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Synopsis:
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Initially experiments have been performed to

obtain the response of a bolted joint, under

di�erent levels of pretension. The purpose of

this is to determine if there is a change in the

response of the structure, related to this change

in pretension, and whether this is acoustically

measurable. It has been found that there is a

clear shift, in the resonant frequencies of the

structure, when pretension is changed. To �nd

the cause of this shift, a FE model of the bolt

has been established, and it was found that

changes in boundary conditions are causing

the shift in resonant frequencies. In order to

validate this hypothesis, further experiments is

carried out on di�erent bolt sizes, followed by

a more detailed FE model, and an analytical

model. It is concluded that it is possible to

use acoustic measurements to determine if a

system is properly pretensioned, but to mature

the method further investigations has to be

made.
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Abstract

Formålet med dette projekt er, at vurdere hvor vidt det er muligt at bestemme forspændingen i boltene

i en boltesamling. Projektet er foreslået af Brüel & Kjær, som en del af MAKUNET. Baggrunden for

problemstillingen er, at der ved eksitering af to identiske bolte under forskellig forspænding, afgives et

hørbart forskelligt akustisk signal. Dette har antydet at det kunne være muligt at anvende akustiske

signaler til bestemmelse af forspænding, hvilket kan lette arbejdet i forbindelse med inspektioner af

boltede samlinger. I løbet af dette projekt er årsagen til denne forskel i den afgivne lyd undersøgt, og

det er søgt at afdække hvor vidt det kan gøres praktisk anvendeligt.

Projektet er indledt ved at lave en række initierende forsøg, for at fastlægge hvor vidt målbare forskelle

i responsen, af en 140mm M12 bolt ved forskellige forspændinger, kan opfanges. Forsøgs resultaterne

opsamles akustisk med en mikrofon samt mekanisk via accelerometre, til eksitering af boltene anvendes

en modal hammer med indbygget kraft transducer. Indledningsvist er der anvendt en opsætning med

�ere bolte, men for at simpli�cere responset der analyseres er der i hoveddelen af projektet anvendt en

opstilling med blot en enkelt bolt. Ud fra forsøgene er det fundet, at resonans frekvenserne for strukturen

stiger i takt med at forspændingen øges, dette gør sig gældende for både stål og aluminiums strukturer.

I forbindelse med dette er også ind�ydelsen af spændskiver undersøgt, hvilket dog viste sig at være uden

betydning for responsen. Ligeledes er det undersøgt om dæmpning vil kunne anvendes som mål for

forspændingsgraden, hvilket dog kunne afvises.

Eftersom det er blevet konstateret at det er muligt, at se en ændring af resonans frekvenserne, når

forspænding øges, er mekanismen bag denne ændring blevet undersøgt. Da ændringen i frekvenser

er så stor, at den ikke kan forklares med ændringer i stivheden, er det i stedet undersøgt hvor vidt

ændringer i systemets randbetingelser, kan være årsagen til de observerede skift i resonans frekvenser.

For at undersøge dette, er der opstillet en FE model af bolten for to forskellige randbetingelser, simpelt

understøttet og fast indspændt, analysen af disse modeller viste, at den ændring der kunne observeres

mellem de to modellers egenfrekvenser, stemte godt over ens med de eksperimentielle resultater. For at

undersøge hvor vidt de fundne resultater også er gældende for andre størrelser af bolte, er både M18 og

M24 bolte undersøgt eksperimentielt, og samme tendenser som for M12 bolte kunne observeres.

En mere avanceret FE model opstilles for at se om forskellen mellem den simple FE og Test bliver

mindre og for at forklare resultaterne fra M18 og M24 forsøgene. Den avancerede model bliver løst både

for egenfrekvenser og for harmonisk respons. Resultaterne for egenfrekvenserne viser en mindre forskel

mellem FE og tests end den simple FE model. Det tyder på at der en svag kobling mellem bolten og

strukturen. Den harmoniske model viser at der er stor forskel på amplituden af bolten og amplituden

af målepunkterne på strukturen. Derudover er der stor forskel på amplituden af bolten og amplituden

af målepunkterne for de forskellige bolte og forskellige resonans frekvenser. Derfor konstrueres der en

analytisk model der skal forsøge at beskrive dette problem.

Den analytiske model bliver anvendt til at beskrive hvor meget energi der bliver overført fra bolten til

strukturen og hvor stor ind�ydelse dæmpning har på denne overførsel af energi. Den analytiske model

er udledt ud fra Hamilton's principle og Timoshenko bjælke teori. Modellen viser at dæmpningen har

meget lille ind�ydelse på responset målt på strukturen og at meget lidt af det indførte energi fra lasten

bliver overført til strukturen.

Ud fra resultaterne i projektet, har det vist sig at det bør være muligt, at anvende akustiske målinger til

at bestemme hvor vidt bolte i en samling er spændt tilstrækkeligt.
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Nomenclature
Symbol: Description: Unit:

Ab Cross sectional area of the bolt
[
mm2

]
Ac Cross sectional area

[
m2
]

Ai Amplitude at point i [-]

A Area
[
mm2

]
Ci Constant [-]

E Modulus of Elasticity [GPa]

Fpt Clamping force exerted by the pretension [N]

F Force [N]

G Shear modulus [GPa]

I Area moment of inertia
[
m4
]

L Length [m]

Pt Prestress in the bolt in percent [-]

Qr Quality factor at resonance [-]

Qhp Half power of the quality factor at resonance [-]

Sp Proof strength of bolt [MPa]

Sc Compresive strength [MPa]

St Tensile strength [MPa]

Tcf Torque required for the desired clamping force [Nm]

T Kinetic energy [J]

V Potential energy [J]

∆Wd Dissipated energy [J]

α Angle [deg]

β Constant
[
1
m

]
δ Variation [-]

ε Strain [-]

ν Poison's Ratio [-]

ωd Damped eigenfrequency
[
rad
s

]
ωi Frequency at point i

[
rad
s

]
ωn Undamped Eigenfrequency

[
rad
s

]
ωr Resonant frequency

[
rad
s

]
ωR1 First half power point [Hz]

ωR2 Second half power point [Hz]

Continued on next page
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NOMENCLATURE

Symbol: Description: Unit:

ω Frequency
[
rad
s

]
ψ(x, t) Angular displacement of a Timoeshenko beam [-]

ρ Density
[
kg
m3

]
σ Stress [MPa]

ζ Damping ratio [-]

cc Critical damping constant
[
N s
m

]
c Damping constant

[
N s
m

]
db Diameter of bolt [mm]

d Diameter [m]

fr Undamped resonant frequency [Hz]

f Frequency [Hz]

ksg Gauge factor [-]

k Spring constant
[
N
m

]
m Mass [kg]

t Time [s]

w(x, t) De�ection along the length of the beam [m]

z(t) Mass de�ection [m]
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Introduction 1
One of the main challenges in constructing mechanical systems, is to join di�erent components. One way

of assembling components is via a bolted joint, where a suitable number of bolts is used to secure two

surfaces through tightening of the bolts. Bolted joints are widely used for joining all sorts of constructions

and are considered classical machine elements. The advantage of assembling parts in this way, is that

the joint is easily separated and assembled again, which is why bolted joints are widely used. Bolted

joints are seen every day and some common joints are the mounting of rims on cars, combustion engines

cylinder heads, steel bridges, and the assembly of airplanes. An airplane like the Boeing 747, which has

been the worlds largest airplane, uses about 2.5 million fasteners [Norton, 2006].

When a bolted connection is assembled, the bolts in the assembly are tightened to a much higher degree,

than what is required to simply hold the joint together. This is known as pretensioning the bolts, and

creates friction which counteract forces trying to shear joint apart, but more importantly greatly increases

the bolts resistance to dynamic loading. As most structures are exposed to some sort of dynamic loading,

this is a very important aspect of bolted joints.

Considering a simple bolted joint shown on Figure 1.1, the reason for the increased resistance towards

dynamic loading can be explained, using a bolt pretension diagram.

Figure 1.1 A bolted joint connecting 2 materials

Figure 1.2 Bolt pretension diagram showing the

de�ection on the bolt and the surrounding material

A bolt pretension diagram is shown in Figure 1.2, and is a method for showing how the pretension load

is distributed between bolt and surrounding material. To the right of the y-axis, indicating the applied

force, the relation between elongation of the bolt and the applied force. The bolt sti�ness is seen from

the slope of the curve. To the left of the y-axis the sti�ness of the clamped material in the joint is seen.

The reason for the two components being on di�erent sides of the y-axis is that, as the bolt is tensioned,

it is elongated, while the clamped material is compressed. Note that the slope is steeper for the material

than for the bolt, indicating that the area of the material in compression is larger than the cross sectional

area of the bolt.

In the bolt pretension diagram shown in Figure 1.2 the bolted joint is subjected to a Force Fa. The force

introduce an additional displacement ∆δ in the joint and a�ecting both the clamped material and the

bolt. From the bolt pretension diagram in Figure 1.2 it is seen, that the bolt is loaded very little and

the material is unloaded more, absorbing much of the applied load. Thus the bolt experiences very little

extra load, making the joint very strong to fatigue due to the amplitude of stress in the bolt being very

small, and the variation in the clamped material being in compression. This makes a bolted joint very

attractive when the bolts are pretensioned, especially compared to welding where fatigue can be much

harder to avoid.

Michael Mortensen & Anders Lybæk Knudsen 1



1. Introduction

The bene�ts gained from pretensioning the bolts require that a su�cient level of pretension is reached.

A bolt is usually pretensioned to either 70% or 90% of the bolts proof strength, depending on the

application. If the bolt is pretensioned to 90%, it is only possible to use the bolt once and the bolt is

scrapped if the joint has to be separated. A bolt pretensioned to 70% is able to be used several times.

During a structure's lifetime it is possible that some bolts are loosened, for example due to vibrations

in the structure, resulting in a decrease in the pretension, which can lead to failure of bolts or even the

entire structure.

To avoid breakdown due to untightened bolts, bolted joints often contain several bolts more than required

from a structural point of view due to safety. However it is necessary to be able to check the level of

pretension of the bolts in a structure. This can be easy to do on for example the wheel nuts on a car

or a truck, using a torque wrench, but when going to a larger scale for example the joint between the

foundation and the tower of a wind turbine it becomes much more complicated and time consuming.

Thus methods for determining the pretension in a simpler manner are desirable, as they might save a lot

of time on maintenance and might even make it possible to reduce the number of extra bolts included

for safety reasons.

Other methods for examining the pretension exists, fx. ultrasonic inspection. This does however require

specialized personnel and equipment. Based on the observation that there is a change in the acoustical

emission between a tightened and untightened bolt, Brüel & Kjær A/S has suggested that there might

be a way to determine bolt pretension using microphone measurements.

This project seeks to investigate whether acoustical measurements can be used to determine the pretension

in bolts. This would mean, that by positioning a microphone correctly and hitting a structure at a given

location, with an impact hammer, it would be possible to check whether a bolt is su�ciently tightened.

This would allow for a much faster determination of which bolts in a structure need tightening, and

reduce the need for a torque wrench, as it only has to be applied for tightening the bolts, where it is

actually needed.

Some work in regards to the acoustical response of bolt under pretension has been performed as described

in Knudsen [2013]. This project builds on some of the experiences obtained in that project, where it was

found that an increase in the �rst resonant frequency in a pretensioned bolt is observable. The purpose of

this project is to uncover the mechanisms that cause this change and to determine whether it is feasible

to use acoustical measurements to determine pretension for industrial purposes.

2 Michael Mortensen & Anders Lybæk Knudsen



Preliminary work 2
To gain an understanding of why the acoustical response of a bolted connection changes, for di�erent

levels of pretension in the bolts, some initial work is required. The purpose of this chapter is to describe

the preliminary work, which consists of a series of experiments designed to gain an understanding of the

problem. The results found during the preliminary work, will serve as a foundation for the further work

in the project where the phenomenon is modeled and methods for practical estimation are investigated.

Some work in relation to acoustical response of pretensioned bolts has already been performed as described

in [Knudsen, 2013]. However a model describing the correlation between pretension and acoustical

response was not established. In that project an aluminum cylinder with four holes for bolts was

examined, in order to have a starting point for the experiments in this project, a similar structure is

manufactured and tested. The working drawing for this component can be found in Appendix B named

multibolt.

The structure is tested by hitting with an impact hammer at the structure, and at the bolt head of four

140mm M12 bolts, which have been applied di�erent levels of pretension as shown on Figure 2.1 and 2.2.

The response is captured using a microphone and two or three accelerometers, depending on the desired

results.

70% 50%

30%10%

acc1acc2

acc3

Microphone

Figure 2.1 Simpli�ed model of the placement

of the bolts, accelerometers and microphone.

Hit at structure

Hit at bolt
10% pretension

30% pretension

50% pretension

70% pretension

Figure 2.2 Location of the points to be hit

with the impact hammer.

The physical test setup can be seen in Figure 2.3, the equipment and data acquisition setup will be

described in detail later, in Section 2.1.

Figure 2.3 Setup for multibolt experiment.
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2. Preliminary work

In Figure 2.4 and 2.5, the Frequency Response Function (FRF) obtained with accelerometer 2 can be

seen, for hits on the structure and the bolts respectively. It can be seen from Figure 2.4 that there is a

clear di�erence in the response of the structure with and without bolts. Especially around 3kHz there

are a series of sharp peaks, indicating that there are resonances of bolts in this frequency range.
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Figure 2.4 Frequency response H1, with acc2, for structural hits.

In Figure 2.5 a closeup of the frequency range of interest can be seen. Here the change in frequency

response when hitting di�erent bolts can be seen. It can be seen that hitting a certain bolt accentuates

a speci�c peak, indicating that each peak is associated with a speci�c bolt. However it is not clear how

much in�uence the distance from the bolt being hit to the accelerometer has, as well as how the bolts

a�ect each others response.
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Figure 2.5 Frequency response H1, with acc2, for bolt hits.

What can be concluded from this test, is that it is possible to see and separate the resonances of bolts

under di�erent levels of pretension in the same structure. However the mechanics describing the behavior

need to be determined, in order to be able to distinguish the pretension of the individual bolts in such

a structure. Thus the structure needs to be simpli�ed, in order to gain a better understanding of the

e�ects of bolt pretension.
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2.1. Test setup

This new and simpler system contains only a single bolt, which will be tested under various levels of

pretension. In the new system, a cylindrical block of material is manufactured with a hole in the center

for mounting a 140mm M12 bolt. Drawings for this part can be found in Appendix B named singlebolt.

As only a single bolt is present, in this setup it is possible to investigate the changes in response in more

detail, and eliminate problems regarding changes in the setup, such as distance between accelerometers

and the bolt.

2.1 Test setup

In this section the basic test setup used throughout the project is described. As described, the tests are

performed for a cylinder containing a single pretensioned bolt. This cylinder is suspended by four elastic

strings attached to the ceiling of the lab, to give the system as compliant boundary conditions as possible.

The strings are attached to the cylinder by four small screws protruding from the side of the cylinder, as

shown on Figure 2.6.

Figure 2.6 Basic test setup.

To pretension the bolts to the desired level, a torque wrench is used to tighten the bolts. However, as

torque wrenches are not very precise when used for pretensioning and as the level of pretension in the

bolt is vital to the measurements, a force transducer is used to check clamping force exerted by the bolt

on the structure. From this force, the pretension in the bolt can be calculated. In Appendix A the

method for calculating clamping force and required torque for pretensioned bolts is described. As no

suitable transducer is available at institute of Mechanical and Manufacturing Engineering, a transducer

is manufactured for the speci�c purpose of determining the clamping force, which is described in detail

in Appendix A.1.

In order to imitate a regular bolted connection, a washer is placed between the bolt head and the cylinder,

between the cylinder and the nut a force transducer, which has the same inner and outer diameter as a

standard washer, is placed.

2.1.1 Measurement equipment

To obtain the response of the system, a Brüel & Kjær (B&K) Pulse 3560C dual channel FFT analyzer,

and the software PULSE, is used to �nd the Frequency Response Function (FRF). For the system input

signal a Endevco impact hammer is used and for the system output, a microphone and two accelerometers

are used. Detailed information of the used equipment, such as type and serial number for the individual

items is found in Appendix C.

The speci�c equipment, its usage, and positioning will be described in the following, along with the reason

for choosing it.
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2. Preliminary work

Impact hammer

To excite the structure an impact hammer is used. At the start of the project a B&K 8202 steel tipped

impact hammer was used. However after the �rst couple of tests a malfunction of the force transducer

in the hammer occurred, and thus it was necessary to �nd a replacement, which is an aluminum tipped

Endevco 2302-10 impact hammer. Due to the change of hammer and especially the material of the tip,

a di�erent range of frequencies can be exited. This is relevant as it was easier to hear the di�erence

in pretension for hits with the aluminum tipped hammer, which is suspected to be caused by the lower

cuto� frequency of the aluminum tip, i.e. the frequency where the force signal is at its lowest, indicating

that the frequencies of interest lies below 9kHz.

To test this hypothesis a series of tests were performed, looking at only the autospectrum of the structure.

As it can be seen from Figure 2.7 and 2.8, no signi�cant change occurred with respect to the location

of the resonance peaks. The amplitude of the signal changed which is natural as the autospectrum is

dependent on the impact force and thus does not indicate a change in response due to change of the tip

material.
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Figure 2.7 Response obtained with accelerometer 2 for the steel tipped hammer.
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Figure 2.8 Response obtained with accelerometer 2 for the aluminum tipped hammer.
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2.1. Test setup

As no signi�cant change was introduced by the hammer change, the aluminum tipped hammer will be

used henceforth, expecting neither better nor worse excitation of the structure.

Accelerometers

To obtain the response of the structure, caused by the impact from the hammer, accelerometers are used.

The reason for using both accelerometer and microphone measurements, is that since the accelerometers

are in direct contact with the structure, the motion is directly measured, and also acoustical noise from

the environment is disregarded in the obtained response. Thus the accelerometers can be used to better

understand what to look for in the response when evaluating microphone measurements.

In order to get usable readings from the accelerometers, choosing the correct position and type of the

accelerometers is critical. To determine the best positions for the accelerometers, they have initially

been positioned orthogonally on the structure as shown on Figure 2.9, and then moved axially along the

surfaces to �nd where the response is largest. The further the accelerometer was placed from an edge

the better results were obtained and therefore all accelerometers are placed as close to the middle of

the surface as possible. The designation, acc1, acc2 and, acc3 for the accelerometer names will be used

henceforth to refer to the speci�c accelerometers, regardless of the actual number of accelerometers used

in a given test.

acc3

acc2 acc1

Figure 2.9 Orthogonal placement of accelerometers.

Initially type 4374 accelerometers were placed on the cylinder, however these were not sensitive enough,

resulting in an extremely noisy signal. Thus to get better results, more sensitive accelerometers were

tested, for acc1 a type 4384V accelerometer gives su�cient sensitivity, but for acc2 and acc3 type 4382V

are required for satisfactory readings. Besides the increased sensitivity, the type 4384V and type 4382V

accelerometers have the advantage of having a threaded hole for mounting onto the structure, making it

possible to assure the position of the accelerometer is always the same, where the type 4374 have to be

mounted using for example bees wax.

As the Pulse 3560C analyzer only has four slots for signal inputs, and the hammer and microphone each

takes up one slot, there are only two slots for accelerometers. Thus it is necessary to determine which

of the accelerometers to remove from the test setup. To determine this, the results of the test used

to evaluate the tip of the hammer in Section 2.1.1 are used. These tests have been performed in the

setup with four bolts, using three accelerometers as the hammer signal was removed due to the defect

force transducer. In Figure 2.10, 2.11, and 2.12 the response obtained for each accelerometer, when the

structure is hit at the 70% pretensioned bolt can be seen. As it can be seen from the �gures, acc1 does

not capture the resonances at around 3kHz which is why this accelerometer is removed from the setup.
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Figure 2.10 Response obtained with accelerometer 1.
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Figure 2.11 Response obtained with accelerometer 2.
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Figure 2.12 Response obtained with accelerometer 3.
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Microphone

To capture the acoustical response a half inch microphone of type 4189 is used. As the quality of

acoustical response is paramount for the project, it is important that the microphone is positioned

correctly. Therefore di�erent positions of the microphone have been tested, for a bolt pretensioned to

80%. In Figure 2.13, 2.14, and 2.15 the di�erent positions can be seen, and in Figure 2.16, 2.17, and

2.18 the measured response from the microphone can be seen with the corresponding accelerometer

measurement. Here it is obvious that the microphone at position 3, captures the response far better than

the others, thus this is the position that will be used for the setup.

Figure 2.13 Mic position 1. Figure 2.14 Mic position 2. Figure 2.15 Mic position 3.
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Figure 2.16 Response obtained with the microphone at position 1.
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Figure 2.17 Response obtained with the microphone at position 2.
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Figure 2.18 Response obtained with the microphone at position 3.

2.1.2 Pulse software setup

As previously stated, the software Pulse is used for the data acquisition and processing. The program

used to handle the input is called labshop and is set up in the following way.

� A blank project is created

� The equipment described in Section 2.1.1 is added in the con�guration organiser.

� The hammer signal is set to input port 1

� The microphone signal is set to input port 2

� The accelerometer 2 signal is set to input port 3

� The accelerometer 3 signal is set to input port 4

� These are then con�gured and calibrated under signals in the measurement organiser.

� The peak inputs for the signals are adjusted using the levelmeter. The max peak input is

set as close as possible to the maximum received value, from the system response, without

getting overloaded.

� A group is added for each type of equipment in the measurement organiser, e.g. a hammer, a

microphone and, an accelerometer group, each containing the relevant signals.

� Under setup in the measurement organiser, an FFT analyzer is set up.

� The FFT analyzer i setup for baseband analysis in a frequency range of 0-12.8kHz divided

into 1600 lines, as this is the highest resolution allowed by the duration of the structural

response, this results in a resolution of 8Hz in the frequency domain.

� The obtained response is averaged linearly over ten hits on the structure.

� The analyzer is triggered by the signal of the hammer going above a certain threshold.

� In the spectra section of the FFT properties, the analyzer is set to measure all auto- and

cross-spectra.

� The time weighting window is set to exponential, for the acceleration and microphone signals,

and to transient for the hammer signal.

� A time capture analyzer is added in the measurement organiser containing all the equipment groups,

in order to have the time data should additional post-processing become necessary.
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2.2. Frequency response determination

� In function organiser groups are made for autospectrum, frequency response H1, compressed and

expanded time, and an export group.

� The purpose of the export group is to extract:

* Frequency response H1 for accelerometer 2 with respect to the hammer signal

* Frequency response H1 for accelerometer 3 with respect to the hammer signal

* Frequency response H1 for microphone with respect to the hammer signal

* Autospectrum for the hammer

� Extracted �les are saved as .u� �les and can be used in matlab.

After each test is performed, the measurements are saved and named after the pretension in the bolt, for

example a test of the structure with a 60% pretensioned bolt is called 60hit, while one with 70% is called

70hit and so on. Each Pulse �le contains only a single series of experiments to avoid �les becoming too

large. All result �les from experiments can be found on the Appendix CD1.

2.2 Frequency response determination

Using the setup established in Section 2.1, a series of tests are performed to determine the change in

response of the system when the pretension of the bolt is changed. To accomplish this the response of

the structure is tested for pretension ranging from 10% to 90% with an interval of 10%. The structure

used in [Knudsen, 2013], and for the initial tests, is made of aluminum, however the majority of bolted

structures are made from steel. To make sure that the results found are not only applicable to an

aluminum structure, a cylinder of both steel and aluminum is manufactured and tested, allowing for a

more robust model of the system.

In Figure 2.19 and 2.20 the response obtained with acc2 can be seen for the steel and aluminum structure

respectively. In the plots, the response of the structure is plotted with a di�erent line for each pretension

level. It can be seen that the �rst resonances for the steel structure lies in the 3kHz region while its

around 4kHz for the aluminum structure. It is also evident that the measurements for 10% pretension,

and to some degree for 20%, deviates from the rest of the measurements, which behaves in more or less

the same way.
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Figure 2.19 Response obtained with acc2 for the steel structure.
1Appendix CD\Test Results
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Figure 2.20 Response obtained with acc2 for the aluminum structure.

To get a better idea of the change introduced by the increasing pretension, a closeup of the region of

the �rst resonances is evaluated. In Figure 2.21 a closeup of the �rst group of resonance peaks is seen.

As it can be seen from the �gure, the peaks are moving to higher frequencies when the pretension is

increased, this is also seen at the higher order eigenfrequencies for both steel and aluminum. In Table 2.1

the location of the �rst eigenfrequencies, obtained with acc2, can be seen. For the response of the steel

structure, a steady increase can be observed from 30% pretension and up, and from 50% for the aluminum

structure, each of approximately 200Hz.

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc2 steel 2288 2720 2864 2928 2960 2984 3008 3024 3040

Acc2 aluminum 3144 3432 3384 3480 3704 3816 3856 3896 3896

Table 2.1 Location of the �rst resonance peak for a given level of pretension, from acc2 measurements.
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Figure 2.21 Response obtained with acc2 for the steel structure.

In Figure 2.22, the acoustical response for the steel structure can be seen. The �rst group of resonances

is captured well by the microphone, as seen by the series of sharp peaks around 3kHz. The resonances

associated with higher eigenmodes are however not captured as well, although an increased response can
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2.2. Frequency response determination

be observed at around 10kHz, no sharp peaks are present. Whether the lack of sharps peaks for the

higher order eigenfreqiencies is a problem of the microphone not su�ciently picking up the amplitude at

the higher frequencies, or that the resolution of the signal is simply not su�cient is not known but will

be investigated in Chapter 5 and Chapter 6.
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Figure 2.22 Response obtained with the microphone for the steel structure.

In Table 2.2 the resonances found with the di�erent measurement equipment can be seen. As seen the

measurements on the steel structure are very similar, with acc3 measurements showing slightly higher

resonant frequencies. For the aluminum structure the measurements for pretension below 50% varies

signi�cantly but is steady for pretension above 50%. This di�erence in measurements for the aluminum

structure at pretension below 50%, along with the steady increase of frequencies above this level indicates

that only measurements for pretension above 50% should be trusted. This can be expanded to include

the steel structure, stating that only measurements at above 30% pretension should be trusted.

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90%

Steel structure resonances(Hz)

Microphone 2288 2720 2864 2928 2960 2984 3008 3032 3048

Accelerometer 2 2288 2720 2864 2928 2960 2984 3008 3024 3040

Accelerometer 3 2288 2800 2864 2968 2992 3008 3016 3040 3048

Aluminum structure resonances(Hz)

Microphone 3224 3416 3328 3464 3704 3816 3856 3896 3904

Accelerometer 2 3144 3432 3384 3480 3704 3816 3856 3896 3896

Accelerometer 3 3440 3744 3672 3768 3704 3816 3856 4128 4128

Table 2.2 Resonances found with the di�erent equipment.

As it can be seen, there is a di�erence in the resonant frequencies obtained with acc2 and acc3, which

is unexpected, as they are placed orthogonally and the structure is symmetric. Due to the symmetry of

the structure, it is expected to have two modes with identical shape and resonant frequency, but angled

90 deg to each other. Imperfections in the structure materials and setup, could though a�ect these so

that they are not longer identical, but only very close, which is thought to be the cause of this di�erence

between acc2 and acc3. It should be noted that, the microphone is positioned so that it faces in the same

direction towards the structure as acc2, and so it makes sense that it measures the same resonances as

acc2. Positioning the microphone in the same direction as acc3, will likely produce microphone readings

with resonances similar to those obtained with acc3.
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What can be seen from the results is that there is a trend of the resonant frequencies to increase around

200Hz. A change in the frequency response would be expected with increased tension, as a result of

increased sti�ness, however the required increase in sti�ness is too large to be feasible, which is explained

more in depth in Chapter 3. Another explanation for the increase in resonant frequencies could be a

change of the boundary conditions at the interface between the structure and the bolt. This hypothesis

will be explored more thoroughly in Chapter 3.

2.3 Damping determination

Besides determining the resonant frequencies, it is also investigated whether the damping in the structure

is in�uenced by the change in pretension. The reason for investigating the damping, is that the sound

emitted by the structure seems to change from a �at to a more ringing sound, which could be caused by

a change in damping.

To determine the damping of the structure the half power bandwidth method is used. With this method

the damping can be calculated from the peaks and peak widths (bandwidth) in the FRF, for lightly

damped structures ζ < 5% [Rao, 2011]. While this method is not the most precise and is highly dependent

on the resolution of the FFT, it can give a fast indication of the damping in the system. This is also

the method used in Pulse to determine the damping in the FRF. Going into Pulse to extract each

damping would take a lot of time, so instead the exported FRF data is used in a MATLAB program that

automatically calculates the damping for each peak. The MATLAB script can be found on the Appendix

CD2.

2.3.1 Automating the half power bandwidth method

As stated, the half power bandwidth method can be used to �nd damping from FRF's. The idea is to

take the amplitude at the resonant frequency, called the quality factor Qr, and �nd the amplitude where

the power of the signal is halved, as given by Equation (2.1).

Qhp =
Qr√

2
(2.1)

where:

Qr Quality factor at resonance, [-]

Qhp Half power of the quality factor at resonance, [-]

From the value of Qhp the frequencies, having this amplitude, ωR1 and ωR2, located on either side of the

peak can be found. From these points the damping ratio can be determined using Equation (2.2) .

1

2ζ
=

ωr
ωR2 − ωR1

(2.2)

where: [Rao, 2011]

ζ Damping ratio, [-]

ωr Resonant frequency,
[
rad
s

]
ωR1 First half power point, [Hz]

ωR2 Second half power point, [Hz]

To automatically calculate the damping from the results obtained, the points of the exported FRF are

imported into MATLAB. The resonant frequency is then found by �nding the maximum amplitude in a

2Appendix CD\MATLAB\Experimental postprocessing\FRF_main
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2.3. Damping determination

given interval, 0 to 5000Hz for the �rst frequencies, from the amplitude at resonance, Qhp is calculated.

To be able to calculate the damping, the values of ωR1 and ωR2 needs to be determined. As the obtained

FRF is a series of points it is unlikely that ωR1 and ωR2 corresponds to these points, so it is necessary to

calculate their values from the surrounding points.

As shown on Figure 2.23 the value of Qhp, marked by the red line, can lie between measurement points,

marked by black dots. To �nd the point ωR2 where the FRF has the value of Qhp, marked by a blue dot,

the point before and after is located. As seen in Figure 2.23 two triangles can be obtained from the three

points, sharing the same angle α, and thus the following equations can be written.

tan(α) =
ωR2 − ωi−1
Qhp −Ai−1

tan(α) =
ωi−1 − ωi
Ai−1 −Ai

(2.3)

ωR2 =
ωi−1 − ωi ·Qhp −Ai−1

Ai−1 −Ai
+ ωi−1 (2.4)

where:

ωi Frequency at point i,
[
rad
s

]
Ai Amplitude at point i, [-]

As both the frequencies and amplitudes at the points are readily available, from the FRF data, ωR2 can

be calculated from Equation (2.4). The process is then repeated to �nd ωR1.

R r

hp

r R2R1

i-1 i-1

R2 hp

i i

Figure 2.23 Illustration of the geometric principle used to determine the values of ωR1 and ωR2

When both ωR1 and ωR2 have been obtained, the damping ratio can be calculated from Equation (2.2).

2.3.2 Results

In Table 2.3 the damping ratios obtained with the presented procedure can be seen. If the results for

pretension below 20% and 50% for steel and aluminum respectively are excluded, it is seen that the

damping ratio remains stable for the steel structure while there is a decrease for the aluminum structure.

From the results obtained in this chapter it seems unlikely that the damping change, in relation to

pretension, causes a audible di�erence in the acoustical response above the thresholds of 20% and 50%.

However if the damping ratios for the aluminum structure are observed over the entire range of 10% to

90% it is very likely that the change in damping can cause the di�erence in the ringing sound initially

observed.
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Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90%

Steel structure damping(%)

Microphone 0.57 0.43 0.38 0.37 0.35 0.33 0.35 0.38 0.35

Accelerometer 2 0.56 0.46 0.39 0.37 0.37 0.35 0.35 0.38 0.37

Accelerometer 3 0.56 0.47 0.46 0.41 0.38 0.53 0.40 0.34 0.32

Aluminum structure damping(%)

Microphone 4.39 1.28 7.44 1.46 0.74 0.51 0.46 0.47 0.38

Accelerometer 2 5.65 1.11 2.07 1.01 0.71 0.52 0.49 0.49 0.39

Accelerometer 3 1.04 0.62 0.69 0.68 0.67 0.50 0.46 0.40 0.41

Table 2.3 Calculated dampening from experimental data.

2.4 Washer in�uence

To determine if the size of the washers has an in�uence on the structural response, experiments have

been performed for both the steel and aluminum structure, for three sizes of washers, which can be seen

in Figure 2.24. The size of the middle sized washer is based on the size of a standard M12 washer, the

small and large size are 50% smaller and larger, in outer diameter respectively. Working drawings for the

washers can be found in Appendix B.

Figure 2.24 The di�erent washer sizes tested.

Figure 2.25 Indents and abrasions caused by bolt tightening
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2.5. Investigating higher order resonances

The tests did however not show any clear di�erences on the response when changing the washers. By

inspecting the di�erent washers after the testing, it was observed that the area of contact between the

bolts and the washers were approximately the same for all three sizes, as indicated by the indented and

abraded areas shown on Figure 2.25. This indicates that there is little change in the interface between

the bolt and the structure, for di�erent washer sizes. Thus the in�uence of washer sizes will not be

investigated further.

2.5 Investigating higher order resonances

As can be seen from Figure 2.19 and Figure 2.20 there is a second group of peaks at around 10kHz and

8kHz for steel and aluminum respectively. The exact values of these peaks can be seen in Table 2.4.

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc2 steel 8672 7668 9824 10200 10312 10368 10408 10424 10432

Acc2 aluminum 7504 8208 8424 8496 8536 8576 8600 8608 8616

Table 2.4 Location of the �rst resonance peak for a given level of pretension, from acc2 measurements

As seen from the table, the same behavior can be observed as in the �rst frequencies, with higher

frequencies at higher tension. Looking over the entire range of pretension, the eigenfrequency gap

between 10% and 90% is increased compared to the results for the lower order modes. Looking at

only the range from 20% and 50% and up, for steel and aluminum respectively, the gap is increased for

steel and decreased for the aluminum. The reason for the decrease in resonant frequency from 10% to

20% pretension is not clear, but supports the statement that only measurements from 30% pretension

and up should be accepted for the steel stucture, as stated in Section 2.2.

2.6 Summary

Summing up on what has been found during the initial work, it was found that a clear shift in the

eigenfrequencies, increasing with higher levels of pretension. This increase in frequencies is so signi�cant

that it can not be explained purely by a change in sti�ness, and is thought to be caused by a change in

the boundary conditions instead. It was also found that the microphone could only pick up the �rst set

of natural frequencies, due to the duration of the signal generated by the impact hammer. The in�uence

of the washers was also examined and was found to be negligible, and so will not be treated further.

In relation to the damping of the structure, it was found that there is a clear di�erence between a

tightened and an untightened bolt, which could be the reason for the audible di�erence in the "ringing"

of the structural response, with damping decreasing with increased pretension. A di�erence in the

damping of bolts tightened above 20% and 50%, for steel and aluminum respectively, can however not

be seen clearly, although the tendency for decreasing damping is present.

The information obtained in this chapter will be used as the foundation for the further work, where the

transmission mechanism between the bolt and the cylinder will be examined in Chapter 6. The hypothesis

of the boundary conditions being the cause of the main part of the rise in eigenfrequencies is treated

in Chapter 3. Furthermore, as the results obtained with the steel structure are more consistent, with

regards to both the resonance response and damping, than the aluminum structure, the steel structure

will be the basis of the further work of the project.
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Investigation of response

change 3
In Chapter 2 it was found that when a bolt is tensioned, the eigenfrequencies related to the bolt increase

with increased tension. The purpose of this chapter is to examine the cause of this change, which is

initiated by simple calculations followed by Finite Element (FE) modelling.

In the experiments described in Chapter 2 the frequencies were found to vary from 2864Hz to 3040Hz, for

pretensions of 30% and 90% respectively, measured by acc2 on the steel structure. This gives a di�erence

of 176Hz, thus the frequency increases by 6.1% when the bolt is tightened. The cause of the di�erence

in the excited frequencies is yet to be explained.

To explain the increase in the measured frequencies, it is necessary to consider the system of the test

setup. As the bolt is what vibrates, it is only the bolt that is simpli�ed. The bolt is linear elastic, thus

it is reasonable to simplify the bolt to a linear system. By evaluating each mode of the bolt separately,

it is possible to model each mode by a one degree of freedom system. Each mode of the bolt can then

be represented by equivalent spring constants and a �xed mass. The single degree of freedom system is

shown on Figure 3.1. The system in Figure 3.1 is only used for illustrating the test setup, and to �nd the

root cause of the increase in excited frequencies.

m

k

z(t)

k

Figure 3.1 The spring/mass system used for illustrating the system.

The eigenfrequency of a spring/mass system is found by Equation (3.1). As the eigenfrequencies are

already known, and the mass does not change at any point, the equation can be used for �nding the

change in sti�ness of the system.

ωn =

√
keq
m

(3.1)

where:

keq Equavalent sti�ness,
[
N
m

]
m Mass, [kg]

ωn Undamped Eigenfrequency,
[
rad
s

]
To �nd the change in sti�ness Equation (3.1) is utilized in Equation (3.2).

3040Hz

2864Hz
= 1.061 =

√
keq1
m√
keq2
m

=

√
keq1
keq2

(3.2)
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3. Investigation of response change

keq1
keq2

= 1.127 (3.3)

The result from Equation (3.3) shows that a change in sti�ness of 12.7% is required in order to change

the frequencies su�ciently. This is unlikely for a steel bolt, as it is pretensioned according to its proof

strength and thus is loaded in the linear elastic zone. It is therefore concluded that a sti�ness change of

the bolt is not the primary cause of the frequencies.

As brie�y discussed in Section 2.2, another hypothesis is that the change could be induced by the change

of boundary conditions when the bolt is tightened. The bolt is expected to move more freely when the

bolt is less tightened and the bolt is more �xated when it is tightened more. To investigate if the change

of boundaries can yield a di�erence of 6.1% in frequencies a Finite Element (FE) model is created. The

boundary conditions in the FE model is changed between hinged and clamped. The model, boundary

conditions and mesh is discussed in the following section.

3.1 FE model establishment

During this section the FE model, that is used to investigate the e�ect of boundary conditions, is created.

The model is based on the M12 bolt used in the test rig and there is no pretension applied to the bolt

as the pretension is simulated by the change of boundary conditions. The geometry for the FE model

based on standard dimensions for a M12 bolt. The �nished model is seen on Figure 3.2.

Figure 3.2 The model of the bolt used to �nd the eigenfrequency.

On Figure 3.2 it is seen that the bolt head and nut is divided into 12 seperate volumes, because the circle

separating the volumes is used for boundary conditions as explained in Section 3.1.2.

3.1.1 Meshing the model

The mesh is created as a mapped mesh with SOLID186 elements in ANSYS Classic. SOLID186 elements

are a second order quadrilateral element. The quadrilateral element shape is chosen because it allows

a much smoother mesh than with tetrahedral elements. The converged mesh with an element size of

1.75mm is seen on Figure 3.3, the mesh convergence study is described in Section 3.1.3.
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3.1. FE model establishment

Figure 3.3 The mesh used on the bolt vibration study.

The SOLID186 element used can be con�gured according to the analysis carried out. During this analysis

of the eigenfrequencies of the bolt the con�gurations used are stated in Table 3.1.

SOLID186 element options

Element technology Full integration

Layer construction Structural solid

Element formulation Pure displacement

Table 3.1 Element con�guration used for the bolt frequency analysis.

The full integration option is selected as this option uses more Gauss points when integrating and thus

a higher accuracy is obtained but the calculation time is slower compared to the reduced integration

option. The pure displacement option is selected as frequency and modes.

3.1.2 Boundary conditions

Two di�erent boundary conditions are applied to the model, where the �rst boundary condition is hinged,

as seen on Figure 3.4. The boundary condition is applied to a circle of nodes placed between the hex

head and bolt shaft, the circle used for the hinged boundary is seen on Figure 3.2. The �xed boundary

condition is a total �xation of the bolt head and nut as shown on Figure 3.5. Both boundary conditions

are applied to the bolt head and the nut on the surfaces pointing towards each other.

Figure 3.4 Hinged boundary condition for the

bolt FE model.

Figure 3.5 Fixed boundary condition for the bolt

FE model.
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The boundary conditions is applied directly to nodal points in the model by selecting the appropriate

areas or lines and afterwards selecting nodes attached to the selected areas or lines.

3.1.3 convergency study

To ensure the accuracy of the FE model, it is necessary to make a mesh convergence study. The

convergence study is only shown here for the �xed boundary condition, as it tends to converge slower

than the hinged boundary condition. When the eigenfrequency is changing less than ±0.25% the model

is considered as converged. The mesh is re�ned from 10mm to a mesh size of 1.25mm with a step size

of 0.25mm. The mesh is not re�ned more than a mesh size of 1.25mm due to computational limitations.

The scripts for the performing the convergence study is found on the Appendix CD 1.
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Figure 3.6 Convergence study of the FE bolt model.

As seen on the Figure 3.6 the mesh seems to converge when the relative error is considered. However

the frequency seems to decrease steadily and the model do not seem to be converging towards a steady

value. Thus a more thorough study of the model is carried out. The new study is initiated by considering

a clamped-clamped cylinder, that represents the bolt shaft. The detailed analysis is set up to see if the

simpli�ed structure converges. The same mesh tool, solver and MATLAB script from the convergence of

the bolt study is used for the cylinder. The meshed cylinder is shown in Figure 3.7.

Figure 3.7 The meshed model of the cylinder with a mesh size of 3mm.

The result of the convergence study of the cylinder is seen in Figure 3.8.

1Appendix CD \FE \Scripts \Convergence bolt
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Figure 3.8 Convergence study of the FE bolt model.

From the convergence study in Figure 3.8, it is seen that the cylinder, that is clamped in each end,

converges and the last six mesh sizes is within 2Hz. Thus it is concluded that it is not the bolt shaft

that prevents the bolt model from converging. The mode shape of the cylinder is seen on the animation

attached on the Appendix CD 2. The scripts for the convergence study of the cylinder can be found

Appendix CD3.

A detailed model of the bolt head is then made, to investigate if it is the bolt head that does not

converge. The bolt head is constrained in the same way as the full bolt model but the bolt shaft, nut

etc. are neglected. The bolt head model is seen on Figure 3.9.

Figure 3.9 The meshed model of the bolt head with a mesh size of 1mm.

The convergence study of the bolt head is seen on Figure 3.10, and it is seen that the bolt head also

converges near a frequency of 83880Hz and the relative error is for the last four mesh sizes less than 0.05%.

The mesh size of the head is required to be much �ner in the bolt head before the model converges than

the bolt shaft. The mode shape is seen on the animation attached on the Appendix CD 4. The scripts

for the convergence study of the bolt head can be found Appendix CD5.

Since both submodels converge, it is expected that the full bolt model also converges, but is limited by

the available computational power. Hence a mesh size of 1.75mm for the full model is used.

2Appendix CD \FE \Animations \Cylinder Vibration Analysis.avi
3Appendix CD \FE \Scripts \Cylinder
4Appendix CD \FE \Animations \Bolt Head Vibration Analysis.avi
5Appendix CD \FE \Scripts \Bolt Head
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Figure 3.10 Convergence study of the FE bolt model.

3.2 FE results

In this section the FE model, is used to evaluate the eigenfrequency of the bolt for both the hinged

and clamped boundary condition. The results of the the structural vibration study for the two di�erent

boundary conditions are listed in Table 3.2. The modes of the two boundary conditions is attached as an

animation on the Appendix CD both for hinged BC6 and clamped BC7. The scripts for the FE model,

that can variate between the two boundary conditions, can be found Appendix CD8.

Hinged Clamped

f1 [Hz] 3141.3(Transeverse) 3345.5(Transeverse)

f2 [Hz] 3141.3(Transeverse) 3345.5(Transeverse)

f3 [Hz] 8284.8(Transeverse) 8790(Transeverse)

f4 [Hz] 8284.8(Transeverse) 8790(Transeverse)

f5 [Hz] 12474(Breathing) 12725(Breathing)

Table 3.2 Eigenfrequencies found by the FE model of the bolt.

The �rst two modal frequencies in Table 3.2 is at the same frequnecy and display the same �rst transverse

mode of the bolt. The two frequencies indicate that the bolt can exhibit resonance for excitation in two

di�erent directions. From Table 3.2 it is also seen that there is a di�erence of 204.2Hz between the �rst

eigenfrequencis of the two boundary conditions. The di�erence between the two boundary conditions is

found to be 6.5%. Which is similar to the di�erence of 176Hz found during tests with a di�erence of

6.1%. So the change in boundary conditions is believed to be the root cause of the jump in frequencies.

3.3 Boundary condition sensitivity study

During this chapter the hinged boundary condition is assumed to be placed in the center between the

bolt shaft and edge of the hexagonal bolt head, which implies a diameter of 15.4mm. This section will

investigate if the location of hinged boundary condition will a�ect the response of the bolt by variating

the location of the hinged boundary condition. It is important to evaluate the in�uence of the location

of the hinged boundary condition, as this is an approximation to the actual behavior of the system.

The boundary condition diameter is tested for ±0.5mm and ±1mm in order to estimate the validity of

the obtained results in Section 3.2. The results from variation of the BC diameter is stated in Table 3.3.

6Appendix CD \FE \Animations \Bolt Vibration Analysis BC1
7Appendix CD \FE \Animations \Bolt Vibration Analysis BC2
8Appendix CD \FE \Scripts \BC Bolt
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3.4. summary

14.4mm 14.9mm 15.4mm 15.9mm 16.4mm

f1 [Hz] 3142.7 3136.9 3132.2 3120.8 3116.2

f2 [Hz] 3142.7 3136.9 3132.2 3120.8 3116.2

f3 [Hz] 8293.3 8276.1 8261.7 8233.8 8219.5

f4 [Hz] 8293.3 8276.1 8261.7 8233.8 8219.5

f5 [Hz] 12471 12466 12464 12460 12458

Table 3.3 Eigenfrequencies found changing the diameter of the hinged BC.

As seen from Table 3.3 the variation for the �rst mode is 26.5Hz, which is less than 1% and the same

applies for the second mode where results variate 73.8Hz which is also less than 1%. Thus the in�uence

of the location of the BC diameter is not considered as very important if it is located in the examined

region.

The scripts for the FE model, that can variate between the di�erent radius', can be found Appendix

CD9.

3.4 summary

In this chapter, the hypothesis that changes in boundary conditions, cause the increase in resonant

frequencies, seen in chapter 2, has been examined. Initially the required increase in bolt sti�ness, to

cause the resonant peak movement, has been calculated. This was found to be unfeasible as it required

an increase in sti�ness of 12.7% . Subsequently a FE model was established, and used to examine if

changing boundary conditions could be the cause of the peak movement.

The results from test and FE is seen in Table 3.4 and Table 3.5 for the hinged and clamped boundary

conditions respectively. From the tables it is seen that the FE results and test results are not exactly the

same, but what is worth noticing is that the frequencies is in the same region and the di�erence between

the 30% pretentions and the 90% pretension from tests and the di�erence of the FE results is almost the

same.

FE Hinged Test 30%

f1 [Hz] 3141 2864

f3 [Hz] 8285 9824

Table 3.4 Eigenfrequencies found by the FE

model and test results of the bolt.

FE Clamped Test 90%

f1 [Hz] 3346 3040

f3 [Hz] 8790 10432

Table 3.5 Eigenfrequencies found by the FE

model and test results of the bolt.

The di�erence between FE and tests is elaborated more in Chapter 3. The di�erence between results for

both FE and tests is stated in Table 3.6.

FE Test

∆f1 [Hz] 204 176

∆f3 [Hz] 505 608

Table 3.6 Di�erence in the eigenfrequencies found by the FE model and test results of the bolt.

Based on these results, it is believed that the change in boundary conditions, is the main cause of the

change in response for changing pretension. In order to investigate this hypothesis more thoroughly, more

tests on di�erent bolt sizes are carried out and more detailed modeling is performed.

9Appendix CD \FE \Scripts \Hinged Study
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Further experimental

investigation 4
The purpose of this chapter is to investigate the results from Chapter 2 and 3 in greater detail. In those

chapters, the feature that causes the change in response under pretension, was determined to be the

change in boundary conditions for the bolt. In this chapter the robustness of this feature is examined by

testing di�erent sizes of bolts to see whether the phenomenon is consistent in its behavior.

In Chapter 2 and 3 the mechanism causing the change in response was identi�ed as a change in boundary

conditions. This change will occur when increased tension in the bolt causes the surfaces of the bolt head,

washer and structure to be pressed harder together, thus restricting the motion of the bolt head. The

purpose of this section is to examine this phenomenon for di�erent sizes of bolts. The bolts examined

in this section are M18 and M24 bolts, the setup used is identical to the one described in Section 2.1,

except for the structure itself where the hole for the bolt need to be made to �t the larger bolts. Working

drawings for the test structure for M18 and M24 bolts can be found in Appendix B.

4.1 Parametric study of bolts

To get an idea of what to expect from the response of the structures, the �rst �ve natural frequencies for

the bolts have been calculated using a FEM model similar to the one described in Chapter 3. The results

of the FEM analysis can be seen in Table 4.1 and 4.2, the values under hinged are what is expected to be

the lower bound of the frequencies corresponding to a loose bolt, while the values under clamped are the

upper bound of the frequencies and is what is expected for a highly pretensioned bolt. It should be noted

that the frequencies of the FE model is not expected to correlate completely with the experimentally

found values, as the geometry and material parameters are idealized, but will be used as an indication

of where to expect resonant frequencies as well as how large a gap to be expected between a loose and a

completely tightened bolt.

Hinged Clamped

f1 [Hz] 4373.2(Transverse) 4767.7(Transverse)

f2 [Hz] 4373.2(Transverse) 4767.7(Transverse)

f3 [Hz] 11061(Transverse) 11958(Transverse)

f4 [Hz] 11061(Transverse) 11958(Transverse)

f5 [Hz] 12253(Breathing) 12625(Breathing)

Table 4.1 Eigenfrequencies found by the FE

model for the M18 bolt.

Hinged Clamped

f1 [Hz] 5310.1(Transverse) 5913.1(Transverse)

f2 [Hz] 5310.1(Transverse) 5913.1(Transverse)

f3 [Hz] 12021(Breathing) 12522(Breathing)

f4 [Hz] 12843(Transverse) 14151(Transverse)

f5 [Hz] 12843(Transverse) 14151(Transverse)

Table 4.2 Eigenfrequencies found by the FE

model for the M24 bolt.

On Figure 4.1 and 4.2 the response obtained with acc2 can be seen for the M18 and M24 systems

respectively. For the response of the M18 system three peaks are observable, although at somewhat lower

frequencies than expected, and showing a movement of the peaks with changed pretension as expected.

However when looking at the peak at approximately 4kHz, it can be seen that when the pretension is

increased to 90% the peak disappears. Looking at Figure 4.2 it can be seen that the resonances expected

at around 6kHz are not captured by the accelerometer and that the response of the system simply follows

that of the structure surrounding the bolt. The reason for this cannot be readily explained, but an

explanation might be that the compressive force exerted by the bolt will cause the bolt and structure to
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move as one and not two joined systems. A way to get more insight into the mechanics of the system,

could be an expanded FE model that models the entire system. This expanded model will be treated in

detail in Chapter 5.
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Figure 4.1 Frequency response H1, obtained with acc2, for M18 bolt.
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Figure 4.2 Frequency response H1, obtained with acc2, for M24 bolt.

In Figure 4.3 and 4.4 the response obtained with the microphone for the two bolt sizes can be seen.

Here only the higher order modes are captured, this is expected for the structure with the M24 bolt as

the accelerometers do not capture the resonances expected at 6kHz. For the M18 bolt however, some

indication of the resonances would be expected. To check if the response can be obtained with the

microphone, an alternate method is used to visualize the response. In Figure 4.5 a plot of the Short Time

Fourier Transform (STFT) for the M18 response to a single hit under 80% pretension. As it can be seen,

the peak at 4kHz is visible due to the slower decay of the frequency response.
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Figure 4.3 Frequency response H1, obtained with mic, for M18 bolt.
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Figure 4.4 Frequency response H1, obtained with mic, for M24 bolt.

Figure 4.5 STFT for the response obtained with the microphone at 80% pretension for the M18 bolt.
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Thus it is possible to obtain the resonant frequencies using the microphone, even if these are not

immediately obtainable using FRF's. Furthermore the acc2 measurements for the M24 bolts were

investigated via STFT's to determine if the resonances expected at around 6kHz can be seen with this

method, however no additional information was obtained from this.

4.2 Results comparison

In this section the results from the M18 and M24 structure tests are compared to those obtained for

the M12 structure, as well as the expected resonance peak locations, obtained with the FE model. The

location of the peaks found for each bolt size and mode, can be seen in Table 4.3. The approximate

location where peaks would be expected, based on the FE analysis, can be seen in Table 4.4. In the

tables, double resonances have been joined as one, so that only three modes are evaluated.

Measurement 10% 20% 30% 40% 50% 60% 70% 80% 90%

M12
f1 [Hz] 2288 2720 2864 2928 2960 2984 3008 3024 3040

f2 [Hz] 8672 7668 9824 10200 10312 10368 10408 10424 10432

M18

f1 [Hz] - - 3912 3944 4000 4008 4024 4032 -

f2 [Hz] 9456 9528 9448 9480 9552 9592 9656 9680 9904

f3 [Hz] 10440 10440 10488 10504 10552 10584 10608 10632 10744

M24 f1 [Hz] 9440 9472 9456 9584 9664 9776 9608 N/A N/A

Table 4.3 Peak locations for the tested bolt sizes.

Expected peak location

M12 M18 M24

f1 [Hz] 3kHz 8-9kHz 12kHz

f2 [Hz] 4-5kHz 11-12kHz 12kHz

f3 [Hz] 5-6kHz 12kHz 13-14kHz

Table 4.4 Approximate peak location, expectation based on FE analysis of bolt.

As it can be seen from the tables, only in the experiments for the M18 bolt, three modes were found.

These were however lower than predicted by the FE model of the bolt, suggesting that a more complex

model might be needed to accurately predict the system behavior. Furthermore, the lower than expected

resonant frequencies of the M18 system, implies that the response of the other systems could also be

expected to be lower than predicted. This suggests that the second mode found for the M12 bolt could

actually be related to the third mode instead, and that the second mode is simply not captured well by

the accelerometer. Looking at the response for the M24 system, the same can be said for the resonance

that is captured, which might be related to the second mode of the system, rather than the �rst. Whether

this is the case, and why these modes are not captured by the accelerometer, will be treated in Chapter 5,

where an expanded FE model of the system is treated.

Looking at the movement of the peaks, it can be seen that the same kind of movement observed for

the M12 structure is seen for the M18 structure, where higher pretension causes a steady increase in

eigenfrequencies. With somewhat similar magnitudes of change, if the second group of eigenfrequencies

of the M12 structure is seen as the third group, as described above. The same cannot be seen for the M24

structure, as the resonance for 70% pretension drops down in frequencies, except for this the behavior is

the same however.
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4.3 Summary

In this chapter the behavior of a system containing a M18 bolt and a system containing a M24 bolt, have

been examined. For these tests, the same behavior as previously seen, where the resonant frequencies

increase with higher levels of pretension, was observed. It was also found that above a certain threshold

of clamping force, some of the expected resonance peaks disappeared, the reason for this is not known

but an explanation will be sought in Chapter 5. Furthermore, it was found that even if the response of a

certain mode could not be seen in an FRF, it might be possible to obtain it by displaying the response

with an STFT.
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Expanded finite element

model 5
Based on the work described in Chapter 2 and 3 it was established that increasing the pretension of a M12

bolt, would cause an increase in the resonant frequencies observable in an FRF. In Chapter 4 larger sizes

of bolts were examined, and it was found that the change of frequencies observed for the M12 structure

were also present here. More importantly it was found that when the clamping force, caused by the

pretension, reaches a certain threshold, the peaks associated with the �rst eigenfrequencies completely

disappear, and only the response of the structure can be observed. The reason for this is unknown, and

it is the purpose of this chapter to investigate this phenomenon.

To investigate the phenomenon a full FE model of the system is created. The �rst step in doing this is to

establish a model for the structure, and determining its eigenfrequencies through a modal analysis. Once

the model of the structure has been established, it is used together with the model for the bolt to create

a model of the full system. A modal analysis is then performed on this full model to establish whether

the model is valid when compared to the physical system. Finally a harmonic analysis is performed to

investigate details of the system that would be di�cult to examine in practical tests.

5.1 Structure model

To get started with the full system model, a model of the structure around the bolt is modeled to obtain

the response of the structure itself, and to get an idea of the mesh quality required to get accurate results

for the structure. This is done using the procedure described in Chapter 3, using the same element type

and settings. The geometry and mesh for the M12 structure can be seen in Figure 5.1 and 5.2 respectively.

Figure 5.1 Geometry of the M12 structure. Figure 5.2 Meshed model of the M12 structure.

As the structure is suspended by four compliant strings, it is assumed that the structure can vibrate

freely. Therefore the structure is modeled without any boundary conditions, this also means that the

�rst six modes found for the structure is at 0Hz and is rigid body motions, and are thus excluded when

the results are presented.
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5. Expanded �nite element model

In Figure 5.3 the convergence of the �rst eigenfrequency for the M12 structure is seen. The model is

completely converged at an element size of 7mm , which is also the case for the M18 and M24 structures.
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Figure 5.3 Convergence for the M12 structure

The results of the analysis for the three structures can be seen in Table 5.1. As it can be seen, the

response of the structure gives much higher resonant frequencies, compared to those of the bolts found

in Chapter 3 and 4.

M12 M18 M24

f1 [Hz] 15755(Torsional) 15747(Torsional) 15740(Torsional)

f2 [Hz] 17095(Transverse) 17085(Transverse) 17063(Transverse)

f3 [Hz] 17095(Transverse) 17085(Transverse) 17063(Transverse)

f4 [Hz] 24711(Longitudinal) 24640(Longitudinal) 23362(Breathing)

f5 [Hz] 27050(Transverse) 25633(Transverse) 23362(Breathing)

Table 5.1 Eigenfrequencies found by the FE model for the di�erent structures.

The fact that the �rst modes are torsional was found to be suspicious, so to verify the results of the

FE analysis, the eigenfrequencies are calculated analytically. This is possible as the structure in itself is

simple enough to be covered by analytical solutions for beams.

The torsional eigenfrequency is calculated from Equation (5.1), giving the nth eigenfrequency for a free-

free rod. The parameters used for the calculation can be seen in Table 5.2.

ω1 =
π

L

√
G

ρ
(5.1)

where: [Rao, 2011]

L Length, [m]

ρ Density,
[

kg
m3

]
Model test parameters

G 77GPa

ρ 7800 kg
m3

L 0.1m

Table 5.2 Parameters for calculating torsional frequencies.
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5.2. Complete structure modal analysis

The �rst torsional eigenfrequency is thus:

ω1 = 98658
rad

s
(5.2)

f1 = 15702Hz (5.3)

This supports the result for the torsional mode found by the FE model, but to assure that it is actually

the �rst eigenfrequency, the lowest transverse eigenfrequency has also been calculated. This has been

done using Timoshenko beam theory and the procedure can be seen in Section 6.6, where it is found that

the �rst transverse eigenfrequency is 16818Hz, verifying the results obtained with the FE model. The

scripts for the FE model of the structure are found on the Appendix CD1.

5.2 Complete structure modal analysis

To determine the eigenfrequencies for the entire system, a modal analysis is performed. This is done to

examine if it is possible to accurately model the entire system, and thus predict the eigenfrequencies for

a given system. Furthermore it is done to examine whether the expected peaks at around 6kHz for the

M24 should be present in the experimental results.

As both models for the bolt and the surrounding structure have been created, making the full model is

a question of piecing the two models together and adding details like the washer and transducer. The

washer and transducer is modeled using the dimensions given in the working drawings in Appendix B.

All components are then connected in the model, by gluing surfaces together, assuring that nodes at

the glued surfaces are connected. The glue procedure is where the di�erence in the hinged and clamped

model is implemented. In the clamped model, all surfaces in contact with each other is glued together.

In the hinged model, all surfaces except the surface between the bolt head and washer, as well as the nut

and transducer, are glued. The surfaces between the bolt/nut and washer/transducer, are connected at a

single line around the center of the bolt, thus constraining it in a similar way to that used in Chapter 3.

The scripts for the FE model of the full model are found on the Appendix CD2.

The model is then meshed using the mesh size that was found to be converged for the bolt and structure.

The washer and transducer are meshed with the same mesh size as the bolt. In Figure 5.4 and 5.5 the

geometry and meshed model are seen.

Figure 5.4 Geometry of the complete M12 struc-

ture.

Figure 5.5 Meshed model of the complete M12

structure.
1Appendix CD\FE\Scripts\Structure \
2Appendix CD\FE\Scripts\Full Model \
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5. Expanded �nite element model

As for the structure in itself, the modal analysis is performed without constraining the structure, for

the complete system. Thus the �rst six eigenmodes are rigid body motions, and are removed from the

presented results. The results from the analysis can be seen in Table 5.3. The scripts for the FE model

of the structure are found on the Appendix CD3.

M12 M18 M24

Hinged Clamped Hinged Clamped Hinged Clamped

f1 3015Hz 3144Hz 4167Hz 4415Hz 5066Hz 5449Hz

f2 3015Hz 3144Hz 4168Hz 4416Hz 5066Hz 5449Hz

f3 7897Hz 8178Hz 9984Hz 10299Hz 9359Hz 9762Hz

f4 7897Hz 8178Hz 9985Hz 10300Hz 9360Hz 9762Hz

f5 10200Hz 10497Hz 10611Hz 11151Hz 11426Hz 12007Hz

Table 5.3 Eigenfrequencies found by the FE model for the structure with an M12, M18 and M24 bolt

respectively. All modes are transverse, except M24 f5 which is torsional.

Compared to the results for the bolt alone, it can be seen that the eigenfrequencies for the full model

are slightly lower, with larger reduction for higher order modes. Looking at the results for the found

eigenfrequencies, they are seen to correlate even better with the experiments than the model for the bolt

alone, indicating that the model accurately depicts the behavior of the system. There are two exceptions

to this, the second mode for the M12 and the �rst Mode for the M24. Initially the peaks at 10kHz found

with the M12 bolt experiments, were thought to be the second mode as described in Chapter 2, however

with the information from the modal analysis the results can be reevaluated. Based on the modal analysis

it is clear that the small peaks around 8kHz, seen in Figure 2.19 are related to the second mode and that

the group at 10kHz actually represents the third mode. The reason for the reduced response at 8kHz is

not known but is expected to be caused by a di�erence in the mode shapes of the bolt, which will be

examined in the following section. The �rst mode of the M24 bolt, which would be expected at around

5kHz, does not show up or give any indication that it could be there in the experimental results, this

is also thought to be caused by a di�erence in the mode shape of the bolt, and will also be examined.

The idea of the mode shape causing the reduction in response is shown on Figure 5.6, on the left hand

side the mode shape of the bolt causes the surface of the cylinder to de�ect in the same manner as the

bolt, while the case shown on the right hand side, shows a transverse mode of the bolt to cause shearing

motion in the cylinder.

Figure 5.6 Di�erence in cylinder shape for di�erent bolt modes.

It is not possible to determine whether this is the case accurately by simply observing the modeshapes of

the entire structure. So get a clear view of what happens at di�erent point in the structure, a harmonic

analysis is necessary.

3Appendix CD\FE\Scripts\Structure \
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5.3. Harmonic analysis

5.3 Harmonic analysis

The purpose of doing a harmonic analysis is to gain a better understanding of what happens, at speci�c

points of the structure at given frequencies. This will be used to determine whether it is possible to

model the behavior of the structure surface accurately. As well as to determine whether the mode shapes

of the bolt are causing the disappearance of eigenfrequencies in the experiments.

5.3.1 Modeling

To be able to perform a harmonic analysis, it is necessary to have a fully constrained model, thus the

model used up until this point is not suitable. To constrain the model, in a way similar to that of the

experiments, a series of springs are included in the model. Except for these springs, the model is identical

to the one used to �nd the eigenfrequencies for the complete structure structure.

To include springs in the model, unidirectional COMBIN14 elements are used. These elements provide

a speci�ed amount of sti�ness along its length, making it possible to imitate the e�ects of the strings

used in the experiments. The strings are attached to the model at four points similar to the way the

structure is suspended in the experiments. As these spring elements are unidirectional, three are needed

at each location to properly constrain the structure in the x, y, and z-directions. The meshed model with

boundary conditions can be seen in Figure 5.7, and the meshed model with the o� centered force can be

seen in Figure 5.8.

Figure 5.7 Meshed model for the harmonic

analysis with the applied boundary conditions.

Figure 5.8 Meshed model for the harmonic

analysis with the applied force.

In order to get a response in the system, a load has to be applied. This load is applied slightly o� center

at the bolt head, for the analysis a load of 100N is applied in the z direction. Although the used force is

negligible as it will only scale the amplitude of the response, the level used is based on the force measured

by the impact hammer in the experiments.

Determining string sti�ness

To determine what sti�ness should be for the springs, to best imitate the experimental conditions, a

series of modal analysis are performed. The analysis is performed for the M12 model, for three di�erent

levels of string sti�ness, the results can be seen in Table 5.4.
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5. Expanded �nite element model

String sti�ness

100Pa 1MPa 1GPa

f1 3015Hz 3015Hz 4057Hz

f2 3015Hz 3015Hz 4126Hz

f3 7897Hz 7897Hz 7932Hz

f4 7897Hz 7897Hz 7950Hz

f5 10200Hz 10200Hz 10329Hz

Table 5.4 Response for di�erent levels of spring sti�ness.

As it can be seen, a sti�ness of 100Pa og 1MPa gives the same results as the results of the modal analysis

of the unconstrained model, only di�ering in the �rst six modes, related to rigid body motion and thus

excluded from the results. For a sti�ness of 1GPa, a rise in frequencies are seen, these do not correlate

well with the experimental results. For the sti�ness of the springs a value of 1MPa is used, as 100Pa is

seen as unlikely low. The scripts for the FE model of the full model are found on the Appendix CD4.

5.3.2 Model veri�cation

To determine whether the results obtained with the harmonic analysis are valid, a sweep of the frequency

range used for the experiments has been performed. The sweep was performed for the system with the

M12 bolt, with a resolution of 8Hz as this is the resolution of the experimental data. The response is

taken at the same point as where acc2 is mounted, and in the same direction. The results of the sweep

can be seen in Figure 5.9, and as it can be seen, they have a good correlation with the response from the

experiments seen in Figure 2.19.
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Figure 5.9 Harmonic response sweep for the complete M12 structure.

The response at the peaks for the complete structure, for both the M18 and M24 bolt size, has also been

obtained, showing results comparable to those found during the experiments. The only exception is the

prescense of the �rst resonance for the M24 bolt, but this will be investigated in the following.

As the results obtained with the harmonic analysis coincides with the experiments, the model is seen

as valid and can thus be used to investigate parts of the structure, that are otherwise not possible to

examine.

4Appendix CD\FE\Scripts\Full Model Harmonic \
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5.3. Harmonic analysis

5.3.3 Motion shape

To examine whether there is a di�erence in the movement of the bolt and cylinder surface, causing some

of the expected resonant peaks to disappear, the motion of �ve points along each surface are examined.

In Figure 5.10 the points at the cylinder, where the response is measured, can be seen. Each point is

evaluated with regards to the magnitude of displacement in the x-direction, which is the same direction

as acc2 is mounted, in the experiments.

C1 C2 C3 C4 C5

B1 B2 B3 B4 B5

X

Z

Figure 5.10 Measurement points for evaluating the motion of the bolt and cylinder.

The de�ection of each point is then obtained at the resonant frequency. In Figure 5.11, to 5.19, the points

are plotted for the �rst three modes of the three bolt sizes. Where the blue line in the �gures represents

the de�ection of the structure surface and the red line represents the bolt surface, with displacement in

meters plotted along the y-axis and the point number plotted along the x-axis.
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Figure 5.11 M12 mode 1.
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Figure 5.12 M18 mode 1.
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Figure 5.13 M24 mode 1.
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Figure 5.14 M12 mode 2.
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Figure 5.15 M18 mode 2.
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Figure 5.16 M24 mode 2.
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Figure 5.17 M12 mode 3.
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Figure 5.18 M18 mode 3.
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Figure 5.19 M24 mode 3.
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5. Expanded �nite element model

As it can be seen from the shape outlined by the movement of the points, the �rst mode of the bolt and

the structure exhibits the same motion, while the higher modes di�er in movement. It can be seen that

in the second mode for the M12 bolt, the point with the least movement is the point in the cylinder

where the accelerometer is placed. which might explain the reduced response obtained from the second

resonance in the experiments. The shape of the �rst mode for the M24 bolt does however not give any

explanation of why this response is not seen in the experiments.

Another thing that can be seen from the �gures is that there is a signi�cant di�erence in the displacement

amplitude between the bolt and the surface. Thus the larger displacement of the bolt, indicates that

most of the energy that is put into the system goes to the bolt, and is not transferred to the surface of

the cylinder, making it harder to obtain useful results with both the accelerometer and microphone. As

examining the transmission between the motion of the bolt and the structure, might clarify why some

resonances are not visible in the experiments, this is done in the following section.

5.3.4 Motion transmission

As previously described, there is a signi�cant di�erence between the displacement amplitude for the

bolt and structure. The purpose of this section is to examine this characteristic of the system, and the

in�uence it has on the experimental results.

To examine the transmission between the bolt and the structure, the response for the bolt and structure

at point B3 and C3 respectively is obtained. In Figure 5.20, 5.22, and 5.24 the response of the M12 bolt

can be seen, for mode 1, 2, and 3 respectively. In Figure 5.21, 5.23, and 5.25 the ratio between the bolt

and structure response can be seen for each mode.
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Figure 5.20 Mode 1 response.
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Figure 5.21 Mode 1 ratio.
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Figure 5.22 Mode 2 response.
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Figure 5.23 Mode 2 ratio.
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5.3. Harmonic analysis
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Figure 5.24 Mode 3 response.
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Figure 5.25 Mode 3 ratio.

As it can be seen from the �gures, the ratio of the displacements is relatively stable, remaining in

approximately the same magnitude, mainly diverging in the presence of resonances or anti resonances.

To get a clearer picture of the behavior, some characteristics are displayed in Table 5.5, for the di�erent

bolt sizes and related modes. In the table the maximum amplitude for the bolt and structure, the average

ratio, as well as the ratio between the peak amplitudes, is displayed. The average ratio is calculated as

the average value of the ratios plotted in Figure 5.21, 5.23, and 5.25 for the M12 system, and the similarly

the larger bolt sizes. The peak ratio is calculated as the ratio of the amplitudes at resonance for the bolt

and structure. As for the plots presented above, the information in the table is based on data for point

B3 and C3. With regards to the modes investigated, all are transverse, except for the third mode of the

M24 bolt, which is torsional, as was found in Section 5.2.

Looking at the information in the table, it is seen that the ratio is generally increasing for higher bolt

modes and larger bolt sizes. This means that even though, for example the �rst mode for the M12

bolt, gives a larger response than the �rst mode for the M24 bolt, the structural response is of the same

magnitude. In relation to this it should be noted that, for the harmonic analysis the force applied is

the same at all frequencies, while the force applied in the experiments decays with increasing frequency.

This does however not explain how the second, but not the third mode, of the M12 test gives a reduced

response, as the second mode has a twice as high amplitude under a constant force, and the higher

frequency of the third does not increase the acceleration enough to account for a larger response. The

same is the case for the �rst and second mode of the M24 bolt. One explanation of this could be that

the modal participation factor for the location of the force in the experiments, does not coincide with the

calculated response in the harmonic analysis.

Response amplitude (m)

Bolt size Mode Bolt Structure Average ratio Peak ratio

M12

1 2.082 · 10−5 5.731 · 10−7 0.027 0.027

2 7.405 · 10−6 5.932 · 10−8 0.006 0.008

3 4.281 · 10−8 2.712 · 10−8 0.099 0.633

M18

1 2.241 · 10−5 1.503 · 10−6 0.067 0.067

2 1.208 · 10−5 4.059 · 10−6 1.049 0.336

3 2.044 · 10−6 6.327 · 10−7 0.940 0.310

M24

1 7.458 · 10−6 9.614 · 10−7 0.132 0.129

2 6.662 · 10−7 9.945 · 10−7 1.554 1.493

3 2.467 · 10−9 3.068 · 10−9 1.696 1.244

Table 5.5 Characteristics of the motion transmission between the bolt and structure.
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5. Expanded �nite element model

In order to test whether the modal participation factor, is the reason for the di�erence between the

harmonic analysis and the experimental results, the FE model has been altered to apply the force

di�erently. Instead of applying the force in a single direction. The force is applied in both the x, y

and z direction, which will show how the structure is a�ected by changing the forcing conditions. In

Figure 5.26 a full sweep of the entire frequency range can be seen. Here it is seen that under the changed

forcing conditions, the second mode has the smallest response, while mode three has the largest. Thus

the response for the new forcing condition a better correlation with the experiments can be observed

compared to those shown on Figure 5.9.
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Figure 5.26 Harmonic response sweep for the complete M12 structure, with an altered force application.

To determine whether this is also the case for the M24 bolt, a sweep of a 1000Hz around the �rst and

second mode has been performed, the response can be seen in Figure 5.27. From this it can be seen that

the response of the second mode is larger than the �rst, con�rming that the application of the force gives

a signi�cant change in the response.
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Figure 5.27 Di�erence in amplitude of mode 1 and 2 for the M24 system.

Another important thing is that looking at the experimental results for individual bolt sizes, the mode
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5.4. Summary

with the largest ratio seems to be associated with the largest response, both with regards to accelerations

and acoustic emissions. Thus in order to better understand the transfer mechanism further investigation

is required. This will be done in Chapter 6 where damping e�ects will also be included.

5.4 Summary

In this chapter, the complete system used for the experiments has been modeled, and used for investigating

both the precision of the modeling method, and features of the system behavior that are not feasible to

examine experimentally.

Initially the structure was modeled without the bolt to obtain its eigenfrequencies, which were veri�ed

by analytical solutions. It was found that the eigenfrequencies were signi�cantly higher than those of the

bolts, implying that especially the lower bolt modes are weakly coupled to the structure modes.

The models of the bolt and structure where then combined, and missing features were added. The

eigenfrequencies of the complete system were then determined, and it was found that the frequencies for

the complete model were somewhat lower than those of the bolt alone. This drop causes the frequencies

of the system to coincide very well with the experimental results, thus verifying the model with respect

to the real physical behavior of the system.

Lastly a harmonic analysis was performed for the complete system, allowing otherwise inaccessible details

about the system to be determined. From this analysis it was found that there was a signi�cant di�erence

in the amplitudes of vibration between the bolt and the surrounding structure. The reason for this

di�erence is not clear, so to better understand the mechanism, further investigation is necessary, which

will be treated in Chapter 6. It was also found that the way that the forcing is applied to the system has

a signi�cant impact on the response.
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Analytical model 6
In the FE analysis of the complete structure it was discovered, that the transmission of the vibrations

from the bolt to the structure, variates according to the bolt type and the di�erent modes. Thus it is

necessary to investigate the transmission of vibrations, as this has a signi�cant in�uence on the acoustic

signal emitted. In order to investigate the transmission, an analytical model is created in this chapter.

The analytical model is used to investigate the transmission of the signal and how the friction from the

bolt head and the structure in�uences the transmission from the bolt to the structure.

To establish an analytical model, the complete system, shown in Figure 6.1, is decomposed. As the system

has several components, each with their own set of resonant frequencies, these will in�uence each other

in the complete system. Therefore the system can be decomposed into �ve subsystems, the structure,

bolt, nut, washer, and transducer. However due to the geometry of the nut, washer, and transducer, their

lowest eigenfrequencies are expected to be so much higher, than those of the structure and bolt, that

their in�uence on the complete system's lowest resonant frequencies are negligible. These components

are therefore not modeled individually in the analytical model, but are included in the subsystem of the

bolt.

Thus the the complete system is decomposed into two parts, system A and system B. system A consists

of a bolt, washer, and transducer and system B is the structure, the two systems are shown in Figure 6.2

and Figure 6.3 respectively. The analytical model needs to represent both system A and system B.

Figure 6.1 The complete system.

Figure 6.2 System A of the decomposed com-

plete system.

Figure 6.3 System B of the decomposed com-

plete system.

When the two systems are combined, as the complete system, two di�erent types of couplings can be

observed. The �rst, is a weak coupling, where the �rst eigenfrequency of system A, is much lower than

the �rst eigenfrequency of system B. The other, is a strong coupling, where the �rst eigenfrequency of

system A and B is intermittent. The analytical model should be able to display both weak and strong

coupling. During this report it is mostly the weak coupling that is investgated, but the M24 bolt tends
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6. Analytical model

to move away from the weak coupling towards the strong coupling. To complete the analysis of bolt

vibration the strong coupling also needs to be investigated, as explained in Chapter 9.

System A can be further decomposed, as each mode can be represented, as a single d.o.f. system, by a

sti�ness and a mass. In order to include the friction between the bolt head and the structure a damper

is included. System A is seen on Figure 6.4. System B is simpli�ed to a cantilever beam, as this allows

the structure to modeled as a continious system, enabling the transfer between bolt and structure to be

examined.

m

k c

z(t)

Figure 6.4 The analytical modeling for system

A.

w(x,t)

Figure 6.5 System B of the decomposed com-

plete system.

The system A and B then have to be coupled to resemble the complete test system. By adding the

spring/mass to the tip of the cantilever beam, the eigenfrequency of the spring/mass can be transferred

to the beam. The experiments are performed by applying an impact force, thus the model is derived as a

forced vibration system (harmonically excited structure). Hence the force is added to the mass and the

response is connected to the beam by a spring and damper, that is able to vibrate both for the its own

resonance frequencies and the vibrations transferred from the spring/mass.

m

F(t)

k c

z(t)

w(x,t)

Figure 6.6 The spring, mass, and damper system used for analytical modeling.

The beam in the complete system is modeled as as continuous, to get the mode shape and structure

behavior. The beam will initially be modeled with Bernoulli-Euler beam theory and later expanded to

Timoshenko beam theory to investigate higher order modes. The spring/mass is modeled as a single

degree of freedom system.
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6.1 Deriving the governing equations

To model a vibrating system, several methods can be applied. To assure that most of the aspects of the

system is covered, the most general principle, Hamilton's principle, is used. Which is the fundamental

principle which several other methods, e.g. Rayleigh's method and Rayleigh-Ritz' method, is based on.

Hamilton's principle is based on D'Alembert principle, which is another way of expressing Newton's

second law as F −ma = 0. Hamilton's principle is a variational method, where a solution is found by

variation of a functional, to �nd the dynamics of a physical system. In this case the functional is the

Lagrangian. The Lagrangian is the kinetic energy of a system subtracted by the potential energy in the

system. Hamilton's principle is stated in Equation (6.1). [Shames and Cozzarelli, 1992]

δ

∫ t2

t1

La dt = δ

∫ t2

t1

T − V dt = 0 (6.1)

where: [Shames and Cozzarelli, 1992]

δ Variation, [-]

La Lagrangian, [-]

t1 Start time, [s]

t2 end time, [s]

V Potential energy, [J]

T Kinetic energy, [J]

To model the system and �nd the eigenfrequencies it is necessary to consider the beam as a continuous

system. If the beam is simpli�ed to a spring, it is not possible to extract the modes of the beam from

the model. Initially the known boundary conditions for the cantilever beam is stated in Equation (6.2)

to Equation (6.4) as they are used several times throughout the derivation of the equations of motion

for the system. For a cantilever beam the de�ection and slope at the clamped end is equal to zero as

stated in Equation (6.2) and Equation (6.3). The free end is subjected to a shear force by the spring and

damper but no moment is present at the free end. Thus no curvature exists at the free end, as stated in

Equation (6.4).

w(0, t) = 0 (6.2)

∂w(0, t)

∂x
= 0 (6.3)

∂2 w(L, t)

∂x2
= 0 (6.4)

where:

w(x, t) De�ection along the length of the beam, [m]

The kinetic energy is stated in Equation (6.5) and the potential energy is stated in Equation (6.6). The

�rst part of each equation is for the beam and the last part is for the spring and mass. For the initial part

of the derivation Hamilton's principle is used, and as it is only valid for systems that conserve energy,

the damper and force is not included, but will be introduced later.

T =
1

2

∫ L

0

ρAc

(
∂ w(x, t)

∂t

)2

dx+
1

2
m

(
∂ z(t)

∂t

)2

(6.5)

V =
1

2

∫ L

0

EI

(
∂2 w(x, t)

∂x2

)2

dx+
1

2
k
(
w(L, t)− z(t)

)2
(6.6)
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where:

L Length, [m]

ρ Density,
[

kg
m3

]
Ac Cross sectional area,

[
m2

]
m Mass, [kg]

E Modulus of Elasticity, [GPa]

I Area moment of inertia,
[
m4

]
k Spring constant,

[
N
m

]
z(t) Mass de�ection, [m]

For the compactness of the equations the time derivatives are denoted by a dot as ∂ z(t)
∂t = ż. The

de�ection derivatives are denoted by a prime as ∂ w(x,t)
∂x = w′. Furthermore w(x, t) is referred to as w and

when it is the de�ection at a certain coordinate along the beam, fx. the de�ection at the free is referred

to as w(L). z(t) is also shortened and denoted as z.

By inserting the kinetic and potential energy from Equation (6.5) and Equation (6.6) into Hamilton's

principle in Equation (6.1) the expression in Equation (6.7) is obtained.

δ

∫ t2

t1

[(
1

2

∫ L

0

(
ρAcẇ

2
)

dx+
1

2
mż2

)
−
(

1

2

∫ L

0

(
EIw′′2

)
dx+

1

2
k
(
w(L)− z

)2)]
dt = 0 (6.7)

Collecting the length integral terms from Equation (6.7) into one combined integral simpli�es the

expression as shown in Equation (6.8).

δ

∫ t2

t1

[
1

2

∫ L

0

(
ρAcẇ

2 − EIw′′2
)

dx+
1

2
mż2 − 1

2
k
(
w(L)− z

)2]
dt = 0 (6.8)

As all terms of Equation (6.8) are multiplied by a half, this constant scaling is removed in Equation (6.9).

δ

∫ t2

t1

[∫ L

0

(
ρAcẇ

2 − EIw′′2
)

dx+mż2 − k
(
w(L)− z

)2]
dt = 0 (6.9)

The delta operator is used to indicate the �rst variation. The variation of variables is carried out in

Equation (6.10).

∫ t2

t1

[∫ L

0

(
ρAcẇ(δẇ)− EIw′′(δw′′)

)
dx+mż

(
δż
)
− k
(
w(L)− z

)(
δw(L)− δz

)]
dt = 0 (6.10)

To solve the variation of variables, integration by parts is utilized. Integration by parts is initially carried

out for the length integral. To simplify Equation (6.10) when doing integration by parts, only the length

integral is shown in Equation (6.11).

∫ L

0

(
ρAcẇ δẇ − EIw′′ δw′′

)
dx (6.11)

The part in Equation (6.11) containing time derivatives is not a�ected by the integration of the length

integral when doing integration by parts, thus Equation (6.12) is simpli�ed even further.
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∫ L

0

(
EIw′′ δw′′

)
dx (6.12)

The general equation for integration by parts is stated in Equation (6.13), where u and dv is parts indside

the integral from Equation (6.12).

∫ L

0

u dv = [u v]L0 −
∫ L

0

v du (6.13)

Integrating and di�erentiating dv and u respectively yields v and du. If this is carried out for

Equation (6.12) the results is stated in Equation (6.14) and Equation (6.15).

u = w′′ dv = δw′′ dx (6.14)

du = w′′′ dx v = δw′ (6.15)

Inserting Equation (6.14) and Equation (6.15) into Equation (6.13) yields the result of integration by

parts which is stated in Equation (6.16).

[
EIw′′ δw′

]L
0
−
∫ L

0

(
EIδw′ w′′′

)
dx (6.16)

It is seen that the part in Equation (6.16) that is outside the integral is equal to zero when applying the

boundary conditions from Equation (6.3) and Equation (6.4). Equation (6.16) is integrated once more

to �nd δw, still using integration by parts.

−
[
EIw′′′ δw

]L
0

+

∫ L

0

(
EIw′′′′ δw

)
dx (6.17)

where:

w′′′(x, t) Third derivative of the beam de�ection (change of curvature),
[

1
m2

]
w′′′′(x, t) Fourth derivative of the beam de�ection,

[
1

m3

]
Equation (6.17) is simpli�ed to Equation (6.18) by applying the boundary condition stated in

Equation (6.2).

−EIw′′′(L) δw(L) +

∫ L

0

(
EIw′′′′ δw

)
dx (6.18)

In Equation (6.18) the variation of the length integral is found. Then integration by parts is carried out

for the time integral but only on the part inside the double integral, as shown in Equation (6.19). The

results of the integration by parts is shown in Equation (6.20).

∫ t2

t1

∫ L

0

(
ρAcẇ(δẇ)− EIw′′(δw′′)

)
dxdt (6.19)

[
ρAcẇδw

]t2
t1
−
∫ t2

t1

ρAcẅδw dt (6.20)
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The part in Equation (6.20) that is outside the integral still have de�nite boundaries, is neglected. As the

virtual displacement �eld is zero at the time limits t1 and t2 [Shames and Cozzarelli, 1992]. Continuing

to do integration by parts on the time integral outside the double integral leaves the the mass to be

integrated, which is done in Equation (6.21).

∫ t2

t1

mżδż dt (6.21)

[mz̈δz]
t2
t1
−
∫ t2

t1

mẅδw dt (6.22)

As the same assumption about time is used on Equation (6.22) as used on Equation (6.20) the part outside

the integral vanishes. Then all the results from integration by parts is inserted back into Equation (6.10)

and this yields Equation (6.23).

∫ t2

t1

{∫ L

0

[
− ρAcẅδw − EIw′′′′δw

]
dx+ EIw′′′(L)δw(L)−mz̈δz

−k
(
w(L)− z

)
δw(L) + k

(
w(L)− z

)
δz

}
dt = 0

(6.23)

The terms in Equation (6.23) that contains common variational terms is grouped in Equation (6.24).

∫ t2

t1

{∫ L

0

[(
− ρAcẅ − EIw′′′′

)
δw
]

dx−
(
− EIw′′′(L) + kw(L)− kz

)
δw(L)

−
(
mz̈ − kw(L) + kz

)
δz

}
dt = 0

(6.24)

As Equation (6.24) has to be equal to zero and the three terms δw, δw(L), and δz are arbitrary of value,

the rest of the three terms must be equal to zero. Thus three equations can be derived and these are

stated in Equation (6.25) to Equation (6.27).

− ρAcẅ − EIw′′′′ = 0 (6.25)

− EIw′′′(L) + kw(L)− kz = 0 (6.26)

mz̈ − kw(L) + kz = 0 (6.27)

Since the applied force and the damper was excluded in the beginning, these are now added to the model.

Equation (6.25) to Equation (6.27) is no longer terms of energy but is purely force equilibrium, thus the

applied load can be added. The damper dissipates energy over time and is not included in Hamilton's

principle and another method is used to �nd the energy dissipated, which is described in Section 6.4.1.

The damping force can be added to Equation (6.26) and Equation (6.27), acting opposite to the direction

of the relative movement of the mass and the beam. This is done by Rayleigh's dissipation. Rayleigh's

dissipation function is added to the equations of motion. Rayleigh dissipation function is stated in

Equation (6.28) and is used for fx viscous damping forces that are proportional to velocities. [Rao, 2011]

Rd =
1

2
[c]q̇ 2 (6.28)
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where:

c Damping constant,
[
N s
m

]
Rd Rayleighs dissipation, [N]
·
q Degrees of freedom, [-]

As the velocity applied to the damper is the relative velocity of the mass and beam tip, Equation (6.28)

is rewritten to �t the analytical system and the relative velocity in Equation (6.29).

Rd =
1

2
c
(
ż − ẇ(L)

)2
(6.29)

Raylieghs dissipation can not be inserted into the equations of motion directly, but using Lagrange

Equation to derive the damper will yield a solution. Lagrange equation is stated in Equation (6.30).

Since the kinetic and potential energy is found by using Hamilton's principle those parts are neglected

and only the damper part is left.

d

dt

(
∂T

∂q̇

)
+
∂V

∂q̇
+
∂Rd
∂q̇

= F (6.30)

where:

F Force, [N]

In Equation (6.31) and Equation (6.32) the expression for the damper is found for each degree of freedom.

∂Rd
∂ż

= c
(
ż − ẇ(L)

)2
(6.31)

∂Rd
∂ẇ(L)

= −c
(
ż − ẇ(L)

)2
(6.32)

A solution for the damper is now found and for a system that both contains forced motion and damping,

the general equation of motion is stated in Equation (6.33). Where it is seen that the damping force is

the damping coe�cient times the velocity, exactly as the solution in Equation (6.31) and Equation (6.32).

[m]~̈z + [c]~̇z + [k]~z = F (6.33)

Equation (6.33) is used to to expand the terms stated in Equation (6.26) and Equation (6.27). Adding

the applied force and damping force from Equation (6.31) to Equation (6.27) as this is the equation that

describes motion of the mass and applying the damping force from Equation (6.32) to Equation (6.26),

that describes the motion of the beam tip.

ρAcẅ + EIw′′′′ = 0 (6.34)

− EIw′′′(L) + c
(
ẇ(L)− ż

)
+ k
(
w(L)− z

)
= 0 (6.35)

mz̈ + c
(
ż − ẇ(L)

)
+ k
(
z − w(L)

)
= F (6.36)

The applied force is a oscillating force that is time dependent as stated in Equation (6.37). As the

problem is force dependent, the force oscillates in order to make it a vibrational problem.

F (t) = F0 eiωt (6.37)
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where:

F0 The amplitude of the applied force, [N]

The de�ection w(x, t) in Equation (6.34), (6.35), and (6.36) is found by the method separation of variables

as stated in Equation (6.38). The forced vibrations is a function of time and vibrates with the shape of

eiωt, thus the response must follow and have the same shape.

w(x) = W (x) eiωt (6.38)

where:

W (x) Assumed solution for the beam de�ection, [m]

ω Frequency,
[
rad
s

]
By substituting Equation (6.38) into the equation of the beam vibrations stated in Equation (6.34) and

solving the problem when W (x) = C eβx the solution is then found as stated in Equation (6.39).

W (x) = C1 cos(βx) + C2 sin(βx) + C3 cosh(βx) + C4 sinh(βx) (6.39)

where: [Rao, 2011]

Ci Constant, [-]

The constant β is a combination of beam parameters and the material of the beam from Equation (6.34).

The constant is stated in Equation (6.40).

β4 =
ρAcω

2

EI
(6.40)

The de�ection of the mass is also dependent on the time as stated in Equation (6.41).

z(t) = Z0 eiωt (6.41)

where:

Z0 The amplitude of motion of the mass, [m]

The displacement of the system can not yet be determined as there is �ve unknown constants to

be determined. Utilizing Equation (6.35), Equation (6.36), Equation (6.2), Equation (6.3), and

Equation (6.4) a system of �ve equations with �ve unknowns is obtained. Fortunately the system can

be simpli�ed by applying the boundary conditions for the clamped end, stated in Equation (6.2) and

Equation (6.3). Applying the �rst boundary condition leads to w(0) = W (0) = 0. For W (0) = 0 to

be valid the cosine and hyperbolic cosine parts of Equation (6.39) must be either equal to zero or have

apposite operational signs as C1 + C3 = 0. The same applies for the boundary condition W ′(0) = 0

where C2 + C4 = 0. Thus Equation (6.39) simpli�es to Equation (6.42) and three equations with three

unknowns.

W (x) = C1

(
cos(βx)− cosh(βx)

)
+ C2

(
sin(βx)− sinh(βx)

)
(6.42)

The system of equations to be solved is then three equations with three unknowns and they are stated

in Equation (6.43) to Equation (6.45).

52 Michael Mortensen & Anders Lybæk Knudsen



6.1. Deriving the governing equations

− EIw′′′(L) + c
(
ẇ(L)− ż

)
+ kz − kw(L) = 0 (6.43)

mz̈ + c
(
ż − ẇ(L)

)
+ kz − kw(L) = F (6.44)

w′′(L) = 0 (6.45)

The derivatives needed in the system of equations is found in Equation (6.46) to Equation (6.49).

ż = iωZ0 eiωt (6.46)

z̈ = −ω2Z0 eiωt (6.47)

ẇ = iωW (x) eiωt (6.48)

w′ = W ′(x) eiωt (6.49)

The derivatives is then inserted and it is seen that every part contains the exponential expression.

− EIW ′′′(L) eiωt + c
(
iωW (L) eiωt − iωZ0 eiωt

)
+ kZ0 eiωt − kW (L) eiωt = 0 (6.50)

− ω2Z0 eiωtm+ c
(
iωZ0 eiωt − iωW (L) eiωt

)
+ kZ0 eiωt − kW (L) eiωt = F0 eiωt (6.51)

W ′′(L) eiωt = 0 (6.52)

The exponential expression is canceled out, which means that the equations of motion are written in the

frequency domain. Furthermore, the frequency is changed from being expressed in rad
s to Hz, so results

are directly comparable to tests and FE results.

− EIW ′′′(L) + c
(
W (L)− Z0

)
i (f2π) + k

(
Z0 −W (L)

)
= 0 (6.53)

− (f2π)
2
Z0m+ c

(
Z0 −W (L)

)
i (f2π) + k

(
Z0 −W (L)

)
= F0 (6.54)

W ′′(L) = 0 (6.55)

where:

f Frequency, [Hz]

From Equation (6.53) to Equation (6.55) it is seen that the derivatives of the de�ection, stated in

Equation (6.42) is used. The derivatives of the de�ection are derived in Equation (6.56) to Equation (6.58).

W ′(x) = −C1β
(

sin(βx) + sinh(βx)
)

+ C2β
(

cos(βx)− cosh(βx)
)

(6.56)

W ′′(x) = −C1β
2
(

cos(βx) + cosh(βx)
)
− C2β

2
(

sin(βx) + sinh(βx)
)

(6.57)

W ′′′(x) = C1β
3
(

sin(βx)− sinh(βx)
)
− C2β

3
(

cos(βx) + cosh(βx)
)

(6.58)

By inserting the derivatives into Equation (6.53) to Equation (6.55), the system can be solved for C1,

C2, and Z0 and the results of the constants is imaginary if there is a damping force and only real if no

damping is present. The constants are then added to Equation (6.42) which is used to �nd the de�ection

along the length of the cantilever beam. Since the de�ection solution is complex, the amplitude of the

beam de�ection is found by Equation (6.59) where the real and imaginary parts are added.

Am =
√
Re2 + Im2 (6.59)
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where:

Am Amplitude, [m]

The amplitude of the mass de�ection z is also found by Equation (6.59), where the real and imaginary

parts from the constant Z0 are used. The MATLAB script, created to run the Bernoulli-Euler model,

is attached on the Appendix CD1. The Bernoulli-Euler model is veri�ed in Appendix D and is found

trustworthy.

6.2 Timoshenko Beam

Based on the results of the performed experiments, and behavior observed from the FE model of the

system, the possibility of investigating higher order modes, is desirable. Thus it is also necessary to

expand the analytical model from Bernoulli-Euler beam theory into Timoshenko beam theory, as it more

accurate at higher order modes, due to the inclusion of angular displacement. The derivation of the

equation of motions from the kinetic and potential energy by using Hamilton's principle is not stated

here but is seen in Appendix E, as the procedure is identical to the one shown in Section 6.1.

The �nal equations for the the Timoshenko beam theory is stated in Equation (6.60) to Equation (6.66)

and it is seen that the system is stated by seven equations. Equation (6.60) and Equation (6.61) is

used for derivation of the assumed solutions of the de�ection and angular displacement. This leaves �ve

equtions with �ve unknowns, thus Equation (6.62) to Equation (6.66) is used to solve the system. In the

Bernoulli-Euler beam theory solution the system of equations and unknowns is reduced by introducing

the boundary conditions, but this is not possible for the Timoshenko beam theory.

κGAc
(
W ′′(x)−Ψ′

)
− ρAc (f2π)

2
W (x) = 0 (6.60)

κGAc
(
W ′ −Ψ

)
− ρI (f2π)

2
Ψ(x) + EIΨ′′(x) = 0 (6.61)

−m (f2π)
2
Z0 + c

(
Z0 −W (L)

)
i (f2π) + k

(
Z0 −W (L)

)
= F (6.62)

− κGA
(
W ′(L)−Ψ(L)

)
+ c
(
Z0 −W (L)

)
i (f2π) + k

(
Z0 −W (L)

)
= 0 (6.63)

W (0) = 0 (6.64)

Ψ(0) = 0 (6.65)

Ψ′(L) = 0 (6.66)

where:

W (x) Assumed solution for the beam de�ection, [m]

Ψ(x) Assumed solution for the beam angular displacement, [-]

The assumed de�ection and angular displacement is stated in Equation (6.67) and Equation (6.68),

derived from Equation (6.60) and Equation (6.61).

W (x) =
(
β1 cos(λ1x) + β2 sin(λ1x) + β3 cosh(λ2x) + β4 sinh(λ2x)

)
(6.67)

Ψ(x) =

(
κGβ2λ

2
2 + ρβ2ω

2

κGλ2
cos(λ1x) +

κGβ1λ
2
2 + ρβ1ω

2

κGλ2
sin(λ1x)

+
κGβ4λ

2
1 − ρβ4ω2

κGλ1
cosh(λ2x) +

ρβ3ω
2 − κGβ3λ21
κGλ1

sinh(λ2x)

) (6.68)

1Appendix CD\MATLAB \Analytical\BeamMass.m
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This solution to the analytical model is veri�ed by comparing the results to the Bernoulli-Euler solution.

The Timoshenko model is considered as valid as spring/mass solutions and �rst beam eigenfrequency

is identical to the Bernoulli-Euler theory. Higher order modes in the Timoshenko are lower than the

Bernoulli-Euler solutions. Thus the Timoshenko model is used from now on and the MATLAB script for

the Timoshenko model is attached on the Appendix CD2.

6.3 System with damping

Until now the damper has not been included in the veri�cation of the model. The damper in�uences

the system especially oscillations over time as they will die out instead of the system conserving the

energy applied. The damper is interesting to implement as it might give an indication of the in�uence of

damping on the real test structure.

When the damper is initially inserted, the system has to be tested to ensure that the response of the

analytical model is correct. The implementation of the damper is tested in Section 6.3.1. When the full

system is trustworthy the model is updated to contain parameters re�ecting the test setup and results is

then compared with test results.

6.3.1 Veri�cation of system with damper

Both the Bernoulli-Euler and Timoshenko model contains a damper, but the veri�cation of the in�uence

of the damper is only carried out on the Timoshenko model, as this model is used for the �nal comparison

with test results. To test the structure where a damper is included it is necessary to compare it to a

reference. Thus the beam is yet again decoupled to act as ground so the spring/mass/damper system

can be compared to elementary results and the MATLAB script for the damped Timoshenko model is

attached on the Appendix CD3. The resonant frequency of a spring/mass/damper system can be found

by Equation (6.69), where the undamped resonant frequency can be found by Equation (D.3).

ωd = ωn
√

1− ζ2 (6.69)

where:

ωd Damped eigenfrequency,
[
rad
s

]
ωn Undamped Eigenfrequency,

[
rad
s

]
ζ Damping ratio, [-]

The damping ratio is found in Equation (6.70) and is found on the current damping constant and the

critical damping constant. The critical damping constant descibes when the system is critically damped

which is when the system do no longer oscillate.

ζ =
c

cc
(6.70)

where:

c Damping constant,
[
N s
m

]
cc Critical damping constant,

[
N s
m

]
The critical damping constant is found in Equation (6.71).

2Appendix CD\MATLAB \Analytical\TimoshenkoModel.m
3Appendix CD\MATLAB \Analytical\DamperTimoshenko.m
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cc = 2
√
km (6.71)

where:

k Spring constant,
[
N
m

]
m Mass, [kg]

The damped eigenfrequency can now be found and it is can be seen from Equation (6.69) that the damped

eigenfrequency is lower than the undamped. Initially the �tted parameters from Section 6.5 stated in

Table 6.3 is utilized and damping constants from 2 to 8Nsm with intervals of 2Nsm . For these small dampings,

the model yields exact solutions but if damping constants from 50 to 200Nsm with intervals of 50Nsm the

model do not yield exact solutions. The expected eigenfrequencies is calculated by Equation (6.69) to

Equation (6.70) and is stated in the second column of Table 6.1.

Damping constant Resonant frequency [Hz] Model resonant frequency [Hz]

50 3039.94 3039.88

100 3039.75 3039.49

150 3039.43 3038.85

200 3038.98 18.01

Table 6.1 Damping constants and expected resonance frequencies for the spring/mass part of the

Timoshenko model model.

The response of the decoupled system is calculated for a frequency range of 2900Hz to 3200Hz with

intervals of 1Hz but re�ned at frequnecies of 3037.5 to 3040.5 with an interval of 0.01Hz. The calculated

response of the the beam is seen in Figure 6.7.
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Figure 6.7 Response obtained of the spring/mass/damper system with various damping constants.

From Figure 6.7 it is seen that the response of the system with damping is not identical to what is

expected from the second column of Table 6.1. The exact peaks is listed in the third column of Table 6.1.

Each of the responses seen in Figure 6.7 are plotted individually and found in Section E.3 in Figure E.7

to Figure E.10.

Homogenous systems is unforced and contains a natural eigenfrequency that is determined only from

the mass and the spring parameters. The eigenfrequency can be found by Equation (6.69). A harmonic

excited system is a system that is forced. Thus the system is forced to vibrate at di�erent frequencies

and a resonant frequency is found when the amplitude of the de�ection is at its maximum.
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6.4. Speci�c damping capacity

The analytical problem is a forced problem and hereby, Equation (6.69) can not be used as it is only valid

for free vibrations. In order to calculate the damped response for a harmonic excited system, the damped

harmonically excited resonant frequency is derived in Section E.5 and restated in Equation (6.72).

ωr = ωn
√

1− 2ζ2 (6.72)

where:

ωn Undamped Eigenfrequency,
[
rad
s

]
ωr Resonant frequency,

[
rad
s

]
By evaluating Equation (6.69) and Equation (6.72), it is clear that the model yields identical solutions

to what is estimated, for low damping. When the damping is larger the results deviate. Which was

discovered by the results from the analytical model, stated in Table 6.1. Thus the in�uence of the

damping is neglectible for small values but a di�erence is present when larger damping is applied. Using

Equation (6.72), it is possible to estimate the harmonically excited resonance frequencies for the damping

coe�cients of 50 to 200 Ns
m . The harmonic results is stated in Table 6.2.

Damping constant Harmonic [Hz] Model [Hz]

50 3039.88 3039.88

100 3039.49 3039.49

150 3038.85 3038.85

200 3037.95 3037.94

Table 6.2 Damping constants and expected resonant frequencies for the spring/mass part of the

Timoshenko model model.

The analytical model is considered to be valid as the results stated in Table 6.2 is almost identical.

6.4 Speci�c damping capacity

During this section the energy dissipated by the damper is found for a given frequency. It is necessary

to prove that the damper dissipates energy but what is interesting is how much energy is dissipated

at di�erent frequencies. Furthermore the energy in the system for a given frequency is found. If the

dissipated energy is divided by the energy in the system, the speci�c damping capacity can be found, as

stated in Equation (6.73).

Ψd =
∆Wd

We
(6.73)

where:

∆Wd Dissipated energy, [J]

We Energy in the system, [J]

Ψd Speci�c damping capacity ratio, [-]

By changing the damping constant in the analytical model, it is possible to obtain the response of the

system and see how the damping in�uences the response and how the speci�c damping capacity of the

system changes. To do so it is necessary to derive the energy dissipated by the damper and the energy

in the system descibed in Section 6.4.1 and Section 6.4.2 respectively.
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6.4.1 Energy dissipated by the damper

A damper in an analytical model dissipates energy and ensures that a system does not oscillate forever.

It is relevant for this system to see how much energy that is dissipated at di�erent damping ratios and

frequencies. Furthermore the energy dissipated can not be included in Hamilton's principle, thus another

method is required to prove that the damper dissipates energy.

The dissipated energy is the force times velocity and the force from a damper is damping constant times

velocity and the dissipated energy is described as stated in Equation (6.74). This equation is also valid

for a system with a spring in parallel with the damper even if the spring is neglected [Rao, 2011].

Ẇ = F v = c v2 (6.74)

where:

v Velocity,
[
m
s

]
F Force, [N]
·
W Change of energy over time, [-]

c Damping constant,
[
N s
m

]
There is no speci�c velocity applied to the damper in the system described, instead a relative velocity is

applied. The velocity is described in Equation (6.75) where the relative velocity is found.

v =
(
ż − ẇ(L)

)
(6.75)

By remembering the velocity of the beam and mass stated in Equation (6.46) and Equation (6.48)

respectively, Equation (6.75) can be expanded as shown in Equation (6.76).

v =
(
iωZ0 eiωt − iωW (L) eiωt

)
(6.76)

Only the real part of the velocity is to be used as it is a real system that is evaluated. Thus the

exponential term is expanded to a real and imaginary part as eiωt = cos(ωt) + i sin(ωt). Which is

inserted into Equation (6.76) and is shown in Equation (6.77).

v =
(
iωZ0

(
cos(ωt) + i sin(ωt)

)
− iωW (L)

(
cos(ωt) + i sin(ωt)

))
(6.77)

From the solution of the analytical model with a damper it is known that both Z0 and W (L) contains

imaginary parts. Thus the values from Equation (6.77) are split into a real and imaginary part as well

as shown in Equation (6.78) and Equation (6.79).

Z0 = Zre + iZim (6.78)

W (L) = Wre + iWim (6.79)

Inserting Equation (6.78) and Equation (6.79) into Equation (6.77) yields the expression stated in

Equation (6.80).

v =
(
iω
(
Zre + iZim

)(
cos(ωt) + i sin(ωt)

)
− iω

(
Wre + iWim

)(
cos(ωt) + i sin(ωt)

))
(6.80)
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6.4. Speci�c damping capacity

Equation (6.80) is expanded so the real part of the velocity can be found.

v =

(
iωZre cos(ωt) + i2ωZim cos(ωt) + i2ωZre sin(ωt) + i3ωZim sin(ωt)

)
−
(
iωWre cos(ωt) + i2ωWim cos(ωt) + i2ωWre sin(ωt) + i3ωWim sin(ωt)

) (6.81)

The real part of Equation (6.81) is stated in Equation (6.82).

v = ωWim cos(ωt) + ωWre sin(ωt)− ωZim cos(ωt)− ωZre sin(ωt) (6.82)

To get the energy dissipated, Equation (6.74) is integrated on both sides of the equal sign and the velocity

stated in Equation (6.82) is inserted as well. This yields Equation (6.83).

Wd =

∫ 2π
ω

0

c
(
ωWim cos(ωt) + ωWre sin(ωt)− ωZim cos(ωt)− ωZre sin(ωt)

)2
dt (6.83)

where:

∆Wd Dissipated energy, [J]

The constants inside the integral in Equation (6.83) is moved outside to simplify the expression.

Wd = cω2

∫ 2π
ω

0

(
Wim cos(ωt) +Wre sin(ωt)− Zim cos(ωt)− Zre sin(ωt)

)2
dt (6.84)

Solving the integral leads to Equation (6.84).

Wd = cωπ
(
W 2
im +W 2

re + Z2
im + Z2

re − 2WimZim − 2WreZre
)

(6.85)

Equation (6.85) can be simpli�ed to Equation (6.86) and ω is rewritten to be expressed in Hz.

Wd = c (f2π)π
((
Wim − Zim

)2
+
(
Zre −Wre

)2)
(6.86)

From Equation (6.86) it is seen that the term in the parenthesis' is always positive because of the terms

are squared. This ensures that the system only dissipate energy and do not add energy to the system.

Why it is expected to be a valid solution of the energy dissipated.

6.4.2 Kinetic energy in the system

During this section the energy in the system is derived. The total energy in the system can be found

from the maximum potential or the maximum kinetic energy as they are approximately equal for small

damping coe�cients [Rao, 2011], in this project the energy is found from the kinetic energy. The kinetic

energy for the Timoshenko beam is stated in Equation (E.4), but is restated in Equation (6.87).

T =
1

2

∫ L

0

ρAcẇ
2 dx+

1

2

∫ L

0

ρIψ̇2 dx+
1

2
mż2 (6.87)
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6. Analytical model

The expression for the displacement and angle displacement is stated in Equation (E.20) and

Equation (E.21) respectively but the shortened version is inserted in to (6.87), as shown in

Equation (6.88).

T =
1

2

∫ L

0

ρAc
∣∣iωW (x) eiωt

∣∣2 dx+
1

2

∫ L

0

ρI
∣∣iωΨ(x) eiωt

∣∣2 dx+
1

2
m
∣∣iωZ0 eiωt

∣∣2 (6.88)

The expression in Equation (6.89) is found inside the �rst integral of Equation (6.88).

∣∣iωW (x) eiωt
∣∣2 (6.89)

Equation (6.89) is solved using complex conjugates, as stated in Equation (6.90).

(
iωW (x) eiωt

) (
(−iω)W ∗(x) e−iωt

)
(6.90)

The term of the de�ection, W (x), is also found to be complex when a damper is added to the analytical

model. ThusW (x) andW ∗(x) is expanded to contain a real and a complex part, as seen in Equation (6.91)

and Equation (6.92).

W (x) = Wre + iWim (6.91)

W ∗(x) = Wre − iWim (6.92)

By inserting Equation (6.91) and Equation (6.92) into Equation (6.90), it is possible to simplify the

expression by using complex conjugates. The results is stated in Equation (6.93).

(
W 2
re +W 2

im

)
ω2 (6.93)

The same procedure is carried out for the two other complex terms of Equation (6.88) and the results is

stated in Equation (6.94) and Equation (6.95).

(
Ψ2
re + Ψ2

im

)
ω2 (6.94)(

Z2
re + Z2

im

)
ω2 (6.95)

By inserting Equation (6.93) to Equation (6.95) into Equation (6.88) yields Equation (6.96) and ω is

rewritten to be expressed in Hz.

T =
1

2

∫ L

0

ρAc
(
W 2
re +W 2

im

)
(f2π)

2
dx+

1

2

∫ L

0

ρI
(
Ψ2
re + Ψ2

im

)
(f2π)

2
dx

+
1

2
m
(
Z2
re + Z2

im

)
(f2π)

2

(6.96)

As Wre is the real part of Equation (6.67) and Wim is the complex part of Equation (6.67), the �rst

integral in Equation (6.96) expands to a very long expression, thus it is not stated here, but can be seen

by running the MATLAB script attached on the Appendix CD4.

4Appendix CD\MATLAB \Analytical\KineticEnergy.m
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6.5. Analytical model solutions

6.5 Analytical model solutions

The analytical model established and veri�ed in the previous sections is utillized during this section and

the Timoshenko model is solved for two di�erent purposes. The �rst is with the intention of �nding how

much energy is transferred from the bolt to the structure and in the case of the analytical model it is

from the mass to the beam. The second purpose is to �nd the ratio of the amplitude between the bolt

and the surface of the structure as investigated in Section 5.3. In this case of the analytical model its

the amplitude at the beam tip and the mass. The two investigations is carried out in Section 6.5.1 and

Section 6.5.2.

In Section 5.1 the resonant frequency of the test rig structure is found by FE modeling. The results

showed that the �rst transverse resonant frequency was at a frequency of 17095Hz for the M12 structure.

Hence it is necessary to increase the sti�ness of the beam in the analytical model to approximately the

same transverse response, to avoid the behavior observed in Appendix D.3 where two close frequencies

push each other away. The sti�ness of a beam, that is 0.2m long and have a circular cross section with

a diameter of 0.06m, is found to 50000GPa in order to reach a transverse resonantfrequency of 16422Hz.

The sti�ness of the spring in the analytical model is found based on solving Equation (D.3) with respect

to k and is stated in Equation (6.97). As the frequency is known from test and FE results, and the mass

is found by weighing the bolt with transducer and washer. The M12 bolt, washer, and transducer is

found to weigh 0.201kg and the bolts �rst transverse resonant frequency is 3040Hz.

k = 4π2ω2m (6.97)

The �rst transverse mode of the bolt is found by using Equation (6.97) and the sti�ness of the bolt is

found to be 73.34GNm . All the parameters used is stated in Table 6.3

Model parameters

E 50000GPa ρ 7800 kg
m3

L 0.2m d 0.06m

m 0.5kg k 73.34GNm
ν 0.3 G E

(2(1+ν))

κ 6(1+ν)
7+6ν = 0.9 F0 100N

Table 6.3 Input parameters for the analytical model for verifying the spring/mass part of the model.

6.5.1 Transmission of energy

During this section the analytical model is evaluated to �nd how much energy is transferred from the

mass to the beam. The analytical model is solved for frequencies from 0 to 6400Hz with a step size

of 8Hz. The model is solved, and the dissipated energy is found, and the total energy in the system

is calculated for each frequency in order to see how much in�uence the damper has on the system at

di�erent frequencies. The damping constants used during evaluation of the transmission of energy is 20 to

100Nsm with intervals of 20Nsm . If the damping constants is used in Equation (6.70) and Equation (6.71),

the damping ratio is found to be between 0.26% to 1.3%. As the real test structure is damped by friction

forces it is necessary to add small values of viscous damping. Thus it is considered acceptable to have a

damping ratio of 1.3%. The MATLAB script for the Timoshenko model, used for transmission of energy,

is attached on the Appendix CD5

5Appendix CD\MATLAB \Analytical\TimoshenkoModel.m
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0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
10−7

10−6

10−5

10−4

10−3

Applied Frequencies [Hz]

M
ax

im
u
m

a
m
p
li
tu
d
e
[m

] c=0.1
c=20
c=40
c=60
c=80
c=100

Figure 6.8 Response of the analytcal model for various damping.

In order to see the response on Figure 6.8 more clearly the �gure is plotted again where the x-axis is

scaled from 2950Hz to 3100Hz as shown in Figure 6.9.
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Figure 6.9 Close up of the resonance peak to clearly see the in�uence of the damping.

In Figure 6.9 it is clearly seen how the damping in�uences the peak of the of the resonant frequency.

Thus it is interesting to see how the speci�c damping capacity changes, in order to investigate if there is

any abnormalities due to the damper. The speci�c damping capacity is shown in Figure 6.10.
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Figure 6.10 Speci�c damping capacity for the analytical model.
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6.5. Analytical model solutions

From Figure 6.10 it is seen that the speci�c damping capacity increases along with increased damping

constant, which is to be expected. As the numerator of Equation (6.73) increases and the denominator

decreases. In order to tell how much energy is transferred from the mass to the beam. In order to do so

the total energy of the system used in Equation (6.73) is reduced to the kinetic energy of the beam. The

result is stated in Figure 6.11.
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Figure 6.11 Dissipated energy by the damper divided by the kinetic energy of the beam.

By comparing Figure 6.11 to Figure 6.10, the shape looks the same, but by comparing the scale of the

y-axis on the �gures it is clearly seen that they are not identical. Hence it can be concluded that the

most of the kinetic energy is located in the mass and that there is not much energy transferred to the

beam. Thus it is assumed that a lot of energy is lost in the real test structure due to friction between

the bolt and test structure.

6.5.2 Amplitude ratio

During the FE study it is discovered, that the motion of the bolt and structure are in sync but the

amplitude is very di�erent. Thus it is investigated if the same behavior can be observed in the analytical

model. For the initial response the paramters in Table 6.3 is used and the model is solved for the same

frequency range as the FE study, which is from 2500Hz to 3500Hz with a interval of 8Hz. The response of

the beam and mass without any damping is seen in Figure 6.12. From which it is seen that the peaks of

the beam and mass are identical as discovered in the FE study. The MATLAB script for the Timoshenko

model, used for the amplitude ratio, is attached on the Appendix CD6
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Figure 6.12 Response of the beam and mass.
6Appendix CD\MATLAB \Analytical\TimoshenkoAmp.m
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6. Analytical model

In order to obtain the amplitude ratio, the beam de�ection is divided by the mass de�ection and the

amplitude ratio is displayed in Figure 6.13.
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Figure 6.13 Amplitude ratio found by the analytical model, with the parameters from Table 6.3.

By comparing Figure 6.13 to Figure 5.21, it is obvious that the shape of the analytical amplitude ratio

is not identical to the one found be the harmonic FE study. The ratio in the analytical model is also �ve

times smaller than the harmonic study. The ratio from the analytical model being so low indicates that

the beam is too sti�.

In order to study the in�uence of the damper on the amplitude ratio, the analytical model is �tted to

have the same amplitude ratio as the FE model. This can be done in multiple ways and to get the best

result and optimization should be made. In order to simplify the �tting of the model it is chosen to

change the sti�ness of the beam and spring. Other options could be changing the length of the beam or

the cross sectional area of the beam.

The model yields comparable results when the beam sti�ness is 14GPa and the spring constant is increased

to 80GNm . All other parameters that is not dependent on the modulus of elasticity is kept the same. The

response obtained from the new parameters is stated in Figure 6.14 when no damping is added to the

model.
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Figure 6.14 The �tted response of the beam and mass.

The repsonse of the analytical model is now similar to the FE model and the amplitude ratio is stated

in Figure 6.15. Where it is seen that the shape from the FE model can not be reproduced but the level

of the amplitude ratio is matched.
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Figure 6.15 Amplitude ratio found by the analytical model, with the �tted parameters.

By adding a damper to the system to se how the amplitude ratio shown in Figure 6.15 is a�ected, the

response is changed but the amount is not known. Thus the model is calculated for di�erent damping

levels from 0.1 to 100Nsm with a step size of 20Nsm . The results is stated in Figure 6.16. Where it is seen

that the amplitude ratio is a�ected very little by the damping as the curves in Figure 6.16 are practically

on top of each other.
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Figure 6.16 Amplitude ratio when damping is added.

The damping do not contribute to the amplitude ratio and it is concluded that the FE models created

without damping is su�cient accurate as the damping do not in�uence the response signi�cantly.

6.6 Eigenfrequency of the test structure

The analytical model is made as comparison to the FE model and test results. In order to verify the FE

model of the test rig stated in Section 5.1, where FE results state that the �rst mode of the structure

is torsional, an analytical solution is sought both for the torsional eigenfrequency and the transverse

eigenfreqyency. This section will only explain how the transverse solutions is found.

The elastic bands supporting the test rig is considered so compliant that the support is very close to

a beam applied with no support, thus a free-free boundary condition, as indicated by the results in

Section 5.3. During this section the modal response of the test rig is found when the test rig when

applied to the free-free boundary conditions. The parameters of the beam are given in Table 6.4.

Michael Mortensen & Anders Lybæk Knudsen 65



6. Analytical model

Model parameters

E 200GPa ρ 7800 kg
m3

L 0.1m d 0.06m

ν 0.3 G E
(2(1+ν))

κ 6(1+ν)
7+6ν = 0.9

Table 6.4 Parameters of the test rig.

The eigenfrequencies are found by stating the boundary conditions in a matrix form. Thus the boundary

conditions of a free-free Timoshenko beam is stated in Equation (6.98) to Equation (6.101).

Ψ′(0) = 0 (6.98)

Ψ′(L) = 0 (6.99)

W ′(0)−Ψ(0) = 0 (6.100)

W ′(L)−Ψ(L) = 0 (6.101)

The moment and shear force at each end must be zero ind order to allow the beam to move freely. The

expression for the de�ection and angular displacement are found in Equation (6.67) and Equation (6.68)

respectively. By inserting Equation (6.67) and Equation (6.68) into Equation (6.98) to Equation (6.101)

whereby the boundary conditions can be stated in a matrix form sorted by the unknown constants Ai for

i = 1..4. The matrix is from now on called the BC-matrix. The BC-matrix is stated in Equation (E.70).

The transverse eigenfrequencies are found as the eigenvalue problem of the BC-matrix.

When using Timoshenko beam theory to calculate the eigenfrequency it is important to know the

limitation of the method. In this case the limitation is a cut-on value of the frequency, where upon

a solution is no longer su�ciently accurate [Stephen and Puchegger, 2006]. The cut-on value can be

calculated by Equation (6.102), which is found by letting λ = 0 in Equation (E.29) and solving for ω.

When the calculation of the determinant of the BC-matrix reaches the cut-on value, the values of λi for

i = 1, 2, that is included in the equations of displacement and angle displacement, changes. Fx. λ2 stated

in Equation (E.32) goes from only containing a real part to only be imaginary, thus the expressions of

displacement and angle displacement is no longer valid.

fco =

√
κAG
ρI

2π
(6.102)

where: [Stephen and Puchegger, 2006]

fco Cut on frequency for Timoshenko beam, [Hz]

For the steel test rig the cut-on frequency is calculated to be 31370.1Hz by using Equation (6.102). This

is veri�ed by calculating the determinant of the BC-matrix where no solution above 31370Hz can be

obtained. Thus the cut-on value is found and the non-trivial solutions are found for discretized frequencies

from 0Hz to 30kHz with intervals of 5Hz. The results from 0Hz to 28kHz is shown in Figure 6.17 as values

above 28kHz only disturbs the visualization. Where the blue line is the determinant of the BC-matrix

and the black indicating zero.

From Figure 6.17 it is seen that it is possible to obtain the two �rst transeverse eigenfrequencies as the

determinant of the BC-matrix crosses zero two times. The eigenfrequencies are found to 16818Hz and

27721Hz. The MATLAB script for the eigenfrequency of the test rig is attached on the Appendix CD7.

7Appendix CD\MATLAB \Analytical\EigenfrequencyFreeFree.m
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6.7. Summary

As the eigenfrequencies of the test rig is signi�cantly larger compared to those found from the bolts the

test rig is considered not to in�uence the response obtained during test and thus it is not expected to

have any e�ect on the bolts as seen in Section E.2.3 when the frequencies of the beam and mass are

located close to each other.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

−1

−0.5

0

·1011

Applied Frequencies [kHz]

Figure 6.17 Non-Trivial solutions is found when the plot crosses the x-axis.

6.7 Summary

During this chapter, the analytical model is evaluated and results are compared to the FE results obtained

in Chapter 5. Initially the model is stated by Bernoulli-Euler theory but is later expanded to Timoshenko

beam theory. The FE model results states that the �rst resonant frequency is a torsional mode and the

second mode is transverse, in order to verify the results, an analytical result is found. Hence the expansion

to Timoshenko beam theory. The Timoshenko model is also used in all the results obtained during this

chapter, as the beam is short to be comparable to the test rig.

The analytical model is used to estimate how much dampening in�uences the structure. From the

investigation of the amplitude ratio in Section 6.5.2, it is proved that the dampening of the structure has

very little in�uence on the response. Thus the results obtained by FEM is considered as valid.

The energy in the system is evaluated aswell and it is discovered that very little of the energy applied to

the mass or bolt is transferred to the structure surface or the beam. This explains why it is necessary to

use the most sensitive accelerometers during experiments. Furthermore it is also proved by the analytical

model that most of the energy is located in the mass, as stated in Section 6.5.1.

From the veri�cation of the combined model, stated in Appendix Section D.3, it was discovered that when

two systems, with resonant frequencies of similar magnitude, are combined, the resonance frequencies

are pushed away from each other. In contrast nothing happens when the resonance frequencies of the

spring/mass and the beam is far away from each other. Thus it is believed that it is possible to learn

more from the analytical model if the resonance frequencies is closer to each other. As the spring/mass

and beam will interact more as more energy is transferred to the beam.

The model is considered to be too simple to predict the response of the test rig and is only created to

imitate the response to get knowledge about the damping and acoustical response. It would be impossible

to predict the response of fx. a M36 bolt in a structure with out support from any FE model or test results.

Even if data is available it is seen that the model does only reveal useful data about the transmission of

energy. So to obtain better results the model should be expanded so the beam has a fully elastic support

along the length of the beam or even to calculate the problem as a Rayleigh surface wave.
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Results summary and

discussion 7
In this chapter, the results of the work carried out in the project, are evaluated and the perspectives

of using acoustical measurements for determining bolt pretension are discussed. Initially the results

of the project are presented and important conclusions are discussed. Then as most of the project is

based on vibrations, some considerations regarding acoustic emission and measurements are presented.

Subsequently the shortcomings of the project are presented, to give an overview of some of the more

important aspects that still need to be covered, in order to have su�ciently covered the topic, with

respect to using it for practical applications. These are covered very brie�y as they will be elaborated

upon in Chapter 9. Finally a suggestion as to how the work done in this project, can be used in practice

is presented.

7.1 Results

In this project it has been sought to determine, whether it is possible to use acoustical measurements,

based on excitation by an impact hammer, to determine the degree of pretension in bolts in a structure.

The reason for investigating this, is that when comparing the response of a correctly pretensioned bolt,

to that of a loosely tightened bolt, excited by an impact hammer, an audible di�erence can be observed.

This has led Brüel & Kjær to suggest, that it might be possible to develop a practical method for

determining whether a bolt is correctly tensioned, using acoustical measurements. To examine whether

this is possible, the underlying mechanism that controls the acoustical response has been investigated.

The goal of this investigation was to determine, what aspects of the response are usable with regards to

determining the degree of pretension, and if it would be feasible to use any of these features in practice.

The investigation has been performed with focus on three sizes of pretensioned bolts, M12, M18, and

M24, all with a length of 140mm. Each bolt size has been examined for di�erent levels of pretension,

in a simple structure containing only a single bolt. This setup has been tested experimentally, and

subsequently modeled with both FEM and an analytical model, to investigate the transmission from the

impact to acoustical emission. Most of the experiments have been performed, and all modeling has been

carried out, for a steel structure. For the initial experiments on the M12 bolts however, an aluminum

structure was also tested. Here the same behavior was seen, but the response was not as clear as for the

steel structure, which is why the aluminum structure has not been evaluated further.

Through the performed experiments, it was found that a clear movement of the resonant frequencies

could be observed, when the tension in the bolt was increased. The frequency increase observed was

so substantial, that an increase in sti�ness of 12.7% would be required to explain this rise, solely by

the sti�ness of the system. This is seen as unlikely and instead, the hypothesis that changing boundary

conditions cause resonances to shift, was examined. It was found that by modeling the system with FEM,

and implementing a hinged and a clamped boundary between the bolt and the surrounding structure,

the same response as seen in the experiments was obtained. In Table 7.1 the maximum and minimum

frequency of each mode is seen, as well as the corresponding hinged, and clamped solution from the

FE model. Missing numbers indicate that no or limited response was found in the expected region of

resonances.
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7. Results summary and discussion

Experiments Full FE model

Bolt Mode Min Max ∆ Hinged Clamped ∆

M12

f1 [Hz] 2928 3040 112 3015 3144 129

f2 [Hz] - - - 7897 8178 281

f3 [Hz] 10200 10432 232 10200 10487 287

M18

f1 [Hz] 3912 4032 120 4167 4415 248

f2 [Hz] 9456 9904 448 9984 10300 316

f3 [Hz] 10440 10744 304 10611 11151 540

M24

f1 [Hz] - - - 5066 5449 383

f2 [Hz] 9440 9608 168 9359 9762 403

f3 [Hz] - - - 11426 12007 581

Table 7.1 Responses found experimentally compared to those found with the FE model.

As it can be seen from Table 7.1, the response obtained in the experiments and from the FE model are

very similar, although the experimental results are are slightly lower. This veri�es the hypothesis that

the change in boundary conditions are the cause of the change in resonant frequencies of the structure.

Furthermore, it can be seen that the gap in frequencies, between the two boundary conditions, increases

for larger sizes of bolts, although the modeled gap seems to increase more. This indicates that in the

physical system, the loose connection is more than hinged, and that the tightened connection is less than

clamped, which seems reasonable. The only mode that does not seem to follow this behavior, is the second

mode for the M18 system, here the experiments show a larger gap. Looking at the results for the peak

movement under changing pretension, as given in Table 4.3, it can be seen that going from 80% pretension

to 90% pretension, gives a large increase in resonant frequency of the mode, which is inconsistent with

the movement seen for the rest of the pretension range. Looking at the third mode for the M18 system,

a large jump is also seen at 90% pretension, and for the �rst mode there i no obtained response at this

level of pretension, which indicates that there could be an error with the 90% measurement of the M18

system. If the response under 80% pretension is chosen as the maximum resonant frequency, the gap for

the second mode of the M18 system matches in the rest of Table 7.1.

In relation to the table, it should be noted that the minimum value used for the M12 results, are not for

10% pretension, but rather 40% as it seem that lower pretension does not provide enough clamping force

for the bolt to be considered hinged. In relation to this, it is generally seen from the results that for larger

clamping force, that is either higher pretension or larger bolts, the increase between the di�erent levels

of pretension is more consistent. This implies that it could be easier to accurately determine the level of

pretension, for higher levels pretension, which is an important feature of the behavior. This implies that

it would be easier to distinguish whether a bolt is tightened to 85% or 90%, than if it is 20% or 25%,

which is desirable as bolts that needs to be checked for correct pretension, typically are in the 70% to

90% pretension range.

The missing signals for the second mode for the M12 system, as well as the two missing mode responses

for the M24 system, has been investigated. For the third mode of the M24 system, the reason for the

missing signal is simply that the mode is torsional, and thus does not produce any measurable response

in the direction of the accelerometer. To investigate the two other modes, a Harmonic FE analysis has

been performed. From this analysis the response of the system under a constant load at the location of

the accelerometer was obtained, and movement of the bolt and structure surface was compared. Based

on this it could be seen that, the second mode of the M12 system had the least surface movement at

the point where the accelerometer was placed, but did however not explain the missing signal as the

amplitude for the third mode was approximately the same. To explain this it was examined whether

a change in the forcing conditions, makes a signi�cant change in the response. It was found that by
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7.2. Acoustical considerations

changing the load application, the response of the structure at each mode was changed di�erently, which

is likely due to the modal participation factor of the system. This was also found to explain the missing

response at the �rst mode for the M24 system.

Another thing that was found through the harmonic analysis, was that there is a signi�cant di�erence in

the amplitude of vibration between the bolt and the structure, which implies that much of the energy that

is put into the system is not transferred to the structure, but remains in the bolt where it is dissipated.

To examine this, an analytical model has been established, based on a beam and a simple spring mass

damper model, where the beam describes the motion of the structure surface, the mass describes the

bolt, and the spring and damper describes the transmission between the two. Using this model it was

found that most of the energy that is put into the system, remains at the mass, which is consistent with

the results of the harmonic FE analysis, which indicates poor transmission of energy between the two

components. It should be noted that this has only been investigated for the M12 system, for the M18

and M24 the results of the harmonic analysis suggests, that with increased bolt size the transmission

improves. However, as the way the harmonic analysis is evaluated with respect with transmission, is

by the movement of the two components with respect to each other, and not by the amount of energy

transferred, its reliability as an indication of transmission is limited. Especially due to the fact that an

increase in bolt diameter leads to a decrease in the thickness of the cylinder wall in the structure, thus

making the bolt sti�er and the structure more compliant. In relation to the transfer between the bolt

and structure, it should also be noted that a series of experiments were performed, to determine whether

the size of the washer between the bolt and structure, had any in�uence on the obtained response. It was

found that there was no signi�cant change in the response, and by inspecting the washers used for the

experiments, it was found that the area of the washer which is in contact with the bolt and structure,

was unchanged for di�erent washer sizes.

Through the results obtained in the analytical model, it was also found that the damping present in

the system has a limited in�uence, especially with regards to the transfer between the two parts of the

system. Furthermore, in the experiments on the M12 structure, the damping was found to be quite low,

and relatively stable, when a certain level of pretension is reached. Thus the considerations with regard

to damping are seen as negligible en relation to determining pretension in bolts.

Summing up on the results of the project, the mechanism that controls the change in resonant frequencies

for di�erent levels of pretension, has been identi�ed as a change in boundary conditions. The change is

so signi�cant that it should be possible to use it for determining whether a bolt is tightened correctly.

To do so however it is important that the bolt is excited in such a way that su�cient acoustical emission

can be attained.

7.2 Acoustical considerations

Even though the scope of this project is to establish, if is possible to acoustically determine bolt pretension,

most of the work is based on vibrations. However, as acoustic emissions are based on the vibration of

surfaces, the results obtained for vibrational response should be applicable to microphone measurements.

The main problem will be, to get a response that is large enough to avoid background noise interfering

with the measurements. This will require that, the bolt is hit in such a way that brings out the largest

amplitude possible for the desired mode, and that the microphone is positioned near the surface having the

largest amplitude of vibration. This of course requires that the response, of the bolt and the structure is

placed in, as well as the optimum hitting point, is known. This limits the use of the technique to testing

well known structures, likely ones that are produced in larger numbers or ones that require regular

inspection. A wind turbine foundation would be a good example, requiring both regular maintenance

and being built in large numbers for a given model.
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7.3 Shortcomings

The goal of this project is, to determine whether it is feasible to use acoustical measurements, to determine

the pretension of bolts in a structure. While it seem possible, based on the work done in the project, it is

still necessary to investigate some aspects of the problem, to be able to say for certain, if it is practically

applicable. These will be brie�y described here, but are treated more thoroughly in Chapter 9.

Most importantly, it is necessary to determine if an untightened bolt, can be identi�ed in a structure

containing several bolts. From the results obtained in Chapter 2, with regards to the structure containing

four bolts, it should be possible to distinguish the bolts in a structure where several are present. In relation

to this, it should also be examined how precisely it is possible to determine the degree of pretension. It is

also necessary to test whether the response found for the simple structure, can be seen for more advanced

structures, as well as for larger sizes of bolts. This also includes looking at what happens when the system

is coupled more strongly, e.g. the resonant frequencies of the bolts being close to those of the structure,

as discussed brie�y in Chapter 6. Furthermore, the in�uence of changing the length of bolts should be

investigated.

Given that an investigation of these aspects, yields the results expected based on the work of this project,

it should be possible to establish a practical method of acoustically determining the level of pretension

in bolts, for a well known structure.

7.4 Practical application

In this section the practical application of measuring pretension acoustically, is treated. It is assumed

that the shortcomings described previously, have been treated and that they yielded similar results, to

those obtained for the response of the simple structure used in the project.

In Figure 7.1 an example of how the bolts in an arbitrary �ange, are expected to respond, when each bolt

is hit one by one. The idea is that, by measuring the acoustic emission at the marked points, it is possible

to pinpoint the bolt which is not tightened su�ciently. Going from left to right on the bolts in the �gure,

it is seen that initially only the response of the 90% tensioned bolts are measurable acoustically. Then the

closer the bolt being hit, is to the less tightened bolt, the more the FRF is in�uenced by the resonances of

the less tightened bolt. Thus the response is expected to be larger at the frequency of the less tightened

bolt's mode, compared to that of the correctly tightened bolts, when it is being hit.

Measurement points

Hz

Pa

Hz

Pa

Hz

Pa

Hz

Pa

Figure 7.1 Illustration of measurements of bolts on an arbitrary �ange

By setting up a frequency span of acceptable peak frequencies, it is possible to determine which bolts
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need to be tightened, by observing where the frequencies, outside this span are the largest. In order to

be able to set up this kind of test, it is thus necessary to perform baseline measurements of the structure,

when it is known to have correct pretension. Which also means that only certain kinds of structures are

relevant to this type of test.

As it has been found that the movement of resonance peaks, happens at all the investigated modes,

this might be utilized to make a more robust test system. By setting up an acceptable peak span, and

measuring the response of the structure at several modes, the signi�cance of the uncertainties related to

these measurements can be reduced.

To be able to perform these measurements, it is of course necessary to be able to obtain a su�ciently

powerful acoustical signal. As seen during the project, this requires that the bolt is excited correctly, but

it might also be possible to magnify the acoustic emission of the surface of the structure in other ways.

One possibility is that the investigation of strongly coupled systems, indicate that by having structural

resonances close to those of the bolts, a larger movement of the structure surface will occur thus yielding

larger acoustic emissions, while still exhibiting the movement of peaks with increased pretension. This

would suggest that by tailoring the resonances of the structure surfaces close to the bolts, it is possible

to get a better acoustic response. Another possibility is that by shaping the surface to concentrate its

emissions towards a speci�c point, it is possible to gain a much clearer response by measuring at this

point. These suggestions does of course require signi�cant work to be put into the design of the bolted

connections that are to be measured, but might be worthwhile for structures such as wind turbine towers.

Based on these suggestions it should be possible to create a system, for determining whether bolts are

pretensioned correctly. It will however only be possible to do so for structures where the desired response

is know, making it possible to detect deviations.

Thus suggest that it might be a good idea, to base a practical solution on some kind of database system,

where each structure is tested and its response logged, when the structure is initially assembled and

the pretension is known to be correct. Then on inspections, the response obtained can be compared

to that which has been recorded previously, whereby it can be seen if any bolts have gotten to loose.

Furthermore, to obtain the best possible results it does require that the measurement method is taken

into consideration when creating the bolted connection. Once the system is up and running though, it

should help save signi�cant time on inspections, compared to the currently used methods in for example

wind turbine tower foundations.
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Conclusion 8
Throughout this project is has been investigated whether it is possible, to acoustically determine the

degree of pretension of bolts, in a bolted connection. This has been done by experiments on bolted

structure, as well as FE and analytical modeling.

In Chapter 2, the response of a simple structure containing an M12 bolt was tested under di�erent

levels of pretension. It was found that by increasing the pretension in the bolt, the resonant

frequencies of the system increases, while the damping remains relatively constant. This was the

case for both steel and aluminum structures, and independent of the size of the washer used. The increase

in frequencies is quite signi�cant, and would require an unlikely increase in the sti�ness of the structure,

so the hypothesis that a change in boundary conditions causes the increase was stated.

This hypothesis was examined in Chapter 3, using a FE model of an M12 bolt. To model the change

in boundary conditions the bolt was �xed by a hinged-hinged boundary to model conditions of low

pretension, and as a clamped-clamped boundary to model high pretension. From this model it was

found that, the di�erence between the eigenfrequencies of the hinged and the clamped models, were

very similar to the increase seen in the experiments on the M12 bolt system. Based on this, the

change in boundary conditions were concluded to be the cause, of the increase in the resonant frequencies

observed in the experiments.

As the reason for the rise in resonant frequencies for the M12 bolt was determined, it was investigated

whether this was also the case for other bolts. To this end M18 and M24 bolts were tested in

Chapter 4, where similar results was found, indicating that this is a general tendency for bolted structures.

Also from looking at all the experimental data, it was observed that the increase resonant frequencies,

is generally stable in relation to increases in pretension, especially for higher pretension.

In Chapter 5, a FE model of the full structure, for each bolt size, was established, in order to gain

more insight into the mechanics of the tested systems. With this full system model, an even better

correlation between the experimental and FE results was obtained, and it was found that the

rise in resonant frequencies, as a result of higher pretension, increases for larger bolt sizes. With the

full model, it was also investigated how the bolt and structure surface moves in relation to each

other. Here it was found that there is a signi�cant di�erence in the movement in the two, but that this

di�erence was very di�erent for di�erent modes and bolt sizes, It was also found that the response at a

given point on the structure, is highly dependent on how the forcing is applied.

In order to examine the di�erence of movement between the bolt and structure, an analytical model

describing the transfer of energy from the bolt to the structure, was established in Chapter 6.

From this it was found that for a weakly coupled system, as those examined, had very little transfer

of energy between the bolt and structure, and that damping had very little in�uence on this

transfer.

In conclusion it can be said that, based on the results of the project, it should be possible to use

acoustics to determine the degree of pretension, in the bolts of a bolted joint, or rather that it is

possible to determine, whether the bolts are tightened correctly. However before it is possible to do so

in practice, it is necessary to examine; bolted structures containing several bolts, structures with more

complex geometry, the response for strongly coupled systems, as well as the response of relevant bolt

sizes and lengths.
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Future work 9
In this chapter, work that is considered to be useful, with respect to implementations of the results of

the project in practice. Some of these aspects have been brie�y discussed in Chapter 7, and will be

elaborated upon.

Number of bolts

To determine whether it is possible to actually distinguish individual bolts in a structure, it is necessary to

perform experiments on a structure containing several bolts. This could for example be on a simple �ange

similar to the one shown on Figure 7.1, which would determine whether the acoustical measurements can

provide the desired response.

Structural complexity

The structures tested in this project are greatly simpli�ed, compared to bolted joints in real life

applications, and so the complexity should be increased, in order to determine whether similar response

can be obtained from real life bolted joints. First step in increasing the complexity, is to simply split

the test rig structure, tested in this project, in to two parts. This will make the structure go from being

one solid structure with a bolt, to actually being a joint consisting of two parts clamped together by the

bolt. If results obtained for the joined structure are comparable to those obtained in the project, then the

complexity should be increased to a simple real life joint, and so on, until a su�cient level of complexity

is reached for the desired application.

Bolt behavior

As only three types of bolts are tested, all with a length of 140mm, it is necessary to look at how

the response changes with regards to both size and length. But more importantly it is necessary to

determine what happens when the eigenfrequencies of the structure and bolt are close to each other, and

can be considered a strongly coupled system, as this is expected to have a larger in�uence on the system

response, than the response of a bolt of a particular type and length. Furthermore, in order to determine

the accuracy of the acoustical measurements, it should also be tested how small a change in the response

is detectable for the relevant bolts and structures.

Modeling

The analytical model that has been established in this project, is only su�cient to treat the simple system

used for the project, and can only describe the energy transfer between the bolt and structure, and how

the damping in�uences the transmission of energy. In order to improve the analytical model, it needs

to describe a surface wave of the structure even better. This is done by introducing an elastic support

of the beam along its entire length. Another possibility is to use the model of a Rayleigh surface wave.

This should improve the usability of the model but has to be investigated further.
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Pretensioning bolts A
In the project the pretension of bolts is of a major importance, therefore this appendix is included to

describe how the pretension of the bolts is calculated, achieved and controlled.

The pretension of a bolt, is the tension in the bolt compared to its proof strength, given as a percentage.

From the tension in the bolt the clamping force exerted by the bolt can be calculated by Equation (A.1).

Fpt = Sp · Pt ·Ab (A.1)

where:

Fpt Clamping force exerted by the pretension, [N]

Sp Proof strength of bolt, [MPa]

Pt Prestress in the bolt in percent, [-]

Ab Cross sectional area of the bolt,
[
mm2

]
The proof strength of a class 8.8 bolt is 600MPa, in Table A.1 the clamping force at di�erent levels of

pretension can be seen for M12, M18, and M26 bolts of class 8.8.

10% 20% 30% 40% 50% 60% 70% 80% 90%

M12 6.8kN 13.6kN 20.4kN 27.1kN 33.9kN 40.7kN 47.5kN 54.3kN 61.1kN

M18 15.3kN 30.5kN 45.8kN 61.1kN 76.3kN 91.6kN 106.9kN 122.1kN 137.4kN

M24 27.1kN 54.3kN 81.4kN 108.6kN 135.7kN 162.9kN 190kN 217.1kN 244.3kN

Table A.1 Clamping force for pretensioned M10 and M12 bolts.

From the clamping force it is possible to calculate the torque required required to achieve the

corresponding level of pretension, by Equation (A.2). The equation is only valid for lubricated

bolts with standard threads. [Norton, 2006]

Tcf = 0.21 · Fpt · db (A.2)

where: [Norton, 2006]

Tcf Torque required for the desired clamping force, [Nm]

db Diameter of bolt, [mm]

In Table A.2 the required torque for di�erent levels of pretension can be seen.

10% 20% 30% 40% 50% 60% 70% 80% 90%

M12 17Nm 34Nm 51Nm 68Nm 86Nm 103Nm 120Nm 137Nm 154Nm

M18 58Nm 115Nm 173Nm 231Nm 289Nm 346Nm 404Nm 462Nm 519Nm

M24 137Nm 274Nm 410Nm 547Nm 684Nm 821Nm 958Nm 1094Nm 1231Nm

Table A.2 Required force for di�erent level of pretension.

The torque applied by a torque wrench, which is what is available in the workshop, is however

not that precise, having a variation of ±30% [Norton, 2006]. Therefore a method of verifying
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the pretension is desired, to accomplish this a force transducer is used to measure the clamping

force.

A.1 Transducer

This appendix describes how a load transducer is made and which components are used

during the manufacturing and lastly the load transducers accuracy is estimated followed by

a calibration. A load transducer is manufactured as there are no suitable load transducers

available at institute of Mechanical and Manufacturing Engineering. Furthermore it is cheaper

and faster to manufacture a transducer than to purchase the required type. As strain gauges

are available at the institute laboratory.

A.1.1 Transducer manufacturing

The transducers are made to determine the pretension of the bolts more accurately than with

a torque wrench. The basic idea is to extrude a washer to an appropriate height and then

mount strain gauges on the extruded washer. A total of four strain gauges are mounted on each

transducer. Where two angled gauges are used each containing a gauge oriented in 0◦ and 90◦

as shown on Figure A.1.

Figure A.1 Angled gauge used for the transducer

The strain gauges used are manufactured by TML and the strain gauges used are temperature

compensated for mild steel. The strain gauges used is listed in Table A.3.

Strain gauge: Gauge factor: Batch/Lot no. Resistance:
Transeverse

sensitivity

FCA-3-11 2.12± 1% GB17K/A601522 120± 0.5Ω 0.2%

FCA-3-11 2.12± 1% MK11K/A60152A 120± 0.5Ω 0.2%

Table A.3 Speci�cations for strain gauges used for testing, made by TML.

By placing the angled gauges on opposite sides of the transducer, two gauges are in compression

and two are in tension, making it possible to implement a Wheatstone full bridge. To achieve the

correct measurements it is important to couple the strain gauges correct as shown on Figure A.2.
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SG1

SG2

SG3

SG4

Figure A.2 Angled gauge used for the transducer

The Wheatstone bridge is a setup of resistors that ampli�es the signal from strain gauge

measurements. The Wheatstone bridge can be con�gured as a quarter bridge, half bridge,

or full bridge. The full bridge con�guration is the only one used during this project, thus it is

the only one explained in the following. The Wheatstone full bridge is seen on Figure A.3.

SG2

SG4

Us

SG3

SG1

U0

V
+ -

Figure A.3 The Wheatstone full bridge used for the force transducer

The Wheatstone bridge is describe by Equation (A.3), where the change of each resistor in�uence

the measured voltage. The Wheatstone bridge acts as a signal ampli�er as the change in

resistance of a strain gauge is so small that it is impossible to measure.

V0 =
1

4

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
Vs (A.3)

where:

V0 Measured voltage to the wheatstone bridge, [V]

Vs Applied voltage to the wheatstone bridge, [V]

R Resistance, [Ω]

∆R

R
= ksgε (A.4)
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where:

ε Strain, [-]

ksg Gauge factor, [-]

By inserting Equation (A.4) into Equation (A.3) the strain is found directly from the input and

output voltage as seen in the Equation (A.5). Since the force transducer is made by four strain

gauges, all εi contributes to the result.

V0 =
ksg
4

(ε1 − ε2 + ε3 − ε4)Vs (A.5)

From the Wheatstone full-bridge only one measurement is made, wich is the output voltage.

Since the input voltage and gauge factor are constants it is possible to get a measurement of

the strain combination from the four strain gauges, as shown in Equation (A.6).

V0
Vs

4

ksg
= (ε1 − ε2 + ε3 − ε4) = εr (A.6)

where:

εr Resultant strain measured from the Wheatstone bridge, [-]

The load applied to the force transducer is then found from the resultant strain, stated in

Equation (A.6) and inserted into Equation (A.7). To calculate the normal force applied to the

force transducer, it is necessary to know the material parameters of the transducer as seen in

Equation (A.7). The material that is used for the force transducer is steel of the type St50-2

EN10025 which has the material parameters listed in Table A.4.

Fn =
εrE

2 (1 + ν)
At (A.7)

where:

Fn Normal force, [N]

E Modulus of Elasticity, [GPa]

ν Poison's Ratio, [-]

At Cross sectional area of the transducer,
[
mm2

]
St50-2 EN10025

E 210GPa

ν 0.3

σy 285MPa

Table A.4 Material parameters of the material used in the force transducers.

Strain gauge measurement results are easily contaminated by errors. To prevent errors,

precautions are discussed here. The strain gauges are connected directly into a Wheatstone

bridge so the wires are so short that they do not add measurable resistance to unbalance the
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Wheatstone bridge. Further more, the wires connecting the D-sub plug to the Wheatstone bridge

is of equal length and type, thus the extra resistance of the wires are considered negligible.

According to Ho�mann [1989], the transverse e�ects can be neglected if the transverse sensitivity

of the strain gauges are below 1%. According to Table A.3 none of the strain gauges used have

a transverse sensitivities above 1%, whereby this e�ect is neglected.

Misalignment between the active direction of the strain gauge and the expected measurement

direction can be neglected if it is less than 5◦ [Ho�mann, 1989]. The position has subsequently

been checked and no misalignment has been detected on the mounted gauges, thus the

misalignment error is neglected as well.

Since the strain gauges are connected in a full bridge, temperature changes a�ects all resistors in

the bridge and contributes with the same amount of resistance change. Furthermore the gauges

used are temperature compensated for mild steel, thus temperature e�ects are neglected.

Strain gauge error

The accuracy of strain gauge measurements are dependent on the data acquisition devices used.

This section deals with the errors that the strain gauge measurements, which is carried out during

the tests, contain. The error is evaluated by the accumulation law stated in Equation (A.8).

This equation allows errors to be accumulated to one relative error. The equation do not take

systematic errors or coarse errors, that is performed during testing, into account.

s(R) =

√(
∂R

∂x
s(x)

)2

+

(
∂R

∂y
s(y)

)2

+

(
∂R

∂z
s(z)

)2

+ · · · (A.8)

where:

s(R) Relative error, [-]

To evaluate which instrumental inaccuracies contributes to the error of the strain gauge

measurement, it is necessary to evaluate how the measurement is done and how they are able to

contribute. For a strain gauge measurement, the strain is found by Equation (A.6), by inserting

the equation into Table A.5, it is seen that the unlinearity of the Wheatstone bridge, the data

acquisition device and the gauge factor contributes to the error. The tolerances are seen in

Table A.5.

Tolerance

Non-linearity of the Wheatstone bridge [Mouritsen, 2010] 0.05%

Error tolerance on data acquisition device 0.1%

Gauge factor [Tokyo Sokki Kenkyujo Co., Ltd., 2012] 1%

Table A.5 The errors that is taken into account when calculating the empirical deviation.

It is assumed that the tolerance of the data acquisition equipment is equal to two times the

empirical scattering [Mouritsen, 2010]. By inserting Equation (A.6) into Equation (A.8), the

error can be found for a strain gauge, as stated in Equation (A.9).
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s(εr)

εr
=

√√√√(1
s(ksg)

ksg

)2

+

(
1
s
(
V0
V

)(
V0
V

) )2

(A.9)

It is not possible to insert the error of the data acquisition device directly into Equation (A.9),

since several tolerances are linked to the data acquisition. By utilizing the errors in Table A.5

and the accumulation law, a total error is found, which is done in Equation (A.10).

s
(
V0
V

)(
V0
V

) =

√
(0.025%)2 + (0.05%)2 = 0.056% (A.10)

The total error of the strain gauges in the Wheatstone bridge is found in Equation (A.11).

s (ksg)

(ksg)
=

√(
1

4
· 0.5%

)2

+

(
−1

4
· 0.5%

)2

+

(
1

4
· 0.5%

)2

+

(
−1

4
· 0.5%

)2

= 0.25%

(A.11)

Utilizing the result from Equation (A.10) and Equation (A.11) the total error of the strain

measurement is found in Equation (A.12).

s (εr)

(εr)
=

√
(−1 · 0.056%)2 + (1 · 0.25%)2 = 0.256% (A.12)

The errors from the strain gauges and data acquisition devices are now found but if

Equation (A.7) is inserted into the accumulation law, it is seen that the contributions of the

area and material parameters has to be included as shown in Equation (A.13).

s (Fn)

(Fn)
=

√
+1 ·

(
s (εr)

(εr)

)2

+

(
+1 · s (E)

(E)

)2

+

(
+1 · s (At)

(At)

)2

+

(
−2 · s (ν)

(ν)

)2

(A.13)

The precision of the material parameters is not known and tensile tests of the material used, is

not performed. Thus the material parameters in�uence on the empirical scattering is neglected,

but still knowing that they are important to the empirical scattering. The area of the transducer

is known and the empirical scattering of the area is found, by inserting the formula for a circle

containing a hole, into the accumulation law, this gives the expression stated in Equation (A.14).

s (A) =

√(
πD

2
s (D)

)2

+

(
−πd

2
s (d)

)2

(A.14)

The area is measured by vernier caliper and the accuracy, for the digital vernier caliper used for

measuring the diameters, is 0.01mm. Thus the empirical scattering of the area is calculated in

Equation (A.15) for a inner diameter of 12.05m and outer diameter of 23.66mm.

86 Michael Mortensen & Anders Lybæk Knudsen



A.1. Transducer

s (A) =

√(
π23mm

2
· 0.01mm

2

)2

+

(
−π12mm

2
· 0.01mm

2

)2

= 0.207mm2 (A.15)

s (A)

(A)
=

0.207mm2

π
4D

2 − π
4d

2
=

0.207mm2

320.639mm2
= 0.065% (A.16)

The �nal empirical scattering on the measured normal force is then found in Equation (A.17)

when the results from Equation (A.12) and Equation (A.16) are inserted into Equation (A.13),

while neglecting the material parameters e�ect.

s (F )

(F )
=

√
(+1 · 0.256)2 + (−1 · 0.065)2 = 0.263% (A.17)

A.1.2 Transducer connection to equipment

The transeducer has to be connected to a HBM Spider8-30 box, thus it is necessary to connect the

four strain gauges mounted in a bridgestone full bridge to a 15 pin D-sub plug. The connection

to the D-sub plug is shown in Figure A.4, where it is important to wire the wheatstone bridge

correctly to the exact pins on the D-sub plug.

SG2

SG4

SG3

SG1

Figure A.4 Illustrates how the wheatstone bridge is hooked up to the D-sub plug.

From Figure A.4 it is not possible to change any of the wiring, as every wire is mounted according

to Figure A.5 and the poles of the measured and applied voltages must not be changed in the

wheatstone bridge.

Measure signal
+ -

Excitation voltage

+ -

Figure A.5 Illustrates how the D-sub plug is con�gured.
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A.1.3 Transducer calibration

When the transducers are manufactured, they have to be calibrated to ensure that the measured

load is equal to the applied. For data acquisition a HBM Spider8-30 box is used along with

the software CATMAN EASY. This software do not utilize the material parameters and the

transducer shape, as expected in the calculation of the empirical scattering of the transducer.

Instead the software requires two measurements, where very well de�ned loads are applied, and

the software uses the de�ned loads as calibration references.

The calibration is carried out when the transducer is applied with a load of 20.36kN and the

output voltage is measured as a reference. Then a load of 33.93kN is applied on the force

transducer. The output voltage is measured and a reference is made to the load applied.

The loads are applied by the ZWICK Z100 tensile test machine as shown in Figure A.6. The

tensile test machine is used as this is the only available equipment that accurately can apply

more than a 1kN.

Figure A.6 The M12 transducer mounted in the

tensile test machine

Figure A.7 The M12 transducer mounted in the

tensile test machine

A third step is carried out where a two other loads are applied to see if the load reading from

the transducer match the one from the tensile test machine. If the �nal reading is correct the

transducer is calibrated.

In this way of calibrating the load transducer, it is not possible to get the same accuracy of the

transducer. As the results is observed to deviate and the transducer is needed to be calibrated

every time is has been unplugged from the software.
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Working drawings B
I this appendix the working drawings for the manufactured pieces are found. Tolerances are

given by DIN ISO 2768-m unless other tolerances are given in the drawings.
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Equipment information C
This appendix contains the information about the equipment used in the project, divided into

equipment categories. All equipment is Brüel & Kjær products unless otherwise stated.

C.1 Pulse system

The pulse system is used in collaboration with a pc, for data acquisition and signal processing.

Pulse analyzer

Designation Type IP Subnet

Pulse analyzer 3560C 10.10.10.50 255.0.0.0

Table C.1 Equipment information for the pulse system setup.

C.2 Impact hammer

The steel tipped impact hammer setup consists of the hammer itself, a transducer inside the

hammer, and a preampli�er to connect it to the pulse analyzer. The equipment information is

found in Table C.1

B&K Steel tippped impact hammer

Designation Type Serial number

Impact hammer 8202 1123601

Transducer 8200 1183178

Preampli�er 2647-A 2207156

Table C.2 Equipment information for the impact hammer setup.

The aluminum tipped impact hammer made by Endeveco and the setup contains the same

components as the steel tipped hammer, although the preampli�er is build into the hammer.

Endeveco Aluminum tipped impact hammer

Designation Type Serial number

Impact hammer 2302-10 -

Table C.3 Equipment information for the impact hammer setup.

C.3 Microphones

The microphone contains a built in preampli�er and so it is connected directly to the analyzer.

Information on the microphone can be seen in Table C.4.
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Microphone (mic)

Designation Type Serial number

Accelerometer 4189 2275511

Table C.4 Equipment information for the microphone.

C.4 Accelerometers

In total three di�erent accelerometers are used for the measurements, acc1, acc2, and acc3. Each

of these are connected to the pulse system through a preampli�er, equipment information about

each setup can be found in Table C.5, C.6, and C.7.

Accelerometer 1 (acc 1)

Designation Type Serial number

Accelerometer 4384V 2220425

Preampli�er 2647-A 2207157

Table C.5 Equipment information for accelerometer 1.

Accelerometer 2 (acc 2)

Designation Type Serial number

Accelerometer 4382V 2232112

Preampli�er 2647-A 2207158

Table C.6 Equipment information for accelerometer 2.

Accelerometer 3 (acc 3)

Designation Type Serial number

Accelerometer 4382V 2232113

Preampli�er 2647-A 2207159

Table C.7 Equipment information for accelerometer 3.
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Verification of model D
A model of the beam, spring, damper, and mass has been established in Section 6.1. However

the accuracy and correctness of the model is unknown, so to verify the model, it is compared

to elementary case for a beam. In this way it is possible to see if the derivation of equations is

done correctly and if the model is usable. The cantilever beam is initially tested followed by a

test of the spring/mass system and �nally the coupled system is veri�ed.

D.1 Beam veri�cation

For the test of the cantilever beam, the weight of the mass in the spring/mass part of the system

is set to a very small value. The sti�ness of the spring is also set to a large number compared to

the equivalent spring constant for the beam. In this way the spring and mass can be considered

to be decoupled from the beam as they will not in�uence the resonant frequency of the beam.

Furthermore the model is based on Bernoulli Euler theory so the cantilever beam has to be long

and slender. The parameters used for the veri�cation is stated in Table D.1. The beam is set

to have a circular cross section. The MATLAB script, created to run the Bernoulli-Euler model

where the spring/mass is decoupled, is attached on the Appendix CD1.

Model test parameters

E 70GPa

ρ 2700 kg
m3

L 2m

d 0.06m

I π
64d

4 = 6.3617 · 10−7m4

A π
4d

2 = 0.0028m2

m 0.0001kg

c 0N s
m

k 1010Nm
F 100N

Table D.1 Input parameters for the analytical model for verifying the beam system of the model.

The equivalent spring constant for the beam is calculated in Equation (D.1) by inserting the

parameters listed in Table D.1. The spring sti�ness has to be at least 10 times larger than

the equivalent beam sti�ness to ensure that the spring and mass do not in�uence the beams

resonance frequencies.

kbeam =
3EI

L3
= 16700

N

m
(D.1)

1Appendix CD\MATLAB \Analytical\BeamMassForVery�cateBeam.m

Michael Mortensen & Anders Lybæk Knudsen 103



D. Veri�cation of model

where:

kbeam Equavalent sti�ness of a cantilever beam,
[
N
m

]
The spring constant is compared the equivalent spring sti�ness of the beam to ensure that the

spring is su�ciently sti�. Hence motion of the mass follows the beam. It is concluded that

the spring sti�ness is large enough as it is alot larger than the equivalent beam sti�ness. The

elementary eigenfrequencies for a cantilever beam is found in Rao [2011] and the eigenfrequencies

is calculated from Equation (D.2) and values of βL is listed in Table D.2 along with the four

�rst modal frequencies, found by Equation (D.2).

f =
(βL)

√
EI

ρAcL4

2π
(D.2)

βL Modal freq. [Hz]

f1 1.875104 10.68

f2 4.694091 66.96

f3 7.854757 187.49

f4 10.995541 367.41

Table D.2 The modal frequencies from the elementary model.

For the analytical model, the frequencies are discretized and the response is calculated for

frequencies from 0Hz to 400Hz with intervals of 2Hz. At frequencies close to the expected

modal frequencies from Table D.2 a �ner discretization, of 0.025Hz, is used. As the amplitude

along the length of the beam is of no interest a 2D plot is created, as seen in Figure D.1.
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Figure D.1 The resonance frequencies of the beam in the the analytical model when the mass and

spring is decoupled

From Figure D.1 the four �rst modal frequencies are seen and these are compared to the

elementary model stated in Table D.2. The comparison of the resonance frequencies are seen in

Table D.3, from which it is concluded that the model is su�ciently accurate as the frequencies

104 Michael Mortensen & Anders Lybæk Knudsen
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are within 0.000456% of each other. Hence the di�erence is neglectable and the analytical model

for the beam part is good.

Mode Analytical model Hz Elementary model Hz Di�erence

1 10.68 10.68 0.000456%

2 66.95 66.96 0.000163%

3 187.5 187.49 -3.9665e-05%

4 367.4 367.41 2.899e-05%

Table D.3 Resonance frequencies from elementary model and the analytical model.

D.2 Spring/mass veri�cation

The spring/mass part of the model also has to be veri�ed. This is done by increasing the beam

parameters so the beam is very sti� and will not move to the forcing of the spring and mass

and acts as ground. The MATLAB script, created to run the Bernoulli-Euler model where

the spring/mass is decoupled, is attached on the Appendix CD2. Equation (D.3) is used as a

reference to the eigenfrequency of the spring/mass system in the analytical model.

fr =

√
k
m

2π
(D.3)

where:

fr Undamped resonant frequency, [Hz]

The parameters used for verifying the spring mass part of the analytical model is stated in

Table D.4.

Model test parameters

E 1000GPa

ρ 1 kg
m3

L 2m

d 1m

I π
64d

4 = 0.04909m4

A π
4d

2 = 0.7854m2

m 0.5kg

c 0N s
m

k 8000Nm

Table D.4 Input parameters for the analytical model for verifying the spring/mass part of the model.

Inserting the parameters from Table D.4 into Equation (D.3) the eigenfrequency is found for

the spring/mass system to be 20.13Hz. The response of the analytical model is calculated with

discretized frequencies from 0Hz to 50Hz with intervals of 1Hz. At frequencies close to the

expected frequency of 20.13Hz a �ner discretization of 0.01Hz is used. The result is shown in

Figure D.2.

2Appendix CD\MATLAB \Analytical\BeamMassForVery�cateMass.m
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Figure D.2 The modal frequencies of the spring and mass in the the analytical model when the beam

is anticipated as ground.

In Figure D.2 the resonant frequency is found to be 20.13Hz, which is exactly the same value as

found by Equation (D.3). Thus the model is expected to produce valid results.

D.3 veri�cation of weak/strong coupled system

The model has now been tested, for both beam and spring/mass response, where each part of

the system is decoupled and veri�ed according to elementary solutions. During this section the

coupled system is going to be tested, to see if the system produce acceptable results. Furthermore

the system is tested by letting the resonant frequency of the beam and spring/mass system being

very close to each other.

Initially the coupled system is solved for parameters stated in Table D.5. The coupled system

is expected to show a resonant frequency of the mass and beam and between the two resonance

frequencies an antiressonance is expected to appear.

Model test parameters

E 200GPa

ρ 7800 kg
m3

L 1m

d 0.06m

m 0.5kg

c 0N s
m

k 10000Nm

Table D.5 Input parameters for the coupled model.

The system response is calculated for a frequency range of 0Hz to 80Hz with intervals of 0.1Hz.

The calculated response of the the beam is seen in Figure D.3 and the de�ection of the mass

is seen in Figure D.4. By using Equation (D.3) and inserting parameters from Table D.5 the

spring/mass resonant frequency is found to be 22.51Hz, which is also seen as a resonance point

106 Michael Mortensen & Anders Lybæk Knudsen



D.3. veri�cation of weak/strong coupled system

on Figure D.3 and Figure D.4. The �rst resonant frequency of the beam is also seen on the

�gures at a frequency of 43.2Hz.
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Figure D.3 The response from the beam de�ection when the system is coupled.

The calculated response of the mass indicates a anti-resonance point between the two resonances,

just as expected. The location of the anti-resonance is dependent on the resonance points on each

side of the anti-resonance. In this case, the anti-resonance is very close to the beam response,

which could be due to the beam having a lot higher sti�ness than the spring/mass.
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Figure D.4 The response from the mass de�ection when the system is coupled.

The coupled system is considered as yielding correct results, as results match elementary

solutions. It is still necessary to investigate what happens when the resonant frequency of

the spring/mass and the �rst resonant frequency of the beam is very close.

To evaluate the coupled model for resonance frequencies of the beam and spring/mass being

close, it it necessary to �nd the required by parameters, by �tting the response of the decoupled

system, as done in Appendix D.1 and Appendix D.2. It is expected that the two frequencies

will change in the coupled system, compared to the decoupled system.

By using the parameters in Table D.5, the �rst resonant frequency of the beam is found to 42.5Hz
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D. Veri�cation of model

and by increasing the spring constant to k = 36000Nm the eigenfrequency of the spring/mass is

42.7Hz. The calculated response of the system with two close resonance frequencies is seen on

Figure D.5 and Figure D.6, where it is seen that the freuquencies is pushed away from each other.

This change in frequencies is caused by the merging of the two systems, where the components

now acts as part of a single system rather than two individual systems, and thus in�uence each

other directly.
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Figure D.5 The amplitude of the beam when resonance frequencies of the beam and spring/mass are

located closely to each other.

From Figure D.6 it is seen that the antiresonance of the spring/mass is no longer very close to

the beam resonance but i the middle of the two resonance peaks. This is due to the increased

sti�ness of the spring, which also increase the resonant frequency.

0 10 20 30 40 50 60 70 80
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Applied Frequencies [Hz]

M
ax

im
u
m

a
m
p
li
tu
d
e
[m

]

Figure D.6 The amplitude of the mass when resonance frequencies of the beam and spring/mass are

located closely to each other.

From all the tests carried out on the model, it seems that the system produce the results that

are expected and is thereby considered as valid when the damper is not included. A study when

the damper is included is carried out in Section 6.5.1.
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Analytical model with

Timoshenko beam theory E
This appendix will deal with expanding the analytical model from Chapter 6 from Bernoulli-

Euler beam theory to Timoshenko beam theory. This is due to the interest of higher order

eigenfrequencies of the bolt. The Timoshenko theory includes the shear deformation of the

beam where the Bernoulli-Euler theory assumes in�nite shear sti�ness.

E.1 Deriving the governing equations

As for the Bernouilli-Euler beam theory the timoshenko theory is initiated by stating the

boundary conditions. For the Timoshenko beam theory the boundary conditions is not only

stated by the derivatives of the de�ection but stated by the de�ection and the angle de�ection.

The Timoshenko boundary conditions for the cantilever beam is stated in Equation (E.1) to

Equation (E.3). For a cantilever beam the de�ection and angle de�ection at the clamped end

is equal to zero as stated in Equation (E.1) and Equation (E.2). The free end is subjected to

a shear force by the spring and damper but no moment is present at the free end. Thus no

curvature exists at the the free end as stated in Equation (E.3).

w(0, t) = 0 (E.1)

ψ(0) = 0 (E.2)

ψ′(L) = 0 (E.3)

where:

w(x, t) De�ection along the length of the beam, [m]

The kinetic energy is stated in Equation (E.4) and the potential energy is stated in

Equation (E.5). The �rst part of each equation is for the timoshenko beam theory and the

last part is for the spring and mass. For the initial considerations the damper and applied

force can be moved to the right hand side as explained in Section 6.1. The method of writing

derivatives introduced in Section 6.1 is also used throughout this appendix.

T =
1

2

∫ L

0
ρAcẇ

2 dx+
1

2

∫ L

0
ρIψ̇2 dx+

1

2
mż2 (E.4)

V =
1

2

∫ L

0
EIψ′2 dx+

1

2

∫ L

0
κGAc

(
w′ − ψ

)2
dx+

1

2
k
(
w(L)− z

)2
(E.5)
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E. Analytical model with Timoshenko beam theory

where:

T Kinetic energy, [J]

V Potential energy, [J]

L Length, [m]

ρ Density,
[

kg
m3

]
Ac Cross sectional area,

[
m2

]
m Mass, [kg]

E Modulus of Elasticity, [GPa]

I Area moment of inertia,
[
m4

]
k Spring constant,

[
N
m

]
z(t) Mass de�ection, [m]

κ Timoshenko shear coe�cient, [-]

G Shear modulus, [GPa]

The kinetic and potential energy are inserted into Hamilton's principle.

δ

∫ t2

t1

[
1

2

∫ L

0
ρAcẇ

2 dx+
1

2

∫ L

0
ρIψ̇2 dx+

1

2
mż2 − 1

2

∫ L

0
EIψ′2 dx

−1

2

∫ L

0
κGAc

(
w′ − ψ

)2
dx− 1

2
k
(
w(L)− z

)2]
dt = 0

(E.6)

where:

t Time, [s]

t1 Start time, [s]

t2 end time, [s]

Collecting the length integral terms from Equation (6.7) into one combined integral simpli�es

the expression as shown in Equation (E.7).

δ

∫ t2

t1

{
1

2

∫ L

0

[
ρAcẇ

2 + ρIψ̇2 − EIψ′2 − κGAc
(
w′ − ψ

)2]
dx

+
1

2
mż2 − 1

2
k
(
w(L)− z

)2}
dt = 0

(E.7)

As all terms of Equation (6.8) is timed by a half, this constant scaling is removed in

Equation (6.9).

δ

∫ t2

t1

{∫ L

0

[
ρAcẇ

2 + ρIψ̇2 − EIψ′2 − κGAc
(
w′ − ψ

)2]
dx

+mż2 − k
(
w(L)− z

)2}
dt = 0

(E.8)

The delta operator is used to indicate the �rst variation. The variation of variables is carried

out in Equation (E.9).
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E.1. Deriving the governing equations

∫ t2

t1

{∫ L

0

[
ρAcẇ δẇ + ρIψ̇ δψ̇ − EIψ′ δψ′ − κGAc

(
w′ − ψ

)(
δw′ − δψ

)]
dx

+mż δż − k
(
w(L)− z

)(
δw(L)− δz

)}
dt = 0

(E.9)

To solve the variation of variables, integration by parts is utilized. The method of integration

by parts is explained in Section 6.1, and the result is stated in Equation (E.10)

∫ t2

t1

{∫ L

0

[
− ρAcẅ δw − ρIψ̈ δψ + EIψ′′ δψ + κGAc

(
w′′ − ψ′

)
δw

+κGAc
(
w′ − ψ

)
δψ
]

dx−mz̈ δz − kw(L) δw(L) + kz δw(L)

+kw(L) δz − kz δz − κGAc
(
w′(L)− ψ(L)

)
δw(L)

}
dt = 0

(E.10)

The parts in Equation (E.10) that contain common variational terms are grouped in

Equation (E.11).

∫ t2

t1

{∫ L

0

[(
κGAc

(
w′′ − ψ′

)
− ρAcẅ

)
δw +

(
κGAc

(
w′ − ψ

)
− ρIψ̈ + EIψ′′

)
δψ
]

dx

(
kw(L)− kz −mz̈

)
δz +

(
kz − kw(L)− κGAc

(
w′(L)− ψ(L)

))
δw(L)

}
dt = 0

(E.11)

As Equation (E.11) has to be equal to zero and the four terms δw, δw(L), δψ, and δz are

arbitrary of value, the rest of the four terms must be equal to zero. Thus four equations can be

derived and these are stated in Equation (E.12) to Equation (E.15).

κGAc
(
w′′ − ψ′

)
− ρAcẅ = 0 (E.12)

κGAc
(
w′ − ψ

)
− ρIψ̈ + EIψ′′ = 0 (E.13)

kw(L)− kz −mz̈ = 0 (E.14)

kz − kw(L)− κGAc
(
w′(L)− ψ(L)

)
= 0 (E.15)

Equation (E.12) to Equation (E.15) is no longer terms of energy but is purely force and moment

equilibrium, thus the applied load and damper force can be added according to the Rayleighs

dissipation function as explained in Section 6.1. The damping force acts opposite to the direction

of the relative movement of the mass and the beam. The force and damping force is added to

Equation (E.14) as this equation describes motion of the mass. The damping force is additionally

added to Equation (E.15) as this equation describes motion of the beam tip.

κGAc
(
w′′ − ψ′

)
− ρAcẅ = 0 (E.16)

κGAc
(
w′ − ψ

)
− ρIψ̈ + EIψ′′ = 0 (E.17)

kz − kw(L) +mz̈ + c
(
ż − ẇ(L)

)
= F (E.18)

kz − kw(L)− κGAc
(
w′(L)− ψ(L)

)
− c
(
ẇ(L)− ż

)
= 0 (E.19)
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E. Analytical model with Timoshenko beam theory

The de�ection w(x, t) and angle de�ection ψ(x, t) in Equation (E.16), (E.17), (E.18), and (E.19)

is found by the method separation of variables as stated in Equation (E.20) and Equation (E.21).

w(x) = W (x) eiωt (E.20)

ψ(x) = Ψ(x) eiωt (E.21)

where:

W (x) Assumed solution for the beam de�ection, [m]

Ψ(x) Assumed solution for the beam angular displacement, [-]

A solution for the de�ection and angle de�ection as a function of the beam length, x, is stated

in Equation (E.22) and Equation (E.23).

W (x) = β eλx (E.22)

Ψ(x) = γ eλx (E.23)

Inserting Equation (E.22) and Equation (E.23) into Equation (E.20) and Equation (E.21) gives

the initial assumed solution using the method of separation of variables.

w(x) = β eλx eiωt (E.24)

ψ(x) = γ eλx eiωt (E.25)

Equation (E.24) and Equation (E.25) is inserted into Equation (E.16) and Equation (E.17) to

attemp to �nd a �nal solution for the de�ection and angle de�ection.

κGAcλ
2β eλx eiωt − κGAcλγ eλx eiωt + ρAcω

2β eλx eiωt = 0 (E.26)

κGAcλβ eλx eiωt − κGAcγ eλx eiωt + ρIω2γ eλx eiωt + EIλ2γ eλx eiωt = 0 (E.27)

The exponential terms can be canceled out, which simpli�es Equation (E.26) and Equation (E.27).

κGAcλ
2β − κGAcλγ + ρAcω

2β = 0 (E.28)

κGAcλβ − κGAcγ + ρIω2γ + EIλ2γ = 0 (E.29)

To �nd a solution for λ and to �nd this solution it is necessary to set the two equation up in

matrix form as stated in Equation (E.30).

[
κGAcλ

2β + ρAcω
2β −κGAcλγ

κGAcλβ ρIω2γ + EIλ2γ − κGAcγ

]
(E.30)
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E.1. Deriving the governing equations

The determinant of the two by two matriw is found and is stated in Equation (E.31).

AcβγIω
4ρ2 −A2

cβγGκω
2ρ+AcβγEGIκλ

4 +AcβγEIλ
2ω2ρ+AcβγGIκλ

2ω2ρ = 0

(E.31)

The determinant is solved according to λ, which yields four equations. If the material parameters

and beam parameters is inserted to the equations, it is possible to �nd four solutions for λ and

these are stated in Equation (E.32) when the parameters from Table E.1 is used.

0 + 1.1446i = λ1

1.1439 + 0 = λ2

0 − 1.1446i = −λ1
−1.1439 + 0 = −λ2

(E.32)

Model test parameters

E 70GPa ρ 2700 kg
m3

L 2m d 0.06m

m 0.0001kg c 0N s
m

k 1010Nm F 100N

ν 0.25 G E
2(1+ν) = 28GPa

κ 6(1+ν)
7+6ν = 0.8824 ω 100 rads

Table E.1 Input parameters used to �nd values of λ.

By considering the results of solving Equation (E.31) according to λ it is possible to see that λ

can be expanded to λ1 and λ2 as shown in Equation (E.32). Hence it is not possible to state

only one constant of λ in Equation (E.24). Thus Equation (E.24) is expanded to contain both

λ1 and λ2 as stated in Equation (E.33).

W (x) = β1 eλ2x + β2 e−λ2x + β3 eiλ1x + β4 e−iλ1x (E.33)

The shape function of the Timoshenko beam stated in Equation (E.33) can be expressed by sine

and cosine terms as stated in Equation (E.34).

W (x) = β1 cosh(λ2x) + β2 sinh(λ2x) + β3 cos(λ1x) + β4 sin(λ1x) (E.34)

The same expansion and reformulation of Ψ, stated in Equation (E.25), can be carried out. The

results is stated in Equation (E.35).

Ψ(x) = γ1 cosh(λ2x) + γ2 sinh(λ2x) + γ3 cos(λ1x) + γ4 sin(λ1x) (E.35)
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E. Analytical model with Timoshenko beam theory

The system is now based on �ve equations but nine unknowns, so it is not yet possible to

�nd a solution. To reduce the number of unknowns, the constants γi can be calculated from the

constants βi, material parameters, and beam parameters. This is done by using Equation (E.16)

where Equation (E.34) and Equation (E.35) is inserted as stated in Equation (E.36).

κGAc

(
β1λ

2
2 cosh(λ2x) + β2λ

2
2 sinh(λ2x)− β3λ21 cos(λ1x)− β4λ21 sin(λ1x)

)
−κGAc

(
γ1λ2 cosh(λ2x) + γ2λ2 sinh(λ2x)− γ3λ1 cos(λ1x)− γ4λ1 sin(λ1x)

)
+ω2ρAc

(
β1 cosh(λ2x) + β2 sinh(λ2x)− β3 cos(λ1x)− β4 sin(λ1x)

)
= 0

(E.36)

In Equation (E.36) each part of the equation either contain a cosine, sine, hyperbolic cosine, or

hyperbolic sine part which is most likely not equal to zero, why all parts in front of fx. cosine

must be equal to zero as stated in Equation (E.37). This is done for every sine and cosine term

and is stated in Equation (E.37) through Equation (E.40).

κGAcβ1λ
2
2 − κGAcγ2λ2 + ρAcβ1ω

2 = 0 (E.37)

κGAcβ2λ
2
2 − κGAcγ1λ2 + ρAcβ2ω

2 = 0 (E.38)

−κGAcβ3λ21 − κGAcγ4λ1 + ρAcβ3ω
2 = 0 (E.39)

−κGAcβ4λ21 + κGAcγ3λ1 + ρAcβ4ω
2 = 0 (E.40)

As each of the equations (E.37) through Equation (E.40) only contain one of the of the γ

constants, it is possible to isolate γi in each equation. This is done in Equation (E.41) to

Equation (E.44).

κGβ1λ
2
2 + ρβ1ω

2

κGλ2
= γ2 (E.41)

κGβ2λ
2
2 + ρβ2ω

2

κGλ2
= γ1 (E.42)

ρβ3ω
2 − κGβ3λ21
κGλ1

= γ4 (E.43)

κGβ4λ
2
1 − ρβ4ω2

κGλ1
= γ3 (E.44)

Inserting Equation (E.41) to Equation (E.44) into Equation (E.35) yields a new expression of

Ψ(x) where the constant γ is replaced, as stated in Equation (E.45).

Ψ(x) =
κGβ2λ

2
2 + ρβ2ω

2

κGλ2
cos(λ1x) +

κGβ1λ
2
2 + ρβ1ω

2

κGλ2
sin(λ1x)

+
κGβ4λ

2
1 − ρβ4ω2

κGλ1
cosh(λ2x) +

ρβ3ω
2 − κGβ3λ21
κGλ1

sinh(λ2x)

(E.45)

Equation (E.16) and Equation (E.17) is used to �nd two solutions for beam de�ection and angle

de�ection. Where Equation (E.18) and Equation (E.19) is used as two of the �ve equations
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E.1. Deriving the governing equations

to �nd the �ve unknowns along with the boundary conditions stated in Equation (E.1) to

Equation (E.3). The �ve equations is restated in Equation (E.46) and Equation (E.48).

kz − kw(L) +mz̈ + c
(
ż − ẇ(L)

)
= F (E.46)

kz − kw(L)− κGAc
(
w′(L)− ψ(L)

)
− c
(
ẇ(L)− ż

)
= 0 (E.47)

w(0, t) = 0 (E.48)

ψ(0) = 0 (E.49)

ψ′(0) = 0 (E.50)

The de�ection of the mass is also dependent on the time as stated in Equation (E.49).

z(t) = Z0 eiωt (E.51)

where:

Z0 The amplitude of motion of the mass, [m]

The applied force is a oscillating force that is time dependent as stated in Equation (E.50).

F (t) = F0 eiωt (E.52)

where:

F0 The amplitude of the applied force, [N]

Inserting Equation (E.45) and Equation (E.34) into Equation (E.20) and Equation (E.21) yields

the �nal expressions for the de�ection and angle de�ection.

w(x) =
(
β1 cos(λ1x) + β2 sin(λ1x) + β3 cosh(λ2x) + β4 sinh(λ2x)

)
eiωt (E.53)

ψ(x) =

(
κGβ2λ

2
2 + ρβ2ω

2

κGλ2
cos(λ1x) +

κGβ1λ
2
2 + ρβ1ω

2

κGλ2
sin(λ1x)

+
κGβ4λ

2
1 − ρβ4ω2

κGλ1
cosh(λ2x) +

ρβ3ω
2 − κGβ3λ21
κGλ1

sinh(λ2x)

)
eiωt

(E.54)

The derivatives need in Equation (E.46) and Equation (E.48) is stated below.

ż = iωZ0 eiωt (E.55)

z̈ = −ω2Z0 eiωt (E.56)

ẇ = iωW (x) eiωt (E.57)

w′ = W ′(x) eiωt (E.58)

ψ′ = Ψ′(x) eiωt (E.59)
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E. Analytical model with Timoshenko beam theory

The derivatives is then inserted into Equation (E.46) and Equation (E.48) and it is seen that

every part contains the exponential expression.

kZ0 eiωt − kW (L) eiωt −mω2Z0 eiωt + c
(
iωZ0 eiωt − iωW (x) eiωt

)
= F (E.60)

kZ0 eiωt − kW (L) eiωt − κGAc
(
W ′(x) eiωt −Ψ(L) eiωt

)
−c
(
iωW (x) eiωt − iωZ0 eiωt

)
= 0

(E.61)

W (0) eiωt = 0 (E.62)

Ψ(0) eiωt = 0 (E.63)

Ψ′(L) eiωt = 0 (E.64)

The exponential expression is canceled out, which means that the equation of motion is no longer

dependent on time.

kZ0 − kW (L)−mω2Z0 + c
(
iωZ0 − iωW (x)

)
= F (E.65)

kZ0 − kW (L)− κGAc
(
W ′(x)−Ψ(L)

)
− c
(
iωW (x)− iωZ0

)
= 0 (E.66)

W (0) = 0 (E.67)

Ψ(0) = 0 (E.68)

Ψ′(L) = 0 (E.69)

The �ve equations in Equation (E.65) and Equation (E.69) is solved to �nd a solution for

a speci�c frequency. By doing so for a span of frequencies and �nding the amplitude, the

eigenfrequencies are located by evaluating the amplitude.

E.2 Veri�cation of Timoshenko model

The Bernoulli-Euler model is compared to elementary models and yields exact solutions. Thus

it is not requisite to compare the Timoshenko model to elementary models but only to the

Bernoulli-Euler model. It is expected that the Timoshenko model and the Bernoulli-Euler

model yields the same results for the �rst eigenfrequency but for higher order resonance it is

expected that the Timoshenko model yields results that are lower compared to Bernoulli-Euler.

E.2.1 Beam veri�cation

Initially the beam part is veri�ed by using the parameters stated in Table E.1. The response

is calculated for frequencies from 0Hz to 400Hz with intervals of 2Hz. At frequencies close to

the expected modal frequencies a �ner discretization, of 0.025Hz, is used. The response of the

Timoshenko beam can be seen on Figure E.1.
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E.2. Veri�cation of Timoshenko model

0 50 100 150 200 250 300 350 400
10−5

10−4

10−3

10−2

10−1

100

101

102

Applied Frequencies [Hz]

M
ax

im
u
m

a
m
p
li
tu
d
e
[m

]

Figure E.1 The eigenfrequencies of the Timoshenko beam when the mass and spring is decoupled.

If the frequencies from the two di�erent analytical models are compared, it is seen from Table E.2

that the �rst modal frequency is identical and the rest of the Timoeshenko eigenfrequencies are

lower than those found with Bernoulli-Euler theory. Thus it is considered that the beam part

of the model is correct.

Mode Bernoulli-Euler Timoshenko

1 10.68 10.68

2 66.96 66.73

3 187.49 185.95

4 367.41 362.0

Table E.2 The modal frequencies from the two analytical models.

E.2.2 Spring/mass veri�cation

The spring/mass part of the system is solved as well where the beam is set to be so sti� that

it acts as ground and thereby considered as decoupled from the system. The parameters used

during the calculation of the response is stated in Table E.3.

Model test parameters

E 1000GPa ρ 1 kg
m3

L 2m d 1m

I π
64d

4 = 0.04909m4 Ac
π
4d

2 = 0.7854m2

m 0.5kg c 0N s
m

k 8000Nm ν 0.25

G E
(2(1+ν)) = 333.3GPa κ 6(1+ν)

7+6ν = 0.9

Table E.3 Input parameters for the analytical model for verifying the spring/mass part of the model.

The calculated response for the spring/mass system is seen in Figure E.2 and the eigenfrequency

is found to 20.13Hz indicated by the peak. This results is the exact same as the Bernoulli-Euler

model and the general solutions. Thus the spring/mass part is considered as valid.
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E. Analytical model with Timoshenko beam theory
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Figure E.2 The eigenfrequencies of the Timoshenko spring/mass when the beam is decoupled.

E.2.3 veri�cation of coupled system

The model has now been tested both where each part of the system is decoupled and veri�ed

according to solutions from the Bernoulli-Euler. During this section the coupled system is going

to be tested, to see if the system produce acceptable results. Furthermore the system is tested by

letting the eigenfrequency of the beam and spring/mass system being very close to each other.

Initially the coupled system is solved for parameters stated in Table E.4. The coupled system is

expected to show a eigenfrequency of the mass and beam and between the two eigenfrequencies

an antiressonance is expected to appear.

Model test parameters

E 200GPa ρ 7800 kg
m3

L 1m d 0.06m

m 0.5kg c 0N s
m

k 10000Nm ν 0.3

G E
(2(1+ν)) = 79.92GPa κ 6(1+ν)

7+6ν = 0.886

Table E.4 Input parameters for the coupled Timoshenko model.
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Figure E.3 The eigenfrequencies of the Timoshenko spring/mass when the beam is decoupled.
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E.2. Veri�cation of Timoshenko model

The system response is calculated for a frequency range of 0Hz to 80Hz with intervals of 0.1Hz.

The calculated response of the the beam is seen in Figure E.3 and the de�ection of the mass

is seen in Figure E.4. The two eigenfrequencies is located at 22.51Hz and 43.2Hz which is the

exact same as the Bernoulli-Euler model.

The anti resonance is also located at the same position as the the Bernoulli-Euler solution by

comparing Figure D.4 and Figure E.4.
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Figure E.4 The eigenfrequencies of the Timoshenko spring/mass when the beam is decoupled.

The coupled Timoshenko system is considered as yielding correct results. Hence it is still

necessary to investigate what happens when the eigenfrequency of the spring/mass and the

�rst eigenfrequency of the beam is very close.

By using the parameters in Table E.4, the �rst eigenfrequency of the beam is found to 42.5Hz

and by increasing the spring constant to k = 36000Nm the eigenfrequency of the spring/mass

is 42.7Hz. The calculated response of the system with two close eigenfrequencies is seen on

Figure E.5 and Figure E.6, where it is seen that the frequencies is pushed away from each other.

This change in frequencies equivalent to the one observed in Appendix D.3. Thus it is considered

that the Timoshenko model i valid and can be used in replacement of the Bernoulli-Euler model

as it yields better solutions for higher order modes.
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Figure E.5 The eigenfrequencies of the Timoshenko spring/mass when the beam is decoupled.
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E. Analytical model with Timoshenko beam theory
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Figure E.6 The eigenfrequencies of the Timoshenko spring/mass when the beam is decoupled.

E.3 Damper Response

During this section the response of the Timoshenko model is evaluated, when the beam is

decoupled and a damper is added. The response is initially seen in Figure 6.7, but in order

to see the response for each individual damping constant more clearly, each results is plotted

individually below. The damping constants are stated in Table 6.1.
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Figure E.7 Response obtained of the spring/mass/damper system with a damping constant of 10Nsm .
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Figure E.8 Response obtained of the spring/mass/damper system with a damping constant of 20Nsm .
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E.3. Damper Response
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Figure E.9 Response obtained of the spring/mass/damper system with a damping constant of 30Nsm .
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Figure E.10 Response obtained of the spring/mass/damper system with a damping constant of 40Nsm .
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E. Analytical model with Timoshenko beam theory
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E.4. Eigenfrequency

E.4 Eigenfrequency
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E. Analytical model with Timoshenko beam theory

E.5 Harmonic excitation damping

This section derives the expression for damped eigenfreqiencies for harmonically excited

structures. Which is used to verify the analytical model. The amplitude ratio stated in

Equation (E.71), describes the response of damped system under harmonic forcing.

M =
1[(

1−
(
ω
ωr

)2)2

+
(

2ζ ω
ωr

)2] 1
2

(E.71)

where: citepbib:rao

M Amplitude ratio, [-]

The eigenfrequency can be found from the amplitude ratio by �nding the derivative according

to the frequency when the slope is equal to zero, as stated in Equation (E.73).

dM

dω
= 0 (E.72)

The derivative of the amplitude ratio is found in Equation (E.73).

dM

dω
= −1

2

1[(
1−

(
ω
ωr

)2)2

+
(

2ζ ω
ωr

)2] 3
2

[
2

(
1−

(
ω

ωr

)2
)(
−2ω

ω2
r

)
+ 2 · 2ζ ω

ωr
2ζ

1

ωr

]
= 0

(E.73)

Equation (E.73) can be simpli�ed by neglecting the fraction, as it will never be equal to zero,

and collecting terms.

−4ω

ω2
r

(
1− ω2

ω2
r

)
+ 8ζ2

ω

ω2
r

= 0 (E.74)

Equation (E.74) is simpli�ed even further by dividing both terms with −4ω
ω2
r
and the new

expression obtained is stated in Equation (E.75) and Equation (E.76).

1− ω2

ω2
r

− 2ζ2 = 0 (E.75)

Moving ω2

ω2
r
to the other side of the equality.

1− ω2

ω2
r

= 2ζ2 (E.76)

ω2

ω2
r

= 1− 2ζ2 (E.77)

124 Michael Mortensen & Anders Lybæk Knudsen



E.5. Harmonic excitation damping

Equation (E.77) is solved for ω to obtain a solution for the damped eigenfrequency, as stated in

Equation (E.78). The negative solution and the solution at zero are neglected, as the solution

at ω = 0 is not a eigenfrequency.

ω = ωr
√

1− 2ζ2 (E.78)

An expression for the damped harmonically excited eigenfrequency is now obtained.
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