

Modular PCG
An Architecture for Procedural Content Generation

Master’s Thesis

By

Mikael Peter Olsen

Supervised by

Paolo Burelli

Aalborg University Copenhagen

3rd of February 2014 – 28th of May 2014

AAU PAGE

AAU PAGE BACK

MIKAEL PETER OLSEN
STUDY NO. 20093736

V

PREFACE

Dear Reader

This report has been written in the early months of 2014, and many nights has been spend

reading and writing. I am therefore truly grateful that you have taken the time to read my work.

I would like to thank my girlfriend for her patience during the stressful times, my supervisor

Paolo Burelli for constructive criticism, my fellow students at AAU-CPH for support and finally

Julian Togelius for initial inspiration and for providing initial material to get started.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

VI

TABLE OF CONTENTS

1.1 MOTIVATION.. 8

1.2 INITIAL PROBLEM AREA ... 10

1.3 REPORT OVERVIEW ... 11

2.1 DEFINITION OF PCG .. 13

2.1.1 SEARCH-BASED PCG ... 15

2.1.2 EXPERIENCE DRIVEN PCG ... 17

2.2 RESEARCH TOPICS ... 18

4.1 COMPLETE GAME GENERATION .. 22

4.2 INTRODUCING MODULAR PCG .. 27

4.2.1 DEFINITION OF MODULAR PCG .. 28

4.2.2 MODULAR PCG AS A RESEARCH AREA .. 30

4.2.3 MODULAR PCG IN THE INDUSTRY .. 32

4.2.4 APPLIED MODULAR PCG .. 33

MIKAEL PETER OLSEN
STUDY NO. 20093736

VII

4.3 SUMMARY OF ANALYSIS ... 35

6.1 INITIAL ARCHITECTURE ... 41

6.2 HIGH- AND LOW-LEVEL MODULES ... 42

6.3 VIRTUAL WORLD INTERACTION ... 44

6.4 DESIGNER INSTRUCTIONS .. 48

6.5 MODULES PROVIDING CONTENT TO PLAYERS AND DESIGNERS 50

6.6 MODULES GETTING INPUT FROM PLAYERS .. 51

6.7 FINAL ARCHITECTURE .. 52

7.1 METHOD .. 57

7.2 GAME CONCEPT ... 58

7.3 MODULE INTEGRATION .. 59

7.4 LEVEL DESIGN MODULES ... 62

7.5 QUEST MODULE ... 69

I METHODS OF PCG ... 84

II GAME DESIGN DOCUMENT ... 86

III NPC MOTIVATIONS FOR QUEST GENERATION ... 103

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

8

INTRODUCTION

1.1 MOTIVATION 8

1.2 INITIAL PROBLEM AREA 10

1.2 REPORT OVERVIEW 11

This chapter will explain the initial motivation behind this project, and by reading it, it should be

clear to the reader why this project has be written and what the main purpose behind the project

is. First, a general motivation will describe the research area, thereafter the initial problem area

will be established based on the motivation and lastly section 1.3 will give a brief overview of

the entire report.

1.1 MOTIVATION

Computer games are a major part of our lives; many play computer games regularly, and during

the last decade, the use of computer games has increased [1] [2]. Because of this huge industry,

games are becoming more and more advanced in multiple fields – from general sound and

graphics to the realism of environments and the believability of characters. In addition, the

quantity of game content has increased and this increase in quantity and quality puts a challenge

on the gaming industry to match the demand from the gaming community [3]. We, as players,

expect the computer games to present us with new and engaging content, and while this demand

MIKAEL PETER OLSEN
STUDY NO. 20093736

INTRODUCTION

CHAPTER 1

9

is increasing the manual content production is already expensive and un-

scalable [1]. This is a challenge that potentially could be aided by

Procedural Content Generation (PCG), which, in short is the “application

of computers to generate game content, distinguish interesting instances

among the ones generated, and select entertaining instances on behalf of

the players” [1]. PCG also refers to “the creation of game content

automatically, through algorithmic means” [4]. These definitions will have

to be investigated further and PCG will have to be specified for the

purpose of this report. For now, however, the general definitions above

serves as an initial understanding of PCG.

PCG offers an alternative to costly manual content creation, and can be

integrated in the development process and help generate complex game

worlds in a limited amount of time [1] [2] [3] [5]. This can help keep the

expenses of game development down and allow designers and

programmers some additional freedom, which might be the primary

argument for using PCG. Another reason, which was more dominant in the

past, is that PCG can keep the memory consumption of a computer game

down by applying it as a method for decompressing data [5]. This method

was used in the space trading game Elite to store hundreds of planets in a

few tens of kilobytes. Likewise, PCG was used to generate dungeons at

runtime for the game Rogue [5]. Rogue offered endless replayability and

the game has formed its own sub-genre, referred to as Rogue-like, where

among others the Diablo game series belongs.

PCG is an interesting field because it can not only support game creation,

but also provide new techniques, facilitate new games and new ways of

creating games [5] [2]. An example of this is the LUDI system by Browne

& Maire [6], which was designed to invent board games autonomously.

The system had to ensure that the game produced was not only playable

but also that it met the requirements of being fun and engaging. The LUDI

system invented a game it named Yavalath, which, in October 2011, was

ranked in the top 100 abstract board games ever invented on the

BoardGameGeek database [7]. This is one part of PCG, in which the

algorithms can surprise the creator and create something unique, which

can be very fascinating. On the other hand, PCG can be designed to support

the human designer or programmer, and the collaboration between

human and algorithms can prove fruitful in many cases. As mentioned

before this could potentially help meet the demands for manual content

production in computer games, but could also aid human creativity and

Elite

A space trading game,
published in 1984 by Acornsoft.
One of the first home computer
games to use wire-frame 3D
graphics.

Rogue

A dungeon crawling game
developed by Michael Toy and
Glenn Wichman around 1980.
All content is represented by
letters and symbols. The layout
and the placement of objects
are randomly generated.

Diablo

Series of action role-playing
hack and slash games
developed by Blizzard, released
in 1996, 2000 and 2012.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

10

enable the creation of adaptive games, i.e. games which gameplay and/or

design adapted at runtime to its players [5]. An example of the latter is

the game Left4Dead where enemy encounters are created “based on the

computer-analyzed stress level of the players” [1].

PCG is a relatively young research field and previously the literature was

divided across multiple disciplines (computer graphics, image

processing, artificial intelligence, computer-human interfaces,

psychology, linguistics, social sciences, ludology, etc.) [1]. In 2009

however, the first workshop devoted solely to PCG was held1 and [8] state

that the first paper regarding what they call search-based PCG, a special

branch of PCG (see section 2.1.1), was published in 2006 [9].

Through the years, PCG has been used to create a variety of content,

ranging from complete cities [10] to terrains [11] to detailed vegetation [12] to textures and

materials [13]. Apart from that, PCG has been used to generate levels for 2D platform games [14]

[15], creating personalized content [16] and generating levels [17] [18] for Super Mario Bros,

generate infinite 2D cave-maps [19], evolving units [20] and generating maps for strategy games

[21] [22], and levels for 3D games [23].

1.2 INITIAL PROBLEM AREA

As described, the gaming industry is challenged by the high demands for content, and by the cost

of manual content creation. PCG, which is the automatic generation of content by the use of

algorithms, can help overcome this challenge, and although it is a young research field, it offers

great potential for further research in many different areas.

This project will therefore investigate the advantages of PCG in relation to game development

and determine the how PCG can facilitate game creation. The purpose of this investigation is to

advance the state of the art of PCG, and through findings contribute to the general research field.

1 The PCG workshop is co-located with the Foundation of Digital Games Conference. The autumn 2011
issue of IEEE Transactions on Computational Intelligence and AI in Games was entirely devoted to PCG.

Left4Dead

A cooperative first-person
shooter arcade-style game set
during the aftermath of an
apocalyptic pandemic. Released
by Valve Corporation in 2008.

MIKAEL PETER OLSEN
STUDY NO. 20093736

INTRODUCTION

CHAPTER 1

11

1.3 REPORT OVERVIEW

The purpose of this chapter is to give a structural overview of the project and report, describing

the overall flow, allowing other researcher to understand and follow the different steps.

Firstly, an initial investigation will analyse a few definitions of PCG and establish how it should

be understood in context of this project. Thereafter some existing research topics suggested by

dominant researchers within the PCG community will briefly be investigated. The purpose of

this investigation is to direct the research, and it is suspected that by directing PCG research in

the direction of topics suggested by other dominant researchers, the outcome of this project will

help advance the state of the art of PCG to the greatest extent.

By combining the initial focus on game development with one or more of the suggested research

topics, a more concise research problem will be established and a concrete problem statement

formulated. The report will thereafter investigate how complete game generation can be made

accessible to human designers and how it can be integrated within the development pipeline.

To investigate complete game generation, the analysis will describe a few games and research

projects that utilises complex procedural techniques, and investigate how these facilitate

designer interaction. Because the examples provide very limited interaction, an alternative way

of considering PCG in relation to game development will be proposed. This alternative is called

Modular PCG and it describes a new way of designing PCG algorithms. Modular PCG facilitates

the creation of individual PCG modules that applies procedural techniques to generate game

content. The modules integrates directly into the virtual environment, which means that

designers can apply different modules without considering existing content and other modules.

For easy and rapid development, the necessary tools for authoring content are included in the

modules themselves and work out of the box.

To explain and validate the concept, an initial architecture will be created

based on initial ideas. This will later be dissected and each element will

be analysed and discussed separately. From this analysis the elements is

recombined into a final architecture describing how Modular PCG should

be applied and understood in relation to game development. Lastly,

Modular PCG will be evaluated by creating a theoretical game using

theoretical modules in a theoretical implementation in CryEngine3. In

this project, Modular PCG will not be tested and proven practical in a real

game development scenario, however the theoretical evaluation of the

concept will illustrate its application in game development and that it can

successfully make procedural techniques accessible to designers and

developers.

CryEngine

Game engine designed by the
German developer Crytek. It has
many high-end features, and is
free for non-commercial use.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

12

INITIAL INVESTIGATION

2.1 DEFINITION OF PCG 13

2.1.1 SEARCH-BASED PCG 15

2.1.2 EXPERIENCE DRIVEN PCG 17

2.2 RESEARCH TOPICS 18

This chapter will start by analysing the a few definitions of PCG to give the reader a better

understanding of the concept and determine how PCG should be understood in context of this

project. In relation to PCG, the contemporary taxonomy will be described to establish basis for

later discussions and analysis, and the sub-sections 2.1.1 and 2.1.2 will describe two research

branches of PCG, namely Search-Based PCG and Experience Driven PCG.

The purpose of this project is to investigate what research is needed to advance the state of the

art of PCG in general, and how PCG can be applied in game development. To determine the

current focus of research within the PCG community, section 2.2 will investigate contemporary

research topics suggested by other researchers. With focus on game development, this project

aims to contribute to the general research field by building on top of what is suggested.

MIKAEL PETER OLSEN
STUDY NO. 20093736

INITIAL INVESTIGATION

CHAPTER 2

13

2.1 DEFINITION OF PCG

This section is meant as a clarification of the previous definitions of PCG mentioned in the

motivation (section 1.1). In the motivation, PCG was defined as the “application of computers to

generate game content, distinguish interesting instances among the ones generated, and select

entertaining instances on behalf of the players” [1] and “the creation of game content

automatically, through algorithmic means” [4]. There are, however, some issues with these

definitions and the following will elaborate on this and form a clearer definition of PCG.

The definition by Hendrix et al. might be too specific, because it relates to what [8] calls Search-

Based PCG which represents one specific area of PCG. In Search-Based PCG the generated

content is evaluated and assigned values based on this evaluation. It is often linked with

evolutional algorithms, where the algorithm selects the best candidates (highest values) and

generates new content based on those. This is a more advanced version of the generate-to-test

method of PCG, which normally only tests the generated content according to some criteria, but

does not necessarily feature a ranking of the generated content.

The second definition might not be suitable either. It might be too wide since it also captures

content generated directly by a player/creator in an editor or as part of gameplay, with

assistance from algorithms. It can also be seen as too narrow since the word “automatically”

implies that there are possible way for humans or other algorithms to interact with the process2.

This makes this definition very ambiguous. Like vice [5] defines PCG as having “limited or no

human contribution”, however from a game design standpoint, a PCG system designed to have

no human interaction seems impractical. In some special cases it could be desirable to have

algorithms designed to be interacted with by other PCG systems, and therefore not by humans,

but there are almost no practical reasons for having a PCG systems without any interaction. A

completely autonomous PCG system would be more or less useless, however, one should not

dismiss the thought of having a PCG system with no interaction, since such a system could spawn

some interesting areas of research, and could be useable in very specific cases.

The definitions talks about “content”, which can be defined as many things, and different fields

might not agree on what content is. In relation to PCG used in computer games content is widely

defined as dynamics, weapons, camera viewpoint, rulesets, characters, quests, dialogue, stories,

levels, maps, terrain; in fact most game content besides the game engine and the behaviour of

the NPCs [4] [8] [5] [2]. Even the game engine could potentially be procedurally generated and

one could imagine a game where everything was generated from scratch, which is said to be one

of the grand goals of PCG [5]. However, this might be too comprehensive for this project and

2 For clarity, human interaction in this connection is seen as applying a PCG system in specific context
and/or starting the generation process.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

14

thus, in the context of this project, game content will refer to everything besides the game engine

and NPC behaviours.

For practical reasons and applications the definition of PCG will, in this report, follow the

definition presented by [24] stating that PCG is “the algorithmic creation of game content with

limited or indirect user input” [24]. This definition does not allow direct or full human control

over the generation and one might expect that this would be desirable, as the goal for this project

is to make the generation process accessible to human designers. The reason why this is not

desirable is that it will remove the system from the domain of PCG since a PCG system is required

to have some form of automation. Without this, a PCG system will become an editorial tool. An

assessable PCG system for complete game generation has to be autonomously enough to

generate content sufficiently, while being flexible and transparent enough to give a human user

agency and empowerment [25].

PCG can be used in different ways, which can require the generation process to be done either

online, i.e. during runtime, or offline, during development. As an example, the interior of a

building might be generated online when the player enters the building, or offline and edited by

a human designer before the game is shipped [4]. A combination of the two is also possible. The

generated content can be said to be necessary, i.e. necessary for progression, or optional meaning

that the player can choose to avoid it.

Concerning the actual algorithms at use, they can be based either on random seeds or on

parameter values. This has to do with the amount of control over the algorithm, if an algorithm

is based on a random seed there is little control and if the algorithm takes a multidimensional

vector as input a human designer can be allowed almost full control over the generated output

by adjust the specific properties. The latter could be desirable regarding multi-level multi-

content generators where a human designer needs to affect the generation. Note that random

seed does not imply that the output of the algorithm is random. The algorithm can be either

stochastic, meaning that it will create a new output every time, or deterministic, resulting in the

same output every time [4]. Generally, algorithms can be said to be either constructive or

generate-to-test. A constructive algorithm will generate the content once, which means that it

has to create something that is correct, since it will not correct the generated content after it has

been generated. A problem with constructive algorithms is that they often include some

randomness, which leads to the lack of controllability [2]. Opposed to this, a generate-to-test

algorithm includes a test mechanism that tests the generated content in accordance with some

criteria and regenerate the content if this validation test fails. This refers to Search-Based PCG

(see section 2.1.1) which ranks the tested content and selects the best for further generation.

The difference between Search-Based PCG, constructive algorithms and generate-to-test

algorithms can be seen in Figure 1.

MIKAEL PETER OLSEN
STUDY NO. 20093736

INITIAL INVESTIGATION

CHAPTER 2

15

Figure 1: Overview of different approaches to PCG: Search-Based PCG, constructive algorithms and generate-to-test
algorithms [8].

2.1.1 SEARCH-BASED PCG

The term Search-Based PCG was proposed by Togelius, et al. [4] and elaborated in [8]. As

mentioned in section 2.1 (Definition of PCG) Search-Based PCG is a special case of a generate-to-

test algorithm with two main differences. First, the test function grades the generated content;

this function is often referred to as the fitness function and the grade is thus called the fitness of

the content [4]. This function determines how well the generated content fits or matches the

requirements of the generation. Secondly, new content is based on the content with the highest

fitness and the algorithm aims to generate content with higher fitness [4]. For some cases of

Search-Based PCG the main generation is based on evolutionary computation (EC), however, this

is not necessarily the case. When describing a Search-Based PCG algorithm one talk about its

genotypes, i.e. the data handled by the evolutionary algorithm3, and its phenotype, i.e. the data

handled by the fitness function [4]. Data can be encoded, or represented, from the genotype to

the phenotype through either direct encoding, where genotype and phenotype is proportional in

size, and though indirect encoding, where the mapping is nonlinear (see [4] and [8] for further

exemplification). The main concern with the encoding is the “curse of dimensionality” that

describes the paradox of representing data simple enough for a search algorithm to search

though the data quickly and representing it with enough detail for the search algorithm to be

3 In the case that the generation is based on evolutionary computation.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

16

able to search though it precisely enough [4]. Locality is another principal that relates to content

representation, and means that a small change in genotype should result in a small change in

phenotype and vice versa [4].

A fitness function can be designed to rate content according to many different factors, such as

how “fun” a racetrack is [9]. Three types of fitness functions are described in the literature [4].

First, the direct fitness function, which extract some specific features from the content and maps

this directly to the fitness. The function can be either theory-driven, guided by designer intuition

or qualitative theory, or data-driven, guided by collected data such as questionnaires or

physiological measurements. Secondly, the simulation-based fitness function, which simulates

gameplay with an artificial agent and extracts values from the observed gameplay. The agent can

be either static or dynamic, depending on its ability to change behaviour during gameplay. A

changing agent has some learnability, which the fitness function must be able to incorporate.

Lastly the interactive fitness function is described, which collects data from the player during

gameplay, either explicitly, e.g. though questionnaires, or implicitly, e.g. though measurements in

the game.

One problem with Search-Based PCG, as suggested by [4], is that it might be best suited for offline

generation since the time it take to generate the optimal content can vary a lot and one can never

be sure how long the generation will take. One could incorporate a maximum time or maximum

evolutions to compensate for this and keep the generation time down, however this might result

in the creation of some less optimal content. Another issue with Search-Based PCG is that

designers cannot be sure exactly how the content will manifest itself, but only explicitly specify

some desirable properties of the content. This can be said to be the biggest flaw with Search-

Based PCG. Even though the content is generated according to a fitness function making sure the

content is valid and follow some design specifications, human designers has no say in the actual

generation and are not able to adjust specific elements of the generation without generating the

content again. This removes the design agency, which as stated before is an unwanted effect [25].

Search-Based PCG can been seen as a high-level content generation method, which is why it is

important to consider human designer interaction, since designers normally are tasked with

planning games on a higher level. Yannakakis & Togelius [2] suggests using constructive

algorithms, such as L-Systems (see Appendix I), alongside with Search-Based PCG as a genotype-

to-phenotype mapping. Such algorithms could also be used to support human designers, thus

allowing them time to be creative and not preoccupied with time-consuming tasks.

MIKAEL PETER OLSEN
STUDY NO. 20093736

INITIAL INVESTIGATION

CHAPTER 2

17

2.1.2 EXPERIENCE DRIVEN PCG

Experience Driven PCG was proposed by Yannakakis

& Togelius [2] to describe, “a generic and effective

approach for the optimization of user (player)

experience” [2]. They state that game content can be

seen as indirect building blocks for player

experience and it therefore is possible to change the

experience by changing the content. The generation

process of Experience Driven PCG is divided into

four parts as illustrated in Figure 2.

The first part, the player experience model, is built

based on collected data from the player(s). It can

either be subjective, i.e. expressed by the players

themselves, objective, i.e. gathered from the player

through alternative means, and finally gameplay-

based, i.e. gathered through an interaction between

game and players [2]. Subjective player experience

can be based on free-response, giving richer but more

complex information, or forced data, giving answers

to more specific questions. Objective experience

modelling usually requires access to different

modalities to determine the affective state of the player during gameplay. These modalities can

be analyses though different means, for instance through electrocardiography (ECG), galvanic

skin response (GSR), respiration, electroencephalography (EEG), motion tracking, facial

expressions and gaze. The modelling can be either model-based, meaning experience models are

formed based on theories for e.g. arousal, and model-free, meaning that new models are

constructed and mapped to different modalities of player input [2]. Gameplay-based player

experience modelling is based on the assumption that player experience is linked to player

actions, and any player interaction with a game can form basis for this modelling. Like the

objective approach, gameplay-based modelling can be model-based or model-free or a hybrid of

the two. The advantage of this method is that it is the least intrusive and very computational

efficient, even though it results in a low-resolution model and are often based on assumptions

[2].

Experience Driven PCG relates to Search-Based PCG [4] in the sense that the acquired player

model are used to validate the fitness of the generated content. Both methods tries to create the

best suitable content, and in the case of Experience Driven PCG the content must be optimised

for player experience. The evaluation process, the second part of Experience Driven PCG

Figure 2: Framework of Experience Driven PCG [2],

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

18

assessing of content quality, follows the same taxonomy as Search-Based PCG and can be either

direct, simulation-based or interactive [2] (see section 2.1.1).

The third part, the content representation, are again related to and uses the same taxonomy as

Search-Based PCG. Content is represented as genotypes and phenotypes and different encodings

is used to translate genotypes to phenotypes.

The final part of Experience Driven PCG, the content generation process, goes through the search

space created by the player experience model, evaluation and representation and generates the

final game content. The generation should be able to recognise “if, how much, and how often

content should be generated for a particular player” [2], and identify the likes and dislikes of the

player and adjust the content accordingly.

2.2 RESEARCH TOPICS

This section will give an idea of the current research within PCG, and which topics that could be

interesting to pursue to advance the state of the art. As Togelius, et al. [5] states: ”PCG is a rich

and fertile soil for research and experimentation into new techniques, with obvious benefits both

for industry and for the science of game design” [5]. By “fertile soil” Togelius, et al. refers to the

youth of PCG and the many new and relatively uninvestigated areas that arise. They suggest

pursuing three grand goals for PCG representing the most important topics, which should guide

the overall direction of the research field [5]. The three goals cover multi-level multi-content

generation, PCG-based game design and lastly the generation of complete games.

The second goal, about PCG-based games, i.e. games that are built around PCG and could not exist

without it, is interesting because it would facilitate a completely new genre of games where PCG

would be the central mechanic. In most of the games, that utilizes PCG, the generation is an add-

on or replacement of human design, and the game could very well exist without it. PCG-based

games would require innovative ways of using PCG and would prove an interesting area of

research.

Accomplishing the first and third goals, creating multi-level multi-content generators and

complete game generators, could be an amazing achievement, however, it might not be desirable

as such. It could have the side effect of alienating the human designers from the game

development process. The problem at hand is that PCG often is designed to work autonomously

and offers very little to no human interaction. This can create an unwanted distance between the

users, i.e. designers and developers and the PCG system. In some cases, only the creator of the

system knows the functionalities. This proved a real issue in [25], where the designers felt a loss

of agency as a PCG system was made responsible for parts of the design. Khaled, et al. [25] points

MIKAEL PETER OLSEN
STUDY NO. 20093736

INITIAL INVESTIGATION

CHAPTER 2

19

out that designers might be uncomfortable with relying on an automated system and they have

to be comfortable with the system and know its capabilities. When creating a PCG system one

has to consider how it integrates within other game technologies and how designers interface

with it and in general how it fits within the development pipeline [25]. The system should be

easily applied and it should be clear to designers, enabling them to evaluate if the system is

applicable to their needs. It should not be the goal to replace human designers, but to facilitate

and support their work and ease the development [3].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

20

PROBLEM STATEMENT

In the initial investigation, the concept of PCG was analysed and discussed together with the

basic taxonomy and the two research branches Search-Based PCG and Experience Driven PCG

was described. Different definitions of PCG was analysed, and in the context of this project it was

decided to use the definition by Togelius, et al. stating that it is “the algorithmic creation of game

content with limited or indirect user input” [24].

To direct the research of this project, section 2.2 mentioned a few contemporary research areas,

referred to as the grand goals for PCG. Pursuing any of these should help advance the state of the

art. Among the grand goals was the research in multi-level multi-content generators and

complete game generators, and it could be interesting to investigate how this type of procedural

generation can be integrated within a normal game development process and how it can be used

to support human designers and developers.

This project will thus investigate how to make the procedural creation of complete games a

practical possibility and how this will integrate with other game technologies and how it could

be integrated into the development pipeline of human designers. In short, this project will try to

answer the following problem statement:

How can a PCG system designed for complete game generation be made accessible to human

designers and how can it be integrated within the development pipeline?

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

21

ANALYSIS

4.1 COMPLETE GAME GENERATION 22

4.2 INTRODUCING MODULAR PCG 27

4.2.1 DEFINITION OF MODULAR PCG 28

4.2.2 MODULAR PCG AS A RESEARCH AREA 30

4.2.3 MODULAR PCG IN THE INDUSTRY 32

4.2.4 APPLIED MODULAR PCG 33

4.3 SUMMARY OF ANALYSIS 35

This chapter will first analyse previous attempts to create multi-level multi-content generators

to generate complete games. This analysis will investigate the relationship between the

complete game generation systems and human designers, and determine how multi-level multi-

content generators for complete game generation best facilitates human interaction. Through

the analysis, it will become clear that the existing attempts provides very limited controllability,

which fosters a gap between the PCG algorithms and the designers and developers. To close this

gap the concept Modular PCG is proposed to describe a system that combines the strengths of

PCG and the controllability of manual content creation.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

22

4.1 COMPLETE GAME GENERATION

This section will review the literature and game industry for previous uses of multi-level multi-

content generators and attempts to generate complete games. By analysing previous examples

from the literature, this section will investigate how this type of generation can facilitate human

designer interaction.

Even though there are not many games

using PCG in this extreme, there are a

few examples worth mentioning,

namely Dwarf Fortress, .kkrieger,

Minecraft and Cube World. Among

these, Dwarf Fortress and .kkrieger

might be the best examples since all

elements of these games are

procedurally generated. In Dwarf

Fortress, the world is generated

completely from scratch including

characters, civilization structures and

ecosystems, which are able to react to

their surroundings. The world history

and historical events and figures are

also procedural and documented as

game lore. In .kkrieger PCG is used as

data compression making this 3D

shooter including textures and sounds

uses only 95 kilobytes of data, which can

be estimated to be approximately 0.1%

of what a game of equal quality would

use4. The other examples also relies

heavily on PCG, however it is mostly for

level generation purposes enabling near

endless levels and huge variation.

As with games, there are only a few examples of multi-level multi-content generators and

attempts of complete game generation within the research community [5]. Examples of

4 As a comparison, the game Quake by id Software from 1996 requires 80 megabytes of disk space.

Dwarf Fortress

This single-player fantasy game
published in 2006 is set in a
randomly generated persistent
world presented purely with
ASCII graphics.

.kkrieger

A first-person shooter, created
by a German demogroup. It won
first place in the 96k game
competition at Breakpoint in
April 2004.

Minecraft

A sandbox indie game originally
created by the Swedish
programmer Markus "Notch"
Persson in 2009, and later
published by Mojang.

Cube World

An adventure game where
players explore an endless
procedurally generated world.
The game was published in
alpha in 2013.

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

23

complete game generation include [6] [26] [27], while [28] [29] (and [30]) are examples of

multi-level multi-content generation.

Browne & Maire [6] invented a system, the LUDI system, for procedurally

generating board games through evolutionary techniques as described in

the motivation (section 1.1). Togelius & Schmidhuber [26] and Cook &

Colton [27] has tried generating arcade style games, resembling for

instance Pac-Man, from scratch through evolutionary techniques. [26]

uses Search-Based PCG, and both systems generates games with three

main components, namely a map in the form of a 2D grid, a layout

describing placement of players and NPCs on the map, and finally a

ruleset describing the rules, e.g. movement, collision, time, etc., for the

games. The games and rules produced are, however, still very simple, but

one could argue that game rules in their basic form are rather simple.

The main concern with these approaches is that they are designed to have

no human interaction. [26] is meant as a proof-of-concept demonstrating

complete game generation, and how computational intelligence can be used to generate simple

games. The main critic of [26] is that the generated games, according to themselves, does not

represent good game design and are not particularly fun. It can be argued that automated

complete game generation should only be used if the system was able to design games with the

same quality as skilled human game designers. Togelius & Schmidhuber [26] argue that their

system can be used to generate prototypes of new game ideas, where a human designer specifies

the game engine and the axioms that define the rule space. Another possible use of automatic

game design could be in the post-production stage to fine-tune the design of a level or to adjust

the difficulty [26]. These two suggestions moves complete game generation towards a more

supportive role, where the algorithms support human design. This would be a step in the right

direction; however, the generation process is still not designed for human interaction, which, in

my view, is required before complete game generation can be said to facilitate human design.

The ANGELINA system presented by Cook & Colton [27] has the same capabilities as the one

presented in [26], with the addition ability of taking a human designed level and authoring rules

specifically for that. This is again a step in the right direction, but as with the previous example,

it is on its own an automatic enclosed system.

Unfortunately, none of the examples of complete game generation gives any solid solution on

how such systems can be made accessible to human designers. Complete game generation might

be too complex, since it implies incorporating all elements of game creation into one algorithmic

bundle that often are very autonomous and closed. Multi-purpose multi-level generators might

provide a more concrete solution, and thus the last part of this section will briefly discuss two

Pac-Man

An arcade game first released in
1980, developed by Namco.
Through the years several
remakes has been made and the
game has become cult.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

24

examples of multi-level multi-content generation [28] [29] (and [30]), to further investigate how

human designers could be included in a more complex PCG context.

In [28] the story and map structure is generated using a waterfall model where story is

generated before the map, making the map suit the story structure. Because the map structure

is generated after, and in accordance with, the story structure, the system has to understand the

story and context. To enable this the story is written as a list of plot points, which are high-level

specification of time with a semantic and recognisable meaning. Each plot point include NPCs

and locations (not information about spatial layout) and a reactive script that control NPCs and

modifies the game world according to the plot point [28]. The system can procedurally generate

these plot points, but the real benefit is that the system allows a human designer to author these

plot points. To see an example of a story written as plot points, see Table 1. This method seems

to be very practical since it allows an easy overview of the story and allows a human designer to

author the main event, characters and locations, while procedural techniques can be tasked with

the job of authoring the links between the plot points.

1. Take (paladin, water-bucket, palace)

2. Kill (paladin, baba-yaga, water-bucket, graveyard1)

3. Drop (baba-yaga, ruby-slippers, graveyard1)

4. Take (paladin, shoes, graveyard1)

5. Gain-Trust (paladin, king-alfred, shoes, palace)

6. Tell-About (king-alfred, treasure, treasure-cave, paladin)

7. Take (paladin, treasure, treasure-cave)

8. Trap-Closes (paladin, treasure-cave)

9. Solve-Puzzle (paladin, treasure-cave)

10. Trap-Opens (paladin, treasure-cave)

Hero (paladin), NPC (baba-yaga), NPC (king-alfred), Place (palace), Place (graveyard1), Place (treasure-cave),

Thing (water-bucket), Thing (treasure), Thing (ruby-slippers), Type (baba-yaga, witch), Type (king-alfred, king),

Type (palace, castle), Type (graveyard1, graveyard), Type (treasure-cave, cave), Type (water-bucket, bucket), Type

(ruby-slippers, shoes), Type (treasure, gold), Evil (baba-yaga)

Table 1: An example of a simple story represented as a list of plot points (top) and an initial state (bottom) [28]

Beside plot point authoring, the system presented by Hartsook, et al. [28] enables a human

designer to adjust the distribution maps (bitmap images) generated to locate object and scenery

in the game. The techniques presented enables human interaction and helps close the gap

between PCG and designers, and enables collaboration between the two. For further reading,

[28] is also discussed in relation to quest generation in section 7.5.

Smelik, et al. [29] [30] criticises traditional procedural methods and gives three reasons why

PCG has not been able to switch the content creation process of game development from manual

to (semi-)automatic. They state that procedural methods often are complex and unintuitive to

use, has little controllability and are difficult to integrate within an already existing virtual world.

To solve this issue they presents a declarative modelling approach, which enables designers to

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

25

create virtual worlds fast and efficiently. Their approach aim to combine the strengths of PCG

and the controllability of manual content creation. They have implemented this in the

application Sketchaworld, which utilizes two novel techniques, namely interactive procedural

sketching and virtual world consistency maintenance, letting designers sketch the world layout in

rough details. “Procedural sketching provides a fast and more intuitive way to model virtual

worlds, by letting designers interactively sketch their virtual world using high-level terrain features

[…]. Consistency maintenance guarantees that the semantics of all terrain features is preserved

throughout the modeling process” [30]. The idea behind this technique is that designers will have

enough control to specify what they want, and by controlling high-level terrain features, through

interactive procedural sketching, and will be able to create a large virtual landscape quickly and

efficiently [29]. The high-level features will in turn control different procedural methods, which

will add details to the world. The second and more automated part of the framework is the

virtual world consistency maintenance, which allows designers to freedom to change features

that might affect others without redesigning each to solve potential conflicts. The Sketchaworld

framework is illustrated in Figure 3, and described in more details in [30].

Figure 3: Overview of the Sketchaworld framework.

What is interesting about their framework is the focus on accessibility. They have created

editorial tools with the designer in mind and designed them such that they resemble familiar

tool from classical image editing software, thus making them more relatable. They have

incorporated a feedback loop between designer actions and the visual output to allow near real-

time interaction with the virtual world [30].

They have validated their approach through different user sessions where professionals and

non-professionals have tested Sketchaworld. The users found it easy to create virtual worlds

matching their intent, even with no 3D modelling experience [30]. Sketchaworld has proven a

powerful tool; however, some designers requested more design freedom and controllability over

individual models. Even though designers can adjust the consistency maintenance settings in

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

26

different ways, Smelik, et al. believe that designers should be provided with an even more fine-

grained editing option [30].

They have designed Sketchaworld to facilitate replacement of the currently used content, for

instance replacing the textures with high-quality textures. This makes their approach very

flexible and it can be adapted to fulfil many design needs. Because of the structure, it is

technically also possible to design new procedural methods within the same framework. New

high-level generators could potentially be implemented to generate elements like railways,

lakes, etc. [30]. In theory, new methods only have to collaborate with other methods and the

framework on a semantic level, because the generation can be independent from the feature

interaction. The new methods has to be made compatible with procedural sketching and be

aware of their surroundings, meaning that rules should be designed to solve feature interaction

and they should be able to cope with loosing claims (i.e. when a feature requests a terrain area).

The two examples of multi-level multi-content generators [28] [30] illustrates how PCG can

support human design, and how techniques can be made accessible to designers. Both examples

talk about content generation on a semantic level, where high-level content is authored by a

human designer and low-level content is authored by algorithms reacting to the high-level

content. This facilitates a collaboration between PCG and human designers. The declarative

modelling approach presented by Smelik, et al. [30] might be the best suggestion on how game

designers can create a complete world fast and effectively using PCG, while keeping the artistic

control. An important aspect is the editorial option, procedural sketching, incorporated into

Sketchaworld, which uses the same metaphors as normal image editing software, thus making

it more relatable.

In [30] Smelik, et al. states that other researchers are able to expand the capabilities of

Sketchaworld by creating additionally functions that can generate other types of content. This

should be possible as long as new elements incorporate semantic rules that are compatible with

the existing framework and an option for procedural sketching is designed. However, from the

articles [29] [30] it is not clear how to design such generators and adapt them to the

Sketchaworld application. Furthermore, there seems to be too many considerations regarding

their interaction with other features in the virtual world, which makes the design rather

complicated. A better and more designer friendly approach would be to establish some concrete

design guidelines and/or templates which designers could base their implementation on. These

guidelines and templates should allow designers to implement PCG algorithms that are able to

interact with other content generators in the environment without considering the specific

application of each generator. New generators will thus fit within the architecture of the existing

ones and designers will have the freedom to create as many generators as they need and use

generators designed by other developers.

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

27

If this was possible, one could imagine an application, much like Sketchaworld, which instead of

one large system consisted of many individual content generators integrated with one another

in a common framework that allowed designers and developers to add and remove different

generators to achieve a desired result. Depending on the design, such generators will give

designers the possibility to control high-level features for fast and efficient development, and

individual elements could be added and removed with ease. Different types of content and

functions could be implemented facilitating a variety of applications and games without the

difficulty of adapting generators and content to each other and the virtual environment. Such an

architecture could be used to design and implement complex games without too much hassle.

It can be theorised that such a system would close the gap between designers and PCG

algorithms and make PCG accessible to game designers and make it a more integrated part of

game development. The creation of such a system could be interesting both for the research

community and for the game industry. To elaborate on this concept, section 4.2 will focus on

how such a system can be made a reality and how it can facilitate game creation in collaboration

with game designers and developers.

4.2 INTRODUCING MODULAR PCG

In the motivation (section 1.1) the games Elite and Rogue were mentioned as two of the earliest

examples of games that utilised PCG. Despite the long history of the technology, however, PCG is

still not widely used and Yannakakis & Togelius [2] mentions two reasons why. One reason

might be that not all types of game content can be generated with the desired reliability,

variability and quality. Secondly, PCG techniques are not controllable enough, meaning that a

designer or algorithm cannot shape the outcome [2]. This is an issue also mentioned by Smelik,

et al. [30] (see section 4.1), and this controllability issue is something, which Modular PCG should

aim to solve.

Another issue with PCG is that most generators are designed for a specific purpose for a specific

implementation, which often means they cannot be reused in other application and, as stated

before, offers very little interaction. Togelius, et al. [5] mentions the lack reusable content

generators as a problem. For other types of game content, plug-and-play middleware are

available, but within PCG only SpeedTree, and a few landscaping tools, such as World Machine

and CityEngine [31], can be mentioned as widely used software, and they only cover a limited

space of content. It would be very interesting to have an array of plug-and-play content

generators that could be applied across different games and different genres. Theoretically, this

will increase the use of PCG in commercial games and could help meet the players demand for

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

28

content, as discussed in the motivation (section 1.1), and allow designers more time and

freedom.

4.2.1 DEFINITION OF MODULAR PCG

As described throughout this report the main concern with PCG is its limited accessibility, which

is the main suspect as to why PCG is not widely used in game development. This section will

define Modular PCG, which aim is to close the gap between PCG algorithms and game designers

and developers and thus easing the development and help the adaptation of PCG into the game

industry.

If PCG should adapted into the workflow of designers it should be easy to interface with and

control, as emphasised by several researchers [25] [29] [30] [3] [32]. This would require the

algorithms to be more transparent and relatable, as opposed to one large PCG system that

generates all parts of game autonomously, similar to the systems described by [6] [26] [27] (see

section 4.1). Smaller PCG systems, or modules, should also allow designers to intervene and

adjust the outcome of any of them, thus shaping the generation and getting back their design

agency. Therefore, it can be theorised that smaller relatable and controllable modules might help

integrating PCG into the workflow of human designers and developers. This need for

controllability would also be the case if algorithms should be controlled by, or interact with,

other PCG algorithms [1]. This interaction is also mentioned as a possible research topic by

Togelius, et al. [5], which suggest either using a waterfall approach, where each type of content

is generated after the other and where one puts constraints on the following, or an interaction,

where constraints are posted in global space and all generators react to these constraints (see

Figure 4).

World Machine

Used for procedural terrain
creation, simulations of nature,
and interactive editing to
produce realistic looking
terrain quickly and easily.

SpeedTree

Toolkit used to create 3D
animated plants and trees for
games, animations, visual
effects shots, and architectural
renderings.

CityEngine

A 3D modeling software
developed by Esri R&D Center
Zurich. Specialized in the
generation of 3D urban
environments.

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

29

Figure 4: Left: Illustration of the waterfall approach. Right: Illustration of the interactive approach.

As said these smaller PCG systems can be seen as modules, which is why I propose the term

Modular PCG to describe a system of multiple individual PCG algorithms, or modules, that acts

on their own, which combined facilitates easy and relatable game development. Modular PCG

can be described as a system, but the terms structure and architecture will also be used to

describe it throughout the report, and the terms will be used interchangeably.

It can be theorised that Modular PCG will be a better approach than developing one large PCG

system for two main reasons. First, by having a modular setup, each module will be more specific

and thus easier to relate to and human designers will better understand the capabilities of each

module. Secondly, different modules with different capability will enable designers to choose

only the ones they need for the implementation they are working on. It can therefore be

theorised that research in this area will prove beneficial for both the game industry and general

PCG research, and suspect that this will help integrate PCG into commercial game development,

which is a necessary step for the success of PCG. A Modular PCG system could be used to create

PCG-based games, complete games and the system would generate multi-level multi-content,

and this take on PCG thus captures the original grand goals presented by Togelius, et al. [5],

mentioned in section 2.2.

As such, the individual modules in a Modular PCG system can be any PCG algorithm, meaning it

should be possible to include a variety of different content generators; however, one has to

consider who the user(s) will be. If the user is a human designer, the module should be easy to

interface. If it is a player, the module most likely needs to facilitate some form for adaptation to

player’s desires or actions (see section 2.1.2 about Experience Driven PCG). Finally, if the user is

another PCG module, the two must be able to talk to each other and adaptation is most likely

also required. In any case, the module has to be specific and autonomous enough to handle

module

module

module

module

global
space

module

module

module

module

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

30

demands in a sufficient way, but at the same time, if interacting with a human designer, be

flexible and transparent to grant design agency and empowerment [25]. Considering this, the

definition of PCG presented in section 2.1: “the algorithmic creation of game content with limited

or indirect user input” [24], is still valid; however one additional comment has to be made in

relation to Modular PCG. I propose that “user” should be understood as both game designers,

players and other PCG modules, and it should be possible for modules to have multiple users,

e.g. a designer specifying a level layout, a player “requesting” more enemies, and a quest module

requesting NPC locations.

4.2.2 MODULAR PCG AS A RESEARCH AREA

There are many interesting areas of research within PCG, which must not be neglected with the

introduction of Modular PCG. This section will therefore review some research topics within PCG

suggested by other researchers [5] [4] [8] [1] and explain how Modular PCG is able to cover these

topics. Hendrikx, et al. [1] suggests five areas of research. The first is the research in the

generation of what they see as higher level content, i.e. Game Scenarios, Game Design and

Derived Content (see Figure 5). They also suggest is research in more detailed generators,

specifically in relation to Game Space and Game Systems, and suggest that research should focus

on the interaction between generators as well.

Even though there have not been many examples of generators capable of generating content

from the top of the pyramid, it should be possible to create generators for all the different types

of content listed by Hendrikx, et al. [1]. Because Modular PCG should be seen as a framework and

a way of structuring different procedural algorithms, it is possible to incorporate many different

algorithms as modules. The issue is therefore not which content can be generated, but how

modules should communicate with each other and the general structure of the system. Within

the scope of this project, it might be too comprehensive to create a Modular PCG system that

 Derived Content
News and

Broadcasts
Leaderboards

 Game Design System Design World Design

 Game Scenarios Puzzles Storyboards Story Levels

 Game System Ecosystems Road Networks
Urban

Environments

Entity

Behaviour

 Game Space Indoor Maps Outdoor Maps
Bodies of

Water

 Game Bits

Textures Sound Vegetation Buildings

Behaviour
Fire, Water,

Stone & Clouds

Figure 5: Types of game content that can be procedurally generate [1].

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

31

includes the top most content from Figure 5. What I consider feasible within the scope of this

project, and a good starting point for proving the validity of Modular PCG, is to create a system

based on high-level modules designed to generate Game Scenarios or Game Systems. The reason

for starting with higher-level content is that this type is more designer oriented and it can be

theorised that well designed, i.e. accessible, high-level modules will be able to aid a designer

more efficiently, i.e. help structure, author and plan. If modules were designed for each of the

categories in the content pyramid in Figure 5, the high-level modules should be able to control

lower-level modules generating Game Spaces or Game Bits. This method can therefore be seen

as a top-down approach, where low-level content is controlled by higher-level content and thus

the designer interaction lies with the high-level content. Contrary, it would be possible to create

a bottom-up approach, where the designer interaction lies primarily with the low-level content

that in turn controls the higher-level content.

Hendrikx, et al. [1] also suggests utilizing multi-core computer systems or multi-node computer

networks to enhance the quality of PCG in relation to the individual Game Bits, making

generation faster and more time efficient. Such advancements could easily be incorporated

within Modular PCG, by designing modules to utilise these techniques.

Togelius, et al. [4], who talks about Search-Based PCG (see section 2.1.1), mentions the

investigation of content representation, i.e. genotypes, and fitness function design as a research

topic. This is a more general concern and something one always has to consider when designing

search-based PCG. Search-Based PCG has both strengths and weaknesses; in broad terms, one

can say that it will create content perfectly suited to a given situation but on the other hand it is

a very closed circuit and generation time can vary a lot, thus Search-Based PCG is best used in

offline generation, i.e. during development. That said some modules might benefit from Search-

Based PCG. To fit design requirements from higher or lower-level modules, modules can use

Search-Based PCG to generation the best-suited content that links the game together. It can also

be used to create modules that will adapt to the player and the player’s actions (see section 2.1.2

about Experience Driven PCG). This relates to their subsequent paper where Togelius, et al. [8]

suggests investigating player models and how these can be integrated into the evaluation

functions. This could lead to investigation of how to incorporate the player model into the

generation process, which could help optimise the evaluation and ideally, if content could be

generated to a satisfying standard the first time, make the evaluation redundant. A player model

can be setup by one individual player before or during play or be created based on a theoretical

approximation of player desires and expectations. Because the interactive, i.e. player-driven, and

the theoretical player model are capable of different things, a topic of research could be to

investigate in which cases either is usable and how the two could be combined.

In [8] they also mentions some more general research topics, which illustrates some general

concerns when creating PCG algorithms, and Search-Based PCG. First, one could identify which

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

32

type of content is suitable for generation and how it should be represented in the search space.

This would of cause depend on the application and whether or not it should be done online or

offline, and if the content is optional or necessary (see section 2.1). They also suggest research

within optimisation of PCG algorithms, namely how to make them more reliable and precise and

how to speed up the generation process. This research is something that could benefit regular

PCG algorithms and thus also the modules in Modular PCG.

The last topic, which they [8] suggest, is related to the evaluation of the generators themselves.

Since PCG are capable of generating an array of different things it is difficult to compare and

evaluate generators against each other. Therefore, they suggest setting up a framework for

testing generators, where PCG algorithms must solve the same problem using the same API. This

suggesting is highly relevant when talking about Modular PCG since different modules has to

communicate and integrate with one another, and therefore a common API would be the ideal.

This can of cause be seen as a limitation, since creators has to make their modules work within

the same API and work within some general design requirements and specifications. On the

other hand, a Modular PCG system would enable developers to use different modules from

different designers and apply them in their own development. I believe this should be the grand

goal of Modular PCG, however, Modular PCG will have to be defined further if it should be

acknowledged as a part of PCG research and become a research area on its own. Further

investigation should determine which modules should be produced, and how the inputs and

outputs should be designed. Research in Modular PCG should also take designers and players,

i.e. users, into consideration, allowing designers to direct and shape the generation and it could

be useful to implement player adaptation into certain modules, allowing the generation to

change and adapt to players and playing styles accordingly.

4.2.3 MODULAR PCG IN THE INDUSTRY

As described in section 2.2, Togelius, et al. [5] lists three grand goals of PCG, one of which is

complete game generation where a PCG system should be able to

generate a complete game including all assets and the engine itself. As

mentioned, it could be a fruitful research area, however this is not what

the industry wants, and it is only logical that PCG research aims to fulfil

the needs from the industry. This is backed up in [3], co-written by people

working for Electronic Arts, stating, “Game artists aren’t looking for a one-

button procedural solution. Instead, they’re interested in procedural

methods that help with tedious tasks and provide results that adjust to

gaming constraints” [3]. PCG should fit within the already established

workflow and “free artists to spend time creating and polishing, rather

than performing mundane, repetitive, and time-consuming tasks. […] Game

Electronic Arts

Founded in 1982 this American
developer, marketer, publisher
and distributor of video games
are known for Need for Speed,
The Sims, Medal of Honor, and
other game titles.

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

33

artists are looking for procedural methods for modeling organic objects that meet asset budgets

and yet remain convincing” [3]. In relation to this, the tools provided should be easy to use and

intuitive to the designers and resemble well-known functions such as soft selection, drag and

drop, insertion and deletion [32], and in general accessible to designers [25].

Specifically related to city modelling Lipp, et al. [32] asked artists and programmers about their

needs, and found that previous work within PCG were missing an easy way to implement

handcrafted assets and that the artists were missing their direct artistic control. This

strengthens the assumption that if the game industry should adapt Modular PCG, and PCG in

general, the tools and design metaphors should resemble what designers are familiar and

comfortable with.

4.2.4 APPLIED MODULAR PCG

To my knowledge the concept of Modular PCG has never been discussed before; however, some

applications are using methods similar to the ones proposed in relation to Modular PCG. For

instance, in section 4.2 it was pointed out that CityEngine [31] and SpeedTree was some of the

few tools widely used in the industry, and they in fact proves as good examples of how Modular

PCG should be used and understood. CityEngine, SpeedTree and other applications will thus be

discussed in this section to illustrate how Modular PCG could be useful to game designers, and

ease the development.

In short, CityEngine is an application used for planning and designing urban architecture and

cities. It uses a procedural approach based on L-systems to generate streets, building, etc., and

was originally presented by Parish & Müller [31] in 2001, but became commercial in 2008.

Watson, et al. [3] also describes procedural modelling in relation to city creation and describes

how to incorporate CityEngine into the workflow of game development and movie production.

They study how procedural urban modelling has been used in the Need for Speed game series.

Lipp, et al. [32] proposes a system compatible with CityEngine for structuring city layouts with

focus on relatable editing options, such as drag and drop. The techniques presented resembles

in many ways the editing options in Sketchaworld presented by Smelik, et al. [30] (see section

4.1 and 6.4). These techniques are relatable and flexibility and returns some design agency to

the designers and is therefore a good example of how Modular PCG should be used and how tools

should be implemented. In the later years, these editorial options, together with many more,

have been incorporated into CityEngine, and it has become a rather complicated piece of

software.

As mentioned, SpeedTree is another example of an application that to some degree resembles

how Modular PCG should be structured. SpeedTree represents the many applications that are

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

34

designed to generate plants

procedurally, and this is a large

research field in itself [12]. The

problem at hand, like city generation,

is that huge environments requires

many graphical assets, i.e. geometry

and textures. Instead of reusing assets

by changing colour and size, which is

often noticeable, PCG can help create a

variety of assets and thereby improve

the realism [12]. In [12] 12 examples

of tree and plant generators is listed

and described. It is clear that some of

the earlier applications are not capable of generating anything useable

for computer games, but are mainly usable to illustrate procedural

methods, such as L-Systems. Examples of more useful5 applications

include An Ivy Generator, Xfrog and Tree[d] and, as mentioned before,

SpeedTree.

SpeedTree, together with the other examples, can be seen as modules for

Modular PCG, even though they are not completely integrable with other

programs. It could be interesting to have these tools integrable within a

common API, e.g. a game engine, allowing fast and productive

development. This will enable designers and developers to choose the

generators that suits their needs, which previous was mentioned as the

grand goal of Modular PCG (see section 2.2). Having such tools within a

common API with other modules would also allow them to use each other and thus a more

autonomous system can be designed.

To make this a reality a lot of work is required regarding the architectural design of the system

and modules and determining how these modules should communicate with the main engine

and each other. Inspired by the most successful examples of plant generators, modules working

with geometry and 3D models could be designed to use the .obj file format and other industry

standards. This might ease interaction between modules and make the generation more

5 In this context useful means that the application is able to generate files compatible with other programs,
for instance by generating .obj files, that the application is somewhat user friendly and that the generated
content is of a relatively high quality, thus useable for computer game production.

An Ivy Generator

A small tool used to
procedurally grow a virtual ivy
on 3D objects. The ivy can then
be exported as an .obj file and
used in other 3D programs.

Xfrog

A procedural organic 3D
modeller used to create and
animate 3D trees, flowers,
nature based special effects or
architectural forms.

Tree[d]

An easy to use tree generator
with a user interface that allows
creation of nearly any type of
tree within minutes.

MIKAEL PETER OLSEN
STUDY NO. 20093736

ANALYSIS

CHAPTER 4

35

relatable to designers and developers, and enable them to import objects from other programs

if necessary.

City and plant generators, and generally modelling generators, have the benefit of generating

something that is visible and physicalized as a 3D object, and is often the end state of generation.

Things such as determining what buildings to place in a certain area of a city or which types of

plants should populate a forest can be seen as higher-level generation. This was also discussed

in section 4.2.2 with inspiration from Hendrikx, et al. [1] who categorised content from low-level

to high-level. As described the architecture of Modular PCG could be designed such that higher-

level modules determines higher-level content and lower-level modules generates more simple

content based on requests from the higher-level modules (referred to as a top-down procedure).

4.3 SUMMARY OF ANALYSIS

The analysis has now analysed and discussed different areas based on the problem statement:

“How can a PCG system designed for complete game generation be made accessible to human

designers and how can it be integrated within the development pipeline?”

In the analysis examples of complete game generation and multi-level multi-purpose generators

from games and the research community has been analysed. It was discovered that there have

not been many successful examples of complete game generation, and the few examples from

research have not been very accessible to designers. Thus, a few examples of multi-level multi-

purpose generators was discussed and it was found that these had more focus on the

controllability and accessibility and gave some initial ideas towards designer interaction. Based

on the examples of multi-level multi-purpose generators a new view on PCG was proposed,

named Modular PCG. The term Modular PCG describes a system of multiple individual PCG

modules that acts on their own and facilitates easy and relatable game development when

combined. The modules should be seen as regular PCG algorithms, with the added ability to

interact with each other and react according to changes.

The problem at hand is that most PCG systems are designed to generate only one type on content

and often offers very little interaction. This makes it difficult to adapt PCG into game

development, as designers might not understand the capabilities of the PCG system and are not

able to adjust the outcome and thereby loose some design agency. Modular PCG would facilitate

a creation of an array of ready to use plug-and-play algorithms, which designers and developers

could easily implement into their game. It should be possible for them to interact with the

modules to achieve a desired outcome, making Modular PCG very flexible and relatable. Modular

PCG should make it easier for game designers and developers to create games and enable them

to choose only the modules needed for their implementation. The grand goal of Modular PCG

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

36

should be to enable users, designers and developers, to choose many different modules from

different designers, and shape and apply them in their own development.

It has been described how Modular PCG fits within the current PCG research and is able to

capture the existing research topics, which illustrates the usefulness of this proposed

framework. With further work is would be possible to create Modular PCG systems capable of

creating whole games through either a top-down or bottom-up approach, incorporating player

experience, i.e. Experience Driven PCG, and the powers of Search-Based PCG. It is the hope that

Modular PCG will make the process of game creation more streamlined and accessible to human

designers.

In section 4.2.3, it was described that game designers are not looking for a one-button procedural

solution to generate all aspects at once. What they seek is procedural methods that ease the

completion of tedious tasks and provide tools with well-designed metaphors that give them the

design agency they need. This is something that Modular PCG should aim to provide, and in

section 4.2.4, it was argued that examples of Modular PCG, or modules, can already be found in

some of the more successful PCG applications. Because of this and the requirements from the

industry, it can be argued that Modular PCG is the right direction for PCG research and this way

of thinking will help PCG integrate within the current game industry.

Research within Modular PCG should determine which modules to develop and how inputs and

outputs should be designed such that modules can be combined. This, of cause, only represents

a fraction of the research needed in Modular PCG, but this report will serve as initial research to

prove the validity of

modular PCG. This will help

shape and clarify Modular

PCG and determining its

strengths and weaknesses

in relation to game

development. The

architecture of Modular

PCG should be investigated

further; Figure 6 however,

illustrates an initial

architecture to describe

Modular PCG.

Figure 6: An initial architectural design for Modular PCG. Left: Top-down approach, where
designers and players influence high-level modules that affect low-level modules, which generate
the final output. Right: Bottom-up approach, where high-level modules adjust to the requirements
from lower-level modules, which are controlled by designer and player.

MIKAEL PETER OLSEN
STUDY NO. 20093736

DELIMITATIONS

CHAPTER 5

37

DELIMITATIONS

Because suggesting a new research field is like opening Pandora’s Box, this report cannot cover

all areas of Modular PCG. The goal is therefore to give a basic holistic vision of Modular PCG,

regarding it overall architecture and how new modules should be created and linked to other

modules. To focus the research and to give a concrete example of how Modular PCG can be used,

this section will review a few research suggestions by Togelius, et al. [5], that can be addressed

“already today”, to see if any of these would benefit from Modular PCG.

What Togelius, et al. [5] suggests is five actionable steps, which could help advance the state of

the art of PCG in general. The first suggestion is to reduce the complexity of PCG focussing on a

constrained space of games, similar to old Atari 2600 games. This is because games today are

very complex and it can be very difficult to achieve this complexity. They

state that within the limitations, one could create a PCG system for

complete game generation, which will address one of the grand goals

mentioned in section 2.2. Secondly, they suggest research in procedural

animations for generated creatures, which will help overcome the

animation bottleneck of PCG. The game Spore is the most promising

attempt to do this, even though their creature space is rather limited.

Thirdly, they suggests creating games with a sense of purpose, and state

that procedural generators often create content that looks very generic

and does not offer much variation. Generated levels often “lack

meaningful macro-structure and a sense of progression and purpose” [5],

and rarely offers creative design innovations. This is a paradox within

Spore

Single-player god game / life
simulation game designed by
Will Wright, developed by
Maxis and released by
Electronic Arts in 2008.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

38

PCG; on one hand, you might want to have a predictable outcome and on the other, you might

want innovative, creative and original design. In any case, one should always strive for a

purposefully designed game. They also list this issue as a research challenge suitable for a PhD

thesis, but as a concrete suggestion for a minor project, they suggest using the Mario AI

Benchmark for accomplishing this. This is because it can provide a lot of material for comparison,

both level generators and professional created levels. Next they suggest working with player-

directed generation to optimise the generation and diverse the content. This relates to [8] who

suggests using player models together with Search-Based PCG, which can be seen as Experience

Driven PCG [2].

Lastly and most interestingly, Togelius, et al., 2013 [5] suggests investigating the merge of quest

and map generation. In the best-designed games, the quests often interact with the game world

and vice versa, which often help tell the story and subsequently helps the player explorer the

game on both the spatial and narrative level. They state that there are very little work done on

generating quests and maps together, whereas there are multiple examples of generators

capable of generating only one of the two. [33] [28] can be mentioned as examples of the first,

whereas [34] [35] are examples of the latter. In relation to this project, it could be very

interesting to investigate this type of complex game generation, because it will test the

capabilities of Modular PCG. If Modular PCG is as powerful as suggested throughout this report,

it should be possible to create different modules that together in a common architecture will

facilitate complex game creation, and allow a human designer the necessary freedom.

Following Hendrikx, et al. [1] both quests and maps can be seen as higher-level content, which

strengthens the assumption that quest and map generation will be an excellent example of how

two high-level generators should interact and how they should solve the conflicts that might

arise. As mentioned higher-level modules might need multiple lower-level modules to generate

lower-level content. This was referred to as a top-down approach, and through that, it would be

possible to illustrate the interaction and interdependence between modules of different

complexity.

Specifically related to quest and map generation, Togelius, et al. [5] present four methods that

could direct research. One method could be to use an algorithm that has already been proved to

work well for either quest or map generation, and then integrate generation of the other into

this. Another way could be to have a quest generator and a map generator take turns generating

content and in the process responding to each other’s generation. A third option could be to

invent a new algorithm that could generate both quest and map synchronously. The final method

they propose involves human intervention at any phase of the generation process.

All these methods links very closely to Modular PCG, although they require slightly different

structures. The first implies a waterfall approach where either the quest or the map generation

module generates its content and then controls, or puts constraints on, the other. This means

MIKAEL PETER OLSEN
STUDY NO. 20093736

DELIMITATIONS

CHAPTER 5

39

that the first has higher priority than the other does. It can be suspected that if the quest

represents the main storyline, this will have to be generated first, but if the quest element

represents side quests and the map the main element, a map might have to be generated first.

The second method requires an interaction between the two modules, meaning that the two will

have equal priority and conflict resolution will have to be implemented. This could be used to

illustrate how high-level modules interact and solve conflicts as mentioned before. The third

method might be outside of Modular PCG since it implies creating a new generator capable of

generating both quest and map, which will be the outcome of a modular system, and single multi-

content generators is against the concept of Modular PCG. The last method can be seen as a more

general thing and can be linked to the first and second mentioned. The idea behind Modular PCG

is to let the designer interact whenever possible and logical, to help integrate PCG into the game

development pipeline.

Based on the discussion above, Modular PCG will be illustrated through complex game

generation, and more specifically by a top-down approach of quest and map generation where

both represent high-level content. The two will be linked through either a waterfall or an

interactive approach depending of the concrete scenario, however this cannot be decided until

further analysis has been carried out. The high-level modules should allow some human

interaction and the generated result should look like it has been purposeful designed with a

logical progression throughout, thus helping the player explorer both the spatial design and the

quest structure.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

40

MODULAR PCG

6.1 INITIAL ARCHITECTURE 41

6.2 HIGH- AND LOW-LEVEL MODULES 42

6.3 VIRTUAL WORLD INTERACTION 44

6.4 DESIGNER INSTRUCTIONS 48

6.5 MODULES PROVIDING CONTENT TO PLAYERS AND DESIGNERS 50

6.6 MODULES GETTING INPUT FROM PLAYERS 51

6.7 FINAL ARCHITECTURE 52

This project set out to answer how PCG, when used for complex game development, can be made

more accessible to game designers, and as a solution the term Modular PCG was proposed, which

describes is an architecture that facilitates human design better than previous attempts.

Modular PCG describes a system of multiple individual PCG modules that acts on their own and,

when combined, facilitates easy and relatable game development. It should allow game

developers to choose different modules from different designers and apply them in their own

development. In Chapter 5, it was decided to illustrate Modular PCG through complex game

generation, and more specifically to use quest and map generation to illustrate the use of

Modular PCG. This will facilitate both high-level and lower-level content generation and a top-

down approach will form the basis for the structure.

This chapter will describe an initial architecture for Modular PCG and analyse its different

elements in order to synthesise one final architecture that describes Modular PCG and how it

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

41

should be applied in game development. The purpose of the architecture is thus to describe how

it will be possible for multiple content generation modules to form a common architecture

enabling coherent generation of complex games and leaving sufficient control to a human

designer.

6.1 INITIAL ARCHITECTURE

This section will describe some basic thoughts and ideas about the initial architecture of Modular

PCG. Previously it was stated that modules should be able to interact and act on their own,

enabling designer and developers to use different modules of their choice. Following Figure 6 in

section 4.3 there must exist at least two types of interaction between modules, namely high-level

modules instructing low-level modules and vice versa. Beyond that, there must be an interaction

between the modules and the designers and/or players. First, designers must be able to instruct

either high- or low-level modules depending on the approach. Secondly, the modules responsible

for the generation should be able to make the generated content available to the player and the

designers during development. In connection to the player, some modules might need player

input to some extent, either directly or indirectly, and should thus facilitate this and be able to

collect the input. As a last type of interaction, modules might need to interact internally, this

again might depend on the approach, but it seems logical that modules responsible for the

structuring and planning, whether it be high- or low-level, must be able to interact with other

modules. This leaves seven types of interaction:

1. High-level modules instructing low-level modules

2. Low-level modules instructing high-level modules

3. Designers instructing high-level modules

4. Designers instructing low-level modules

5. Modules providing content to players and designers

6. Modules getting input from players

7. Internal interaction between modules

Figure 7 shows an example of a Modular PCG system using a top-down approach, which

illustrates these different types of connections. The example is purely fictional and the numbers

in the model correspond to the number from the list above.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

42

Figure 7: Example of a top-down Modular PCG system, numbers describe different connection types. 1: High-level module
instructing low-level module. 3: Designer instructing high-level modules. 5: Modules providing content to player and
designer. 6: Modules getting input from player. 7: Modules communicating internally.

These interactions will have to be investigate further in relation to complex game creation and

specifically to quest and map generation. The following sections will thus analyse each of the

proposed connections using examples from literature, and thereby establishing how these

connections should be structured in the common architecture. This will also either verify of

disprove the existence of each connection and clarify which is needed and if some can be merged

into one.

6.2 HIGH- AND LOW-LEVEL MODULES

Firstly, this section will discuss whether modules can be divided into high- and low-level, and

how and if this structuring can benefit the architecture.

In section 4.2.2 it was established that both high- and low-level modules exists based on the

categorisation of game content by [1], namely: Derived Content, Game Design, Game Scenarios,

Game System, Game Space, Game Bits. Generally, generators within Game Scenarios and Game

System should be seen as high-level modules, because they can be seen as authors of more

complex content. Low-level modules thus generates content within Game Space and Game Bits.

The reason why Derived Content and Game Design was not seen as high-level modules, even

though they lie higher in the hierarchy, is that Derived Content can be seen as something outside

of the game itself, and Game Design are at the same level as human designers. That said one could

create an artificial game designer that could replace the role of the human designer and author

a complete game experience using a Modular PCG system just as a human designer would.

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

43

The division into high- and low-level modules should be seen as categorisation of modules,

where high-level modules generate more complex and abstract content as opposed to low-level

modules that generally generate simpler and more concrete content. This categorisation might

be more relevant when discussing modules of different types and the approach one uses, either

top-down or bottom-up, and in fact unnecessary in relation to the general architecture. As an

example, let us consider a map generation module capable of generating rough-like maps and a

story generation module. In a top-down system the map generation module will be required to

adapt to instruction from higher-level modules, such as the story generation module, but it might

still be desirable for a designer to draw a basic map layout. In a bottom-up system, the map

generation module will put constraints on higher-level modules, and thus the story module will

have to adapt to the generated map. In this case, a designer also needs the ability to influence

the map layout. In both cases, this interaction between modules seems to be identical on the

architectural level. In both cases one module puts constrains on the other, however, since

modules should have the ability to adapt to various unknown modules they cannot interact with

each other directly. If one module were directly controlled by another, the second module could

be seen as a sub-module and the two would as such be seen as one module. The module and sub-

module would form their own architecture and the interaction between the two would be

internal, which, together with the fact that modules should not interact directly, eliminates the

last of the suggested interaction types, “internal interaction between modules”.

Instead of direct interaction between modules, one module should change the virtual world and

the other should react to this change. This means that both top-down and bottom-up can be

achieved by ranking modules in a hierarchy, where modules near the top have greater influence

on the virtual world and modules further have to adjust to the changes. That said modules could

still be designed to be near the top or further down this hierarchy. This type of structuring can

be related to the implementation of Sketchaworld [30]. In Sketchaworld, the content is organised

in a top-down fashion in five layers6 based on semantics and relationships between features,

which means that the generation will start with the most abstract structures working down

towards structures that are more concrete. Since features in the Sketchaworld implementation

are able to interact with each other, it differs slightly from Modular PCG; however, organising

modules in layers could be a useful method for designers and developers to prioritise modules

and it seems to be a very practical organisational tool.

In relation to the general architecture of Modular PCG, Sketchaworld is a rather limited example

because it is designed for the creation of virtual worlds only, and it is therefore difficult to see

any logical connection to for instance the non-physical content found in complex games, e.g.

6 The layers are as follows: “1. Urban layer: e.g. cities, districts, parcels, buildings. 2. Road layer: e.g.
highways, local roads and streets, bridges. 3. Vegetation layer: e.g. natural forests, planted vegetation. 4.
Water layer: e.g. rivers, canals, lakes, oceans. 5. Landscape layer: elevation profile and soil material” [30]

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

44

quests and the content quests might entail. Ideally, it should be possible to create modules that

enables generation of both physical and non-physical content. The main issue with non-physical

content is that interaction is not straightforward, especially since the modules should not

interact directly. It has been established that modules designed for physical content, e.g. forests,

cities, grass and buildings, should interacts through the virtual environment, and thus modules

for non-physical content generation should interact through a similar space. This interaction

space is something, which will be determined in section 6.3, about interaction.

Following the discussion above the same modules can be used in both a top-down and a bottom-

up implementation, and modules can therefore not be divided into high- and low-level modules

when it comes to the architecture. The terms can however still be used to describe which types

of content the modules are designed to generate and the general purpose of the modules.

Consequently, since the architecture cannot and should not distinguish between high- and low-

level modules, the first two interaction types, “high-level modules instructing low-level

modules” and “low-level modules instructing high-level modules”, can be merged into one. As

said modules should interact through the virtual environment, or a similar space for non-

physical content generators, and not directly with each other, which means that the new

interaction cannot be named “modules instructing modules”. Instead, it will be named “virtual

world interaction”, which will cover the interaction that arises when modules instruct the virtual

world and when they adapt to it. In addition, “designers instructing high-level modules” and

“designers instructing low-level modules” can be merged into “designer instructions”. Note that

this is a one-way interaction, and that the interaction from module to designer and player

therefore remains as their own category for now.

6.3 VIRTUAL WORLD INTERACTION

As described in section 6.2 this interaction type is the result of considering high- and low-level

modules as equal on an architectural level, and the decision to avoid any direct interaction

between modules. This type thus covers the interaction that arises when modules instruct the

virtual world, i.e. when modules makes decisions that affects or changes the virtual world, and

the reverse interaction that arises when modules adjust to fit the virtual world. To distinguish

between the two, the first type will be called Instructive Interaction (I) and the second Adaptive

Interaction (A).

To illustrate virtual world interaction, the application Sketchaworld can be used to exemplify

how generation can be both instructive and adaptive. In Sketchaworld, terrain features interact

with each other, which means that some features instructs the generation, some adapt to the

generation and in many cases features have to solve conflicts between one another meaning both

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

45

have to be instructive and adaptive. In Sketchaworld, features not only have a geometric

description, but also a semantic description that defines connections with other features in

relation to geometric and functional constraints. This allows many different features to interact

and content are specifically designed for these interactions, for instance in a situation where a

road and a river intersects, a bridge can be automatically generated. On one hand, this creates a

very adaptive and flexible system generation wise, however, it also makes the system very

entangled and it is far from straightforward to create new types of content. With Modular PCG

new generators, or modules, can be made without considering which other modules exists in the

system, which is why modules must be able to interact with the virtual environment and not

necessarily with other modules. The reason for this structure is to make is possible for other

researchers and developers to contribute to the development of PCG in a more practical and

applicable framework.

The content generated by various modules needs to interact with the virtual environment at

level that facilitate fast and efficient instruction and adaptation, i.e. contains the right amount of

detail. Because of computational complexity and computation time, it might not be optimal to let

modules interact with a fully detailed virtual environment. In Sketchaworld, features are divided

into three levels of abstraction, which represents different levels of detail. The first is the

specification level, which enables designer instructions; the second is the structural level at

which features are represented as simple structures allowing interactions; the third and final

level is the object level, which is the final detailed generation:

1. “Specification level: user-sketched coarse outline and input parameters (e.g. a forest

specification)”

2. “Structural level: the layout of the feature and the area it encompasses (e.g. the contour

of the forest)”

3. “Object level: all individual semantic objects making up the feature that will result in

concrete, geometric objects (e.g. the set of individual trees)” [30]

Related to Modular PCG, abstraction level 1 facilitates designer input, i.e. designer instructions

(see section 6.4), and level 2 and 3 can be seen as the content representation available to

designers and target audience respectively (see section 6.5). Since these levels are able to

describe input and output of modules, they will be used prospectively to describe the general

internal architecture from which each module should be build. Using these descriptions and in

relation to virtual world interaction, it would be most beneficial to let modules interact with a

representation of the virtual world at abstraction level 2.

Since features in Sketchaworld interact directly with each other, their interactions cannot be

applied directly to the architecture of Modular PCG; however, inspiration can be drawn from

how conflicts are handled. In Sketchaworld whenever there is conflict between two features,

each feature can give one of two requests. Either a claim, where the feature requests control over

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

46

for instance a terrain area, or a modification, where the feature requests a local terrain

modification for instance an elevation or material change [30].

In relation to Modular PCG both claim and modification can be seen as instructive interactions,

because both represents an instruction from the module to the environment, however, claim

implies a higher priority than modification. As described in section 6.2 it would be useful to

organise modules in a hierarchy, where priorities are decided from the order in which the

modules are arranged. Within this hierarchical structure, a claim would refer to an instructive

interaction from a higher priority module, and a modification would refer to a module of equal

priority requesting a change in an already generated part of the environment. Note that this

structure does not allow modules to influence modules higher up the hierarchy.

To manage priorities, modules could each be given a priority ID, which would make it possible

to group modules by given them the same ID. Modules with the same priority ID would have to

adapt to each other, i.e. adaptive interaction, and resolve conflicts by requesting modifications.

In the context of Modular PCG, a modification might be better described with the word proposal.

A proposal should be an alternative layout of the content of the proposing module, which the

other module should then counter, i.e. return a new proposal, or accept. A maximum amount of

proposals could be included in the implementation to stop infinite counter request loops. When

a proposal has been accepted or the maximum number of proposals has been reached, both

modules will generate their content based on the last proposal. That way both modules will have

adjusted their content through adaptive interactions. To direct the generation of alternative

layouts and in general adaptive interactions, a scoring system could be built into each module,

allowing them to rate how well they are able to generate their content. This could then be used

to generate the most optimal layouts and to avoid sacrificing too much content in situations

where a module needs to propose an alternative layout. Rules about how and which content

could be rearranged or excluded could be built into the modules allowing better reconstructions

of layouts. Figure 8 illustrates how modules with different or equal priorities will affect each

other’s generation and which type of virtual world interaction will arise.

Figure 8: How hierarchical structure will affect generation and change which elements becomes Instructive (I) and
Adaptive (A).

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

47

The instructive or adaptive interaction that arises between modules can be related to what

Smelik, et al. [30] calls feature interaction, which in Sketchaworld occurs when two terrain

features claim the same area. In Sketchaworld different priorities determine if feature

interaction should be resolved through either cooperation, e.g. when a bridge is created over a

river, or conflict, e.g. when a city overlaps a forest and the forest no longer have rights to occupy

that area. In Modular PCG priorities is determined through a hierarchical structure and thus

cooperation can be said to be what happens when two modules of equal priority adaptively

generates content, and conflict can be said to occur when a higher priority module claims a part

of the virtual world, thus restricting generation of lower priority modules.

In relation to adaptive interaction in general, modules has to interpret the virtual world on the

structural level, as discussed earlier in this section, and determine how new content can be

adapted to the existing content in the world. With physical content, such as houses, rivers, roads,

etc., this is relatively straightforward, since these features can be represented with basic

geometry, which modules can access through the virtual environment and avoid with methods

such as pathfinding. Differently from physical content, it can be very complex to represent non-

physical content on a structural level, making adaptation difficult. As stated in section 6.2, non-

physical content should interact through a similar space as the physical, however, since non-

physical content can be very diverse and represented in many ways, it is difficult to imagine a

non-physical structural level capable of including all possible types of content. Therefore, a

solution would be to have parts of the non-physical content linked and represented as physical

content in the physical space. This should be possible, since non-physical content very rarely

interacts with other non-physical content, and when it interacts with physical content, it is on a

structural physical level. This is of cause a statement, which will have to be examined in a proof

of concept illustrating how Modular PCG can be used in complex game generation (see Chapter

7).

To represent non-physical content as physical, new types of content might be needed and new

data types might arise. On a physical structural level, to enable unknown modules to interpret

the content, this might be represented as 3D content that block out occupied areas, but other

modules might be designed to interpret this information and use it in their generation. This will

consequently mean that the second module will be a sub-module of the first and the two will be

linked. As an example, a story generator might generate a dummy NPC in the environment with

some basic variables. This dummy NPC could then be regenerated by an NPC generator module,

using the variables and possibly some designer input to create a detailed NPC. The other way

around a NPC generation module would be able to generate a detailed NPC and a NPC dummy

describing its features. A story module will thereafter use the dummy variables to generate a

story including that NPC. This way the story and NPC module will form their own sub-system

responsible of generating non-physical and physical content in the physical space, but in context

of the architecture of Modular PCG they should be seen as one module. The advantage of this

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

48

approach is that parts of this sub-system could be interchanged, allowing designers to, for

instance, use another NPC module to generate different types of NPCs using the same story. This

structure will make some modules depend on one or more sub-modules utilizing what can be

called direct interaction.

As discussed in this section, modules must represent their content in a way that sufficiently

describes it such that other modules can access this information fast and efficiently through the

virtual environment. Following the terminology from Sketchaworld, this level should be called

the structural level. As described modules will be structured hierarchically and each should have

a priority ID describing it place. When two modules try to generate content at the same spot in

the virtual environment, the module with the highest priority is said to be instructive, and the

lower priority module is adaptive; the higher priority module claims the area. Modules can be

given the same priority ID, i.e. given equal priority, which will have the effect that both modules

will be adaptive when generating content in the same area. When this happens, one module will

propose an alternative layout to the other, which will either counter or accept the layout. When

a proposal has been accepted, or a determined max has been reached, both modules will generate

their content based on this layout. To optimise adaptive interaction, an individualised scoring

system could be built into each module. As discussed modules should interact with the virtual

environment on a structural level through the physical content. This should also apply to

modules designed for generation of non-physical content, and therefore non-physical content

must therefore be linked and represented as physical content. This might cause modules

designed for non-physical content to be very complex and they could therefore be divided into

smaller sub-modules each responsible for some of the generation. In the eyes of Modular PCG, a

system of sub-modules would be viewed as one large module; however, within such a system

direct interaction would be allowed and possible.

In short, there are two main types of interaction, which exists on the structural level between

modules, instructive and adaptive, and one secondary type, which as such is outside the main

architecture of Modular PCG, called direct interaction.

6.4 DESIGNER INSTRUCTIONS

As mentioned previously, PCG has a long history and it can be argued that due to graphical

limitation the differences between generated content and manually designed content was not

significant in earlier examples, which meant that even simple PCG could be applied without

sacrificing quality. Because of dedicated professionals in the industry, this has changed and most

modern games have high graphical standards, complex and detailed level design and well-

written stories, which makes it hard for PCG alone to meet the expectations of the audience. PCG

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

49

has many benefits, but it must not compromise the quality and should not oppress the

imagination of human designers, which is why designer interaction with modules of Modular

PCG is such an important issue.

In section 4.1, Sketchaworld [30] was used as an example of how modules could interact with

the virtual world. In relation to designer instructions, the interface of Sketchaworld allows

designers to direct the procedural generation by interacting with features on the specification

level, the first of three levels of abstraction. This enables designers to sketch high-level terrain

features and specify desired features, e.g. designers can draw a few points to represent a road.

In Sketchaworld, this was made possible by having all tools integrated into the application, and

designer could use these to sketch a desired layout in rough details in near real-time (see Figure

9). This illustrates how designer instructions can be designed, however, because modules in

Modular PCG should be able to stand-alone, the tools would have to be integrated within the

modules themselves.

Following the convincing results from the Sketchaworld application [30], input of equivalent

complexity would be suitable for modules of Modular PCG. If more control were granted in the

generation process, the generation might no longer be called procedural. However, it is believed

that designers should have the possibility to adjust the generated outcome at abstraction level 3

(see section 6.4) to fine-tune and lock certain details of a generated level, which also was

mentioned as a desirable feature by Smelik, et al. [30].

Figure 9: Interface of Sketchaworld showing editing tools for procedural sketching [30].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

50

In the Sketchaworld implementation, designer actions are added to a queue and executed

through their virtual world consistency managements system that ensures that features does

not conflict with each other (see Figure 10). In Modular PCG, consistency management should

be built into each module, ensuring that modules are able to react to unforeseen conflicts as

described in section 6.3. To facilitate undo and redo functions the implementation of

Sketchaworld keeps a history and manages the state of the random number generator, thus

ensuring result are the same after undoing an action and regenerating the world. This

implementation can therefore be seen as an important step towards the adaptation of PCG into

the workflow of game designers, because it incorporates familiar actions such as undo and redo,

and allows designer to sketch a desired layout visually in real-time. This makes the process more

accessible than abstract declarations and coding-based examples found in other PCG

implementations.

In short, creators of modules should design them to receive input at the specification level, and

create embedded designer tools, which makes interaction possible and assessable for the users

using familiar editorial options and design metaphors.

Figure 10: Diagram of the virtual world consistency managements system implemented in Sketchaworld [30].

6.5 MODULES PROVIDING CONTENT TO PLAYERS AND DESIGNERS

The purpose of Modular PCG is to provide accessible modular game development utilizing the

powers of PCG. To make it accessible, designers needs to have to correct tools, and in connection

to this, they need to be able to see what is being generated. As discussed in section 6.3 designers

should be provided a preview of the generated content at abstraction level 2, the structural level.

Designers could also be allowed to view the content at abstraction level 3, the object level (as

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

51

discussed in section 6.4), which represents the final state of generation and should be the level

at which the players play and interact with the generated content. The structural level can be

said to provide designer content, whereas the object level provide player content. One can

imagine that the structural level needs fewer graphical details than the object level, but will still

need the information necessary for designers to author additionally content with other modules.

Since the structural level is also the level, at which other modules perceive the virtual world, it

needs to be constructed of simple graphical elements; however, these elements could potentially

contain some additional textual information available only to designers and maybe to some

specific sub-modules if needed (see section 6.2). A good example of designer content, i.e. content

available at the structural level, can be found in the application Sketchaworld (see section 6.4,

Figure 9).

6.6 MODULES GETTING INPUT FROM PLAYERS

One might think that player input is something that belongs in the domain of Experience Driven

PCG (see section 2.1.2) to heighten the experience for the player. However, in Modular PCG

player input should be seen as an important basic functionality

that allows modules to change the state of the virtual

environment upon player request. What this means, is that even

the simplest interactions should be seen as a form of player

interaction with a module, meaning that for instance, the

character controller, which normally would be built into the

game engine, can be seen as a single module on its own. This is

already the case in the game engine Unity, where developers can

drag and drop an already created third person player controller

into the scene without having to modifying it (see Figure 11).

Some people might argue that a character controller does not

include any PCG, and it therefore cannot be considered a module

for Modular PCG. However, the movements of the character have

to adapt to the terrain and obstacles, and it can therefore be argued that it is procedurally

adapting to the environment. As such, a drag and drop character controller meets the

requirements for being a self-contained standalone unit, and one could enhance the procedural

capabilities to include for instance procedural animation.

Unity

Game development software
featuring rendering engine,
intuitive tools and easy
multiplatform publishing, with
a large online asset library.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

52

Figure 11: Third person character controller in Unity.

Even though player interaction should be seen as a basic functionality, it is only applicable for

some modules and should not be included in every module. In many cases, player interaction

would be unnecessary and illogical. If one were to design a complex game, most if not all of the

environment for instance would be static and there would be no need for player input. That said

it would be possible to imagine a game where player input has an effect on the environment, and

such a module could be created.

As described in section 2.1.2 about Experience Driven PCG, player input can be gathered through

different methods. According to Yannakakis & Togelius [2] methods can be subjective, objective,

or gameplay-based, and under each category lies several other methods. A subjective method

can for instance be based on free-response or forced data, and objective methods often include

methods such as electrocardiography (ECG), galvanic skin response (GSR), and

electroencephalography (EEG).

6.7 FINAL ARCHITECTURE

After the general architecture of Modular PCG proposed in section 6.1 has been dissected and

analysed throughout the previous sections, this section will summarize and rebuilt the

architecture based on what has been discussed.

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

53

Initially seven types of interaction was found, which were able to describe the relations between

modules, designers and players. These interactions were meant to describe the structure of the

architecture and illustrate how a Modular PCG system could be built. Initially two types of

architecture were discussed, namely top-down and bottom-up, and modules were divided into

high- and low-level. Through analysis, however, it was discovered that this division were more

suitable to describe the intentions of the modules, i.e. whether they were designed for high- or

low-level content, e.g. city structure or individual buildings, and both top-down and bottom-up

structure could be achieved by the arrangement of the modules in a hierarchical structure. This

meant that the number of interactions were limited from seven to five. Furthermore, it has been

decided that modules should not be dependent on each other, and that each modules must be

able to stand alone, facilitating a modular approach where designers and developers are able to

apply modules without considering existing modules. In other words, modules must be self-

contained and able to adjust to the virtual environment, meaning modules should not interact

directly with other modules, which was why internal interaction was removed from the list as

well. However, by allowing the creation of sub-modules, i.e. smaller pieces of modules that

together form a single module, the term internal interaction, changed to direct interaction, can

be used to describe the interaction between these. It is important to remember that in the view

of Modular PCG a system of sub-modules would be categorised as one single module.

Following this, the list of interactions was reduced from seven to four main types. For easier

referencing, the two unchanged types will be renamed, thus “modules providing content to

players and designers” will be called “module output” and “modules getting input from players“

will be referred to as “player input”. To sum up the architecture of Modular PCG will be built

around the following four types of interaction:

1. Virtual world interaction

2. Designer instructions

3. Module output

4. Player input

To illustrate these interactions and the architecture in general, the model shown in Figure 12

has been created.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

54

In section 6.3, virtual world interaction was divided into two main interactions, one going from

the module to the virtual world, called instructive interaction, and the other vice versa, called

adaptive interaction. Whether a module will be instructive or adaptive, will be decided by their

place in the hierarchical structure, determined by their priority ID, which is an ID each module

should be given. Modules can be given the same ID to force a merge of two types of content, but

otherwise the module with the highest priority will always be instructive and modules with a

lower priority will be adaptive. In the architecture in Figure 12 connections are only drawn to

one module, however, since modules are independent they all have the same connection to the

virtual environment, and therefore this one module represents all modules in the hierarchy with

priority from 1 to n.

Designer instructions is how designers influence the generation and author the content, and

since modules should be self-contained, the tools needed for authoring and designing must be

embedded in the modules themselves. Using familiar design metaphors and conventional

layouts and tools is highly recommended since this will help designers relate and make the

process accessible. As one can see in Figure 12 modules submit tools to the IDE, which designers

interact with and thereby instruct modules. Inspired by the literature, modules can be described

Figure 12: The architecture for Modular PCG. The numbers 1-4, refer to the four types of interaction: 1. Virtual world interaction,
2. Designer instructions, 3. Module output, 4. Player input.

MIKAEL PETER OLSEN
STUDY NO. 20093736

MODULAR PCG

CHAPTER 6

55

through three levels of abstraction, the specification, structural and object level, each

representing a different level of detail. On the specification level, modules are able to accept

designer instructions, which they will try to accommodate. On the structural level, modules will

interact with the virtual world through instructive and/or adaptive interaction. At this level,

content should be represented in rough details with enough information such that other

modules are able to interact with it, and since this level provides feedback the designers, content

should be represented in an intuitive way that enables designers to make sense of the

generation. The object level represent the final state of generation and is the level at which the

end-user perceive the content, however, designers could also be allowed to view content at this

level to make final adjustments before the product is shipped. These levels of abstractions thus

provides a skeleton for the internal architecture of each module, and some can be seen as design

guidelines for the creators of modules to follow.

Finally, some modules might need player input, which is the last type of interaction in the

architecture of Modular PCG. Player input can be direct or indirect, but is not always needed and

there are no specific rules as to how it should be included in the module structure; however, one

can follow the methods described by Yannakakis & Togelius [2] in relation to Experience Driven

PCG. As illustrated in Figure 12 player input goes directly to the specification level of the

modules, however, this communication should to some degree be linked to the virtual

environment, since it is through this the players are presented with the content of the modules.

The reason why this connection, in the architecture in Figure 12, is drawn as a direct link is that

player input should ultimately affect the specification level, thus forcing modules to regenerate

some content on the structural level and through instructive or adaptive interaction change the

object level and the content, which is presented to the player.

Following the discussion, some general requirements for modules can be established.

- Modules need to have a priority ID identifying their place in the hierarchy

- The necessary tools needs to be implemented in each module, making them accessible

in the integrated development environment (IDE) in which the module is applied

- Tools needs to integrate with the specification level of the module

- Designers and other modules must be able to make sense of a simplified generation at

the structural level

- Modules must be able to generate detailed content at the object level

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

56

EVALUATION OF MODULAR PCG

7.1 METHOD 57

7.2 GAME CONCEPT 58

7.3 MODULE INTEGRATION 59

7.4 LEVEL DESIGN MODULES 62

7.5 QUEST MODULE 69

Modular PCG has until now been discussed on a conceptual level, making it difficult to see any

real world applications of the concept. This chapter will provide an example of how Modular PCG

can be applied in complex game development, and illustrate how it should be used to facilitate

human designers and developers.

In Chapter 5, it was decided to apply Modular PCG in the context of complex game generation

and more specifically generation of games where the quest and map structure are

interconnected in a unified experience. This section will therefore illustrate how Modular PCG

can be used to create a complex game, and how the architecture described in section 6.7 will

make content generation accessible to designers and developers. Since it has not yet been

determined what exactly is meant by complex game, other than an experience driven by a closely

connected quest and map structure, this first needs to be established. When thinking about

games that rely greatly on both quest and map structure, primarily two genres comes to mind,

namely the action adventure and the roleplaying genre. Since it should be possible to create any

type of game using Modular PCG, the selection comes down to preferences and what can be

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

57

illustrated within the timeframe of this project. On one hand, roleplaying games (RPGs) generally

have focus on multiple quests, but often has a monotonous map design. One the other hand,

action adventure games usually focus on just one main story quest, however, the level design

often seems closer connected to the story. According to Dormans [33] the action adventure

genre has the added benefit of supporting a more varied gameplay and giving a greater sense of

purpose than RPGs, because they rely on more on well-designed levels to create enjoyable

exploration, flow and narrative structure. For these reasons, the purpose of this chapter is to

illustrate how Modular PCG can be used to create an action adventure game.

It is important to note that the goal is not to implement a fully functioning game with complex

gameplay, but to illustrate which modules would be required and how these should be

connected and used by designers. This chapter should therefore be seen as a proof of concept

illustrating the different aspect of Modular PCG. The proof of concept will provide some initial

design specifications for the specific modules needed for creating a complex game with an

elaborate quest and map structure.

7.1 METHOD

As described Chapter 7 will provide a concrete example of how Modular PCG could be applied in

game development. The purpose of this is to evaluate the usability of the concept and this section

will describe the specific method used for evaluating the Modular PCG architecture.

First, since the Modular PCG architecture can be seen as a software architecture, it is possible to

apply methods for evaluating computer software. Within software engineering, there exists

several techniques for evaluating a software architecture in relation to quality, e.g. usability,

maintainability and performance. When evaluating a software architecture, the purpose is to

identify risks and ensure that the requirements has been addressed [36]. Of cause, there are

some fundamental differences between a software architecture and the architecture of Modular

PCG. This means there are some classical quality attributes that cannot be addressed. However,

it should be possible to illustrate the Modifiability, i.e. how easy it is to create new modules,

Availability, i.e. what it would cost in person-hours to create new modules, Performance, i.e. the

speed of generation, and Usability, i.e. how easy it is for users to use module for content creation.

These attributes are normally considered in software engineering, and it would be beneficial to

keep these in mind when evaluating the architecture of Modular PCG.

Experience-based evaluation is another software evaluation method, which could be applicable

for evaluating the architecture of Modular PCG. In this method the developers of the architecture,

or consultants, validate the architecture based on previous experience and domain knowledge

[37]. Validating a system solely using this method might result in an architecture that only the

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

58

developers will see as logical. It is therefore very important to think objectively when evaluating

an architecture based in own experience. That said, because of past experience with game

design, it should be possible to validate the architecture of Modular PCG using personal

experience.

Methods outside of the software engineering domain can also be applied to evaluate the

architecture of Modular PCG, and as mentioned in the introduction the evaluation chapter should

be seen as a proof of concept. In short, the purpose of a proof of concept is to demonstrate the

application of a given theory, model or architecture. This can be done through smaller tests or

smaller implementations.

Conclusively, this project will validate Modular PCG by creating a proof of concept illustrating its

applicability by describing the architecture in relation to a game development scenario using

personal game design experience to validate the necessary interactions and tools. The proof of

concept will illustrate how modules should be created, structured and how they could be

integrated into a game development software. Because modules will not be implemented, it is

unfortunately not possible to demonstrate exactly how modules will generate content and how

they will perform. However, the necessary tools and the outcome of the modules will be

illustrated through rough mock-ups.

7.2 GAME CONCEPT

Because the aim of the evaluation is to give a practical example of how Modular PCG can be

applied in game development, this section will describe an action adventure game concept,

which will give design requirements for a future implementation. These requirements will

determine which modules is needed and how they should be designed. However, before

discussing the game concept, this section will describe the typical game development process,

to establish where in this process Modular PCG should be used.

In short, a typical game development process can be divided into four stages: Specification and

planning, pre-production, production and finally validating and testing. When starting on

development of a new game, the process starts with a short description of the proposed game

including target group, plat-form, genre, references and a draft of the planning, which is used to

validate if the proposed game concept is viable [38]. The pre-production phase is used to create

prototypes and general game design. In this phase, most of the major design decisions are taken

and usually game developers start making a game design document (GDD) to document the

design and the GDD is used throughout the development process to catalogue and organise all

elements of the game. There are no right or wrong way of writing a GDD and normally developers

will use a style that matches their process and preferences: “Each game designer usually finds

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

59

what works best for them” [39]. In the production phase, the individual elements are created and

pieced together based on the design documented in the GDD. The last phase of development is

the validation and testing, where alpha and beta tests conducted and changes are made to the

design and implementation based on the test data.

As described throughout the report, the goal of Modular PCG is to make PCG more assessable to

designers and developers. In general, PCG is used to ease the implementation by applying

procedural methods, but it can also be used as a creative tool during the design phase. Regarding

generation methods and applications, Modular PCG is not very different and thus it can be used

as a creative prototyping tool during the pre-production stage; however, the main purpose of

Modular PCG is to ease the implementation process and combine the strengths of PCG with the

controllability of manual content creation.

The proof of concept will therefore illustrate the use of Modular PCG in a production and

implementation context. Because the production phase are dependent on the design created in

the pre-production, a rough game design has to be established before it can be discussed how

Modular PCG can be used in a possible implementation. However, because the pre-production

phase can be very time-consuming, the initial design for the proof of concept will be taken

directly from an existing GDD describing an imaginary game (see Appendix II). The game

described in the GDD is an action adventure game set in the ancient Egypt, where the player,

incarnated as the biblical character Moses, fight and quest his way through the Egyptian lands

using godly powers to liberate his people from the oppression of the Egyptians. The GDD is not

completely exhaustive; however, it does provide the overall gameplay and lists some

environments, objects and NPCs, from which the initial modules can be created.

With the basic game-design established, it is now possible to introduce the individual modules

that is required. However, before doing this, it is important to discuss how Modular PCG should

be integrated within the development environment that is used. Thus, the next section will

describe one approach for integrating Modular PCG into one of the popular game engines.

7.3 MODULE INTEGRATION

For this project, it has been decided to describe how Modular PCG could be integrated within

CRYENGINE free SDK (CryEngine3). CryEngine3 has been chosen because of the authors

previous experience with the engine, and because it features many high quality assets that can

be used to illustrate the generation process. Even though CryEngine3 will be used as the

example, it should be possible to integrate modules in other game engines in ways similar to

what will be described in this section.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

60

To make the integration of Modular PCG logical, it should follow the existing methods for making

particles, prefabs, and many other entities available in CryEngine3. Before for instance a particle

effect can be applied in the environment, it must be imported into the database, which essentially

is a collection of different premade entities, in which some global variables can be adjusted. In a

similar way, modules could be imported into the database and designers could adjust some basic

properties for each as illustrated in Figure 13. Importing the modules will not affect the virtual

environment, but it will make them usable and enable designers to apply them at a later stage.

Figure 13: The original DataBase View from CryEngine3 with the added tab ‘Modules’ open to illustrate how basic
properties could be adjusted.

After modules has been made available, designers should be able to use them in the virtual

environment. To maintain an easy overview of the implemented modules and to facilitate the

creation of a hierarchical structure as described in section 6.2, a separate editor similar to the

Layer Editor could be created, in which modules could be added, removed and organised. In

CryEngine3, designers use the Layer Editor to create and manage different layers, which are

used to organise all objects that are created in the virtual environment. The layers can therefore

be seen as the folder structure on your computer.

As said one could imagine an editor where modules could be organised and selected for editing,

which could be called the Hierarchy Editor. The Hierarchy Editor should enable designers to

assign priorities to the different modules, which could be done by organising the added modules

in a folder-like structure as illustrated in Figure 14.

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

61

As described only modules imported into the

database can be added to the hierarchy and when

selected in the editor, their tools and properties

should become available as seen in Figure 15.

In CryEngine3, when designers select an object in

the virtual environment, its properties will

become available, and it might be best to

maintain this interaction, such that it will be

possible for designer to select objects that has

been created by modules. However, instead of

showing the normal properties of the selected object, designers should be informed that it has

been procedurally generated and that changing them might affect the procedural generation. To

avoid confusion and to maintain the usual interaction with objects, procedurally generated

objects could be locked, i.e. designers may not change any parameters. As discussed in section

6.4 about designer instructions, designers should have the ability to fine-tune and lock the

procedurally generated objects, i.e. avoid regeneration of the objects. This could be achieved by

giving the designers the ability to free individual objects from their parent module. This

functionality should remove the object from parent module and add it as a normal static object

with the usual properties familiar to designers (see Figure 16).

Figure 14: The proposed Hierarchy Editor for adding,
removing and organising modules. The three eye symbols
in each line represent the visibility of the specification,
structural and object level for each module and/or
hierarchical level.

Figure 15: When selecting a module from the Hierarchy Editor its tools
and properties will become available in CryEngine3’s RollupBar. The
RollupBar is where all details and properties of objects that has been
selected in the virtual environment can be found.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

62

If one wished to implement Modular PCG into a game

engine in the future, this section has provided the initial

ideas and specifications. It has been described how

Modular PCG could be integrated into CryEngine3, and

it has been described how designers should interact

with the modules and the generated content in general.

The proof of concept has yet to describe which modules

are needed for generating the action adventure game

concept described earlier, which tools should be

implemented and how these modules should be

organised and used. The next section will therefore

describe some initial modules that can be used for level

generation based on what is documented in the GDD in

Appendix II.

7.4 LEVEL DESIGN MODULES

As said, the purpose of the proof of concept is not to implement any modules, but to give an

overview of which modules would be needed for complex game generation and how these

modules should be structured and applied in the same game scenario. It is the purpose to

illustrate how these modules will form a common architecture and how designer interactions

could be facilitated.

Thus, this section will establish which initial modules is needed for creating content for the

action adventure game described in the GDD in Appendix II. Because the GDD only describes the

initial part of the game and not individual quests and bigger areas, the purpose of this section is

to describe a few smaller modules that could be applied throughout the game. In the GDD, it is

described that the environment will consist of smaller open linearly connected deserts and

caverns, populated by ancient Egyptian scenery such as ruins, markets and streets. It is

described that main aspect of the game should be puzzle solving, but that this should be

complimented by a fighting (action) aspect, in which the player can fight off vermin, e.g. bats,

rats, scarab beetles and jackals, and bigger enemies such as Egyptian guards. Finally, in the GDD

the layout and objects of the first level is described (see Figure 17).

Figure 16: When selecting a procedural generated object in the
virtual environment, the designer should be informed about it
and allowed to free the object from the module, by replacing it
with a copy with the same options as a manually created object.

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

63

Figure 17: Overview of one level described in the GDD in Appendix II.

With the basic information about scenery and level layout, it is possible to create a list of possible

modules that could be useable to create the described game and layout in Figure 17 (See Table

2). Since it would require some work to create each individual module, it is pointless to create

modules that will only be used a few time throughout the production phase. In other words, it

would be a waste of time to create a module with a specific purpose, if it would take half the time

to create the content manually. Therefore, only modules that can be considered reusable has

been included in the list of possible modules.

Name Purpose

Enclosed Desert Area Module for creating desert pathways and desert areas

surrounded by a cliff face. Used to restrict free roaming.

Oasis Module for generating a desert oasis.

Small Desert Objects Populate an area with scattered rocks, bushes or grass patches.

Desert Ruin Generate desert ruins of all sizes.

Desert Path Module for generating a desert path.

Cavern Entrance Generate a cavern entrance in a vertical wall or on flat ground.

Cavern Module for creating an enclosed cavern.

Table 2: List of possible modules, usable for creating the action adventure game described in the GDD.

To illustrate the practicality of the suggested modules in Table 2, let us consider the layout from

Figure 17. In the first part, one could use the Enclosed Desert Area module to specify the

walkable area and restrict the player from walking off the level. This part of the level could also

be populated with a couple of ruins (Desert Ruin module), which will help convey the right

atmosphere and lastly the Small Desert Objects and Desert Path modules could be used to add

details to the area.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

64

The Enclosed Desert Area module could have a tool for drawing a shape that specifies the area

in which the player can move (Figure 18 A). This area will be surrounded with a large cliff face

(Figure 18 B), and the terrain will be raised to fit the cliffs (Figure 18 C). The example has been

created with little attention to detail and it is very rough, but it illustrates the workflow and

generation of this module. Other specifications might include the height of the cliffs and the

appearance. To avoid compromising the performance, the module should not be allowed to

generate many new objects, as this will increase the number of drawcalls in the environment

and thereby affect the performance negatively. Designers could be given an option to adjust the

amount of new objects that can be generated, and alternatively, to increase controllability,

designers could be allowed to specify which objects should be used for the generation of the cliff

face. These options will steadily increase the controllability, and give the designer exactly the

amount of control they wish and need. As specified in section 6.3, each module should also be

able to adapt to the virtual environment on a structural level. In the case of the Enclosed Desert

Area module, its goal would be to create an area that the player are not able to escape. This

means that if there already were an object on the edge of the specified area that blocks the player,

it would not be necessary for the module to generate content in the area occupied by the object

(see Figure 19).

A B C

D

Figure 18: The workflow of the Enclosed Desert Area module. A: Specification of an area. B: The area is encapsulated with cliffs. C: After
use. D: Screenshot from the player’s perspective from the point illustrated with a triangle in C.

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

65

As said Figure 19 illustrates how

modules adapt to existing content in

the virtual environment, and as

described in section 6.3, this

adaptation is possible because the

modules interact with virtual

environment on the structural level,

which is a low-resolution

representation of all content in the

environment. Because of the physics

system in CryEngine3, all objects have

a low-poly model of themselves

attached, which is used for physics

collisions and hidden when the game is

running. In the view of Modular PCG,

this low-poly model can be seen as the

structural level of the object (see

Figure 20).

After the basic layout has been created

using the Enclosed Desert Area

module, one could use the Desert Ruin

module to create some scenery for the

player to explore. The purpose of this

module would be to create a detailed

decorative ruin, which could be used

as container for other game elements.

As with the Enclosed Desert Area

module, designers should be allowed

the necessary freedom to create

exactly what they want and specify the

details they want. First, designers

could be allowed to draw a 2D area on the ground, indicating the footprint of the ruin, and for

extra control, they should be able to specify the basic 3D shape of the ruin. Alternatively, they

might also want to import a shape from another application, instead of using the drawing tools

built into the module. After specifying or importing either a 2D area or a 3D shape, the generation

should generate a ruin that fit within this area (see Figure 22).

Figure 19: How a module will adapt its content to existing content in the environment.
A: Existing content. B: Specification for module generation. C: Content generated by
module. D: Generated and manually created content form the final layout.

A B

C D

Figure 20: Illustration of the structural level in relation to the object level. A: The object
as seen by the player. B: Object level with wireframe. C: Structural level on top of object
level.

A B C

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

66

As illustrated, the generated result will be different depending on the specification method.

Additional specifications could include a density parameter, which could be used to specify the

percentage of the area or model that will be filled with content (see Figure 21). Another

specification could be the age, or deterioration, of the ruin, which could be used to give the

building a worn or destroyed look. As with the Enclosed Desert Area module, the generation

should be able to adapt to the existing scenery in the environment and designers should be able

to specify either how many new objects should be created

or which existing objects should be used for the

generation.

The last modules that will be discussed in relation to the

first part of the level layout from Figure 17 is the Small

Desert Objects and Desert Path modules which as

described should be used to add extra details to the area.

With the Desert Path module, designers should be able to

create paths of different sizes fast and efficiently. One way

A B

C D

Figure 22: Ruin generation with different specifications. A: 2D shape specification. B: 3D model specification. C: Generated result based on
2D shape. D: Generated result based on 3D model.

Figure 21: Example of density setting for ruin generation.
A: Low density. B: High density.

B1

A2

B2

A1

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

67

to facilitate this could be implement a pathfinding algorithm that

enables the module to find the best place for a path between two

points in the virtual environment. A designer might for instance

specify that a path should run from the larger open area to the end

of the level at the right. The module would then create a line for

the path to follow, and the designer could be allowed to fine-tune

this path before the module would generate the path on the object

level (see Figure 23).

The last module, the Small Desert Objects module, should be use

last to fill the environment with smaller objects such as bushes,

rocks and patches of grass. In CryEngine3 designer can already use

the Vegetation Editor for this, and it is possible to specify which

objects should be procedurally placed on different terrain layers.

Designers can, for instance, have two terrain layers with a grass

texture and specify that rock and grass objects should be

procedurally placed on one of them. With this setup, designer are

able to paint areas with objects and areas without, and thereby

create variations in the environment. However, this technique is

not very flexible and it can be tedious to make changes. In addition,

it is not possible for designers to specify different densities,

meaning that you have are limited to one fixed density for each

object. To overcome this limitation the Small Desert Objects

module should enable designers to draw different density-maps

for each object, thereby allowing greater control over the

generation. A density-map should be

single colour overlay that with different

transparencies represents different

densities. The module should enable

designer to import different objects and

link them to different density-maps.

When an object has been imported and

linked, the module should distribute

copies of the object based on the density-

map (see Figure 24).

A

B

C

Figure 23: Desert Path module. A: Specification of
two points. B: Pathfinding between the two points.
C: Generated path on object level.

Figure 24: The Small Desert Objects module can be used to distribute rocks, grass
and bushes across the entire area. The darker the colour, the closer the objects will
be placed together.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

68

This section has now illustrated the use of Modular PCG in a game development context and

given concrete examples of a few modules. Different designer tools has been discussed in

relation to each module, and their use and application has been explained through examples.

Because the game for which the modules has been created has not been implemented before, it

is uncertain whether the resulting level (see Figure 25) was what its original designer had in

mind when writing the GDD. Nevertheless, the purpose of this section has been to illustrate the

usability and accessibility of Modular PCG. To ensure that the modules suggested was logical,

they have been created from a design point of view, and it has been the intention to structure

the modules in a way that would make sense to a game designer.

As described previously it has been the intention to investigate how Modular PCG could be used

to generate a complex game with a well-connected quest and map structure. Because the GDD

does not describe the quest structure of the game, it has not been the focus of this section.

Furthermore, as said in the beginning of this chapter, modules should be reusable and the time

spent creating the individual modules should be made up for by applying them in the production

phase. To limit the extent of this project, and because no concrete quest specifications are

provided in the GDD, this report will not describe a specific quest generation module which could

be applied in the game. The next section will, however, describe the issues with procedural quest

generation in general and provide some initial considerations for designers and creators of

modules to remember in the future.

Figure 25: Final game generated exclusively using Modular PCG.

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

69

7.5 QUEST MODULE

This section will investigate the issues with procedural quest generation and provide some

initial considerations to remember if one were to create a quest module. Whenever possible, the

game from the GDD in Appendix II will be used as a practical example to describe how a possible

quest module should be applied in game production, however, the purpose is not to provide

requirements for creating a quest module specifically for the described game.

Before discussing the actual quest module, a definition of a quest has to be established. Dormans

[33] defines a quest (what he calls mission), as a series of tasks that keeps the player occupied

and provides concrete goals. Similarly, Doran & Parberry [35] defines a quest as a task that

includes a challenge and a reward. Ashmore & Nitsche [34] has a more stringent view on quests,

and state that it is a way to structure play in a virtual environment. They state that a quest has a

space, a challenge, a goal and a setting in which it takes place, and that quests can facilitate

personal growth (such as levelling) and spatial expansion (such as exploration and spatial

progression). In relation to the GDD, the space would be the levels (or map structure), the

challenge would be the individual puzzles and enemies, the goal would be to liberate people from

the oppression of the Egyptians, and finally the setting would be ancient Egypt. In relation to

space and setting, Dormans [33] states that the quest structure can be independent from the

map structure (what he calls space, defined as the geographical layout of the game), but that

isomorphism between quest and map structure are seen in many games.

Quests provide challenging elements and concrete goals to the player, but can also be the

narrative element that informs the player about the world; they offer the player knowledge and

power and can include some dramatic events [35]. Quests are in many games static and linear

and offer very little replay value, and even if the quests are non-linear or branching, they still

offer very limited replayability. Procedurally generated quests has the potential to overcome

this limitation and offer variability and replayability, however, for a quest module to be useful it

would have to be fitted to the game, and the module have to know when to generate a quest and

must ensure it makes sense in the context of the game. Doran & Parberry [35] believe that

procedural quest generation could lead to an increase in player interest because the player will

always be provided with a new quest and an alternative gameplay option.

As described the main purpose of quests is to provide goals and activities to the player, but can

be used to facilitate narrative and action as well. It is possible for quests to be linked to the map

structure, and in Chapter 5 four methods for combining quest and map generation was

mentioned, originally suggested by Togelius, et al. [5]. If the quest and map structure should be

closely connected, it was theorised that the best way would be to design two separate modules

and link the two through either a waterfall or an interactive approach. In relation to the reviewed

architecture of Modular PCG described in section 6.7, quest and map generation should be

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

70

designed as one module, if the two should be closely connected and directly dependent on each

other. However, it would be possible to create a system of two (or more) interconnected sub-

modules, one responsible for quest generation and one for map generation.

To determine which procedural approached would be suitable for creating a quest and map

module or a system of sub-modules, this section will analyse the existing examples of quest and

map generation found within the PCG community. This analysis will illuminate the advantages

of procedurally generated quest in relation to game development and illustrate how designer

interaction can be facilitated.

Dormans [33] investigates the generation of levels for action adventure

games, through procedurally generating the overall mission using

generative grammar (see Appendix I, for a more detailed description of

grammar and other procedural methods). He uses the action adventure

game The Legend of Zelda: Twilight Princess to determine the grammar

needed for generating an overall mission, and based on the generated

mission structure a map is generated. In relation to the proof of concept,

an overall mission can be seen as a quest, and the approach by Dormans

thus illustrates one way to generate a map based on a quest.

Dormans states that well-designed games generally have two structures,

namely the mission and space (map) structure, and suggests that mission

and space should be generated using two different grammars designed

to suit each task, which is why he uses graph grammar for the mission

structure and shape grammar for the map structure. He uses graph

grammar because missions can be described as non-linear graphs. A graph grammar produces,

instead of strings, graphs consisting of linked nodes, and instead of letters, the alphabet can be

other symbols that describe general game concepts, such as obstacle, key and lock (see Figure

26). The start rule can incorporate the overall structure wanted, such as martial art training or

Hollywood drama, ensuring that the mission exceeds a minimal length or follows a dramatic arc

[33]. Although the initial effort of creating the grammar rules is time-consuming, it is outweighed

by the ease with which new content can be generated based on the grammar [33].

The Legend of Zelda:
Twilight Princess

An action-adventure game with
focus on combat, exploration,
and item collection developed
by Nintendo EAD and released
in 2006.

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

71

Figure 26: Example of a generated mission structure [33].

For the game space, i.e. map, generation Dormans uses shape grammar, and to ensure the map

structure follows the mission structure, the terminal symbols of the graph grammar is translated

into symbols in the shape grammar. Instead of symbols or words, shape grammar consists of

shapes and rules that define how to reshape the existing shapes. The generation looks for the

next terminal symbol in the mission structure and then applies the shape grammar rule that

applies to that symbol and find the best suitable location for the rule to be applied (see Figure

27). The shape grammar is extended with some parameters that influence the rule selection in

order to create progressive difficulty [33]. If the shape generated after including all mission

nodes have any non-terminals, these are replaced with terminal symbols based on a set of

finalizing rules.

Figure 27: Example of a map (left) generated based on a mission structure (right) [33].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

72

In addition to the static mission and space generation, Dormans discusses the possibility of

changing the generation based on player input. For instance, player performance could affect the

generation of different features, and allow some parts of the structures to be generated online.

One way to facilitate this is to generate the mission before play and the space while the player

explorers the game world. This will ensure an overall good mission structure and a game space

that fits the player’s movement and playing style while minimising the number of dead ends the

player encounter. It will ensure varied gameplay and a feedback loop between player

performance and generation offers many opportunities [33]. A similar strategy is to leave non-

terminals in the game space and/or the mission space and let these be generated during

gameplay. These non-terminals should then contain enough information to ensure the overall

structure is valid, but the nature of them could be unknown until the player triggers the

generation. This could lead to what Marie-Laure Ryan calls fractal stories, where information is

added to the story as the player turn his attention towards it [33].

The method used by Dormans has the advantage of ensuring a coherent map and quest structure.

By using generative grammar, he ensures that connections are logical and that the structure has

a sense of purpose, and because generative grammar functions at the same scale as level design

principals, it can be translated into concrete level design elements with relative ease [33]. A

disadvantage of using grammar is that it can be difficult for designers to know exactly how the

structure will look after generation, especially if many grammar rules have been implemented.

Therefore, it is important for designers to have a clear idea of the layout and structure of the

game they are creating. However, if designers are interested in exploring different game

structures and create new and interesting missions and spaces, it is possible to experiment with

the grammar rules. All in all “mission and space grammars are an efficient way of generating a

high variety of quality levels for action adventure games” [33].

Based on the approach presented by Dormans, it should be possible to create a quest module

that uses graph grammar to generate a quest structure, and a map sub-module that can generate

a map structure based on the generated quest and a set of grammar rules. To facilitate designer

instructions, tools for authoring grammar rules could be created enabling designers to affect and

direct the generation. Additional control could be given by allowing designers to create and edit

the graph nodes and organise these in the virtual environment. This organisation could be used

to instruct the sub-module responsible for the map generation. In relation to the level design

discussed in section 7.4, the Enclosed Desert Area module could be part of a map generation

module instructed directly by an overall quest module. As such, all the modules discussed in

section 7.4 could be applied as sub-modules under a general map generation module.

While Dormans [33] discusses the generation of one overall mission structure, Doran & Parberry

[35] discusses a general grammar-based method for generating multiple quests for RPGs.

Through analysis of over 750 quests from the four MMORPGs (Massive Multiplayer Online RPGs)

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

73

Eve Online, World of Warcraft, Everquest and Vanguard: Saga of Heroes,

they discovered that quests share a common structure and propose a

general classification based on NPC motivation (see Table 3). These

motivations shape the quest and together with different grammar rules,

they determine which actions the player should preform to complete the

quest. To vary the different quests the NPC motivations changes over

time, especially if the player completes a given quest. Each motivation has

a number of strategies, which shapes the quest and in Appendix III, an

overview of the different strategies can see found. Based on the NPC

motivations they have created a prototype quest generator capable of

generating quest of similar structure and complexity as the original

quests. The generated quest are represented as a tree, where the leaves

are atomic actions that can be performed by the player [35] (see

Appendix III).

Motivation Description

Knowledge

Comfort

Reputation

Serenity

Protection

Conquest

Wealth

Ability

Equipment

Information known to a character

Physical comfort

How others perceive a character

Peace of mind

Security against threats

Desire to prevail over enemies

Economic power

Character skills

Usable assets

Table 3: Different types of motivation that can generate quests [35].

The procedure presented by Doran &

Parberry can be flexible and very

adaptive, and in their implementation,

quests could be adjusted to the

assumed knowledge of the player. This

enabled the quests to vary in length

and complexity based on what was

assumed known, for instance, if it is

assumed that the player does not know

the whereabouts of NPC2, a quest

could include a sub-quest that tells the

player to visit NPC1 to get the location

of NPC2. In contrary, this ensures that

Eve Online

A player-driven MMORPG set in
a science fiction space setting,
developed by CCP Games,
where players pilot spaceships
through a galaxy of over 7,500
star systems.

World of Warcraft

A MMORPG created by Blizzard
Entertainment from 2004 with
subsequent expansions. Players
explore, complete quests, fights
monsters and interact with
NPCs or other players.

Everquest

A fantasy-themed MMORPG
developed by Sony Online
Entertainment. The series was
released in 1999 with now 20
expansions.

Vanguard: Saga of
Heroes

A fantasy-themed MMORPG
created by Sony Online
Entertainment released in
2007.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

74

a player is never sent on a quest to find something they already have. A similar functionality

could be built into a quest module, enabling designers to adjust quests based on what the player

knows, and additionally player input could be used to shape the quests. The quests generated by

Doran & Parberry’s system follows a generic form and details, such as locations, NPCs and

objects, are added to the quests at the end of generation. This replacement technique is also

popular in commercial games and suggests that much can be achieved just by changing the

details. However, one has to ask what the reason for the use of this technique is – is it because it

is cost-effective or because it is the best a most reliable solution. This question raises an

interesting discussion, which is beyond the scope of this project and therefore remains

unanswered for now. However, this replacement technique could be used in Modular PCG,

enabling designers to choose various objects, locations and characters for the different quests,

and thereby being able to generate multiple quests from a few simple structures. One could

imagine a similar technique where the designers first choose a few elements, such as objects,

NPCs and locations, and thereafter the quest module generates a quest that includes the

elements in a logical and coherent way.

Similarly to Doran & Parberry, Hartsook, et al. [28] discusses the use of PCG in relation to PRGs,

however, instead of generating quests they presents an approach for procedurally generating

playable game world based on a priori unknown story [28]. This resembles the approach used

by Dormans [33], and similarly, a story can be considered a quest in this context. As mentioned

in 4.1 the story used for world generation is written as plot points, which can be authored by

either a human designer or an artificial designer. This approach has the disadvantage of only

being able to use linear stories, however Hartsook, et al. justify this, and states that “computer

games typically have a single main storyline that constitutes the set of plot points that are necessary

for completion of the game” [28].

In their implementation, a map generator uses the plot points and some initial information about

story-specific details to create a game world. The generated map consists of islands, i.e. the

locations connected to specific plot point, and bridges, i.e. the areas between the islands. On the

bridges non-plot-specific gameplay occurs, e.g. fighting enemies, finding treasures, etc. One clear

advantage of the approach by Hartsook, et al. is that they include player preferences when

generating the world, and creates a subjective player experience model (player model) based on

a pre-game questionnaire about the players preferences. They state that the player model can

“be used to personalize the story and world of the game so as to maximize pleasure and minimize

frustration and boredom” [28]. This player model is used in the generation to determine the

branching and length of the bridges. The islands and bridges are generated through a search-

based PCG approach, using genetic algorithms. The generation create a space tree representing

the game world genotype and rewards the generate content based on the variation between it

and the parameters from the player model. The player model thereby determines the fitness.

After the generation process has found a suitable layout, the phenotype is generated as a top

MIKAEL PETER OLSEN
STUDY NO. 20093736

EVALUATION OF MODULAR PCG

CHAPTER 7

75

down 2D world [28]. In relation to Modular PCG and the creation of a quest module, it should be

possible to create a quest module where the designers are able to write a story, i.e. quest, in

either an .xml-like language or natural language. The modules should then interpret the input,

create plot points, and send these to a map generation sub-module that applies the approach by

Hartsook, et al. [28]. Of cause, designers should be given additional options to adjust and fine-

tune the generated result, but it could be a nice tool for easy and fast generation of the overall

structure.

Where Hartsook, et al. focuses on generating a world for a predetermined story, Ashmore &

Nitsche [34] investigates the generation of quests into an already procedurally generated world.

This resembles the implementation done by Doran & Parberry [35], because they investigated

quest generation as a separate entity as well. The difference, however, is that Ashmore & Nitsche

focus on explorative quests, i.e. quests that requires the player to move from location A to

location B, and introduces the lock and key metaphor to describe the structure of such quests.

The key and lock metaphor means that during exploration obstacles (locks) restricts the

movements of the player and he must use items (keys) to overcome these obstacle [34]. This

metaphor does not only apply to spatial constraints (such as locked doors and keys), but a lock

can be any obstacle that hinders the player, and the key can be any item, skill, etc. that helps the

player pass the obstacle.

Doran & Parberry [35] criticises Ashmore & Nitsche and state that the key and lock structure

lacks a sense of purpose, they believe that their own system, based on NPC motivation, can

express additional types of quests that is not possible with the key and lock structure. It can be

argued that the key and lock structure has the potential to express the same types of quests as

the system by Doran & Parberry, if the lock was to get an item from an NPC and the key was

perform a task given by the NPC. However, the quests that can be generated using the key and

lock structure are not very elaborate and complex, and in their implementation locks are

materialised mostly as physical barriers. It is a shame that they did not utilize their own system

to the fullest potential, and the NPC based quest generation proposed by Doran & Parberry [35]

seems to be easier to utilise and follows a more concrete structure, which most likely makes it

easier to understand, use and implement. In addition, the implementation by Ashmore & Nitsche

illustrates an important issue to remember when using PCG. They did not manage their

procedural techniques, which meant that no two playtests were comparable because of the

random nature of PCG [34]. This can be avoided by including a random number seed in the

generation process as Doran & Parberry did, which enabled them to regenerate the quests for

later analysis [35].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

76

CONCLUSION

The conclusion will now give a brief resume of the entire report and restate the most important

aspects of the architecture of Modular PCG.

Based on a general interest in PCG and game development, this project started investigating the

advantages of PCG in relation to game development. The initial goal was to determine how PCG

could be used to facilitate game creation, and through an initial analysis, a more concrete

approach to a subject was found. It was decided to investigate the possibility of complete game

generation using PCG, and together with the focus on game development, it became the goal to

investigate how complete game generation could be made accessible to human designers and

how it would integrate within game development. To investigate this the analysis described a

few games and research projects that utilises complex procedural techniques, and it was

discovered that together with complex PCG comes either very complex or very limited

interaction, bordering on inaccessible designer interaction. As a solution to the problem of

inaccessible PCG algorithms, the concept Modular PCG was introduced. In short, Modular PCG

describes a new way of considering PCG in relation to game development, and it facilitates the

creation of individual PCG modules that applies procedural techniques to generate game

content. The modules integrates directly into the virtual environment, which means that

designers can apply different modules without considering existing content and other modules.

For easy and rapid development, the necessary tools for authoring content are included in the

modules themselves and work out of the box.

MIKAEL PETER OLSEN
STUDY NO. 20093736

CONCLUSION

CHAPTER 8

77

Modular PCG was introduced and discussed in three steps, first it was introduced as a new

concept, then the architecture behind it was discussed, and lastly the concept was evaluated as

a theoretical proof of concept.

In the introduction of the concept, Modular PCG was defined as a system of individual PCG

modules that acts on their own and facilitate easy and relatable game development when

combined. Using Modular PCG, designers and developers should be able to choose different

modules from different designers and apply them in their own projects. As initial validation of

the concept, it was described how traces of Modular PCG can be found in existing PCG

applications, and it was argued that because of this Modular PCG is the right direction for PCG

research and that it will facilitate an integration of PCG within the game industry. As part of the

concept, an initial architecture was described. This initial architecture led to seven types of

interaction between modules, designers and players, which was later discussed individually to

form a condensed architecture. Initially two types of architecture was said to exists, a top-down

(designers and players influence high-level modules that affect low-level modules) and bottom-

up (designers and players influence low-level modules that in turn influence high-level modules)

architecture.

In the discussion about the architecture, however, it was determined that both a top-down and

a bottom-up implementation could be achieved with the same modules by structuring them

hierarchically with internal priorities. As an additional change, it was described that the

generated content should be represented on three levels, the specification level, structural level

and the object level. These levels, represents different levels of detail and are used for different

purposes. The specification level allows designer interaction, the structural level allows modules

to interact with the virtual world, and the object level represents the final state of generation

available to the player. Regarding virtual world interaction, it was decided that modules should

interact with the virtual environment in two ways, either affecting or changing the virtual world,

called Instructive Interaction, or adjusting to the virtual world, called Adaptive Interaction. This

would enable modules to act independently from each other allowing designers to use different

modules without considering existing content in the environment. It was also determined that

designers should be allowed to view the generated content on both the structural level, allowing

basic adjustments, and the object level, allowing detailed adjustments.

Regarding designer interaction, it was decided that modules should provide designers with the

necessary tools for authoring content and controlling generation; in other words, the tools

should be included in the modules and integrate automatically with the development

environment. Likewise, modules requiring player input should be designed to gather this input

automatically. In short, modules should be self-contained, including the necessary authoring

tools, and must be able to adjust to the virtual environment without interacting directly with

other modules.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

78

Form the discussion of the architecture, the initial seven interactions was reduced to four basic

interactions: Virtual world interaction, Designer instructions, Module output, and Player input.

After the architecture was discussed, Modular PCG was evaluated as a theoretical proof of

concept. The proof of concept illustrated how Modular PCG could be used to generate a complete

complex game with an elaborate quest and map structure, and how Modular PCG could be used

in a production and implementation context. The purpose of the proof of concept was not to

implement any modules, but to describe theoretically how modules could be created and what

creators should keep in mind. It was chosen to describe how Modular PCG could be integrated

within CryEngine3, and to make the integration logical it was described in relation to some

existing tools and functionalities within the development environment. After describing the

integration, the evaluation chapter described a few level design modules that could be usable,

and described how these tools should be created and integrated. The creation was based on a

game design document (GDD) describing an action adventure game set in the ancient Egypt.

Based on the GDD the following modules were described: Enclosed Desert Area module, Small

Desert Objects module, Desert Ruin module, and Desert Path module. For each module, different

designer tools were described and it was discussed which options could be useful to have as a

designer and how much control designers should be given. Because the main purpose of Modular

PCG is to give designers better procedural tools allowing easier development, the modules was

discussed from a design perspective and have been structured such that it would make sense to

a game designer. After describing the level design modules, a section dedicated to quest

generation discussed how quests could be generated using procedural techniques and how a

quest generation module could be structured. It was stated that if quest and map structure

should be closely connected, the two should be designed as one module, possible as a system of

two sub-modules. Among the different generation techniques, grammar was mentioned as a

viable way of generating both quest a map structure, and even though grammar requires a lot of

initial work this should be outweighed by the ease with which new content can be generated

afterwards. Inspired by the use of grammar it was suggested that one could create a quest

module using graph grammar, and a map sub-module capable of generating a map structure

based on the generated quest structure, and thereby ensuring that the two are closely connected.

Another example of quest generation included presumed player knowledge, ensuring that

players are only given quests that makes sense for them. The described example used a

replacement technique, which allowed several quests to be created from the same simple

structure. This technique could be used in a quest module, allowing the module to generate

several quests based on simple designer instructions, such as a specification of objects, locations

and characters. Another example illustrated the generation of a map structure based on a

prewritten story structure written in simple plot points. In relation to this, one could imagine a

module that was able to generate a map based on a simple story, specified by either a human

designer or a quest generation module. In a complete system, a module could be used to generate

MIKAEL PETER OLSEN
STUDY NO. 20093736

CONCLUSION

CHAPTER 8

79

the overall quest structure while several sub-modules could be used to generate the different

elements of the levels and gameplay.

As a final remark, the purpose of this project has been to help advance the state of the art of PCG,

and it is believed that the introduction of Modular PCG has been a step in the right direction.

Currently PCG is not widely used in game development, but it is the hope that Modular PCG will

increase the use of procedural techniques in the game development industry. Modular PCG has

yet to be tested and proven practical in a real game development scenario, however from the

theoretical evaluation of the concept, it can be said to be applicable in game development and

that it successfully makes procedural techniques accessible to designers and developers. I hope

that this project has illustrated the need for Modular PCG as a research field, and I hope that

other researchers will use this project as a stepping-stone and continue research in this

direction. Modular PCG is the future of PCG.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

80

REFERENCES

[1] M. Hendrikx, S. Meijer, J. V. D. Velden and A. Iosup, “Procedural content generation for

games: A survey,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 9, no. 1, pp. 1-22,

February 2013.

[2] G. N. Yannakakis and J. Togelius, “Experience-Driven Procedural Content Generation,”

Affective Computing, IEEE Transactions on, vol. 2, no. 3, pp. 147 - 161, 2011.

[3] B. Watson, P. Müller, O. Veryovka, A. Fuller, P. Wonka and C. Sexton, “Procedural Urban

Modeling in Practice,” IEEE Computer Graphics and Applications, vol. 28, no. 3, pp. 18-26,

2008.

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne, “Search-based procedural

content generation,” in Proc. European Conf. Applications of Evolutionary Computation,

2010.

[5] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss and K. O. Stanley,

“Procedural Content Generation: Goals, Challenges and Actionable Steps,” in Artificial and

Computational Intelligence in Games, S. M. Lucas, M. Mateas, M. Preuss, P. Spronck and J.

Togelius, Eds., Dagstuhl, Germany, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik,

2013, pp. 61-75.

[6] C. Browne and F. Maire, “Evolutionary game design,” Computational Intelligence and AI in

Games, IEEE Transactions on, vol. 2, no. 1, pp. 1-16, 2010.

[7] C. Browne, “Cameron's Yavalath Page,” 2013. [Online]. Available:

http://www.cameronius.com/games/yavalath/. [Accessed 9 February 2014].

MIKAEL PETER OLSEN
STUDY NO. 20093736

81

REFERENCES

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne, “Search-based Procedural

Content Generation: A Taxonomy and Survey,” IEEE Transactions on Computational

Intelligence and AI in Games (TCIAIG), vol. 3, no. 3, pp. 172-186, 2011.

[9] J. Togelius, R. D. Nardi and S. M. Lucas, “Making Racing Fun Through Player Modeling and

Track Evolution,” in Proceedings of the SAB Workshop on on Adaptive Approaches to

Optimizing Player Satisfaction, 2006.

[10] G. Kelly and H. McCabe, “A survey of procedural techniques for city generation,” ITB

Journal, pp. 87-130, 2006.

[11] R. M. Smelik, K. J. d. Kraker, S. A. Groenewegen, T. Tutenel and R. Bidarra, “A Survey of

Procedural Methods for Terrain Modelling,” in Proceedings of the CASA Workshop on 3D

Advanced Media In Gaming And Simulation (3AMIGAS), Amsterdam, The Netherlands,

2009.

[12] A. d. l. Re, F. Abad, E. Camahort and M. C. Juan, “Tools for Procedural Generation of Plants

in Virtual Scenes,” LA, USA, 2009.

[13] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A

Procedural Approach, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[14] G. Smith, J. Whitehead and M. Mateas, “Tanagra: An Intelligent Level Design Assistant for

2D Platformers,” in AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, North America, 2010.

[15] K. Compton and M. Mateas, “Procedural Level Design for Platform Games,” 2006.

[16] N. Shaker, G. N. Yannakakis, J. Togelius, M. Nicolau and M. O'Neill, “Evolving Personalized

Content for Super Mario Bros Using Grammatical Evolution,” in AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment, North America, 2012.

[17] S. Dahlskog and J. Togelius, “Patterns and Procedural Content Generation: Revisiting Mario

in World 1 Level 1,” in Proceedings of the First Workshop on Design Patterns in Games,

Raleigh, North Carolina, 2012.

[18] N. Shaker, M. Nicolau, G. N. Yannakakis and J. Togelius, “Evolving levels for super mario

bros using grammatical evolution,” in Computational Intelligence and Games (CIG), 2012

IEEE Conference on, Granada, 2012.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

82

[19] L. Johnson, G. N. Yannakakis and J. Togelius, “Cellular automata for real-time generation of

infinite cave levels,” in Proceedings of the 2010 Workshop on Procedural Content Generation

in Game, Monterey, California, 2010.

[20] T. Mahlmann, J. Togelius and G. N. Yannakakis, “Towards procedural strategy game

generation: Evolving complementary unit types,” in Applications of Evolutionary

Computation, 2011.

[21] A. Liapis, G. N. Yannakakis and J. Togelius, “Generating map sketches for strategy games,”

in Applications of Evolutionary Computation, 2013.

[22] J. Togelius, M. Preuss and G. N. Yannakakis, “Towards Multiobjective Procedural Map

Generation,” in Proceedings of the 2010 Workshop on Procedural Content Generation in

Games, Monterey, California, 2010.

[23] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick, J. Kelly and K. Margenau, “Designing

Procedural Game Spaces: A Case Study,” in FuturePlay 2006, 2006.

[24] J. Togelius, E. Kastbjerg, D. Schedl and G. N. Yannakakis, “What is Procedural Content

Generation?: Mario on the Borderline,” in Proceedings of the 2nd International Workshop

on Procedural Content Generation in Games, Bordeaux, France, 2011.

[25] R. Khaled, M. J. Nelson and P. Barr, “Design Metaphors for Procedural Content Generation

in Games,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, Paris, France, 2013.

[26] J. Togelius and J. Schmidhuber, “An Experiment in Automatic Game Design,” in

Computational Intelligence and Games, 2008. CIG'08. IEEE Symposium On., Perth, WA, 2008.

[27] M. Cook and S. Colton, “Multi-Faceted Evolution Of Simple Arcade Games,” in The

Computational Intelligence and Games (CIG), 2011.

[28] K. Hartsook, A. Zook, S. Das and M. O. Riedl, “Toward Supporting Stories with Procedurally

Generated Game Worlds,” in Computational Intelligence and Games (CIG), Seoul, 2011.

[29] R. Smelik, T. Tutenel, K. J. de Kraker and R. Bidarra, “Integrating Procedural Generation

and Manual Editing of Virtual Worlds,” in Proceedings of the 2010 Workshop on Procedural

Content Generation in Games, Monterey, California, 2010.

MIKAEL PETER OLSEN
STUDY NO. 20093736

83

REFERENCES

[30] R. M. Smelik, T. Tutenel, K. J. De Kraker and R. Bidarra, “A Declarative Approach to

Procedural Modeling of Virtual Worlds,” Computers and Graphics, vol. 35, no. 2, pp. 352-

363, 2011.

[31] Y. I. H. Parish and P. Müller, “Procedural Modeling of Cities,” in SIGGRAPH '01 Proceedings

of the 28th annual conference on Computer graphics and interactive techniques, New York,

NY, USA, 2001.

[32] M. Lipp, D. Scherzer, P. Wonka and M. Wimmer, “Interactive Modeling of City Layouts using

Layers of Procedural Content,” Computer Graphics Forum, vol. 30, no. 2, p. 345–354, 2011.

[33] J. Dormans, “Adventures in Level Design: Generating Missions and Spaces for Action

Adventure Games,” in Proceedings of the 2010 Workshop on Procedural Content Generation

in Games, Monterey, California, 2010.

[34] C. Ashmore and M. Nitsche, “The quest in a generated world,” in Proc. 2007 Digital Games

Research Assoc. (DiGRA) Conference: Situated Play, 2007.

[35] J. Doran and I. Parberry, “A Prototype Quest Generator Based on a Structural Analysis of

Quests from Four MMORPGs,” in Proceedings of the 2Nd International Workshop on

Procedural Content Generation in Games, Bordeaux, France, 2011.

[36] Z. Qin, J. Xing and X. Zheng, “Evaluating Software Architecture,” in Software Architecture,

Berlin, Springer Berlin Heidelberg, 2008, pp. 221-273.

[37] M. Mattsson, H. Grahn and F. Mårtensson, “Software architecture evaluation methods for

performance, maintainability, testability, and portability,” in Second International

Conference on the Quality of Software Architectures, 2006.

[38] V. Gal, C. L. Prado, S. Natkin and L. Vega, “Writing for video games,” in Proceedings Laval

Virtual (IVRC), 2002.

[39] S. Rogers, “You Can Design a Game, But Can You Do the Paperwork?,” in Level Up! - The

Guide to Great Video Game Design, Chichester, United Kingdom, John Wiley & Sons, Ltd,

2010, pp. 57-82.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

84

APPENDIX

I METHODS OF PCG

There are many methods within PCG that each has its strengths and weaknesses, and are suited

to produce certain types of content. This section will list some of the methods used in PCG and

how these methods can be applied.

The simplest and earliest methods of PCG are based on pseudo-random number generation

(PRNG) [1]. Because it is pseudo-random, it can be used to mimic the illusion of randomness

found in nature, e.g. mountains, clouds and flowers. Perlin noise is a PRNG-based noise

generator, which generates maps of data points through interpolation of points generated by a

seeded PRNG. Detail can be added by combining more maps with different scaling.

Another technique is generative grammar (GG), which is sets of rules that operates on words to

generate grammatically correct sentences. Generative grammar in general, consist of an

alphabet (words) and a set of rules that define rewrite operations of the alphabet. Rules are

written as “S ab”, where capital letters describe symbols that can be changed and lowercase

letters are terminal symbols that cannot be rewritten. Generative grammar always starts with

one symbol, often denoted as “S” [33]. This technique can be adapted to describe and generate

correct objects, e.g. in a game level, from elements encoded as words [1]. Sub-systems of GG

includes L-systems, split grammars, wall grammars and shape grammars. L-systems was

designed to describe the growth of plants. It is today used to generate trees as well as other

natural structures and are even used in city generation [33].

Image processing techniques can also be used in PCG, namely image filtering (IF), which is used

to emphasize elements of in image or to improve subjective measurements of an image, i.e. give

MIKAEL PETER OLSEN
STUDY NO. 20093736

85

APPENDIX

a certain style. Within IF, one can for instance use binary morphology, i.e. operations on a binary

image, or convolution filters, i.e. modify an image with another or a kernel, to modify and change

images.

As IF can manipulate images, spatial algorithms (SA) can be used to manipulate space, for

instance by storing map data in a grid with the technique called tiling. After the data is

decomposed, i.e. cut into sections in a grid for instance each tile can be manipulated. Layering is

a technique, where several grids (layers) are combined into one map. Each tile are then

constructed by several overlapping layers [1]. To save memory one can use grid subdivision to

only divide grid cells close to the player, in order to provide detail, while cells beyond a threshold

remains undetailed. Another SA is fractals, which can be described as recursive copies of itself,

e.g. snowflakes. One advantage is that fractals can produce objects with seamlessly endless

detail. Voronoi diagrams is another way of dividing space into smaller regions. In metric space,

a number of seed points (points of interest) are selected and a number of points equally distant

from the closest two seed points establishes the borders [1].

Natural phenomena can in some cases not be described with mathematical formulas, and in

those cases modelling and simulation of complex systems (CS) can be applied, for instance

cellular automata, tensor fields and agent-based simulation. In cellular automaton, the

simulation is based on a grid of cells that each has a state and can influence its neighbour cells.

The cells are bound by a common set of rules. Tensor fields are a set of two-dimensional vectors

(tensors) that describe the shape of the game space. Because it can be visualised, tensor fields

are suited to visual interactive design. In agent-based simulation, complex situations are

modelled using agents. As the agents interact emergent behaviour arises that can be observed

through traditional modelling techniques [1].

One of the great fields of computer science, artificial intelligence (AI), provides some methods

usable in PCG. One of which is genetic algorithms that mimics biological evolution, where content

is generated, a fitness function then evaluates the result and a mutation and crossover function

creates new content [parallel to search-based PCG]. Artificial neural networks are systems of

neurons that each take input and give output based on internal criteria. By adjust when each

neuron is fired (gives output) the system can learn patterns. The last method within AI, which

will be described here, is constraint satisfaction and planning, which can plan what actions

needed in order to get from an initial state to an end state. A planner consists of an initial state,

actions it can take and a goal test. Planners can be either forwards state-space search algorithms

or backward state-space search algorithms depending on in which state they start the search

[1].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

86

II GAME DESIGN DOCUMENT

Game design document URL: www.scribd.com/doc/5402045/The-Design-Document-Justin-

Kelly

MIKAEL PETER OLSEN
STUDY NO. 20093736

87

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

88

MIKAEL PETER OLSEN
STUDY NO. 20093736

89

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

90

MIKAEL PETER OLSEN
STUDY NO. 20093736

91

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

92

MIKAEL PETER OLSEN
STUDY NO. 20093736

93

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

94

MIKAEL PETER OLSEN
STUDY NO. 20093736

95

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

96

MIKAEL PETER OLSEN
STUDY NO. 20093736

97

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

98

MIKAEL PETER OLSEN
STUDY NO. 20093736

99

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

100

MIKAEL PETER OLSEN
STUDY NO. 20093736

101

APPENDIX

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

102

MIKAEL PETER OLSEN
STUDY NO. 20093736

103

APPENDIX

III NPC MOTIVATIONS FOR QUEST GENERATION

All tables has been taken the article by Doran & Parberry [35].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

Modular PCG – An Architecture for Procedural Content Generation

104

