Modulgr PCG

An Architecture for Procedural Content Generation

Master’s Thesis
By
Mikael Peter Olsen

Supervised by

Paolo Burelli

Aalborg University Copenhagen

3rd of February 2014 - 28t of May 2014

AAU PAGE

AAU PAGE BACK

PREFACE

Dear Reader

This report has been written in the early months of 2014, and many nights has been spend
reading and writing. I am therefore truly grateful that you have taken the time to read my work.

I would like to thank my girlfriend for her patience during the stressful times, my supervisor
Paolo Burelli for constructive criticism, my fellow students at AAU-CPH for support and finally
Julian Togelius for initial inspiration and for providing initial material to get started.

MIKAEL PETER OLSEN
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

TABLE OF CONTENTS

o@e

CHAPTER 1 INTRODUCGTION ...cociciitiirinssesssssnassessssssssssssssnssssssssssssssssasssssssssssssssssssssesssssessssnssssssssssssssssans 8
1.1 MOTIVATION . eucutteeisssressssssessssssesssssessssssssssssssassssssassssssasssssssssssassssssassssssassssssassssseassessasssssens 8

1.2 INITIAL PROBLEM AREA ...covitriissesesesssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssassssssassens 10

1.3 REPORT OVERVIEW. ..uvttitccisisessssssssesesesssssssssssssssssssssasssasasas 11

CHAPTER 2 INITIAL INVESTIGATION ...cccccitieiseesmssessssnsesssssssssssssssssssssasssssssssssssssssssssassssssssssssssssssssass 12
2.1 DEFINITION OF PCG uviitririsrrissesesessssessssssesssassssssasases 13

2.1.1 SEARCH-BASED P LGt bssssssssssss s sssssssssssssssassssasanes 15

2.1.2 EXPERIENCE DRIVEN PCG .ootititeieiceiisssrsssesesesessssssssssssssssssssesssssssssssssssssssssssssasssssssssses 17

2.2 RESEARCH TOPICS wuvvieserecassresssssesssssssssssssessssssssssssssassssssassssssassssssssssssssssssssssssssssssasases 18

CHAPTER 3 PROBLEM STATEMENTcooiiiteiminessseesseessssssssssnsssnsssessssneses 20
CHAPTER 4 ANALYSIS....cc e ecctiesimincesssmsssssssssesssssessssssassssnsssssssssssnssssssssssessssnsssssssssssassssesssssessssnessesnssssssassns 21
4.1 COMPLETE GAME GENERATION u.veuivriiuceseessssssssssesssssssssssessassssssssssesssssssssasssssssssssasases 22

4.2 INTRODUCING MODULAR PCG auetteieiiccesrssseseresesesesesssssssssssssesessssssssssssssssssssssssasases 27

4.2.1 DEFINITION OF MODULAR PCG .ouviirrierieiccsisesesssssresesesesssssssssssssssssessssssssssssssssssssssenes 28

4.2.2 MODULAR PCG AS A RESEARCH AREA ..oovovrrevirrereesssesinsssessssssessssssssssssssssssssssssssssssssseans 30

4.2.3 MODULAR PCG IN THE INDUSTRY .eovtvrrrerereesesesessssssssesesesessssssssssssssssssessssssssssssssssssssseses 32

4.2.4 APPLIED MODULAR PCGuutioiiricrrresesesessssesessssssssssssessssssessssessssssssssssssssssssessssssassssssans 33

VI MASTER’S THESIS, MEDIALOGY

AALBORG UNIVERSITY COPENHAGEN, 2014

4.3 SUMMARY OF ANALYSIS uveuresereeressssssessssssessessses 35

CHAPTER 5 DELIMITATIONS ... cciteitesssssesssesssssesssssssssssesssssessssssssssssssssasssssssssssssssssesssssassssnssssssssssssssns 37
CHAPTER 6 MODULAR PCG ...ccuuiieiiieseesssssesssesssssssssssesssssessssssssssssssssssssssssssssesssssesssssesssssesssssssssesnsnsesssan 40
6.1 INITIAL ARCHITECTURE .1vutuiereuceseressssesesssesessssessasssessssssessssssessssssssssssssssesssssssssassssssssssens 41
6.2 HIGH- AND LOW-LEVEL MODULESeeesitsesrrmsisssessssssessens 42
6.3 VIRTUAL WORLD INTERACTION weveveeeeieccsssssssssssesesssasasasns 44
6.4 DESIGNER INSTRUCTIONS w.evruiertresssssesssesessssseasssssssssssssssssssssssssassssssssssssssssssssasssssssssens 48
6.5 MODULES PROVIDING CONTENT TO PLAYERS AND DESIGNERS ..cvvuresrresessrsesessseens 50
6.6 MODULES GETTING INPUT FROM PLAYERS ...coiiirrerererersesssssssssssssssssesessssssssssssssseseses 51
6.7 FINAL ARCHITECTURE ..ottt ssssssssss s ssssssssssssssssssssssssssssssssssssasasssssssssssssssssnes 52
CHAPTER 7 EVALUATION OF MODULAR PCG .ccuvetertrsesersssssesssssssssrsssssssssssasssssssssssssssssssssessssssssssasase 56
7.1 Y 02301 (0] T 57
7.2 GAME CONCEPT woveresecceesessssssessssssssssssssssssssssssssssssessssssssssssensssssssssssssssesssssssssssssnsnsasnns 58
7.3 MODULE INTEGRATION ..ctiiiccssrsisssssesscss s ssssssssssssssssssssssssssssssssssssssassssssssssssssssssssnes 59
7.4 LEVEL DESIGN MODULES ..cutetveisisssssresesesssssssssssssssssssesses 62
7.5 QUEST MODULE ..eterteeesereesseserssesessessessessessessessessessesssssssssssssssssssssssssssssssssssessessessessessesss 69
CHAPTER 8 CONCLUSION.....ccccitestitesrsnsssssnsssasssssessssssssssssssssssssssssssssasssasassssssssssssssssssssessssnssssssssssssssnsans 76
REFERENUCES ... cciieeticestsesssssasssesssssssssssesssssesssssssssesssssesssssesssasesss ssssssanessssnsssessssssesssssesssssessssnasssesnsssensrnn 80
APPENDIX e cicciicissscsesssesssssesssssssssasssssesssssesssssssssssasssessssnes e snsssssnssssesassnsssssnssssssssssessssnesssessssessassns 84
| METHODS OF PCG ettt sssesesessssssssssssssssssesssssssssssssssssssssssssssassssssssssssssssesses 84
I1 GAME DESIGN DOCUMENT ..cviuitreissesesssssessssesesssessssssesssssssssssssssssssasssssssssssssasssssssssens 86
I11 NPC MOTIVATIONS FOR QUEST GENERATIONcovvureererreeresssesssssssessessessessessessessennes 103
MIKAEL PETER OLSEN VII

STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

CHAPTER 1
INTRODUCTION

Y I}
11 MOTIVATIONcoeuiuiucueuensuresesesesesese s s sesees e e e e sssss e se e e e e s s e e e sssnenene e e sanas 8
1.2 INITIAL PROBLEM AREAocueiucucuenensseueesesensssssesesesests s s s s s ssssssesesesesaeas 10
1.2 REPORT OVERVIEW _____.....eececectnereseses et sesesas e e e ene et e sss e e e et et sesas s e s see e e 11
Y I}

This chapter will explain the initial motivation behind this project, and by reading it, it should be
clear to the reader why this project has be written and what the main purpose behind the project
is. First, a general motivation will describe the research area, thereafter the initial problem area
will be established based on the motivation and lastly section 1.3 will give a brief overview of
the entire report.

Computer games are a major part of our lives; many play computer games regularly, and during
the last decade, the use of computer games has increased [1] [2]. Because of this huge industry,
games are becoming more and more advanced in multiple fields - from general sound and
graphics to the realism of environments and the believability of characters. In addition, the
quantity of game content has increased and this increase in quantity and quality puts a challenge
on the gaming industry to match the demand from the gaming community [3]. We, as players,
expect the computer games to present us with new and engaging content, and while this demand

8 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INTRODUCTION
CHAPTER 1

is increasing the manual content production is already expensive and un-
scalable [1]. This is a challenge that potentially could be aided by
Procedural Content Generation (PCG), which, in short is the “application
of computers to generate game content, distinguish interesting instances
among the ones generated, and select entertaining instances on behalf of
the players” [1]. PCG also refers to “the creation of game content
automatically, through algorithmic means” [4]. These definitions will have
to be investigated further and PCG will have to be specified for the
purpose of this report. For now, however, the general definitions above

serves as an initial understanding of PCG.

PCG offers an alternative to costly manual content creation, and can be
integrated in the development process and help generate complex game
worlds in a limited amount of time [1] [2] [3] [5]. This can help keep the
expenses of game development down and allow designers and
programmers some additional freedom, which might be the primary
argument for using PCG. Another reason, which was more dominant in the
past, is that PCG can keep the memory consumption of a computer game
down by applying it as a method for decompressing data [5]. This method
was used in the space trading game Elite to store hundreds of planets in a
few tens of kilobytes. Likewise, PCG was used to generate dungeons at
runtime for the game Rogue [5]. Rogue offered endless replayability and
the game has formed its own sub-genre, referred to as Rogue-like, where
among others the Diablo game series belongs.

PCG is an interesting field because it can not only support game creation,
but also provide new techniques, facilitate new games and new ways of
creating games [5] [2]. An example of this is the LUDI system by Browne
& Maire [6], which was designed to invent board games autonomously.
The system had to ensure that the game produced was not only playable
but also that it met the requirements of being fun and engaging. The LUDI
system invented a game it named Yavalath, which, in October 2011, was
ranked in the top 100 abstract board games ever invented on the
BoardGameGeek database [7]. This is one part of PCG, in which the
algorithms can surprise the creator and create something unique, which
can be very fascinating. On the other hand, PCG can be designed to support
the human designer or programmer, and the collaboration between
human and algorithms can prove fruitful in many cases. As mentioned
before this could potentially help meet the demands for manual content
production in computer games, but could also aid human creativity and

MIKAEL PETER OLSEN
STUDY NO. 20093736

A dungeon crawling game
developed by Michael Toy and
Glenn Wichman around 1980.
All content is represented by
letters and symbols. The layout
and the placement of objects
are randomly generated.

A space trading game,
published in 1984 by Acornsoft.
One of the first home computer
games to use wire-frame 3D
graphics.

Series of action role-playing
hack and slash games
developed by Blizzard, released
in 1996, 2000 and 2012.

Modular PCG - An Architecture for Procedural Content Generation

Left4Dead enable the creation of adaptive games, i.e. games which gameplay and/or

design adapted at runtime to its players [5]. An example of the latter is
the game Left4Dead where enemy encounters are created “based on the
computer-analyzed stress level of the players” [1].

PCG is a relatively young research field and previously the literature was
divided across multiple disciplines (computer graphics, image
processing, artificial intelligence, computer-human interfaces,

A cooperative first-person
shooter arcade-style game set however, the first workshop devoted solely to PCG was held! and [8] state

during the aftermath of an that the first paper regarding what they call search-based PCG, a special
apocalyptic pandemic. Released

by Valve Corporation in 2008.

psychology, linguistics, social sciences, ludology, etc.) [1]. In 2009

branch of PCG (see section 2.1.1), was published in 2006 [9].

10

Through the years, PCG has been used to create a variety of content,
ranging from complete cities [10] to terrains [11] to detailed vegetation [12] to textures and
materials [13]. Apart from that, PCG has been used to generate levels for 2D platform games [14]
[15], creating personalized content [16] and generating levels [17] [18] for Super Mario Bros,
generate infinite 2D cave-maps [19], evolving units [20] and generating maps for strategy games
[21] [22], and levels for 3D games [23].

As described, the gaming industry is challenged by the high demands for content, and by the cost
of manual content creation. PCG, which is the automatic generation of content by the use of
algorithms, can help overcome this challenge, and although it is a young research field, it offers
great potential for further research in many different areas.

This project will therefore investigate the advantages of PCG in relation to game development
and determine the how PCG can facilitate game creation. The purpose of this investigation is to
advance the state of the art of PCG, and through findings contribute to the general research field.

1 The PCG workshop is co-located with the Foundation of Digital Games Conference. The autumn 2011
issue of IEEE Transactions on Computational Intelligence and Al in Games was entirely devoted to PCG.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INTRODUCTION
CHAPTER 1

The purpose of this chapter is to give a structural overview of the project and report, describing
the overall flow, allowing other researcher to understand and follow the different steps.

Firstly, an initial investigation will analyse a few definitions of PCG and establish how it should
be understood in context of this project. Thereafter some existing research topics suggested by
dominant researchers within the PCG community will briefly be investigated. The purpose of
this investigation is to direct the research, and it is suspected that by directing PCG research in
the direction of topics suggested by other dominant researchers, the outcome of this project will
help advance the state of the art of PCG to the greatest extent.

By combining the initial focus on game development with one or more of the suggested research
topics, a more concise research problem will be established and a concrete problem statement
formulated. The report will thereafter investigate how complete game generation can be made
accessible to human designers and how it can be integrated within the development pipeline.

To investigate complete game generation, the analysis will describe a few games and research
projects that utilises complex procedural techniques, and investigate how these facilitate
designer interaction. Because the examples provide very limited interaction, an alternative way
of considering PCG in relation to game development will be proposed. This alternative is called
Modular PCG and it describes a new way of designing PCG algorithms. Modular PCG facilitates
the creation of individual PCG modules that applies procedural techniques to generate game
content. The modules integrates directly into the virtual environment, which means that
designers can apply different modules without considering existing content and other modules.
For easy and rapid development, the necessary tools for authoring content are included in the
modules themselves and work out of the box.

To explain and validate the concept, an initial architecture will be created CryEngine

based on initial ideas. This will later be dissected and each element will
be analysed and discussed separately. From this analysis the elements is

recombined into a final architecture describing how Modular PCG should @
be applied and understood in relation to game development. Lastly,

Modular PCG will be evaluated by creating a theoretical game using C R y: N G I N =d
theoretical modules in a theoretical implementation in CryEngine3. In — —

this project, Modular PCG will not be tested and proven practical inareal | Game engine designed by the

game development scenario, however the theoretical evaluation of the | German developer Crytek. It has
many high-end features, and is

concept will illustrate its application in game development and that it can free for non-commercial use.

successfully make procedural techniques accessible to designers and

developers.

MIKAEL PETER OLSEN 11
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

12

CHAPTER 2
INITIAL INVESTIGATION

Y I}
2.1 DEFINITION OF PCGoormieeecrerecesre e seesssseseesssse e sse e sse s ssnesessssnens 13
2.1.1 SEARCH-BASED PCG........oostrtristssssnsssssnssss s ssssssssees 15
2.1.2 EXPERIENCE DRIVEN PCG ..o ittt enns, 17
2.2 RESEARCH TOPICSmeieiiceereecceereseeec e e s e s se e ee e se e ee s 18
o@e

This chapter will start by analysing the a few definitions of PCG to give the reader a better
understanding of the concept and determine how PCG should be understood in context of this
project. In relation to PCG, the contemporary taxonomy will be described to establish basis for
later discussions and analysis, and the sub-sections 2.1.1 and 2.1.2 will describe two research
branches of PCG, namely Search-Based PCG and Experience Driven PCG.

The purpose of this project is to investigate what research is needed to advance the state of the
art of PCG in general, and how PCG can be applied in game development. To determine the
current focus of research within the PCG community, section 2.2 will investigate contemporary
research topics suggested by other researchers. With focus on game development, this project
aims to contribute to the general research field by building on top of what is suggested.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INITIAL INVESTIGATION
CHAPTER 2

This section is meant as a clarification of the previous definitions of PCG mentioned in the
motivation (section 1.1). In the motivation, PCG was defined as the “application of computers to
generate game content, distinguish interesting instances among the ones generated, and select
entertaining instances on behalf of the players” [1] and “the creation of game content
automatically, through algorithmic means” [4]. There are, however, some issues with these
definitions and the following will elaborate on this and form a clearer definition of PCG.

The definition by Hendrix et al. might be too specific, because it relates to what [8] calls Search-
Based PCG which represents one specific area of PCG. In Search-Based PCG the generated
content is evaluated and assigned values based on this evaluation. It is often linked with
evolutional algorithms, where the algorithm selects the best candidates (highest values) and
generates new content based on those. This is a more advanced version of the generate-to-test
method of PCG, which normally only tests the generated content according to some criteria, but
does not necessarily feature a ranking of the generated content.

The second definition might not be suitable either. It might be too wide since it also captures
content generated directly by a player/creator in an editor or as part of gameplay, with
assistance from algorithms. It can also be seen as too narrow since the word “automatically”
implies that there are possible way for humans or other algorithms to interact with the processz2.
This makes this definition very ambiguous. Like vice [5] defines PCG as having “limited or no
human contribution”, however from a game design standpoint, a PCG system designed to have
no human interaction seems impractical. In some special cases it could be desirable to have
algorithms designed to be interacted with by other PCG systems, and therefore not by humans,
but there are almost no practical reasons for having a PCG systems without any interaction. A
completely autonomous PCG system would be more or less useless, however, one should not
dismiss the thought of having a PCG system with no interaction, since such a system could spawn
some interesting areas of research, and could be useable in very specific cases.

The definitions talks about “content”, which can be defined as many things, and different fields
might not agree on what content is. In relation to PCG used in computer games content is widely
defined as dynamics, weapons, camera viewpoint, rulesets, characters, quests, dialogue, stories,
levels, maps, terrain; in fact most game content besides the game engine and the behaviour of
the NPCs [4] [8] [5] [2]. Even the game engine could potentially be procedurally generated and
one could imagine a game where everything was generated from scratch, which is said to be one
of the grand goals of PCG [5]. However, this might be too comprehensive for this project and

2 For clarity, human interaction in this connection is seen as applying a PCG system in specific context
and/or starting the generation process.

MIKAEL PETER OLSEN 13
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

14

thus, in the context of this project, game content will refer to everything besides the game engine
and NPC behaviours.

For practical reasons and applications the definition of PCG will, in this report, follow the
definition presented by [24] stating that PCG is “the algorithmic creation of game content with
limited or indirect user input” [24]. This definition does not allow direct or full human control
over the generation and one might expect that this would be desirable, as the goal for this project
is to make the generation process accessible to human designers. The reason why this is not
desirable is that it will remove the system from the domain of PCG since a PCG system is required
to have some form of automation. Without this, a PCG system will become an editorial tool. An
assessable PCG system for complete game generation has to be autonomously enough to
generate content sufficiently, while being flexible and transparent enough to give a human user
agency and empowerment [25].

PCG can be used in different ways, which can require the generation process to be done either
online, i.e. during runtime, or offline, during development. As an example, the interior of a
building might be generated online when the player enters the building, or offline and edited by
a human designer before the game is shipped [4]. A combination of the two is also possible. The
generated content can be said to be necessary, i.e. necessary for progression, or optional meaning
that the player can choose to avoid it.

Concerning the actual algorithms at use, they can be based either on random seeds or on
parameter values. This has to do with the amount of control over the algorithm, if an algorithm
is based on a random seed there is little control and if the algorithm takes a multidimensional
vector as input a human designer can be allowed almost full control over the generated output
by adjust the specific properties. The latter could be desirable regarding multi-level multi-
content generators where a human designer needs to affect the generation. Note that random
seed does not imply that the output of the algorithm is random. The algorithm can be either
stochastic, meaning that it will create a new output every time, or deterministic, resulting in the
same output every time [4]. Generally, algorithms can be said to be either constructive or
generate-to-test. A constructive algorithm will generate the content once, which means that it
has to create something that is correct, since it will not correct the generated content after it has
been generated. A problem with constructive algorithms is that they often include some
randomness, which leads to the lack of controllability [2]. Opposed to this, a generate-to-test
algorithm includes a test mechanism that tests the generated content in accordance with some
criteria and regenerate the content if this validation test fails. This refers to Search-Based PCG
(see section 2.1.1) which ranks the tested content and selects the best for further generation.
The difference between Search-Based PCG, constructive algorithms and generate-to-test
algorithms can be seen in Figure 1.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INITIAL INVESTIGATION
CHAPTER 2

’ ~
Variation Selection
/ \

/ \
Search Based ".l

Y .
N\ =
~»| Popuation -——D F" ez \, Dono>
Ay

Fum_bon

Coma Y orae) > W, PO
l' Initial »| Rules /:. b[‘ Construct } »|| Result)|
\ — / \. —— Constructive 4 N

| f
| |

\oo Lo Ty v/

)I\ Rules ——) Construct »—-) oom? -

e _, ‘1“/ 7/

Simple G&T \ /

Figure 1: Overview of different approaches to PCG: Search-Based PCG, constructive algorithms and generate-to-test
algorithms [8].

2.1.1 SEARCH-BASED PCG

The term Search-Based PCG was proposed by Togelius, et al. [4] and elaborated in [8]. As
mentioned in section 2.1 (Definition of PCG) Search-Based PCG is a special case of a generate-to-
test algorithm with two main differences. First, the test function grades the generated content;
this function is often referred to as the fitness function and the grade is thus called the fitness of
the content [4]. This function determines how well the generated content fits or matches the
requirements of the generation. Secondly, new content is based on the content with the highest
fitness and the algorithm aims to generate content with higher fitness [4]. For some cases of
Search-Based PCG the main generation is based on evolutionary computation (EC), however, this
is not necessarily the case. When describing a Search-Based PCG algorithm one talk about its
genotypes, i.e. the data handled by the evolutionary algorithms3, and its phenotype, i.e. the data
handled by the fitness function [4]. Data can be encoded, or represented, from the genotype to
the phenotype through either direct encoding, where genotype and phenotype is proportional in
size, and though indirect encoding, where the mapping is nonlinear (see [4] and [8] for further
exemplification). The main concern with the encoding is the “curse of dimensionality” that
describes the paradox of representing data simple enough for a search algorithm to search
though the data quickly and representing it with enough detail for the search algorithm to be

3 In the case that the generation is based on evolutionary computation.

MIKAEL PETER OLSEN
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

16

able to search though it precisely enough [4]. Locality is another principal that relates to content
representation, and means that a small change in genotype should result in a small change in
phenotype and vice versa [4].

A fitness function can be designed to rate content according to many different factors, such as
how “fun” a racetrack is [9]. Three types of fitness functions are described in the literature [4].
First, the direct fitness function, which extract some specific features from the content and maps
this directly to the fitness. The function can be either theory-driven, guided by designer intuition
or qualitative theory, or data-driven, guided by collected data such as questionnaires or
physiological measurements. Secondly, the simulation-based fitness function, which simulates
gameplay with an artificial agent and extracts values from the observed gameplay. The agent can
be either static or dynamic, depending on its ability to change behaviour during gameplay. A
changing agent has some learnability, which the fitness function must be able to incorporate.
Lastly the interactive fitness function is described, which collects data from the player during
gameplay, either explicitly, e.g. though questionnaires, or implicitly, e.g. though measurements in
the game.

One problem with Search-Based PCG, as suggested by [4], is that it might be best suited for offline
generation since the time it take to generate the optimal content can vary a lot and one can never
be sure how long the generation will take. One could incorporate a maximum time or maximum
evolutions to compensate for this and keep the generation time down, however this might result
in the creation of some less optimal content. Another issue with Search-Based PCG is that
designers cannot be sure exactly how the content will manifest itself, but only explicitly specify
some desirable properties of the content. This can be said to be the biggest flaw with Search-
Based PCG. Even though the content is generated according to a fitness function making sure the
content is valid and follow some design specifications, human designers has no say in the actual
generation and are not able to adjust specific elements of the generation without generating the
content again. This removes the design agency, which as stated before is an unwanted effect [25].

Search-Based PCG can been seen as a high-level content generation method, which is why it is
important to consider human designer interaction, since designers normally are tasked with
planning games on a higher level. Yannakakis & Togelius [2] suggests using constructive
algorithms, such as L-Systems (see Appendix I), alongside with Search-Based PCG as a genotype-
to-phenotype mapping. Such algorithms could also be used to support human designers, thus
allowing them time to be creative and not preoccupied with time-consuming tasks.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INITIAL INVESTIGATION
CHAPTER 2

2.1.2 EXPERIENCE DRIVEN PCG

Experience Driven PCG was proposed by Yannakakis
& Togelius [2] to describe, “a generic and effective
approach for the optimization of user (player)
experience” [2]. They state that game content can be
seen as indirect building blocks for player
experience and it therefore is possible to change the
experience by changing the content. The generation
process of Experience Driven PCG is divided into

Subjective

Free-Response

Forced dimensions of emotior ')

Rating
< Vs Model-free Model-free
Preference (e.g. facial expression | \e.g. player modeling
annotation)

four parts as illustrated in Figure 2. Content Quality
Direct | Simulation-based | Interactive
The first part, the player experience model, is built Theoisaitven s impicit

based on collected data from the player(s). It can
either be subjective, i.e. expressed by the players

vs Vs
..- Dynamic Explicit

themselves, objective, i.e. gathered from the player Content Content
through alternative means, and finally gameplay- Representation Generator
based, i.e. gathered through an interaction between “

game and players [2]. Subjective player experience |

Local search

can be based on free-response, giving richer but more

Indirect

complex information, or forced data, giving answers Globat search

to more specific questions. Objective experience))
Figure 2: Framework of Experience Driven PCG [2],

modelling usually requires access to different

modalities to determine the affective state of the player during gameplay. These modalities can
be analyses though different means, for instance through electrocardiography (ECG), galvanic
skin response (GSR), respiration, electroencephalography (EEG), motion tracking, facial
expressions and gaze. The modelling can be either model-based, meaning experience models are
formed based on theories for e.g. arousal, and model-free, meaning that new models are
constructed and mapped to different modalities of player input [2]. Gameplay-based player
experience modelling is based on the assumption that player experience is linked to player
actions, and any player interaction with a game can form basis for this modelling. Like the
objective approach, gameplay-based modelling can be model-based or model-free or a hybrid of
the two. The advantage of this method is that it is the least intrusive and very computational
efficient, even though it results in a low-resolution model and are often based on assumptions

[2].

Experience Driven PCG relates to Search-Based PCG [4] in the sense that the acquired player
model are used to validate the fitness of the generated content. Both methods tries to create the
best suitable content, and in the case of Experience Driven PCG the content must be optimised
for player experience. The evaluation process, the second part of Experience Driven PCG

MIKAEL PETER OLSEN
STUDY NO. 20093736

17

Modular PCG - An Architecture for Procedural Content Generation

18

assessing of content quality, follows the same taxonomy as Search-Based PCG and can be either
direct, simulation-based or interactive [2] (see section 2.1.1).

The third part, the content representation, are again related to and uses the same taxonomy as
Search-Based PCG. Content is represented as genotypes and phenotypes and different encodings
is used to translate genotypes to phenotypes.

The final part of Experience Driven PCG, the content generation process, goes through the search
space created by the player experience model, evaluation and representation and generates the
final game content. The generation should be able to recognise “if, how much, and how often
content should be generated for a particular player” [2], and identify the likes and dislikes of the
player and adjust the content accordingly.

This section will give an idea of the current research within PCG, and which topics that could be
interesting to pursue to advance the state of the art. As Togelius, et al. [5] states: "PCG is a rich
and fertile soil for research and experimentation into new techniques, with obvious benefits both
for industry and for the science of game design” [5]. By “fertile soil” Togelius, et al. refers to the
youth of PCG and the many new and relatively uninvestigated areas that arise. They suggest
pursuing three grand goals for PCG representing the most important topics, which should guide
the overall direction of the research field [5]. The three goals cover multi-level multi-content
generation, PCG-based game design and lastly the generation of complete games.

The second goal, about PCG-based games, i.e. games that are built around PCG and could not exist
without it, is interesting because it would facilitate a completely new genre of games where PCG
would be the central mechanic. In most of the games, that utilizes PCG, the generation is an add-
on or replacement of human design, and the game could very well exist without it. PCG-based
games would require innovative ways of using PCG and would prove an interesting area of
research.

Accomplishing the first and third goals, creating multi-level multi-content generators and
complete game generators, could be an amazing achievement, however, it might not be desirable
as such. It could have the side effect of alienating the human designers from the game
development process. The problem at hand is that PCG often is designed to work autonomously
and offers very little to no human interaction. This can create an unwanted distance between the
users, i.e. designers and developers and the PCG system. In some cases, only the creator of the
system knows the functionalities. This proved a real issue in [25], where the designers felt a loss
of agency as a PCG system was made responsible for parts of the design. Khaled, et al. [25] points

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

INITIAL INVESTIGATION
CHAPTER 2

out that designers might be uncomfortable with relying on an automated system and they have
to be comfortable with the system and know its capabilities. When creating a PCG system one
has to consider how it integrates within other game technologies and how designers interface
with it and in general how it fits within the development pipeline [25]. The system should be
easily applied and it should be clear to designers, enabling them to evaluate if the system is
applicable to their needs. It should not be the goal to replace human designers, but to facilitate

and support their work and ease the development [3].

MIKAEL PETER OLSEN
STUDY NO. 20093736

19

Modular PCG - An Architecture for Procedural Content Generation

20

CHAPTER 3
PROBLEM STATEMENT

In the initial investigation, the concept of PCG was analysed and discussed together with the
basic taxonomy and the two research branches Search-Based PCG and Experience Driven PCG
was described. Different definitions of PCG was analysed, and in the context of this project it was
decided to use the definition by Togelius, et al. stating that it is “the algorithmic creation of game
content with limited or indirect user input” [24].

To direct the research of this project, section 2.2 mentioned a few contemporary research areas,
referred to as the grand goals for PCG. Pursuing any of these should help advance the state of the
art. Among the grand goals was the research in multi-level multi-content generators and
complete game generators, and it could be interesting to investigate how this type of procedural
generation can be integrated within a normal game development process and how it can be used
to support human designers and developers.

This project will thus investigate how to make the procedural creation of complete games a
practical possibility and how this will integrate with other game technologies and how it could
be integrated into the development pipeline of human designers. In short, this project will try to
answer the following problem statement:

How can a PCG system designed for complete game generation be made accessible to human
designers and how can it be integrated within the development pipeline?

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS
CHAPTER 4

CHAPTER 4
ANALYSIS

4.1
4.2
4.2.1
4.2.2
4.2.3
424
43

COMPLETE GAME GENERATION

INTRODUCING MODULAR PCG.........coreceererereresssesesesssss e ssese e e sesssssssssesesssssaes

APPLIED MODULAR PCG

SUMMARY OF ANALYSIS

This chapter will first analyse previous attempts to create multi-level multi-content generators

to generate complete games. This analysis will investigate the relationship between the

complete game generation systems and human designers, and determine how multi-level multi-

content generators for complete game generation best facilitates human interaction. Through

the analysis, it will become clear that the existing attempts provides very limited controllability,

which fosters a gap between the PCG algorithms and the designers and developers. To close this

gap the concept Modular PCG is proposed to describe a system that combines the strengths of

PCG and the controllability of manual content creation.

MIKAEL PETER OLSEN
STUDY NO. 20093736

21

Modular PCG - An Architecture for Procedural Content Generation

This section will review the literature and game industry for previous uses of multi-level multi-

content generators and attempts to generate complete games. By analysing previous examples

from the literature, this section will investigate how this type of generation can facilitate human

designer interaction.

This single-player fantasy game
published in 2006 is setin a
randomly generated persistent
world presented purely with
ASCII graphics.

An adventure game where
players explore an endless
procedurally generated world.
The game was published in
alpha in 2013.

A first-person shooter, created
by a German demogroup. It won
first place in the 96k game
competition at Breakpoint in
April 2004.

A sandbox indie game originally
created by the Swedish
programmer Markus "Notch"
Persson in 2009, and later
published by Mojang.

Even though there are not many games
using PCG in this extreme, there are a
few examples worth mentioning,
namely Dwarf Fortress, .kkrieger,
Minecraft and Cube World. Among
these, Dwarf Fortress and .kkrieger
might be the best examples since all
these

elements of games are

procedurally generated. In Dwarf

Fortress, the world is generated

completely from scratch including
characters, civilization structures and
ecosystems, which are able to react to
their surroundings. The world history
and historical events and figures are
also procedural and documented as
game lore. In .kkrieger PCG is used as
data compression making this 3D
shooter including textures and sounds
uses only 95 kilobytes of data, which can
be estimated to be approximately 0.1%
of what a game of equal quality would
use?. The other examples also relies
heavily on PCG, however it is mostly for
level generation purposes enabling near

endless levels and huge variation.

As with games, there are only a few examples of multi-level multi-content generators and

attempts of complete game generation within the research community [5]. Examples of

4 As a comparison, the game Quake by id Software from 1996 requires 80 megabytes of disk space.

22

MASTER’S THESIS, MEDIALOGY

AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS
CHAPTER 4

complete game generation include [6] [26] [27], while [28] [29] (and [30]) are examples of
multi-level multi-content generation.

Browne & Maire [6] invented a system, the LUDI system, for procedurally
generating board games through evolutionary techniques as described in
the motivation (section 1.1). Togelius & Schmidhuber [26] and Cook &
Colton [27] has tried generating arcade style games, resembling for
instance Pac-Man, from scratch through evolutionary techniques. [26]
uses Search-Based PCG, and both systems generates games with three
main components, namely a map in the form of a 2D grid, a layout
describing placement of players and NPCs on the map, and finally a

ruleset describing the rules, e.g. movement, collision, time, etc., for the

An arcade game first released in
1980, developed by Namco.
one could argue that game rules in their basic form are rather simple. Through the years several

remakes has been made and the
The main concern with these approaches is that they are designed to have | game has become cult.

games. The games and rules produced are, however, still very simple, but

no human interaction. [26] is meant as a proof-of-concept demonstrating
complete game generation, and how computational intelligence can be used to generate simple
games. The main critic of [26] is that the generated games, according to themselves, does not
represent good game design and are not particularly fun. It can be argued that automated
complete game generation should only be used if the system was able to design games with the
same quality as skilled human game designers. Togelius & Schmidhuber [26] argue that their
system can be used to generate prototypes of new game ideas, where a human designer specifies
the game engine and the axioms that define the rule space. Another possible use of automatic
game design could be in the post-production stage to fine-tune the design of a level or to adjust
the difficulty [26]. These two suggestions moves complete game generation towards a more
supportive role, where the algorithms support human design. This would be a step in the right
direction; however, the generation process is still not designed for human interaction, which, in
my view, is required before complete game generation can be said to facilitate human design.

The ANGELINA system presented by Cook & Colton [27] has the same capabilities as the one
presented in [26], with the addition ability of taking a human designed level and authoring rules
specifically for that. This is again a step in the right direction, but as with the previous example,
it is on its own an automatic enclosed system.

Unfortunately, none of the examples of complete game generation gives any solid solution on
how such systems can be made accessible to human designers. Complete game generation might
be too complex, since it implies incorporating all elements of game creation into one algorithmic
bundle that often are very autonomous and closed. Multi-purpose multi-level generators might
provide a more concrete solution, and thus the last part of this section will briefly discuss two

MIKAEL PETER OLSEN 23
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

24

examples of multi-level multi-content generation [28] [29] (and [30]), to further investigate how

human designers could be included in a more complex PCG context.

In [28] the story and map structure is generated using a waterfall model where story is
generated before the map, making the map suit the story structure. Because the map structure
is generated after, and in accordance with, the story structure, the system has to understand the
story and context. To enable this the story is written as a list of plot points, which are high-level
specification of time with a semantic and recognisable meaning. Each plot point include NPCs
and locations (not information about spatial layout) and a reactive script that control NPCs and
modifies the game world according to the plot point [28]. The system can procedurally generate
these plot points, but the real benefit is that the system allows a human designer to author these
plot points. To see an example of a story written as plot points, see Table 1. This method seems
to be very practical since it allows an easy overview of the story and allows a human designer to
author the main event, characters and locations, while procedural techniques can be tasked with
the job of authoring the links between the plot points.

Take (paladin, water-bucket, palace)

Kill (paladin, baba-yaga, water-bucket, graveyard1)
Drop (baba-yaga, ruby-slippers, graveyard1)

Take (paladin, shoes, graveyard1)

Gain-Trust (paladin, king-alfred, shoes, palace)
Tell-About (king-alfred, treasure, treasure-cave, paladin)
Take (paladin, treasure, treasure-cave)

Trap-Closes (paladin, treasure-cave)

© O NG WN e

. Solve-Puzzle (paladin, treasure-cave)
10. Trap-Opens (paladin, treasure-cave)

Hero (paladin), NPC (baba-yaga), NPC (king-alfred), Place (palace), Place (graveyardl), Place (treasure-cave),
Thing (water-bucket), Thing (treasure), Thing (ruby-slippers), Type (baba-yaga, witch), Type (king-alfred, king),
Type (palace, castle), Type (graveyardl, graveyard), Type (treasure-cave, cave), Type (water-bucket, bucket), Type
(ruby-slippers, shoes), Type (treasure, gold), Evil (baba-yaga)

Table 1: An example of a simple story represented as a list of plot points (top) and an initial state (bottom) [28]

Beside plot point authoring, the system presented by Hartsook, et al. [28] enables a human
designer to adjust the distribution maps (bitmap images) generated to locate object and scenery
in the game. The techniques presented enables human interaction and helps close the gap
between PCG and designers, and enables collaboration between the two. For further reading,
[28] is also discussed in relation to quest generation in section 7.5.

Smelik, et al. [29] [30] criticises traditional procedural methods and gives three reasons why
PCG has not been able to switch the content creation process of game development from manual
to (semi-)automatic. They state that procedural methods often are complex and unintuitive to
use, has little controllability and are difficult to integrate within an already existing virtual world.
To solve this issue they presents a declarative modelling approach, which enables designers to

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS
CHAPTER 4

create virtual worlds fast and efficiently. Their approach aim to combine the strengths of PCG
and the controllability of manual content creation. They have implemented this in the
application Sketchaworld, which utilizes two novel techniques, namely interactive procedural
sketching and virtual world consistency maintenance, letting designers sketch the world layout in
rough details. “Procedural sketching provides a fast and more intuitive way to model virtual
worlds, by letting designers interactively sketch their virtual world using high-level terrain features
[.-.]. Consistency maintenance guarantees that the semantics of all terrain features is preserved
throughout the modeling process” [30]. The idea behind this technique is that designers will have
enough control to specify what they want, and by controlling high-level terrain features, through
interactive procedural sketching, and will be able to create a large virtual landscape quickly and
efficiently [29]. The high-level features will in turn control different procedural methods, which
will add details to the world. The second and more automated part of the framework is the
virtual world consistency maintenance, which allows designers to freedom to change features
that might affect others without redesigning each to solve potential conflicts. The Sketchaworld
framework is illustrated in Figure 3, and described in more details in [30].

landscape and
relevant features

ecotopes

procedural
generation

Urban layer

generated Road layer
terrain

landscape mode feature Vegetation layer

landscape and

sketched affected features

................ Water layer
feature y
specifications| maintenance
terrain feature integration v Landscape layer
_—
update
feature mode
procedural sketching virtual world consistency maintenance 3D virtual world

Figure 3: Overview of the Sketchaworld framework.

What is interesting about their framework is the focus on accessibility. They have created
editorial tools with the designer in mind and designed them such that they resemble familiar
tool from classical image editing software, thus making them more relatable. They have
incorporated a feedback loop between designer actions and the visual output to allow near real-
time interaction with the virtual world [30].

They have validated their approach through different user sessions where professionals and
non-professionals have tested Sketchaworld. The users found it easy to create virtual worlds
matching their intent, even with no 3D modelling experience [30]. Sketchaworld has proven a
powerful tool; however, some designers requested more design freedom and controllability over
individual models. Even though designers can adjust the consistency maintenance settings in

MIKAEL PETER OLSEN
STUDY NO. 20093736

25

Modular PCG - An Architecture for Procedural Content Generation

26

different ways, Smelik, et al. believe that designers should be provided with an even more fine-
grained editing option [30].

They have designed Sketchaworld to facilitate replacement of the currently used content, for
instance replacing the textures with high-quality textures. This makes their approach very
flexible and it can be adapted to fulfil many design needs. Because of the structure, it is
technically also possible to design new procedural methods within the same framework. New
high-level generators could potentially be implemented to generate elements like railways,
lakes, etc. [30]. In theory, new methods only have to collaborate with other methods and the
framework on a semantic level, because the generation can be independent from the feature
interaction. The new methods has to be made compatible with procedural sketching and be
aware of their surroundings, meaning that rules should be designed to solve feature interaction
and they should be able to cope with loosing claims (i.e. when a feature requests a terrain area).

The two examples of multi-level multi-content generators [28] [30] illustrates how PCG can
support human design, and how techniques can be made accessible to designers. Both examples
talk about content generation on a semantic level, where high-level content is authored by a
human designer and low-level content is authored by algorithms reacting to the high-level
content. This facilitates a collaboration between PCG and human designers. The declarative
modelling approach presented by Smelik, et al. [30] might be the best suggestion on how game
designers can create a complete world fast and effectively using PCG, while keeping the artistic
control. An important aspect is the editorial option, procedural sketching, incorporated into
Sketchaworld, which uses the same metaphors as normal image editing software, thus making
it more relatable.

In [30] Smelik, et al. states that other researchers are able to expand the capabilities of
Sketchaworld by creating additionally functions that can generate other types of content. This
should be possible as long as new elements incorporate semantic rules that are compatible with
the existing framework and an option for procedural sketching is designed. However, from the
articles [29] [30] it is not clear how to design such generators and adapt them to the
Sketchaworld application. Furthermore, there seems to be too many considerations regarding
their interaction with other features in the virtual world, which makes the design rather
complicated. A better and more designer friendly approach would be to establish some concrete
design guidelines and/or templates which designers could base their implementation on. These
guidelines and templates should allow designers to implement PCG algorithms that are able to
interact with other content generators in the environment without considering the specific
application of each generator. New generators will thus fit within the architecture of the existing
ones and designers will have the freedom to create as many generators as they need and use
generators designed by other developers.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

C

ANALYSIS
HAPTER 4

If this was possible, one could imagine an application, much like Sketchaworld, which instead of
one large system consisted of many individual content generators integrated with one another
in a common framework that allowed designers and developers to add and remove different
generators to achieve a desired result. Depending on the design, such generators will give
designers the possibility to control high-level features for fast and efficient development, and
individual elements could be added and removed with ease. Different types of content and
functions could be implemented facilitating a variety of applications and games without the
difficulty of adapting generators and content to each other and the virtual environment. Such an
architecture could be used to design and implement complex games without too much hassle.

It can be theorised that such a system would close the gap between designers and PCG
algorithms and make PCG accessible to game designers and make it a more integrated part of
game development. The creation of such a system could be interesting both for the research
community and for the game industry. To elaborate on this concept, section 4.2 will focus on
how such a system can be made a reality and how it can facilitate game creation in collaboration
with game designers and developers.

In the motivation (section 1.1) the games Elite and Rogue were mentioned as two of the earliest
examples of games that utilised PCG. Despite the long history of the technology, however, PCG is
still not widely used and Yannakakis & Togelius [2] mentions two reasons why. One reason
might be that not all types of game content can be generated with the desired reliability,
variability and quality. Secondly, PCG techniques are not controllable enough, meaning that a
designer or algorithm cannot shape the outcome [2]. This is an issue also mentioned by Smelik,
etal. [30] (see section 4.1), and this controllability issue is something, which Modular PCG should
aim to solve.

Another issue with PCG is that most generators are designed for a specific purpose for a specific
implementation, which often means they cannot be reused in other application and, as stated
before, offers very little interaction. Togelius, et al. [5] mentions the lack reusable content
generators as a problem. For other types of game content, plug-and-play middleware are
available, but within PCG only SpeedTree, and a few landscaping tools, such as World Machine
and CityEngine [31], can be mentioned as widely used software, and they only cover a limited
space of content. It would be very interesting to have an array of plug-and-play content
generators that could be applied across different games and different genres. Theoretically, this
will increase the use of PCG in commercial games and could help meet the players demand for

MIKAEL PETER OLSEN
STUDY NO. 20093736

27

Modular P

CG - An Architecture for Procedural Content Generation

SpeedTree CityEngine World Machine

content, as discussed in the motivation (section 1.1), and allow designers more time and
freedom.

Toolkit used to create 3D A 3D modeling software Used for procedural terrain
animated plants and trees for developed by Esri R&D Center creation, simulations of nature,
games, animations, visual Zurich. Specialized in the and interactive editing to
effects shots, and architectural generation of 3D urban produce realistic looking
renderings. environments. terrain quickly and easily.

28

4.2.1 DEFINITION OF MODULAR PCG

As described throughout this report the main concern with PCG is its limited accessibility, which
is the main suspect as to why PCG is not widely used in game development. This section will
define Modular PCG, which aim is to close the gap between PCG algorithms and game designers
and developers and thus easing the development and help the adaptation of PCG into the game
industry.

If PCG should adapted into the workflow of designers it should be easy to interface with and
control, as emphasised by several researchers [25] [29] [30] [3] [32]. This would require the
algorithms to be more transparent and relatable, as opposed to one large PCG system that
generates all parts of game autonomously, similar to the systems described by [6] [26] [27] (see
section 4.1). Smaller PCG systems, or modules, should also allow designers to intervene and
adjust the outcome of any of them, thus shaping the generation and getting back their design
agency. Therefore, it can be theorised that smaller relatable and controllable modules might help
integrating PCG into the workflow of human designers and developers. This need for
controllability would also be the case if algorithms should be controlled by, or interact with,
other PCG algorithms [1]. This interaction is also mentioned as a possible research topic by
Togelius, et al. [5], which suggest either using a waterfall approach, where each type of content
is generated after the other and where one puts constraints on the following, or an interaction,
where constraints are posted in global space and all generators react to these constraints (see
Figure 4).

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS

CHAPTER 4

module
module
global
space
module
module

Figure 4: Left: lllustration of the waterfall approach. Right: Illustration of the interactive approach.

As said these smaller PCG systems can be seen as modules, which is why [propose the term
Modular PCG to describe a system of multiple individual PCG algorithms, or modules, that acts
on their own, which combined facilitates easy and relatable game development. Modular PCG
can be described as a system, but the terms structure and architecture will also be used to
describe it throughout the report, and the terms will be used interchangeably.

It can be theorised that Modular PCG will be a better approach than developing one large PCG
system for two main reasons. First, by having a modular setup, each module will be more specific
and thus easier to relate to and human designers will better understand the capabilities of each
module. Secondly, different modules with different capability will enable designers to choose
only the ones they need for the implementation they are working on. It can therefore be
theorised that research in this area will prove beneficial for both the game industry and general
PCG research, and suspect that this will help integrate PCG into commercial game development,
which is a necessary step for the success of PCG. A Modular PCG system could be used to create
PCG-based games, complete games and the system would generate multi-level multi-content,
and this take on PCG thus captures the original grand goals presented by Togelius, et al. [5],
mentioned in section 2.2.

As such, the individual modules in a Modular PCG system can be any PCG algorithm, meaning it
should be possible to include a variety of different content generators; however, one has to
consider who the user(s) will be. If the user is a human designer, the module should be easy to
interface. If it is a player, the module most likely needs to facilitate some form for adaptation to
player’s desires or actions (see section 2.1.2 about Experience Driven PCG). Finally, if the user is
another PCG module, the two must be able to talk to each other and adaptation is most likely
also required. In any case, the module has to be specific and autonomous enough to handle

MIKAEL PETER OLSEN
STUDY NO. 20093736

29

Modular PCG - An Architecture for Procedural Content Generation

demands in a sufficient way, but at the same time, if interacting with a human designer, be
flexible and transparent to grant design agency and empowerment [25]. Considering this, the
definition of PCG presented in section 2.1: “the algorithmic creation of game content with limited
or indirect user input” [24], is still valid; however one additional comment has to be made in
relation to Modular PCG. I propose that “user” should be understood as both game designers,
players and other PCG modules, and it should be possible for modules to have multiple users,
e.g. a designer specifying a level layout, a player “requesting” more enemies, and a quest module
requesting NPC locations.

4.2.2 MODULAR PCG AS A RESEARCH AREA

There are many interesting areas of research within PCG, which must not be neglected with the
introduction of Modular PCG. This section will therefore review some research topics within PCG
suggested by other researchers [5] [4] [8] [1] and explain how Modular PCG is able to cover these
topics. Hendrikx, et al. [1] suggests five areas of research. The first is the research in the
generation of what they see as higher level content, i.e. Game Scenarios, Game Design and
Derived Content (see Figure 5). They also suggest is research in more detailed generators,
specifically in relation to Game Space and Game Systems, and suggest that research should focus
on the interaction between generators as well.

- News and
Derived Content Leaderboards
Broadcasts
/ Game Design \ System Design | World Design
/ Game Scenarios \ Puzzles Storyboards Story Levels
Urban Entity
Game System Ecosystems Road Networks i .
Environments Behaviour
Bodies of
Game Space Indoor Maps Outdoor Maps
Water
Textures Sound Vegetation Buildings
Game Bits -
Fire, Water,
Behaviour
Stone & Clouds

Figure 5: Types of game content that can be procedurally generate [1].

30

Even though there have not been many examples of generators capable of generating content
from the top of the pyramid, it should be possible to create generators for all the different types
of content listed by Hendrikx, et al. [1]. Because Modular PCG should be seen as a framework and
a way of structuring different procedural algorithms, it is possible to incorporate many different
algorithms as modules. The issue is therefore not which content can be generated, but how
modules should communicate with each other and the general structure of the system. Within
the scope of this project, it might be too comprehensive to create a Modular PCG system that

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS

CHAPTER 4

includes the top most content from Figure 5. What I consider feasible within the scope of this
project, and a good starting point for proving the validity of Modular PCQG, is to create a system
based on high-level modules designed to generate Game Scenarios or Game Systems. The reason
for starting with higher-level content is that this type is more designer oriented and it can be
theorised that well designed, i.e. accessible, high-level modules will be able to aid a designer
more efficiently, i.e. help structure, author and plan. If modules were designed for each of the
categories in the content pyramid in Figure 5, the high-level modules should be able to control
lower-level modules generating Game Spaces or Game Bits. This method can therefore be seen
as a top-down approach, where low-level content is controlled by higher-level content and thus
the designer interaction lies with the high-level content. Contrary, it would be possible to create
a bottom-up approach, where the designer interaction lies primarily with the low-level content
that in turn controls the higher-level content.

Hendrikx, et al. [1] also suggests utilizing multi-core computer systems or multi-node computer
networks to enhance the quality of PCG in relation to the individual Game Bits, making
generation faster and more time efficient. Such advancements could easily be incorporated
within Modular PCG, by designing modules to utilise these techniques.

Togelius, et al. [4], who talks about Search-Based PCG (see section 2.1.1), mentions the
investigation of content representation, i.e. genotypes, and fitness function design as a research
topic. This is a more general concern and something one always has to consider when designing
search-based PCG. Search-Based PCG has both strengths and weaknesses; in broad terms, one
can say that it will create content perfectly suited to a given situation but on the other hand it is
a very closed circuit and generation time can vary a lot, thus Search-Based PCG is best used in
offline generation, i.e. during development. That said some modules might benefit from Search-
Based PCG. To fit design requirements from higher or lower-level modules, modules can use
Search-Based PCG to generation the best-suited content that links the game together. It can also
be used to create modules that will adapt to the player and the player’s actions (see section 2.1.2
about Experience Driven PCG). This relates to their subsequent paper where Togelius, et al. [8]
suggests investigating player models and how these can be integrated into the evaluation
functions. This could lead to investigation of how to incorporate the player model into the
generation process, which could help optimise the evaluation and ideally, if content could be
generated to a satisfying standard the first time, make the evaluation redundant. A player model
can be setup by one individual player before or during play or be created based on a theoretical
approximation of player desires and expectations. Because the interactive, i.e. player-driven, and
the theoretical player model are capable of different things, a topic of research could be to
investigate in which cases either is usable and how the two could be combined.

In [8] they also mentions some more general research topics, which illustrates some general
concerns when creating PCG algorithms, and Search-Based PCG. First, one could identify which

MIKAEL PETER OLSEN
STUDY NO. 20093736

31

Modular PCG - An Architecture for Procedural Content Generation

type of content is suitable for generation and how it should be represented in the search space.
This would of cause depend on the application and whether or not it should be done online or
offline, and if the content is optional or necessary (see section 2.1). They also suggest research
within optimisation of PCG algorithms, namely how to make them more reliable and precise and
how to speed up the generation process. This research is something that could benefit regular
PCG algorithms and thus also the modules in Modular PCG.

The last topic, which they [8] suggest, is related to the evaluation of the generators themselves.
Since PCG are capable of generating an array of different things it is difficult to compare and
evaluate generators against each other. Therefore, they suggest setting up a framework for
testing generators, where PCG algorithms must solve the same problem using the same API. This
suggesting is highly relevant when talking about Modular PCG since different modules has to
communicate and integrate with one another, and therefore a common API would be the ideal.
This can of cause be seen as a limitation, since creators has to make their modules work within
the same API and work within some general design requirements and specifications. On the
other hand, a Modular PCG system would enable developers to use different modules from
different designers and apply them in their own development. I believe this should be the grand
goal of Modular PCG, however, Modular PCG will have to be defined further if it should be
acknowledged as a part of PCG research and become a research area on its own. Further
investigation should determine which modules should be produced, and how the inputs and
outputs should be designed. Research in Modular PCG should also take designers and players,
i.e. users, into consideration, allowing designers to direct and shape the generation and it could
be useful to implement player adaptation into certain modules, allowing the generation to
change and adapt to players and playing styles accordingly.

4.2.3 MODULAR PCG IN THE INDUSTRY

As described in section 2.2, Togelius, et al. [5] lists three grand goals of PCG, one of which is

] complete game generation where a PCG system should be able to
Electronic Arts . . o
generate a complete game including all assets and the engine itself. As
r

mentioned, it could be a fruitful research area, however this is not what
the industry wants, and it is only logical that PCG research aims to fulfil
the needs from the industry. This is backed up in [3], co-written by people
working for Electronic Arts, stating, “Game artists aren’t looking for a one-

button procedural solution. Instead, they’re interested in procedural

Founded in 1982 this American
developer, marketer, publisher
and distributor of video games
are known for Need for Speed,
The Sims, Medal of Honor, and
other game titles.

32

methods that help with tedious tasks and provide results that adjust to
gaming constraints” [3]. PCG should fit within the already established
workflow and “free artists to spend time creating and polishing, rather
than performing mundane, repetitive, and time-consuming tasks. [...] Game

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS

CHAPTER 4

artists are looking for procedural methods for modeling organic objects that meet asset budgets
and yet remain convincing” [3]. In relation to this, the tools provided should be easy to use and
intuitive to the designers and resemble well-known functions such as soft selection, drag and
drop, insertion and deletion [32], and in general accessible to designers [25].

Specifically related to city modelling Lipp, et al. [32] asked artists and programmers about their
needs, and found that previous work within PCG were missing an easy way to implement
handcrafted assets and that the artists were missing their direct artistic control. This
strengthens the assumption that if the game industry should adapt Modular PCG, and PCG in
general, the tools and design metaphors should resemble what designers are familiar and
comfortable with.

4.2.4 APPLIED MODULAR PCG

To my knowledge the concept of Modular PCG has never been discussed before; however, some
applications are using methods similar to the ones proposed in relation to Modular PCG. For
instance, in section 4.2 it was pointed out that CityEngine [31] and SpeedTree was some of the
few tools widely used in the industry, and they in fact proves as good examples of how Modular
PCG should be used and understood. CityEngine, SpeedTree and other applications will thus be
discussed in this section to illustrate how Modular PCG could be useful to game designers, and
ease the development.

In short, CityEngine is an application used for planning and designing urban architecture and
cities. It uses a procedural approach based on L-systems to generate streets, building, etc., and
was originally presented by Parish & Miiller [31] in 2001, but became commercial in 2008.
Watson, et al. [3] also describes procedural modelling in relation to city creation and describes
how to incorporate CityEngine into the workflow of game development and movie production.
They study how procedural urban modelling has been used in the Need for Speed game series.
Lipp, et al. [32] proposes a system compatible with CityEngine for structuring city layouts with
focus on relatable editing options, such as drag and drop. The techniques presented resembles
in many ways the editing options in Sketchaworld presented by Smelik, et al. [30] (see section
4.1 and 6.4). These techniques are relatable and flexibility and returns some design agency to
the designers and is therefore a good example of how Modular PCG should be used and how tools
should be implemented. In the later years, these editorial options, together with many more,
have been incorporated into CityEngine, and it has become a rather complicated piece of
software.

As mentioned, SpeedTree is another example of an application that to some degree resembles
how Modular PCG should be structured. SpeedTree represents the many applications that are

MIKAEL PETER OLSEN
STUDY NO. 20093736

33

Modular PCG - An Architecture for Procedural Content Generation

s "y

designed to generate plants
procedurally, and this is a large
research field in itself [12]. The
problem at hand, like city generation,
is that huge environments requires
many graphical assets, i.e. geometry
and textures. Instead of reusing assets

by changing colour and size, which is

A small tool used to
procedurally grow a virtual ivy
on 3D objects. The ivy can then
be exported as an .obj file and
used in other 3D programs.

. often noticeable, PCG can help create a
A procedural organic 3D

modeller used to create and
animate 3D trees, flowers,
nature based special effects or
architectural forms.

variety of assets and thereby improve
the realism [12]. In [12] 12 examples
of tree and plant generators is listed

and described. It is clear that some of

An easy to use tree generator
with a user interface that allows
creation of nearly any type of
tree within minutes.

the earlier applications are not capable of generating anything useable
for computer games, but are mainly usable to illustrate procedural
methods, such as L-Systems. Examples of more useful> applications
include An Ivy Generator, Xfrog and Tree[d] and, as mentioned before,
SpeedTree.

SpeedTree, together with the other examples, can be seen as modules for
Modular PCG, even though they are not completely integrable with other
programs. It could be interesting to have these tools integrable within a
common API, e.g. a game engine, allowing fast and productive
development. This will enable designers and developers to choose the
generators that suits their needs, which previous was mentioned as the
grand goal of Modular PCG (see section 2.2). Having such tools within a

common API with other modules would also allow them to use each other and thus a more

autonomous system can be designed.

To make this a reality a lot of work is required regarding the architectural design of the system

and modules and determining how these modules should communicate with the main engine

and each other. Inspired by the most successful examples of plant generators, modules working

with geometry and 3D models could be designed to use the .obj file format and other industry

standards. This might ease interaction between modules and make the generation more

5 In this context useful means that the application is able to generate files compatible with other programs,
for instance by generating .obj files, that the application is somewhat user friendly and that the generated
content is of a relatively high quality, thus useable for computer game production.

34

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

ANALYSIS

CHAPTER 4

relatable to designers and developers, and enable them to import objects from other programs
if necessary.

City and plant generators, and generally modelling generators, have the benefit of generating
something that is visible and physicalized as a 3D object, and is often the end state of generation.
Things such as determining what buildings to place in a certain area of a city or which types of
plants should populate a forest can be seen as higher-level generation. This was also discussed
in section 4.2.2 with inspiration from Hendrikx, et al. [1] who categorised content from low-level
to high-level. As described the architecture of Modular PCG could be designed such that higher-
level modules determines higher-level content and lower-level modules generates more simple
content based on requests from the higher-level modules (referred to as a top-down procedure).

The analysis has now analysed and discussed different areas based on the problem statement:
“How can a PCG system designed for complete game generation be made accessible to human
designers and how can it be integrated within the development pipeline?”

In the analysis examples of complete game generation and multi-level multi-purpose generators
from games and the research community has been analysed. It was discovered that there have
not been many successful examples of complete game generation, and the few examples from
research have not been very accessible to designers. Thus, a few examples of multi-level multi-
purpose generators was discussed and it was found that these had more focus on the
controllability and accessibility and gave some initial ideas towards designer interaction. Based
on the examples of multi-level multi-purpose generators a new view on PCG was proposed,
named Modular PCG. The term Modular PCG describes a system of multiple individual PCG
modules that acts on their own and facilitates easy and relatable game development when
combined. The modules should be seen as regular PCG algorithms, with the added ability to
interact with each other and react according to changes.

The problem at hand is that most PCG systems are designed to generate only one type on content
and often offers very little interaction. This makes it difficult to adapt PCG into game
development, as designers might not understand the capabilities of the PCG system and are not
able to adjust the outcome and thereby loose some design agency. Modular PCG would facilitate
a creation of an array of ready to use plug-and-play algorithms, which designers and developers
could easily implement into their game. It should be possible for them to interact with the
modules to achieve a desired outcome, making Modular PCG very flexible and relatable. Modular
PCG should make it easier for game designers and developers to create games and enable them
to choose only the modules needed for their implementation. The grand goal of Modular PCG

MIKAEL PETER OLSEN
STUDY NO. 20093736

35

Modular PCG - An Architecture for Procedural Content Generation

should be to enable users, designers and developers, to choose many different modules from
different designers, and shape and apply them in their own development.

It has been described how Modular PCG fits within the current PCG research and is able to
capture the existing research topics, which illustrates the usefulness of this proposed
framework. With further work is would be possible to create Modular PCG systems capable of
creating whole games through either a top-down or bottom-up approach, incorporating player
experience, i.e. Experience Driven PCG, and the powers of Search-Based PCG. It is the hope that
Modular PCG will make the process of game creation more streamlined and accessible to human
designers.

Insection 4.2.3, it was described that game designers are not looking for a one-button procedural
solution to generate all aspects at once. What they seek is procedural methods that ease the
completion of tedious tasks and provide tools with well-designed metaphors that give them the
design agency they need. This is something that Modular PCG should aim to provide, and in
section 4.2.4, it was argued that examples of Modular PCG, or modules, can already be found in
some of the more successful PCG applications. Because of this and the requirements from the
industry, it can be argued that Modular PCG is the right direction for PCG research and this way
of thinking will help PCG integrate within the current game industry.

Research within Modular PCG should determine which modules to develop and how inputs and
outputs should be designed such that modules can be combined. This, of cause, only represents
a fraction of the research needed in Modular PCG, but this report will serve as initial research to

prove the validity of

shape and clarify Modular

j‘l’-me— PCG and determining its

High-level High-level strengths and weaknesses
modules motles in relation to game

MI ot A; u development. The
,_L ,_L architecture of Modular
Lowlevel Low-level PCG should be investigated

modules modules

further; Figure 6 however,

Generate illustrates an initial

architecture to describe
Modular PCG.

Figure 6: An initial architectural design for Modular PCG. Left: Top-down approach, where
designers and players influence high-level modules that affect low-level modules, which generate
the final output. Right: Bottom-up approach, where high-level modules adjust to the requirements
from lower-level modules, which are controlled by designer and player.

36

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

DELIMITATIONS
CHAPTER 5

CHAPTER 5
DELIMITATIONS

Because suggesting a new research field is like opening Pandora’s Box, this report cannot cover

all areas of Modular PCG. The goal is therefore to give a basic holistic vision of Modular PCG,

regarding it overall architecture and how new modules should be created and linked to other

modules. To focus the research and to give a concrete example of how Modular PCG can be used,

this section will review a few research suggestions by Togelius, et al. [5], that can be addressed

“already today”, to see if any of these would benefit from Modular PCG.

What Togelius, et al. [5] suggests is five actionable steps, which could help advance the state of

the art of PCG in general. The first suggestion is to reduce the complexity of PCG focussing on a

constrained space of games, similar to old Atari 2600 games. This is because games today are

very complex and it can be very difficult to achieve this complexity. They
state that within the limitations, one could create a PCG system for
complete game generation, which will address one of the grand goals
mentioned in section 2.2. Secondly, they suggest research in procedural
animations for generated creatures, which will help overcome the
animation bottleneck of PCG. The game Spore is the most promising
attempt to do this, even though their creature space is rather limited.
Thirdly, they suggests creating games with a sense of purpose, and state
that procedural generators often create content that looks very generic
and does not offer much variation. Generated levels often “lack
meaningful macro-structure and a sense of progression and purpose” [5],
and rarely offers creative design innovations. This is a paradox within

MIKAEL PETER OLSEN
STUDY NO. 20093736

Single-player god game / life
simulation game designed by
Will Wright, developed by
Maxis and released by
Electronic Arts in 2008.

37

Modular PCG - An Architecture for Procedural Content Generation

PCG; on one hand, you might want to have a predictable outcome and on the other, you might
want innovative, creative and original design. In any case, one should always strive for a
purposefully designed game. They also list this issue as a research challenge suitable for a PhD
thesis, but as a concrete suggestion for a minor project, they suggest using the Mario Al
Benchmark for accomplishing this. This is because it can provide a lot of material for comparison,
both level generators and professional created levels. Next they suggest working with player-
directed generation to optimise the generation and diverse the content. This relates to [8] who
suggests using player models together with Search-Based PCG, which can be seen as Experience
Driven PCG [2].

Lastly and most interestingly, Togelius, et al., 2013 [5] suggests investigating the merge of quest
and map generation. In the best-designed games, the quests often interact with the game world
and vice versa, which often help tell the story and subsequently helps the player explorer the
game on both the spatial and narrative level. They state that there are very little work done on
generating quests and maps together, whereas there are multiple examples of generators
capable of generating only one of the two. [33] [28] can be mentioned as examples of the first,
whereas [34] [35] are examples of the latter. In relation to this project, it could be very
interesting to investigate this type of complex game generation, because it will test the
capabilities of Modular PCG. If Modular PCG is as powerful as suggested throughout this report,
it should be possible to create different modules that together in a common architecture will
facilitate complex game creation, and allow a human designer the necessary freedom.

Following Hendrikx, et al. [1] both quests and maps can be seen as higher-level content, which
strengthens the assumption that quest and map generation will be an excellent example of how
two high-level generators should interact and how they should solve the conflicts that might
arise. As mentioned higher-level modules might need multiple lower-level modules to generate
lower-level content. This was referred to as a top-down approach, and through that, it would be
possible to illustrate the interaction and interdependence between modules of different
complexity.

Specifically related to quest and map generation, Togelius, et al. [5] present four methods that
could direct research. One method could be to use an algorithm that has already been proved to
work well for either quest or map generation, and then integrate generation of the other into
this. Another way could be to have a quest generator and a map generator take turns generating
content and in the process responding to each other’s generation. A third option could be to
invent a new algorithm that could generate both quest and map synchronously. The final method
they propose involves human intervention at any phase of the generation process.

All these methods links very closely to Modular PCG, although they require slightly different
structures. The first implies a waterfall approach where either the quest or the map generation
module generates its content and then controls, or puts constraints on, the other. This means

38 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

DELIMITATIONS
CHAPTER 5

that the first has higher priority than the other does. It can be suspected that if the quest
represents the main storyline, this will have to be generated first, but if the quest element
represents side quests and the map the main element, a map might have to be generated first.
The second method requires an interaction between the two modules, meaning that the two will
have equal priority and conflict resolution will have to be implemented. This could be used to
illustrate how high-level modules interact and solve conflicts as mentioned before. The third
method might be outside of Modular PCG since it implies creating a new generator capable of
generating both quest and map, which will be the outcome of a modular system, and single multi-
content generators is against the concept of Modular PCG. The last method can be seen as a more
general thing and can be linked to the first and second mentioned. The idea behind Modular PCG
is to let the designer interact whenever possible and logical, to help integrate PCG into the game
development pipeline.

Based on the discussion above, Modular PCG will be illustrated through complex game
generation, and more specifically by a top-down approach of quest and map generation where
both represent high-level content. The two will be linked through either a waterfall or an
interactive approach depending of the concrete scenario, however this cannot be decided until
further analysis has been carried out. The high-level modules should allow some human
interaction and the generated result should look like it has been purposeful designed with a
logical progression throughout, thus helping the player explorer both the spatial design and the
quest structure.

MIKAEL PETER OLSEN 39
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

40

CHAPTER 6
MODULAR PCG

6.1 INITIAL ARCHITECTURE,.......cceeeeterreressssesessssssssssssssrssssssssssssssssssssssssssssssssssassssssnens 41
6.2 HIGH- AND LOW-LEVEL MODULES.........ccocssuererccrersssessssssssessssssssssssssssssassssssssssens 42
6.3 VIRTUAL WORLD INTERACTION __.........oeoereiererecceccsessssesessssessssesessssesas s ssssssananns 44
6.4 DESIGNER INSTRUCTIONS _..........ccooiiieeeeieresessscscssessssesssssssssasasessssesassssssannanns 48
6.5 MODULES PROVIDING CONTENT TO PLAYERS AND DESIGNERSo, 50
6.6~ MODULES GETTING INPUT FROM PLAYERSccoeveerrrscemrnsersss s senssssenssssennes 51
6.7 FINAL ARCHITECTURE 52

This project set out to answer how PCG, when used for complex game development, can be made
more accessible to game designers, and as a solution the term Modular PCG was proposed, which
describes is an architecture that facilitates human design better than previous attempts.
Modular PCG describes a system of multiple individual PCG modules that acts on their own and,
when combined, facilitates easy and relatable game development. It should allow game
developers to choose different modules from different designers and apply them in their own
development. In Chapter 5, it was decided to illustrate Modular PCG through complex game
generation, and more specifically to use quest and map generation to illustrate the use of
Modular PCG. This will facilitate both high-level and lower-level content generation and a top-
down approach will form the basis for the structure.

This chapter will describe an initial architecture for Modular PCG and analyse its different
elements in order to synthesise one final architecture that describes Modular PCG and how it

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

should be applied in game development. The purpose of the architecture is thus to describe how
it will be possible for multiple content generation modules to form a common architecture
enabling coherent generation of complex games and leaving sufficient control to a human
designer.

This section will describe some basic thoughts and ideas about the initial architecture of Modular
PCG. Previously it was stated that modules should be able to interact and act on their own,
enabling designer and developers to use different modules of their choice. Following Figure 6 in
section 4.3 there must exist at least two types of interaction between modules, namely high-level
modules instructing low-level modules and vice versa. Beyond that, there must be an interaction
between the modules and the designers and/or players. First, designers must be able to instruct
either high- or low-level modules depending on the approach. Secondly, the modules responsible
for the generation should be able to make the generated content available to the player and the
designers during development. In connection to the player, some modules might need player
input to some extent, either directly or indirectly, and should thus facilitate this and be able to
collect the input. As a last type of interaction, modules might need to interact internally, this
again might depend on the approach, but it seems logical that modules responsible for the
structuring and planning, whether it be high- or low-level, must be able to interact with other
modules. This leaves seven types of interaction:

High-level modules instructing low-level modules
Low-level modules instructing high-level modules
Designers instructing high-level modules

Designers instructing low-level modules

Modules providing content to players and designers
Modules getting input from players

NS s W e

Internal interaction between modules

Figure 7 shows an example of a Modular PCG system using a top-down approach, which
illustrates these different types of connections. The example is purely fictional and the numbers
in the model correspond to the number from the list above.

MIKAEL PETER OLSEN
STUDY NO. 20093736

41

Modular PCG - An Architecture for Procedural Content Generation

42

5

5

3
7 High-level
Module modules
5 ouput YL
Low-level
modules :

1

Module

Figure 7: Example of a top-down Modular PCG system, numbers describe different connection types. 1: High-level module
instructing low-level module. 3: Designer instructing high-level modules. 5: Modules providing content to player and
designer. 6: Modules getting input from player. 7: Modules communicating internally.

These interactions will have to be investigate further in relation to complex game creation and
specifically to quest and map generation. The following sections will thus analyse each of the
proposed connections using examples from literature, and thereby establishing how these
connections should be structured in the common architecture. This will also either verify of
disprove the existence of each connection and clarify which is needed and if some can be merged
into one.

Firstly, this section will discuss whether modules can be divided into high- and low-level, and
how and if this structuring can benefit the architecture.

In section 4.2.2 it was established that both high- and low-level modules exists based on the
categorisation of game content by [1], namely: Derived Content, Game Design, Game Scenarios,
Game System, Game Space, Game Bits. Generally, generators within Game Scenarios and Game
System should be seen as high-level modules, because they can be seen as authors of more
complex content. Low-level modules thus generates content within Game Space and Game Bits.
The reason why Derived Content and Game Design was not seen as high-level modules, even
though they lie higher in the hierarchy, is that Derived Content can be seen as something outside
of the game itself, and Game Design are at the same level as human designers. That said one could
create an artificial game designer that could replace the role of the human designer and author
a complete game experience using a Modular PCG system just as a human designer would.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

The division into high- and low-level modules should be seen as categorisation of modules,
where high-level modules generate more complex and abstract content as opposed to low-level
modules that generally generate simpler and more concrete content. This categorisation might
be more relevant when discussing modules of different types and the approach one uses, either
top-down or bottom-up, and in fact unnecessary in relation to the general architecture. As an
example, let us consider a map generation module capable of generating rough-like maps and a
story generation module. In a top-down system the map generation module will be required to
adapt to instruction from higher-level modules, such as the story generation module, but it might
still be desirable for a designer to draw a basic map layout. In a bottom-up system, the map
generation module will put constraints on higher-level modules, and thus the story module will
have to adapt to the generated map. In this case, a designer also needs the ability to influence
the map layout. In both cases, this interaction between modules seems to be identical on the
architectural level. In both cases one module puts constrains on the other, however, since
modules should have the ability to adapt to various unknown modules they cannot interact with
each other directly. If one module were directly controlled by another, the second module could
be seen as a sub-module and the two would as such be seen as one module. The module and sub-
module would form their own architecture and the interaction between the two would be
internal, which, together with the fact that modules should not interact directly, eliminates the
last of the suggested interaction types, “internal interaction between modules”.

Instead of direct interaction between modules, one module should change the virtual world and
the other should react to this change. This means that both top-down and bottom-up can be
achieved by ranking modules in a hierarchy, where modules near the top have greater influence
on the virtual world and modules further have to adjust to the changes. That said modules could
still be designed to be near the top or further down this hierarchy. This type of structuring can
be related to the implementation of Sketchaworld [30]. In Sketchaworld, the content is organised
in a top-down fashion in five layersé based on semantics and relationships between features,
which means that the generation will start with the most abstract structures working down
towards structures that are more concrete. Since features in the Sketchaworld implementation
are able to interact with each other, it differs slightly from Modular PCG; however, organising
modules in layers could be a useful method for designers and developers to prioritise modules
and it seems to be a very practical organisational tool.

In relation to the general architecture of Modular PCG, Sketchaworld is a rather limited example
because it is designed for the creation of virtual worlds only, and it is therefore difficult to see
any logical connection to for instance the non-physical content found in complex games, e.g.

6 The layers are as follows: “1. Urban layer: e.g. cities, districts, parcels, buildings. 2. Road layer: e.g.
highways, local roads and streets, bridges. 3. Vegetation layer: e.g. natural forests, planted vegetation. 4.
Water layer: e.g. rivers, canals, lakes, oceans. 5. Landscape layer: elevation profile and soil material” [30]

MIKAEL PETER OLSEN 43
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

44

quests and the content quests might entail. Ideally, it should be possible to create modules that
enables generation of both physical and non-physical content. The main issue with non-physical
content is that interaction is not straightforward, especially since the modules should not
interact directly. It has been established that modules designed for physical content, e.g. forests,
cities, grass and buildings, should interacts through the virtual environment, and thus modules
for non-physical content generation should interact through a similar space. This interaction
space is something, which will be determined in section 6.3, about interaction.

Following the discussion above the same modules can be used in both a top-down and a bottom-
up implementation, and modules can therefore not be divided into high- and low-level modules
when it comes to the architecture. The terms can however still be used to describe which types
of content the modules are designed to generate and the general purpose of the modules.
Consequently, since the architecture cannot and should not distinguish between high- and low-
level modules, the first two interaction types, “high-level modules instructing low-level
modules” and “low-level modules instructing high-level modules”, can be merged into one. As
said modules should interact through the virtual environment, or a similar space for non-
physical content generators, and not directly with each other, which means that the new
interaction cannot be named “modules instructing modules”. Instead, it will be named “virtual
world interaction”, which will cover the interaction that arises when modules instruct the virtual
world and when they adapt to it. In addition, “designers instructing high-level modules” and
“designers instructing low-level modules” can be merged into “designer instructions”. Note that
this is a one-way interaction, and that the interaction from module to designer and player
therefore remains as their own category for now.

As described in section 6.2 this interaction type is the result of considering high- and low-level
modules as equal on an architectural level, and the decision to avoid any direct interaction
between modules. This type thus covers the interaction that arises when modules instruct the
virtual world, i.e. when modules makes decisions that affects or changes the virtual world, and
the reverse interaction that arises when modules adjust to fit the virtual world. To distinguish
between the two, the first type will be called Instructive Interaction (I) and the second Adaptive
Interaction (A).

To illustrate virtual world interaction, the application Sketchaworld can be used to exemplify
how generation can be both instructive and adaptive. In Sketchaworld, terrain features interact
with each other, which means that some features instructs the generation, some adapt to the
generation and in many cases features have to solve conflicts between one another meaning both

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

have to be instructive and adaptive. In Sketchaworld, features not only have a geometric
description, but also a semantic description that defines connections with other features in
relation to geometric and functional constraints. This allows many different features to interact
and content are specifically designed for these interactions, for instance in a situation where a
road and a river intersects, a bridge can be automatically generated. On one hand, this creates a
very adaptive and flexible system generation wise, however, it also makes the system very
entangled and it is far from straightforward to create new types of content. With Modular PCG
new generators, or modules, can be made without considering which other modules exists in the
system, which is why modules must be able to interact with the virtual environment and not
necessarily with other modules. The reason for this structure is to make is possible for other
researchers and developers to contribute to the development of PCG in a more practical and
applicable framework.

The content generated by various modules needs to interact with the virtual environment at
level that facilitate fast and efficient instruction and adaptation, i.e. contains the right amount of
detail. Because of computational complexity and computation time, it might not be optimal to let
modules interact with a fully detailed virtual environment. In Sketchaworld, features are divided
into three levels of abstraction, which represents different levels of detail. The first is the
specification level, which enables designer instructions; the second is the structural level at
which features are represented as simple structures allowing interactions; the third and final
level is the object level, which is the final detailed generation:

1. “Specification level: user-sketched coarse outline and input parameters (e.g. a forest
specification)”

2. “Structural level: the layout of the feature and the area it encompasses (e.g. the contour
of the forest)”

3. “Object level: all individual semantic objects making up the feature that will result in
concrete, geometric objects (e.g. the set of individual trees)” [30]

Related to Modular PCG, abstraction level 1 facilitates designer input, i.e. designer instructions
(see section 6.4), and level 2 and 3 can be seen as the content representation available to
designers and target audience respectively (see section 6.5). Since these levels are able to
describe input and output of modules, they will be used prospectively to describe the general
internal architecture from which each module should be build. Using these descriptions and in
relation to virtual world interaction, it would be most beneficial to let modules interact with a
representation of the virtual world at abstraction level 2.

Since features in Sketchaworld interact directly with each other, their interactions cannot be
applied directly to the architecture of Modular PCG; however, inspiration can be drawn from
how conflicts are handled. In Sketchaworld whenever there is conflict between two features,
each feature can give one of two requests. Either a claim, where the feature requests control over

MIKAEL PETER OLSEN 45
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

46

for instance a terrain area, or a modification, where the feature requests a local terrain
modification for instance an elevation or material change [30].

In relation to Modular PCG both claim and modification can be seen as instructive interactions,
because both represents an instruction from the module to the environment, however, claim
implies a higher priority than modification. As described in section 6.2 it would be useful to
organise modules in a hierarchy, where priorities are decided from the order in which the
modules are arranged. Within this hierarchical structure, a claim would refer to an instructive
interaction from a higher priority module, and a modification would refer to a module of equal
priority requesting a change in an already generated part of the environment. Note that this
structure does not allow modules to influence modules higher up the hierarchy.

To manage priorities, modules could each be given a priority ID, which would make it possible
to group modules by given them the same ID. Modules with the same priority ID would have to
adapt to each other, i.e. adaptive interaction, and resolve conflicts by requesting modifications.
In the context of Modular PCG, a modification might be better described with the word proposal.
A proposal should be an alternative layout of the content of the proposing module, which the
other module should then counter, i.e. return a new proposal, or accept. A maximum amount of
proposals could be included in the implementation to stop infinite counter request loops. When
a proposal has been accepted or the maximum number of proposals has been reached, both
modules will generate their content based on the last proposal. That way both modules will have
adjusted their content through adaptive interactions. To direct the generation of alternative
layouts and in general adaptive interactions, a scoring system could be built into each module,
allowing them to rate how well they are able to generate their content. This could then be used
to generate the most optimal layouts and to avoid sacrificing too much content in situations
where a module needs to propose an alternative layout. Rules about how and which content
could be rearranged or excluded could be built into the modules allowing better reconstructions
of layouts. Figure 8 illustrates how modules with different or equal priorities will affect each
other’s generation and which type of virtual world interaction will arise.

« 0 0

Hierarchy Hierarchy Hierarchy
level 1 ®Forest level 1 .Settlement level 1 @Forest
level 2 .Settlement level 2 ® Forest .Setﬂement

Figure 8: How hierarchical structure will affect generation and change which elements becomes Instructive (I) and
Adaptive (A).

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

The instructive or adaptive interaction that arises between modules can be related to what
Smelik, et al. [30] calls feature interaction, which in Sketchaworld occurs when two terrain
features claim the same area. In Sketchaworld different priorities determine if feature
interaction should be resolved through either cooperation, e.g. when a bridge is created over a
river, or conflict, e.g. when a city overlaps a forest and the forest no longer have rights to occupy
that area. In Modular PCG priorities is determined through a hierarchical structure and thus
cooperation can be said to be what happens when two modules of equal priority adaptively
generates content, and conflict can be said to occur when a higher priority module claims a part
of the virtual world, thus restricting generation of lower priority modules.

In relation to adaptive interaction in general, modules has to interpret the virtual world on the
structural level, as discussed earlier in this section, and determine how new content can be
adapted to the existing content in the world. With physical content, such as houses, rivers, roads,
etc., this is relatively straightforward, since these features can be represented with basic
geometry, which modules can access through the virtual environment and avoid with methods
such as pathfinding. Differently from physical content, it can be very complex to represent non-
physical content on a structural level, making adaptation difficult. As stated in section 6.2, non-
physical content should interact through a similar space as the physical, however, since non-
physical content can be very diverse and represented in many ways, it is difficult to imagine a
non-physical structural level capable of including all possible types of content. Therefore, a
solution would be to have parts of the non-physical content linked and represented as physical
content in the physical space. This should be possible, since non-physical content very rarely
interacts with other non-physical content, and when it interacts with physical content, it is on a
structural physical level. This is of cause a statement, which will have to be examined in a proof
of concept illustrating how Modular PCG can be used in complex game generation (see Chapter
7).

To represent non-physical content as physical, new types of content might be needed and new
data types might arise. On a physical structural level, to enable unknown modules to interpret
the content, this might be represented as 3D content that block out occupied areas, but other
modules might be designed to interpret this information and use it in their generation. This will
consequently mean that the second module will be a sub-module of the first and the two will be
linked. As an example, a story generator might generate a dummy NPC in the environment with
some basic variables. This dummy NPC could then be regenerated by an NPC generator module,
using the variables and possibly some designer input to create a detailed NPC. The other way
around a NPC generation module would be able to generate a detailed NPC and a NPC dummy
describing its features. A story module will thereafter use the dummy variables to generate a
story including that NPC. This way the story and NPC module will form their own sub-system
responsible of generating non-physical and physical content in the physical space, but in context
of the architecture of Modular PCG they should be seen as one module. The advantage of this

MIKAEL PETER OLSEN 47
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

48

approach is that parts of this sub-system could be interchanged, allowing designers to, for
instance, use another NPC module to generate different types of NPCs using the same story. This
structure will make some modules depend on one or more sub-modules utilizing what can be
called direct interaction.

As discussed in this section, modules must represent their content in a way that sufficiently
describes it such that other modules can access this information fast and efficiently through the
virtual environment. Following the terminology from Sketchaworld, this level should be called
the structural level. As described modules will be structured hierarchically and each should have
a priority ID describing it place. When two modules try to generate content at the same spot in
the virtual environment, the module with the highest priority is said to be instructive, and the
lower priority module is adaptive; the higher priority module claims the area. Modules can be
given the same priority ID, i.e. given equal priority, which will have the effect that both modules
will be adaptive when generating content in the same area. When this happens, one module will
propose an alternative layout to the other, which will either counter or accept the layout. When
a proposal has been accepted, or a determined max has been reached, both modules will generate
their content based on this layout. To optimise adaptive interaction, an individualised scoring
system could be built into each module. As discussed modules should interact with the virtual
environment on a structural level through the physical content. This should also apply to
modules designed for generation of non-physical content, and therefore non-physical content
must therefore be linked and represented as physical content. This might cause modules
designed for non-physical content to be very complex and they could therefore be divided into
smaller sub-modules each responsible for some of the generation. In the eyes of Modular PCG, a
system of sub-modules would be viewed as one large module; however, within such a system
direct interaction would be allowed and possible.

In short, there are two main types of interaction, which exists on the structural level between
modules, instructive and adaptive, and one secondary type, which as such is outside the main
architecture of Modular PCG, called direct interaction.

As mentioned previously, PCG has a long history and it can be argued that due to graphical
limitation the differences between generated content and manually designed content was not
significant in earlier examples, which meant that even simple PCG could be applied without
sacrificing quality. Because of dedicated professionals in the industry, this has changed and most
modern games have high graphical standards, complex and detailed level design and well-
written stories, which makes it hard for PCG alone to meet the expectations of the audience. PCG

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

has many benefits, but it must not compromise the quality and should not oppress the
imagination of human designers, which is why designer interaction with modules of Modular
PCG is such an important issue.

In section 4.1, Sketchaworld [30] was used as an example of how modules could interact with
the virtual world. In relation to designer instructions, the interface of Sketchaworld allows
designers to direct the procedural generation by interacting with features on the specification
level, the first of three levels of abstraction. This enables designers to sketch high-level terrain
features and specify desired features, e.g. designers can draw a few points to represent a road.
In Sketchaworld, this was made possible by having all tools integrated into the application, and
designer could use these to sketch a desired layout in rough details in near real-time (see Figure
9). This illustrates how designer instructions can be designed, however, because modules in
Modular PCG should be able to stand-alone, the tools would have to be integrated within the
modules themselves.

Following the convincing results from the Sketchaworld application [30], input of equivalent
complexity would be suitable for modules of Modular PCG. If more control were granted in the
generation process, the generation might no longer be called procedural. However, it is believed
that designers should have the possibility to adjust the generated outcome at abstraction level 3
(see section 6.4) to fine-tune and lock certain details of a generated level, which also was
mentioned as a desirable feature by Smelik, et al. [30].

v
v
v
v
v
v
v
v
v
v
v
v

Dosgp v [Vod i prove]

e Rondy | ok O, 33) w457 § 8w

Figure 9: Interface of Sketchaworld showing editing tools for procedural sketching [30].

MIKAEL PETER OLSEN 49
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

50

In the Sketchaworld implementation, designer actions are added to a queue and executed
through their virtual world consistency managements system that ensures that features does
not conflict with each other (see Figure 10). In Modular PCG, consistency management should
be built into each module, ensuring that modules are able to react to unforeseen conflicts as
described in section 6.3. To facilitate undo and redo functions the implementation of
Sketchaworld keeps a history and manages the state of the random number generator, thus
ensuring result are the same after undoing an action and regenerating the world. This
implementation can therefore be seen as an important step towards the adaptation of PCG into
the workflow of game designers, because it incorporates familiar actions such as undo and redo,
and allows designer to sketch a desired layout visually in real-time. This makes the process more
accessible than abstract declarations and coding-based examples found in other PCG
implementations.

In short, creators of modules should design them to receive input at the specification level, and
create embedded designer tools, which makes interaction possible and assessable for the users
using familiar editorial options and design metaphors.

procedural sketching virtual world 3D virtual world
1 user interface consistency maintenance preview
el | W 1 | 9update [] [
edit
2d view i ="1"1 layered virtual world [3D scenegraph |9
‘ { user interfac execution _________ { 3D view
thread : thread 8 .)l l thread 10updet
------------- g execute even update
history '\ 8 event
action 0 2 create
: ; - action 3 e waiting
action 1 < action 3 process queue “"‘
A Yo p) seeaem .n & executing
N Al > § ~ 4 |]])
action 2 g > ¥ 4ad | W ¢ [action 1 . emting
............... ' v E - E 9 (re}do
action 3 f('—‘, : 1 ¥ o . -
3 add Lo ! .S Y < YUndo

Figure 10: Diagram of the virtual world consistency managements system implemented in Sketchaworld [30].

The purpose of Modular PCG is to provide accessible modular game development utilizing the
powers of PCG. To make it accessible, designers needs to have to correct tools, and in connection
to this, they need to be able to see what is being generated. As discussed in section 6.3 designers
should be provided a preview of the generated content at abstraction level 2, the structural level.
Designers could also be allowed to view the content at abstraction level 3, the object level (as

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

discussed in section 6.4), which represents the final state of generation and should be the level

at which the players play and interact with the generated content. The structural level can be

said to provide designer content, whereas the object level provide player content. One can

imagine that the structural level needs fewer graphical details than the object level, but will still

need the information necessary for designers to author additionally content with other modules.

Since the structural level is also the level, at which other modules perceive the virtual world, it

needs to be constructed of simple graphical elements; however, these elements could potentially

contain some additional textual information available only to designers and maybe to some

specific sub-modules if needed (see section 6.2). A good example of designer content, i.e. content

available at the structural level, can be found in the application Sketchaworld (see section 6.4,

Figure 9).

One might think that player input is something that belongs in the domain of Experience Driven

PCG (see section 2.1.2) to heighten the experience for the player. However, in Modular PCG

player input should be seen as an important basic functionality
that allows modules to change the state of the virtual
environment upon player request. What this means, is that even
the simplest interactions should be seen as a form of player
interaction with a module, meaning that for instance, the
character controller, which normally would be built into the
game engine, can be seen as a single module on its own. This is
already the case in the game engine Unity, where developers can
drag and drop an already created third person player controller
into the scene without having to modifying it (see Figure 11).
Some people might argue that a character controller does not
include any PCG, and it therefore cannot be considered a module
for Modular PCG. However, the movements of the character have

Game development software
featuring rendering engine,
intuitive tools and easy
multiplatform publishing, with
a large online asset library.

to adapt to the terrain and obstacles, and it can therefore be argued that it is procedurally

adapting to the environment. As such, a drag and drop character controller meets the

requirements for being a self-contained standalone unit, and one could enhance the procedural

capabilities to include for instance procedural animation.

MIKAEL PETER OLSEN
STUDY NO. 20093736

51

Modular PCG - An Architecture for Procedural Content Generation

52

Transform
© ¥ Animation

aracter Controller
4

B ¥ Third Person Controller (Scif@ %,
¥ Third Person Camera (Scrip T

Figure 11: Third person character controller in Unity.

Even though player interaction should be seen as a basic functionality, it is only applicable for
some modules and should not be included in every module. In many cases, player interaction
would be unnecessary and illogical. If one were to design a complex game, most if not all of the
environment for instance would be static and there would be no need for player input. That said
it would be possible to imagine a game where player input has an effect on the environment, and
such a module could be created.

As described in section 2.1.2 about Experience Driven PCG, player input can be gathered through
different methods. According to Yannakakis & Togelius [2] methods can be subjective, objective,
or gameplay-based, and under each category lies several other methods. A subjective method
can for instance be based on free-response or forced data, and objective methods often include
methods such as electrocardiography (ECG), galvanic skin response (GSR), and
electroencephalography (EEG).

After the general architecture of Modular PCG proposed in section 6.1 has been dissected and
analysed throughout the previous sections, this section will summarize and rebuilt the
architecture based on what has been discussed.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

Initially seven types of interaction was found, which were able to describe the relations between
modules, designers and players. These interactions were meant to describe the structure of the
architecture and illustrate how a Modular PCG system could be built. Initially two types of
architecture were discussed, namely top-down and bottom-up, and modules were divided into
high- and low-level. Through analysis, however, it was discovered that this division were more
suitable to describe the intentions of the modules, i.e. whether they were designed for high- or
low-level content, e.g. city structure or individual buildings, and both top-down and bottom-up
structure could be achieved by the arrangement of the modules in a hierarchical structure. This
meant that the number of interactions were limited from seven to five. Furthermore, it has been
decided that modules should not be dependent on each other, and that each modules must be
able to stand alone, facilitating a modular approach where designers and developers are able to
apply modules without considering existing modules. In other words, modules must be self-
contained and able to adjust to the virtual environment, meaning modules should not interact
directly with other modules, which was why internal interaction was removed from the list as
well. However, by allowing the creation of sub-modules, i.e. smaller pieces of modules that
together form a single module, the term internal interaction, changed to direct interaction, can
be used to describe the interaction between these. It is important to remember that in the view
of Modular PCG a system of sub-modules would be categorised as one single module.

Following this, the list of interactions was reduced from seven to four main types. For easier
referencing, the two unchanged types will be renamed, thus “modules providing content to
players and designers” will be called “module output” and “modules getting input from players*
will be referred to as “player input”. To sum up the architecture of Modular PCG will be built
around the following four types of interaction:

Virtual world interaction
Designer instructions
Module output

W N

Player input

To illustrate these interactions and the architecture in general, the model shown in Figure 12
has been created.

MIKAEL PETER OLSEN 53
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

IDE

- Virtual Environment
Use)
L.. Tools I I Available
Structural Leve content
Instructive

Interaction | Object Level

4

Submit tools Cl) C?D
D1 ...

\—__‘/"—""\\
Specification Level q——f/

Generate e Adaptive

Interaction
Structural Level

Create %

Object Level

Figure 12: The architecture for Modular PCG. The numbers 1-4, refer to the four types of interaction: 1. Virtual world interaction,

2. Designer instructions, 3. Module output, 4. Player input.
In section 6.3, virtual world interaction was divided into two main interactions, one going from
the module to the virtual world, called instructive interaction, and the other vice versa, called
adaptive interaction. Whether a module will be instructive or adaptive, will be decided by their
place in the hierarchical structure, determined by their priority ID, which is an ID each module
should be given. Modules can be given the same ID to force a merge of two types of content, but
otherwise the module with the highest priority will always be instructive and modules with a
lower priority will be adaptive. In the architecture in Figure 12 connections are only drawn to
one module, however, since modules are independent they all have the same connection to the
virtual environment, and therefore this one module represents all modules in the hierarchy with
priority from 1 to n.

Designer instructions is how designers influence the generation and author the content, and
since modules should be self-contained, the tools needed for authoring and designing must be
embedded in the modules themselves. Using familiar design metaphors and conventional
layouts and tools is highly recommended since this will help designers relate and make the
process accessible. As one can see in Figure 12 modules submit tools to the IDE, which designers
interact with and thereby instruct modules. Inspired by the literature, modules can be described

54 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

MODULAR PCG
CHAPTER 6

through three levels of abstraction, the specification, structural and object level, each
representing a different level of detail. On the specification level, modules are able to accept
designer instructions, which they will try to accommodate. On the structural level, modules will
interact with the virtual world through instructive and/or adaptive interaction. At this level,
content should be represented in rough details with enough information such that other
modules are able to interact with it, and since this level provides feedback the designers, content
should be represented in an intuitive way that enables designers to make sense of the
generation. The object level represent the final state of generation and is the level at which the
end-user perceive the content, however, designers could also be allowed to view content at this
level to make final adjustments before the product is shipped. These levels of abstractions thus
provides a skeleton for the internal architecture of each module, and some can be seen as design
guidelines for the creators of modules to follow.

Finally, some modules might need player input, which is the last type of interaction in the
architecture of Modular PCG. Player input can be direct or indirect, but is not always needed and
there are no specific rules as to how it should be included in the module structure; however, one
can follow the methods described by Yannakakis & Togelius [2] in relation to Experience Driven
PCG. As illustrated in Figure 12 player input goes directly to the specification level of the
modules, however, this communication should to some degree be linked to the virtual
environment, since it is through this the players are presented with the content of the modules.
The reason why this connection, in the architecture in Figure 12, is drawn as a direct link is that
player input should ultimately affect the specification level, thus forcing modules to regenerate
some content on the structural level and through instructive or adaptive interaction change the
object level and the content, which is presented to the player.

Following the discussion, some general requirements for modules can be established.

- Modules need to have a priority ID identifying their place in the hierarchy

- The necessary tools needs to be implemented in each module, making them accessible
in the integrated development environment (IDE) in which the module is applied

- Tools needs to integrate with the specification level of the module

- Designers and other modules must be able to make sense of a simplified generation at
the structural level

- Modules must be able to generate detailed content at the object level

MIKAEL PETER OLSEN 55
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

56

CHAPTER 7
EVALUATION OF MODULAR PCG

Y I}
7.1 METHOD |......cceteeetieeeesiseeessssssesssssesssssessssenessssesessssesessssensssessssasessssnsesssssesnssnsenns 57
7.2 GAME CONCEPTetiiteessseeesssssessssssessmesasessssssssssssssssssssssnssssssasesnssssessssssessssssesnes 58
7.3 MODULE INTEGRATION ... eoeeeeeeeeeeeeeeeeeeeeeeemeeeeeeeaeeanmeseseneaeeesmeneeeeneenamenenen: 59
7.4 LEVEL DESIGN MODULESo eeeeeeeeeeeeeeemeseeseeeeeesmeseanneeeeenmeneeneameenmenenen 62
7.5 QUESTMODULE.........coooeeeerreeerieccessessessessessssssessssssesssssesssessesssssssssassssssasasessasanns 69
o@e

Modular PCG has until now been discussed on a conceptual level, making it difficult to see any
real world applications of the concept. This chapter will provide an example of how Modular PCG
can be applied in complex game development, and illustrate how it should be used to facilitate
human designers and developers.

In Chapter 5, it was decided to apply Modular PCG in the context of complex game generation
and more specifically generation of games where the quest and map structure are
interconnected in a unified experience. This section will therefore illustrate how Modular PCG
can be used to create a complex game, and how the architecture described in section 6.7 will
make content generation accessible to designers and developers. Since it has not yet been
determined what exactly is meant by complex game, other than an experience driven by a closely
connected quest and map structure, this first needs to be established. When thinking about
games that rely greatly on both quest and map structure, primarily two genres comes to mind,
namely the action adventure and the roleplaying genre. Since it should be possible to create any
type of game using Modular PCG, the selection comes down to preferences and what can be

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

illustrated within the timeframe of this project. On one hand, roleplaying games (RPGs) generally
have focus on multiple quests, but often has a monotonous map design. One the other hand,
action adventure games usually focus on just one main story quest, however, the level design
often seems closer connected to the story. According to Dormans [33] the action adventure
genre has the added benefit of supporting a more varied gameplay and giving a greater sense of
purpose than RPGs, because they rely on more on well-designed levels to create enjoyable
exploration, flow and narrative structure. For these reasons, the purpose of this chapter is to
illustrate how Modular PCG can be used to create an action adventure game.

It is important to note that the goal is not to implement a fully functioning game with complex
gameplay, but to illustrate which modules would be required and how these should be
connected and used by designers. This chapter should therefore be seen as a proof of concept
illustrating the different aspect of Modular PCG. The proof of concept will provide some initial
design specifications for the specific modules needed for creating a complex game with an
elaborate quest and map structure.

As described Chapter 7 will provide a concrete example of how Modular PCG could be applied in
game development. The purpose of this is to evaluate the usability of the concept and this section
will describe the specific method used for evaluating the Modular PCG architecture.

First, since the Modular PCG architecture can be seen as a software architecture, it is possible to
apply methods for evaluating computer software. Within software engineering, there exists
several techniques for evaluating a software architecture in relation to quality, e.g. usability,
maintainability and performance. When evaluating a software architecture, the purpose is to
identify risks and ensure that the requirements has been addressed [36]. Of cause, there are
some fundamental differences between a software architecture and the architecture of Modular
PCG. This means there are some classical quality attributes that cannot be addressed. However,
it should be possible to illustrate the Modifiability, i.e. how easy it is to create new modules,
Availability, i.e. what it would cost in person-hours to create new modules, Performance, i.e. the
speed of generation, and Usability, i.e. how easy it is for users to use module for content creation.
These attributes are normally considered in software engineering, and it would be beneficial to
keep these in mind when evaluating the architecture of Modular PCG.

Experience-based evaluation is another software evaluation method, which could be applicable
for evaluating the architecture of Modular PCG. In this method the developers of the architecture,
or consultants, validate the architecture based on previous experience and domain knowledge
[37]. Validating a system solely using this method might result in an architecture that only the

MIKAEL PETER OLSEN 57
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

developers will see as logical. It is therefore very important to think objectively when evaluating
an architecture based in own experience. That said, because of past experience with game
design, it should be possible to validate the architecture of Modular PCG using personal
experience.

Methods outside of the software engineering domain can also be applied to evaluate the
architecture of Modular PCG, and as mentioned in the introduction the evaluation chapter should
be seen as a proof of concept. In short, the purpose of a proof of concept is to demonstrate the
application of a given theory, model or architecture. This can be done through smaller tests or
smaller implementations.

Conclusively, this project will validate Modular PCG by creating a proof of concept illustrating its
applicability by describing the architecture in relation to a game development scenario using
personal game design experience to validate the necessary interactions and tools. The proof of
concept will illustrate how modules should be created, structured and how they could be
integrated into a game development software. Because modules will not be implemented, it is
unfortunately not possible to demonstrate exactly how modules will generate content and how
they will perform. However, the necessary tools and the outcome of the modules will be
illustrated through rough mock-ups.

Because the aim of the evaluation is to give a practical example of how Modular PCG can be
applied in game development, this section will describe an action adventure game concept,
which will give design requirements for a future implementation. These requirements will
determine which modules is needed and how they should be designed. However, before
discussing the game concept, this section will describe the typical game development process,
to establish where in this process Modular PCG should be used.

In short, a typical game development process can be divided into four stages: Specification and
planning, pre-production, production and finally validating and testing. When starting on
development of a new game, the process starts with a short description of the proposed game
including target group, plat-form, genre, references and a draft of the planning, which is used to
validate if the proposed game concept is viable [38]. The pre-production phase is used to create
prototypes and general game design. In this phase, most of the major design decisions are taken
and usually game developers start making a game design document (GDD) to document the
design and the GDD is used throughout the development process to catalogue and organise all
elements of the game. There are no right or wrong way of writing a GDD and normally developers
will use a style that matches their process and preferences: “Each game designer usually finds

58 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

what works best for them” [39]. In the production phase, the individual elements are created and
pieced together based on the design documented in the GDD. The last phase of development is
the validation and testing, where alpha and beta tests conducted and changes are made to the
design and implementation based on the test data.

As described throughout the report, the goal of Modular PCG is to make PCG more assessable to
designers and developers. In general, PCG is used to ease the implementation by applying
procedural methods, but it can also be used as a creative tool during the design phase. Regarding
generation methods and applications, Modular PCG is not very different and thus it can be used
as a creative prototyping tool during the pre-production stage; however, the main purpose of
Modular PCG is to ease the implementation process and combine the strengths of PCG with the
controllability of manual content creation.

The proof of concept will therefore illustrate the use of Modular PCG in a production and
implementation context. Because the production phase are dependent on the design created in
the pre-production, a rough game design has to be established before it can be discussed how
Modular PCG can be used in a possible implementation. However, because the pre-production
phase can be very time-consuming, the initial design for the proof of concept will be taken
directly from an existing GDD describing an imaginary game (see Appendix II). The game
described in the GDD is an action adventure game set in the ancient Egypt, where the player,
incarnated as the biblical character Moses, fight and quest his way through the Egyptian lands
using godly powers to liberate his people from the oppression of the Egyptians. The GDD is not
completely exhaustive; however, it does provide the overall gameplay and lists some
environments, objects and NPCs, from which the initial modules can be created.

With the basic game-design established, it is now possible to introduce the individual modules
that is required. However, before doing this, it is important to discuss how Modular PCG should
be integrated within the development environment that is used. Thus, the next section will
describe one approach for integrating Modular PCG into one of the popular game engines.

For this project, it has been decided to describe how Modular PCG could be integrated within
CRYENGINE free SDK (CryEngine3). CryEngine3 has been chosen because of the authors
previous experience with the engine, and because it features many high quality assets that can
be used to illustrate the generation process. Even though CryEngine3 will be used as the
example, it should be possible to integrate modules in other game engines in ways similar to
what will be described in this section.

MIKAEL PETER OLSEN 59
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

60

To make the integration of Modular PCG logical, it should follow the existing methods for making
particles, prefabs, and many other entities available in CryEngine3. Before for instance a particle
effect can be applied in the environment, it must be imported into the database, which essentially
is a collection of different premade entities, in which some global variables can be adjusted. In a
similar way, modules could be imported into the database and designers could adjust some basic
properties for each as illustrated in Figure 13. Importing the modules will not affect the virtual
environment, but it will make them usable and enable designers to apply them at a later stage.

Entity Library || Prefabs Library jon || Partides || Music || Musi

ImportedModules

= Module Properties

Figure 13: The original DataBase View from CryEngine3 with the added tab ‘Modules’ open to illustrate how basic
properties could be adjusted.

After modules has been made available, designers should be able to use them in the virtual
environment. To maintain an easy overview of the implemented modules and to facilitate the
creation of a hierarchical structure as described in section 6.2, a separate editor similar to the
Layer Editor could be created, in which modules could be added, removed and organised. In
CryEngine3, designers use the Layer Editor to create and manage different layers, which are
used to organise all objects that are created in the virtual environment. The layers can therefore
be seen as the folder structure on your computer.

As said one could imagine an editor where modules could be organised and selected for editing,
which could be called the Hierarchy Editor. The Hierarchy Editor should enable designers to
assign priorities to the different modules, which could be done by organising the added modules
in a folder-like structure as illustrated in Figure 14.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

Use Cir+Drag 1o Armange Hierancdy

E el

Figure 14: The proposed Hierarchy Editor for adding,
removing and organising modules. The three eye symbols

in each line represent the visibility of the specification,
structural and object level for each module and/or
hierarchical level.

As described only modules imported into the
database can be added to the hierarchy and when
selected in the editor, their tools and properties

should become available as seen in Figure 15.

In CryEngine3, when designers select an object in
the virtual environment, its properties will
become available, and it might be best to
maintain this interaction, such that it will be
possible for designer to select objects that has
been created by modules. However, instead of

Objects
Archetype Entity
Brush
Entity
GameCustom Geom Enfity
Misc Partide Entity

Sound

Module

Main

Module Properties

Module Properties

Module Tools

Tool 1 Tool 2 Tool 3

Tool 4 Tool 5 Tool 6

Figure 15: When selecting a module from the Hierarchy Editor its tools
and properties will become available in CryEngine3’s RollupBar. The
RollupBar is where all details and properties of objects that has been
selected in the virtual environment can be found.

showing the normal properties of the selected object, designers should be informed that it has
been procedurally generated and that changing them might affect the procedural generation. To
avoid confusion and to maintain the usual interaction with objects, procedurally generated

objects could be locked, i.e. designers may not change any parameters. As discussed in section
6.4 about designer instructions, designers should have the ability to fine-tune and lock the
procedurally generated objects, i.e. avoid regeneration of the objects. This could be achieved by

giving the designers the ability to free individual objects from their parent module. This

functionality should remove the object from parent module and add it as a normal static object

with the usual properties familiar to designers (see Figure 16).

MIKAEL PETER OLSEN
STUDY NO. 20093736

61

Modular PCG - An Architecture for Procedural Content Generation

Archetype Entity

Brush
Entity
Geom Entity
Particle Entity

Prefab Sound

Procedurally Generated Object
Parent Medule

Module D

Convert Object

To Brus

If one wished to implement Modular PCG into a game
engine in the future, this section has provided the initial
ideas and specifications. It has been described how
Modular PCG could be integrated into CryEngine3, and
it has been described how designers should interact
with the modules and the generated content in general.
The proof of concept has yet to describe which modules
are needed for generating the action adventure game
concept described earlier, which tools should be
implemented and how these modules should be
organised and used. The next section will therefore
describe some initial modules that can be used for level

generation based on what is documented in the GDD in
Appendix II.

Figure 16: When selecting a procedural generated object in the
virtual environment, the designer should be informed about it
and allowed to free the object from the module, by replacing it
with a copy with the same options as a manually created object.

As said, the purpose of the proof of concept is not to implement any modules, but to give an
overview of which modules would be needed for complex game generation and how these
modules should be structured and applied in the same game scenario. It is the purpose to
illustrate how these modules will form a common architecture and how designer interactions
could be facilitated.

Thus, this section will establish which initial modules is needed for creating content for the
action adventure game described in the GDD in Appendix II. Because the GDD only describes the
initial part of the game and not individual quests and bigger areas, the purpose of this section is
to describe a few smaller modules that could be applied throughout the game. In the GDD, it is
described that the environment will consist of smaller open linearly connected deserts and
caverns, populated by ancient Egyptian scenery such as ruins, markets and streets. It is
described that main aspect of the game should be puzzle solving, but that this should be
complimented by a fighting (action) aspect, in which the player can fight off vermin, e.g. bats,
rats, scarab beetles and jackals, and bigger enemies such as Egyptian guards. Finally, in the GDD
the layout and objects of the first level is described (see Figure 17).

62 MASTER’S THESIS, MEDIALOGY

AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

Figure 17: Overview of one level described in the GDD in Appendix 1.

With the basic information about scenery and level layout, it is possible to create a list of possible
modules that could be useable to create the described game and layout in Figure 17 (See Table
2). Since it would require some work to create each individual module, it is pointless to create
modules that will only be used a few time throughout the production phase. In other words, it
would be a waste of time to create a module with a specific purpose, if it would take half the time
to create the content manually. Therefore, only modules that can be considered reusable has
been included in the list of possible modules.

Name Purpose

Enclosed Desert Area Module for creating desert pathways and desert areas
surrounded by a cliff face. Used to restrict free roaming.

Oasis Module for generating a desert oasis.

Small Desert Objects Populate an area with scattered rocks, bushes or grass patches.

Desert Ruin Generate desert ruins of all sizes.

Desert Path Module for generating a desert path.

Cavern Entrance Generate a cavern entrance in a vertical wall or on flat ground.

Cavern Module for creating an enclosed cavern.

Table 2: List of possible modules, usable for creating the action adventure game described in the GDD.

To illustrate the practicality of the suggested modules in Table 2, let us consider the layout from
Figure 17. In the first part, one could use the Enclosed Desert Area module to specify the
walkable area and restrict the player from walking off the level. This part of the level could also
be populated with a couple of ruins (Desert Ruin module), which will help convey the right
atmosphere and lastly the Small Desert Objects and Desert Path modules could be used to add
details to the area.

MIKAEL PETER OLSEN
STUDY NO. 20093736

63

Modular PCG - An Architecture for Procedural Content Generation

- gy e D

Figure 18: The workflow of the Enclosed Desert Area module. A: Specification of an area. B: The area is encapsulated with cliffs. C: After

use. D: Screenshot from the player’s perspective from the point illustrated with a triangle in C.
The Enclosed Desert Area module could have a tool for drawing a shape that specifies the area
in which the player can move (Figure 18 A). This area will be surrounded with a large cliff face
(Figure 18 B), and the terrain will be raised to fit the cliffs (Figure 18 C). The example has been
created with little attention to detail and it is very rough, but it illustrates the workflow and
generation of this module. Other specifications might include the height of the cliffs and the
appearance. To avoid compromising the performance, the module should not be allowed to
generate many new objects, as this will increase the number of drawcalls in the environment
and thereby affect the performance negatively. Designers could be given an option to adjust the
amount of new objects that can be generated, and alternatively, to increase controllability,
designers could be allowed to specify which objects should be used for the generation of the cliff
face. These options will steadily increase the controllability, and give the designer exactly the
amount of control they wish and need. As specified in section 6.3, each module should also be
able to adapt to the virtual environment on a structural level. In the case of the Enclosed Desert
Area module, its goal would be to create an area that the player are not able to escape. This
means thatif there already were an object on the edge of the specified area that blocks the player,
it would not be necessary for the module to generate content in the area occupied by the object
(see Figure 19).

64 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

As said Figure 19 illustrates how
modules adapt to existing content in
the virtual environment, and as
described in section 6.3, this
adaptation is possible because the
modules interact with virtual
environment on the structural level,

which is a low-resolution
representation of all content in the
environment. Because of the physics
system in CryEngine3, all objects have
a low-poly model of themselves
attached, which is used for physics
collisions and hidden when the game is

running. In the view of Modular PCG,

this low-poly model can be seen as the Figure 19: How a module will adapt its content to existing content in the environment.
A: Existing content. B: Specification for module generation. C: Content generated by

structural level of the ObJECt (See module. D: Generated and manually created content form the final layout.

Figure 20).

After the basic layout has been created
using the Enclosed Desert Area
module, one could use the Desert Ruin
module to create some scenery for the
player to explore. The purpose of this
module would be to create a detailed
decorative ruin, which could be used
as container for other game elements.
As with the Enclosed Desert Area
module, designers should be allowed

the necessary freedom to create Figure20: lllustration of the structural level in relation to the object level. A: The object
as seen by the player. B: Object level with wireframe. C: Structural level on top of object

exactly what they want and specify the level

details they want. First, designers

could be allowed to draw a 2D area on the ground, indicating the footprint of the ruin, and for
extra control, they should be able to specify the basic 3D shape of the ruin. Alternatively, they
might also want to import a shape from another application, instead of using the drawing tools
built into the module. After specifying or importing either a 2D area or a 3D shape, the generation
should generate a ruin that fit within this area (see Figure 22).

MIKAEL PETER OLSEN 65
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

Figure 22: Ruin generation with different specifications. A: 2D shape specification. B: 3D model specification. C: Generated result based on
2D shape. D: Generated result based on 3D model.

As illustrated, the generated result will be different depending on the specification method.
Additional specifications could include a density parameter, which could be used to specify the
percentage of the area or model that will be filled with content (see Figure 21). Another
specification could be the age, or deterioration, of the ruin, which could be used to give the
building a worn or destroyed look. As with the Enclosed Desert Area module, the generation
should be able to adapt to the existing scenery in the environment and designers should be able

to specify either how many new objects should be created
or which existing objects should be used for the
generation.

The last modules that will be discussed in relation to the
first part of the level layout from Figure 17 is the Small
Desert Objects and Desert Path modules which as
described should be used to add extra details to the area.
With the Desert Path module, designers should be able to
create paths of different sizes fast and efficiently. One way

Figure 21: Example of density setting for ruin generation.
A: Low density. B: High density.

66 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

to facilitate this could be implement a pathfinding algorithm that
enables the module to find the best place for a path between two
points in the virtual environment. A designer might for instance
specify that a path should run from the larger open area to the end
of the level at the right. The module would then create a line for
the path to follow, and the designer could be allowed to fine-tune
this path before the module would generate the path on the object
level (see Figure 23).

The last module, the Small Desert Objects module, should be use
last to fill the environment with smaller objects such as bushes,
rocks and patches of grass. In CryEngine3 designer can already use
the Vegetation Editor for this, and it is possible to specify which
objects should be procedurally placed on different terrain layers.
Designers can, for instance, have two terrain layers with a grass
texture and specify that rock and grass objects should be
procedurally placed on one of them. With this setup, designer are
able to paint areas with objects and areas without, and thereby
create variations in the environment. However, this technique is
not very flexible and it can be tedious to make changes. In addition,
it is not possible for designers to specify different densities,
meaning that you have are limited to one fixed density for each
object. To overcome this limitation the Small Desert Objects
module should enable designers to draw different density-maps
for each object, thereby allowing greater control over the
generation. A density-map should be
single colour overlay that with different
different
densities. The module should enable

transparencies represents
designer to import different objects and
link them to different density-maps.
When an object has been imported and
linked, the module should distribute
copies of the object based on the density-
map (see Figure 24).

Figure 23: Desert Path module. A: Specification of
two points. B: Pathfinding between the two points.
C: Generated path on object level.

Figure 24: The Small Desert Objects module can be used to distribute rocks, grass
and bushes across the entire area. The darker the colour, the closer the objects will
be placed together.

MIKAEL PETER OLSEN
STUDY NO. 20093736

67

Modular PCG - An Architecture for Procedural Content Generation

This section has now illustrated the use of Modular PCG in a game development context and
given concrete examples of a few modules. Different designer tools has been discussed in
relation to each module, and their use and application has been explained through examples.
Because the game for which the modules has been created has not been implemented before, it
is uncertain whether the resulting level (see Figure 25) was what its original designer had in
mind when writing the GDD. Nevertheless, the purpose of this section has been to illustrate the
usability and accessibility of Modular PCG. To ensure that the modules suggested was logical,
they have been created from a design point of view, and it has been the intention to structure

the modules in a way that would make sense to a game designer.

e 2 s s

Figure 25: Final game generated exclusively using Modular PCG.

As described previously it has been the intention to investigate how Modular PCG could be used
to generate a complex game with a well-connected quest and map structure. Because the GDD
does not describe the quest structure of the game, it has not been the focus of this section.
Furthermore, as said in the beginning of this chapter, modules should be reusable and the time
spent creating the individual modules should be made up for by applying them in the production
phase. To limit the extent of this project, and because no concrete quest specifications are
provided in the GDD, this report will not describe a specific quest generation module which could
be applied in the game. The next section will, however, describe the issues with procedural quest
generation in general and provide some initial considerations for designers and creators of
modules to remember in the future.

68 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

This section will investigate the issues with procedural quest generation and provide some
initial considerations to remember if one were to create a quest module. Whenever possible, the
game from the GDD in Appendix Il will be used as a practical example to describe how a possible
quest module should be applied in game production, however, the purpose is not to provide
requirements for creating a quest module specifically for the described game.

Before discussing the actual quest module, a definition of a quest has to be established. Dormans
[33] defines a quest (what he calls mission), as a series of tasks that keeps the player occupied
and provides concrete goals. Similarly, Doran & Parberry [35] defines a quest as a task that
includes a challenge and a reward. Ashmore & Nitsche [34] has a more stringent view on quests,
and state that it is a way to structure play in a virtual environment. They state that a quest has a
space, a challenge, a goal and a setting in which it takes place, and that quests can facilitate
personal growth (such as levelling) and spatial expansion (such as exploration and spatial
progression). In relation to the GDD, the space would be the levels (or map structure), the
challenge would be the individual puzzles and enemies, the goal would be to liberate people from
the oppression of the Egyptians, and finally the setting would be ancient Egypt. In relation to
space and setting, Dormans [33] states that the quest structure can be independent from the
map structure (what he calls space, defined as the geographical layout of the game), but that
isomorphism between quest and map structure are seen in many games.

Quests provide challenging elements and concrete goals to the player, but can also be the
narrative element that informs the player about the world; they offer the player knowledge and
power and can include some dramatic events [35]. Quests are in many games static and linear
and offer very little replay value, and even if the quests are non-linear or branching, they still
offer very limited replayability. Procedurally generated quests has the potential to overcome
this limitation and offer variability and replayability, however, for a quest module to be useful it
would have to be fitted to the game, and the module have to know when to generate a quest and
must ensure it makes sense in the context of the game. Doran & Parberry [35] believe that
procedural quest generation could lead to an increase in player interest because the player will
always be provided with a new quest and an alternative gameplay option.

As described the main purpose of quests is to provide goals and activities to the player, but can
be used to facilitate narrative and action as well. It is possible for quests to be linked to the map
structure, and in Chapter 5 four methods for combining quest and map generation was
mentioned, originally suggested by Togelius, et al. [5]. If the quest and map structure should be
closely connected, it was theorised that the best way would be to design two separate modules
and link the two through either a waterfall or an interactive approach. In relation to the reviewed
architecture of Modular PCG described in section 6.7, quest and map generation should be

MIKAEL PETER OLSEN 69
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

The Legend of Zelda:
Twilight Princess

designed as one module, if the two should be closely connected and directly dependent on each
other. However, it would be possible to create a system of two (or more) interconnected sub-
modules, one responsible for quest generation and one for map generation.

To determine which procedural approached would be suitable for creating a quest and map
module or a system of sub-modules, this section will analyse the existing examples of quest and
map generation found within the PCG community. This analysis will illuminate the advantages
of procedurally generated quest in relation to game development and illustrate how designer
interaction can be facilitated.

Dormans [33] investigates the generation of levels for action adventure
games, through procedurally generating the overall mission using
generative grammar (see Appendix I, for a more detailed description of
grammar and other procedural methods). He uses the action adventure
game The Legend of Zelda: Twilight Princess to determine the grammar
needed for generating an overall mission, and based on the generated
mission structure a map is generated. In relation to the proof of concept,
an overall mission can be seen as a quest, and the approach by Dormans
thus illustrates one way to generate a map based on a quest.

An action-adventure game with

Dormans states that well-designed games generally have two structures,

focus on combat, exploration, namely the mission and space (map) structure, and suggests that mission

and item collection developed
by Nintendo EAD and released

in 2006.

and space should be generated using two different grammars designed
to suit each task, which is why he uses graph grammar for the mission

70

structure and shape grammar for the map structure. He uses graph
grammar because missions can be described as non-linear graphs. A graph grammar produces,
instead of strings, graphs consisting of linked nodes, and instead of letters, the alphabet can be
other symbols that describe general game concepts, such as obstacle, key and lock (see Figure
26). The start rule can incorporate the overall structure wanted, such as martial art training or
Hollywood drama, ensuring that the mission exceeds a minimal length or follows a dramatic arc
[33]. Although the initial effort of creating the grammar rules is time-consuming, it is outweighed
by the ease with which new content can be generated based on the grammar [33].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

Alphabet: \

bl = boss (level) k = key n = nothing/exploration @ o_-e
bm = boss (mini) kf = key (final) t = test

e = enfrance km = key (multi piece) i = test (item)

g = goal I = lock ts = test (secret)
ib = item (bonus) If = lock (final)

iq = item {guest) Im = lock (rmulti)

Figure 26: Example of a generated mission structure [33].

For the game space, i.e. map, generation Dormans uses shape grammar, and to ensure the map
structure follows the mission structure, the terminal symbols of the graph grammar is translated
into symbols in the shape grammar. Instead of symbols or words, shape grammar consists of
shapes and rules that define how to reshape the existing shapes. The generation looks for the
next terminal symbol in the mission structure and then applies the shape grammar rule that
applies to that symbol and find the best suitable location for the rule to be applied (see Figure
27). The shape grammar is extended with some parameters that influence the rule selection in
order to create progressive difficulty [33]. If the shape generated after including all mission
nodes have any non-terminals, these are replaced with terminal symbols based on a set of
finalizing rules.

0 | @ [s A Ll BR el ()
S s eVl e (K e (C) o
, t K I km
mlj 2 9 i))
ol) t ib
J—’J S 2
Figure 27: Example of a map (left) generated based on a mission structure (right) [33].
MIKAEL PETER OLSEN 71

STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

72

In addition to the static mission and space generation, Dormans discusses the possibility of
changing the generation based on player input. For instance, player performance could affect the
generation of different features, and allow some parts of the structures to be generated online.
One way to facilitate this is to generate the mission before play and the space while the player
explorers the game world. This will ensure an overall good mission structure and a game space
that fits the player’s movement and playing style while minimising the number of dead ends the
player encounter. It will ensure varied gameplay and a feedback loop between player
performance and generation offers many opportunities [33]. A similar strategy is to leave non-
terminals in the game space and/or the mission space and let these be generated during
gameplay. These non-terminals should then contain enough information to ensure the overall
structure is valid, but the nature of them could be unknown until the player triggers the
generation. This could lead to what Marie-Laure Ryan calls fractal stories, where information is
added to the story as the player turn his attention towards it [33].

The method used by Dormans has the advantage of ensuring a coherent map and quest structure.
By using generative grammar, he ensures that connections are logical and that the structure has
a sense of purpose, and because generative grammar functions at the same scale as level design
principals, it can be translated into concrete level design elements with relative ease [33]. A
disadvantage of using grammar is that it can be difficult for designers to know exactly how the
structure will look after generation, especially if many grammar rules have been implemented.
Therefore, it is important for designers to have a clear idea of the layout and structure of the
game they are creating. However, if designers are interested in exploring different game
structures and create new and interesting missions and spaces, it is possible to experiment with
the grammar rules. All in all “mission and space grammars are an efficient way of generating a
high variety of quality levels for action adventure games” [33].

Based on the approach presented by Dormans, it should be possible to create a quest module
that uses graph grammar to generate a quest structure, and a map sub-module that can generate
a map structure based on the generated quest and a set of grammar rules. To facilitate designer
instructions, tools for authoring grammar rules could be created enabling designers to affect and
direct the generation. Additional control could be given by allowing designers to create and edit
the graph nodes and organise these in the virtual environment. This organisation could be used
to instruct the sub-module responsible for the map generation. In relation to the level design
discussed in section 7.4, the Enclosed Desert Area module could be part of a map generation
module instructed directly by an overall quest module. As such, all the modules discussed in
section 7.4 could be applied as sub-modules under a general map generation module.

While Dormans [33] discusses the generation of one overall mission structure, Doran & Parberry
[35] discusses a general grammar-based method for generating multiple quests for RPGs.
Through analysis of over 750 quests from the four MMORPGs (Massive Multiplayer Online RPGs)

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG

CHAPTER 7

Eve Online, World of Warcraft, Everquest and Vanguard: Saga of Heroes,
they discovered that quests share a common structure and propose a
general classification based on NPC motivation (see Table 3). These
motivations shape the quest and together with different grammar rules,
they determine which actions the player should preform to complete the
quest. To vary the different quests the NPC motivations changes over
time, especially if the player completes a given quest. Each motivation has
a number of strategies, which shapes the quest and in Appendix III, an
overview of the different strategies can see found. Based on the NPC
motivations they have created a prototype quest generator capable of
generating quest of similar structure and complexity as the original
quests. The generated quest are represented as a tree, where the leaves
are atomic actions that can be performed by the player [35] (see
Appendix III).

Motivation Description

Knowledge Information known to a character
Comfort Physical comfort

Reputation How others perceive a character
Serenity Peace of mind

Protection Security against threats

Conquest Desire to prevail over enemies
Wealth Economic power

Ability Character skills

Equipment Usable assets

Table 3: Different types of motivation that can generate quests [35].

Vanguard: Saga of
Heroes

A fantasy-themed MMORPG
created by Sony Online
Entertainment released in
2007.

A fantasy-themed MMORPG
developed by Sony Online
Entertainment. The series was
released in 1999 with now 20
expansions.

The procedure presented by Doran & World of Warcraft

Parberry can be flexible and very P
. " I TR N
adaptive, and in their implementation,) ! }'3

h’id

F

quests could be adjusted to the
\“ 'u;&.

assumed knowledge of the player. This
enabled the quests to vary in length
and complexity based on what was
assumed known, for instance, if it is

assumed that the player does notknow | » vivioRPG created by Blizzard

Entertainment from 2004 with
subsequent expansions. Players
explore, complete quests, fights
monsters and interact with
NPCs or other players.

the whereabouts of NPC2, a quest
could include a sub-quest that tells the
player to visit NPC1 to get the location

of NPC2. In contrary, this ensures that

A player-driven MMORPG set in
a science fiction space setting,
developed by CCP Games,
where players pilot spaceships
through a galaxy of over 7,500
star systems.

MIKAEL PETER OLSEN
STUDY NO. 20093736

73

Modular PCG - An Architecture for Procedural Content Generation

a player is never sent on a quest to find something they already have. A similar functionality
could be built into a quest module, enabling designers to adjust quests based on what the player
knows, and additionally player input could be used to shape the quests. The quests generated by
Doran & Parberry’s system follows a generic form and details, such as locations, NPCs and
objects, are added to the quests at the end of generation. This replacement technique is also
popular in commercial games and suggests that much can be achieved just by changing the
details. However, one has to ask what the reason for the use of this technique is - is it because it
is cost-effective or because it is the best a most reliable solution. This question raises an
interesting discussion, which is beyond the scope of this project and therefore remains
unanswered for now. However, this replacement technique could be used in Modular PCG,
enabling designers to choose various objects, locations and characters for the different quests,
and thereby being able to generate multiple quests from a few simple structures. One could
imagine a similar technique where the designers first choose a few elements, such as objects,
NPCs and locations, and thereafter the quest module generates a quest that includes the
elements in a logical and coherent way.

Similarly to Doran & Parberry, Hartsook, et al. [28] discusses the use of PCG in relation to PRGs,
however, instead of generating quests they presents an approach for procedurally generating
playable game world based on a priori unknown story [28]. This resembles the approach used
by Dormans [33], and similarly, a story can be considered a quest in this context. As mentioned
in 4.1 the story used for world generation is written as plot points, which can be authored by
either a human designer or an artificial designer. This approach has the disadvantage of only
being able to use linear stories, however Hartsook, et al. justify this, and states that “computer
games typically have a single main storyline that constitutes the set of plot points that are necessary
for completion of the game” [28].

In their implementation, a map generator uses the plot points and some initial information about
story-specific details to create a game world. The generated map consists of islands, i.e. the
locations connected to specific plot point, and bridges, i.e. the areas between the islands. On the
bridges non-plot-specific gameplay occurs, e.g. fighting enemies, finding treasures, etc. One clear
advantage of the approach by Hartsook, et al. is that they include player preferences when
generating the world, and creates a subjective player experience model (player model) based on
a pre-game questionnaire about the players preferences. They state that the player model can
“be used to personalize the story and world of the game so as to maximize pleasure and minimize
frustration and boredom” [28]. This player model is used in the generation to determine the
branching and length of the bridges. The islands and bridges are generated through a search-
based PCG approach, using genetic algorithms. The generation create a space tree representing
the game world genotype and rewards the generate content based on the variation between it
and the parameters from the player model. The player model thereby determines the fitness.
After the generation process has found a suitable layout, the phenotype is generated as a top

74 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

EVALUATION OF MODULAR PCG
CHAPTER 7

down 2D world [28]. In relation to Modular PCG and the creation of a quest module, it should be
possible to create a quest module where the designers are able to write a story, i.e. quest, in
either an .xml-like language or natural language. The modules should then interpret the input,
create plot points, and send these to a map generation sub-module that applies the approach by
Hartsook, et al. [28]. Of cause, designers should be given additional options to adjust and fine-
tune the generated result, but it could be a nice tool for easy and fast generation of the overall

structure.

Where Hartsook, et al. focuses on generating a world for a predetermined story, Ashmore &
Nitsche [34] investigates the generation of quests into an already procedurally generated world.
This resembles the implementation done by Doran & Parberry [35], because they investigated
quest generation as a separate entity as well. The difference, however, is that Ashmore & Nitsche
focus on explorative quests, i.e. quests that requires the player to move from location A to
location B, and introduces the lock and key metaphor to describe the structure of such quests.
The key and lock metaphor means that during exploration obstacles (locks) restricts the
movements of the player and he must use items (keys) to overcome these obstacle [34]. This
metaphor does not only apply to spatial constraints (such as locked doors and keys), but a lock
can be any obstacle that hinders the player, and the key can be any item, skill, etc. that helps the
player pass the obstacle.

Doran & Parberry [35] criticises Ashmore & Nitsche and state that the key and lock structure
lacks a sense of purpose, they believe that their own system, based on NPC motivation, can
express additional types of quests that is not possible with the key and lock structure. It can be
argued that the key and lock structure has the potential to express the same types of quests as
the system by Doran & Parberry, if the lock was to get an item from an NPC and the key was
perform a task given by the NPC. However, the quests that can be generated using the key and
lock structure are not very elaborate and complex, and in their implementation locks are
materialised mostly as physical barriers. It is a shame that they did not utilize their own system
to the fullest potential, and the NPC based quest generation proposed by Doran & Parberry [35]
seems to be easier to utilise and follows a more concrete structure, which most likely makes it
easier to understand, use and implement. In addition, the implementation by Ashmore & Nitsche
illustrates an important issue to remember when using PCG. They did not manage their
procedural techniques, which meant that no two playtests were comparable because of the
random nature of PCG [34]. This can be avoided by including a random number seed in the
generation process as Doran & Parberry did, which enabled them to regenerate the quests for
later analysis [35].

MIKAEL PETER OLSEN
STUDY NO. 20093736

75

Modular PCG - An Architecture for Procedural Content Generation

76

CHAPTER 8
CONCLUSION

The conclusion will now give a brief resume of the entire report and restate the most important
aspects of the architecture of Modular PCG.

Based on a general interest in PCG and game development, this project started investigating the
advantages of PCG in relation to game development. The initial goal was to determine how PCG
could be used to facilitate game creation, and through an initial analysis, a more concrete
approach to a subject was found. It was decided to investigate the possibility of complete game
generation using PCG, and together with the focus on game development, it became the goal to
investigate how complete game generation could be made accessible to human designers and
how it would integrate within game development. To investigate this the analysis described a
few games and research projects that utilises complex procedural techniques, and it was
discovered that together with complex PCG comes either very complex or very limited
interaction, bordering on inaccessible designer interaction. As a solution to the problem of
inaccessible PCG algorithms, the concept Modular PCG was introduced. In short, Modular PCG
describes a new way of considering PCG in relation to game development, and it facilitates the
creation of individual PCG modules that applies procedural techniques to generate game
content. The modules integrates directly into the virtual environment, which means that
designers can apply different modules without considering existing content and other modules.
For easy and rapid development, the necessary tools for authoring content are included in the
modules themselves and work out of the box.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

CONCLUSION
CHAPTER 8

Modular PCG was introduced and discussed in three steps, first it was introduced as a new
concept, then the architecture behind it was discussed, and lastly the concept was evaluated as
a theoretical proof of concept.

In the introduction of the concept, Modular PCG was defined as a system of individual PCG
modules that acts on their own and facilitate easy and relatable game development when
combined. Using Modular PCG, designers and developers should be able to choose different
modules from different designers and apply them in their own projects. As initial validation of
the concept, it was described how traces of Modular PCG can be found in existing PCG
applications, and it was argued that because of this Modular PCG is the right direction for PCG
research and that it will facilitate an integration of PCG within the game industry. As part of the
concept, an initial architecture was described. This initial architecture led to seven types of
interaction between modules, designers and players, which was later discussed individually to
form a condensed architecture. Initially two types of architecture was said to exists, a top-down
(designers and players influence high-level modules that affect low-level modules) and bottom-
up (designers and players influence low-level modules that in turn influence high-level modules)
architecture.

In the discussion about the architecture, however, it was determined that both a top-down and
a bottom-up implementation could be achieved with the same modules by structuring them
hierarchically with internal priorities. As an additional change, it was described that the
generated content should be represented on three levels, the specification level, structural level
and the object level. These levels, represents different levels of detail and are used for different
purposes. The specification level allows designer interaction, the structural level allows modules
to interact with the virtual world, and the object level represents the final state of generation
available to the player. Regarding virtual world interaction, it was decided that modules should
interact with the virtual environment in two ways, either affecting or changing the virtual world,
called Instructive Interaction, or adjusting to the virtual world, called Adaptive Interaction. This
would enable modules to act independently from each other allowing designers to use different
modules without considering existing content in the environment. It was also determined that
designers should be allowed to view the generated content on both the structural level, allowing
basic adjustments, and the object level, allowing detailed adjustments.

Regarding designer interaction, it was decided that modules should provide designers with the
necessary tools for authoring content and controlling generation; in other words, the tools
should be included in the modules and integrate automatically with the development
environment. Likewise, modules requiring player input should be designed to gather this input
automatically. In short, modules should be self-contained, including the necessary authoring
tools, and must be able to adjust to the virtual environment without interacting directly with
other modules.

MIKAEL PETER OLSEN
STUDY NO. 20093736

77

Modular PCG - An Architecture for Procedural Content Generation

78

Form the discussion of the architecture, the initial seven interactions was reduced to four basic
interactions: Virtual world interaction, Designer instructions, Module output, and Player input.

After the architecture was discussed, Modular PCG was evaluated as a theoretical proof of
concept. The proof of concept illustrated how Modular PCG could be used to generate a complete
complex game with an elaborate quest and map structure, and how Modular PCG could be used
in a production and implementation context. The purpose of the proof of concept was not to
implement any modules, but to describe theoretically how modules could be created and what
creators should keep in mind. It was chosen to describe how Modular PCG could be integrated
within CryEngine3, and to make the integration logical it was described in relation to some
existing tools and functionalities within the development environment. After describing the
integration, the evaluation chapter described a few level design modules that could be usable,
and described how these tools should be created and integrated. The creation was based on a
game design document (GDD) describing an action adventure game set in the ancient Egypt.
Based on the GDD the following modules were described: Enclosed Desert Area module, Small
Desert Objects module, Desert Ruin module, and Desert Path module. For each module, different
designer tools were described and it was discussed which options could be useful to have as a
designer and how much control designers should be given. Because the main purpose of Modular
PCG is to give designers better procedural tools allowing easier development, the modules was
discussed from a design perspective and have been structured such that it would make sense to
a game designer. After describing the level design modules, a section dedicated to quest
generation discussed how quests could be generated using procedural techniques and how a
quest generation module could be structured. It was stated that if quest and map structure
should be closely connected, the two should be designed as one module, possible as a system of
two sub-modules. Among the different generation techniques, grammar was mentioned as a
viable way of generating both quest a map structure, and even though grammar requires a lot of
initial work this should be outweighed by the ease with which new content can be generated
afterwards. Inspired by the use of grammar it was suggested that one could create a quest
module using graph grammar, and a map sub-module capable of generating a map structure
based on the generated quest structure, and thereby ensuring that the two are closely connected.
Another example of quest generation included presumed player knowledge, ensuring that
players are only given quests that makes sense for them. The described example used a
replacement technique, which allowed several quests to be created from the same simple
structure. This technique could be used in a quest module, allowing the module to generate
several quests based on simple designer instructions, such as a specification of objects, locations
and characters. Another example illustrated the generation of a map structure based on a
prewritten story structure written in simple plot points. In relation to this, one could imagine a
module that was able to generate a map based on a simple story, specified by either a human
designer or a quest generation module. In a complete system, a module could be used to generate

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

CONCLUSION
CHAPTER 8

the overall quest structure while several sub-modules could be used to generate the different
elements of the levels and gameplay.

As a final remark, the purpose of this project has been to help advance the state of the art of PCG,
and it is believed that the introduction of Modular PCG has been a step in the right direction.
Currently PCG is not widely used in game development, but it is the hope that Modular PCG will
increase the use of procedural techniques in the game development industry. Modular PCG has
yet to be tested and proven practical in a real game development scenario, however from the
theoretical evaluation of the concept, it can be said to be applicable in game development and
that it successfully makes procedural techniques accessible to designers and developers. | hope
that this project has illustrated the need for Modular PCG as a research field, and I hope that
other researchers will use this project as a stepping-stone and continue research in this
direction. Modular PCG is the future of PCG.

MIKAEL PETER OLSEN 79
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

REFERENCES

80

M. Hendrikx, S. Meijer,]. V. D. Velden and A. losup, “Procedural content generation for
games: A survey,” ACM Trans. Multimedia Comput. Commun. Appl, vol. 9, no. 1, pp. 1-22,
February 2013.

G. N. Yannakakis and]. Togelius, “Experience-Driven Procedural Content Generation,”
Affective Computing, IEEE Transactions on, vol. 2, no. 3, pp. 147 - 161, 2011.

B. Watson, P. Miiller, O. Veryovka, A. Fuller, P. Wonka and C. Sexton, “Procedural Urban
Modeling in Practice,” IEEE Computer Graphics and Applications, vol. 28, no. 3, pp. 18-26,
2008.

J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne, “Search-based procedural
content generation,” in Proc. European Conf. Applications of Evolutionary Computation,
2010.

J. Togelius, A.]. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss and K. O. Stanley,
“Procedural Content Generation: Goals, Challenges and Actionable Steps,” in Artificial and
Computational Intelligence in Games, S. M. Lucas, M. Mateas, M. Preuss, P. Spronck and]J.
Togelius, Eds., Dagstuhl, Germany, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik,
2013, pp. 61-75.

C. Browne and F. Maire, “Evolutionary game design,” Computational Intelligence and Al in
Games, IEEE Transactions on, vol. 2, no. 1, pp. 1-16, 2010.

C. Browne, “Cameron's Yavalath Page,” 2013. [Online]. Available:
http://www.cameronius.com/games/yavalath/. [Accessed 9 February 2014].

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

REFERENCES

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne, “Search-based Procedural
Content Generation: A Taxonomy and Survey,” IEEE Transactions on Computational
Intelligence and Al in Games (TCIAIG), vol. 3, no. 3, pp. 172-186, 2011.

[9] J. Togelius, R. D. Nardi and S. M. Lucas, “Making Racing Fun Through Player Modeling and
Track Evolution,” in Proceedings of the SAB Workshop on on Adaptive Approaches to
Optimizing Player Satisfaction, 2006.

[10] G. Kelly and H. McCabe, “A survey of procedural techniques for city generation,” ITB
Journal, pp. 87-130, 2006.

[11] R. M. Smelik, K. J. d. Kraker, S. A. Groenewegen, T. Tutenel and R. Bidarra, “A Survey of
Procedural Methods for Terrain Modelling,” in Proceedings of the CASA Workshop on 3D
Advanced Media In Gaming And Simulation (3AMIGAS), Amsterdam, The Netherlands,
20009.

[12] A. d. 1. Re, F. Abad, E. Camahort and M. C. Juan, “Tools for Procedural Generation of Plants
in Virtual Scenes,” LA, USA, 2009.

[13] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin and S. Worley, Texturing & Modeling: A
Procedural Approach, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[14] G. Smith, J. Whitehead and M. Mateas, “Tanagra: An Intelligent Level Design Assistant for
2D Platformers,” in AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, North America, 2010.

[15] K. Compton and M. Mateas, “Procedural Level Design for Platform Games,” 2006.

[16] N. Shaker, G. N. Yannakakis,]. Togelius, M. Nicolau and M. O'Neill, “Evolving Personalized
Content for Super Mario Bros Using Grammatical Evolution,” in AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, North America, 2012.

[17] S. Dahlskog and]. Togelius, “Patterns and Procedural Content Generation: Revisiting Mario
in World 1 Level 1,” in Proceedings of the First Workshop on Design Patterns in Games,
Raleigh, North Carolina, 2012.

[18] N. Shaker, M. Nicolau, G. N. Yannakakis and J. Togelius, “Evolving levels for super mario
bros using grammatical evolution,” in Computational Intelligence and Games (CIG), 2012
IEEE Conference on, Granada, 2012.

MIKAEL PETER OLSEN 81
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

82

[19] L. Johnson, G. N. Yannakakis and]. Togelius, “Cellular automata for real-time generation of
infinite cave levels,” in Proceedings of the 2010 Workshop on Procedural Content Generation
in Game, Monterey, California, 2010.

[20] T. Mahlmann,]. Togelius and G. N. Yannakakis, “Towards procedural strategy game
generation: Evolving complementary unit types,” in Applications of Evolutionary
Computation, 2011.

[21] A. Liapis, G. N. Yannakakis and]. Togelius, “Generating map sketches for strategy games,”
in Applications of Evolutionary Computation, 2013.

[22] J. Togelius, M. Preuss and G. N. Yannakakis, “Towards Multiobjective Procedural Map
Generation,” in Proceedings of the 2010 Workshop on Procedural Content Generation in
Games, Monterey, California, 2010.

[23] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick,]. Kelly and K. Margenau, “Designing
Procedural Game Spaces: A Case Study,” in FuturePlay 2006, 2006.

[24]]. Togelius, E. Kastbjerg, D. Schedl and G. N. Yannakakis, “What is Procedural Content
Generation?: Mario on the Borderline,” in Proceedings of the 2nd International Workshop
on Procedural Content Generation in Games, Bordeaux, France, 2011.

[25] R. Khaled, M.]. Nelson and P. Barr, “Design Metaphors for Procedural Content Generation
in Games,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Paris, France, 2013.

[26]]J. Togelius and]. Schmidhuber, “An Experiment in Automatic Game Design,” in
Computational Intelligence and Games, 2008. CIG'08. IEEE Symposium On., Perth, WA, 2008.

[27] M. Cook and S. Colton, “Multi-Faceted Evolution Of Simple Arcade Games,” in The
Computational Intelligence and Games (CIG), 2011.

[28] K. Hartsook, A. Zook, S. Das and M. O. Riedl, “Toward Supporting Stories with Procedurally
Generated Game Worlds,” in Computational Intelligence and Games (CIG), Seoul, 2011.

[29] R. Smelik, T. Tutenel, K.]J. de Kraker and R. Bidarra, “Integrating Procedural Generation
and Manual Editing of Virtual Worlds,” in Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, Monterey, California, 2010.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

REFERENCES

[30] R. M. Smelik, T. Tutenel, K.]. De Kraker and R. Bidarra, “A Declarative Approach to
Procedural Modeling of Virtual Worlds,” Computers and Graphics, vol. 35, no. 2, pp. 352-
363,2011.

[31] Y. I. H. Parish and P. Miiller, “Procedural Modeling of Cities,” in SIGGRAPH '01 Proceedings
of the 28th annual conference on Computer graphics and interactive techniques, New York,
NY, USA, 2001.

[32] M. Lipp, D. Scherzer, P. Wonka and M. Wimmer, “Interactive Modeling of City Layouts using
Layers of Procedural Content,” Computer Graphics Forum, vol. 30, no. 2, p. 345-354, 2011.

[33] J. Dormans, “Adventures in Level Design: Generating Missions and Spaces for Action
Adventure Games,” in Proceedings of the 2010 Workshop on Procedural Content Generation

in Games, Monterey, California, 2010.

[34] C. Ashmore and M. Nitsche, “The quest in a generated world,” in Proc. 2007 Digital Games
Research Assoc. (DiGRA) Conference: Situated Play, 2007.

[35] J. Doran and I. Parberry, “A Prototype Quest Generator Based on a Structural Analysis of
Quests from Four MMORPGs,” in Proceedings of the 2Nd International Workshop on
Procedural Content Generation in Games, Bordeaux, France, 2011.

[36] Z. Qin,]. Xing and X. Zheng, “Evaluating Software Architecture,” in Software Architecture,
Berlin, Springer Berlin Heidelberg, 2008, pp. 221-273.

[37] M. Mattsson, H. Grahn and F. Martensson, “Software architecture evaluation methods for
performance, maintainability, testability, and portability,” in Second International
Conference on the Quality of Software Architectures, 2006.

[38] V. Gal, C. L. Prado, S. Natkin and L. Vega, “Writing for video games,” in Proceedings Laval
Virtual (IVRC), 2002.

[39] S. Rogers, “You Can Design a Game, But Can You Do the Paperwork?,” in Level Up! - The
Guide to Great Video Game Design, Chichester, United Kingdom, John Wiley & Sons, Ltd,
2010, pp. 57-82.

MIKAEL PETER OLSEN 83
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

84

APPENDIX

There are many methods within PCG that each has its strengths and weaknesses, and are suited
to produce certain types of content. This section will list some of the methods used in PCG and
how these methods can be applied.

The simplest and earliest methods of PCG are based on pseudo-random number generation
(PRNG) [1]. Because it is pseudo-random, it can be used to mimic the illusion of randomness
found in nature, e.g. mountains, clouds and flowers. Perlin noise is a PRNG-based noise
generator, which generates maps of data points through interpolation of points generated by a
seeded PRNG. Detail can be added by combining more maps with different scaling.

Another technique is generative grammar (GG), which is sets of rules that operates on words to
generate grammatically correct sentences. Generative grammar in general, consist of an
alphabet (words) and a set of rules that define rewrite operations of the alphabet. Rules are
written as “S —ab”, where capital letters describe symbols that can be changed and lowercase
letters are terminal symbols that cannot be rewritten. Generative grammar always starts with
one symbol, often denoted as “S” [33]. This technique can be adapted to describe and generate
correct objects, e.g. in a game level, from elements encoded as words [1]. Sub-systems of GG
includes L-systems, split grammars, wall grammars and shape grammars. L-systems was
designed to describe the growth of plants. It is today used to generate trees as well as other
natural structures and are even used in city generation [33].

Image processing techniques can also be used in PCG, namely image filtering (IF), which is used
to emphasize elements of in image or to improve subjective measurements of an image, i.e. give

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

a certain style. Within IF, one can for instance use binary morphology, i.e. operations on a binary
image, or convolution filters, i.e. modify an image with another or a kernel, to modify and change

images.

As IF can manipulate images, spatial algorithms (SA) can be used to manipulate space, for
instance by storing map data in a grid with the technique called tiling. After the data is
decomposed, i.e. cut into sections in a grid for instance each tile can be manipulated. Layering is
a technique, where several grids (layers) are combined into one map. Each tile are then
constructed by several overlapping layers [1]. To save memory one can use grid subdivision to
only divide grid cells close to the player, in order to provide detail, while cells beyond a threshold
remains undetailed. Another SA is fractals, which can be described as recursive copies of itself,
e.g. snowflakes. One advantage is that fractals can produce objects with seamlessly endless
detail. Voronoi diagrams is another way of dividing space into smaller regions. In metric space,
a number of seed points (points of interest) are selected and a number of points equally distant
from the closest two seed points establishes the borders [1].

Natural phenomena can in some cases not be described with mathematical formulas, and in
those cases modelling and simulation of complex systems (CS) can be applied, for instance
cellular automata, tensor fields and agent-based simulation. In cellular automaton, the
simulation is based on a grid of cells that each has a state and can influence its neighbour cells.
The cells are bound by a common set of rules. Tensor fields are a set of two-dimensional vectors
(tensors) that describe the shape of the game space. Because it can be visualised, tensor fields
are suited to visual interactive design. In agent-based simulation, complex situations are
modelled using agents. As the agents interact emergent behaviour arises that can be observed
through traditional modelling techniques [1].

One of the great fields of computer science, artificial intelligence (AI), provides some methods
usable in PCG. One of which is genetic algorithms that mimics biological evolution, where content
is generated, a fitness function then evaluates the result and a mutation and crossover function
creates new content [parallel to search-based PCG]. Artificial neural networks are systems of
neurons that each take input and give output based on internal criteria. By adjust when each
neuron is fired (gives output) the system can learn patterns. The last method within Al, which
will be described here, is constraint satisfaction and planning, which can plan what actions
needed in order to get from an initial state to an end state. A planner consists of an initial state,
actions it can take and a goal test. Planners can be either forwards state-space search algorithms
or backward state-space search algorithms depending on in which state they start the search

[1].

MIKAEL PETER OLSEN 85
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

Game design document URL: www.scribd.com/doc/5402045/The-Design-Document-Justin-
Kelly

The Desigh Document
PROJECT SCARAB

Justin Kally
QOctober-3-07
Torin Lucas

Justin Kelly The Design Document Page |1

86 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Table of Contents

TN = g R et = o) L o = - OSSOSO OSSOSO UPE R RNUP RSP
Gamapl 3y Sl EmEnEE [SUMIMEITD oo es et ee et e e e ee e e e s 20 20 e 0 ot e o 2825 008 01 200
PIITZIE BEDETT <. oot ceece e e e et e e e st e 2 e 2 £ e 2 £ £ 22 228 28 26 22 2828 2 28 28 25 128 et et et e
BUTEIOMT BUSIEEE oo ce e ee e e e e e e e e e e e 25 e 22 225 - 25 2 52 8 2 2 28 20 8 e 2 e e
e e
section 2 — Characters amd PRySIcal LAWOT oottt et e et e e e et et e et sttt e st e
BUL TUREEETE oo e e e ee e e e e s e e e e o5 22 e 8 s 428 8 25 2525 2825 1 588 25 25 25 3 225 1 28 2 1 25 2 8 22 025

Cell Diagrams of Action SeqUENCE {MAMTEIVE .o et e e e ce e e e e e e e e e s e

Justin Kelly

MIKAEL PETER OLSEN
STUDY NO. 20093736

The Design Dooument

w
K

L R R I I

(K1}

n

87

Modular PCG - An Architecture for Procedural Content Generation

Lewel Layouwt with description and marker key [blocking] . e eee e B

= e S g L S
Saction 4 - GAME SPSCITIC DIETEI ettt et et e e e e et s e e e e et e s e 25 s e 2 et et e e

Doors, Elevators and Traps (Dimension and behaviour

Section 5 - Sketches and Brainsiomn DOCUIMEITEE ..o ee e e ee e e e e ce e e e e e e s e
Section 7 — At Aszets & DIFSCION SITUCEUIE Lo ee e ce e e e e e s e o s 2 e e e o
Ermvinommental Tesblires e e e e e e e e
SEtic WIEEH fDBJEIE LW TEMILITE S e et ettt et ettt e e cs et e e e et e s et et s et et ot e

Justin Kelby The Design Document

88

10
11
12
i
12
12

13

15
15
15
15
15
15
17
17
17
17

17

w

i
[t
1]

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Section 1 - Game Overview

Working Title
Project Scarzb

Genre
Action-adventure § Religiows / Comedy

Audience
Ages 11— 32, with some gaming background.

The Plot

Commanded by a burning bush, You-Mozes, are zent on 3 gquest to liberate your people from the
oppression of Egyptians. Infused with the godly powser and with your trusty staff at side, youw will fight
and guest thowgh Egyptian lands, temples and palaces; dodging traps, pits and guards. Until Reaching
your final goal the exodus from Egypt.

Section 1.1

Level Abstract

First Level — Introdus

After Selecting New Game from the main menu, the first level starts with 2 cinematic of the oppreszion
of the Hebrews, The Video though carsful foresh adowing and panning shows yourmain objsctive -
finding, meeting and killing/persuading the pharaoh. The Opening cinematic also gives a bit of back-
story on Moses the river way and how he obtained his lot in life as well az shows the player what
Egyptian guards look like and what Hebrew slavez and non combatants ook like. There i no Indication
of traps at this time. The Playerthen is placed into the level where 3 buming bush calls out Moses’ name
[rourCharacter] and you meet the bush and are further inform ed about yourself and what's goingon.
You thenset out tomarch towards the pharaoh. The nest scene starts and you anse from camp to find
your path blocked and a sleeping spy whom has been recordinginformation about your movements.
[Gives youinformation about ywour march thus far— az 3 days have pazsed since you left the buszh). You
find 2 new path in 3 cavern used by the miltary and spiss to say stealthy and move people in and out
without being seen, with thatyou proceed to scene three. Scene three i 3 cavernwhere you are faced
with a small pit trap ifyou find it and the firstwow area and plot trigger. The player walks though a
cavem over 2 wooden bridge and sees 3 waterfall and large vista. The playeris then met with 2 guard
and made to fight to defend himself, as the game teaches combat to the player. after this the player
loots the guard’s goods and receives more information abowt why the spy wasz spying on him and who iz
after him and whosentthe spy and guard. The playerthen descends deeper into the cavern —soene 4.

After this is outside the scope of this dooument.

Justin Kelby The Design Dooument F

w
1Kj
m
£

MIKAEL PETER OLSEN 89
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

90

Central Characters

Justin Kelly

Moses
Objectlves: Tosurvive levelto lavel, reachthe end boss and liberate your
people.
Difflculty: Player Unit / Protagonist
o Difficultybasedonplayersiilllevel and gams Lavel Modifier.

Average Player Difficulty per level

09
08
0.7
06 +—
05
04
03 ¢
02
01

m— A verage Oifficulty

Pharaoh
ObJectlves: Lead antagonmist—Stop Mases from liberatingthe slaves.

DIfflculty: Hard - being the end character f the user chooszes to fightths
pharzoh the must survive 2 barrage of melee and ranged attacks. The Pharaoh
vsesranged and melse attacks, the playmust lzarnto attack the Pharaoh
duringand after attacks, and dodge ranged projectiles.

Character Difficulty During Actions

)
07 | //
06 | ¥ o
0.5 e —
04
03 e :
0.2 :7,/ — DiffiOUIY
0.(!) [— PlEYET
~)
&é& o & «?@V o &
R e J*S‘ ‘? ‘,.\1-0‘ *&
v - é’ ‘*_‘,’
>
The Design Document Page |5

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Location
ancient Egypt approximately 1525 B.C, Gochen and Midian Provinces. Upon Exodus the sastern
provinces of Egypt and the Red S22 will be wizible.

Environment
The Environment will consist main by of medium to zmall open areaz connected by linzar indooror
outdoor paths. Areas consist but are not limited to:
* Dpendezer lzvek
» Old and new cavems
& Egyptian temple
» & Egyptianpalace
o Egyptian palace subfloors
Egyptian Ruins
Egyptian Market and Streets

Weather/Environ mental Effects
will consist of:
s Sunmy desert

e Litanddimlylit cavern fog and hazing
s & Dark Brooding storm
s Helfire (firebalk/ wolcano eruption related effects)
s Hazil
® Locus Storm
® Frog Rain
® 5a3s Storm (Green Haze)
Enemies

Ememies consist mainky of basic vermin [bats, rats, snakes, vultures) and some specialized vermin like
zcarab beetles, lackals, Palace Leopards. Mon Standard Enemiss consist of place guards, guards,
members of the Egyptian armed forces. All Human units are scaled totheirperod and posses no
ahbilities otherthen what i granted to them for being human. There are also a few enemies that NPC
and hostile towards the player that can be considered Enemies although they are only spawned once
and are unigue.

Gameplay elements (summary)

Puzzle Aspect

Mozes [The Flayers Character) will need to navigate dungeons, temples, palaces and othernatural
landscapes. These areas will be filled with traps and Navigational and dexterity [mouse, keyboard skill)
demanding puzzles. Some willinclude navigating a sewer filled with rats why dodging the water runoff
az to not be sweptinto the mainflow and pulled under. Another example would be jumping onrock
pillars to cross an expanse inone of the caverns orstepping on the correct pattern of stones in 2 temple.
Puzzle gameplay is the primary aspect of the game.

Justin Kelky The Design Dooument F

w

i
it
m

MIKAEL PETER OLSEN 91
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

92

Action Aspect

Az with any good puzzle game there iz zome conflict or action present, be it zombizs or Ganondaorf. In
Project Scarab the Playeris faced with a few opportunities where he must defend himself incombat.
Action is not 3 primary aspect of t he game. Action i wsed to break upthe puzzle azpectofthe game az
well az toround of gameplay so that the game doesn't become to stale and namow.

Humaor Aspect

Humouris 3 debated aspectthat maynot beincluded infinal releaze. f the game choozes to be
hiumeowrs it would come in 2 overthe top manner. Humour would be wsed to create a enjoyvable game
where the player plays to see the nextbit of dizlog and to see how the comical Moses will progress.

Storyline

Storyine willbe a key azpect to the game. The storyine is the driving force behind the game, the other
gameplay elements will drive the game and the storgdine give its shape and context. The storyline will
aim to drive fearand a sense of urgency and nead into the player. The Storyline if humouriz added will
bzcome lesz important but it job of shaping the scope and feel of the game will remain the zame.

Position

Before

hain WMenu Selection Scresn

There is nothing before this level a5 this is the first level

After
Ta’ Mara Heig itz

after this lewvel is the autskirts of the Egyptian city where the pharaoh iz belisved to be presiding.

Section 2 — Characters and Physical Layout
The Fallowing Information it specific to the section af the game being covered by this document.

Central Characters
The Players Characier— Moses

AiCharacters
® Slzzpingspy
®» weak Egyptian saldier

Patrols
There are no Patrolz in this level.

Enemy placement
Enemyplacement is noted onpage 14in the document

w

Justin Kelky The Design Document Fage |7

[1=

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Al Triggers
There is one Altngger called by the script presiding over the bridge See Levellayout on page 14

The Players Perspective
e FirstPerson.
* 307 FOV.
® 122 UU off the ground camera.
® players Hand and staff dieplayed, no fest.

Cell Diagrams of action sequence / narrative

= Finishes talking to the bush
* Walks bit down a mountian

* Awakens at camp sets back on march
* Path Blocked, Meets Spy, Reads infomation, opens door

* Enters waterway, meets Guard

* Fights Guard, sees vista, reads infornation and moves
on.

Level Layout with description and marker key (blocking)

SeeFope 12
Y 3
i > .
p 771 /
Justin Kelly The Design Document P
MIKAEL PETER OLSEN

STUDY NO. 20093736

w
o

m

93

Modular PCG - An Architecture for Procedural Content Generation

Section 3 - Supporting documents

Game Metrics

All Human Units
Base Character size
35 VU Standing, 64 Crouched and 25 UU radivs wids.

Speed
* lumpdistance
&4 UL Single Jump

* Running
100 UU 3 second

* Walking
FO UL a second

Player Values and modifiers
® [izposition— A Meazsurement of how dizliked a object or playerizto a thiz unit. [0.0 to LD
walue]
& Froction Stofus — & notefteam to which this unit belongs, these values azsigns the units
hostility's and alliances.
® Hostilify Lews/— Combined with the Disposition this value determines the chance this unit take
arms and attackthe player characteror object this iz applied to.

s (urent Health — Current level of Life, 0.0 will result in the deathof 2 abject [0.0to 1.0]
s {wrent Stotus — Frozen, Attacking, Panicking, Defending, 1dle [triggers animations and effectsz)
s (Ohjects Name — Fortracking purposes and ingame HUD
s g immaortal —Canthiz person be killed [used to protect main guest characters)
& [pventory Set —This Defines the body, Amour, Cloth ect. of the unit.
Justin Kelky The Dezign Do oument Fage |9
94 MASTER’S THESIS, MEDIALOGY

AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Mposes

Character size
110 UU standing, 70 Crouched and 25 radius wide.

Speed
* Jumpdistance
F0 UL Single Jump

* Running
120 UU a3 zecond

* Walking
55 U a second

Inventory 5et
» Knaredstaff
o Swing Speed

= Slow [D.3]
o Defence ability
= Poor [0.3]

0

Camage points Inducsd
= 3E% of the players strength + 0.3
Ot her
= EBlow Back 15% of the Flayersweight vz, player's strength.
= ahilitytocast divine providence.
* Rhoses Robes
o Upper Body
o LowerBody
* Noses Bzard
* Rhoses Hair

0

Powerups
Moses will gain the abilityto cast the 10 plagues to which he can use in smaller form against foes.

Purpose
Main Character forthe player to wtilize to com plete objectives.

Visual description

Mozes iz 2 long bearded old manwith period costume. Moses looks a little wom out and aged which iz
to add tohis solid “noforos thall move me” charactertrai. Hestands 5.8 fttall and holds 2 wooden
snarled staff that 2z aged as he . He face looks that of 2 serouws old man he never smiles, nor ever
zzems haostilz.

Justin Kelly The Design Dooument | 1

w
K
m

MIKAEL PETER OLSEN 95
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

Weak Egyptian Guard
Charactersize
Standard

Speed
Standard

Inventory Set
s Short Sword
o Swing Speed

= Fazt [0.7]
o Defence ability
= Fair [0.5]

[}

Camage points Induced
= 2E% of the Units strength + 0.2 (when used by 4l
* -0.05—Eazy
s 002 - Normal
s -f+D.0forHard
s 3E% of the players strength + 0.4 [whan usad by player]
o Other
» Elow Back 1/E of the time at 5% of the Players weight v, player's strength.
» Weak Egyptian Guard Gear
o Upper Body
= Random chancoe of eguipping - Helmut [non pick up able)
» Robeswithstudded leather armour
o LowerBody
= Lzather Skirt with studded flaps.
= Zandalz (non pick up able)
s Egyptian Facial Hair
o Randomized from a zet of hairs.
® Egyptian Hair
o Randomized from a zet of hairs.

Purpose

To protect the Empire and Fharaoh from all t'sfhis enemiss. A< 3 game element a guard's abjective i to
delayorkill Moszes. Serves as a Standard monster in human parts of the game [palaces) a2z well serves 2=
a stronger, smarter monster then wildlife rats, bats).

Visual description

He iz a standard troop from the Egyptian Army. Being 2 weakerversion of the armed forces [lezs trained,
and 2= a result less equipped with expensive amowr | the character is shown as presentablz and zemi
professional. amour is studded leather amour and looks slighthy aged as if itwas passed down 2
generation. He is armed with a sword, fairly athletic with a strong face and demeanour.

w
[L=]

Justin Kelby The Design Document F = |11

96 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Section 4 - Game Specific Detail

Light sources
Lighting will be provided by overhead skylight and manual lighting to highlight o bjectives and provide
the scenes with dramatic shadows

Obstacles
small Bottomless Pit
® Eazic Pit for the player to get a feelin a non stressful environment how to traverse platforms.
Blocked Path [Storyine Obstacle]
» The Blocked Path iz a physical blocked paththat forces 3 change inthe players miszion. No
lomger can he just walk the road into Egypt. Forces the player to look around for another path.

Mission specific structure
The Cavern Entrance
® The Entrance to scene three. Rock faced bulge fromthe game, with a gate thatiz vizibly locked
with 2 gate.
The Burning Eush
®* 2 large bush consumed in flames that Moses mests in the first level. #'s a standard Tumblewesd
looking with consumed in bright heavenly flames with a halo glows around it.
The Rope Enidge
® Thiz Bridge introduces the first Wow area of the game, when the player traverzes a large
wooden rope bridge that sus pends between two parts of 2 cavemn. The rope bridge is suspended
ower 3 dark pit that looks veryfar down, so farit's black. & waterfall flows bezide the bridge an
the right and pours intothe abyss. To the left the player canzee a beautiful vista that showcases
the height of the cavern as well a5 the long distance left to travel 1o the city, seeninthe vista.

Doors, Elevators and Traps (Dimension and behaviour)
The Rope Bridge
» The Rope Bridge will b2 powered bythe Karma Physics Engine and wobble 3 bit under
movement to give it the illuzion of being real and incre aze the realism level of the game.
» Dimenszion of the bridge will be proportional to the amount of time ittakes the wser torealize
the features and the speed at which the average playerprogresses though that part of the level.
On final build it should be presumably 1200 UL long and 222 UL wide

Justin Kelby The Design Dooument F s |12

w
K

MIKAEL PETER OLSEN 97
STUDY NO. 20093736

Modular PCG - An Architecture for Procedural Content Generation

Section 5 - Sketches and Brainstorm Documents

(0N

Above: Some of the Period Weapons used throughoutthe game.
On the far rightis the woodenstaff used by Moses.

Justin Kelly The Design Document Page |13

98 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

1 Level is scaled to the size of Moses, The bladk dot. 55 UU Round.

L2 The three sce nes being coverad by this keve)
Jesign Socument. THs level is thefirstof
many scenes thatwil compose lew’s
which will creote the overaifobre af the
gome.

The First Scene consists of © durnaing dush that codils
outMoses by nome. At Srst the coll is
SDow then with time thevake increosesin
frequency, attrocting the player to the
bush. Iif the picyer atampts 2o heod down
the moun®in he is blocio byo messoge
saying Something compisme Doy

The Secona Scene s offer the piojyer has ieft the
mountaln ond he awokens at s caomp set
the nght defore. The ployer owakens to
Setout cown the ro0d to heod owords
the town which the pharooh is believad to
be booted. Only to Snd the ro0d s
dbckea. Or i the ployer folis to foliowthe
1000 he will run ocross the spy thot
outines 3 0oys wonth of oying on Moses
ong the intentions of peopie Mn Egypt to
hormand kihim Theploysr henpets o
Keyfrom the spy(tex messogeno
physicolkey) tNs triggers he unlocking of
O rock mouna thot kods into o secret
covern used by spies ond the miltary to
move insecret.

The Thira Scene & wheve Moses ensrs the cavern, o
D2 of novigoton ang envronment efects
oreplcadin the levelhere. The ployer
Q0ing the top route & foced with o bosic
OR Jump puzzie if too difficul they moy
Toke the secondoryrou. This¬
intended to o'woy's be usad, ond is
unimportont to theowerailievel. Moses
then reoches o Wooden rope bricge over
O massiveexpanse to which o waterfol
20ws intg, tO his faft there Iz 0 breok in
the covern wow showing Nm the cliy o
which hels troveling to. Moses then fighs
0 Quord and further reods (vio a note),
maore informotion about hmz2if The
Quord 050 has 0 smol comp with heoith
ond suppiles Moses then enters oeeper

Justin Kelly The Design Document Page |14

MIKAEL PETER OLSEN
STUDY NO. 20093736

99

Modular PCG - An Architecture for Procedural Content Generation

Section 6 — Sequences

In game in its whole entirety the game will rely heavily on soripted sequences and cinematic. Theywill
zhow up freguently.

Scripted Sequences

In thiz document’s limited scope there iz one soripted sequence which conzizsts of Moszes meetingthe
first guard. Thisintroduces the player to what is going on, reaffirms the information gathersd by the spy
[that Mozez iz being watched and huntad) and reinforces to the playerwhom i hostile against him and
what he looks like. There is dialogwhich consists of the guard rushing out thinking that Maoses is the spy
whom has returned with news, only to realises at some guick sentences that this is not the =py, butin
fact Mozes —whom he attempts to attack afterwards. This introduces the player to combat against a
human foe.

There may akko be - depending on Alpha testing of this game, 2 quick triggerand soripted sequence
when Moses zees the vista on the roped bridge. It alldepend: if noticeable to players.

Cinematics
There are 5 Cinematics used. One is used atthe end of each scene totransition to the nextscens. Oneis
alzo used from the main menu to introduce the game, Moses and the backstory.
1. IntroductionToScensl
®» Moszes and hiz past iz announced the movie outlines Moses lotin life, and foreshadows
what he needs todo, Shows him friend and foe and Hebrew oppression also
foreshadows thathe iz 2 important person, destined for greatness.
2. Mosesandush
s Moszes Mests the bush and i given images and dialog that zolidifizs his quest and the
bush entrusts him 22 the only hope for 2 enslaved race. Dutlines his first quest and gives
him direction and purpose. Crozs Fade to ingame
3. ScenelTo
® Transition that shows him walking off 3 mountain thenendlzzsly in 2 desert before
making camp a few days later. Fade toblack.
4. SoenelTol
®* Noses Enters a cave dark and filled with 2 light fog — Pan away and fade to black.
5. Sceme3iTod
®» Moses Ventures deeperin acave, rocks rumble and Mozes slips 2 bit and regains his
stance —a foreshadow of possible problems and traps ahead.
After this is outsids of the scope af the document.

Justin Kelky The Design Document F

w
(1=

g | 19

100 MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

Section 7 — Art Assets & Directory Structure

Textures
Environmental Textures
®» DesartTesturss
= Gand
= I ersions
= 4] wersiontoaccent the sand textures
® Q3:zizGrazs haze
= Dasiz Grass Phyziczl
* FRock Face for 5tatic Mesh/BSB
® Cayem Textures
P Cavem Rock Face
P water Pool Bottom
> PurzBlack — For dark darkaress.
» Zun Beam Texture for Static Mesh
P Mozss
s atmozphers
= Dust Twinklz 5prite
= waterfallspray
* Fire Sprite
» EhyBow
= something of eye-catching nature
= Broad Caylight
= Shows the scorching heat by blurning the zun

Static Mesh / Object UV Textures
» Eridge Static Mesh/Karma

» wWood
* Fopes
* Lnit Spy

P SpyUv Map
* Unit Guard
P Guard UV Map
= Helmut
» Sword

Shaders

Mo Shaders will be used other then what comes defauk to the unreal engine.

Bumpmaps

Mo Bumpmaps will be uzed other thenwhat comes default to the unreal engine.

Justin Kelky The Design Do ocument

MIKAEL PETER OLSEN
STUDY NO. 20093736

[1=]

s | 16

101

Modular PCG - An Architecture for Procedural Content Generation

102

Models

Guard

sleeping Spy

Cavem Entrance Face
Rock Debris

Rock Blockade
Flaming bush

Sound FX

Ambiance

Cawvem Dark Sound

Dezsrt

Buzh Buming

Creaking of woodsen bridge

Dripping watsr

waterfall

Effects

P Sword to Moses (flesh)

Mozes (wood Staff} to Sword fGuard

WO W W

Foot on sand
Metal Clinking

WO W W

Snoring

Voice Overs

Music

Guard
Moses

God

There iz no music added tothis level.

Interface assets

Justin Kelky

Custom Hud

» Clean up the Hzalth and adrenaline bar and replace it with large numbers inthe top left

for both.
* Remowve Unreal’s Colour Framing
* FRemowe Inventory

The Dezign Do oument

Fage |17

12

MASTER’S THESIS, MEDIALOGY

AALBORG UNIVERSITY COPENHAGEN, 2014

APPENDIX

All tables has been taken the article by Doran & Parberry [35].

| Motivation | Strategy | Sequence of Actions
Knowledge Dieliver 1tem for study <get> < goto> give
Spy <SPy
Interview NPC < pgoto> listen < goto> report
Use an item in the field < OEt> < gotol USe < goto= < gives
Comfort (Obtain luxuries < EEt> < gotor < giver
Kill pests < goto> damage <goto> report
Reputation Obtaln rare items <gets < goto> < give
Kill enemies <pgotoz <kill> < goto report
Visit a dangerous place < goto> < goto> report
Serenity Revenge, Justice < pgoto> damage

Capture Criminal(1)
Capture Criminal({2)
Check on NPC(1)
Check on NPC(2)
Recover lost/stolen item
Rescue captured NPC

< get> < goto> use < goto> <give

< gets < goto> use capture <goto> < gives
< pgoto> listen <goto> report

< pgoto> take <goto> give

< get> < goto> < give

< goto> damage escort < goto> report

Protection

Attack threateming entities
Treat or repair (1)

Treat or repair (2)

Create Diversion

Create Diversion
Assomble fortification
Guard Entity

< goto> damage < goto> report
<get> < gotos use

< goto> repair

< get> <gotos Use

< pgoto> damage

< goto> repair

< goto> defend

Trade for supplies

Conquest Attack enemy < goto> damage

Steal stuff < pgoto> <steal> <goto give
Wealth Gather raw materials < goto> < gets

Steal valuables for resale < pgoto> <steal:

Make valuables for resale repair
Ability Assomble tool for new skill | repair use

(btain training materials < gEt> use

Usze existing tools use

Practice combat damage

Practice skill use

Research a skll(1) < gets use

Research a skill{2) < et experiment
Equipment Azsomble repair

Deliver supplies < EEt < gOt0l < givels

Steal supplies < steal =

< goto> exchange

Table 4:

MIKAEL PETER OLSEN
STUDY NO. 20093736

Strategies for each of the NPC motivations from Table 2 using actions from Table 5.

103

Modular PCG - An Architecture for Procedural Content Generation

Action Pre-condition Post-condition
1. | £ None. None.
2. | capture Somebody is there. They are your prisoner.
3. | damage Somebody or something is there. It is more damaged.
4. | defend Somebody or something is there Attempts to damage it have failed.
h. | escort Somebody 15 there They will now accompany you.
fi. | exchange Somebody is there, they and you have something. | You have theirs and thev have vours.
7. | experiment | Something is there. Perhaps vou have learned what it is for.
B | explore None. Wander around at random.
9. | gather Something is there. You have it.
10. | give Somebody is there, you have something. They have it, and vou don’.
11. | goto You know where to go and how to get there. You are thero.
12| Kill Somebody 15 there. They're dead.
13. | listen Somebody is there. You have some of their information.
14. | read Something is there, You have information from it.
15. | repair Something is there, It is less damaged.
16. | report Somebody is there. They have information that vou have.
17. | spw Somebody or something is there. You have information about it.
18, | stealth Somebody is there. Sneak up on them.
19. | taks Somebody is there, they have something. You have it and they don't.
0. | use There 15 something there. It has affected characters or environment.
Table 5: Atomic actions.
Hule Explanation
1. | <subquest> 1= <goto> Subguest could be just to go someplace.
2, | <subguest> = <goto> <QUEST > goto | Go perform a quest and return,
3 | <goto> ==« You are already there.
4, | <goto> 1= explore Just wander around and look.
5. | <goto> = <learn> goto Find out where to go and go there.
fi. | <learn= 1= ¢ You already know it.
7. | <learn=> ;1= < goto> <subguest> listen Go someplace, perform subquest, get info from NPC.
8. | <learn> ;1= < pgoto> =<get> read Go someplace, get something, and read what is written on it.
09, | <learn> 1= <get> <subgquest> give listen | Get something, perform subquest, give to NPC in return for info.
10, | <get> ==« You already have it.
11. | <get> 1= <steal> Steal it from somebody.
12, | <get> 1= <goto> gather Go someplace and pick something up that's lyving around there.
13. | <get> 1= <goto> <get> < goto> Go someplace, get something, do a subguest for somebody,
< subguest> exchange return and exchange.
14. | =<steal> = < goto> stealth take Go someplace, sneak up on somebody, and take something.
15. | <steal> = <goto> <kill>= take Go someplace, kill somebody and take something.
16. | <spy> 1= < goto> spy < gotol= report Go someplace, spy on somebody, return and report.
T. | <capture> ;= <get>> < goto> capture Get something, go someplace and use it to capture somehody.
18. | <kill= 1= <goto= kill Go someplace and kill somebody.

104

Table 6: Action rules in BINF.

MASTER’S THESIS, MEDIALOGY
AALBORG UNIVERSITY COPENHAGEN, 2014

