loading conditions, e.g. a
shock absorber, torque applied by a screw driver, or a forced vibrating beam clamped at the
end. Several fatigue models are applicable with proportional loading, also multiaxial, e.g. S-N
and ε-N approach which estimate the fatigue life using stresses and strains, respectively. The
fatigue life parameters are mostly estimated by empirical data, e.g. Wöhler curves are conducted
from multiple cyclic bending tests, which is a proportional loading condition.

The nonproportional loading is due to complicated loading conditions, where multiple loads are
applied out-of-phase. An example, besides the jacket structure, is a spinning wheel of a driving
car. If the wheel is not perfectly balanced, this will cause the wheel to vibrate. The vibrations
produce strains and thereby stresses in the wheel. The stresses from the vibration may not be
in-phase with the varying load of the spinning wheel, due to the load of the car.
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4. Fatigue

Figure 4.1 Uniform bar with applied force, P,
and torque, T. The gray square is the stress
element for which the stresses are plotted in
figure 4.1. [Stephens et al., 2001, p. 321]

Figure 4.2 Stresses in the stress element as
a function of time where (b) is proportional
loading and (d) is nonproportional loading.
[Stephens et al., 2001, p. 321]

The loads applied to the jacket structure, which is shown in section 2.5.1, are multiaxial and
nonproportional. Therefore, a counting method and fatigue model, which is able to handle
multiaxial nonproportional loading is needed. In the next section, the counting method is
assessed.

4.2 Counting method for nonproportional loading

This section presents the counting method, which is used to count the reversals from the load
history. A commonly used method for variable amplitude loading is the rainflow counting method
described by Stephens et al. [2001, p. 282]. This method identifies the reversals as being from a
valley to the most distant peak, which does not intersect with an already counted reversal. By
which each load range of a reversal is from the valley to the peak load. However, the traditional
rainflow counting method is only applicable for proportional uniaxial loading conditions since
only the load history in one direction is accounted for during the rainflow count. By which the
peak or valley of the load history in one direction may not coincide with the corresponding load
history in another direction.

One of the methods, suggested by Stephens et al. [2001], for dealing with multiaxial
nonproportional variable amplitude loading is the method by Wang and Brown [1996], which
is counting cycles based on an equivalent strain, such as the Mises strain, εMises. Meggiolaro
and de Castro [2011b] emphasise the drawback of using the equivalent strain due to the loss
of loading event sign, since the equivalent strain is always positive. Therefore, the modified
Wang-Brown model by Meggiolaro and de Castro [2011b] is used.

The Modified Wang-Brown (MWB) method applies a five dimensional, either stress or strain,
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4.2. Counting method for nonproportional loading

subspace. In the FE model, the stress subspace is used. The multiaxial stress history is
represented by a series of points in the 5D subspace, Pi = (S1, S2, S3, S4, S5), where Si is given
in equation (4.1). The expressions for the strain subspace is given in equation (4.2). The MWB
method also works in a lower dimensional subspace, e.g. Pi = (S1, S3).

S1 = σx −
σy
2 −

σz
2 , S2 = σy − σz

2
√

3

S3 = τxy
√

3, S4 = τxz
√

3, S5 = τyz
√

3
(4.1)

e1 = 2 εx − εy − εz
2 (1 + ν) , e2 = εy − εz

2 (1 + ν)
√

3

e3 = γxy
2 (1 + ν)

√
3, e4 = γxz

2 (1 + ν)
√

3, e5 = γyz
2 (1 + ν)

√
3

(4.2)

where: [Meggiolaro and de Castro, 2011b]
σi Normal stress w.r.t. the ith axis, [Pa]

τij Shear stress w.r.t. the ij plane, [Pa]

ν Effective poisson’s ratio„ [-]

This results in a stress history represented as a cloud of points in a, up to, 5D space. The
distance between each point, in the 5D space, is used when searching for the cycles. This way
the nonproportionality is taken into account.

The MWB algorithm is initialised by reordering the load history. It is conducted by first finding
point pairs which form the longest chord in the 5D subspace and secondly choosing the point,
among the point pairs, which has the greatest distance from the origin. This point is the first
point, P1, of the reordered load history. The subsequent point should follow the original order
of the load history and end with a copy of the first point. Each count sequentially starts at
P1, P2, ..., Pi, ..., Pn. The count should only be terminated if the current point is farthest away
from the start point or if it intersects with an already counted segment.

The MWB algorithm is explained by the following example, which is used in Meggiolaro and
de Castro [2011b]. For the given example, the MWB algorithm has already been initiated, by
which the load history is reordered. The reordered load history is represented in a 2D subspace,
[P1, ..., P7] where P7 = P1. The numeric values of each points are not important in this example.
The load history is load block from a cyclic tension-torsion test. The loading order is sorted
alphabetically from A to F, where the strain values are given in table 4.1.

A B C D E F
ε 2 -2 2 -1 2 -2
γ 2 0 1 2 -2 -2

Table 4.1 Cyclic tension-torsion load history in % strain.

The load history table 4.1 is mapped into the subspace by defining ε = εx and γ = γxy, assuming
that εy = −ν εx, εz = −ν εx, and an effective Poissons ratio of 0.4. By which the load history is
represented in the subspace as Pi = (e1, e3), which is shown in table 4.2.
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P1 P2 P3 P4 P5 P6 P7

e1 2 -2 2 -1 2 -2 2
e3 1.24 0 0.619 1.24 -1.24 -1.24 1.24

Table 4.2 Load history from table 4.1 represented in the e1-e3 subspace in % strain.

A γ-ε diagram of the load history in table 4.1 is shown in figure 4.3, together with the
corresponding path in the 2D subspace from table 4.2. The counting of the paths are shown in
figure 4.4 to 4.9, where the red dashed lines are the path which has been counted during the
given count and the solid blue lines are paths which has already been counted.
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Figure 4.3 Left: γ-ε diagram of nonproportional load history. Right: Corresponding path in the 2D
subspace. [Meggiolaro and de Castro, 2011b]

The first count starts at P1, as shown in figure 4.4. It uses the entire segment P1-P2 and the
only point which is further away from P1 than P2 is P6, by which P2 is projected onto the P5-P6

segment. The projection onto P5-P6 is P ′5, which is an equal amount away from P1 as P2. The
count continues to P6, which is the point most distant from P1, and terminates.

The second count starts at P2, as shown in figure 4.5. It uses the entire segment P2-P3. Since
P5 is more distant from P2 than P3, P3 is projected onto segment P4-P5, which introduces P ′4.
Count continues to P5, but since P5 and P7 are equally away from P2, this count terminates at
P7.
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Figure 4.4 2D subspace diagram of first
count.

2

0

−2

−1

1

−1−

P1

P2

3

P4

P5P6

e1 (%)

e3 (%)

2

P’5

1 2

P

P’4

P7

Figure 4.5 2D subspace diagram of second
count.

The third count starts at P3, as shown in figure 4.6. It uses the entire segment P3-P4. Since P6

is the most distant point from P3 than P4, P4 is projected onto segment P5-P6, which introduces
P ′′5 . This count terminates at P ′5, since P ′5-P6 has already been counted.
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4.2. Counting method for nonproportional loading

The fourth count starts at P4, as shown in figure 4.7. It terminates at P ′4, since P ′4-P5 has
already been counted.
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Figure 4.6 2D subspace diagram of third
count.
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Figure 4.7 2D subspace diagram of fourth
count.

The fifth count starts at P5, as shown in figure 4.8. It terminates at P ′′5 , since P ′′5 -P ′5 and P ′5-P6

have already been counted.

The sixth and final count starts at P6, as shown in figure 4.9. It terminates at P7, since this is
the last point of the 2D subspace.
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Figure 4.8 2D subspace diagram of fifth
count.
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Figure 4.9 2D subspace diagram of sixth
count.

When the MWB algorithm terminates the entire load history has been counted, by which the
resulting reversals are shown in figure 4.10. The counted reversals are afterwards applied in the
assessment of the fatigue damage done by this load history.

P1 P7 P6’

P2

P3

P4

P5P6 P5’

P4’

P5”

e1

e3

Figure 4.10 2D subspace diagram of the MWB count, where arrows represent reversals. [Meggiolaro
and de Castro, 2011b]
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The MWB algorithm has not, in this project, been compared with any other counting methods.
However, it has been implemented in the MATLAB code and verified by the example in
Meggiolaro and de Castro [2011b]. Due to introduction of the 5D subspace, this counting
method is capable of handling both proportional and nonproportional loading history with
varying amplitudes while preserving the load order.

4.2.1 Mean and alternating components

Fatigue models are often based on stress or strain ranges in order to estimate the fatigue life.
For proportional constant amplitude loading these ranges can be calculated from the peak and
valley values, which may be found using the traditional rainflow counting method. However, for
more complex loading conditions, such as nonpropotitonal variable amplitude loading, the path
of the counted reversal has to be considered. When the load path of a reversal consist of more
than two load points, e.g. the counted reversal defined by the segment P1 − P2 − P ′5 − P6 in
figure 4.4, it may not be apparent how to determine the effective stress or strain ranges of the
reversal.

In Meggiolaro and de Castro [2011a] several methods are described in order to determine the
effective stress ranges. Two of the enclosing surface methods are the minimum ball and the
minimum volume ellipsoid, which is applied to the P1 − P2 − P ′5 − P6 segment in figure 4.11.
The P1 − P2 − P ′5 − P6 segment is given in the deviatoric strain space, equivalent to the stress
subspace in equation (4.1). It is assumed that the deviatoric stress range, ∆S, is equal to the
effective Von Mises stress range, ∆σMises, by which the diameter of the minimum ball and the
norm of the semi-axis of the minimum volume ellipsoid are the effective Von Mises strain ranges.
These enclosing surface methods do not determine the stress or strain ranges accurately when
used with nonproportional loading, by which the Moment Of Inertia (MOI) method is suggested.
[Meggiolaro and de Castro, 2011a]

Minimum Volume Ellipsoid
Minimum Ball

2

0

−2

−1

1

1 2−1−

P1

P2

P6

e1 (%)

e3 (%)

2

P’5

Figure 4.11 Load segment P1 − P2 − P ′
5 − P6 where the minimum ball and minimum circumscribed

ellipsoid enclosing method is applied.

The MOI method utilises a 2D subspace, as in the example in section 4.2, where the load path is
represented by a series of points, forming a imaginary homogeneous wire. The method assumes
that the mean component of the load path is located at the centre of gravity of the imaginary
homogeneous wire (the load path). It is assumed that the deviatoric stress or strain range, ∆S
and thereby the effective Von Mises stress range, ∆σMises, are depending on the mass moment
of inertia. The mass moment of inertia is obtained about the centre of gravity, where the mass
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4.3. Multiaxial fatigue

is assumed to be unity. By using this method, the load segments most distant from the centre
of gravity will contribute more to the mass moment of inertia and thereby the effective ranges.
[Meggiolaro and de Castro, 2011a]

In Meggiolaro and de Castro [2011a] various enclosing surface methods and the MOI method
are evaluated in order to predict the fatigue life from an experiment. The fatigue model was not
changed and thereby only the method used to determine the effective stress ranges was varied.
The results showed good correlation between predicted fatigue life and the experimental fatigue
life for the proportional load cases. However, the minimum ball method generally underestimates
the effective stress ranges in nonproportional load history, whereas the MOI method takes the
nonpropotionality into account, by which it predicts the fatigue life within 20 % for all the
proposed load cases.

In the FE model, none of these method has been implemented. The stress ranges are determined
by the extreme values of the current reversal. However, this may not produce an accurate
estimate of the stress ranges. Since the stress ranges are determined from the extreme values,
this will produce the greatest stress ranges of the reversal, by which this is conservative, by
which a lower fatigue life is estimated.

4.3 Multiaxial fatigue

Due to the multiaxial and nonproportional loading of the jacket structure, the assessment of
the fatigue life has to be estimated by a proper method. The theory by Stephens et al. [2001]
is used in the selection of a fatigue model. The use of equivalent stress or strain method are
commonly used, however these methods are only applicable to proportional loading. To handle
the nonproportional loading when considering fatigue, it is suggested to use a critical plane
model. A critical plane model is derived on the physical basis of a crack. From experiments it
was indicated that the nucleation and growth of a crack occurred at specific planes, which is
either maximum shear or maximum tensile stress planes [Stephens et al., 2001]. These models
relate the fatigue damage to stresses, by which they predict the fatigue life and the orientation
of the failure plane.

The critical plane model developed by Findley is based on cyclic shear stress and normal stress.
It is applicable for high cycle fatigue, which is above 103 cycles. The Findley model assumes a
linear relation between the allowable alternation shear stress and the maximum normal stress, as
seen in equation (4.3), by which the allowable alternating shear stress decreases with increasing
maximum normal stress. If no normal stress is applied, then the fatigue constant, f , and the
allowable alternating shear stress are equal. The fatigue constant is a function of the number
of cycles to failure, e.g. Basquin’s equation, which is used by the S-N approach. The expression
for Basquin’s equation is seen in equation (4.4) [Stephens et al., 2001, p. 84]. For ductile
materials, which is used for the jacket structure, the material constant, k, is approximately
0.2-0.3 [eFatigue, 2014].

τcθ = f − k σθ (4.3)
f = A (2Nf )B (4.4)
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where: [Findley, 1958]
f Fatigue constant for given material, [Pa]

k Material constant which is related to the materials’ sensitivity to normal
stresses, [-]

τcθ Allowable alternating shear stress at plane angle θ, [Pa]

σθ Maximum normal stress at plane angle θ, [Pa]

A Strength at one cycle (2 reversals), e.g. ultimate tensile strength, [Pa]

B Slope of S-N curve, [-]

Nf Number of reversals until failure at given load, [-]

If the model given in equation (4.3) is used together with equation (4.4), the fatigue life
may not be solvable, since there are no restrictions whether the stresses are compressive
or tensile. Afterwards, Findley introduces a more complete model, which is able to handle
tensile, compressive, and mean stresses. The inputs of the fatigue model are the maximum and
alternating stresses, which is shown in equation (4.5).

f =

√√√√(σA
2

)2
+ τA2 + k2

((
σMax

2

)2
+ τMax

2

)
+ k

σMax

2 (4.5)

where: [Findley, 1958]
σA Normal stress amplitude, [Pa]

τA Shear stress amplitude, [Pa]

σMax Maximum normal stress, [Pa]

τMax Maximum shear stress, [Pa]

The orientation of the failure plane is given in equation (4.6). It is derives from equation (4.3),
by introducing the normal and shear stresses as a function of the angle θ. Afterwards, the
expression is differentiated w.r.t. θ in order to determine the critical angle for which the allowable
alternating shear stress and the maximum normal stress is in equilibrium.

tan (2 θ) =

√(σA
2
)2 + τA2

k
√(σMax

2
)2 + τMax

2
(4.6)

where:
θ Angle between first principal stress and the plane of the shear stress, [◦ ]

The fatigue life may be estimated by combining equation (4.4) and (4.5), using the torsional
fatigue strength, τ ′f . According to eFatigue [2014], τ∗f =

√
1 + k2 τ ′f , where

√
1 + k2 ≈ 1.04, by

which k ≈ 0.286. By isolating Nf , the fatigue life of the current load level is estimated.√√√√(σA
2

)2
+ τA2 + k2

((
σMax

2

)2
+ τMax

2

)
+ k

σMax

2 = τ∗f (2Nf )b (4.7)

where:
τ∗
f Corrected torsional fatigue strength, [-]

b Shear fatigue strength exponent, [-]

One of the advantages, even though it is a simple model, is the ability to isolate the number
of reversals, Nf , which is necessary in order to determine the damage sensitivity analytically.
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Other critical plane models, such as the Fatemi-Socie model, which may be used to predict the
low-cycle fatigue life, has to be solved numerically.

However, in order to ease the calculation of the sensitivity of the fatigue damage, it is assumed
that the mean stress is zero. By which the maximum stress is equal to the amplitude. In general
is the mean stress known to have significant influence on the fatigue life, where a compressive
mean stress extends the fatigue life and a tensile mean stress reduces the fatigue life [Stephens
et al., 2001, p. 74]. The Fx load in figure 2.10 has a significant level of tensile mean stress, by
which this assumption may be non-conservative with regards to the fatigue life estimations.

4.4 Palmgren-Miner linear damage rule

The Palmgen-Miner linear damage rule is used to assess the damage, using only a numeric value.
It is assumed that the measure of damage is defined by the ratio of the number of cycles and
the number of cycles until failure. The linear damage rule is shown in equation (4.8). If the
damage, ηblock, is greater than or equal to unity, then failure occur. An additional safety factor is
often introduced by requiring the Palmgren-Miner sum to be less than unity, which for off-shore
structures typically is about 0.5 [Schjødt-Thomsen, 2012]. However, during the analysis of the
jacket structure, the Palmgren-Miner sum is required to be equal to or less than unity.

ηblock =
Ncount∑
i=1

ni
Nfi

(4.8)

where: [Stephens et al., 2001, p. 275]
ηblock Damage of load history block, [-]

Ncount Number segments in the load history, [-]

ni Number of reversals for the load, [-]

Nfi Number of reversals until failure at given load, [-]

According to RWE Innogy [2014], the wind turbine has a life span of approximately 20 years,
by which the jacket structure should be designed to last for at least 20 years. Since the load
history, which is applied the jacket structure, is from a 600 s simulation, the damage caused
by this load history is scaled to match a 20 years load history. By which, either ηblock or ni is
multiplied by 1,051,200 (6 · 24 · 365 · 20), assuming a 100 % service life.
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Introduction 5
In this chapter the design variables, cost and constraint functions are defined.

The main task is to minimise the total mass of the jacket structure, while it maintains the
required strength w.r.t. fatigue. This is done by use of gradient based optimisation, as described
in chapter 8. The structural analysis of the jacket structure is done with a FE analysis.

5.1 Design variables

The design variables are parameters which are allowed to change, when searching for the
minimum cost function that fulfils the constraints, during the optimisation algorithm. The
choice of design variables has an influence on the convergence rate, but it is not required that
the design variables explicitly defines the cost function. In this case, the total mass of the
jacket structure has to be minimised. This can be accomplished by allowing the geometry and
material parameters to be modified during the optimisation. The number of design variables
affects the computational time, since the search direction is depending on the sensitivity of cost
and constraint functions w.r.t. the design variables. The number of design variables is kept to
a minimum by only considering the cross-sectional parameters, which are proportional to the
mass of each element. The cross-section of each element in the jacket structure is circular and
hollow, by which it is defined by a diameter and a wall thickness.
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Figure 5.1 Jacket structure where elements are coloured according to their section properties. The
initial parameters, in meters, are shown in the legend box.

The elements within the jacket structure are split into nine section groups to reduce the number
of design variables. Each section group is defined by an outer diameter and a wall thickness.
The elements within each section group and the initial dimensions are shown in figure 5.1. The
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design variable vector is given in equation (5.1). The parameters of section nine are not included,
since it is within the concrete block that the wind turbine is attached to:

{x} = {D1, t1 ... D8, t8}T (5.1)

5.2 Cost function and constraints

The cost function is formulated as a summation of the mass of each element, as shown in
equation (5.2). The cross-sectional area is a function of the design variables, by which is has to
be recalculated for each design update. The density is assumed to be equal for each element of
the jacket structure, by which it may be omitted since it just scales the cost function.

f({x}) =
Ne∑
i=1

ρLeiAe({x})i (5.2)

where:
f({x}) Cost function as a function of design variables, [-]

{x} Design variable vector, [-]

Ne Number of elements, [-]

ρ Density,
[
kg
m3

]
Le Length of the element, [m]

Ae({x}) Cross-sectional area of element as a function of design variables,
[
m2]

The constraint functions are damage criterion based on the Palmgren-Miner sum, where the
finite fatigue life of equation (4.7) is inserted. The expression for the constraint function is seen
in equation (5.3). The Palmgren-Miner damage is summed for each load segment, Nsegments,
e.g. for each reversal in the load history. By evaluation of this summation for each reversal,
ni is unity, by which it is constant and not a function of the rainflow counted reversals. The
constraint function is implicitly a function of the design variables, that being the shear and
normal stress amplitude, which is a function of the displacements and the design variables. It
is a very nonlinear function due to the inverse of an exponential function. This may produce
some numerical difficulties when evaluating the damage sensitivity, since a small change in the
design variables may result in large changes of the constraint function.

gj({x}) =
Nsegments∑

i=1

ni

exp


ln

1
2
k σA +

√
k σA2 + 4 k τA2 + σA2 + τA2

τ∗f


b



− 1 ≤ 0 (5.3)

for j = 1 : Nsamples, where Nsamples is the total number of samples in the model, e.g. if the
cross-section is evaluated at 4 orientations in each node of the element, each element have 8
samples, by which jacket structure with 108 elements have 864 sample points. However, the
number of constraint can greatly be reduced by introduction of an aggregation function. An
aggregation function combines all constraints into one effective constraint. One aggregation
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function is the p-norm method, shown in equation (5.4), where the p can be adjusted in order
to let the most violated constraint have greater influence in the effective constraint.

g({x}) =

Nsamples∑
j=1

(
wj (gj − g0)

)p 1
p

(5.4)

where: [Lund, 2013]
wj Weight factor, [-]

g0 Ideal value, [-]

p Coefficient to scale most violated constraint, [-]

Optimisation problem

Based on the cost and constraint function, described above, the design optimisation problem is
defined as:

Minimise: f({x})

Subject to: gj({x}) ≤ 0, j = 1 : Nsamples

By which the total mass of the structure is minimised w.r.t. the fatigue constraints.

Group 2.217b 39





Design Sensitivity Analysis 6
This chapter describes the design sensitivity analysis (DSA). DSA is used in the optimisation
algorithm to determine the sensitivity of the current design configuration of the cost and
constraints. The design sensitivity is the gradient of the function for which sensitivity needs to
be determined. The gradient can be determined in different ways, e.g. approximated by a finite
difference approximation, analytical by the direct differentiation method, or semi-analytical
which is a combination of the former.

The cost function in section 5.2 is directly depending on the design variables, whereas the
constraint functions are indirectly depending on the design variables. The constraint functions
are depending on the rainflow counted load cycles and the corresponding stresses. The stresses
are depending on the displacements from the structural analysis. The structural analysis of
the jacket structure is performed using a FE model, which has the following general form
(equation (2.1) reprinted):

[K] {D} = {R} (6.1)

where:
[K] Global stiffness matrix, [-]

{D} Global displacement vector, [-]

{R} Global load vector, [-]

The displacement vector, {D}, depends on the stiffness matrix, [K], and load vector, {R}.
However, the load vector is not a function of the design variables, whereas the stiffness matrix
is. The total derivative of the displacements w.r.t. design variables, d{D}

d{x} , is proportional to
the total derivative of the stresses, which is used for the determination of the sensitivity of the
constraint function.

In the next sections the finite difference method and direct differentiation method are described.
The derivations of the cost and constraint sensitivities are described in appendix B.

6.1 Finite difference method

The finite difference method is derived from Taylor series expansions. It is used to approximate
function values in a segment of the function. The forward difference approximation is first
order accurate, by which it halve the number of function evaluations needed. Whereas the
central difference approximation is second order accurate. The central difference approximation
is applied to a general response function, f, which is a function of the displacements and the
design variables, as seen in equation (6.2). A small perturbation, ∆xi, of the design variable is
used in order to approximate the total derivative of the response function. The numeric size of
the perturbation should be small compared to the value of the design variable.
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d f({D}, {x})
dxi

≈ f({D}({x}+ ∆xi), {x}+ ∆xi)− f({D}({x} −∆xi), {x} −∆xi)
2 ∆xi

(6.2)

where: [Lund, 2013]
f General response function, [-]

xi ith design variable in {x}, [-]

∆xi Perturbation of the ith design variable, [-]

The finite difference method can be applied to any function which is at least implicit depending
on the state variables, which in this case is the displacements. For instance, if the response
function is the stress at a sample point in a element in the FE model, then the response
function is implicitly depending on the displacements and the design variables, if they are cross-
sectional parameters. Or if the response function is not differentiable using analytical methods,
this method will provide the approximated gradient of the response function. Although, for
computational expensive function evaluations, it may be more appropriate to determine the
gradient of the function analytically if possible.

6.2 Direct differentiation method

The direct differentiation method is an analytical method, which is derived using the chain
rule. The chain rule can be applied to any multi variable function in order to determine
the total derivative of the function. By applying the chain rule to the general form of the
FE formulation, in equation (6.1), the expression in equation (6.3) is achieved. The right-
hand side of the expression is denoted the pseudo load vector, where the derivatives can be
determined analytically since the load vector, {R}, and the stiffness matrix, [K], are known.
However, if the derivatives are determined using a finite difference approximation, e.g. the
central difference method, then this method is denoted semi-analytical. The loads which are
applied the jacket structure are independent of the design variables, by which the first term on
the right-hand side is zero. It should be noted that the displacements are treated in the global
coordinates by which the total derivative of the displacements w.r.t. the design variable also are
determined in the global coordinate system. Afterwards, the displacement sensitivities related to
the element are transformed into the element coordinate system using the transformation matrix
in equation (2.11), as described in section B.2.1, by which it can be used in equation (6.4).

[K]d{D}dxi
= ∂{R}

∂xi
− ∂[K]

∂xi
{D} (6.3)

[Arora, 2012, p. 582]

The sensitivity of the constraint function, gj , w.r.t. the design variables is determined using the
direct differentiation method. The constraint function is a function of the displacements and the
design variables, by which the chain rule is used. The expression for the constraint sensitivity,
dgj
dxi , is seen in equation (6.4), where the derivative of the displacements w.r.t. design variable xi
is given in equation (6.3).
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6.2. Direct differentiation method

dgj
dxi

= ∂gj
∂xi

+ ∂gj
∂{De}

{d{D}
dxi

}
l

(6.4)

[Arora, 2012, p. 582]

The derivation and expressions of the sensitivities are described in appendix B. In chapter 7 is
a verification of the implemented design sensitivity analysis, which is conducted using a simple
cantilever beam, that only consists of two elements.
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Verification of design

sensitivity analysis 7
In this chapter the verification of the design sensitivity analysis is described. The sensitivities
obtained from a central difference analysis are compared with the sensitivities determined using
the direct differentiation method. If the perturbation used in the central differentiation method
is sufficiently small, it is expected that the sensitivities obtained from this method will yield the
right result.

A simple cantilever beam model, with two elements is used. By using this simple model the
sensitivities are easier to compare. The cantilever beam model is shown in figure 7.1. Node
1 is fixed in all DOF’s and the loads are applied at node 3. The two elements are defined by
two different section ID’s, by which element one is related to section ID one and element two is
related to section ID two. For each section an outer diameter and a wall thickness is defined,
however the cross-sectional parameters for each section are equal. The elements have a length of
1 m and are circular tubes with an outer diameter of 0.1 m with a wall thickness of 5 mm. The
density is 7800 kg/m3, Poison’s ratio is 0.3, and Young’s modulus is 210 GPa. The cross-section
is evaluated at four places, where the position in the cross-section is seen in the right-hand side
of figure 7.2 as the blue dots. On the left-hand side of figure 7.2 are the orientations of the local
coordinate systems shown, along with the element numbers.

x

yz

FyFz

Mx

1

2

3 Fx

Figure 7.1 Cantilever beam with two ele-
ments, where the circled numbers are the node
numbers. Node 1 is fixed in all DOF and the
loads are applied at node 3.

1
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  ‘x2

  ‘y2

  ‘z1
  ‘x1

  ‘y1
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  ‘y1

  ‘x1

1

24

3

2

Figure 7.2 Left: Cantilever beam model,
where the local coorinate system is shown.
Right: The blue dots are the positions where
the cross-section is evaluated for each node in
each element.

During the verification of the design sensitivity analysis, the loads are constant, by which the
rainflow counting does not influence the sensitivities. The following loads have been applied:
Fx = 100 N, Fy = 100 N, Fz = 100 N, and Mx = 100 Nm. In figure 7.3 and 7.4 are the normal
and shear stress for each sample point shown, respectively. Each sample point is identified by
a element number followed by a sample number, e.g. the stress at sample number 14 is named
2,14: xx, as this sample point is within element two and xx is the stress level. The axes of
local coordinate systems are the red, green, and blue lines, which are the x’, y’, and z’-axis,
respectively.

Group 2.217b 45



7. Verification of design sensitivity analysis

Figure 7.3 Normal stress in MPa at each sample
point, caused by the applied loads.

Figure 7.4 Shear stress in MPa at each sample
point, caused by the applied loads.

In the following sections the sensitivities are compared using the central difference method and
the direct differentiation method. Only the sensitivities w.r.t. the outer diameter related to
section ID one is described in this chapter, however the sensitivities w.r.t. the last three design
variables is shown in appendix C. When the central difference method is applied, the design
variables have been perturbed by 1/1000 of the initial size of the design variable.

The expressions for the damage sensitivities are depending on stress derivatives. And the
expression for the stress sensitivities are depending on displacement derivatives. By which
the displacement sensitivity is verified first, followed by stress and damage sensitivities.

7.1 Cost sensitivity

The cost sensitivity has been determined using the central difference method and the direct
differentiation method. A comparison of the two methods are shown in table 7.1. The mass
sensitivity w.r.t. the design variables are determined using direct differentiation method, which
yields equation (B.11) and (B.12). By using the central difference method, the mass of the
structure is evaluated twice in order to determine the mass sensitivity w.r.t. one of the design
variables.

Method df
d d1

[kg/m] df
d t1 [kg/m] df

d d2
[kg/m] df

dt2 [kg/m]
CDM 122.5 2202.9 122.5 2202.9
DDM 122.5 2205.4 122.5 2205.4

Table 7.1 Cost sensitivity determined using the central difference method and the direct differentiation
method.

From table 7.1 it is seen that the mass sensitivity w.r.t. the outer diameters are identical.
Whereas, the mass sensitivity w.r.t. the wall thickness differ by a small amount, however it was
observed that by decreasing the perturbation to 1/10,000 of the design variable, the sensitivity
from the central difference method would be identical to the direct differentiation method.

46 Group 2.217b



7.2. Displacement sensitivity

7.2 Displacement sensitivity

The displacement sensitivity w.r.t. the outer diameter, d1, is shown for each sample point
in figure 7.5 and 7.6. The expressions used to determine the displacement sensitivity using
the direct differentiation method is described in section B.2.1. The displacement sensitivities
determined by the central difference method, are obtained by solving the FE model w.r.t.
displacements using the perturbed design variable.

Because the cantilever beam is fixed at x = 0, there is no change in the displacements at x = 0,
by which the sensitivities are also zero, as seen in figure 7.5 and 7.6. The small values at 1,7 and
2,13 in figure 7.6, which is zero using the central difference method, are caused by numerical
inaccuracies. However there is good correlation between the two methods throughout the sample
points of the model.

Figure 7.5 Sensitivity of displacements w.r.t.
outer diameter, d1, determined using the central
difference method, in meters.

Figure 7.6 Sensitivity of displacements w.r.t.
outer diameter, d1, determined using the direct
differentiation method, in meters.

7.3 Stress sensitivity

In this section the normal and shear stress sensitivities w.r.t. design variable, d1, are verified.
The derivations for the direct differentiation method are described in section B.2.2 and B.2.3.
The FE model is evaluated using the perturbed design variable where the resulting stresses of
the FE model are used in order to determine stress sensitivity w.r.t. the design variables, using
the central difference method.

Normal stress sensitivity

The total derivative of the normal stress sensitivity w.r.t. the design variable is given in
equation (B.42). From this expression it is seen that the total derivative of the normal stress
sensitivity is a function of the displacement sensitivity, which has been verified in section 7.2.
By comparing the normal stress sensitivity w.r.t. d1, shown in figure 7.7 and 7.8, it shows no
difference between the central difference method and the direct differentiation method. However,
by including more digits the difference between the two methods is in the region of 500 Pa, by
which the difference is negligible.
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7. Verification of design sensitivity analysis

Figure 7.7 Sensitivity of normal stress w.r.t.
outer diameter, d1, determined using the central
difference method, in MPa/m.

Figure 7.8 Sensitivity of normal stress w.r.t.
outer diameter, d1, determined using the direct
differentiation method, in MPa/m.

Shear stress sensitivity

The shear stress sensitivity w.r.t. d1 is determined using the direct differentiation method,
where equation (B.89) is applied, by which the sensitivities are shown in figure 7.10. By using
the central difference method, the sensitivities at each sample point are shown in figure 7.9.
By comparing the sensitivities determined by the two methods, it shows no differences in the
sensitivity. However, like for the normal stress sensitivity, by including more digits the differences
are in around 200 Pa.

Figure 7.9 Sensitivity of shear stress w.r.t.
outer diameter, d1, determined using the central
difference method, in MPa/m.

Figure 7.10 Sensitivity of shear stress w.r.t.
outer diameter, d1, determined using the direct
differentiation method, in MPa/m.

7.4 Constraint sensitivity

The damage sensitivity is depending on the partial derivatives of the stresses, however only
the total derivatives of the stresses have been verified. The total derivatives of the stresses are
functions of the partial derivatives, by which it is assessed that by verifying the total derivatives,
the partial derivatives have also been verified. In figure 7.11 is the damage sensitivity w.r.t. d1

determined using the central difference method and in figure 7.12 is it shown using the direct
differentiation method.
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7.4. Constraint sensitivity

In order to evaluate the damage at each sample point, it was necessary to ignore the requirement
of the Palmgren-Miner being equal to unity (the rightmost -1 in equation (5.3)), because the
calculated damages are very small numbers. When unity is substracted from this small number,
in MATLAB, this would be rounded to -1, by which the damage sensitivity can not be estimated
using the central difference method.

Figure 7.11 Sensitivity of constraint w.r.t.
outer diameter, d1, determined using the central
difference method.

Figure 7.12 Sensitivity of constraint w.r.t.
outer diameter, d1, determined using the direct
differentiation method.

Generally, there is good correlation between the damage sensitivities, determined using both
methods. However, it is difficult to determine whether the values are actual damage sensitivities
or if they are caused by numerical inaccuracy, as the numbers are very small.
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Implementation and results 8
In this chapter, the choice of optimisation algorithm and the results from using this algorithm is
described. The optimisation algorithms available for the fmincon solver in MATLAB have been
tested, however none of the algorithms were able to find a solution close to the boundary of the
constraints. This is because of the very nonlinear constraint function, by which a small change
in the design variable, close to the boundary, may have a large impact on the constraints.

The sequential linear programming (SLP) optimisation algorithm has been applied. This
algorithm formulates the optimisation as a series of linear sub problems. This is done by
introducing move limits to the design variables, by which the optimisation is solved as a linear
problem within these move limits. The solution to the linear sub problem is then used as a
new design for which new move limits are determined. The size of the move limits is problem
dependent.

Cantilever beam model

The SLP algorithm is examined using the simple cantilever beam model, which is used in the
verification of the design sensitivity analysis in chapter 7. The cantilever beam is applied the
loads shown in figure 8.1, which are the reduced load history from section 2.5.1, however the
magnitude is scaled to fit the cantilever beam model. In order to reduce the computational
time, the load history has been reduced further, by which only 1 out of 100 load samples have
been included.
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Figure 8.1 Applied load history at node 3 of the cantilever beam.
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8. Implementation and results

The SLP algorithm has been implemented in MATLAB. The framework was handed out as
a part of an optimisation course [Lund, 2013], however the code has been modified to suit
the optimisation problem in this project. Because of the very nonlinear constraint function,
described in section 5.2, the size of the move limits are made changeable during the optimisation.
A similar method has been applied by Jørgensen and Nissen [2013]. It should be noted that
each design variable has an individual move limit. The move limit criteria is defined by:

• If the change in the constraint gradient is above 5% then the move limit is reduced by 50%

• If the change in the constraint gradient is below 1% then the move limit is increased by
10%

The SLP algorithm is initiated with move limits of 2% of value of the design variables. The
results, after 94 iterations, regarding the design variables are shown in table 8.1. It shown an
reasonably reduction in the mass of the cantilever beam. However when considering the damage
of the optimised structure, seen in figure 8.3, it would be expected that the damage in most of
the sample points would be close to the constraint boundary, however only the 1,2 sample point
is near the boundary. But comparing to the initial damage distribution, in figure 8.2, there
in an increase in the damage of all sample points. Although, an adaptive move limit strategy
is applied, the algorithm struggles to achieve an uniform damage distribution throughout the
sample points. However by normalising the design variables w.r.t. the constraints it may be
possible to achieve an more uniform distribution, since then each design variable wound have
an equal influence.

Mass [kg] d1 [m] t1 [m] d2 [m] t2 [m]
Initial 23.28 0.1 0.005 0.1 0.005
Optimised 18.87 0.0931 0.0044 0.0925 0.0043

Table 8.1 Mass and design variables before and after optimisation.

Figure 8.2 Damage at each sample point, using
initial design.

Figure 8.3 Damage at each sample point, using
optimised design.
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Conclusion 9
This project has examined the subject of how to perform a design optimisation, with fatigue as
constraint.

A FE model, written in MATLAB, has been developed. The FE model is used in the structural
analysis of the jacket structure. The jacket structure is modelled with 3D beam elements, which
are based on the Bernoulli-Euler beam theory. The stresses of the elements are evaluated at a
finite number of points within the cross-section of each node. The FE code is verified through a
simple structure with two elements, by which the displacements, stresses and natural frequencies
of the model are compared with an equivalent model in ANSYS. The verification of the FE code
showed good agreement with the results from the ANSYS model.

The loads, which are applied to the jacket structure, are nonpropotional. The reversals are
counted using the modified Wang-Brown rainflow counting method. It is capable of handling
nonporportional loading history, whereas the traditional rainflow counting method is not.
However, the MWB counting method has not been verified against other methods. The fatigue
damage, caused by the loading history, is estimated using the Palmgren-Miner linear damage
rule, where the Findley fatigue model is used to estimate the number of reversals before failure
at a given stress level.

A design sensitivity analysis has been performed in order to determine the sensitivity of the
cost and constraint functions w.r.t. the design variables. The direct difference method is
used to determine the sensitivities analytically, where the displacement, stress and damage
sensitivities w.r.t. the design variables have been derived and implemented in the FE code. The
sensitivities using the direct differentiation method have been verified through a comparison
with sensitivities determined by use of the numerical central difference method. The verification
has been conducted using a simple cantilever beam model, where the sensitivities at each sample
point was determined. The verification of the sensitivities by use of the direct differentiation
method showed good agreement with the sensitivities by use of the central difference method.

The framework for a gradient based optimisation has been conducted. The goal for the
optimisation is to minimise the total mass of the structure while the damage of each sample
point in the structure has to be less than unity. The optimisation is performed using the
sequential linear programming algorithm, where adaptive move limits have been implemented.
The optimisation is performed for a simple cantilever beam, which showed that the algorithm
was able to minimise the mass, however only one sample point was close to the constraint
boundary. This has not been investigated further.
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Discussion 10
In order to perform the optimisation of the jacket structure, the FE code has to be more
computationally efficient. As of now, only the global displacements are solved w.r.t. six unity
load cases, where the global displacements w.r.t. each load case is used to assemble the global
displacement vector caused by the applied loads. This can be done because it is linear model.
However, the stresses are proportional to de displacements as well, by which the resulting stresses
could also be determined from a linear combination of the pre calculated stresses due to the unity
loads. Since the stresses can be determined from a combination of unity load cases, then the
stress sensitivities can be determined in a similar manner. The constraint function is depending
on the counted stress ranges by the MWB counting method, by which it cannot be constructed
from a combination of unity load cases.

The MWB counting method has not been compared with other methods, by which the
performance of this counting method is not known. When dealing with large load histories,
the initialisation procedure for the MWB method is quite computational expensive, due to the
reordering of the load history.

The accuracy of the Findley fatigue model has to be considered. However, it is very time
consuming to perform fatigue tests, in order to determine the parameters. The Findley model
uses a constant, k, which is related to the materials’ sensitivity to normal stress, by which
it requires several tests to determine. There are several multiaxial fatigue models available,
however the Findley model was chosen because of the simple expression, where the number of
reversals until failure can be isolated, which is of great importance in order to determine the
sensitivity of the constraint function analytically.

The optimisation was performed using the SLP algorithm, however because of the very nonlinear
constraint function, adaptive move limits was used in order to approach the boundary of the
constraint function. However a better convergence criteria is needed in order to have a more
uniform damage distribution. Likewise by normalising the design variables w.r.t. the constraint
function, then a small change of each design variable will contribute an equal amount.

Group 2.217b 57





Bibliography

ANSYS, 2011. ANSYS. ANSYS 14.0 Help, 2011.

Arora, 2012. Jasbir S. Arora. Introduciton to Optimum Design, 3rd edition, 2012.

Cook, et al., 2001. Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J.
Witt. Concepts and Applications of Finite Element Analysis, 2001. ISBN: 968-0-471-35605-9.

eFatigue, 2014. eFatigue. Multiaxial Stress-Life Technical Background, 2014.
https://www.efatigue.com/multiaxial/background/stresslife.html, downloaded:
20-04-2014.

Energy, N/A. DTU Wind Energy. Horizontal Axis Wind turbine simulation Code 2nd
generation, N/A. www.hawc2.dk.

Findley, 1958. W. N. Findley. A theory for the effect of mean stress on fatigue of metals
under combined torsion and axial load or bending. Division of Engineering, Brown
University, 1958.

Gere and Goodno, 2009. James M. Gere and Barry J. Goodno. Mechanics of Materials, 7
edition, 2009.

Jonkman, et al., 2 2009. J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of
a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable
Energy Laboratory, 2 2009. NREL/TP-500-38060.

Jørgensen and Nissen, 2013. Jeppe Bjørn Jørgensen and Christian Fløe Nissen. Analysis
and Design Optimization of Offshore Wind Turbine Support Structures. Master Thesis,
Aalborg University, 2013.

LORC, 2011. LORC. Support Structure Concepts For Offshore Wind Turbines. Lindoe
Offshore Renewables Center, 2011. www.lorc.dk/offshore-wind/foundations,
downloaded: 01-04-2014.

Lund, 2013. Eric Lund. Course on Optimisation theory/Engineering Optimisation, 2013.
Slides for lecture 13 - Finite element based analysis and design sensitivity analysis.

Lund and Overgaard, 2014. Erik Lund and Lars Chr. T Overgaard. Fatigue Analysis and
Design Optimisation of Offshore Wind Turbine Support Structures, 2014. Project proposal.

Meggiolaro and Castro, 2011a. Marco Antonio Meggiolaro and Jaime Tupiassú Pinho
de Castro. An improved multiaxial rainflow algorithm for non-proportional stress or strain
histories – Part I: Enclosing surface methods. Department of Mechanical Engineering,
Pontifical Catholic University of Rio de Janeiro, 2011.

Meggiolaro and Castro, 2011b. Marco Antonio Meggiolaro and Jaime Tupiassú Pinho
de Castro. An improved multiaxial rainflow algorithm for non-proportional stress or strain
histories – Part II: The Modified Wang–Brown method. Department of Mechanical
Engineering, Pontifical Catholic University of Rio de Janeiro, 2011.

Group 2.217b 59

https://www.efatigue.com/multiaxial/background/stresslife.html
www.hawc2.dk
www.lorc.dk/offshore-wind/foundations


BIBLIOGRAPHY

Offshorewind.biz, 12 2012. Offshorewind.biz. STX France Awarded DNV Certification for
AG4 Innovative Jacket, 12 2012. http://www.offshorewind.biz/2012/12/11/
stx-france-awarded-dnv-certification-for-ag4-innovative-jacket, frontpage image
downloaded: 20-5-2014.

Przemieniecki, 2012. J. S. Przemieniecki. Theory of Matrix Structural Analysis. Dover,
2012. Reprint, originally from 1968, ISBN: 978-0-486-64948-1.

RWE Innogy, 2014. RWE Innogy. FAQs: Offshore Wind Farms, 2014.
https://www.rwe.com/web/cms/en/1117016/rwe-innogy/about-rwe-innogy/
rwe-innogy-uk/useful-information/faqs/offshore-wind-faqs/, downloaded:
27-05-2014.

Schjødt-Thomsen, 2012. Jan Schjødt-Thomsen. Course on Fracture Mechanics and
Fatigue, 2012. Slides for lecture 12.

Stephens, et al., 2001. Ralph I. Stephens, Ali Fatemi, Robert R. Stephens, and Henry O.
Fuchs. Metal Fatigue in Engineering. Wiley-Interscience, 2 edition, 2001. ISBN:
978-0-471-51059-8.

Stærdahl, 2008. Jesper W. Stærdahl. Course on Finite Element Method II - Structural
elements: 3D beam element. Department of Civil Engineering, 2008. Lecture 6+7,
www.wind.civil.aau.dk/lecture/7sem_finite_element/Finite_element.htm,
downloaded: 20-02-2014.

UpWind, 2011. UpWind. Work Package 4: Foundations and Support Structures, 2011.
www.upwind.eu.

Vorpahl, Popko, and Kaufer, 2011. Fabian Vorpahl, Wojciech Popko, and Daniel Kaufer.
Description of a basic model of the "UpWind reference jacket" for code comparison in the
OC4 project under IEA Wind Annex XXX. Institute for Wind Energy and Energy System
Technology, 2011.

Wang and Brown, 1996. C. H. Wang and M. W. Brown. Life Prediction Techniques for
Variable Amplitude Multiaxial Fatigue - Part 1: Theories. Journal of Engineering Materials
and Technology, 1996. Vol. 118(3), pp. 367-370.

60 Group 2.217b

http://www.offshorewind.biz/2012/12/11/stx-france-awarded-dnv-certification-for-ag4-innovative-jacket
http://www.offshorewind.biz/2012/12/11/stx-france-awarded-dnv-certification-for-ag4-innovative-jacket
https://www.rwe.com/web/cms/en/1117016/rwe-innogy/about-rwe-innogy/rwe-innogy-uk/useful-information/faqs/offshore-wind-faqs/
https://www.rwe.com/web/cms/en/1117016/rwe-innogy/about-rwe-innogy/rwe-innogy-uk/useful-information/faqs/offshore-wind-faqs/
www.wind.civil.aau.dk/lecture/7sem_finite_element/Finite_element.htm
www.upwind.eu


Part IV

Appendix

1





ANSYS model A
This appendix describes the ANSYS model used to verify the FEM code written in MATLAB,
as described in chapter 3. The ANSYS model is scripted with the APDL language used by
ANSYS Classic 14.0.

The element technology, which is used in the ANSYS model, is called ’BEAM188’. It is a
two node 3D beam element and is based on the Timoshenko beam theory, whereas in the
MATLAB code Bernoulli-Euler beam theory is used. The difference between Bernoulli-Euler
and Timoshenko beam theory is that the cross-section is allowed to rotate by assuming that the
transverse shear strain is constant through the cross-section. The non-default element settings
are shown in table A.1.

Key option Value of
key option

Description

KEYOPT(3) 3 Cubic shape functions along the length
KEYOPT(4) 2 Output combined torsion- and

flexure-related transverse shear stress
KEYOPT(6) 3 Output section forces/moments and strains/curvatures

extrapolated to the element nodes

Table A.1 BEAM188 element key options, which are not default. [ANSYS, 2011]

A MATLAB script has been written, which translates the FE model in MATLAB to be used
in ANSYS Classic. That being, nodal positions, element connections, section properties, static
loads and boundary conditions, by which the main ANSYS script only consists of the essential
parts in order to solve the system and post processing commands. In figure A.1 is the discretised
cross-section used in ANSYS. The minimum cross-sectional elements in ANSYS is 8. During
the verification of the FE code, the mean value of the outer and inner stresses are used, e.g. the
stress at the intersection of element 3 and 5 is the mean stress of node 7 and 8.
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Figure A.1 Section plot, where the blue and black numbers are element and node numbers, respectively.
The red dots illustrates the placement of the integration points within each element.

The ten lowest natural frequencies have been solved using a modal analysis, where the Block
Lanczos method is applied.
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DSA derivations B
This appendix describes the derivations of the sensitivities determined using the direct
differentiation method. Furthermore, this supports the description of the design sensitivity
analysis in chapter 6 and a verification of these expressions, implemented in the FE model,
are conducted in chapter 7. In the following derivations, the function dependencies are not
denoted in the expression, in order to make the expressions easier to read. The sensitivities are
determined w.r.t. to the design variables, {x} = [ d t ]T .

During the derivations, the following expressions for the cross-sectional area, the moment of
inertia, polar moment of inertia, and the local y’ and z’ distances to the point of evaluation.
Furthermore, expressions described in chapter 2 are used, e.g. the expressions for the local
stiffness matrix.

Ae = π (d t− t2) (B.1)

Iy = π
d4 − (d− 2 t)4

64 (B.2)

Iz = π
d4 − (d− 2 t)4

64 (B.3)

Jx = π
d4 − (d− 2 t)4

32 (B.4)

Y = d− t
2 cos (β) (B.5)

Z = −d− t2 sin (β) (B.6)

B.1 Cost function sensitivity

The cost function of the system, is the combined mass of the structure. The cost function as
a function of the current design is shown in equation (5.2). In order to determine the mass
sensitivity w.r.t. the design variables, the direct differentiation method are applied. The only
term, which is depending on the design variables is the cross-sectional area of the element by
which the sensitivity is determined by equation (B.7). The sensitivity contributions is summed
for all elements which is associated with the current design variable.

df
dxi

=
Nei∑
i=1

df
dAe

∂Ae
∂xi

(B.7)

where:
f Cost function as a function of design variables, [kg]

xi ith design variable in {x}, [-]

Nei Number of elements associated the ith design variable, [-]

Where the total derivative of the cost function w.r.t. the cross-sectional area of the element is
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B. DSA derivations

given as:

df
dAe

= ρLe (B.8)

The partial derivatives of the cross-sectional area of the element w.r.t. the design variables are
determined in equation (B.9) and (B.10).

∂Ae
∂d

= π t (B.9) ∂Ae
∂t

= π (d− 2 t) (B.10)

By inserting equation (B.8) and (B.9) into equation (B.8), the mass sensitivity w.r.t. design
variable d is given in equation (B.11). Likewise, the mass sensitivity w.r.t. design variable
t is obtained by inserting equation (B.8) and (B.10) into equation (B.8), which is shown in
equation (B.12).

df
dd =

Nei∑
i=1

ρLe π t (B.11)

df
dt =

Nei∑
i=1

ρLe π (d− 2 t) (B.12)

The gradient vector of the cost function is assembled as shown in equation (B.13). If the
gradient of the cost function is evaluated w.r.t. more design variables, then more rows are
added to equation (B.13).

{c} =


df
dd
df
dt

 (B.13)

where:
{c} Gradient of cost function w.r.t. design variables, [-]

B.2 Constraint function sensitivity

The constraint function measures the damage of the sample point caused by the applied load.
The expression of the constraint function is shown in equation (5.3). The sensitivity of the
constraint function w.r.t. the design variables is determined by equation (B.14). The local
displacement vector is seen in equation (2.2).

dgj
dxi

= ∂gj
∂xi

+
∂gTj
∂{De}

{d{D}
dxi

}
l

(B.14)

where:
{De} Local element displacement vector, [-]
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B.2. Constraint function sensitivity

The expressions for the partial derivatives of the constraint function w.r.t. the design variables
and the displacements are shown in equation (B.15) and (B.16).

∂gj
∂xi

= dgj
dσA

∂σA
∂xi

+ dgj
dτA

∂τA
∂xi

(B.15)

∂gTj
∂{De}

= dgj
dσA

∂σA
∂{De}

+ dgj
dτA

∂τA
∂{De}

(B.16)

The total derivatives of the constraint function w.r.t. normal and shear stress are shown in
equation (B.17) and (B.18). The partial derivative of the normal stress w.r.t. the design variables
and displacements are shown in equation (B.74), (B.75), and (B.87). The total derivative of the
displacement w.r.t. the design variables is described in section B.2.1.

dgj
dσA

= −

ni
(
2 k
√

(σ2
A + 4 τ2

A)(4 k + 1) + 4 k σA + σA
)

exp

2 ln (2)− ln
(

2 k σA+
√

(σ2
A+4 τ2

A)(4 k+1)
τ∗
f

)
b


√

(σ2
A + 4 τ2

A)(4 k + 1)
(
2 k σA +

√
(σ2
A + 4 τ2

A)(4 k + 1)
)
b

(B.17)

dgj
dτA

= −

ni 4 τA (4 k + 1) exp

2 ln (2)− ln
(

2 k σA+
√

(σ2
A+4 τ2

A)(4 k+1)
τ∗
f

)
b


√

(σ2
A + 4 τ2

A)(4 k + 1)
(
2 k σA +

√
(σ2
A + 4 τ2

A)(4 k + 1)
)
b

(B.18)

The damage sensitivity w.r.t. design variables, in equation (B.14) are determined for each sample
point. The partial derivative of the damage sensitivity w.r.t. the displacements are w.r.t. the
global coordinate system, by which the total derivative of the displacements w.r.t. the design
variables are also w.r.t. the global coordinate system.

Since the damage sensitivity depend on configuration of the FE modelled structure, a single
expression, which combines equation (B.14) to (B.18) cannot be determined. Therefore, the
expression for damage sensitivity at a sample point has to be assembled from the partial and
total derivatives which is related to the current sample point.

The gradient of the constraint function is assembled in a matrix, where the i index denotes the
row and the j index denotes the column. The indices are according to equation (B.14).

B.2.1 Displacement sensitivity

In this subsection the derivation of the displacement sensitivity w.r.t. the design variable are
described. The direct differentiation method is applied to the general FE formulation, by which
the following expression is determined (equation (6.3) reprinted):

[K]d{D}dxi
= ∂{R}

∂xi
− ∂[K]

∂xi
{D} (B.19)

where:
[K] Global stiffness matrix, [-]

{D} Global displacement vector, [-]

{R} Global load vector, [-]
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B. DSA derivations

The displacement sensitivity, on the left-hand side of equation (B.19), is determined in the global
coordinate system. Since, the stress and damage sensitivities are expressed w.r.t. the element
coordinate system, the displacement sensitivities related to the element are transformed using
the transformation matrix in equation (2.11). This is shown in equation (B.20), where

{
d{D}
dxi

}
g

are the global displacement sensitivities related to the element.{d{D}
dxi

}
l

= [T ]
{d{D}

dxi

}
g

(B.20)

where:
[T ] Transformation matrix, [-]

The partial derivative of the global element stiffness matrix w.r.t. d are derived by differentiation
of the X,S, Yi, and Zi expressions from equation (2.4) w.r.t. design variable, d. By which
equation (B.21) to (B.30) are derived. The partial derivative of the global element stiffness
matrix w.r.t. d are determined using equation (B.31) to (B.40).

∂X

∂d
= E

π t

Le
(B.21)

∂S

∂d
= G

π d3 − (d− 2 t)3

8Le
(B.22)

∂Y1
∂d

= 12E π d3 − (d− 2 t)3

16Le3 (B.23)

∂Y2
∂d

= 6E π d3 − (d− 2 t)3

16Le2 (B.24)

∂Y3
∂d

= 4E π d3 − (d− 2 t)3

16Le
(B.25)

∂Y4
∂d

= 2E π d3 − (d− 2 t)3

16Le
(B.26)

∂Z1
∂d

= 12E π d3 − (d− 2 t)3

16Le3 (B.27)

∂Z2
∂d

= 6E π d3 − (d− 2 t)3

16Le2 (B.28)

∂Z3
∂d

= 4E π d3 − (d− 2 t)3

16Le
(B.29)

∂Z4
∂d

= 2E π d3 − (d− 2 t)3

16Le
(B.30)

∂X

∂t
= E

π (d− 2 t)
Le

(B.31)

∂S

∂t
= G

π (d− 2 t)3

4Le
(B.32)

∂Y1
∂t

= 3E π (d− 2 t)3

2Le3 (B.33)

∂Y2
∂t

= 3E π (d− 2 t)3

2Le2 (B.34)

∂Y3
∂t

= E
π (d− 2 t)3

2Le
(B.35)

∂Y4
∂t

= E
π (d− 2 t)3

4Le
(B.36)

∂Z1
∂t

= 3E π (d− 2 t)3

2Le3 (B.37)

∂Z2
∂t

= 3E π (d− 2 t)3

2Le2 (B.38)

∂Z3
∂t

= E
π (d− 2 t)3

2Le
(B.39)

∂Z4
∂t

= E
π (d− 2 t)3

4Le
(B.40)

B.2.2 Normal stress sensitivity

The normal stress at a sample point is determined using the following expression:

σA = Nx

Ae
− Mz Y

Iz
− MyZ

Iy
(B.41)

In order to determine the total derivative of the normal stress, the direct differentiation methods
is applied, since the normal stress is a function of the displacements and the design variables,
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B.2. Constraint function sensitivity

however the displacements are also a function of design variables.

dσA
dxi

= ∂σA
∂xi

+ ∂σA
∂{De}

{d{D}
dxi

}
l

(B.42)

Sensitivity w.r.t. design variables

The partial derivative of the normal stress w.r.t. the design variable is shown in equation (B.43),
where the chain rule have been applied.

∂σA
∂xi

= dσA
dNx

∂Nx

∂xi
+ dσA

dAe
∂Ae
∂xi

+ dσA
dMz

∂Mz

∂xi
+ dσA

dY
∂Y

∂xi
+ dσA

dIz
∂Iz
∂xi

+

dσA
dMy

∂My

∂xi
+ dσA

dZ
∂Z

∂xi
+ dσA

dIy
∂Iy
∂xi

(B.43)

The total derivatives in equation (B.43) are expressed in equation (B.44) to (B.51).

dσA
dNx

= 1
Ae

(B.44)

dσA
dMz

= −Y
Iz

(B.45)

dσA
dY = −Mz

Iz
(B.46)

dσA
dIz

= Mz Y

Iz
2 (B.47)

dσA
dAe

= −Nx

Ae
2 (B.48)

dσA
dMy

= −Z
Iy

(B.49)

dσA
dZ = −My

Iy
(B.50)

dσA
dIy

= My Z

Iy
2 (B.51)

The partial derivatives w.r.t. the design variables in equation (B.43) are expressed in
equation (B.53) to (B.61). However, since the expressions for Nx, My, and Mz are implicit
depending on the design variables, the chain rule has to be applied in order to determine the
partial derivatives of Nx, My, and Mz.

∂Ae
∂d

= π t (B.52)

∂Y

∂d
= cos (β)

2 (B.53)

∂Iz
∂d

= π
d3 − (d− 2 t)3

16 (B.54)

∂Z

∂d
= −sin (β)

2 (B.55)

∂Iy
∂d

= π
d3 − (d− 2 t)3

16 (B.56)

∂Ae
∂t

= π (d− 2 t) (B.57)

∂Y

∂t
= −cos (β)

2 (B.58)

∂Iz
∂t

= π
(d− 2 t)3

8 (B.59)

∂Z

∂t
= sin (β)

2 (B.60)

∂Iy
∂t

= π
(d− 2 t)3

8 (B.61)
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B. DSA derivations

The partial derivatives of Nx, My, and Mz w.r.t. the design variables are expressed as follows:
∂Nx

∂xi
= dNx

dAe
∂Ae
∂xi

(B.62)

∂My

∂xi
= dMy

dIy
∂Iy
∂xi

(B.63)

∂Mz

∂xi
= dMz

dIz
∂Iz
∂xi

(B.64)

The total derivatives in equation (B.62) to (B.64) are expressed in equation (B.65) to (B.67).

dMy

dIy
= E κy (B.65)

dNx

dAe
= E∆u

Le
(B.66)

dMz

dIz
= E κz (B.67)

The partial derivatives of Nx, My, and Mz w.r.t. the design variables are expressed as follows:

∂Nx

∂d
= π t

E∆u
Le

(B.68)

∂Mz

∂d
= E κz π

d3 − (d− 2 t)3

16 (B.69)

∂My

∂d
= E κy π

d3 − (d− 2 t)3

16 (B.70)

∂Nx

∂t
= π (d− 2 t)E∆u

Le
(B.71)

∂Mz

∂t
= E κz π

(d− 2 t)3

8 (B.72)

∂My

∂t
= E κy π

(d− 2 t)3

8 (B.73)

By inserting the above expressions into equation (B.43), the partial derivative of the normal
stress w.r.t. the design variables are given in equation (B.74) and (B.75). Note that the
sensitivity is only depending on the curvature, Young’s modulus, and the angle, in the cross-
section, of the evaluated sample point.

∂σA
∂d

= E κy sin (β)
2 − E κz cos (β)

2 (B.74)

∂σA
∂t

= E κz cos (β)
2 − E κy sin (β)

2 (B.75)

Sensitivity w.r.t. displacements

The sensitivity of the normal stress w.r.t. displacements are described below. The normal stress
is determined using equation (B.76).

σA = Nx

Ae
− Mz Y

Iz
− MyZ

Iy
(B.76)

Again, the chain rule is applied, due to the multi variable function, by which the partial derivative
of the normal stress w.r.t. displacements are determined using equation (B.77).

∂σA
∂{De}

= dσA
dNx

∂Nx

∂{De}
+ dσA

dMy

∂My

∂{De}
+ dσA

dMz

∂Mz

∂{De}
(B.77)
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B.2. Constraint function sensitivity

The total derivatives of σA w.r.t. Nx, Mz, and My are given in equation (B.44), (B.45),
and (B.49), respectively. The partial derivatives of Nx, My, and Mz w.r.t. displacements
are expressed in equation (B.78) to (B.80).

∂Nx

∂{De}
= dNx

d∆u
∂∆u
∂{De}

(B.78)

∂My

∂{De}
= dMy

dκy
∂κy
∂{De}

(B.79)

∂Mz

∂{De}
= dMz

dκz
∂κz
∂{De}

(B.80)

The total derivatives in equation (B.78) to (B.80) are determined below:

dNx

d∆u = E Ae
Le

(B.81)

dMy

dκy
= E Iy (B.82)

dMz

dκz
= E Iz (B.83)

The partial derivatives of ∆u, κy, and κz w.r.t. the displacements are shown in equation (B.84)
to (B.86).

∂∆u
∂{De}

=
{
−1 0 0 0 0 0 1 0 0 0 0 0

}T
(B.84)

∂κy
∂{De}

=
{

0 0 12x+6
Le2 0 6x−4

Le
0 0 0 12x−6

Le2 0 6x−2
Le

0
}T

(B.85)

∂κz
∂{De}

=
{

0 12x−6
Le2 0 0 0 6x−4

Le
0 12x+6

Le2 0 0 0 6x−2
Le

}T
(B.86)

By inserting the above expressions into equation (B.77), the partial derivative of the normal
stress w.r.t. displacements are given in equation (B.87).

∂σA
∂{De}

=



−E
Le

−E cos(β) (12x−6) (d−t)
2Le2

−E sin(β) (12x−6) (d−t)
2Le2

0
E sin(β) (6x−4) (d−t)

2Le

−E cos(β) (6x−4) (d−t)
2Le
E
Le

E cos(β) (12x−6) (d−t)
2Le2

E sin(β) (12x−6) (d−t)
2Le2

0
E sin(β) (6x−2) (d−t)

2Le

−E cos(β) (6x−2) (d−t)
2Le



(B.87)

Group 2.217b 11



B. DSA derivations

B.2.3 Shear stress sensitivity

The total shear stress is determined using the expression in equation (B.88).

τA = Vy Qy
Iz 2 b1 + Vz Qz

Iy 2 b2 + Tx Z

Jx
+ Tx Y

Jx
(B.88)

where b1 = b(β) and b2 = b(90◦ − β), according to equation (2.32).

In order to determine the total derivative of the shear stress, the direct differentiation methods
are applied, since the shear stress is a function of the displacements, which is depending on the
design variables, and a function of the design variables.

dτA
dxi

= ∂τA
∂xi

+ ∂τA
∂{De}

{d{D}
dxi

}
l

(B.89)

Sensitivity w.r.t. design variables

The partial derivative of the shear stress w.r.t. the design variable is shown in equation (B.90),
where the chain rule have been applied.

∂τA
∂xi

= dτA
dVy

∂Vy
∂xi

+ dτA
dIy

∂Iy
∂xi

+ dτA
dQy

∂Qy
∂xi

+ dτA
db1

∂b1
∂xi

+

dτA
dVz

∂Vz
∂xi

+ dτA
dIz

∂Iz
∂xi

+ dτA
dQz

∂Qz
∂xi

+ dτA
db2

∂b2
∂xi

+

dτA
dTx

∂Tx
∂xi

+ dτA
dJx

∂Jx
∂xi

+ dτA
dZ

∂Z

∂xi
+ dτA

dY
∂Y

∂xi

(B.90)

The total derivatives in equation (B.90) are expressed in equation (B.91) to (B.102).

dτA
dVy

= Qy
2 Iz b1

(B.91)

dτA
dIy

= − Qz Vz

2 Iy2 b2
(B.92)

dτA
dQy

= Vy
2 Iz b1

(B.93)

dτA
db1

= − Qy Vy

2 Iz b1
2 (B.94)

dτA
dTx

= Y + Z

Jx
(B.95)

dτA
dZ = Tx

Jx
(B.96)

dτA
dVz

= Qz
2 Iy b2

(B.97)

dτA
dIz

= − Qy Vy

2 Iz2 b1
(B.98)

dτA
dQz

= Vz
2 Iy b2

(B.99)

dτA
db2

= − Qz Vz

2 Iy b2
2 (B.100)

dτA
dJx

= −Tx
Y + Z

Jx
2 (B.101)

dτA
dY = Tx

Jx
(B.102)

Where the partial derivatives, in equation (B.90), w.r.t. the design variables are seen in
equation (B.103) to (B.108), however the partial derivatives of Iy, Iz, Y , and Z w.r.t. the
design variables are given in equation (B.53) to (B.56) and equation (B.58) to (B.61).
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B.2. Constraint function sensitivity

∂Qy
∂d

= t sin (β) (d− t) (B.103)
∂Qz
∂d

= −t sin
(
β − π

2

)
(d− t) (B.104)

∂Jx
∂d

= π
d3 − (d− 2 t)3

8 (B.105)

∂Qy
∂t

= 1
2 sin (β) (d2 − 4 d t+ 3 t2) (B.106)

∂Qz
∂t

= 1
2 (3 t− d) (d− t) sin

(
β − π

2

)
(B.107)

∂Jx
∂t

= π
(d− 2 t)3

4 (B.108)

Since the effective width of the cross-section, b1 and b2 are piece-wise functions, the partial
derivatives w.r.t. the design variables are also piece-wise functions, as shown in equation (B.109)
to (B.112).

∂b1
∂d

=


1
4

cos(β)2 (d−t)−d+2 t√
( 1

2 d−t)
2−cos(β)2 ( 1

2 d−
1
2 t)

2
+ 1

4
(−d+t) cos(β)2+d√

1
4 d

2−cos(β)2 ( 1
2 d−

1
2 t)

2
, Rm cos (β) ≤ r

1
4

d−cos(β)2 (d−t)√
1
4 d

2−cos(β)2 ( 1
2 d−

1
2 t)

2
, r < Rm cos (β) ≤ R

(B.109)

∂b2
∂d

=


1
4

cos(90◦−β)2 (d−t)−d+2 t√
( 1

2 d−t)
2−cos(90◦−β)2 ( 1

2 d−
1
2 t)

2
+ 1

4
(−d+t) cos(90◦−β)2+d√

1
4 d

2−cos(90◦−β)2 ( 1
2 d−

1
2 t)

2
, Rm cos (90◦ − β) ≤ r

1
4

d−cos(90◦−β)2 (d−t)√
1
4 d

2−cos(90◦−β)2 ( 1
2 d−

1
2 t)

2
, r < Rm cos (90◦ − β) ≤ R

(B.110)

∂b1
∂t

=


1
4

cos(β)2 (d−t)−2 d+4 t√
( 1

2 d−t)
2−cos(β)2 ( 1

2 d−
1
2 t)

2
+ 1

4
cos(β)2 (d−t)√

1
4 d

2−cos(β)2 ( 1
2 d−

1
2 t)

2
, Rm cos (β) ≤ r

1
4

cos(β)2 (d−t)√
1
4 d

2−cos(β)2 ( 1
2 d−

1
2 t)

2
, r < Rm cos (β) ≤ R

(B.111)

∂b2
∂t

=


1
4

cos(90◦−β)2 (d−t)−2 d+4 t√
( 1

2 d−t)
2−cos(90◦−β)2 ( 1

2 d−
1
2 t)

2
+ 1

4
cos(90◦−β)2 (d−t)√

1
4 d

2−cos(90◦−β)2 ( 1
2 d−

1
2 t)

2
, Rm cos (90◦ − β) ≤ r

1
4

cos(90◦−β)2 (d−t)√
1
4 d

2−cos(90◦−β)2 ( 1
2 d−

1
2 t)

2
, r < Rm cos (90◦ − β) ≤ R

(B.112)

The partial derivatives of Vy, Vz, and Tx are determined using the chain rule:

∂Vy
∂xi

= dVy
dIz

∂Iz
∂xi

(B.113)

∂Vz
∂xi

= dVz
dIy

∂Iy
∂xi

(B.114)

∂Tx
∂xi

= dTx
dJx

∂Jx
∂xi

(B.115)

where the total derivatives are determines as follows:
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B. DSA derivations

dVy
dIz

= −E d3v

dx3 (B.116)

dTx
dJx

= G∆θx
Le

(B.117)

dVz
dIy

= E
d3w

dx3 (B.118)

The expressions for the partial derivatives of Vy, Vz, and Tx can be determined by inserting
equation (B.54), (B.56), (B.59), (B.61), (B.105), (B.108), and (B.116) to (B.118) into
equation (B.113) to (B.115).

By combining the above expressions according to equation (B.90), an expression for the partial
derivative of the shear stress w.r.t. design variables can be obtained. However, since some of
the derivatives are piece-wise functions, the partial derivative of the shear stress will also be a
piece-wise function.

Sensitivity w.r.t. displacements

The partial derivative of the shear stress w.r.t. displacements is shown in equation (B.119),
where the chain rule have been applied.

∂τA
∂{De}

= dτA
dVy

∂Vy
∂{De}

+ dτA
dVz

∂Vz
∂{De}

+ dτA
dTx

∂Tx
∂{De}

(B.119)

The total derivatives of τA w.r.t. Vy, Vz, and Tx are expressed in equation (B.91), (B.97),
and (B.95). The partial derivatives of Vy, Vz, and Tx w.r.t. displacements are shown in
equation (B.120) to (B.122).

∂Vy
∂{De}

= dVy
d d3v

dx3

∂ d3v
dx3

∂{De}
(B.120)

∂Vz
∂{De}

= dVz
dd3w

dx3

∂ d3w
dx3

∂{De}
(B.121)

∂Tx
∂{De}

= dTx
d∆θx

∂∆θx
∂{De}

(B.122)

where the total derivatives in equation (B.120) to (B.122) are expressed below:

dVy
d d3v

dx3

= −E Iz (B.123)

dVz
dd3w

dx3

= E Iy (B.124)

dTx
d∆θx

= GJx
Le

(B.125)

The partial derivatives, in equation (B.120) to (B.122), w.r.t. displacements are shown in
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B.2. Constraint function sensitivity

equation (B.126) to (B.128).

∂ d3v
dx3

∂{De}
=
{

0 12
Le2 0 0 0 6

Le
0 −12

Le2 0 0 0 6
Le

}T
(B.126)

∂ d3w
dx3

∂{De}
=
{

0 0 −12
Le2 0 6

Le
0 0 0 12

Le2 0 6
Le

0
}T

(B.127)

∂∆θx
∂{De}

=
{

0 0 0 −1 0 0 0 0 0 1 0 0
}T

(B.128)

By inserting the above expressions into equation (B.119), the partial derivative of the shear
stress w.r.t. displacements are given in equation (B.129).

∂τA
∂{De}

=



0

−3E t sin(β) (d−t)2

Le2 b1

−3E t cos(β) (d−t)2

Le2 b2

−G (cos(β)−sin(β)) (d−t)
2Le

3E t cos(β) (d−t)2

Le2 b2

−3E t sin(β) (d−t)2

Le2 b1

0
3E t sin(β) (d−t)2

Le2 b1
3E t cos(β) (d−t)2

Le2 b2
G (cos(β)−sin(β)) (d−t)

2Le
3E t cos(β) (d−t)2

Le2 b2

−3E t sin(β) (d−t)2

Le2 b1



(B.129)
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Plot for verification of

design sensitivity analysis C
In this appendix, the sensitivities w.r.t design variables t1, d2, and t2 are presented. These
sensitivities are determined using the central difference method and the direct differentiation
method. The central difference method have been applied for the plots on the left side of the
page, whereas the plots to the right are determined using the direct differentiation method. This
appendix show supplementary plots to the verification in chapter 7.

C.1 Sensitivity of displacements

In figure C.1, C.3, and C.5 are the displacement sensitivities shown, using the central difference
method. The displacement sensitivities using the direct differentiation method are shown in
figure C.2, C.4, and C.6.

Figure C.1 Sensitivity of displacements w.r.t.
outer diameter, t1, determined using the central
difference method, in meters.

Figure C.2 Sensitivity of displacements w.r.t.
outer diameter, t1, determined using the direct
differentiation method, in meters.

Figure C.3 Sensitivity of displacements w.r.t.
outer diameter, d2, determined using the central
difference method, in meters.

Figure C.4 Sensitivity of displacements w.r.t.
outer diameter, d2, determined using the direct
differentiation method, in meters.
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C. Plot for verification of design sensitivity analysis

Figure C.5 Sensitivity of displacements w.r.t.
outer diameter, t2, determined using the central
difference method, in meters.

Figure C.6 Sensitivity of displacements w.r.t.
outer diameter, t2, determined using the direct
differentiation method, in meters.

C.2 Sensitivity of normal stress

In figure C.7, C.9, and C.11 are the normal stress sensitivities shown, using the central difference
method. The normal stress sensitivities using the direct differentiation method are shown in
figure C.8, C.10, and C.12.

Figure C.7 Sensitivity of normal stress w.r.t.
outer diameter, t1, determined using the central
difference method, in MPa/m.

Figure C.8 Sensitivity of normal stress w.r.t.
outer diameter, t1, determined using the direct
differentiation method, in MPa/m.

Figure C.9 Sensitivity of normal stress w.r.t.
outer diameter, d2, determined using the central
difference method, in MPa/m.

Figure C.10 Sensitivity of normal stress w.r.t.
outer diameter, d2, determined using the direct
differentiation method, in MPa/m.
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C.3. Sensitivity of shear stress

Figure C.11 Sensitivity of normal stress w.r.t.
outer diameter, t2, determined using the central
difference method, in MPa/m.

Figure C.12 Sensitivity of normal stress w.r.t.
outer diameter, t2, determined using the direct
differentiation method, in MPa/m.

C.3 Sensitivity of shear stress

In figure C.13, C.15, and C.17 are the shear stress sensitivities shown, using the central difference
method. The shear stress sensitivities using the direct differentiation method are shown in
figure C.14, C.16, and C.18.

Figure C.13 Sensitivity of shear stress w.r.t.
outer diameter, t1, determined using the central
difference method, in MPa/m.

Figure C.14 Sensitivity of shear stress w.r.t.
outer diameter, t1, determined using the direct
differentiation method, in MPa/m.

Figure C.15 Sensitivity of shear stress w.r.t.
outer diameter, d2, determined using the central
difference method, in MPa/m.

Figure C.16 Sensitivity of shear stress w.r.t.
outer diameter, d2, determined using the direct
differentiation method, in MPa/m.
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C. Plot for verification of design sensitivity analysis

Figure C.17 Sensitivity of shear stress w.r.t.
outer diameter, t2, determined using the central
difference method, in MPa/m.

Figure C.18 Sensitivity of shear stress w.r.t.
outer diameter, t2, determined using the direct
differentiation method, in MPa/m.

C.4 Sensitivity of constraint function

In figure C.19, C.21, and C.23 are the damage sensitivities shown, using the central difference
method. The damage sensitivities using the direct differentiation method are shown in
figure C.20, C.22, and C.24.

Figure C.19 Sensitivity of constraint w.r.t.
outer diameter, t1, determined using the central
difference method.

Figure C.20 Sensitivity of constraint w.r.t.
outer diameter, t1, determined using the direct
differentiation method.

Figure C.21 Sensitivity of constraint w.r.t.
outer diameter, d2, determined using the central
difference method.

Figure C.22 Sensitivity of constraint w.r.t.
outer diameter, d2, determined using the direct
differentiation method.
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C.4. Sensitivity of constraint function

Figure C.23 Sensitivity of constraint w.r.t.
outer diameter, t2, determined using the central
difference method.

Figure C.24 Sensitivity of constraint w.r.t.
outer diameter, t2, determined using the direct
differentiation method.
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Appendix CD D
In this appendix, the files which are to be found on the appended CD, are listed.

• ANSYS 1

– PedalInput
Folder which contains geometry file generated from MATLAB.

– JacketStructureModel.inp
Static analysis of the selected geometry, which is generated by ’OutPutMatlab-
GeoToANSYS.m’.

• MATLAB

– Functions
Folder which contains various functions.

– Geometry
Folder which contains geometry file.

– JacketStructureMain.m
Script which calculates the displacements, stresses and natural frequencies of the
jacket structure model.

– LoadHistoryReduction.m
Script which reduces the load history, by removing non-turning point values.

– MWBrainflowTest.m
Script which counts the reversals, that is shown graphically in section 4.2.

– OutPutMatlabGeoToANSYS.m
Function which translates the geometry used in the MATLAB code into an ANSYS
APDL input script. This function has the geometry file name as input.

– SensitivityTest.m
Script which compares the design sensitivities determined using the direct differenti-
ation method and the central difference method.

– SimpleSLPoptimisation.m
Script which executes the SLP optimisation algorithm, where the mass of the
cantilever beam model is minimised.

• Report.pdf

1It is recommended to copy the script to a folder on the hard drive of the computer. To run the script, the
current working directory has to be changed to match the folder of which this script is run from. This is done
using this command: /CWD,’path to working directory’.
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