[image: C:\Users\Марин\Desktop\Diploma\AAU logo.bmp][image:][image:]

Lightweight robust cryptographic combiner for mobile devices: Crypto Roulette

Student: Marin Pamukov
Supervisors: prof. Neeli Prasad, prof. Vladimir Pulkov
[bookmark: _Toc389472867][bookmark: _GoBack]Abstract -The amount of data generated by connected devices have increased dramatically since the beginning of the century with the prediction that until the end of the decade the number of connected devices will increase to over 50 billion. This huge increase of network data traffic and the heterogeneity of modern and future networks lead to increased demand for lightweight encryption algorithms. These algorithms must be able to cope with the large increase of data traffic and the ever-growing increase in computational capabilities. This means that any cryptographic algorithm that hopes to meet these demands must increase the computational complexity while maintaining computational cost. Striving to meet those requirements might seem as causa perduta right from the start. Indeed to meet such high standards a shift in paradigm is required. We should not only strive to create and use new algorithms, but also should optimize the use of existing algorithms.
This thesis proposes a new algorithm, Crypto Roulette, which builds on the achievements of modern symmetric cryptography systems in order to create a strong and lightweight solution. The proposed algorithm was inspired by frequency hopping communication systems. These systems switch randomly between different carrier frequencies in order to prevent unwanted eavesdropping. The proposed solution using a similar concept makes use of different symmetric cryptographic algorithms. The proposed solution is a combination of algorithms that provide high robustness and security. The solution increases security while marginally increasing the amount of computational resources needed for encryption and decryption. The envisioned system uses either two pairs of synchronized pseudorandom number generators or a time variable based on the transmission time to achieve synchronization between the communicating parties. The cryptographic strength of the proposed system depends on two factors: the number of the undelaying symmetric cryptographic algorithms and the type of keying option used.
Based on the simulation results, the Crypto Roulette demonstrates significant increase in performance. The comparison and results have also shown that the number of undelaying algorithms does not affect the computational cost of the system. This means that the Cryptographic Roulette algorithm can easily be scaled to suite a wide range of requirements.

Table of Contents:
Abstract	ii
Abbreviations:	v
List of Figures:	vi
List Of Tables:	vii
CHAPTER 1	1
INTRODUCTION	1
1.2 Motivation	2
1.3 State of the art	3
1.4 Objectives:	4
1.5 Use case hypothesis	5
CHAPTER 2	7
CRYPTOGRAPHY	7
2.1 Historic overview	7
2.2 Symmetric cryptography	8
2.3 Feistel network ciphers	8
2.4 Lai-Massey scheme [29]	10
2.5 Substitution-Permutation Network ciphers	12
2.6 Public key cryptography	13
2.7 Advanced Encryption Standard (AES) [10]	14
2.8 Blowfish	19
2.9 International Data Encryption Algorithm (IDEA)	21
2.10 Cascade encryption, Robust combiners and Triple Digital Encryption Standard (TDES/3DES)	23
CHAPTER 3	25
PROPOSED MODEL: CRYPTO ROULETTE	25
3.1. Synchronization.	29
3.1.1 No synchronization	29
3.1.2 Using a time variable for synchronization.	30
3.1.3 Using a synchronized pseudorandom number generators.	34
3.2 Strength and key length calculations	35
3.2.1 Using the same key for all algorithms	35
3.2.2 Using the different key for every algorithm	36
3.2.3 Probability analysis	38
3.3 Weaknesses	39
CHAPTER 4	41
RESULTS AND EVALUATION	41
4.1 Simulation	42
4.2 Simulation results	50
CHAPTER 5	60
CONCLUSIONS AND FUTURE WORK	60
5.1 Conclusions	60
5.2 Future work	61
References	63
Appendix A: MATLAB Simulation Code for the Crypto Roulette	67
Appendix B: MATLAB Simulation Code for the Cascade cipher	71
Appendix C: MATLAB Simulation Code for the symmetric ciphers	74
Appendix D: MATLAB code for calculating decision boundaries for timing variable synchronization	77

[bookmark: _Toc389472868]Abbreviations:
3DES – Triple Data Encryption Standard
AES – Advanced Encryption Standard
cbc - Cipher-block chaining
CDF – Cumulative Distribution Function
CDP - Compromised Data Percentage
CR – Crypto Roulette
CRN – Cognitive Radio Networks
CT – Crypto Table
DES – Data Encryption Standard
DoS - Denial of Service
FIFO – First In First Out
GPU - Graphic Processing Unit	
IDEA - International Data Encryption Algorithm
IoT – Internet of Things
M2M – Machine to Machine
NISTI - National Institute of Standards and Technology
NSA – National Security Agency
OS - Operating
PES – Proposed Encryption Standard
SDK – Software Development Kit
SDL - Specification and Description Language
SPN – Substitution Permutation Network
TDES – Triple Data Encryption Standard
V2M - Vehicle to Machine
V2V – Vehicle to Vehicle
XOR – Exclusive OR

[bookmark: _Toc389472869]List of Figures:
Figure 1: Workflow	1
Figure 2: Envisioned End to End system	5
Figure 3: Symmetric cryptography	8
Figure 4: Feistel network cyphers	9
Figure 5: Lai-Massey scheme	11
Figure 6: Substitution Permutation Network	12
Figure 7: Affine transformation used in AES	15
Figure 8: Blowfish	20
Figure 9: IDEA	22
Figure 10: Multiple planes cryptography	25
Figure 11: Block diagram of the CR algorithm	26
Figure 12: Possible Initiation key configuration	27
Figure 13: Key engine	28
Figure 14: Crypto Table	28
Figure 15: Time variable algorithm	30
Figure 16: Decision boundaries between CT entries	32
Figure 17: Rotation style algorithm selection	33
Figure 18: Simulation algorithm for the Crypto Roulette	46
Figure 19: Cascade encryption simulation	48
Figure 20: Comparison Between CR with random number synchronization and its components.	51
Figure 21: Comparison Between CR with Time variable synchronization and its components.	52
Figure 22: Throughput comparison between Crypto Roulettes with Time variable and random number synchronization	52
Figure 23: Comparison between Cascade robust cryptographic combiner and Crypto Roulette	53
Figure 24: Random number synchronization and different number of iterations between algorithm change	56
Figure 25: Time variable synchronization and different number of iterations between key and algorithm change	57
Figure 26: Throughput Comparison between CR's with different number of algorithms	59

[bookmark: _Toc389472870]List Of Tables:
Table 1: Key Length and power consumption comparison	39
Table 2: Comparison Between CR and modern symmetric cryptography algorithms	51
Table 3: Different number of iterations between algorithm change	55
Table 4: Throughput results for CR with different number of underlying algorithms	58

ii

[bookmark: _Toc389328921][bookmark: _Toc389472871]CHAPTER 1
[bookmark: _Toc389472872]INTRODUCTION

This thesis proposes a new algorithm that builds on the achievements of modern symmetric cryptography in order to create a much stronger and yet lightweight solution that can cope with the increasing amount of data being transferred between devices every day. The goal is set keeping in mind the ever growing use of “smart” mobile devices and their limitations in terms of processing power and battery life.
1.1 Project Methodology
 The thesis is organized as shown in Figure 1

[bookmark: _Toc389418557]Figure 1: Workflow
Figure 1 represents the workflow of the process. Initially a brief analysis of the telecommunication market and trends is made in the motivation section (Chapter 1). This analysis shows a move toward mobile devices and Software as a Service (SaaS) solutions. Several “bottlenecks” are identified. Based on the motivation, a more comprehensive analysis of the current solutions to those problems is carried out in the state of the art section (Chapter 2). The analysis is used to derive the requirements for the algorithm design., . Three main and two desirable requirements are outlined. Chapter 2 gives also an in-depth analysis of the current cryptographic algorithms. Chapter 3 describes the proposed algorithm, called Crypto Roulette, that would conceivably meet those requirements. To test the design, a MATLAB simulation is created. It testes the throughput of the proposed Crypto Roulette algorithm against similar modern solutions. A mathematical proof for the algorithms increased key strength is presented. The simulation results are presented in Chapter 4. In Chapter 5 a discussion on the Crypto Roulette simulation result is presented. Chapter 6 concludes the thesis.
[bookmark: _Toc389472873]1.2 Motivation
Nowadays, there is a move towards transferring more and more of the software on the cloud [1]. SaaS solutions have been widely adopted [1]. There are even some solutions that propose the entire operating system of a device being stored on an online server (Chrome OS). This kind of solutions requires large amounts of data being securely transferred through unsecure networks.
Modern symmetric solutions seem adequate at the moment, but they require a constant increase in key length and complexity to cope with the increasing computing power [2], [3] . The creation of very powerful computing systems with the help of multiple GPU [4] does not help either. At the moment it is possible to create servers capable of calculating hundreds of gigaflops, at the price of a few thousand dollars [5] . This trend is likely to persist in the future [6].
Another important point that is the fact that there is a global move towards mobile devices. The amount of mobile devices in 2013 exceeded the global population by one billion [7]. A large portion of those mobile devices consists of the so called “smart” devices. They make up about a third of the number of mobile devices worldwide. Furthermore Smartphones make up for more than 77% of the newly connected mobile devices [7]. This trend is almost certain to persist in the coming years. Considering that mobile traffic accounts for more than half of the global internet traffic [7], actions must be taken in order to ensure future security.
Mobile devices, have asymmetric computational capability compared to contemporary computers. This means that comparable secrecy levels must be achieved with much lower computational capabilities. A further motivation is the fact that mobile devices have a limited amount of power at their disposal, thus the need for lightweight encryption.
The points above create the need to take a different approach in combating the issues presented before modern crypto systems. Constantly increasing the key size does not seem prudent if we wish to have high speed online software solutions and secure mobile solutions. A new approach to the problem must be taken.
[bookmark: _Toc389472874]1.3 State of the art
The goal of symmetric cryptography is to provide relatively fast encryption and decryption of large amounts of data between communicating parties. A factor in the development of improved block cyphers are the proposed in the beginning of the 90’s differential [8] and linear [9] cryptanalysis. Since then much work has been done on creating new and improved ciphers. At the end of 2001, the Advanced Encryption Standard was officially standardized by the National Institute of Standards and Technology [10]. There three key lengths are specified, 128, 192 and 256 bit. The thinking at the time was that those key lengths are sufficient for the foreseeable future. In 2009, a Related key attack [11] against AES was proposed. The first key recovery attack on AES was presented in 2011 by Bogdanov, et al [11]. There are many other side channels and known key distinguishing attacks known, with probably the fastest (65 ms against full AES) being performed in 2008 [12]. This shows that if an attacker has a knowledge of the exact type of cryptography used, even one of the most advanced crypto algorithms would not provide adequate protection.
Another important factor for the development of symmetric block ciphers is the envisioned use of quantum computing in cryptography. A good example is Shor’s algorithm [13]. In 1997, Professor Gilles Brassard stated that the time needed by a quantum computer to factorize RSA key is not much longer than the time it would take a classical computer to encrypt a message with the same key [14]. This approach has been applied not only to RSA [15] but also to Elliptic curve cryptography and Diffie Hellman [16], and means that if a sufficiently evolved quantum computer is developed, it makes the secrecy provided by asymmetric algorithms virtually nonexistent .
Another important development in Quantum computing is Grover’s algorithm [17]. In 1996 Bennett, Bernstein, Brassard, and Vazirani proved that brute force key search against AES, blowfish and similar, cannot be faster than 2^(n/2)[18]This is to show that against quantum computers symmetric ciphers can provide n/2 security compared to n in classical computers.
Cascade cryptography provides an easy way of creating stronger symmetric cyphers encrypting a message multiple times by using different keys and/or different algorithms. A good example for such algorithms is Triple DES [19], [20]. It is known that double encrypting provides a marginal increase in security, due to meet in the middle attacks[21], [22]. It is claimed by Bellare and Rogaway that a minimum of three iterations is needed to provide a meaningful increase in security [23]. It was later proved that longer cascades can also provide a meaningful increase in security [24], as long as the key is shorter than the plaintext and the number of iterations is “reasonable”. The throughput of such solutions is much smaller, compared to the throughput provided by standard single encryption systems. This makes them incompatible with mobile devices, because of the much higher computational and power costs.
Considering the points made above, we must work toward creating much stronger symmetric key cryptographic algorithms
[bookmark: _Toc389472875]1.4 Objectives:
This thesis aims at proposing a solution for the issues outlined in the previous section. The focus is on creating a cryptographic system that can cope with the challenges presented by the software move to the cloud and the increased demands for high speed secure mobile communication. The envisioned environment can be seen in Figure 2.
 The proposed solution should be able to:
· Provide increased security compared to modern systems.
· Not to increase significantly the throughput required in comparison with available solutions.
· Provide comparable calculating power requirements with modern algorithms.
The proposed technology is not required to, but is desirable to:
· Be compatible with modern handheld devices.
· Be suitable for M2M applications.

[bookmark: _Toc389418558]Figure 2: Envisioned End to End system
[bookmark: _Toc389472876]1.5 Use case hypothesis
Network A represents a M2M network, that is used in Vehicular automation (V2V, V2M and so on) scenario. It consists of all the available road infrastructure such as traffic signs, traffic lights, and nearby pedestrian mobile devices. The network uses centralized management and operations center. The infrastructure is based on a highly scalable open standard such as ZigBee.
In this scenario the centralized management and control center also called the “actor” requires secure and lightweight communication to the roadside infrastructure and devices. Those requirements are put forward because of the need for highly autonomous and therefore battery or solar powered roadside infrastructure. The management information exchanged between the nodes must be secured against possible tampering and eavesdropping. Such a breach could potentially lead not only do disclosure of personal information, but could be a prerequisite to, a potentially deadly, cyber-attack. Furthermore, the information exchanged between the roadside infrastructure and the Vehicles also must be at least tamper resistant as to prevent again potentially fatal cyber-attacks.
A symmetric encryption algorithm can potentially handle such requirements, but due to the requirement for low power consumption and real time communication such an algorithm must use a very short key. My expectation is that a 56 bit long key would meet the throughput and energy consumption requirements. We have seen [5],[6] than a DES algorithm with 56 bit long key, even if implemented in a secure way, could fall victim to an exhaustive attack in less than a week. If we allow for a healthy dose of paranoia, we can assume that such an attack can be carried out in a day. This time frame is way too short to be of any practical use, and therefore we must use a longer key.
If the proposed in this thesis system is applied to such a scenario we can achieve significantly higher security, while maintaining throughput and power consumption marginally higher. Let us assume that we employ a Crypto Roulette with 10 underlying symmetric key algorithms. Each of those algorithms has about the same exhaustive attack computational complexity as DES. Therefore we assume that each algorithm can be broken in 1 day. The resulting Cryptographic Roulette algorithm would take 55 days to be completely broken if an exhaustive attack is performed.
The proposed system has one more major advantage. It is for all purposes a robust combiner. Even if one of the underlying algorithms falls prey to a cryptographic attack, this would compromise only 10 percent of the communication, compared with 100 percent in the case of a single algorithm.

3

[bookmark: _Toc389328255][bookmark: _Toc389328927][bookmark: _Toc389472877]CHAPTER 2
[bookmark: _Toc389472878]CRYPTOGRAPHY

This chapter concentrates on cryptography. A somewhat complete overview of cryptography is presented. Topics such as symmetric cryptography, cascade encryption, public key cryptography and elliptic curve cryptography are discussed briefly. Quantum computing vulnerabilities of asymmetric algorithms are discussed. Special attention is given to AES, TDES Blowfish and IDEA since they are used in the Crypto Roulette simulation.
[bookmark: _Toc389472879]2.1 Historic overview
The science of cryptography is the science of writing messages, which are unreadable to the unlighted person. In fact the direct translation of the word cryptography means hidden writing. The need to communicate with no one being able to eavesdrop on our messages emerged together with civilization itself. In the beginning cryptography had very little to do with mathematics with the first cryptographic devices being hardly more than a piece of wood with predetermined diameter. Thru the ages and with the increase of the number of political conglomerates the role of cryptography became more and more important. A zenith in this tendency, in my opinion, was reached during the Second World War. According to W. Churchill, the cryptographers that helped decipher German communications, might have shortened the end of the war by two years and probably saved millions of lives. Other contemporaries of Churchill go even further, saying that the war was won by cryptographers. Ever since then cryptography have been in the spotlight, especially during the Cold war, when the two opposing blocks spend huge amount of resources ensuring that their communications cannot be intercepted or tampered with. Even since the fall of the totalitarian regimes in Eastern Europe, cryptography continues to be a topic of huge interest and research. This is due to the developments made in computer communication systems and the emergence of the digital society.

[bookmark: _Toc389472880]2.2 Symmetric cryptography
Symmetric cryptography, or also known as single key cryptography uses the same key for both encryption and decryption of the plaintext.

[bookmark: _Toc389418559]Figure 3: Symmetric cryptography
The shared key must be exchanged prior to any communication takes place in a secure way. This is one of the main drawbacks of symmetric cryptography. Tear main advantage, on the other hand, is their high throughput, when compared to traditional asymmetric algorithms.
[bookmark: _Toc389472881]2.3 Feistel network ciphers
Many symmetric algorithms use a Feistel network. The concept was first introduced and patented in 1971 by IBM [25]. Feistel introduced a later version [26] in 1973, which used 128 bit key and 128 bit block size. This algorithm became known as Lucifer and later, after some modifications, as Digital Encryption Standard. The algorithm is susceptible to differential cryptanalysis [27], which at the time was known only to IBM and NSA. The work of Michael Luby and Charles Rackoff on Festel cyphers must be noted here. In their paper "How to Construct Pseudorandom Permutations from Pseudorandom Functions" [28] they prove that under the right conditions, a three round cipher is sufficient to produce a pseudorandom permutation and four rounds are enough to make a strong pseudorandom permutation. Algorithms that use Feistel network are most notably: DES, TDES, Blowfish, GOST 28147-89, KASUMI/MISTY and Twofish.

[bookmark: _Toc389418560]Figure 4: Feistel network cyphers

Figure 3 presents the processes of encryption and decryption. If F is the round function and Key0, Key1,…,Keyn are the keys for rounds 0,1,…n then the encryption process goes as follows:
· The plain text is split into two equal length parts
· For each round is computed:
·
· [image: R_{i+1}= L_i \oplus {\rm F}(R_i, K_i)]
· The resulting cipher text is
The decryption is done in reverse, except for switching the places of the left and the right side in the input.
· The cipher text input is
· Computations for are:
·
· [image: L_{i} = R_{i+1} \oplus {\rm F}(L_{i+1}, K_{i})]
· The resulting plain text is
There are many variations of the Festel Cypher scheme that do not use symmetric length division of the plain text (Skipjack cipher).
[bookmark: _Toc389472882]2.4 Lai-Massey scheme [29]
Another cryptographic structure is the Lai-Massey scheme. It is not as widely used as the Feistel network scheme and the Substitution Permutation Network scheme. It is used in the design of the IDEA cypher.
The main construction is presented in Figure 5. In Figure 5 “F” is used to denote the round functions, H represents the half round functions. The algorithm goes:
· The Plaintext is split into two parts with equal lengths.
· For the first round we calculate . In other words, we calculate only the half round function.
· T is the result of .
· For the other rounds we calculate:
To decrypt we perform the following for
·
·
·
· is the plaintext
The half Round function H may be either dependent or independent of the key. For simplification we may think of the half round function as a permutation of sorts. The last H function is often called round n.5 for cyphers that otherwise have n rounds.
A proof similar to [28] has been proposed in [30]. This means that if the half round function meets the presented criteria, the cipher text will seem like a strong pseudorandom permutation

[bookmark: _Toc389418561]Figure 5: Lai-Massey scheme
[bookmark: _Toc389472883]2.5 Substitution-Permutation Network ciphers
Another approach is the use a Substitution-Permutation Network or SPN. Substitution-Permutation Networks preform several “rounds” of substitutions and permutations on the plaintext to transform it into cypher text (Figure 6). Usually those functions are performed using bitwise rotation and Exclusive OR with the idea of increasing computational speed. A substitution box is usually considered strong, when the change of one bit in the input produces a change in at least half of the output bits (avalanche effect).
A master key is used to create a multiple number of round keys, that are then applied to each round. If a SPN is properly designed, it should be able to satisfy Shannon's confusion and diffusion properties [25]. Typical example of this type of symmetric algorithms is Rijndael, which later was standardized as the Advanced Encryption Standard.

[bookmark: _Toc389418562]Figure 6: Substitution Permutation Network
[bookmark: _Toc389472884]2.6 Public key cryptography
Public key cryptography or asymmetric key cryptography uses a pair of two keys for encrypting messages. One of those keys is publicly available, and the other one is known only to the owner of the set. Although those keys are different, they are mathematically connected. The public key is used for encrypting the messages send to the owner of the pair, and the private key is used for deciphering those messages. The idea of using “trap doors” in cryptography was introduced for the first time in 1874 by William Stanley Jevons in his book “The Principles of Science: “A Treatise on Logic and Scientific Method” [31]. There he discusses the relationship between one way functions and cryptography. He gives special attention on the factorization of large prime numbers. This mathematical problem later becomes the basis for the creation of the RSA algorithm. In 1973 the British scientists James H. Ellis, Clifford Cocks, and Malcolm Williamson create an asymmetric cryptographic system. This, at the time classified work, is considered the first of the modern asymmetric ciphers. The system is considered very similar to the Diffie–Hellman key exchange algorithm. Furthermore a type of RSA encryption was proposed under the same project. The creators refer to the system as “non-secret encryption” [32]. Later on in 1976 an algorithm that permits for a common secret to be established between communicating parties without the use of secure channel was created by Whitfield Diffie and Martin Hellman [21]. Their algorithm, however does not permit for authentication of the communicating parties. In 2002 Hellman proposed the algorithm to be renamed to Diffie–Hellman-Merkle, in honor of Ralph Merkle, whose work greatly influenced the creation of the Diffie–Hellman key exchange algorithm Later on, in 1976 Ron Rivest, Adi Shamir and Leonard Adleman independently created a generalization of the “non-secret encryption” algorithm, which at the time was classified. RSA [15] uses the factorization of large primes to create a trap door. In 1979 Michael O. Rabin proposed a system that also relies on the factorization of large primes problem. In 1985 Taher ElGamal proposed the ElGamal cryptosystem [32], which derives its strength from the discrete logarithm factorization problem. The proposed system is very similar to the Digital Signature Algorithm, which was initially proposed by NSA and later proposed by NIST for standardization. The system is proposed under patent: “U.S. Patent 5,231,668”. Another important discovery in the field of asymmetric cryptography in the 80’s is the introduction of Elliptic Curve Cryptography. The concept was simultaneously and independently developed by Neal Koblitz [33] and Victor S. Miller [34].
[bookmark: _Toc389472885]2.7 Advanced Encryption Standard (AES) [10]
Advanced Encryption Standard (AES) is a cryptographic standard for digital information. The Algorithm was standardized in 2001 from the American National Institute of Standards and Technology (NIST), after a three round competition. Initially the algorithm was known as Rijndale, after the names of its creators, the Belgian scientists John Damian and Vincent Rijmen. It was proposed as an alternative for the future AES standard. AES is considered to be a successor to the introduced in 1977 Data Encryption Standard (DES).
AES is based on the above discussed Substitution Permutation Network (Figure 6) principle. This allows a fast execution on hardware with very limited calculation capabilities such as smart cards. AES can formally be placed in the group of symmetric encryption cyphers. In AES the block length is 128 bits. The size of the key is fixed at 128, 192 or 256 bits.
AES uses a 4 by 4 bit matrix which in the memory of the computational devices is addressed by columns. This means that the matrix is written in the memory as К0,0; К1,0;К2,0 К3,0; К0,1 ……….. К3,3 This matrix is also called a state. Some variations of the Rijndale cypher use matrixes with different size or with additional columns, but they are not standardized in the AES.
Most calculations in AES are carried out in a finite field. When encrypted with AES the plain text goes through several iterations until the cipher text is created. Those iterations are called rounds and their number varies according to the key length and is as follows:
· 10 rounds for 128 bit key
· 12 rounds for 192 bit key
· 15 rounds for 256 bit key
Each round includes several steps and some of the steps are also dependent on the key. The algorithm is as follows:
· Key Expansion – from the master key the so called round keys are created. Rijndael key schedule is used for this purpose.
· Initial Round- each byte of the current state is combined with the round key using bitwise Excluding OR (XOR)
· Rounds:
· Bite Substitution (SubBytes)- a nonlinear substitution is carried out. Each bit from the state is replaced by new, with the use of Rijndael S-box
· ShiftRows - each row of the current state is shifted a certain amount of times.
· MixColums – in this operation each column, consisting of four bytes, is combined with the other three columns of the state
· AddRoundKey- each byte of the current state is combined with the round key, using bitwise XOR
 Final round – The final round is carried out in the same fashion as all other rounds, except for the MixColums operation, which is skipped.
 For deciphering of the cipher text the same algorithm is used, but executed in reverse order

Rijndaels substitution table (Rijndael S-box)
The substitution table is generated by using a number from the GF(28) = GF(2)[x]/(x8 + x4 + x3 + x + 1) field. The reciprocal of this number is generated and is afterwards transformed using an affine transformation.
[image:]
[bookmark: _Toc389418563]Figure 7: Affine transformation used in AES
In Figure 7 [x0, ..., x7] represent the reciprocal number presented as a vector. This table is used in calculating the round keys and in the SubBytes operation.

Key Expansion and Rijndael key schedule
Here we are going to explain in more detail the key expansion process and the key schedule creation in AES. To do so first we must elaborate on the functions that are used in this process:
Rotation:
This is a fairly simple function. A 32 bit word is taken, for example 1D 2C 3A 4F
This word is then rotated 8 bits to the left until we have: 2C 3A 4F 1D In other words we shift the bits left until the first 8 bits became the last.
Rcon:
In the AES documentation, this operation is described as exponentiation of 2 to a user-specified value. This operation is carried in a GF(28) field With reducing polinom x8 + x4 + x3 + x + 1. What does that mean in practice? The equation in (1) allows us to calculate the Rcon function.
 [image: Description: \textrm{rcon}(i) = x^{(i-1)}] (1)
For example, let us calculate Rcon(1). We can write down:
Rcon(1)=2(1-1) =20=1 (2)
If we put the result as a matrix we have:
Rcon[1]=[02,00,00,00] (3)
If we calculate several other values we will get :
Rcon[2]=[04,00,00,00]
Rcon[3]=[08,00,00,00]
 Rcon[4]=[10,00,00,00] (4)
Rcon[5]=[20,00,00,00]

Rijndael key schedule core
This function is used as an inner cycle when calculating the key schedule. As input we have 32 bit combination with iteration number “i”. The function have the following steps:
· The 32 bit input combination is copied into the output buffer
· The input combination is rotated 1 byte to the left.
· The Rijndael substitution table is applied to each of the 4 bytes of the combination
· The Rcon function is calculated with the “i” argument
· The Rcon result is XOR-ed with the 4 byte word.
· A XOR operation is carried out between the original input and the result from the above point.

Rijndael key schedule
The key schedules used with 128,192 and 256 bit keys are very similar. The only difference is in the following variables:
· “n” have a value of 16 for 128, 24 for 192 and 36 for 256,
· “b” have value of 176 for 128, 208 for 192 and 240 for 256
The steps for creating the key schedule are:
· The first “n” bytes from the expanded key are copied over from the original key
· The value of the Rcon variable “i” is set to one, i.e. Rcon(1)=2(1-1) =20=1
· Until the key length reaches “b” the following steps, for creating “n” bytes are repeated:
· For creating the first 4 bytes the following steps are followed:
· The temporary variable “t” is created. The size of “t” is 4 bytes
· The last 4 bytes from the first “n” bytes are loaded into the “t” variable
· The key schedule core is applied on the “t” variable
· The “I” variable is incremented by 1
· The output from the key schedule core is XOR-ed with the last 4 bytes of the “n”variable. The result is the new 4 bytes of the expanded key.
· For the creation of the next 12 bytes of the key schedule the following steps are taken:
· The variable “t” is loaded with the last 4 bytes of the “n” variable
· XOR is calculated between the “t” variable and the 4 bytes that perceive the 4 bytes loaded into the “t” variable
· If a 256 bit key is being processed the following steps must be carried out:
· The last 4 bytes from “n” are loaded into “t”
· A substitution using Rijndaels S-box is carried out on “t”
· The last 4 bytes from “n” are XOR-ed with “t” and the new 4 bytes are produced.
· If a 128 bit key is processed the below steps are not carried out. For 196 bit key they repeat two times and for 156 bit key – three times
· The last 4 bytes from “n” are loaded into “t”
· XOR is calculated between the “t” variable and the 4 bytes that perceive the 4 bytes loaded into the “t” variable. The result is the new 4 bytes of the extended key.
It must be noted that the calculation of the key schedule is usually carried out in parallel with the encrypting.

[bookmark: _Toc389472886]2.8 Blowfish
Blowfish is another symmetric key block cipher. It was designed by Bruce Schneier in 1993 and was proposed in [35]. The algorithm is used in a wide array of cypher suites and software mainly because of its high computational effectiveness [36], although the large initialization time of the algorithm makes frequent key changes an issue. The algorithm was designed as an alternative to the ageing DES. Modern derivatives of Blowfish are the Twofish and Threefish algorithms. The Blowfish cipher have 64 bit block size and key length between 32 and 448 bits. At its core Blowfish is a Feistel network cypher with 16 rounds. The S boxes are key dependent. The interworking’s of Blowfish are shown in Figure 8. The algorithm uses two 18 entries long P arrays in the initial round and four 256 entry S boxes. The S boxes are used to produce 32 bit output from every 8 bit input. The results from the S boxes are then combined to produce one 32 bit output as shown in Figure 8. This is called the F function. The results of the F function then combine with the right half of the plain text using bitwise Excluding OR (XOR). After the end of the round the left and right pieces of text switch places. As shown one P-array is used in each round. After the final round there are two unused P-arrays left. The output of the final round is combined with them to produce the final cypher text. The decryption process is carried in exactly the same manner, except the order in which the P boxes are used is reversed. Blowfish is notorious for its very complex key schedule which is carried in the following manner: Blowfish starts by initializing the P and S boxes with a hexadecimal representation of the digits of Pi. This is used because those digits are widely known and show that there is no hidden mathematical backdoor to the algorithm (nothing up my sleeve). The key is then XOR-ed with all the values of the P-arrays. A 64 bit all zeroes block is then encrypted. The resulting cipher text is then used to replace P1 and P2. The same Cypher text is then encrypted again with the new sub keys. The resulting cipher text then replaces P3 and P4. This process continues until all P and S boxes are replaced. By the time the process is completed about 4KB of data are encrypted. This is the reason for the long initiation of the Blowfish algorithm. The same process is carried out again each time the key is changed. This design choice, however makes the cypher very computational intense for exhaustive attacks. Blowfish is known to be susceptible to attacks on reflectively weak keys. [37][38]. This weakness must be taken into account when selecting keys in order to prevent possible weak spots.

[bookmark: _Toc389418564]Figure 8: Blowfish

[bookmark: _Toc389472887]2.9 International Data Encryption Algorithm (IDEA)
IDEA (International Data Encryption Algorithm) is a symmetric key block algorithm designed by James Massey and Xuejia Lai and was proposed in 1991. The algorithm is a revision on the PES (Proposed Encryption Standard) and was envisioned as a replacement for the DES algorithm. The algorithm was freely available for non-commercial use and the last patent expired in 2012. IDEA uses 64 bit blocks with 128 bit keys. It consists of 8 identical rounds and a final half round. The algorithm uses Xor and modular addition. Both of those are performed in 16 bit quantiles. In Figure 9 those operations are depicted as follows:
· Bitwise XOR – blue circle with plus
· Addition modulo 2^16 – green square with plus
· Multiplication modulo 2^16+1 – red circle with dot (all 0x0000 words in input are interpreted as 2^16 and 2^16 in output is interpreted as 0x0000)
IDEA follows the Lai-Massey scheme described in 2.4. The subtraction and addition functions are both carried out using XOR. The half round function in IDEA is key dependent. Each round uses six 16 bit sub keys, and each half round uses another two. This makes the total number of sub keys for the IDEA 52. The first eight sub keys are extracted directly from the key. Further groups of eight keys are created by rotating the main key 25 bits left between each 8 sub key groups, making a total of six rotations. After 8 rounds of encryption, follows the final half round. Its structure is shown in Figure 9.
The decryption process is exactly the same as encryption. The exception being that the order of sub keys being inverted and each value of sub keys one thru four is replaced by its inverse. Under certain assumptions IDEA can be considered immune to differential cryptanalysis. So far no successful linear attack is known. The best attack against IDEA until 2007 is described in [39]. The attack is successful against 6 round IDEA algorithm and requires 2^64 known plaintexts and 2^126.8 operations. In 2012 a full 8.5 round IDEA algorithm was finally broken using a bicliques attack [40]. IDEA is also susceptible to weak keys [41],[42],[43]. In particular, keys containing a large number of zero’s are undesirable. A solution to this problem was proposed in [43]: “While the zero-one weak keys problem of IDEA can be corrected just by XOR-ing a fixed constant to all the keys (one such constant may be 0DAEx the problem with the runs of ones may still remain and will require complete redesign of the IDEA key schedule.”

[bookmark: _Toc389418565]Figure 9: IDEA

[bookmark: _Toc389472888]2.10 Cascade encryption, Robust combiners and Triple Digital Encryption Standard (TDES/3DES)
Robust combiner combines a few different cryptographic modules with the goal of producing a system that is secure even if some of the underlying modules are proven to be insecure. The robust combiner must remain secure even after a successful cryptanalysis of one or more of its modules is proven or after a vulnerability in the implementation of one or more of its modules is found due to improper implementation. The use of robust combiner scheme does not guarantee the security of a solution but merely increase it. Shannon introduces and defines for the first time the term “product enccipherment” in [44].
There are many cryptographic schemes that combine redundant modules with the goal of achieving higher tolerance. Usually the implied goal is to increase robustness and security. The best known combiner is the cascade combiner (or cascade or multiple encryption) applied to block ciphers and encryption schemes.
 One of the first attempts at creating a robust combiner cryptographic algorithm is [45]. In it Asmuth and Blakely propose an “XOR-input” combiner of two ciphers. Even before their work cascade encryption was widely known and used, although not much research was done on the topic, with the idea of creating stronger cryptosystems.
 Cascade encryption refers to systems that use several ciphers sequentially. In other words the cipher text after the first algorithm is the plaintext for the second stage and so on. In [46] is shown that a cascade of block ciphers is secure against message recovery attacks. Later on Damgard and Knudsen [47] prove that block ciphers cascade is secure against chosen plain text key recovery attack. In [48] Maurer and Massey demonstrate that a cascade cipher is at least as strong as its first layer. They also show that a cascade can be weaker than the second layer of encryption used. However the practicality of those results is questioned by some [49] on the basis of the very specific ciphers used (almost half of the cipher text bits are independent of the key). In [49] it is claimed that reproducing those results for a modern block cipher will be very hard.
 In practice many cryptographic systems employ such an approach. Perhaps the best known such solution is the Triple DES, which uses cascade combiner applied to the DES block cipher. It uses the same cipher three times (as seen in the name) to increase key space and therefore security. DES uses the encryption-decryption-encryption scheme (also known as EDE). There are three possible implementations of TDES according to the number of DES keys used:
· Use the same 56 bit key for all layers
· The key for the first and third layer are the same. The key for the second layer is independent.
· All three layer keys are independent.
It must however be mentioned that NISTI have designated the key length to be 80 for keying option 2 and 112 for keying option 3 [50] due to meet-in-the-middle and certain chosen-plaintext or known-plaintext attacks.
If we look closer into block cipher designs we can also claim that each block cipher is a cascade cipher. All block ciphers are composed of rounds of simpler ciphers, used with different round keys to compose an altogether much stronger overall encryption. From [28] and [30] we can see that 4 rounds are sufficient for the production of a strong random permutation output in Feistel network ciphers and Lai-Massey ciphers. However for the purposes of robustness much larger number of rounds are usually used.

[bookmark: _Toc389328939][bookmark: _Toc389472889]CHAPTER 3
[bookmark: _Toc389472890]PROPOSED MODEL: CRYPTO ROULETTE

In this chapter of the thesis the proposed algorithm is described. The envisioned system provides increased confidentiality compared with modern analogs, while maintaining comparable levels of complexity and throughput. The system also eliminates the single point of failure problem which is associated with single cipher systems.
The proposed name for this algorithm is Cryptographic Roulette, because of its nature. The system chooses a different algorithm for each communication session based on a random value and predetermined pool of cryptographic algorithms. This pool of cryptographic algorithms is called Cryptographic table (CT). Another way of thinking about the system is to imagine a frequency hopping radio communication system, but instead of changing frequencies our system shifts between cryptographic algorithms.
The increase in security is achieved by adding a second plane to the system by using multiple symmetric cryptographic algorithms (Figure10).

[bookmark: _Toc389418566]Figure 10: Multiple planes cryptography

A block diagram describing the basic functional blocks is given on Figure 11. As in frequency hopping the communicating parties (Alice an Bob) must have a way of synchronizing the algorithm use. This part is described in more detail in chapter 3.2. On Figure 11 this functionality is performed by Synchronization blocks A and B. There are two main ways to achieve synchronization between Alice and Bob is: by using synchronized pseudorandom number generators or by calculating a time variable that is based on the signal or packet traveling time between the communicating parties. Both of them are described in chapter 3.2. The type of synchronization is transmitted in the service information part of the initiation key, shown in Figure 11. The length of this field was chosen to be 2 bits, because I envision 4 different types of synchronization. If synchronized random number generators are to be used, then the initiation vector for them is given in the last field from the initialization key. This field is optional.

[bookmark: _Toc389418567]Figure 11: Block diagram of the CR algorithm

After achieving synchronization both parties have to use a common table of reference for the selection of keys and algorithms. I propose that a large initialization key be used for this purpose. The key can have a structure similar to the proposed in Figure 12. The initialization key will start with a service information block. This block will contain information for the number of used algorithms, their exact type and the number under which they will be listed in the cryptographic table. I propose that the length of the “number of algorithms” field has a length of 8 bits which will permit the use of 256 different algorithms. I propose the “number of algorithms” field to be followed by “n” number of 8 bit blocks that describe each individual algorithm, where “n” is the number of algorithms. As mentioned above, there will be a 2 bit block in the end of the “system information” structure that will describe the synchronization type.
After the “system information” block I propose to have a “n” number of 128 bit blocks that contain the key for each individual symmetric encryption algorithm. Those blocks must follow the same numeration as the “Algorithm” blocks in the system information field. In other words the “key 5” block will contain the encryption key that is to be used with the algorithm specified in “Algorithm 5” block.

[bookmark: _Toc389418568]Figure 12: Possible Initiation key configuration
The numeration that each algorithm will have in the crypto table will be the number under which the algorithm is listed in the initiation key. For example the algorithm from “Algorithms 2” field which uses “Key 2” will be number 2 in the cryptographic table (Figure 14). The dissolution of the initiation key into individual keys and algorithms and the creation of the cryptographic table will be carried out by the “Key engine”, as shown in Figure 13.

[bookmark: _Toc389418569]Figure 13: Key engine

[image:]
[bookmark: _Toc389418570]Figure 14: Crypto Table
When the creation of the cryptographic table is complete Alice and Bob can begin encrypting their information using the Cryptographic Roulette algorithm. Let us imagine that Alice wants to send Bob an encrypted message. She has to :
· Get a random (or pseudorandom) variable from the synchronization block. This random number is to be contained in the “selvar” variable. This variable is an integer in the range between 0 and n-1.
· Alice has to compare this variable to the crypto table and load the appropriate algorithm and key.
· Send the information about the selected algorithm and key (“key” and “crypto” variables) to the Encryption/Decryption block. This block encrypts the Plaintext information.
· The cypher text information is sent to Bob.
When Bob receives the coded message he must follow the below steps to decrypt:
· He must use the synchronization block to get the same variable that Alice used to encrypt the message.
· Compare the variable against the crypto table and get the appropriate key and algorithm.
· Use the key and algorithm to decrypt the message.
· Bob gets the Plaintext

[bookmark: _Toc389472891]3.1. Synchronization.
For the above proposed scheme to work both Alice and Bob must in first place agree on a pool of possible algorithms and then synchronize their use.
Once a compromise is reached on the types of cryptographic algorithms and the keys used Bob and Alice have to synchronize their actions. When Bob sends a message encrypted with algorithm 1 Alice needs to use the appropriate algorithm and key to decipher the message. There are few scenarios possible.
[bookmark: _Toc389472892]3.1.1 No synchronization
The easiest solution would be to have no synchronization between Alice and Bob. In this case Alice has to try and decipher the received message using all Cryptographic Roulette algorithms until she gets a meaningful result. This solution has several drawbacks:
· The first of which is the obvious waste of resources on trying all possible combinations.
· A denial of service (DoS) attack is a very likely scenario for disrupting the communication between both parties. Alice would have to try every possible solution before she can confirm that the given message doesn’t come from Bob. Eve can use this weakness if no other authentication method is used. She can simply send a large amount of messages, which Alice would have to try and decipher. This would take up a lot of computational resources.
· A timing attack is possible. Eve can send a dummy message to test how much time it would take Alice to try all possible combinations. If the message is sent thru TCP Alice will send a request for retransmission. By using this approach Eve can gain insight into how many algorithms are used by the Crypto Roulette. This point is valid if there is no separate authentication.
[bookmark: _Toc389472893]3.1.2 Using a time variable for synchronization.
Another possible solution to the synchronization issue is to introduce a variable that both Alice and Bob are aware of. This variable would have to be stochastic or at least as close as possible to random. For this purpose, measurements of the time it takes for a packet to travel from Alice to Bob, is proposed. The process is shown in Figure 15 in steps 1 through 9 and is as follows:

[bookmark: _Toc389418571]Figure 15: Time variable algorithm
1. A sends to B the current system time tAn.
2. B receives message containing tAn in system time tBn.
3. B calculates ΔtAnBn=| tAn - tBn |
4. B uses ΔtAnBn to choose the appropriate Cryptographic algorithm and key from the CT
5. B sends the encrypted „Message“ + tBn , tBn+1enqrypted using PKI
6. A deciphers tBn + tBn+1 using PKI and calculates ΔtAnBn
7. A deciphers message using ΔtAnB
8. A calculates ΔtAn+1Bn+1=| tAn+1 - tBn+1 |
9. A uses ΔtAn+1Bn+1 to choose the appropriate Cryptographic algorithm and key from the CT and encrypt ”message 2”
10. The process continues following the same steps
When the time variable ΔtAnBn is calculated, it has to be compared to a decision table. In other words, a baseline for comparison and decision making. The number of decision boundaries must be equal to n-1, where n is the number of algorithms used. The probability that ΔtAnBn will fall into one of those categories must be equal and the sum of those probabilities must be equal to one. In figure 16 the idea is presented graphically.
To establish a baseline for those borders a number of previous calculations for the ΔtAnBn variable must be available. We must also dynamically add the newest ΔtAnBn to the list, and take out of the list the “oldest” value. This means a First In First Out (FIFO) queue must be created, which then can be used as input for the calculation of the decision boundaries. This solution is proposed with the idea to overcome the constant change in infrastructure load and routs between the end destinations. It aims to provide equiprobable distribution boundaries in spite of the stochastic properties of the ΔtAnBn variable. For the calculation of the boundaries a Cumulative Distribution Function is used

[image: C:\Users\Марин\Desktop\Diploma\untitled.jpg]
[bookmark: _Toc389418572]Figure 16: Decision boundaries between CT entries

The foreseen downsides of this approach are as follows:
· The number of messages send from both Alice and Bob have to be the same and they have to be transmitted in a ping-pong manner, i.e. Alice sends a message then Bobs sends a reply and so on. This usually is not the case. Most communications are asymmetric in nature.
· This approach would require larger amounts of bandwidth and computational cost compared with the solution proposed below.
· This approach needs the collection and storage of a significant amount of transmission time measurements so that a decision boundaries can be calculated.
· The collected data must be continuously updated with the new entries, so that the decision boundaries will provide an equiprobable algorithm selection. The data must be stored in a FIFO queue.
· The decision boundaries must be recalculated after every iteration.
Sequential synchronization using the time variable.
A solution to the constant decision boundaries recalculation problem is to perform the calculation once for every “n” iterations, where “n” is the number of algorithms used by the Crypto Roulette. After the decision boundaries are calculated the first algorithm is determined by the results of the timing variable calculation used against the decision boundaries. Every subsequent message is encrypted using the next algorithm in the crypto table (Fig. 17). When the initially used algorithm is reached, a new decision boundaries and timing variable are calculated.

[bookmark: _Toc389418573]Figure 17: Rotation style algorithm selection

Using a hash function on the time variable
Calculating decision boundaries for the time variable is computationally intensive task. To cope with this issue I propose using a hash algorithm on the time variable instead. The result of this operation would have to be in the range [0,n]. After getting the result from the hashing operation, it is compared to the cryptographic table and the appropriate algorithm is chosen. For each of the subsequent messages we can calculate a new value or use the above described solution.
This proposal has the following advantages and weaknesses:
· It is possible for A and B to send an asymmetric number of messages.
· Potentially lower network overhead and computational requirements compared to the other proposed solutions.
· Potentially lower secrecy compared to the previous proposition. If Eve manages to get hold of ΔtAnBn and the numeration of the algorithms in the CT she can with certainty guess the next algorithm to be used.
This solution has not been simulated and no conclusions about the computational cost and throughput can be made. The above points are speculations based on the assumption that the hashing process would be faster than calculating decision boundaries.

[bookmark: _Toc389472894]3.1.3 Using a synchronized pseudorandom number generators.
The easiest and probably the most prudent solution is for Alice and Bob to have a synchronized pseudorandom number generators. The generator have to generate numbers in the [1;n] range. A predetermined numeration of the algorithms such as in Figure 3 is required.
If Alice and Bob are exchanging messages in an asymmetric fashion, two pairs of synchronized pseudorandom algorithms must be used, i.e. a pair of synchronized pseudorandom generators for both sending and receiving encrypted messages.
 This solution would have the following benefits and downsides:
· Lowest possible bandwidth requirement, since no additional information is transmitted during communication.
· Probably lowest computational requirements of all solutions presented.
· If the pseudorandom generator sequence is compromised the benefits of using multiple symmetric algorithms are nullified.
· System using this type of synchronization is suitable for small networks and point to point communication since it does not rely on the “t” variable.

[bookmark: _Toc389472895]3.2 Strength and key length calculations
Calculating key length and cryptographic strength of composite cyphers is a difficult task at best. The actual combined key lengths of such algorithms is not always equal to the number of possible combinations. A very good example of this phenomena is the 3DES algorithm. This algorithm consists of three sequential rounds of DES encryption and decryption. There are three different keying schemes specified for this Algorithm:
· New key for each of the three encryption/decryption rounds. Each round key is 56 bits long .This option has actual key length of 3x56= 168 bits. However due to meet in the middle attack this option provides only 112 bits of effective key length.
· The same key for the first and last key and a different key for round number 2. As with the first keying option the key length is 112 bits but the effective key length is thought to be only 80 bits.
The Cryptographic Roulette algorithm will meet similar challenges. Because of its unique construction I was unable to find any related work, which would help me discern the effective key strength. Therefore, I make no claims about the effective key length of the algorithm, but only provide calculations for the cumulative key length and make the remark that this key length is likely exaggerated and a topic of discussion and further research.
For the Crypto Roulette I envision the following three basic keying scenarios:
· Using the same key for all algorithms.
· Using different key for every algorithm.	
· Hybrid solution combining the two above options.
[bookmark: _Toc389472896]3.2.1 Using the same key for all algorithms
The same key for all underlying algorithms of the Crypto Roulette can be used. This option would have the following advantages:
· Small initialization key (see beginning of chapter 3) compared to the other keying options. This is so because no matter the number of algorithms the Crypto Roulette uses we would need to include only one actual key in the initialization key.
· Smaller computational overhead compared to the other options due to the need to create only a single key.
 The listed advantages mean that this keying option would be a prudent choice if:
· The Crypto Roulette is to be used with large or very large amount of underlying algorithms.
· Another possible scenario for this keying option is when the Crypto Roulette is used primarily with the goal of eliminating a single point of failure threats and not as a mean to increase key length.
· When the Crypto Roulette is required to have a very short initialization time and therefore a short initialization key. Such an application would be Cognitive Radio Networks.
Although this keying option is intended primarily to combat the single point of failure problem, it does provide some key length increase. The formula used to calculate the amount of possible combinations is:
 (5)
Using the formula above to calculate the number of possible keys for the simulation presented in chapter 4.1 as:
 (6)
This in key length will be equal to 129,5 bits.
[bookmark: _Toc389472897]3.2.2 Using the different key for every algorithm
If different key is used with every underlying algorithm in the Crypto Roulette the system would have the following characteristics:
· Significant increase in key length and therefore security.
· Large initialization key compared to the solution presented in chapter 3.2.1
When calculating the number of possible key combinations in this scenario we must introduce a new parameter called “compromised data percentage” or CDP. This variable is required because of the nature of the Crypto Roulette algorithm. Let us imagine that we have a Crypto Roulette with 10 underlying algorithms. The system uses different keys for each algorithm. An attacker used exhaustive attack, for example to discover one of the keys. The attacker will be able to use his knowledge to decipher 10% of all messages. The remaining 90% of the data transferred will remain secure. This is where CDP comes into play. I use CDP to define what percent of the encrypted data is compromised and then calculate the computational requirements to carry out such an attack.
1 CPD means that no transferred data is compromised and a CDP of 0 means that all of the transferred data is compromised. Then for 0 CDP we can define the key length of the Crypto Roulette as:
 (7)
And for CDP of 1 the formula would be:
 (8)
If we calculate the key length for the simulation from chapter 4.1 we get:
 (9)
 (10)
As can be seen from the above calculations a Crypto Roulette algorithm with the exactly the same configuration can have a very different cumulative key strength depending on the acceptable percentage of compromised data.
It also must be taken into account that compromising one of the underlying algorithms of 10 algorithm Crypto Roulette can mean 10% compromised data. If the Crypto Roulette uses 100 different algorithms 1 compromised algorithm would mean only 1 percent compromised data or CDP of 0.99. This must be taken under consideration when designing Crypto Roulette algorithms, and as large as possible number of algorithms must be used if the goal is to increase secrecy.
[bookmark: _Toc389472898]3.2.3 Probability analysis
If we presume that Eve knows the exact type of algorithms being used by the Crypto Roulette but she does not know the order in which they are used, then she needs to try every possible algorithm being used in the system with every possible key. The chance of her guessing the particular type of crypto in use for the particular message she have intercepted is given by (11)
 (11)
Where:
Pcg-the probability of correctly guessing the used cryptographic algorithm from the first time
ncrypto- the number of used symmetric cryptographic algorithms
The probability of incorrect guess is therefore:
 (12)
Where:
Picg- the probability of incorrect guess
If we assume that the order, in which the cryptographic algorithms are being used, is random for the probability that a given algorithm is selected (P(1,n)), we can write:
 (13)
If we designate the probability that a single given symmetric algorithm, when used on its own as P1……Pn
Then for the probability of breaching the encryption we can write:
 (14)
If we replace (12) in (14) we get:
 (15)
We can then say that the confidentiality of the Crypto Roulette algorithm will be in the interval :
 (16)
A comparison of the cumulative key strength of the Crypto Roulette with some widely used crypto algorithms is given in Table 1. A comparison between power consumption is also made.
[image:]
[bookmark: _Toc389125182][bookmark: _Toc389134068]Table 1: Key Length and power consumption comparison

[bookmark: _Toc389472899]3.3 Weaknesses
Analyzing the Crypto Roulette algorithm has shown a few potential weaknesses. To explore these weaknesses, let us make the following assumptions Eve has no prior knowledge of the symmetric key cryptographic algorithms that Alice and Bob have decided to use in their Crypto Roulette. The assumption that Eve has access to all the exchanged messages is also made. The following weaknesses were identified:
· The Crypto Roulette does not provide perfect forward secrecy. This is not a weakness in its own right, but could possibly prove to be an implementation vulnerability. Let us assume that Alice and Bob Are using CR with 10 algorithms. They need to create 10 independent keys, for the 10 symmetric algorithms. Most Software bundles, such as OpenSSL use a single pseudorandom key algorithm to create keys for all different algorithms. If the CR is created on top of OpenSSL this will provide a possible weakness. Let us imagine that Eve gains access to one of the keys thru exhaustive attack. She can then use this key in conjunction with a potential weakness in the pseudorandom number generator to deduce the values of the remaining keys.
· If Alice and Bob use timing variable synchronization, and Eve mounts a successful exhaustive attack against one of the underlying algorithms, she can use this knowledge to predict which algorithm will be used in the next round. This means that the crypto roulette will lose much of the increase in key length that it provides. This attack however does not nullify the robustness provided by the algorithm.
· Eve can mount a Man in the middle attach if she can gain access to the contents of one of the transferred messages. This scenario is possible if Alice and Bob use time variable synchronization and no additional authentication mechanism. Eve can then corrupt the CR algorithm by influencing the results of the computation of the timing variable, and therefore predetermining the algorithm that the CR will use in the next iteration. • The Crypto Roulette algorithm does not secure the initial negotiation process, therefore it is prone to initial stage attacks. I propose that this is remedied by the use of public key encryption for identification and securing the opening stage against attacks. This however means that the system is as strong as the public key algorithm that is used in the beginning.
· If Alice and Bob use pseudorandom number generators for synchronization, and there is a flaw in its algorithm Eve can perform an exhaustive attack against one of the algorithms, and then use her knowledge of the pseudorandom algorithm weakness to reduce the confidentiality gain provided by the Crypto Roulette

[bookmark: _Toc389328950][bookmark: _Toc389472900]CHAPTER 4
[bookmark: _Toc389472901]RESULTS AND EVALUATION

In this part the simulation and results are presented. The first subchapter concentrates on describing the software and hardware used. It also contains a detailed explanation of the simulation. The second subchapter presents the simulation results both in tables and graphically.
All Simulation ware carried out on my personal laptop computer. The specifications of the machine are as follows:
CPU: Intel Core i7-3632QM @ 2.2GHz RAM: 6GB
OS: Windows 7 Ultimate x64 SP1
The software used is:
MATLAB 2013a OpenSSL v0.9.8n [51] Microsoft Software Development Kit (SDK) 7.1 OpenSSL_Mex_V1 [52]
The OpenSSL suite was chosen as the basis for the simulation because it is available under an Apache-style license, which means it is freely available for commercial and non-commercial purposes. Furthermore due to its licensing and availability OpenSSL has become more or less an industry standard. OpenSSL is written in C. OpenSSL v 0.9.8.n [51] is used for compatibility purposes with OpenSSL_Mex_V1. However, later versions of OpenSSL should also work with the OpenSSL_Mex_V1
For the simulation environment I choose MATLAB mainly because of its versatility and ease of use. MATLAB is widely used in the academic community for carrying out different simulations and is thought of as Jack of all trades. MATLAB is a programing and scripting language in its own write. This means that any code, written directly in C, C++ or any other programing language can’t be used directly in MATLAB. To cope with this issue MATWORKS introduced the use of *.mex files. The idea is that if one needs to use code written in C for example, he can create a mex function. The mex function dynamically compiles the C code so that it can be used in MATLAB.
As mentioned above OpenSSL is written in C. This means that if we are to use it in the MATLAB environment, we need to create a mex function that will allow us to use the OpenSSL functions directly in MATLAB. For this purpose I used the OpenSSL_Mex_V1 suite [52] This piece of software is freely available for educational and non-commercial use. A version of this bundle is available on the CD attached to this thesis or on [52].
The use of .mex functions in MATLAB, however, requires that a SDK is installed. I chose the Microsoft Software Development Kit (SDK) 7.1 because it is recommended by MathWorks, and is the latest available version. The software development kit is available for download on the site of Microsoft. The kit is also included in the CD attached to this thesis.
[bookmark: _Toc389472902]4.1 Simulation
An SDL description of the Crypto Roulette simulation is given in Figure 18. The simulation goes as follows:
· After the initiation of the simulation awaits the input of several parameters:
· Type of synchronization - here we can choose between Time variable and synchronized pseudorandom number generator synchronization. The variable used is [SYNCRO].
· Amount of test data, that is to be encrypted and decrypted by the simulation. The input that we provide is multiplied by 32 Kb. For example, if we enter 10 this means that the simulation will create 320 Kb of test data. The variable is [L].
· Number of iterations – this is the number of times that we wish the simulation to be carried out. Usually to have a statistically significant results we must have a large number of samples. It is not practical to run the same simulation manually for a 1000 times for example. The variable used is [i].
· How many iterations before crypto change – this parameter is introduced so that the behavior of the Crypto Roulette can be monitored depending on the number of iterations before the next cryptographic algorithm is selected. The variable is called [changecrypto]
· How many iterations before key change – this variable is used to allow monitoring of the Crypto Roulette when the key is changed after a number of iterations. The variable used is [n].
· The “x” variable is used to keep track of the current iteration number. At the start of the simulation, it is set to 1.
· After the initial variables are entered and the test data array is created the simulation enters an iteration cycle. The idea behind the creation of that cycle is to carry out a simulation with the same parameters a given number of times. The cycle is created with “for” expression. After the iteration number “x” reaches the predefined variable “i” the cycle ends.
· After entering the simulation body the variable “d” is created. “d” contains the remainder of dividing the iteration number “x” by the “n” variable (number of iterations before key change). The “d” variable is used later on to determine if a new key should be generated.
· An “if” structure is created. If the “d” variable is zero or if the iteration number “x” is equal to 1 a new key is calculated.
· The “”c” variable is created and is loaded with the reminder of the division between the iteration number “x” and the “changecrypto” variable.
· An “if” structure is created. If The condition to enter the structure is to fulfil one of the below:
· The “c” variable is equal to 0
· The Iteration number variable “x” is equal to 1
If one of those conditions is met, the simulation chooses a new cryptographic algorithm to be used. If neither one of them is met, the simulation goes to encrypting/decrypting using the cryptographic algorithm that is already loaded in the “crypto” variable.
· The simulation checks which synchronization mode is used. To do so the simulation compares the “SYNCRO” variable to one. If “SYNCRO” is equal to one:
· The “r” variable is loaded with a random integer. The MATLAB function “randi” is used.
· The “selvar” variable is created and loaded with the result of r mod (3). In this simulation three different symmetric cryptographic algorithms are used. This is the reason for the use of mod(3). If we use a larger number of symmetric algorithms the necessary corrections reflecting the change must be made to this expression. If for example 6 algorithms are used, then the expression would be mod(5).
· If the “SYNCRO” variable is equal to two the simulation uses the time variable synchronization. The MATLAB expression used for this construction is an “if/elseif/” . This means that another type of synchronization can be easily added if need be, thus providing flexibility. The time variable is calculated following the below steps:
· The variable “RR” is created. It is loaded with 100 variable integer numbers between 20 and 100. This range is used to simulate the one way travel time between the communicating parties in ms. It must be noted that those parameters for the variable were chosen to simulate the one way trip time and not the round trip time.
· The “Rcurent” variable is created and loaded with random integer between 20 and 100. This variable is used to simulate the last trip time.
· The “Rcurent” variable is added to the “RR” variable in a FIFO manner. One can think of the RR variable as a FIFO queue. For this operation the “shiftl” function is used. The function .m file can be found on the CD attached to this thesis.
· The decision boundaries are calculated in a manner that ensures the probability for each algorithm to be chosen is equal. The “v” variable is created as an array with one row and three columns. For the calculation of the borders the “optim_m2” function is used. A copy of it and of the underlying functions used in it is provided on the CD.
· An “if/elseif” structure is used to compare “Rcurent” to the decision boundaries.
· In the if construct the value of “Rcurent” is compared to “v(1.2)”. If “Rcurent” is smaller or equal to v(1.2) the variable “selvar” is created with a value of 0.
· The “elseif” compares if the value of “Rcurent” is larger than “v(1.2)” and smaller or equal to “v(1.3)” . If both of those conditions are met, the variable “selvar” is created with a value of 1.
· The “if/elseif” construct is completed by an “else” statement that sets the value of “selvar” to two if none of the above conditions is met.
· After choosing the synchronization algorithm and performing the necessary steps to calculate the value of the “selvar” variable the simulation chooses an encryption/decryption symmetric algorithm. To determine which symmetric cryptographic algorithm is to be used the simulation uses an “if/elseif” construction similar to the one used to determine the “selvar” value when using the time variable synchronization. The result of this construction is the creation of a variable called “crypto”, which is loaded with either “aes-128-cbc”, “bf-cbc” or “idea-cbc”. The “crypto” variable is a string variable and is used as an initialization argument in the encrypt/decrypt functions. The steps the simulation follows are:
· An “if/elseif” construct is created. The “if” statement checks if the value of the “selvar” variable is zero. If this condition is met, the variable “crypto” is created and loaded with the string “aes-128-cbc”.
· The first “elseif” construct compares the value of “selvar” to one. If the answer is 1 then the “crypto” variable is created and loaded with the “bf-cbc” string
· A second “elseif” expression is used for the final comparison. This expression can easily be replaced by an “else” expression without any repercussions to the simulation structure and results. In this line the simulation compares the “selvar” content to two. If the result is 1 then the “crypto” string variable is loaded with “idea-cbc”.
· The cycle for the choosing of an algorithm is complete. The number of iterations that are going to forgo the choosing of new symmetric encryption/decryption algorithm is set by the value of the variable “changecrypto”. The procedure is carried every “x/changecrypto” iterations, where “x” is the current iteration number. The procedure is also carried once in the first iteration regardless of the “changecrypto” value.
· The double precision integer numbers that are stored in the “dataToEncrypt” variable are base 10 they need to be formatted to unit 8. For this task the “toUnit8” function is used. It is included on the CD. The function uses as input the “dataToEncrypt” variable. The output is stored in the “toUnit8” variable.
·
Once the data is formatted to Unit 8, it can be encrypted. The function uses the “toUnit8”, “key”, “iv” and “crypto” variables as input. The output of the execution of the function is contained in the “encryptedData” variable.
[bookmark: _Toc389418574]Figure 18: Simulation algorithm for the Crypto Roulette
· The data is then decrypted. The decryption function uses the same input arguments as the encryption, except for the “toUnit8” which I replaced by “encryptedData.” The output of the function is loaded into the “decrypted” variable.
· The encrypt/decrypt part of the simulation of the current iteration is complete. The algorithm jumps back to the “for” construct and checks if the needed number of iterations is complete. If it is then:
· The simulation calculates the time spent in cycle with the help of the MATLAB “tic/toc” function. The result is stored in the “TimeSpent” variable and the value is displayed.
· The simulation creates and calculates the “AverTime” variable by dividing “TimeSpent” by the iteration number “i”. The result is displayed.
If the iteration number “i” and the current iteration number “x” are not equal the simulation continues on following the same steps, until they are

For the purpose of comparing algorithms with similar key lengths, a cascade cypher is constructed. For the first level a 128 bit Blowfish in cbc mode is used. The second round is composed of 128 bit cbc AES. The third round is an IDEA cbc cipher. Those ciphers are used for two main reasons: the same algorithms are used in the Crypto Roulette, hence any differences in Throughput and computational time are due to the different constructions they are used in. The second reason is that they represent three different types of symmetric cryptography algorithms, hence we can be pretty sure that encrypting the message with multiple algorithms will not undo the first encryption. This reasoning has one more advantage: the so constructed cascade encryption can use the same key for all the rounds, thus we remove the deviation in the throughput that calculating three random keys can cause.
The construction of the simulation is shown in Figure 19 The code for this simulation can be found in Appendix B. The description of the simulation goes as follows:
· After initiation the simulation awaits the input for the number of iterations “i”, number of iterations before key change “n” amount of test data to be created “L”
· The simulation creates the three dimensional array called “dataToEncrypt”. This array contains “L” number of 10x100 matrices. Each element in these matrices is 32 bit long.
·
An iteration cycle starts. The number of iterations is dependent on the “n” variable. Each time a iteration is complete, the current iteration number “x” is increased by 1. If the current iteration number does not match the number of iterations variable “n” the simulation proceeds as follows:
[bookmark: _Toc389418575]Figure 19: Cascade encryption simulation

· The variable d is created. It contains the reminder of the division between the current iteration number “x” and the number of iterations before key change parameter “n”.
· If the d variable is equal to zero or if the current iteration number is equal to 1an if construction is entered. This construction creates the “key” and “iv” parameters which are used later on. This construction was created with the idea to simulate how the iterations before new key is selected impact the throughput of the cascade construction.
· If the “d” variable is not equal to zero, the key and initiation vector creation is skipped in this iteration. A new value for “d” is calculated each iteration and the check is also performed each iteration.
· The data from the “dataToEncrypt” array is transformed to unit8. The Function for this operation is part of the OpenSSL_MEX_v1 package. The formatted data is written in the “toUnit8” array.
· The first level of encryption uses the Blowfish algorithm. The input arguments to the encryption function are “toUnit8” and “key1”. The enciphered data is written in the “encryptedData1layer” array.
· The first level of encryption uses the AES 128 algorithm in cbc mode. The input arguments to the encryption function are “encryptedData1layer” and “key1”. The enciphered data is written in the “encryptedData2layer” array
· The second level of encryption uses the IDEA-cbc algorithm. The input arguments to the encryption function are “encryptedData2layer” and “key1”. The enciphered data is written in the “encryptedData3layer” array.
· The decryption process must use the same algorithms and keys, but in a reverse order. The first decryption layer therefore uses IDEA-cbc. The input arguments are “key1” and “encryptedData3layer”. The decrypted data is stored in “decryptedData3layer”
· The second decryption layer uses the AES 128 algorithm and the input arguments “key1” and “decryptedData3layer”. The output is stored in “decryptedData2layer”.
· The final decryption layer uses Blowfish. The input for the function is “decryptedData2layer” the output is stored in “decryptedData1layer”
· After the simulation completes all encryption/decryption functions, the data must once again be formatted to binary. The output of this function is stored in “toDouble”
· The simulation goes back to check whether the necessary number of iterations is complete. If it is the simulation calculates and displays the overall simulation time and the average time for a single iteration.

[bookmark: _Toc389472903]4.2 Simulation results
In Table 2 the results from comparing a Crypto Roulette with 3 algorithms to its underlying symmetric algorithms is presented. For each scenario a 1000 simulations ware carried out. The below table contains the mean value of those 1000 simulations.
The purpose of this series of simulation is to show how CryptoRoulette fares against its components. This allows us to make conclusions for the overhead of the system. The table gives the throughput values for Crypto Roulette which uses synchronized pseudorandom algorithms and time variable for synchronization between the communicating parties.
A simulation of a cascade encryption algorithm that uses sequentially AES Blowfish and IDEA is conducted. This enables us to compare the Crypto Roulette’s performance against other robust combiners.
	Random key and random algorithm every time

	Size (KB)
	32
	320
	3200
	32000
	320000
	3200000

	AES 128
	Average time (s)
	0,0017
	0,0017
	0,0017
	0,0174
	0,2718
	20,8542

	
	Throughput size/time (KB/s)
	18824
	188235
	1882353
	1839080
	1177336
	153446

	
	
	
	
	
	
	
	

	BF-128
	Average time (s)
	0,0018
	0,0018
	0,0018
	0,0171
	0,2768
	21,7200

	
	Throughput size/time (KB/s)
	17778
	177778
	1777778
	1871345
	1156069
	147330

	
	
	
	
	
	
	
	

	IDEA
	Average time (s)
	0,0017
	0,0017
	0,0017
	0,0169
	0,2776
	20,3600

	
	Throughput size/time (KB/s)
	18824
	188235
	1882353
	1893491
	1152738
	157171

	
	
	
	
	
	
	
	

	Cascade BF,AES,IDEA
	Average time (s)
	0,0022
	0,0022
	0,0022
	0,0195
	0,2933
	21,1200

	
	Throughput size/time (KB/s)
	14545,45455
	145454,5
	1454545
	1641026
	1091033
	151515,2

	
	
	
	
	
	
	
	

	CR Random number synchronization
	Average time (s)
	0,0032
	0,0018
	0,0018
	0,0183
	0,2807
	21,4407

	
	Throughput size/time (KB/s)
	10000
	177778
	1777778
	1748634
	1140007
	149249

	
	
	
	
	
	
	
	

	CR Time variable synchronization
	Average time (s)
	0,0161
	0,0158
	0,0156
	0,0313
	0,2967
	21,5546

	
	Throughput size/time (KB/s)
	1988
	20253
	205128
	1022364
	1078531
	148460

	
	
	
	
	
	
	
	

[bookmark: _Toc389125183][bookmark: _Toc389134069]Table 2: Comparison Between Crypto Roulette and modern symmetric cryptography algorithms
Figure 20 gives a graphical representation of the comparison between Crypto Roulette which uses synchronized pseudorandom number generators for synchronization, and its underlying components. The Crypto Roulette shows 10-15 percent decrease in throughput in some scenarios. This is due to the added computational cost of the algorithm and the pseudorandom number generators. We must make notice of the fact that the simulation dynamically compiles the code, which leads to a significant decrease in throughput.

[bookmark: _Toc389418576]Figure 20: Comparison Between CR with random number synchronization and its components.
On Figure 21 we can see a comparison between a Crypto Roulette with time variable synchronization and its underlying components.

[bookmark: _Toc389418577]Figure 21: Comparison Between CR with Time variable synchronization and its components.
It can be clearly seen, that in some cases, the Crypto Roulette has significantly lower throughput, compared to its underlying components. This is due to the significant cost of calculating the time variable and the decision boundaries. When the size of the encrypted file is relatively small, there is a significant decrease in performance due to the very large percent of the time being used up for synchronization between the communicating parties. It can be noted, that by increasing the size of the encrypted file and respectively of the time needed for encryption, the difference in throughput decreases.

[bookmark: _Toc389418578]Figure 22: Throughput comparison between Crypto Roulettes with Time variable and random number synchronization
Figure 22 gives a comparison between Crypto Roulettes with Time variable and synchronized pseudorandom number generators. The graphic shows that using a pseudorandom number generators for synchronization gives a significantly lower throughput in almost all scenarios, except when dealing with very large files. This leads to the conclusion, that time variable synchronization is a viable option only when dealing with large amounts of data. Such scenarios can be found when dealing with data centers, where a large number of virtual devices work simultaneously and need to securely exchange large amounts of data. Caution must be advertised for those situations, because of comparatively simple and homogeneous network architecture in data centers. As mentioned in the previous chapter time variable synchronization has to be used when the telecommunication infrastructure between the two communicating parties is sufficiently complex and heterogeneous. If this condition is not met, a timing attack against the time variable synchronization might be possible.

[bookmark: _Toc389418579]Figure 23: Comparison between Cascade robust cryptographic combiner and Crypto Roulette
The comparison shown in Figure 23 demonstrates that the Crypto Roulette outperforms a cascade encryption system in all scenarios. This means that when increasing the robustness and eliminating the single point of failure, the use of the Crypto Roulette clearly provides better performance, lower energy consumption and much lower computational resources. This comes to show that the Crypto Roulette algorithm might find wide acceptance not only in power constrained devices but also in high security environments. An idea that merits further exploration might be the creation of a robust combiner that uses both cascade encryption and Crypto Roulette algorithms, in other words a Crypto Roulette comprised of cascade algorithms.
	[bookmark: _Toc389125184]
	New key and random algorithm every iteration

	
	Block size (kB)
	32
	320
	3200
	32000
	320000
	3200000

	Random number synchronization
	Average time (s)
	0,0032
	0,0018
	0,0018
	0,0183
	0,2807
	21,4407

	
	Throughput size/time (KB/s)
	10000
	177778
	1777778
	1748634
	1140007
	149249

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0161
	0,0158
	0,0156
	0,0313
	0,2967
	21,5546

	
	Throughput size/time (KB/s)
	1988
	20253
	205128
	1022364
	1078531
	148460

	
	
	
	
	
	
	
	

	
	New key and random algorithm every 5 iteration

	
	Block size (kB)
	1
	10
	100
	1000
	10000
	100000

	Random number synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0183
	0,2804
	21,4410

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	54795
	35663
	4664

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0047
	0,0047
	0,0046
	0,0201
	0,2960
	21,5540

	
	Throughput size/time (KB/s)
	213
	2128
	21739
	49751
	33784
	4640

	
	
	
	
	
	
	
	

	
	New key and random algorithm every 10 iteration

	
	Block size (kB)
	1
	10
	100
	1000
	10000
	100000

	Random number synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0183
	0,2800
	21,4415

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	54735
	35714
	4664

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0033
	0,0032
	0,0032
	0,0186
	0,2950
	21,5530

	
	Throughput size/time (KB/s)
	303
	3125
	31250
	53763
	33898
	4640

	
	
	
	
	
	
	
	

	
	New key and random algorithm every 50 iteration

	
	Block size (kB)
	1
	10
	100
	1000
	10000
	100000

	Random number synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0182
	0,2706
	21,4500

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	54825
	36955
	4662

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0022
	0,0020
	0,0020
	0,0175
	0,2951
	21,5500

	
	Throughput size/time (KB/s)
	455
	5000
	50000
	57143
	33887
	4640

	
	
	
	
	
	
	
	

	
	New key and random algorithm every 100 iteration

	
	Block size (kB)
	1
	10
	100
	1000
	10000
	100000

	Random number synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0175
	0,2709
	21,4520

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	57143
	36914
	4662

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0021
	0,0019
	0,0019
	0,0174
	0,2950
	21,5500

	
	Throughput size/time (KB/s)
	476
	5263
	52632
	57471
	33898
	4640

	
	
	
	
	
	
	
	

	
	New key and random algorithm every 500 iteration (10000 iterations)

	
	Block size (kB)
	1
	10
	100
	1000
	10000
	100000

	Random number synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0180
	0,2701
	21,4520

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	55556
	37023
	4662

	
	
	
	
	
	
	
	

	Time variable synchronization
	Average time (s)
	0,0019
	0,0018
	0,0018
	0,0171
	0,2950
	21,5492

	
	Throughput size/time (KB/s)
	526
	5556
	55556
	58480
	33898
	4641

	
	
	
	
	
	
	
	

[bookmark: _Toc389134070]Table 3: Different number of iterations between algorithm change

In Table 3, the data for the performance of the cryptographic roulette under a different number of iterations between the switch to new cryptographic algorithm and key. This simulation scenario aims at determining the fluctuations in the performance of the Crypto Roulette when the number of iterations between crypto and key change vary. This information is important for determining the optimal operational parameters for the Crypto Roulette. Every series of simulations are performed a 1000 times, except for the last scenario, where 10000 simulations were carried out due to the large number of iterations before key and crypto change.

[bookmark: _Toc389418580]Figure 24: Random number synchronization and different number of iterations between algorithm change

The results shown in the above graphic (Figure 24) compare the performance of Crypto Roulette with pseudorandom number synchronization depending of the number of iterations before crypto and key change. The results show that there is no discernable difference in throughput between the different scenarios with the exception of the first and second series. We can observe that there is a difference, however marginal, if we change the key and crypto every iteration and every 5 iterations. There is no increase in throughput if the key and crypto are changed less often than once every 5 iterations. This comes to show that the optimal solution to the question of key and crypto change, is to do it once every 5 iterations.
In Figure 25 we compare the throughput of a Crypto Roulette with time variable synchronization when we change the number of iterations before key and algorithm change. As seen in Figure 22 the time variable synchronization has much higher computational complexity compared to the synchronized pseudorandom number generators scheme. This means that the expected throughput difference between the series is much higher. Therefore the expectation is that we will have a much higher number of iterations before key and algorithm change before we reach a point where there is no meaningful increase in throughput.

[bookmark: _Toc389418581]Figure 25: Time variable synchronization and different number of iterations between key and algorithm change

As we can see on Figure 25 those expectations fully coincide with the simulation results. The increase of throughput reaches a plateaued at 50 iterations before key and algorithm change. Any increase in the number of iterations above that point produces no meaningful increase in throughput, but could potentially compromise security. As a recommendation, we must state that 50 iterations before key and crypto change is the optimal solution when it comes to Crypto Roulette with time variable synchronization.

	[bookmark: _Toc389125185]Random key and random algorithm every time Random number synchronization

	Size (KB)
	32
	320
	3200
	32000
	320000
	3200000

	Crypto Roulette AES BF IDEA
	Average time (s)
	0,0020
	0,0020
	0,0020
	0,0182
	0,2775
	20,6500

	
	Throughput size/time (KB/s)
	16000
	160000
	1600000
	1758242
	1153153
	154964

	
	
	
	
	
	
	
	

	Crypto Roulette AES BF IDEA CAST
	Average time (s)
	0,0018
	0,0018
	0,0018
	0,0177
	0,2775
	20,4211

	
	Throughput size/time (KB/s)
	17778
	177778
	1777778
	1807910
	1153153
	156701

	
	
	
	
	
	
	
	

	Crypto Roulette AES BF IDEA CAST Camellia SEED
	Average time (s)
	0,0017
	0,0017
	0,0017
	0,0173
	0,2710
	20,4013

	
	Throughput size/time (KB/s)
	18824
	188235
	1882353
	1849711
	1180812
	156853

	
	
	
	
	
	
	
	

[bookmark: _Toc389134071]Table 4: Throughput results for Crypto Roulettes with different number of underlying algorithms
Exploring the influence of changing the number of underlying algorithms in the CR is of interest, because it is the prime indicator for the scalability of the algorithm. If it turns out that the Crypto Roulette can work with one hundred underlying algorithms just as well as with three, this could be of huge importance for the use of the algorithm in the role of robust cryptographic combiner.
The proposed simulation is composed of three rounds. The first round simulates a Crypto Roulette with three algorithms, the second – with four underlying algorithms and the third series uses six underlying secret key cryptographic algorithms. Each series tests the performance of the Crypto Roulette in encrypt/decrypt files with sizes ranging from 1 to 100000 KB. Each simulation scenario is carried out 1000 times and the mean value is given. The synchronization mechanism used in all simulations is the synchronized pseudorandom number generator. It was chosen due to the very good results compared to the timing variable synchronization, and the large scalability it could potentially provide. The results from this series of simulations are given in Table 4.
The results are expected to show no dramatic decrease of throughput, when comparing the different simulation configurations. This is expected, because there is no increase in the amount of calculations performed by the Crypto Roulette. As mentioned above the synchronization chosen for this simulation is with synchronized pseudorandom number generators. If a time variable synchronization is used I expect that there will be a more significant decrease of throughput, although it would become apparent when a much larger number of underlying algorithms are used.
[bookmark: _Toc389418582]Figure 26: Throughput Comparison between CR's with different number of algorithms

As expected, there is virtually no decrease of performance when adding more underlying algorithms to the Crypto Roulette algorithm (Figure 26). The increase of performance observed could be attributed to the better performance of the added underlying algorithms, which would increase the overall mean throughput. Considering the results, the conclusion that there is virtually no correlation between the number of underlying algorithms and the Crypto Roulettes performance could be made.
[bookmark: _Toc389328282][bookmark: _Toc389328954][bookmark: _Toc389472904]CHAPTER 5
[bookmark: _Toc389472905]CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis and contains final thoughts on the Crypto Roulette algorithm. It also underlines the conclusions made based on the simulation results. Point 5.2 contains a short summary of the envisioned future work and research.
[bookmark: _Toc389472906]5.1 Conclusions
The described work leads to the following conclusions:
· In Chapter 3 a multitude of scenarios for synchronizing the communication between Alice and Bob have been presented. If used properly, they can provide suitable solutions for almost any kind of communication scenario. From point to point, through small networks, up to extensive end to end communication scenarios.
· Energy efficiency can be increased. If we use the proposed system to provide comparable secrecy to a traditional solution we can use much shorter keys and smaller number of rounds. This means much smaller computational requirements, and thus decreased energy consumption. This feature is particularly important for mobile devices. If implemented in a next generation mobile network, we can have significantly smaller energy consumption in both the access network and the mobile devices, thus reducing the carbon footprint of future mobile networks.
· The computational cost of the Crypto Roulette makes it a viable option for hardening the security in M2M scenarios. This could be particularly important in mission critical systems such as V2V and e-health.
· The system provides significantly increased security, while requiring only a marginal increase in computational cost and decrease in throughput.
· The security increase is dependent on the number of underlying symmetric cryptographic algorithms. Depending on the algorithm configuration and the number of underlying crypto algorithms the increase of the number of possible keys could be between few times and a few hundred times. (up to 21 times with the demonstrated in this thesis configurations).
· The Crypto Roulette algorithm performance leads me to conclude that it could be employed successfully as a robust cryptographic combiner. As shown in Figure 23 it significantly outperforms throughput wise the cascade encryption scheme.
· The Crypto Roulette algorithm is very scalable. Without decrease of performance a large number of underlying algorithms can be added and thus the number of possible key combinations can be easily increased.
Bearing in mind those conclusions I must deduce that the proposed algorithm covers all of the requirements put forward in Chapter 1. The algorithm shows great promise for increasing confidentiality and use as a robust combiner. Furthermore the algorithm can be used for hardening secrecy and increasing robustness in a wide range of other scenarios, that were not initially foreseen. It seems as a viable option for scenarios where large amounts of data need to be secured with minimal latency and computational cost.
[bookmark: _Toc389472907]5.2 Future work
The envisioned work that needs to be complete before tea algorithm can be applied to a production system includes but is not limited to:
· Additional research on the life cycle of the CT and the individual keys for each algorithm. I propose that the lifetime for the keys and the crypto table to be shorter than the time needed to break the weakest used algorithm by the system. It is not necessary for the CT and key lifetime to be the same.
· A full C++ simulation of the algorithm, based on OpenSSL.
· Research on the process of updating the Crypto table. This would include renegotiation of the used algorithms, their numeration in the CT and the keys used.
· Creating a more detailed description of the initialization key proposed in Chapter 3.
· Creation of an accurate formula for calculating the number of possible keys for different CDP values and number of algorithms.
· Additional investigation of the concept of CDP and the idea of breach tolerant cryptographic algorithms.
· Investigating a possible implementation as a part of the OpenSSL suite.
· Further investigation on the robustness provided by the algorithm. Creating recommendations for the acceptable applications and use cases.
· Investigating a possible synergistic combination between a Crypto Roulette and a cascade algorithm.
· Investigate a hybrid keying option for the Crypto Roulette.
· Investigate the impact that the lack of Perfect forward secrecy can have on the security of the CR. Propose a keying scheme with perfect forward secrecy.

[bookmark: _Toc389472908]References
1. Weisner, D., “SaaS: 2012 Was a Big Year for Adoption — Expect More of the Same in 2013” Formtek.com; January 7th, 2013
2. Kessler, G.,” An Overview of Cryptography”, 9 March 2014 [1] Alex Biryukov and Dmitry Khovratovich Related of the Full AE-key Cryptanalysis S-192 and AES-256
3. Neves S. Cryptography in GPUs Universidade de Combra July 2010
4. Debra L. Cook1, John Ioannidis1, Angelos D. Keromytis1, Jake Luck2 CryptoGraphics: Secret Key Cryptography Using Graphics Cards
5. Honeyball, J., How a cheap graphics card could crack your password in under a second June 1st, 2011
6. Davis, J., Boyd, R., Power of Graphics Processing Units May Threaten Password Security Georgia Tech Research Institute (http://www.gtri.gatech.edu/casestudy/power-graphics-processing-units-may-threaten-passw)
7. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018 (http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html)
8. E. Biham, A. Shamir, Di®erential Cryptanalysis of the Data Encryption Standard,
9. M. Matsui, \Linear cryptanalysis method for DES cipher," Advances in Cryptology,Proceedings Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-Verlag,1994, pp. 386-397
10. "Announcing the ADVANCED ENCRYPTION STANDARD (AES)". Federal Information Processing Standards Publication 197. United States National Institute of Standards and Technology (NIST). November 26, 2001. Retrieved October 2, 2012.
11. Alex Biryukov and Dmitry Khovratovich Related of the Full AE-key Cryptanalysis S-192 and AES-256
12. Dag Arne Osvik1; Adi Shamir2 and Eran Tromer2 (2005-11-20). Cache Attacks and Countermeasures: the Case of AES
13. http://synaptic-labs.com/resources/expert-opinions/94-quantum-computing/255-quote-gilles-brasssard-takes-no-more-time-to-break-rsa-than-to-run-it.html
14. Gilles Brassard, "Quantum Information Processing: The Good, the Bad and the Ugly", 1997
15. Rivest, R., L. ; Shamir, A. ; Adleman, L.;Ashenhurst A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM, Feb. 1978, Vol.21(2), pp.120-126
16. [10] Whitfield Diffie Paul C. van Oorschot Michael J. Authentication and Authenticated Key Exchanges Wiener 1992 March 6
17. P. W. Shor. (1994). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser, page 124, Los Alamitos, CA, (1994), IEEE Computer Society.
18. Bennett C.H., Bernstein E., Brassard G., Vazirani U., The strengths and weaknesses of quantum computation. SIAM Journal on Computing 26(5): 1510-1523 (1997).
19. ANSI X9.52, Triple Data Encryption Algorithm Modes of Operation (1998)
20. National Institute of Standards and Technology: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, NIST Special Publication 800- 67 (2004)
21. Diffie, W., Hellman, M.: Exhaustive Cryptanalysis of the Data Encryption Standard. Computer 10, 74-84 (1977)
22. Ailleo, W., Bellare, M.,Crescenzo, G., Venkatesan, R.: Security Amplification by Composition: The case of Doubly-Iterated, Ideal Ciphers. In: Krawczyk, H. CRYPTO 1998. LNCS, vol. 1462, pp. 499-558. Springer, Heidelberg (1998)
23. Bellare, M., Rogaway, P.: Code-Based Game-Playing Proofs and the Security of Triple Encryption. In: Eurocrypt 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006) (http://eprint.iacr.org/2004/331)
24. Cascade Encryption Revisited Peter Gaˇzi1,2 and Ueli Maurer11 ETH Z¨urich, Switzerland Department of Computer Science {gazipete,maurer}@inf.ethz.ch 2 Comenius University, Bratislava, Slovakia Department of Computer Science [12] https://www.openssl.org/source/
25. Horst Feistel. Block Cipher Cryptographic System, US Patent 3,798,359. Filed June 30, 1971. (IBM)
26. Horst Feistel, (1973). Cryptography and Computer Privacy". Scientific American, 228(5), May 1973, pp 15–23
27. Ishai Ben-Aroya, Eli Biham (1996). Differential Cryptanalysis of Lucifer. Journal of Cryptology 9(1), pp. 21–34, 1996.
28. Luby, Michael; Rackoff, Charles (April 1988), "How to Construct Pseudorandom Permutations from Pseudorandom Functions", SIAM Journal on Computing 17 (2): 373–386,
29. X. Lai, J. L. Massey. A proposal for a new block encryption standard. Advances in Cryptology EUROCRYPT'90, Aarhus, Denemark, LNCS 473, p. 389-404, Springer, 1991 [13]
30. Serge Vaudenay On the Lai-Massey Scheme Lecture Notes in Computer Science Volume 1716, 1999, pp 8-19
31. Jevons, William Stanley, The Principles of Science: A Treatise on Logic and Scientific Method p. 141, Macmillan & Co., London, 1874, 2nd ed. 1877, 3rd ed. 1879. Reprinted with a foreword by Ernst Nagel, Dover Publications, New York, NY, 1958.
32. "Public-Key Encryption - how GCHQ got there first!". gchq.gov.uk. Archived from the original on May 19, 2010.
33. Koblitz, N. (1987). "Elliptic curve cryptosystems". Mathematics of Computation 48 (177): 203–209. JSTOR 2007884.
34. Miller, V. (1985). "Use of elliptic curves in cryptography". CRYPTO 85: 417–426. doi:10.1007/3-540-39799-X_31.
35. Bruce Schneier (1993). "Description of a New Variable-Length Key, 64-Bit Block Cipher (Blowfish)". Fast Software Encryption, Cambridge Security Workshop Proceedings(Springer-Verlag): 191–204.
36. Diaa Salama Abdul Minaam Hatem M. Abdual-Kader Mohiy Mohamed Hadhoud Evaluating the Efects of Symmetric Cryptography Algorithms on Power Consumption for Different Data Types
37. Tom Gonzalez (January 2007). "A Reﬂection Attack on Blowﬁsh". JOURNAL OF LATEX CLASS FILES.
38. Jump up^ Orhun Kara and Cevat Manap (March 2007). "A New Class of Weak Keys for Blowfish". FSE 2007.
39. Biham, E.; Dunkelman, O.; Keller, N. "A New Attack on 6-Round IDEA". Proceedings of Fast Software Encryption, 2007, Lecture Notes in Computer Science. Springer-Verlag.
40. Khovratovich, D.; Leurent, G.; Rechberger, C."Narrow-Bicliques: Cryptanalysis of Full IDEA".Advances in Cryptology – EUROCRYPT 2012.Springer-Verlag.
41. Daemen, Joan; Govaerts, Rene; Vandewalle, Joos (1993), "Weak Keys for IDEA", Advances in Cryptology, CRYPTO 93 Proceedings: 224–231
42. Nakahara, Jorge Jr.; Preneel, Bart; Vandewalle, Joos (2002), A note on Weak Keys of PES, IDEA and some Extended Variants
43. Biryukov, Alex; Nakahara, Jorge Jr.; Preneel, Bart; Vandewalle, Joos, "New Weak-Key Classes of IDEA", Information and Communications Security, 4th International Conference, ICICS 2002, Lecture Notes in Computer Science 2513: 315–326,
44. Claude E. Shannon, "Communication Theory of Secrecy Systems", Bell System Technical Journal, vol.28-4, page 656--715, 1949.
45. C. A. Asmuth and G. R. Blakley. An eﬃcient algorithm for constructing a cryptosystem which is harder to break than two other cryptosystems. Comp. and Maths. with Appls., 7:447–450, 1981.
46. S. Even and O. Goldreich. On the power of cascade ciphers. ACM Tras. Computer Systems, 3:108–116, May 1985.
47. Damgard and L. Knudsen. Enhancing the strength of conventional cryptosystems, November 1994.
48. U.M. Maurer and J.L. Massey. Cascade Ciphers: The Importance of Being First. Journal of Cryptology, 6(1):55–61, 1993.
49. Ritter's Crypto Glossary and Dictionary of Technical Cryptography: Multiple Ciphering (http://www.ciphersbyritter.com/GLOSSARY.HTM#MultipleEncryption)
50. Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid Recommendation for Key Part 1: General NIST Special Publication 800-57 March, 2007
51. https://www.openssl.org/
52. http://sourceforge.net/projects/opensslmatlab/files

[bookmark: _Toc389472909]Appendix A: MATLAB Simulation Code for the Crypto Roulette
clear;

%Selecting syncro between A and B
SYNCRO=input('Select syncronization type(1-random number; 2-time syncro):');

%This Function is used to create an array with dimentions 10X100XL. The
%created tada is then used as input.

if nargin == 0
L=input('please input the amount of data that you wish to create (in KB)');
dataToEncrypt=randi([0 9999],10,100,L);
end

%The number of iterations is selected here
i=input('Please enter how many iterations:');

%how many iterations before crypto change
changekrypto=input('how many iterations before crypto change?');

%select how often to change the key
n=input('How many iterations befor key chamge');

%Here starts the timing for the algorithm.
tic;

for x=1:i;

 %this part is for generating new key evety 'n' iterations
 d=rem(x,n);

 if d==0||x==1

 %creating random encryption key and initiation vector
 [key, iv] = mexRandom('key','iv');
 %disp('Key change');

 end

 %change crypto
 c=rem(x,changekrypto);
 if c==0||x==1

 if SYNCRO==1

 % generating random number
 r=randi([1 9999]);

 %calculating mod(n-1) where n-1 is the number of algorithms used
 selvar=mod(r,3);

elseif SYNCRO==2

 RR=randi([20,100],1,100);

 %generating a random iniger that simulates the travel time in the current
 %cykle
 Rcurent=randi([20,100]);

 %Adding the curent time to the T vector (Fifo maner)
 RR=shiftl(RR,0,1);
 RR(1,100)=Rcurent;

 %Calculating borders
 v=optim_m2(RR,4);

 % Choosing the crypto algorithm to be used in the current cykle

 if Rcurent<=v(1,2);
 selvar=0;
 elseif Rcurent>v(1,2) && Rcurent<=v(1,3);
 selvar=1;
 else
 selvar=2;
 end

 end

%selecting algorithm based on selvar

if selvar==0;
 crypto='aes-128-cbc';
elseif selvar==1;
 crypto='bf-cbc';
elseif selvar==2;
 crypto='idea-cbc';
end
 end

%disp(crypto);

%formating the data to base 8
toUint8 = [];
for J=1:length(dataToEncrypt)
toUint8 = [toUint8; double2uint8(dataToEncrypt(J))];
end

%encrypting the data
 encryptedData = mexEVP_Encrypt('data',toUint8,'key',key,'iv',iv,'cipher',crypto);
 %disp('The cyphertext is:');
 %disp(encryptedData);

 %decrypting data
 decrypted = mexEVP_Decrypt('data',encryptedData,'key',key,'iv',iv,'cipher',crypto);

 %formating to back to binary
 toDouble = [];
for J=1:8:length(decrypted)
toDouble = [toDouble; uint82double(decrypted(J:J+7))];
%disp('The deciphered data is:');
%disp(toDouble);
end
end
%calculating time spent in Loop and average time for a Loop (i executions)
TimeSpent = toc;

disp('The time spend is:');
disp(TimeSpent);

AverTime=TimeSpent/i;
disp('The average time is:');
disp(AverTime);

end

[bookmark: _Toc389472910]Appendix B: MATLAB Simulation Code for the Cascade cipher
clear;
%create test data to be encrypted
dataToEncrypt = CreateTestData;
%disp('the data to encrypt is:');
%disp(dataToEncrypt);
%The number of iterations is selected here
i=input('Please enter how many iterations:');
%select how often to change the key
n=input('How many iterations befor key chamge');

tic;
for x=1:i

 %this part is for generating new key evety 'n' iterations
 d=rem(x,n);

 if d==0||x==1
 %creating random encryption key and initiation vector
 [key1, iv1] = mexRandom('key','iv');
 %[key2, iv2] = mexRandom('key','iv');
 %[key3, iv3] = mexRandom('key','iv');%disp('Key change');

 end

%Formating input data
toUint8 = [];
for J=1:length(dataToEncrypt)
toUint8 = [toUint8; double2uint8(dataToEncrypt(J))];
end
%disp('the data to encrypt in unit 8 is:');
%disp(toUint8);
% encryption layers start here

%first layer of encryption
encryptedData1layer = mexEVP_Encrypt('data',toUint8,'key',key1,'iv',iv1,'cipher','bf-cbc');
%disp('the data after first layer is:');
%disp(encryptedData1layer);
% Second layer of encryption
encryptedData2layer = mexEVP_Encrypt('data',encryptedData1layer,'key',key1,'iv',iv1,'cipher','aes-128-cbc');
%disp('the data after second layer is:');
%disp(encryptedData2layer);
%third layer of encryption

encryptedData3layer = mexEVP_Encrypt('data',encryptedData2layer,'key',key1,'iv',iv1,'cipher','idea-cbc');
%disp('the data after third layer is:');
%disp(encryptedData3layer);

%Decryption layers start here

%first decryption layer
decryptedData3layer = mexEVP_Decrypt('data',encryptedData3layer,'key',key1,'iv',iv1,'cipher','idea-cbc');

%disp('after decyphering the third layer is:');
%disp(decryptedData3layer);

%second layer decryption
decryptedData2layer = mexEVP_Decrypt('data',encryptedData2layer,'key',key1,'iv',iv1,'cipher','aes-128-cbc');

%disp('after decyphering the second layer data is:');
%disp(decryptedData2layer);
% third layer decryption
decryptedData1layer = mexEVP_Decrypt('data',decryptedData2layer,'key',key1,'iv',iv1,'cipher','bf-cbc');

%disp('the data after first layer decryption is:');
%disp(decryptedData1layer);

toDouble = [];
for J=1:8:length(decryptedData1layer)
toDouble = [toDouble; uint82double(decryptedData1layer(J:J+7))];
%disp('The deciphered data is:');
%disp(toDouble);
end
end

toc;

TimeSpent = toc;
disp('The time is:');
disp(TimeSpent);

AverTime=TimeSpent/i;
disp('The average time is:');
disp(AverTime);

[bookmark: _Toc389472911]Appendix C: MATLAB Simulation Code for the symmetric ciphers
clear
%creates data to be encrypted
dataToEncrypt = CreateTestData;

%The number of iterations is selected here
i=input('Please enter how many iterations:');

%Select the algotirhm to be used
disp('1-aes-128-ecb, 2-bf-ecb, 3-des-ede3, 4-idea-ecb, 5-aes-256-ecb');
cr=input('Select the crypto to be used:');
%select how often to change the key
n=input('How many iterations befor key chamge');

if cr==1;
 Crypto='aes-128-ecb';
elseif cr==2;
 Crypto='bf-ecb';
elseif cr==3;
 Crypto='des-ede3';
elseif cr==4;
 Crypto='idea-ecb';
elseif cr==5;
 Crypto='aes-256-ecb';
end

tic;
% Test (not in example.m): Encryption / Decryption – random key, iv & custom algorithm
%id=fopen('proba.txt');
%data=fscanf(id,'%d');
%dataToEncrypt = (data);
%disp('The input data is :');
%disp(data);
%for X=1:1000

%Generates key

for x=1:i

 %this part is for generating new key evety 'n' iterations
 d=rem(x,n);

 if d==0||x==1

 %creating random encryption key and initiation vector
 [key, iv] = mexRandom('key','iv');
 %disp('Key change');

 end

toUint8 = [];
for J=1:length(dataToEncrypt)
toUint8 = [toUint8; double2uint8(dataToEncrypt(J))];
end

encryptedData = mexEVP_Encrypt('data',toUint8,'key',key,'iv',iv,'cipher',Crypto);
%disp('The cyphertext is:');
%disp(encryptedData);
decrypted = mexEVP_Decrypt('data',encryptedData,'key',key,'iv',iv,'cipher',Crypto);

toDouble = [];
for J=1:8:length(decrypted)
toDouble = [toDouble; uint82double(decrypted(J:J+7))];
%disp('The deciphered data is:');
%disp(toDouble);
end
% close open files
%fclose('all');
end

TimeSpent = toc;
disp('The time is:');
disp(TimeSpent);

AverTime=TimeSpent/i;
disp('The average time is:');
disp(AverTime);

[bookmark: _Toc389472912]Appendix D: MATLAB code for calculating decision boundaries for timing variable synchronization
function v=optim_m2(data,k)
 v=-inf;
tochnost=10;
for i=1:k
 [~,~,xmesh,cdf]=kde(data,2^tochnost,min(data),max(data));
[~,j]=min((cdf-i/k).^2);
v=[v,xmesh(j)];
end
end

AES 128	32	320	3200	32000	320000	3200000	18823.529411764706	188235.29411764708	1882352.9411764706	1839080.4597701151	1177336.276674025	153446.3081777292	BF-128	32	320	3200	32000	320000	3200000	17777.777777777777	177777.77777777778	1777777.7777777778	1871345.0292397661	1156069.3641618497	147329.65009208105	IDEA	32	320	3200	32000	320000	3200000	18823.529411764706	188235.29411764708	1882352.9411764706	1893491.1242603553	1152737.7521613832	157170.92337917487	CR Random number syncronization	32	320	3200	32000	320000	3200000	10000	177777.77777777778	1777777.7777777778	1748633.8797814208	1140007.1250445314	149248.85847943398	Size of the encrypted file[KB]
Throughput [KB/s]
AES 128	32	320	3200	32000	320000	3200000	18823.529411764706	188235.29411764708	1882352.9411764706	1839080.4597701151	1177336.276674025	153446.3081777292	BF-128	32	320	3200	32000	320000	3200000	17777.777777777777	177777.77777777778	1777777.7777777778	1871345.0292397661	1156069.3641618497	147329.65009208105	CR Time variable syncronization	32	320	3200	32000	320000	3200000	1987.5776397515529	20253.164556962023	205128.20512820513	1022364.2172523962	1078530.502190765	148460.18947231682	Size of the encrypted file[KB]
Throughput [KB/s]
CR Random number syncronization	32	320	3200	32000	320000	3200000	10000	177777.77777777778	1777777.7777777778	1748633.8797814208	1140007.1250445314	149248.85847943398	CR Time variable syncronization	32	320	3200	32000	320000	3200000	1987.5776397515529	20253.164556962023	205128.20512820513	1022364.2172523962	1078530.502190765	148460.18947231682	Size of the encrypted file[KB]
Throughput [KB/s]
Cascade (BF, AES, IDEA)	32	320	3200	32000	320000	3200000	14545.454545454544	145454.54545454544	1454545.4545454544	1641025.641025641	1091033.0719399932	151515.15151515152	CryptoRoulete (BF, AES, IDEA)	32	320	3200	32000	320000	3200000	16000	160000	1600000	1758241.7582417582	1153153.1531531531	154963.6803874092	Size of the encrypted file [KB]
Throughput [KB/s]
1 iteration	32	320	3200	32000	320000	3200000	10000	177777.77777777778	1777777.7777777778	1748633.8797814208	1140007.1250445314	149248.85847943398	5 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1753424.6575342468	1141226.8188302426	149246.7702066135	10 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1751505.1997810616	1142857.1428571427	149243.28988177131	50 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1754385.9649122807	1182557.2801182556	149184.1491841492	100 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1828571.4285714284	1181247.6928756	149170.24053701284	500 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1777777.777777778	1184746.3902258424	149170.24053701284	Size of the encrypted file [KB]
Throughput [KB/s]
1 iteration	32	320	3200	32000	320000	3200000	1987.5776397515529	20253.164556962023	205128.20512820513	1022364.2172523962	1078530.502190765	148460.18947231682	5 iterations	32	320	3200	32000	320000	3200000	6808.510638297872	68085.106382978716	695652.17391304346	1592039.8009950249	1081081.0810810812	148464.32216757911	10 iterations	32	320	3200	32000	320000	3200000	9696.9696969696979	100000	1000000	1720430.1075268819	1084745.7627118644	148471.21050433815	50 iterations	32	320	3200	32000	320000	3200000	14545.454545454544	160000	1600000	1828571.4285714284	1084378.1768891902	148491.87935034803	100 iterations	32	320	3200	32000	320000	3200000	15238.095238095239	168421.05263157896	1684210.5263157894	1839080.4597701151	1084745.7627118644	148491.87935034803	500 iterations	32	320	3200	32000	320000	3200000	16842.105263157893	177777.77777777778	1777777.7777777778	1871345.0292397661	1084745.7627118644	148497.39201455275	Size of the encrypted file [KB]
Throughput [KB/s]
CR (AES, BF, IDEA)	32	320	3200	32000	320000	3200000	16000	160000	1600000	1758241.7582417582	1153153.1531531531	154963.6803874092	CR (AES, BF, IDEA, CAST)	32	320	3200	32000	320000	3200000	17777.777777777777	177777.77777777778	1777777.7777777778	1807909.604519774	1153153.1531531531	156700.66744690543	CR (AES, BF, IDEA, CAST, Camellia, SEED)	32	320	3200	32000	320000	3200000	18823.529411764706	188235.29411764708	1882352.9411764706	1849710.9826589597	1180811.8081180812	156852.74957968364	Size of the encrypted file[KB]
Throughput [KB/s]
image2.png
Centerfor Telrastruktur

image3.png
TTTTTTTT

image4.emf

Microsoft_Visio_Drawing1.vsdx

image5.emf
Motivation

State of the art

Problem formulation

Algorithm design

Algorithm simulation

Results analysis and

conclusions

Microsoft_Visio_Drawing2.vsdx
Motivation
State of the art
Problem formulation
Algorithm design
Algorithm simulation
Results analysis and conclusions

image6.emf
GW 1

GW 2

GW

R 3

R 1

R 2

Alice

Bob

Microsoft_Visio_Drawing3.vsdx
GW 1
GW 2
GW
R 3
R 1
R 2
Alice
Bob

image7.emf
Plain text

Key

Algorithm Cipher text

Cipher text

Key

Algorithm Plain text

Encryption Decryption

Microsoft_Visio_Drawing4.vsdx
Plain text
Key
Algorithm
Cipher text
Cipher text
Key
Algorithm
Plain text
Encryption
Decryption

image8.emf
R

n+1

L

n+1

F

Key

n

F

Key

n-1

F

Key

0

L

0

R

0

L

0

R

0

F

Key

0

F

Key

1

F

Key

n

R

n+1

L

n+1

Encryption Decryption

Microsoft_Visio_Drawing5.vsdx
Rn+1
Ln+1
F
Keyn
F
Keyn-1
F
Key0
L0
R0
L0
R0
F
Key0
F
Key1
F
Keyn
Rn+1
Ln+1
Encryption
Decryption

image9.png
Riy1=L; & F(R;, K;)

image10.png
R 1 ®F(Liyq, K3)

image11.emf
L

0

H

F

T

R

0

Key

0

H

F

T

Key

1

H

F

T

Key

n

H

L

n+1

R

n+1

L

n+1

H

F

T

R

n+1

Key

n

H

F

T

Key

n-1

H

F

T

Key

0

H

L

0

R

0

Encryption Decryption

Microsoft_Visio_Drawing6.vsdx
L0
H
F
T
R0
Key0
H
F
T
Key1
H
F
T
Keyn
H
Ln+1
Rn+1
Ln+1
H
F
T
Rn+1
Keyn
H
F
T
Keyn-1
H
F
T
Key0
H
L0
R0
Encryption
Decryption

image12.emf
S

1

S

2

S

3

S

4

P

PLAIN TEXT

S

1

S

2

S

3

S

4

P

S

1

S

2

S

3

S

4

CIPER TEXT

KEY

K

0

K

1

K

2

K

3

Microsoft_Visio_Drawing7.vsdx
S1
S2
S3
S4
P
PLAIN TEXT
S1
S2
S3
S4
P
S1
S2
S3
S4
CIPER TEXT
KEY
K0
K1
K2
K3

image13.png

image14.png
rcon(i

!

{i=1)

image15.emf
S-box

1

S-box

2

S-box

3

S-box

4

S-box

1

S-box

2

S-box

3

S-box

4

Round

1

Round

16

P

1

P

16

P

18

P

17

32 bit

32 bit

8 bit

8 bit

8 bit

8 bit

32 bit

32 bit

32 bit

32 bit

32 bit

Microsoft_Visio_Drawing8.vsdx
S-box 1
S-box 2
S-box 3
S-box 4
S-box 1
S-box 2
S-box 3
S-box 4
Round 1
Round 16
P1
P16
P18
P17
32 bit
32 bit
8 bit
8 bit
8 bit
8 bit
32 bit
32 bit
32 bit
32 bit
32 bit

image16.emf
Round

1

Round

8

Round

8

.

5

K1

K2

K3

K4

K5

K6

K52

K51 K50

K49

K48

K47

K46 K45 K44 K43

Microsoft_Visio_Drawing9.vsdx
Round 1
Round 8
Round 8.5
K1
K2
K3
K4
K5
K6
K52
K51
K50
K49
K48
K47
K46
K45
K44
K43

image17.emf

Microsoft_Visio_Drawing10.vsdx
Key plane
Algorithm plane

image18.emf
Synchronization

block A

Synchronization

block B

Algorithm

selection block

Algorithm

selection block

Crypto Table Crypto Table

Encryption/

Decryption

block

Encryption/

Decryption

block

selvar selvar

Crypto

+ key

Crypto

+ key

Plain text

Cipher text

Cipher text

Plain text

Microsoft_Visio_Drawing11.vsdx
Synchronization block A
Synchronization block B
Algorithm selection block
Algorithm selection block
Crypto Table
Crypto Table
Encryption/Decryption block
Encryption/Decryption block
selvar
selvar
Crypto + key
Crypto + key
Plain text
Cipher text
Cipher text
Plain text

image19.emf
Key

0

... Key

n-1

Synchronization

(optional)

Service

information

n.128 bit

Number of algorithms Algorithm

0

... Algorithm

n-1

8 bit

n.8bit

Synchronization

type

2 bit

Microsoft_Visio_Drawing12.vsdx
Key 0
...
Key n-1
Synchronization (optional)
Service information
n.128 bit
Number of algorithms
Algorithm 0
...
Algorithm n-1
8 bit
n.8bit
Synchronization type
2 bit

image20.emf
Key engine

0

Algorithm 0

n-1

Algorithm

n-1

Synchronization

Key

0

Key

0

Cryptographic table

Initialization key

Transmition

algorithm +key

Microsoft_Visio_Drawing13.vsdx
Key engine
0

Algorithm 0
n-1

Algorithm n-1

Synchronization
Key0
Key0
Cryptographic table

Initialization key
Transmition algorithm +key

image21.emf
Algorithm Key

xxx

yyy

...

n-1 ZZZ zzz

XXX

YYY

…

Position in the Crypto Table

0

1

…

image22.emf
1.Send t

A1

2. 3. 4.

5. Send message + t

B2

 + Δt

A1B1

6. 7. 8.

9. Send message +t

A2

 + Δt

A1B1

Microsoft_Visio_Drawing14.vsdx
1.Send tA1
2. 3. 4.
5. Send message + tB2 + ΔtA1B1
6. 7. 8.
9. Send message +tA2 + ΔtA1B1

image23.jpeg

image24.emf
1.Rijndael

2.Serpent

3.Twofish

4. 3DES

5. GOST

28147-89

6.Blowfish

Microsoft_Visio_Drawing15.vsdx
1.Rijndael
2.Serpent
3.Twofish
4. 3DES
5. GOST 28147-89
6.Blowfish

image25.emf
Algorithm Key length Possible combinationsPower consumption

Crypto Roulette (6 ciphers Keying option: 2 CDP: 0) ~132,5 7,14.10^39 Low

Crypto Roulette (6 ciphers Keying option: 2 CDP: 1) ~131 2,04.10^39 Low

Crypto Roulette (6 ciphers Keying option: 1) ~131 2,04.10^39 Low

Crypto Roulette (4 ciphers Keying option: 2 CDP: 0) ~131,5 3,4.10^39 Low

Crypto Roulette (4 ciphers Keying option: 2 CDP: 1) ~130 1,36.10^39 Low

Crypto Roulette (4 ciphers Keying option: 1) ~130 1,36.10^39 Low

Crypto Roulette (3 ciphers Keying option: 2 CDP: 0) ~130,5 2,04.10^39 Low

Crypto Roulette (3 ciphers Keying option: 2 CDP: 1) ~129,5 1,02.10^39 Low

Crypto Roulette (3 ciphers Keying option: 1)

~129,5 `1,02.10^39 Low

Cascade cipher 384 2,54.10^-116 High

AES 256 1,16.10^77 High

AES 192 6,27.10^57 Medium

TDES (3x56) 168 2,67.10^51 Medium

AES 128 3,4.10^38 Low

IDEA 128 3,4.10^38 Low

Blowfish 128 3,4.10^38 Low

CAST 128 3,4.10^38 Low

CAMELLIA 128 3,4.10^38 Low

SEED 128 1,93,10^34 Low

TDES (2x56) 112 1,93,10^34 Medium

image26.emf
Start

Input [Syncro]

[L] [i]

[changecrypto]

[n]

X=i

d=0 OR x=1

C=0 OR x=1 2

SYNCRO=1

2

Rcurent<= v(1.2)

2

Rcurent > v(1.2) AND

Rcurrent <= v (1.3)

2

selvar=0

sevlar=1

4

4

End

Display

time

2

Selvar=2

selvar=1

crypto= AES-128-

cbc

crypto=BF-cbc

crypto=idea-cbc

Format data

Encrypt data

[crypto] [key]

Decrypt data

[crypto] [key]

selvar=0

Calculate

decision borders

[v(1.1) v(1.2)

v(1.3)]

Add [Rcurent] to

[RR]

Generate

current random

time [Rcurent]

Generate FIFO

queue

entries[RR]

Calculate

selvar=r mod(3)

Generate

random [r]

Calculate

remainer of

“changecrypto”

Create key and

iv [key] [iv]

Calculate

remainer of “n”

[d]

Calculate time

Create test data

YES

NO

NO

YES

YES

NO

YES

YES

NO

NO

YES

YES

NO

NO

3

3

YES

NO

Microsoft_Visio_Drawing16.vsdx
Start
Input [Syncro] [L] [i] [changecrypto] [n]
X=i
d=0 OR x=1
C=0 OR x=1
2
SYNCRO=1
2
Rcurent<= v(1.2)
2
Rcurent > v(1.2) AND Rcurrent <= v (1.3)
2
selvar=0
sevlar=1
4
4
End
Display time
2
Selvar=2
selvar=1
crypto= AES-128-cbc
crypto=BF-cbc
crypto=idea-cbc
Format data
Encrypt data [crypto] [key]
Decrypt data [crypto] [key]
selvar=0
Calculate decision borders [v(1.1) v(1.2) v(1.3)]
Add [Rcurent] to [RR]
Generate current random time [Rcurent]
Generate FIFO queue entries[RR]
Calculate selvar=r mod(3)
Generate random [r]
Calculate remainer of “changecrypto”
Create key and iv [key] [iv]
Calculate remainer of “n” [d]
Calculate time
Create test data
YES
NO
NO
YES
YES
NO
YES
YES
NO
NO
YES
YES
NO
NO
3
3
YES
NO

image27.emf
Start

Input

[L],[i],[n]

Create test data

x=i

Calculate time in

loop [TimeSpent]

Calculate average

iteration time

[AverTime]

Display

[TimeSpent]

and

[AverTime]

Calculate

d=rem(x,n)

d=0 OR x=1

Create [key] and [iv]

Format data

1

2

End

Encrypt data with

Blowfish

Encrypt data with

AES 128 bit

Encrypt data with

IDEA

Decrypt data with

IDEA

Decrypt data with

AES 128 bit

Decrypt data with

Blowfish

Format data

2

2

Layer

1

Layer

2

Layer

3

Layer

3

Layer

2

Layer

1

YES

NO

YES

NO

Microsoft_Visio_Drawing17.vsdx
Start
Input [L],[i],[n]
Create test data
x=i
Calculate time in loop [TimeSpent]
Calculate average iteration time [AverTime]
Display [TimeSpent] and [AverTime]
Calculate d=rem(x,n)
d=0 OR x=1
Create [key] and [iv]

Format data

1
2
End
Encrypt data with Blowfish
Encrypt data with AES 128 bit
Encrypt data with
IDEA
Decrypt data with IDEA
Decrypt data with AES 128 bit
Decrypt data with Blowfish
Format data
2
2
ENCRYPTION
DECRYPTION
Layer 1
Layer 2
Layer 3
Layer 3
Layer 2
Layer 1
YES
NO
YES
NO

image1.png
1:@-.-.*

6 YN,
1!z:§

EETA

o

o
SNma

