

 BROAPPRMUSPRO

WSER AROACHSIC ELEGRAMM

DEP

AS GAMH ON INVMENTSMED W

PARTMENT O

AALBORG UN

ME ENGVESTIGS INTO ITH MO
MEDIALO

OF ARCHITECCOPENH

NIVERSITY C

GINE - EGATINGGAMESODERN
OGY MASTE

M

 CTURE, DESIGHAGEN, SPRI

OPENHAGEN

EXPERIMG WAYS S WHICWEB T
ER THESIS

MAIN SUPERVCO-S

GN AND MEDNG 2014

N

MENTATO IMPH ARE TECHNO
BY: ISOR: JANNICSUPERVISOR:

DIA TECHNOL

AL PLEMENOLOGIE
KRISTJAN K

CK KIRK SØR

STEFANIA S

LOGY

NT ES.

KALMUS

RENSEN

SERAFIN

2

3

Table of contents

Table of contents ... 3

Preface ... 6

1. Introduction ... 7

2. Background .. 9

2.1 The game audio history ... 9

2.2 The importance of sound in games ... 10

2.3 Types of sounds ... 12

3. Working with audio ... 14

3.1 Limitations ... 14

3.2 Practices to cope with the limitations ... 17

3.2.1 Saving file as mono ... 17

3.2.2 Downsampling and compression ... 18

3.2.3 Frequency analysis and concatenation .. 18

3.2.4 Saving file at twice the speed ... 19

3.2.5 Different playback speeds .. 20

3.2.6 Reducing load time ... 20

4. Audio implementation methods and file types .. 21

4.1 State of the art .. 21

4.1.1 Adobe Flash .. 21

4.1.2 <audio>-tag .. 23

4.1.3 Web Audio API .. 25

4.1.4 Audio Data API ... 28

4.2 Sound file types ... 28

4.2.1 WAV audio .. 28

4.2.2 MP3 .. 28

4.2.3 OGG Vorbis ... 29

4.2.4 WebM ... 29

4.2.5 AAC ... 29

5. Implementation and methodology ... 30

5.2 The technical solution of the implementation .. 30

5.3 Implementation to test looped background audio ... 33

4

5.4 Computers’ specifications used for testing ... 33

5.5 Measuring and data logging .. 34

6. Implementation and testing .. 35

6.1 Data network speeds and download times ... 35

6.1.1 Introduction and test conditions .. 35

6.1.2 Ways of measuring ... 36

6.2.3 Testing and results.. 37

6.2 Web Audio API decoding times ... 41

6.2.1 Introduction and test conditions .. 41

6.2.2 Ways of measuring ... 42

6.2.3 Decoding times of MP3-audio .. 44

6.2.4 Decoding times of OGG-audio .. 44

6.2.5 Decoding times of AAC-audio .. 45

6.2.6 Decoding times and different audio qualities .. 46

6.2.7 Decoding times and different number of files .. 46

6.3 Looping sounds .. 47

6.3.1 Introduction and test conditions .. 47

6.3.2 Ways of measuring ... 48

6.3.3 Looping and MP3-files .. 48

6.3.4 Looping and OGG-files .. 51

6.3.5 Looping and MP4-files .. 51

6.4 Overcoming limitations of looping .. 52

6.4.1 Introduction, test conditions and measuring ... 52

6.4.2 Test results (audio-tag) .. 55

6.4.3 Test results (Web Audio API) .. 56

7. Reducing the usage of system resources .. 58

8. Conclusive analysis .. 60

9. Conclusion ... 64

10. Future works .. 66

References ... 68

List of figures, tables and code examples ... 72

Appendix A .. 74

Appendix B... 75

Appendix C ... 76

5

Appendix D .. 77

Appendix E ... 80

Appendix F ... 82

Appendix G .. 84

Appendix H .. 85

Appendix I .. 88

Appendix J ... 89

Prefa

The th

additio

Inform

Inform

ace

esis includ

nal materia

mation in

Wh

incl

of

dec

top

text

mation on

This

text

to i

typ

it co

es some i

als easier.

Appendix

hen this icon

luded in the

data the A

cision whet

pic at hand o

t where one

n DVD

s paper is a

t, it means

llustrate th

e of related

ould be view

nformatory

x

n is present

e Appendix.

Appendix h

ther checki

or not. Also

e or anothe

accompanie

that visual

e point ma

d data, whe

wed (if app

y icons to

t it means t

. The text o

has, so tha

ng the App

o it makes it

er appendix

ed by a DV

or audio e

de in the te

ere exactly

licable).

make the

that some o

n the right

t the read

pendix imm

t easier late

is relevant

D. When th

xamples ha

ext. The tex

it could be

reading an

of the relev

of the icon

er could m

mediately is

er on to loca

.

he DVD ico

ave been in

xt beside th

found from

nd finding

vant data ha

explains wh

make an in

s beneficial

ate the plac

n is presen

cluded to t

e icon expla

m the disk a

6

related

as been

hat kind

nformed

 to the

ce in the

t in the

the DVD

ains the

nd how

7

1. Introduction

Audio elements play an important role in the world of computer games. In the world of

browser based gaming, the majority of games have required some sort of third party plug-

in to overcome the limitations of the multimedia support in web browsers. The new HTML5

standard, introducing native audio-video support, has added new features to the web,

making it possible to implement audio into web applications and to create multimedia

games solely by using proprietary web technologies. The HTML5 audio-tag is the

standardized way to include audio elements to web. In addition – the Web Audio API is in

development, which should open up even more possibilities when it comes to audio,

including audio panning, filtering and effects to name a few.

The goal of this paper is to look into the world of audio in games – the limitations,

differences and possibilities of audio-tag and Web Audio API when it comes to

implementing audio using web languages. This work covers the topics like the ease of use,

the differences in implementation, the suitability for different purposes and how one

method or another might affect the possible gaming experience (through usage of

computer resources, loading times and differences in audio playback).

Problem formulation:

As a more specific problem formulation, the following postulation has been presented:

How well do audio-tag and Web Audio API perform compared to each other and how

they can be used in a most optimal way to deliver the best user- and aural experience in

browser based games.

The process of analyzing the problem stated above will consist of different parts – the

efficiency of using data delivery networks (loading times, file request times);

implementation method specific characteristics; performance related aspects when using

different types of audio files; how implementation methods and audio file types behave

when used under possible real life condition (in a form of looped background audio). The

results will be analyzed and some of the downsides will be looked into in more detail, to

inspect possible workarounds to the limitations imposed by the implementation methods

and audio encoding technologies.

8

The research question was tested using two web pages – one for each audio

implementation method – which acted as frameworks and were modified based on the

nature of each individual test. To make the tests comparable, a set of guidelines were put

in place to which both frameworks had to comply with.

This paper is focused on the domain of PC-games and deals with audio which is recorded

and sampled before implementation; the field of audio synthesis or MIDI-technology is

beyond the scope of this paper. The reason is that limitations applying to the sampled

audio are different from the limitations on synthesized or programmatically generated

audio.

9

2. Background

This chapter gives an overview of the history and the evolution of audio in games, why the

development of audio technologies is of great importance to the games and how audio can

influence the gaming experience. The second half of the chapter will cover the list of

different audio types used in games and their roles. The history of the development of the

game audio is essential to understanding the current situation of the industry and what

kind of expectations a developer might have when working with game audio.

2.1 The game audio history

Audio playback has always been limited. The best example is the hardware development of

gaming consoles. First generation consoles didn’t have any audio support or it was very

limited. Magnavox Odyssey, the very first home video game system, had no sound. The

following machines also started to implement sound – simple built-in sound speakers at

first, later on more capable sound chips which generated sound for playback through TV-

speakers [1]. One of the quite common solutions for sound generation was using 4 channel

chips – 3 sound channels and 1 noise generator – which could be found from many gaming

consoles throughout the 70’s and 80’s [2]. Over the decades manufacturers added more

channels which enabled programmers and composers to create more complex musical

pieces. With the Nintendo Entertainment System (NES) (released in 1983 in Japan and 1985

in US) the Programmable Sound Generator (PSG) was introduced to the gaming consoles

and one of the PSG audio channels could have also been used to play audio samples [2, 3,

4]. This was a step forward in the direction of how majority of the audio has been

implemented today – the audio consists of recorded and sampled CD-quality stereo audio

and is not generated on fly by sound synthesis chips [5]. NES used 5 channels of

monophonic audio, a year later (in 1986) Sega introduced sound generators which were

able to generate sounds in four octaves each. In 1989 the NEC TurboGrafx-16 had 6

channels with stereo output, during the same time Sega Genesis brought 10 audio channels

[5].

In the 90’s games’ audio started to put more demand on the system resources. This

becomes evident when we look at the specification of the game consoles released since the

early 90’s – Play Station (released in 1994) already had 24 audio channels and 512KB

10

dedicated memory, Nintendo 64 (released 1996) used shared memory of 4MB, Sega

Dreamcast (released 1998) had 64 channels and 16MB of shared memory, Sony Playstation

2 (released 2000) allowed programmers to work with 32MB of shared memory. A year later

Microsoft released Xbox which had 64MB of memory, Xbox later version – Xbox360 (2005)

– had 512MB of shared memory [2].

2.2 The importance of sound in games

The capabilities of audio have been varied a lot over the decades as seen from the previous

quick overview of the game audio – the early game consoles lacked audio support or had

primitive internal speakers to generate simple beep sounds. Later on multiple channel

sound generation chips were added to the console boards, but there was still a long way to

go until the technology allowed the usage of pre-recorded audio [2, 5]. It is understandable

why audio has gotten and gets less attention in computer games since for players, the two

most important features in computer games are playability and graphics, when they are

choosing a game to buy [6].

Even though players don’t consider audio as important, having a quality in-game audio can

benefit the game in various ways. The game development studios have understood this and

as a result they often have on-site sound engineers, working with games, to create the best

possible aural environment for the games [1, 5].

One might ask why is audio so important to the games. Sound plays different roles in games

– it separates the player from the surrounding distractions, reflects the game state, acts as

a feedback medium for player actions, helps the storyline progression, and makes the

fictional world seem more realistic [1, 5, 7, 8].

Lately more and more attention is given to the immersive qualities of games which are

important in many ways. Immersion by definition is a state where entire player’s attention

is on the game [9, 10, 11], the sense of time is reduced [9, 11, 12] and in some sense the

player becomes a part of the experience itself [10, 13]. On one side, when players are

immersed then different shortcomings in usability and conflicts between expectations may

often remain unnoticed [14]. On the other hand, the goal of player-centered game design

approach, is to increase player enjoyment [15], making immersion a vital element for the

success of a game. If players do not enjoy the game, they will not play it [11]. Studies have

shown that sound plays vital part in the immersive qualities of a computer game [1, 9, 13,

11

16]. As noted above, immersion has been associated with number of features: lack of

awareness of time, loss of awareness of the real world by being completely focused on the

game at hand, involvement and a sense of being in the task environment. Also emotional

involvement seems to be one of the key factors [13, 17] and sound/music is a very powerful

medium to affect one’s emotions [5, 18]. In addition it has been suggested that immersion

correlates to the number of attentional sources (visual, auditory and mental) needed as

well as the amount of each attentional type [9].

Gameplay immersion can have different dimensions [10] – this means that one could have

an immersive experience with early “Pong” game where audio is very primitive and does

not contribute that much to the overall immersive experience – but increasing the realism

of a soundscape can increase the strength of the sense of immersion [16]. In addition,

better audio quality improves the overall experience - sensory immersion is related to the

audiovisual execution of the game, and audiovisual quality and style has been regarded one

of the central aspects of a good digital game, meaning that often higher quality audio leads

to the higher level of immersion [10]. As audio hardware has matured, the quality of audio

has tried to keep up with the hardware improvements; this includes adding surround sound

to games [1]. Even though web games may not include surround sound, it is still important

to deliver a reasonably high quality audio, since obviously it adds to the overall look and

feel of the game and contributes to the gaming experience.

Immersion in terms of audio, is a presentation of a soundscape in a way that listener has an

impression of being entirely within a realistic sound environment [19] and it can be used to

create the illusion that the world extends beyond the screen [6]. Sweetser and Wyeth have

introduced a framework to rate the criterions of enjoyment in games [11] and some of the

areas in which audio has a role to play are highlighted as follows:

• games should provide a lot of stimuli from different sources;

• players should receive immediate feedback on their actions;

• players should become less aware of their surroundings;

• games should have a high workload, while still being appropriate for the players’

perceptual, cognitive, and memory limits.

As it becomes clear from the text above, sound and music have a distinct role to play in

games. Even though players don’t consider the sound to be very important when they

12

choose games for playing [20] it still has a lot to contribute to the gameplay experience. It

has been even theoretized that video games will eventually become interactive movies

where the psychological effects of music and sound will be dominant [5].

2.3 Types of sounds

To keep the topic from becoming too broad, I am focusing on the audio which is present

only during gameplay (background music and gameplay-related sound effects), leaving out

sounds played during menu screens, intro and credit sequences, and cinematic cutscenes.

In an average PC or console game1, a player is exposed to multiple types of audio. In the

movie industry, the sounds are most commonly divided into two categories – diegetic and

non-diegetic. Diegetic sounds are part of the physical realm of the actors, non-diegetic

sounds are external to the story world and often are there to bind the images and

contribute to the overall mood like conventional background music [21].

Similarly to the film industry, diegetic sounds in games are those which have a physical

source in the game environment and could be heard by the character in the game, i.e

environmental sounds (wind, rain, thunder, birds etc), character sounds (breathing,

footsteps), action sounds (sword swinging, gunshots, opening a door). The most commonly

recognized non-diegetic sound in games is also background music. As in films it can convey

the mood but it often gives feedback about the state of the game (i.e music changes during

combat scenes or when time starts to run out) and therefore can influence the gameplay.

Other types of non-diegetic sounds can include different audiocues which accompany

banners or signs. The signs or banners are instructions, tips, and rules. These instructions

are presented not as objects belonging to the fictional world but rather superimposed text,

although part of the game [16, 22].

Since games are dynamic entities, the audio in games can broadly categorized as

diegetic/non-diegetic, but within those categories it can be separated even further. In

games we can also talk about interactive and adaptive sounds – environmental sounds and

background music which react to the in-game day-night cycle, action sounds which are

1 Author considers “an average PC or console game” as something which has meaningful game audio
(gives feedback to the player), requires mouse/keyboard or game controller as an input device and
requires some time commitment by the player.

13

played according to the player’s actions and changing environmental sounds [1]. The game

audio can be classified even in a more detailed level - in a literature another layer has been

introduced to the game audio, dividing diegetic and non-diegetic sounds also into masking

sounds (sound signal is diegetic but signifies a non-diegetic event) and symbolic sounds

(sounds relate to the in-game events while signals remain non-diegetic) [22]. Since in this

paper the implementation is not focusing on to 3D game world, most of the sounds are

non-diegetic and can be regarded as symbolic sounds.

3. Wo

This ch

how th

some e

3.1 Lim

Since t

compu

certain

audio

limitati

feels th

one sho

channe

(depen

quality

process

process

discard

There

Raybou

orking wi

apter gives

hose limitat

extent.

mitations

the quality

ting power

 limits or to

programmi

ons and re

hat with the

ould not wo

els used in g

dent of th

surround s

s. The syste

sing is ofte

d a number

is a parad

uld in their b

Figur

ith audio

s an overvie

ions might

s

y of the ga

r at hand, p

o have a be

ing is no

estrictions t

e huge adva

orry about

games has g

he amount

sounds, but

em resource

en not the

of sound as

oxical conf

book call it

re 1 - The triang

o

ew of the li

limit game

ames are s

programme

est possible

different.

the develop

ancements

the system

grown from

of system

 as technol

es are share

main prior

ssets becau

flict betwee

the triangle

gle of comprom

mitations t

s/gameplay

strictly in d

ers have of

e solution i

Implement

pers have h

in terms o

m resources,

m nothing to

resources)

ogy advanc

ed between

rity. In som

se of the lim

en differen

e of compro

mise in game au

he audio de

y and how

direct corr

ften develo

nside the s

ting audio

had to cop

f processin

, it is still an

o basically a

) and from

ces new res

n different p

me cases it

mits stated

nt variables

omise [7].

udio by Steven

esigners ha

one could c

elation wit

ped techni

system rest

in games

e with. Eve

g power an

n issue. The

n infinite n

m the piezo

trictions ha

processes an

might eve

above [23].

s of the au

ns & Raybould

ave to work

cope with t

th the amo

ques to ov

rictions. Th

s has alwa

en though

nd system m

e number o

umber of c

o-speakers

ave emerge

nd in game

n be neces

.

udio. Steve

14

k within,

them to

ount of

vercome

he game

ays had

it often

memory

of sound

hannels

to high

d in the

s, audio

ssary to

ens and

15

The “triangle of compromise” in game audio development consists of three elements –

variation, memory and quality. The audio designer has to keep in mind that there is a

constant battle between these three properties and a balance has to be found between

them. For example having a huge number of different high quality effects is very

demanding on the memory. If an amount of memory is limited, then one has to decrease

the number of used samples or decrease their quality.

Theoretically each sound implemented in the game has a certain position in the “triangle of

compromise” – having a sound element (for example sound of footsteps) with a small

memory footprint2 means that also the quality has to be low and not many variations can

be used, meaning that the same low quality sound will be played over and over again. A

good example here are the footsteps sounds in the game Final Fantasi XII – in real life when

a person walks on the same surface the footsteps will still sound differently, but in Final

Fantasi XII there is only one sample for each surface type, which eventually gets very

annoying and tend to break immersion.

The “triangle of compromise” also holds well in terms of web-based games. In case of the

web the triangle should also include bandwidth, since even though memory still remains an

issue, the usage of audio in web is also strongly influenced by the bandwidth limitations.

Most of the audio features are more-less dependent on the JavaScript which introduces

another layer of limitations [24].

JavaScript is the programming language of the web. In web JavaScript is mainly used

alongside other web technologies such as HTML (used to describe the content of pages)

and CSS (used to change the presentation of pages). Through JavaScript one can interact

2 Memory footprint – the amount of memory software uses when running.
(http://www.pcmag.com/encyclopedia/term/60598/memory-footprint)

Figure 2 - Triangle of compromise for web conditions

with HT

enables

add an

the ma

comes

audio-t

“contr

the pag

attribut

script [

qualitie

browse

JavaScr

suppor

JavaScr

advant

of Java

could a

Probab

event a

are list

bufferin

user's e

audio l

lag or t

quality

TML and CS

s develope

imations, in

ain languag

to implem

tag to inclu

rols” attrib

ge, which e

te has been

[27]. In the

es (can be f

er itself. Th

ript for con

rted natively

Audio and
DVD. Exam
http://www.

ript is not a

age of diffe

aScript code

affect the pe

bly one of th

and corresp

ted numbe

ng latency,

ears from s

atency is an

the game b

of the expe

SS and man

rs to specif

nteractivity

ge for creat

enting and

ude audio t

bute to the

enables vis

n left off, t

e current pa

found from

he testing e

ntrolling the

y (e.g fading

test environ
mples have
webgamesau

as well optim

erent perfor

e can be q

erformance

he most inf

ponding aud

er of factor

digital sign

speakers etc

n unwanted

eing non-re

erience.

nipulate the

fy the beha

 and dynam

ting visuals

 manipulat

to the page

e audio-tag

itors to list

hen usually

aper the HT

the DVD) r

environmen

e playback,

g one audio

nment exam
also mad

udio.com/ma

mized as so

rmance imp

quite CPU-in

e and cause

luential issu

dio playbac

rs, which m

nal processin

c. All the el

d property –

esponsive [2

e web elem

avior of pag

mic visual e

for the we

ing audio e

e doesn’t r

the defaul

ten to the

y the audio

TML-page f

rely solely o

nts and the

since man

o clip into an

mples – A nu
de available
asters/

ome other p

provement

ntensive. Th

different g

ues in web

k. In Web A

may cause

ng (DSP) lat

lements co

– it may aff

24] thus dir

ents, thus

ges [25]. Ja

ffects to th

eb based g

elements in

require any

t playback

included a

 has been

for present

on the playb

e rest of th

y different

nother).

umber of exa
 in the w

programmin

techniques

here are n

litches in au

is latency –

Audio API sp

latency: in

tency, outp

ntribute to

fect timing,

rectly affect

making it th

avaScript m

he web pag

ames. It is

n browsers.

y scripting –

controls w

udio. When

controlled

ting audio f

back contro

e pages wi

audio man

amples have
web and a

ng language

s – meaning

umber of b

udio playba

– the time b

pecification

nput device

put device la

the total a

give the im

t the gamep

he language

akes it pos

e [26], so it

also vital w

 Using the

– by includ

ill be displa

n the “con

through de

files with d

ols provided

ith audio u

nipulations

been include
are accessib

es and cann

g that runni

bottlenecks

ck [24].

between use

n document

e latency,

atency, dist

audio latenc

mpression o

play and low

16

e which

ssible to

t is also

when it

HTML5

ding the

ayed on

ntrols”

edicated

different

d by the

use only

are not

ed to the
ble from

not take

ng a lot

s, which

er input

ts, there

internal

tance of

cy. Long

of sound

wer the

17

Figure 3 - The basics of latency

Multiple studies have made about audio-visual simultaneity and in case of films and videos,

audio is considered to be out of sync with video when a sound is approximately 75ms early

or 90ms late (some of the studies have came to different conclusions with longer times

from 130ms early and up to 250ms late). [28] In games the early audio timing doesn’t

apply, since audio playback is dependent on the gamers’ actions. I would theorize that in

case of games, the latency should be smaller, since gamer usually can expect a sound based

on his/her actions. Web Audio API documentation mentions latency from 3-6 milliseconds

up to 25-50 milliseconds to be reasonable (of course it depends on the type of application)

[24].

3.2 Practices to cope with the limitations

Because of the limited nature of audio processing, different techniques, solutions and

practices have been developed over time to cope with the limitations and fully utilize the

capabilities of the audio. In a book „The Game Audio Tutorial“ Richard Stevens and Dave

Raybould (with the help of numerous contributors) discuss different ways how to work with

audio in games and to make audio memory footprint smaller by finding a compromise

between audio quality and required resources, while giving gamers the best aural

experience possible [7]. The following is a list of techniques represented, in the book, on

how to reduce the usage of resources by audio elements. Each list element also includes a

little analysis on if and how it would be possible to implement that specific method using

the audio implementation methods for web.

3.2.1 Saving file as mono

Saving an audio file as mono is the quickest way to reduce the file size two times. Saving

audio files as mono has been mentioned by different sources - Adobe Community Help

suggests that if no compression has been used then it is a good practice to use mono

sounds [29], game{closure} DevKit Docs suggest that mono files should be used when

possible [30], sound effects and speech audio are usually saved as mono files [5].

3.2.2 D

The eas

downsa

loss of

to redu

compre

compu

there

compre

compre

(progra

then c

covered

3.2.3 F

WAV-fi

human

represe

at leas

conten

smaller

beginn

cut the

samplin

will be

with sm

Downsamp

siest way to

ampling or

audio quali

uce the file

essed audio

ting power

might aris

essed audio

ession algo

ammer hav

hooses the

d in later ch

Downsamp
where audio
settings can
accessible fr

Frequency

le with sam

 hearing ra

entation of

st twice the

t, it is possi

r without lo

ing or in the

e audio file

ng rate file,

played ins

maller mem

pling and c

o reduce th

by using so

ty. Using co

size while m

o is that ev

to play it b

se support

o in web bro

orithms [27

e to make

e file it can

hapters.

pling and co
o has been sa
n affect audi
rom http://ww

analysis a

mple rate 44

ange, which

sound whic

e size [7, 3

ible to rend

osing quality

e end of it,

up and sav

 and the re

tantly after

ory footprin

compressio

he amount o

me compre

ompression

maintaining

ven though

because it h

problems

owsers can

7, 31, 32],

different c

n play). The

ompression
aved on diffe
io quality. E
ww.webgame

nd concate

4100 Hz, allo

h is approx

ch has harm

33]. If the

der the aud

y. If some p

then one of

ve the part

st of the file

r another, r

nt.

on

of used res

ession algor

 algorithms

g the audio

the file siz

has to be d

 with com

be tricky, si

 making t

compressio

e browser

examples –
erent qualitie
Examples hav
esaudio.com/

enation

ows one to

ximately fro

monics up to

audio sign

io using low

part of audio

f the specia

t with the h

e with a low

resulting in

sources is to

rithms. Dow

s means tha

quality rela

e is smaller

decoded firs

mpressed a

ince differe

the implem

n types ava

support fo

– Examples h
es to give an
ve also mad
/masters/

recreate al

om 20Hz to

o 20000Hz o

nal doesn’t

wer sample

o file has hi

al technique

high freque

w sampling

n a seeming

o make sou

wnsampling

at to some e

atively well.

r, it often t

st. Addition

audio – fo

ent browser

mentation m

ailable to t

or different

have been in
overview ho

de available

l the possib

o 20000Hz.

one has to h

contain an

rate thus m

igh frequen

es mentione

ency audio

rate. Durin

gly one aud

und files sm

usually res

extent it is p

. The proble

takes slight

nally in som

or example

rs support d

more comp

the browse

file types

ncluded to t
w different r
in the web

ble frequenc

 To have a

have a sam

ny high fre

making the

ncy element

ed in the bo

in a separa

g playback

dio file but

18

maller by

ults in a

possible

em with

ly more

me cases

e using

different

plicated

r which

will be

the DVD,
rendering

and are

cies in a

a digital

ple rate

equency

file size

ts in the

ook is to

ate high

one file

in total

19

Figure 4 - Differences in frequency data when different sampling frequencies have been used. Colors represent the
volume level of the sound on different frequencies (cyan is lowest, light orange is highest)

The previous figure represents the visual audio spectral data of a sound effect I created. As

one can see, there are only a limited amount of high frequencies present in the beginning

of sound file, which means that concatenation could be successfully used on this audio file.

Also if the lack of high frequencies do not affect the audible quality of the audio, one can

simply save audio with a lower sampling rate.

This is an advanced functionality that game engines are able to provide, but implementing

it in the web can be more complicated, since this is not a native functionality that web

languages could provide.

3.2.4 Saving file at twice the speed

One way of decreasing the file size but not sacrificing much of the quality is to increase the

raw audio source playback 2 times before rendering it out as a game audio asset. It could

be done in different audio editing programs with a time compression functionality which

allows manipulating with the audio playback speeds. In the game itself, the file would be

played back 2 times slower, thus creating the feel of the original sound effect. This

technique makes it possible to save 50% of the audio file size compared to the original

“unstretched” audio.

In the web both HTML5 audio-tag and Web Audio API support playback speed changes [24,

27].

20

3.2.5 Different playback speeds

One fairly common technique is to use the same audio file for multiple effects simply by

changing the playback speed of the audio file. This allows a reducing of audio memory load

and also reducing the number of files included in the game.

3.2.6 Reducing load time

One of the techniques used in computer games is to concatenate the audio effects into one

single file. Reading a number of different audio files from hard drive or from optical disk

induces delay – even though it may not be a very long delay it still can result in unwanted

effects not acceptable by game developers. By including audio markers to a single file it is

possible to start playing from different places. The problem in this case is the following – is

it possible to make browsers to recognize media markers inside a sound file? The technique

itself would benefit page loading time, because for each file the browser loads during the

opening of a web page, it has to send a separate request to the server. Reducing the

number of requests made by the browser decreases the page loading time (as we can see

from the test results covered in later chapters).

21

4. Audio implementation methods and file types

This chapter talks about the ways the audio can be implemented in browser based games,

covering the currently most widely used Adobe Flash and the native browser technologies

including their technical possibilities and characteristics. In the second part of the chapter

the sound file types, which can be used in browsers, have been covered.

4.1 State of the art

4.1.1 Adobe Flash

When talking about browser based games, then these games are more casual type of

games. Casual games are commonly described as games which allow people to have a

meaningful play experience within a short time frame [34]. For example one game round of

Bejeweled Blitz, one of the most popular games in Facebook [35], lasts for one minute,

while in case of hardcore games3 one round may take up to an hour or sometimes even

more. This has a lot to do with web browsers’ and bandwidth limitations, therefore also the

audio of browser based games tend to be rather limited, for example one background

music loop plus a handful of sound effects.

Currently most of the games which can be played through browser will need the browser to

support of Adobe Flash which has been the de facto standard for web-based gaming [31].

Adobe Flash has been on the web gaming scene for a long time. It was originally designed

for doing web drawings and animations but has evolved a lot since [36]. Today one can do

many things using Flash – it includes creating animations, 3d effects, play audio (in which

this paper is most interested in), multimedia streaming, Flash can be used for

presentations, creating interfaces for info kiosks, creating games, mobile and desktop

applications [37].

In terms of Flash’s audio capabilities most of it is available through a Flash-specific scripting

language called ActionScript. ActionScript is a language used to program interactive Flash

content. It has some similarities with JavaScript but also inherits some elements from

languages like Java and C and it can be used to control animations, data, playing audio and

3 Hardcore game is traditionally considered to require a large time commitment for a meaningful experience
and to make demands on the skills and commitment of a player itself. [23]

22

Figure 5 - The class structure of Adobe Flash sound system

video, user events etc and for accessing Flash libraries and APIs [38]. ActionScript was

introduced in 2000, its latest third version was released 2006 and it introduced a number of

new possibilities [37]. In Adobe Flash there are two types of sounds: event sounds (has to

be downloaded before playing) and stream sounds (playback will start as soon as enough

data has been downloaded). These types of sounds can be used in different ways: to have a

sound played continuously or synchronize it with a specific animation. In Flash there is even

a special event that can be used if one wants to trigger another event after the sound has

finished playing. In Flash one can load sounds dynamically and have access to audio

envelopes [29].

In Adobe Flash audio playback uses different classes. Each sound has to be encapsulated

into Sound object, which also deals with loading and buffering audio data. The playback of

Sound object is controlled through SoundChannel class. The panning and volume of a

SoundChannel can be controlled with SoundTransform class. From there the sound is

forwarded to SoundMixer class, which is the global mix of all played sounds. If overall

volume and panning has to be changed, then it can be done through SoundMixer’s own

SoundTransform class. At any given point the maximum number of mixed SoundChannels is

32 [38].

23

The previous figure shows in overall the hierarchy of sound system classes in Adobe Flash.

This kind of approach makes it possible to tweak each sound or group of sounds separately.

A list of functionality what Adobe Flash allows to do according to [38]:

• “Seek” functionality or in other words to determine the starting point of the playback in

the audio file.

• Looping (the number of loops has to be set).

• Possibility to access MP3-files’ metadata (i.e song name, artist, track number, album

name etc).

• Display sound’s waveform or frequency spectrum.

• Change audio playback sample rate/speed.

• Extract any portion of audio and modify its data.

• Audio synthesis and dynamic writing to audio buffer

In Flash there are multiple ways how to implement sound – it is possible to work with audio

by using ActionScript or to add audio to the timeline. The way of implementation depends

on the usage of the sound – for example when sound has to be exactly in sync with an

animation then it is done by including a sound file to the animation timeline. If syncing is

not a priority then it is also possible to stream audio, but if the audio has to match with

some animations, then on slower connections it could result in a bad user experience [37].

Adobe Flash has set high standards to how one could work with audio in the web. Since

usage of Flash for websites is declining quite rapidly [39] and Adobe is paying more and

more attention on creating tools to allow content to be exported into web standards [40], it

also means that a browsers native audio support has to keep up with the developments in

this area.

4.1.2 <audio>-tag
Implementing sound elements to a web page has always been a problem. This is one of the

reasons Flash become standard for web-based gaming. Before HTML5 there was no

standardized native support for audio embedding to the page. The new tag included in

HTML5 is <audio> tag [31]. The most basic code for embedding an audio file into a web

page looks like the following:

<audi

 <so

 <so

Your

</aud

Code 1 - T

This is h

•

•

•

The au

media e

There a

src, pre

are sel

io contro

ource sr

ource sr

browser

dio>

The minimum a

how the pre

<audio c

browser to

Two sourc

included). T

is because

issues [27,

App
brow

The text “Y

when a br

tags they d

the only th

modern br

inside the

illustrative

link to the

access to t

dio tag also

element or

Appendix B

are also a n

eload, auto

lf-explanato

ols>

c="myAud

c="myAud

does no

amount of code

evious bloc

control>

o show play

ce tags defi

The reason

 browsers

32].

pendix A - M
wsers can be

Your brows

rowser does

do not und

hing browse

rowsers aud

tags will be

example –

intended a

he audio.

o has a num

set necessa

B – The full li

number of

play, media

ory but I w

dio.ogg"

dio.mp3"

ot suppo

e necessary for

k of code w

defines so

back contro

ine media s

why there

do not sup

More inform
found from t

er does not

sn’t recogn

derstand (in

er understa

dio controls

e hidden as

– in real life

audio file, so

mber of glob

ary parame

ist of audio-t

media-spec

agroup, loo

will cover t

type="a

type="a

rt the a

r adding audio

works:

ound conte

ols (i.e play-

source file (

are two me

pport the sa

mation about
the Appendix

t support th

nize <audio

n this case

nds is the l

 will be disp

standard [4

, a better p

o those wh

bal attribute

ters.

tag global att

cific attribu

op, muted, c

their funct

audio/og

audio/mp

audio el

to page. Sourc

ent, the ”c

-pause butt

of course m

edia sources

ame forma

t the support
x A.

he audio ele

o> tag – old

<audio> an

ine of simp

played (if in

41]. The tex

practice wo

o use older

es which ma

tributes can b

utes. Most u

controls, vo

ionality sh

g">

eg">

ement.

ce: W3Schools

control” p

on, volume

more than t

s with diffe

ts, mainly

t of differen

ement” wil

der browse

nd <sourc

le text, it w

nstructed) a

xt between

uld be to in

r browsers w

ake it easie

be found from

useful tags

olume. Mos

ortly: src –

part instru

e slider).

two sources

rent audio f

because of

t file format

l be display

ers will skip

e> tags) an

will be displa

nd the regu

n the tags is

nclude a do

would still h

r to access

m the Append

are the fo

st of the att

– The URL

24

cts the

s can be

formats

f patent

ts across

yed only

p all the

nd since

ayed; in

ular text

s just an

ownload

have an

specific

dix B.

llowing:

tributes

of the

25

embeddable content; preload – attribute to hint browser whether it should download the

content automatically or wait for a specific input from user; autoplay – file can be set to

start playing as soon as enough data has been downloaded; mediagroup – a way to group

more than one media file together (can be used to start the playback of multiple files

simultaneously); loop – audio file will be looping; muted – media plays without the sound

(user has to unmute manually); controls – if attribute present, then media playback

controls will be shown in the browser; volume – sets or returns the volume of the audio

[27, 41, 42]. The list of attributes is longer but it is not convenient to list them all here.

In HTML5 it is possible to seek through media (audio and video) and also specify the

playback range (play only a portion of the media) [43]. The latter functionality should

become handy in browser-based games. As mentioned previously in the “Working within

the limits” chapter – concatenating audio files can reduce loading times and be especially

beneficial in reducing the number of request made to the server.

<audio> element has also number of limitations. Among other things it is difficult to

implement precise timing controls, the number of sounds playable at once is limited, pre-

buffering a sound is not very reliable, no real-time audio effects, no audio analyzing

capabilities [44].

In addition while going through the list of functionality and attributes one could notice that

one of the most common parameter is missing – panning. While using audio-tag for audio

playback it is not possible to pan audio sources to right or left (there is no reference to

panning mentioned in the W3C documentation). If dynamic panning (panning audio

elements based on the location of the audio source on the screen) is absolutely necessary

then it has to be done through other means.

4.1.3 Web Audio API

Web Audio API is created to enable audio processing and synthesizing in web applications.

Its modular structure can somewhat be compared with the Adobe Flash’s sound system –

the overall audio rendering is defined by number of connected AudioNode objects (the

matter of AudioNodes will be covered in more detail later). The Web Audio API standard is

currently in the state of Working Draft, which means that it is prone to change [24].

Web Audio API is completely separate from the audio-tag (although it has integration

points with other web APIs). Web Audio API overall goal is to make the functionality found

in gam

availab

applica

Hierarc

inside t

connec

There a

•

•

•

•

The nu

have a

Figure 6 -

me engines

ble to web

ations, soun

cically the W

the AudioCo

cted with ea

are four diff

Source nod

oscillators

Modificatio

Analysis no

Destination

to be play

destination

mber of no

different nu

- AudioContext

and audio

browsers. T

d synthesis

Web Audio

ontext whe

ach other a

ferent types

de – source

on nodes –

odes – analy

n node – au

yed, but ca

n.

odes can va

umber of no

t with different

o productio

The API ca

s [44].

API is struc

ere all the A

and any Au

s of nodes:

s can be au

include filte

yzers

udio output

an also on

ry dependin

odes in the

t AudioNodes. S

on applicat

n be used

ctured in th

AudioNode

dioNode’s

dio buffers,

ers, convolv

s and offlin

ly have a

ng on the c

signal flow

Source: W3C [2

tions (mixin

for multipl

he following

objects are

output can

, live inputs

vers, panne

e processin

visual repr

certain case

 path [24, 4

24]

ng, filtering

le cases – g

g way: all t

 situated. A

 also be an

s (i.e microp

rs etc

ng buffers. A

resentation

e. Separate

44].

g and proc

games, we

the magic h

AudioNodes

nother one’

phone), aud

Audio doesn

 acting as

sound sour

26

cessing)

b audio

happens

s can be

s input.

dio-tags,

n’t have

a final

rces can

27

Web Audio API W3C documentation lists a number of predefined features which can be

used for processing the sound. Many of the features are made specifically for games to

improve the gaming experience and increase the immersive qualities of the game. Some of

the more relevant features for this paper are: low latency sound playback, automations,

audio spatialization (different panning modes, distance attenuation, occlusion, obstruction,

Doppler shift, source-listener4 model), high quality room effects (small/large room,

cathedral, concert hall, cave, comb filter effects to name a few), dynamics compression,

audio filters. Most importantly this list of features supported by the Web Audio API makes

it possible to use it for 3D games since audio sources can be placed in the 3D space and

playback parameters being changed depending on the relative location of the audio source

from the listener [24].

Since Web Audio API is meant to extend the capabilities of web browser, there are still

some performance considerations which come with it. One of the most relevant issues is

latency (discussed above in more details) – the time between user action and a sound being

heard.

To deal with the resource limitations (especially with CPU power), there are some measures

implemented into the Web Audio API which help to cope with the processing limitations.

The Web Audio API offers a way to monitor CPU load to dynamically implement

adjustments, preventing it from going too high. Another option offered by the API is voice-

dropping – limiting the number of sounds played at the same time to keep the CPU usage in

a reasonable range. This can be done either by setting a certain number of allowed voices

or monitor and drop them dynamically. Other recommendations for conserving resources

include simplifying audio effects used in the audio signal path and running audio rendering

at a lower sample rate [24].

Web Audio API extends the possibilities of web to a greater extent, allowing programmers

to create more complex audio solutions. Working with JavaScript in browsers has its

limitations, but the API introduces different ways to cope with the limitations to deliver the

best possible audio experience.

4Source-listener acts as a microphone-like device. It receives audio from any given audible sound source in the
game space. (http://docs.unity3d.com/Documentation/Components/class-AudioListener.html)

28

4.1.4 Audio Data API

One has to remember not to confuse Web Audio API with the Audio Data API (sometimes

also referenced as Audio API). Audio Data API was developed by Mozilla to extend HTML5

audio and video elements by exposing audio metadata and raw audio data (similarly to

Web Audio API to enable working with sample data) but has since been deprecated and its

usage is not recommended [27, 45].

4.2 Sound file types

As mentioned previously there are multiple limitations which affect the sound in games and

especially when implementing it using web technologies. There are multiple types of sound

that one can use. This chapter will cover the principles and differences related to the file

types which can be used in web. When implementing audio in the web three audio types

will be used – MP3-files, audio encoded with Vorbis inside the OGG-container and AAC

encoded audio inside the MP4-container.

4.2.1 WAV audio

Audio files with WAV-extension usually consist of uncompressed soundform data in Pulse-

Code Modulation (PCM) representation [27]. PCM sound data is a binary digital

representation of an analog sound [1]. Files with .wav extension is a standard for PC, the

equivalent file type for Mac-computers has .aiff extension. Since both of these file types are

uncompressed it means large file sizes [5]. The large file sizes make the usage of WAV-audio

inefficient; also WAV-audio has not been supported by all of the major browsers (without

an equivalent file type to fall back to) which is the reason why this type of audio will not be

used during testing.

4.2.2 MP3

MPEG-1 Audio Layer 3 is the most well-known audio compression method, commonly

referred as MP3 because of the file extension (.mp3). MP3 is a lossy format – in other

words it means that some of the audio data will go missing during compression [27].

MP3 compression method is based on psycho-acoustic principles – sounds that are hard to

hear (high-frequency sounds or quieter sounds masked by other ones) are removed from

the audio data resulting in a smaller file size. Since decoding MP3-files for playback takes

some p

Using a

4.2.3 O

OGG Vo

the con

name o

comple

better a

4.2.4 W

The We

audio c

it shou

(http://

deliver

everyb

of supp

4.2.5 A

The Ad

origina

MP3),

reach t

In Appe

web un

Ogg an

not par

processing

a high comp

OGG Vorbis

orbis is also

ntainer form

of the com

etely open a

audio qualit

WebM

ebM is also

codec. Acco

uld provide

/www.webm

ing media o

ody could u

port for this

AAC

dvanced Au

lly consider

 but delive

he same qu

endix A the

nder certain

Appendix A
can be foun

d WebM co

rt of this pa

time and p

pression rat

s

o a lossy au

mat (beside

mpression sc

and patent f

ty than MP

o a file con

ording to M

a better c

mproject.or

over web (in

use it freely

s audio form

dio Coding

red to be a

ers better s

uality as MP

re are listed

n conditions

A – a list of
d from Appen

ontainers ca

per.

power, it is

es may also

dio compre

audio OGG

cheme desi

free standa

3 file with t

ntainer type

ozilla devel

compressio

rg/) states t

ncluding liv

y. WebM wo

mat by audio

 (AAC) belo

successor t

sound qual

P3 at about

d number o

s.

audio codecs
ndix A.

an also be u

s not the b

o result in a

ession simila

G can also co

igned to be

ard and acco

the same siz

e, which is

lopers netw

n to qualit

that this fo

e streaming

ould not be

o editing pr

ongs also in

to MP3 [27]

ity – throu

70% of the

of different

s and contain

used for vid

best option

n unwanted

arly to the M

ontain video

e contained

ording to th

ze [27, 47].

designed t

work, WebM

ty ratio [32

rmat has be

g) and is op

in later imp

ograms.

nto the fam

]. It uses sa

gh differen

bit-rate [48

audio file ty

ners with the

deo, but disc

n for instan

d audio arti

MP3. The O

o and meta

d in OGG. T

he develope

o specifical

M is preferr

2]. WebM

een develo

pen source a

plementatio

mily of lossy

me basic co

nt improvem

8].

ypes which

e correspond

cussing vide

ntaneous pl

facts [7, 46

OGG is the n

data). Vorb

The OGG V

ers it should

lly use only

red over Og

project hom

ped specific

and patent

ons due to t

y codecs’ a

oding parad

ments AAC

can be incl

ding browser

eo related t

29

layback.

].

name of

bis is the

Vorbis is

d deliver

y Vorbis

gg, since

mepage

cally for

free, so

the lack

and was

digm (as

 should

uded to

supports

topics is

30

5. Implementation and methodology

This chapter gives an overview of the methodology used to test different aspects of the

performance of audio implementation methods in web – test approach, used test

environments,

5.2 The technical solution of the implementation

Based on my understanding how game audio might be implemented in the web based

games, and to make the tests more easily comparable across both implementation

methods (audio-tag and Web Audio API), two web pages have been programmed to act as

frameworks. Both pages have been programmed to comply with the following technical

requirements:

• Uses compressed audio file to save bandwidth.

• Streamed over the Internet (audio data doesn’t have to be fully loaded before

playback).

• Possibility to change playback volume

Most of the tests were made with 1 minute long audio files; the number and the quality of

audio files were changed based on the type of the test. For testing network speeds, a 1-

minute long MP3 file (with approximate file size of 938KB) was used as a standard. For tests

related to background audio it was made sure that the audio clips were also about 1 minute

long, so the test outcomes could be compared more easily. All the audio is in stereo - this

means bigger audio files but soundwise is more pleasurable to work with. Also the audio

cross-over functionality has been added to the frameworks, since it is important for

creating dynamic background music in a form of changing background audio, based on the

game state or other parameters. The frameworks have been set to start audio playback

automatically after the page has finished loading, which can be done through JavaScript by

calling a “play”-method. In case of audio-tag all the audio included to the page are counted

and the first audio element added to the page is played; in case of Web Audio API no

specific tags have been added to the body of the page, but all audio files are listed in a

JavaScript array and the first audio file in the list is played (the audio data also has to be

decoded first before the playback could be initiated).

31

Also the user interface was standardized - both implementations include the following

custom UI elements:

• Volume slider – enables user to change the playback volume. The default volume

assigned during page load is 20% of the file’s original volume. Volume slider will

affect the playback volume of the currently playing file (the current file will be

tracked by the script).

• Playback buttons – enables user to start or stop the sound. Buttons which cannot be

pressed (or when a button press would not change the playback state) are disabled

(e.g. when a sound is already playing then “Play” button is grayed out). In case of

audio-tag there is no dedicated stop method, which means that the playback will be

paused and the playback time set to 0. For WebAudipAPI the play and stop buttons

will either create the connection from the source to the destination of the

AudioContext class or destroy it.

• Crossfade button – enables to fade from one audio into another. When the button

is pressed, a next audio file will start to play (with a playback volume of 0), then

over a period of 1 second the next audio clip’s playback volume will be increased to

the level of the previous audio; at the same time the currently played audio file’s

volume will be decreased to 0. At the end of the crossfade the next audio clip will be

assigned to be as the current audio clip and the previous audio clip’s playback will

be stopped. The approach to the crossfade is quite the same for both

implementations but the complexity of the code is very different – in case of audio-

tag, the referencing audio files are as easy as referencing to the id-attribute of the

tag; in Web Audio API the way audio data has been referenced is completely

different, making the implementation more complex (the current implementation

method utilizes the possibilities of multidimensional arrays).

• Audio selection list – this area lists all the audio elements one could select between

when doing a crossfade. The equivalent for the selection list are the changes in the

game conditions or views (i.e background music changes when going from title

window into the game) based on the user interactions. When audio-tag has been

used for the implementation, the number of audio elements are counted, added to

an array and then the selection list is dynamically created based on the array. A

similar process takes place when Web Audio API has been used with the difference

Illustratio

Each p

and wh

After st

the len

audio f

change

custom

manipu

5 jQuery
handling
6 jQuer
(http://jq

that the au

selection li

on 1 – Part of th

age also in

hat type of p

All test pag
technologica
reason all t
http://www.

tandardizat

ght of the i

files) and 20

e the lengh

m jQueryUI6

ulating with

y is a JavaScr
g events, anim

ryUI complem
queryui.com)

udio files in

st is genera

he user interfa

cludes som

processes ta

ges have be
al reasons W
the web exam
webgamesau

tion the bas

mplementa

04 lines for

t of the im
6 libraries t

h UI-elemen

ipt library, w

mations and w

ment jQuery

cluded to t

ated based o

ce of the test p

me explanat

ake place d

een included
Web Audio AP
mples have
udio.com/ma

sic impleme

ation is 144

r Web Audi

mplementat

to provide

nts’ attribute

which provides

orking with A

y by simplif

he page ha

on this.

pages

ory informa

uring user i

to the DVD
PI-pages has
also made a

asters/

entation (lea

lines of cod

o API (the

tion). The i

necessary

es and cont

s API for wo
JAX. (http://jq

fying the c

s already be

ation about

nteraction.

D accompany
s to be run i
available in t

aving in onl

de for the A

number of

mplementa

functional

trolling UI-w

rking with an
query.com)

reation of

een listed a

t the curren

nying this pa
in a server e
the web and

ly the neces

Audio-tag (t

audio files

ation relies

ity for trac

widget logic

nd manipulati

certain user

as an array

nt impleme

aper. Becaus
environment.
d are accessi

ssary lines o

the page inc

included d

on jQuery

cking user

.

ing HTML do

r interface

32

and the

entation

e of the
For that

ible from

of code)

cludes 3

oes not
5 and a

events,

cuments,

elements

33

5.3 Implementation to test looped background audio

One of the most prevalent test cases is to find out the suitability of the audio

implementation methods for implementing looped background audio and compare the

performances. These tests should also bring out the possible bottlenecks of the

technologies when sound effects are to be used and implemented. During testing only

nondiegetic music has been used, which plays on the background and is not part of the

possible game world itself (i.e environmental sounds like weather, birds or scenery), but

also often environmental sounds may suffer the same problems as music (i.e clearly

noticeable looping or moments of silence in between loops).

From the early history of games the background music has often been a looped sound

sequence or a looped audio file. This was mostly because of the limited nature of system

resources and therefore the same piece of music was used over and over again. The

downside of this approach was the repetitive nature of the background music [1]. Many of

the games use the approach of dynamic audio – the music changes over the course of the

gameplay based on the location or game state thus eliminating the repetitiveness from

it [5]. According to the game audio academicians the preferred length of the audio file is 3-

to 4-minutes without a noticeable breakpoint, if audio is suppose to loop continuously [5].

In this case the lengths of the used audio clips are around 1 minute (as mentioned in the

previous subchapter), cut in the way to create a possibly seamless transition at the

breakpoint. A 1 minute loop is quite short but it was chosen to reduce the server load

during testing.

5.4 Computers’ specifications used for testing

Depending on the nature of the test, the patterns and the tendencies between conditions

become evident only when tested on multiple systems with different capabilities. Some of

tests were carried out on 3 different computers with diverse hardware setups. Hardware

configuration data has been gathered using a free hardware identifier “CPU-Z”7; to put the

CPU-performances into perspective the CPU-benchmark scores8 have been included at the

end of the computer specification details. The hardware specifications are following:

7 http://www.cpuid.com/softwares/cpu-z.html
8 The scores are based on the information at http://www.cpubenchmark.net

34

Computer number Hardware specification

Computer no. 1 Dell Latitude D630 (laptop); CPU: Intel Mobile Core 2 Duo T7100 @ 1.8GHz;

Cores: 2; Threads: 2; Memory: 2GB @ 333MHz (CPU benchmark score 1042)

Computer no. 2 Acer Aspire 7739 (laptop); CPU: Intel Core i3 380M @ 2.53GHz; Cores: 2;

Threads: 4; Memory: 4GB @ 533 MHz (CPU benchmark score 2117)

Computer no. 3 HP Pavilion 500 (desktop) CPU: Intel Core i5 3350P @ 3.10GHz; Cores: 4;

Threads: 4; Memort: 8GB @ 800MHz (CPU benchmark score 6143)

Table 1 - Hardware specifications of the computers used for testing

From computer one to three, the hardware gets better and enables us to see, how different

hardware (and the amount of processing power available) affects the performance of

different aspects of audio in web. All the tests have been carried out using the latest

version of Google Chrome, since it can be considered to be the flagship of browsers (it gets

the highest score in “HTML5 TEST”9 and has the best score in HTML5 audio support). During

testing, each computer run only the necessary programs and default background processes

to get the most unified results across the systems.

Tests which results are theoretically not affected by the processing capabilities of a

computer but by other factors instead, have been conducted only on one setup.

5.5 Measuring and data logging

During testing a number of diverse aspects have been measured. Google Chrome

Developer Tools10 offer a great variety of possibilities for developers to get an overview of

the overall page loading times which are useful for optimizing web pages. By default the

feedback data is limited as browsers’ developer tools don’t give any information about the

execution of certain processes or separate JavaScript functions unless breakpoints have

been set or some specific logging functionality has been programmed into the web page.

Google Chrome provides developers with a Console API11, which provides methods for

outputting various data in the console window. The more specific usage of the logging

solutions has been covered in more details alongside the explanation of each separate test.

9 HTML5 TEST analyses browser support of various HTML-tags and attributes. Test can be found from
http://beta.html5test.com/index.html
10 Developer Tools window can be openedby clicking Customize and control menu -> Tools -> Developer tools
or by right-clicking on a web page and then clicking on “Inspect element”.
11 Console API documentation: https://developers.google.com/chrome-developer-tools/docs/console-api

6. Imp

This ch

how di

tag and

and do

6.1 Da

6.1.1 In

Data n

play an

time it

file wou

Figure 7 -
approxim
http://ww

The tim

any giv

times, n

The rea

real do

0,1

1

10

100

Ti
m

e
in

 se
co

nd
s

plementa

hapter is fo

fferent var

d Web Aud

wns of each

ata netwo

ntroductio

etworks (In

nd might inf

theoretica

uld be ~938

- Download tim
mate position

ww.techspot.c

mes are true

ven momen

network de

al loading t

ownload spe

135,7

56,6Kbps

ation and

cusing on t

iables influ

dio API have

h separate m

ork speed

on and test

nternet) spe

fluence the

lly takes to

8KB (128kbp

mes of 1 minut
n, where
om/guides/272

e only unde

nt (a theore

elays or othe

times are u

eed the imp

60

128Kbps 2

GPRS

d testing

the differen

ence the u

e been cov

method.

s and dow

t condition

eeds and th

overall use

 download

ps * 1000 *

te long MP3 fil
mobile con

2-everything-a

er the assum

etical maxim

er possible

usually sligh

plementatio

30

256Kbps 51

D

EDGE

nt aspects o

sage exper

ered separ

wnload tim

ns

hroughput i

er experienc

a 1 minute

60sec / 8 b

e in case of dif
nnections re
bout-4g/).

mption, tha

mum); the g

factors whi

htly differen

on framewo

15

12Kbps 1M
Download sp

ownload

E

of impleme

ience. Impl

ately (if ap

mes

is one of th

ce. The follo

e long 128k

bit / 1024 =

fferent downlo
eside on t

at the conn

graph does

ch affect th

nt from the

orks were ch

7,5
3,

Mbps 2M
peed

times

enting soun

lementation

plicable) to

he first thin

owing graph

kbps MP3-f

937,5 KByte

oad speeds. Re
the speed

ection thro

n’t take int

he real conn

e idealistic m

hanged to o

75

1,5

Mbps 5Mb

T

HSPA 3.6

nds in real

ns involving

o compare

ngs that com

h shows how

ile. The size

e).

ed arrows appo
graph. (ba

oughput is 1

to account

nection spee

model. To t

only downlo

5
0,75

bps 10Mb

Time in second

HSPA 7.2

35

life and

g audio-

the ups

me into

w much

e of the

oint to the
ased on

100% at

request

ed.

test the

oad and

5

ps

ds

36

start playing a 1 minute long MP3-file (with size ~938KB). The test has been made under

the following conditions:

• Average server ping time: 25ms

• Trace route analysis showed 7 hops to reach the destination server.

• The download speed on paper should be 5Mbps, average real download speed is

~4.9Mbps. (based on the Ookla Internet speed test at www.speedtest.net)

Among other things the relationship between the number of requested files, the lengths of

audio files and server response times have been analyzed, which from the perspective of

webpage optimization are important [49].

6.1.2 Ways of measuring

For measuring the speed Google Chrome developer’s network tool has been used, which

shows how much time it took to download the file and from which parts the total

download time consists of. The data is visualized on a timeline, giving developers an

overview of the downloaded files, loading order and timings.

Illustration 2 - Google Chrome developer tools' network tab with timings information.

The download phases are described by the Google developer tools documentation12:

• Blocking – Time the request spent waiting for an already established

connection to become available for re-use.

• Sending – Time spent sending request.

• Waiting – Time spent waiting for the initial response.

• Receiving – Time spent receiving the response data.

12https://developers.google.com/chrome-developer-tools/docs/network

37

When the total download time of multiple audio files have been measured, the Network

tool’s view does not provide accurate timings data. Analyzing the request-download

timings of multiple files requires working with the Google Chrome Developer Tools’ console

window, because getting exact timing information from the Network tab’s timeline area is

rather impossible.

Illustration 3 - Google Chrome developers tools’ network tab in case of three audio files. Tests showed that there is no
consistency in the order of downloads.

From the visual representation it is difficult to accurately determinate the timings – the

download times of each individual file is available, but often it is impossible to get the total

download time from the download start of the first audio file until the finish of the last

audio file. By entering a specific command into the developers tools console window it is

possible to access the same raw timings data the visual representation relies on –the

command “window.performance.getEntries()[‘entry number’]” (where ‘entry number’ is

the number of the file requested by the parser or by script) returns the full overview of the

timings related to that specific file (the ‘entry numbers’ were initially determined by trial

and error). By comparing the timings of audio files to each other it is possible to determine

how much time it takes to request and download the files. The method is based on Google

Chrome Developer Tools documentation (https://developers.google.com/chrome-

developer-tools/docs/network).

6.2.3 Testing and results

The test has multiple stages to cover many possible loading cases. Each test case was made

in two sets – loading audio for audio-tag and for Web Audio API. The download speeds

were carried out 10 times for each type of audio to eliminate the possibility that the test

would be influenced by random fluctuations of the connection.

The first test was to measure download times of 1 minute of MP3-audio. The timings data

was based on the Google Chrome developers tools network window and the average

results are shown in the following table:

Audio ty
Downlo
AUDIO-t

Web Aud

Table 2 -

The di

measur

It migh

(Docum

leading

to get t

loading

theoret

A web

multipl

The fol

been ad

Audio ty
Propert
AUDIO-t

Web Au

AUDIO-t

Web Au

AUDIO-t

Web Au

Table 3 -
data in ca

13 DOM i
to ac
1998072
14 Parse
(http://w

ype \
oad phase

ag

dio API

Average loadin

Appendix C

fferences i

rements in

ht be due to

ment Object

g to a longe

the audio f

g of the res

tical downlo

game migh

e times wit

llowing tab

dded to the

ype \
ties
tag 2x1min

udio API 2x1m

tag 3x1min

udio API 3x1m

tag 5x1min

udio API 5x1m

Average loadi
ase of AUDIO-t

is a programm

ccess and
20/introductio

r is responsi
www.w3.org/h

Sendin

1,4ms

0,9ms

ng times of 1 m

C – The full ta

in the sen

the future.

o the fact th

t Model13) a

er response

file has bee

st of the pa

oad time (se

t also includ

th different

le summar

e page. All t

Reque
start
577,8

min 709,8

681,6

min 883,3

859,3

min 961,9

ng times in mi
ag and Web Au

ming API for H

modify
on.html)

ible for takin
html/wg/draf

ng

minute long MP

able of all the

ding times

The reason

hat in case

and the req

time by the

en made se

age. The re

ee Figure 7

de multiple

t number of

izes the wa

he times ar

est Resp
start
948,6

868,9

1209

1074

1463

1254

lliseconds of 2
udio API.

HTML and XML

elements

ng the HTML
fts/html/mast

Wait

281m

118m

3-file in case of

e test results

s are negli

n for a clear

of audio-ta

quest to the

e server. In

parately by

ceiving tim

above) and

e audio files

f audio files

aiting times

re in millisec

ponse
t

Res
end

6 405

9 394

9,9 584

4 580

3,7 980

4 909

 (2x1 minute),

L documents,
and conte

L-file, convert
ter/syntax.htm

ting

ms

ms

f AUDIO-tag an

can be found

gible and

r difference

ag the audio

e server ha

 the case o

y the script

es in both

d the differe

, therefore

s (each a m

s when 2, 3

conds.

sponse
d

To

58,5 34

42,9 32

49,3 51

06,1 49

00,1 89

92,3 81

3 (3x1 minute

which define
ent. (http:

ting it into a
ml#parsing)

Rec

1,49

1,48

nd Web Audio A

d from Appen

can be di

e in waiting

o element i

s been mad

of Web Aud

and is inde

cases were

ences were

the same t

inute long

3 or 5 minu

otal time R
ti

480,7 3

33,1 1

67,7 5

22,8 1

40,8 6

30,4 2

e) and 5 (5x1 m

s their logical
://www.w3.or

an DOM obje

ceiving

9s

81s

API

ndix C.

scarded fro

times is un

is part of th

de by the p

io API, the

ependent fr

e very close

also negligi

est was con

128kbps M

utes of aud

Request
ime

R
t

70,8 3

59,1 3

28,3 4

90,7 4

04,4 8

92,1 7

minute) minute

 structure and
rg/TR/1998/W

ect and proc

38

om the

nknown.

he DOM

parser14,

request

rom the

e to the

ible.

nducted

P3-file).

dio have

Receiving
time
3109,9

3074

4639,4

4732,1

8336,4

7838,3

s of audio

d enables
WD-DOM-

cessing it

By incr

times b

request

audio-t

sent by

page h

millisec

With e

(reques

request

audio-t

280ms,

get lon

specific

perfect

Wheth

to the

one 3

test res

Audio ty
Propert
AUDIO-t

Web Au

AUDIO-t

Web Au

Table 4 -

*The te

after th

long M

of how

Appendix D

easing the

become mo

t to fetch a

tag). The m

y the script

as been co

conds.

ach additio

st start time

t and serve

tag. When a

, for 2 files

ger when m

c growth pa

t download

er the diffe

server, a si

minutes lon

sults:

ype \
ties
tag 1x2min

udio API 1x2m

tag 1x3min*

udio API 1x3m

Average loadin

est with 3 m

hird test ro

P3-file is ~2

w browser h

D – The raw d

used amou

ore evident

udio from t

ost reasona

t and not b

mpletely lo

onal audio

e) becomes

er response

audio-tag h

370ms, for

more audio

atterns beh

timings as s

erences wer

milar test w

ng MP3-file

Reque
start
530,8

min 942,3

* 540,3

min 775,7

ng times in mill

minutes of

ound. After

2.74MB) th

handles the

data of the te

unt of audio

t. When We

the server h

able explan

y the parse

oaded, delay

file the init

s longer. Als

e) - not so m

as been us

3 files 528m

files have b

hind it. Rec

shown on t

re condition

was carried

e (at bitrate

est Resp
start
810,2

1105

3333 847,3

892,1

liseconds of 2 a

audio data

buffering 2

e download

e buffering

ests can be fo

o data step

eb Audio A

has been ma

ation is tha

er, the scrip

ying the sta

tial waiting

so the requ

much for W

ed the requ

ms and for 5

been added

eiving time

he Figure 7

ned by the i

out as a co

e of 128kbp

ponse
t

Res
end

2 390

5,3 423

33333 163

1 563

and 3 minutes (

(in a single

2MB of aud

d speed wa

of bigger a

ound from Ap

by step so

API has bee

ade in avera

at since for

pt will be t

art of the fi

g time befo

uest time be

Web Audio

uest time fo

5 files 604m

d to the pag

es of the au

.

increasing n

omparison u

ps). The fol

sponse
d

To

05,9 33

36,7 32

381,666 15

33,6 48

(in a single file)

e file) in cas

dio data (th

s reduced s

audio files (

ppendix D.

me of the p

en used, th

age 145ms

Web Audio

riggered aft

rst request

ore the req

ecomes lon

API but no

or one audi

ms. The requ

ge, but it is

udio deviate

number of t

using one 2

llowing tab

otal time R
ti

75,1 2

94,4 1

841,33 3

57,9 1

) of audio data

se of audio

he total file

significantly

(possibly im

patterns in

e time of t

later (comp

o API the re

ter the rest

 by a few h

uest will b

ger (time b

oticeably in

io file is in a

uest time se

difficult to

e slightly fr

the request

2 minutes lo

le summari

Request
ime

R
t

79,4 3

63 3

07

16,4 4

.

-tag was ca

e size of 3 m

y probably b

mplementin

39

loading

the first

pared to

quest is

t of the

hundred

e made

between

case of

average

eems to

see any

rom the

ts made

ong and

izes the

Receiving
time
3095,7

3131,4

15534,33

4741,5

ancelled

minutes

because

ng some

sort of

making

docum

elemen

throttle

connec

downlo

decide

the loa

file, sin

This te

whethe

files. Th

timings

during

speed a

In addi

perform

The fo

compa

network lo

g it imposs

entation st

nts can be

ed automa

ctions shari

oading cont

what to do

d optimizat

ce it would

Appendix F
minutes lon

st shows th

er one has

he timings

s has to be

the lifetim

and drops s

tion a quick

med to see,

llowing tab

re them.

oad optimiz

sible to com

ates the fo

implement

tically by

ng the sam

tent at any

o next (cont

tion the tes

 not have re

F – the raw
g MP3-files)

hat when i

included 3

are roughly

e caused by

e of a conn

slightly durin

k set of tes

 how the n

ble conclud

zation). This

mpare it w

llowing abo

ted into br

the user a

me bandwid

 moment a

tinue down

t was never

esulted in a

data of the
can be found

t comes to

minutes of

y the same

y other rea

nection it w

ng the dow

ts with ten

umber of th

des the ave

s led to dow

with the re

out how the

rowsers: „T

agent, e.g.

dth” [41].

and wait fo

loading or s

r carried ou

any reliable

previous test
d from Appen

o the down

f audio in a

e, therefore

asons – one

will not be

nload proce

3-seconds

he included

erage of th

wnload tim

est of the

e resource f

The rate of

to balanc

It also stat

or an user i

suspend the

ut for 5 min

data.

ts (the down
ndix F.

nloading tim

a single file

e the deviat

e of the m

able to ma

ess.

and ten 20

d audio files

he request

me of ~15 se

tests. A lin

fetching alg

f the down

e the dow

tes that use

nteraction

e media ele

utes of aud

load timings

mes it does

e or uses th

tion form th

most likely p

intain the p

0-seconds lo

 influences

times to

econds in a

ne from th

gorithms fo

nload may

wnload with

er agent m

and based

ement). Bec

io in a singl

s of 2 minute

 not matte

hree 1-minu

he ideal do

possibilities

possible ma

ong audio f

the reques

make it ea

40

average,

he W3C

r media

also be

h other

ay stop

on this

cause of

le audio

es and 3

er much

ute long

ownload

s is that

aximum

iles was

st times.

asier to

Amount

1x1min

2x1min

3x1min

5x1min

1x2min

1x3min

10x3sec

10x20se

Table 5 -

The co

numbe

the req

The dat

but oft

most li

togethe

techniq

6.2 W

6.2.1 In

As show

file load

were sl

experie

playbac

immed

there is

audio p

t of time

c

ec

Comparative ta

mparison s

er of audio f

quest times.

 Appendix
1minutes of

ta indicates

en this may

ikely will be

er and then

ques depen

Web Audio

ntroductio

wed previo

ding times

lightly smal

ence will b

ck starts w

iately after

s a noticeab

playback be

able of request

hows that t

files include

.

F – raw data
f audio can b

s that the m

y not be the

e easier to

n fine-tune

d on the na

API deco

on and test

ously, in cas

were pretty

ller. This do

e better d

when enoug

r the page h

ble delay be

egins. By d

Audio-tag

281

370,8

528,3

604,4

279,4

307

525,6

609,8

t times. All tim

the times a

ed to the p

a of the tests
e found from

most efficien

e most conv

use one a

manually t

ature of the

ding time

t condition

se of Web A

y much the

oes not mea

ue to the

gh of the fi

has been lo

etween the

esign the W

g

es are in millise

are not in a

age, but als

with 10 x 3 s
m Appendix F.

nt way is to

venient way

audio file pe

he playback

game and

es

ns

Audio API t

same mea

an that whe

smaller loa

rst audio e

aded) has b

point when

Web Audio

econds.

a straightfor

so the leng

seconds and
.

o concatena

y, i.e when

er sound e

k regions. T

used audio.

the server r

ning that in

en using W

ading times

element (w

been buffer

n the page s

o API norma

Web Audio A

118

159,1

190,7

292,1

163

116,4

253,1

302

rward corre

ht of the au

10 x 20 seco

ate files and

working w

ffect than

The specific

.

response ti

n overall the

eb Audio A

s. While us

hich was s

red. In case

seems to be

ally works

API

elation of th

udio files in

onds of audio

d use only o

ith sound e

concatenat

 solution an

mes were s

e file loadin

API the over

sing audio-

et to start

 of Web Au

e loaded an

with buffer

41

he total

nfluence

o and 5 x

one file,

effects it

te them

nd used

smaller;

ng times

rall user

-tag the

playing

udio API

nd when

r arrays

42

(there are some special cases which will be mentioned later) and files have to be loaded

and decoded first, which introduces additional waiting time. The goal of the test is to

analyze the factors that influence the decoding time.

The test was conducted in multiple parts: to test the decoding differences across different

audio file types, the decoding timings were tested in case of 128kbps MP3, OGG and AAC

(in MP4 container). A separate test was conducted to determine if the differences in the

audio quality affects the decoding times, for which MP3-files were used with different

bitrates (96kbps, 128kbps, 192kbps and 256kbps); for each bitrate there were 5 different

test cases – 1, 2, 3 or 5 minutes of audio in the form of 1 minute long audio and to test if

the decoding time is affected by the number of file requests made to the server the

decoding time of one 5 minute long MP3 file was compared to time which takes to decode

five 1 minute long files. To find out, how the computer hardware affects the decoding time,

all test conditions were carried out on all 3 different hardware setups (systems detailed

specifications can be found from Table 1).

Since Web Audio API requires the page to be in a web server environment, a local web

server was created in each test computer using WampServer. WampServer is a web

development environment, which enables developing web applications on a local computer

without the necessity of having an online hosting solution.

6.2.2 Ways of measuring

To measure the delay time before the playback one has to measure the time it takes to

execute the function which decodes the files. To measure the function execution time the

console.time(label) and console.timeEnd(label) commands will be used. When

console.time(label) is called, a timer will be started and run until

console.timeEnd(label) will be called (with the same label) which stops the measuring

and outputs the time value into console window.

43

BufferLoader.prototype.loadBuffer = function(url, index) {
 var request = new XMLHttpRequest();
 request.open("GET", url, true);
 request.responseType = "arraybuffer";
 var loader = this;
 request.onload = function() {
 console.time("AudioFile" + index);
 loader.context.decodeAudioData(
 request.response,
 function(buffer) {
 if (!buffer) {
 alert('error decoding file data: ' + url);
 return;
 }
 loader.bufferList[index] = buffer;
 player.bf[index] = loader.bufferList[index];

console.timeEnd("AudioFile" + index);
 if (++loader.loadCount == loader.urlList.length)
 loader.onload(loader.bufferList);
 }
)
 }
 request.onerror = function() {
 alert('BufferLoader: XHR error');
 }
 request.send();
}

Code 2 - JavaScript code responsible for decoding audio data and creating array buffer in Web Audio API with the timer
start and end commands (marked in red).

This technique can be used to get information about any JavaScript function performance.

In this case those command lines have used and inserted into the code to measure

decoding times of audio files. The function represented in Code 2 will be initiated every

time an audio file is decoded. By inserting the timer commands in the specific positions

(shown in red) it is possible to measure the decoding time of each separate file. To measure

the overall length of the decoding process another timer has been set to start before the

first call of this code block and stopped before the audio playback begins. After the

implementation the console window returns the following data:

Illustration 4 - Google Chrome console window with the custom timings data.

When

overlap

way big

is 9719

total de

6.2.3 D

The ove

Figure 8 –

The de

constan

decodin

becom

devices

conside

6.2.4 D

The ove

times):

10

30

50

70

90

110

130

150

De
co

di
ng

 ti
m

es
 in

 m
ill

is
ec

on
ds

looking at

pping (deco

gger than th

9). For that

ecoding tim

Decoding ti

erall timing

– Web Audio A

Appendix H
Appendix H.

coding time

nt amount

ng times an

es evident

s) including

erably longe

Decoding ti

erall differe

2948
2141
1358000

000

000

000

000

000

000

000

1

the result

oded partly

he total dec

reason the

me.

imes of MP

 differences

PI average dec

H – raw da
.

es’ scaling is

of overhea

nd the over

that in ca

 lots of aud

er.

imes of OG

ences of dec

8
1min

s it becom

at the sam

coding time

decoding t

P3-audio

s for MP3-f

coding times ac

ata of the te

s pretty clo

ar present

rall function

ase of slow

dio to the p

GG-audio

coding time

5850

4048
2659

2min
Amount of

mes evident

me time) sin

e (3155 + 6

ime analysi

iles are the

cross 3 differen

est determini

se to linear

which affe

n execution

wer comput

page using

es for OGG-

8747

5921

3995

3m
audio data in

t, that the

nce the sum

6165 + 9536

is will be ba

following (

t computer set

ing MP3 dec

r regression

ect the time

n times are

ters (and in

MP3 files m

files are the

145

97

66

min
n minutes

decoding

m on of eac

6 = 18856 w

ased only on

average de

tups (based on

coding times

n. Tests show

es (as men

measured

n the futur

makes the i

e following

538

787

654

5min

of audio f

h decoding

while the to

n the length

coding time

128kbps MP3-

s can be fou

wed that th

ntioned ear

separately)

re possibly

initial loadi

(average de

Comp

Comp

Comp

44

files are

g time is

tal time

h of the

es):

-s)

und from

here is a

rlier the

). It also

mobile

ng time

ecoding

p. 1

p. 2

p. 3

Figure 9 -

Decodi

some o

whenev

6.2.5 D

The ov

decodin

Figure 10

It is int

of the t

10

20

30

40

50

60

70

80

De
co

di
ng

 ti
m

es
 in

 m
ill

is
ec

on
ds

10

20

30

40

50

60

70

80

De
co

di
ng

 ti
m

es
 in

 m
ill

is
ec

on
ds

- Web Audio AP

Appendix I
Appendix I.

ng of OGG-

other adva

ver it is sup

Decoding ti

erall timing

ng times):

0 - Web Audio A

Appendix J
Appendix J.

teresting to

three tested

1606
1171
751

0

000

000

000

000

000

000

000

000

1

1600
1147
733

0

000

000

000

000

000

000

000

000

1

PI average deco

I – raw dat

-files takes

ntages me

pported by t

imes of AA

g difference

API average dec

J – raw data

 note that

d file forma

1min

1min

oding times acr

ta of the tes

almost 50%

ntioned lat

the browser

AC-audio

es for AAC-

coding times a

a of the test d

the decodin

ats. This ma

3122
2276
1448

2min
Amount of

2974
2186
1429

2min
Amount of

ross 3 different

st determinin

% less time

ter on, this

r.

audio in M

cross 3 differen

determining

ng of AAC-a

kes the AAC

4529

3376

2137

3m
audio data in

4357

3219

2109

3m
audio data in

t computer set

ng OGG dec

that decod

s makes th

P4 contain

nt computer se

AAC/MP4 de

audio (MP4

C-audio to b

73

55

35

min
n minutes

69

53

34

min
n minutes

ups (based on

coding times

ing of MP3-

e OGG a p

er are the

etups (based on

ecoding time

4 file) takes

be a valid su

300

512

538

5min

963

308

477

5min

128kbps OGG-

can be fou

-s. Also bec

preferred f

following (a

n 128kbps AAC

es can be fou

the least t

ubstitution

Comp

Comp

Comp

Comp

Comp

Comp

45

s)

und from

cause of

ile type

average

-audio)

und from

ime out

to MP3

p. 1

p. 2

p. 3

p. 1

p. 2

p. 3

files to

signific

6.2.6 D

This pa

differen

256kbp

differen

are sum

Audio d

Average

Average

Table 6 -

The ta

differen

1/10th

source

Averag

across

192kbp

Compa

rather

measur

but in

conside

6.2.7 D

The las

when f

MP3-fil

The fol

o use with

ant.

Decoding ti

art of the te

nt bit-rates

ps MP3 file

nces seem t

mmarized in

data lenght

e difference

e difference

Average differe

Appendix H
be found fro

able above

nces betwe

of a secon

doesn’t ch

e decoding

all audio l

ps is compa

ring a 128k

small and t

rements. To

terms of

eration whe

Decoding ti

st step of th

five 1-minut

les with diff

lowing tabl

the Web

imes and d

esting has b

s does see

e takes long

to be marg

n the follow

in ms

in %

ences of averag

H – raw data
om Appendix

represent

een all three

nd is rather

hange the

g time differ

lengths, wh

ared to aud

kbps MP3 w

the tests sh

o get more

web game

en one tries

imes and d

e test was t

te long files

ferent bitra

e concludes

Audio API,

different au

been made

em to influ

ger time th

inal. The av

wing table:

1 minutes

107,2ms

2,843%

ge decoding tim

a of the tests
x H.

ts the ave

e computer

r unnoticea

waiting tim

rence betw

hich is an

dio of 128k

with 96kbp

howed that

precise res

e performa

s to decide w

different nu

to determin

s are decod

tes have be

s the results

, since the

udio qualit

using only

uence the d

han when

verage diffe

2 minut

136,8m

4,31%

mes between 1

to determine

rage differ

r setups. W

able. Using

me as far

een bitrate

equivalent

kbps, the d

ps MP3 the

t no specifi

ults the num

ance, deco

whether to

umber of f

ne if the the

ed versus o

een used.

s of the test

e difference

ties

MP3 files a

decoding t

128kbps fil

erences betw

tes 3 m

ms 112

1,77

128kbps and 25

e audio quali

rence of t

hen it come

higher qua

as the dec

es of 128kbp

of 123ms

difference f

difference

c tendencie

mber of dat

oding times

use high-qu

files

ere are diffe

one 5-minut

t.

es in decod

at different

imes – de

les have be

ween avera

inutes 5

,2ms

79%

56kbps files

ity iinfluence

the average

es to page

ality audio

coding proc

ps and 256k

. When au

falls somew

between q

es can be d

ta points sh

s should n

uality or low

erences in t

te long aud

ding times

bitrates. In

coding 192

een used,

age decodin

5 minutes

138,4ms

1,343%

es decoding ti

e decoding

loading tim

files as the

cess is con

kbps is abo

udio files sa

where in be

qualities is

deducted fr

hould be inc

not be take

w-quality au

the decodin

io file. For t

46

are so

n overall

2kbit or

but the

ng times

imes can

g times

mes then

e audio

ncerned.

ut 2,5%

aved at

etween.

already

rom the

creased,

en into

udio.

ng times

this test

Time &

5x1min

5x1min

5x1min

5x1min

Table 7 -
better an

The ave

millisec

longer

affecte

from T

Since th

huge d

caused

the str

and the

that th

browse

usage r

numbe

same.

6.3 Lo

6.3.1 In

As men

the que

(audio-

audio-t

loop><

Bitrate C

/ 1x5min 96

/ 1x5min 12

/ 1x5min 19

/ 1x5min 25

- Comparison o
nd marked as gr

Appendix H
decoding tim
Appendix H.

erage differ

conds respe

when one

d mostly th

Table 1), fo

he test was

difference o

 by the har

ucture of th

e audio dec

he decoding

er, utilizing

remains rel

er of files de

ooping sou

ntroductio

ntioned pre

estion, how

-tag and We

tag one ha

source src=

Computer C

6kbps 1

28kbps 1

92kbps 1

56kbps 1

of decoding tim
reen.

H – raw dat
mes (as long
.

rences from

ectively. In

5-minute lo

he compute

r other ma

s conducted

of compute

rd drive see

he JavaScri

oding times

g process s

the process

atively the

ecoded do

unds

on and test

viously loop

w well can w

eb Audio AP

as to simp

=“myRando

Computer no

14353

14538

14568

14677

mes (in millise

ta of the tes
g as the tota

m computer

case of co

ong audio fi

r no. 1 (the

achines the

d using a we

r no. 1 tim

eking times

pt code res

s from the c

starts as so

sing power

same throu

not matter

t condition

ping sounds

web deal wit

PI) looping

ply include

mAudio.mp

o. 1

13867

14168

14379

14527

conds): 5x1min

ts to determ
l amount of

1 to 3 acro

omputer no

ile was dec

e slowest on

e timing dif

eb server so

mes compar

(and by th

sponsible fo

console win

oon as the

of the CPU

ughout the

r until the t

ns

s is a fairly

th sounds w

is part of th

a „loop“

p3“></audio

Computer n

9580

9787

9993

9998

nute vs 1x5mi

mine how the
audio remai

oss all bitrat

o. 2 the de

oded. The n

ne; compute

fferences se

olution at a

red to othe

e overall sy

or decoding

ndow (see F

e audio dat

U to its fulle

decoding p

total amou

common te

which are se

he default p

parameter

o>); to ma

no. 2

9626

9931

9902

10086

nute of audio

e number of
ins the same

tes were 29

ecoding tim

number of

er specifica

eemed to b

local comp

er compute

ystem slown

g the audio

Figure 8) it i

ta has bee

est. Since th

process it ca

nt of audio

echnique in

et to be loo

playback me

r inside th

ke a sound

Computer

6620

6654

6667

6720

data. Smaller

files used in
e) can be fou

95.75, 46.75

me in avera

audio file r

tions can b

be pretty r

uter the see

er setups m

ness). By an

data (see C

s logical to

n received

he amount

an be said t

o data rema

games. Thi

oped. In bot

ethods – in

e tag (i.e

 looping wi

47

no. 3

6477

6620

6690

6730

times are

nfluences
und from

5 and 36

age was

equests

e found

random.

emingly

might be

nalyzing

Code 2)

assume

by the

of CPU-

that the

ains the

is raises

th cases

case of

<audio

ith Web

48

Audio API one has to set the audio source to be loopable (i.e source.loop = true). To

approach the question about the performance of the looped audio a test was conducted on

three different computer setups (the same setups also used in the previous tests) with

three different audio file types (MP3, OGG and AAC/MP4). The main area of interest in

measuring the quality of looped audio is to determine the amount of silence present at the

breaking point of the loop. Among previously stated test goals this reveals and helps to

analyze possible shortcomings in the designs of audio formats when it comes to using them

in web.

6.3.2 Ways of measuring

Testing that kind of functionality means that in most cases the conventional developer

tools do not have methods to test looping quality and playback delays, therefore the

timings were measured manually. The process of testing playback delays included multiple

steps: audio playback was initiated, the playback was internally recorded by an audio

editing program (many soundcards enable users to record so called “stereo mix” which

means that the final audio signal can be internally routed back to the computer and

recorded), the recorded audio was later analyzed and the different timings were measured

using audio selection tool inside the editing program. Manual measuring of timings was

also used in cases where no direct audio recording was involved but only specific time

ranges had to be measured.

6.3.3 Looping and MP3-files

The following table concludes how much of a silence is present at the breakpoint:

 Computer no. 1 Computer no. 2 Computer no. 3

Audio-tag

256ms 115ms 105ms

Web Audio API

49ms 49ms 49ms

Table 8 - The lenght of silence in breakpoints across different computer setups when using MP3-s.

When l

API, on

starts a

noticea

the pag

The sm

(especi

used to

tag is u

power

smaller

nature

Figure 11
taken fro

By dec

solutio

the init

It’s not

but som

empty

process

introdu

into th

Test pages a
also ava
http://sisters

looping a M

ne can clear

again. The

able. The ga

ge (especial

mall amoun

ally on slow

o include au

used with M

of the com

r when a mo

of MP3, wh

1 - Encoder & d
om http://www

oding the a

n can overc

tial loading

t the goal o

me relevan

samples in

s and remo

uces a delay

e file). Som

are available
ailable in
s.ee/kkalmus

MP3-audio e

rly hear a m

small amou

ap is more

ly on slowe

t of silence

wer compu

udio to the

MP3 – first

mputer. To d

ore powerf

hich introdu

ecoder delays
w.compuphase.

audio and

come the li

time, but th

of this pape

nt points w

n the begin

oving them

y to the play

me decoders

on the DVD.
n the
s/masters/au

embedded t

moment of s

unt of silen

prominent

er computer

e leads to

uters). The

page. There

ly, as it be

decode MP3

ful compute

uces a delay

and padding ca
.com/mp3/mp

creating a

mitation of

he encoder

er to get int

will be cove

nning of th

may lead t

yback (silen

s have bee

. (Web Audio
web a

dio_master.h

to the web p

silence in th

nce leads to

when audi

rs).

an undesir

gap is mor

e are two m

comes evid

3-files it tak

er had been

y both durin

ause a "gap" in
3loops.htm

buffer arra

f the playba

delay and p

to details of

red. By de

e MP3 file

to different

nce, which i

n programm

o API requires
and can
html

page with e

he breakpo

o an undes

o-tag has b

rable effect

re promine

main reason

dent from t

kes time an

n used. The

ng encoding

n the loop whe

ay in the be

ack of MP3

padding wil

f the design

sign the en

e, which ar

t problems

s independ

med to rem

s a web serve
be a

either audio

oint, when a

sirable effec

been used t

t since it is

ent when a

s behind th

the table, it

nd power [7

second rea

g and decod

en the track is p

eginning, th

files at the

l still be pre

n of MP3 e

ncoder incl

e necessary

. Decoding

dent from th

move the in

er to work); p
accessed

o-tag or We

audio file en

ct since it i

to include a

s easily not

udio-tag ha

he gap when

t is the pro

7] and the g

son lies in t

ding [50, 51]

played iterative

he Web Au

e cost of inc

esent.

ncoders/de

udes a num

y during de

process its

he silence e

itial silence

49

pages are
through

b Audio

nds and

is easily

audio to

ticeable

as been

n audio-

ocessing

gap was

the very

].

ely. Figure

udio API

creasing

ecoders,

mber of

ecoding

self also

encoded

e during

50

playback, but seemingly this is not the case with Google Chrome (see Table 6). The delay at

the end of the file originates from the design of MP3 – MP3s are divided into frames, each

frame consists of 1152 time samples. The MP3 file has to end with a full frame. When there

is not enough audio data to fill the last frame (meaning that the number of samples in the

song are not an exact multiple of 1152), then the last frame of data is padded with zeroes

[50].

How the previous theory applies in reality? When opening a WAV file in a audio editing

program (for example Audacity) and saving it as a MP3 file, on can notice an additional

silence added at the beginning and at the end of the audio (see Table 7 below) in the

freshly created MP3 file. The silence cannot be removed from the file and thus is also

present during the audio playback in the web. When the audio file has set to be looped,

then the end padding and encoder delay will be the main reasons for the gap between the

end and the beginning.

 1 second long audio clip’s spectral image

Before saving

After saving

Table 9 - Spectral image before and after saving a piece of audio as MP3. On the “After saving” image, the red lines
represent the positions of the gaps; the gap in the beginning is 27ms, at the end 17ms.

In Table 8 the amount of silence present when used Web Audio API is 49ms while the sum

of the silence shown in the Table 9 is 44ms. This shows that the size of the gap can vary,

which is also possible according to the architecture of the MP3 files: the total amount of

silence in the beginning is fixed, but the silence at the end can vary depending on how

many zeroes will be padded at the end of the last audio frame. The worst case scenario is

that the silence at the end is as long as the silence in the beginning, resulting in a total of

54ms of silence.

51

6.3.4 Looping and OGG-files

OGG-files are completely different and do not have same issues as MP3-files. Saving an

audio as an OGG does not introduce any silence or padding inside the file but instead it is

saved as is. Since there is no encoder induced delays the gap when using audio-tag is

smaller. Some of the improvements can also probably put down to how the decoder works.

In case of Web Audio API the looping takes place seamlessly regardless of the test

computer’s processing capabilities. The following table shows the amount of silence in case

of OGG files across all three test setups:

 Computer no. 1 Computer no. 2 Computer no. 3

Audio-tag

171ms 65ms 65ms

Web Audio API

No Gap No Gap No Gap

Table 10 - The lenght of silence in breakpoints across different computer setups when using OGG-s.

6.3.5 Looping and MP4-files

The following table shows the amount of silence during looping when AAC audio was used:

 Computer no. 1 Computer no. 2 Computer no. 3

Audio-tag

171ms 65ms 65ms

Web Audio

API

No Gap No Gap No Gap

Table 11 - The lenght of silence in breakpoints across different computer setups when using AAC-audio (in MP4
container).

Using AAC audio (in MP4 container) resulted in a smaller gap compared to MP3 files. When

looking at the browser compatibility with different audio file formats (Appendix A) then one

52

could see that the browsers which support MP3 also support MP4 format, making MP4 a

good substitute for MP3. MP4 file doesn’t have encoder induced delay in the beginning but

it has the padding at the end. The amount of padding can also vary depending on the

amount of audio data added to the last frame of the audio file.

 1 second long audio clip’s spectral image

Before saving

After saving

Table 12 - Spectral image before and after saving a piece of audio as MP4. On the “After saving” image, the red line
represent the positions of the end padding; the gap at the end is 44ms.

When looking at the gap times in the previous tables, the data shows that the audible gap is

also there because of how the browser handles the audio files – a certain amount of the

silence will be introduced when the playback position is changed back to the beginning

while looping. When OGG-file was used, the gap on a fastest computer was 65ms, with

MP4 the gap was 95ms (which includes 23ms of encoded silence), and with MP3 the gap

was 105ms (which includes 55ms of encoded audio). This shows that the performance of

audio decoders and the amount of decoder induced silence is different. From the end point

of view the OGG performs the best (across all 3 computers the looping gap was the

smallest); the MP3 decoder seems to be most efficient when it comes to decoder induced

silence but unfortunately the overall length of the silence is still the longest due to the

silence encoded into the file, which makes MP4 to be a better option.

6.4 Overcoming limitations of looping

6.4.1 Introduction, test conditions and measuring

Looking at the previous data raises a question, whether there are any possible solutions to

overcome the limitations? When using audio-tag the decoder induced delay is always

present and especially prominent on slower computers. Web Audio API decodes the audio

53

and therefore doesn’t suffer from decoder delays, but the silence inside the audio file itself

will come along during the creation of buffer array.

One of the easiest solutions is to use fading whether the audio itself has been faded in and

out on the audio file or fading has been created programmatically. Based on my own

experience this technique has been used extensively even In high quality PC-games – one of

the latest example is Hearthstone (a strategy card game by Blizzard) where audio fades out

at some point and comes back later. One of the possibilities is to set the breakpoint to be in

a position, where a moment of silence seems to be part of the audio and doesn’t break the

perceived consistency of the audio piece.

When none of these previously stated techniques can be used due to the nature of the

audio design, and when audio-tag has been used, then theoretically another possibility is to

loop the audio “manually” by change the playback position at a right time. In a test case

created to investigate the possibility further, the same background audio was used as for

the other looping tests but the amount of silence in the beginning and at the end of the file

was increased up to 1 second (with the MP3 and MP4 files the end padding makes it

difficult to get the timing exactly right); then an event listener was added to the audio

element which changed the playback position to 1 second (where the actual audio data

begins) whenever the playback position reached the end of the playable audio data (1

second from the end of the file). Another fixed amount of silence, which is set to be longer

than the encoder delay, could also be a possibility.

Using this sort of manual looping should in theory eliminate the encoder delay and padding

from the playback. The downside of this approach is that there will be a fixed amount of

delay in the beginning when audio file’s playback starts, but this could be dealt with for

example including a small part of audio to the beginning of the file which will be left out

from the loop later on. Theoretically, one could set the playback start position to the point

where the silence in the beginning of the file ends, but this increases the complexity of the

code – in order for this to work another method has to be included, which checks whether

enough audio data has been buffered for the playback position to be changed and after

that starts playback, otherwise when the command has been given to set the playback

position to somewhere else in the file, that position may not yet exist, since not enough

audio data has been fetched. In other words it is impossible to set the playback position to

1 second when only 500ms worth of audio data has been downloaded.

54

The following snippet of code is responsible for changing the playback time back to

beginning with some data logging methods to give feedback about the timings. The code

outputs two values into browser’s console window – the time point where the script is set

to make the break and when the break has actually been made.

currentAudio.addEventListener("timeupdate", function() {
var duration = currentAudio.duration;

 var change = duration - 1.4;
 var position = currentAudio.currentTime;

 if (change <= position) {
 console.log (ch);
 console.log (position);
 currentAudio.currentTime = 1;
 }
});

Code 3 – JavaScript event listener responsible for custom looping functionality with logging.

The test revealed some of the bottlenecks also mentioned earlier in this paper – the

performance of JavaScript and its timing accuracy. The code can be tuned to compensate

possible delays induced by JavaScript. In theory the audio file should have 1 second of

silence at the end of the file (end padding still remains to be a problem), so the script

should change the current playback time to the beginning when one second is remaining

from the end of the file. Checking if exactly one second has left to be played is impossible

(the conditional equation of “if playback time is equal to breaking point time, then make

the break” did not work), therefore currently the event listener checks whether the current

playback position has gone past the potential breaking point. To compensate the possible

reaction delay the breaking point in the code example has been set to 1.4 seconds from the

end of the file. The test was conducted under multiple compensational values from 1.2 to

1.4 seconds.

When using Web Audio API the problem related to the decoder is eliminated since the files

have been decoded and buffer array has been used, but the gaps and silence already

present in the source file remains, which is a problem when MP3- or MP4-files have been

used. Using OGG-file as the source of the audio whenever possible is probably the best

option since the OGG-files does not include any encoder induced silence, but not all

platforms might support OGG. When the same approach has been taken (to include 1

second of silence to the beginning and at the end) then Web Audio API has a specific

55

attributes to determine the start and the end of the loop which can be used for this

purpose.

var Play = function(bufferedData, looping, sourceGain) {
 this.source = context.createBufferSource();
 this.source.buffer = bufferedData;
 this.source.loop = looping;
 var duration = this.source.buffer.duration;
 this.source.loopStart = 1;
 this.source.loopEnd = duration - 1;
 this.source.gain.value = sourceGain;
 this.source.connect(gainNode);
 gainNode.gain.value = volumeVal / 100;
 gainNode.connect(context.destination);
 this.source.start(0);
 };

Code 4 - Function defining the flow of the signal and other playback parameters. The loop parameters are shown in red.

The implementation of this is fairly easy – before the playback the loopStart attribute is

set to 1 and the loopEnd attribute is set dynamically to be one second from the end based

on the length of the buffer. The previous snippet of the code (Code 4) represents the

function responsible for connecting audio source to the destination and among other also

defines looping parameters.

6.4.2 Test results (audio-tag)

This technique enables one to partly overcome the problem with the silence, but it greatly

increases the complexity of the code and is not really reliable solution for the following

reasons. Since browsers are different and the file support is different, then also the OGG

file has to be presented inside the audio-tag. When OGG file has been used instead of

MP3/MP4, the problem with the encoded silence does not exist, meaning that an extra

amount of silence has to be put into the OGG files manually or an extra subroutine has to

be programmed into the code, which keeps track of the file type currently used and

changes the playback and looping conditions based on this information.

The timings data showed that there was no consistency in the timings when the actual

break was made. Interestingly enough, by comparing the reaction times shown in Table 13,

it can be seen that the fluctuation of timings between computer no. 1 (slowest) and

computer no. 3 (fastest) are about the same. From the computer no 1 to 3 the standard

deviations are 64,1852; 39,6832 and 76,4229 milliseconds respectively, which show that

even on a powerful computer JavaScript is not reliable when it comes to perfectly timed

executions.

Comput

240,02

106,31

194,15

73,87

61,87

154,15

178,15

153,14

221,58

73,87

Table 13
througho

This te

Basical

execute

set the

cope w

differen

unnatu

silence

It is im

MP3 au

of the i

broken

audio-t

6.4.3 T

With s

tuning,

ter no. 1

- Reaction tim
out the test com

Appendix G
across the te

est shows c

ly the code

e one cond

 playback p

with the Jav

nt sometim

urally sound

).

portant to

udio has be

implementa

 functional

tag.

Test results

ome minor

 the playba

mes of JavaScri
mputers. All giv

G – raw data
est systems c

clearly how

e is an infin

itional bloc

position bac

vaScript ind

mes a sma

ding breakpo

note that t

en used. Th

ation see C

ity might b

s (Web Aud

r modificat

ack worked

Compute

141,33

220,99

159,94

207,38

188,77

171,55

149,33

188,77

83,28

141,33

pt when audio
ven values are i

of the tests t
can be found

w unreliable

nite loop, w

k when con

ck to the be

duced reac

ll section a

oint (which

this type of

he “timeupd

ode 3) whe

e a result o

dio API)

tions in the

d smoothly.

er no. 2

o has been set
in milliseconds

to determine
from Append

e JavaScript

which is set

ndition is tr

eginning of

ction delay,

at the end

 still seems

looping im

date” event

en OGG or M

of a bug in t

e paramete

 Because th

t to be looped
s.

the performa
dix G.

 can be w

to check th

ue (see Cod

file. The im

, but since

d of the lo

s to sound b

mplementati

 will be not

MP4 has be

the Google

ers of the

he last aud

Compute

116,68

216,99

236,21

140,33

9,01

66,06

226,99

116,11

97,89

206,38

through manu

ance of the m

hen used f

he current

de 3) which

mplementati

the reacti

oop will be

better than

ion seems t

t fired (for a

een used as

Chrome’s

start-metho

dio frames o

er no. 3

ually created s

manual audio

for such pu

playback ti

h sole purpo

ion already

on timings

e cut off, c

a brief mom

to work onl

a detailed ov

s audio sour

implementa

od and som

of MP3- an

56

subroutine

o looping

urposes.

me and

ose is to

tries to

 are so

creating

ment of

ly when

verview

rce. The

ation of

me fine

nd MP4-

files ha

may no

(this do

in sens

options

When o

extra s

selecte

file and

decodin

request

unwant

ave some pa

ot give the

oes not app

se of encod

s is to spec

one decides

ilence in th

ed loop sele

d define exa

ng time re

t time). Th

ted silence.

Manual loo
been manua
Example h
http://www.

adding, then

best results

ply to OGG f

ded silence

cify the loo

s to take th

he beginnin

ctions it is a

actly when

mains the

his makes

.

oping – An e
ally set to be
have also
webgamesau

n using such

s when one

files, since

e). When th

p regions m

e approach

g and at th

also possibl

specific au

same and

it possible

examples has
e looped at s

made av
udio.com/ma

h a simplist

e unified fu

the encode

he number

manually an

h of manual

he end beco

e to concat

dio clips sta

overall loa

e to have

s been includ
specificed tim
vailable in
asters/

ic code to d

nction has

er does not

of used a

nd save the

 fine tuning

omes redun

tenate the d

art and end

ading time

perfect loo

ded to the DV
mes (both for

the web

determine t

to handle m

alter the o

udio clips i

em alongsid

g, the techn

ndant – wh

different au

d (as showe

might ben

ops withou

VD, where an
r audio-tag a

b and are

the end of t

multiple aud

riginal sour

is low, one

de the buffe

nique of add

hen using m

dio files int

ed in chapte

nefit from r

ut any dela

n audio playb
and Web Au
e accessibl

57

the loop

dio files

rce data

e of the

er data.

ding the

manually

to single

er 8 the

reduced

ays and

back has
udio API).
e from

58

7. Reducing the usage of system resources

In chapter 3 some of the ways were covered which have been used in games to reduce the

usage of system resources by audio. In this chapter the list will be gone through and

analyzed the suitability of the techniques in web environment in the light of the previous

tests.

One of the most viable options mentioned in chapter 3 is to use mono audio. This reduces

the size of the files 2 times and subsequently reduces the data network usage, also when

Web Audio API has been used, using mono files their decoding time will be reduced to half.

This is a simple way to improve the overall performance significantly when usage of stereo

audio is not crucial.

Concatenation (loading multiple audio parts as one file) is also one of the techniques

mentioned. By using concatenation the web game could theoretically benefit from the

reduced overall load times, but technically it could work out only when Web Audio API has

been used to deliver audio. Audio-tag lack reliable default support for playing only parts of

the file and therefore requires a custom functions to make it work, which may not be the

most efficient way of implementing audio.

One of the most interesting techniques mentioned is the way of saving file twice the

original speed and then playing it back on half of the speed, which should result in a smaller

source audio file. It won’t be looked into how game engines handle this technique, but

browsers do not seem to do very well. There are multiple ways of shortening the length of

an audio file – one of the ways is to basically save the file at twice the playback speed which

also results in a change of pitch, another way is to use time-stretch technique, which leaves

the pitch intact but changes the speed [52]. When changing the playback speed in case of

audio-tag, the browser handles the playback speed by the standards of time-stretch. When

listening to the examples it becomes evident that audio-tag is not capable of incorporating

this technique in purpose of saving bandwith and reducing loading time. There are too

many artifacts present in the audio for this to be an option.

Web A

strechi

it also

speed o

saved a

API did

questio

change

128kbp

speed b

using th

Changing
playback sp
made availa

udio API ha

ng to the b

affects the

on a gramo

at twice the

d a relative

on since th

es in file siz

ps 44100 Hz

but at 2205

he techniqu

playback sp
peed has been
able in the we

andles chan

uffer when

e pitch (it is

ophone or o

e playback

ely good jo

here are ot

ze (i.e dow

z audio file

50hz. Using

ue for backg

peed – Exam
n changed (b
eb and are a

ges in playb

 playback s

s similar to

on a turntab

speed, and

ob. The via

her metho

wnsampling)

e, the perce

different pl

ground aud

mples has b
oth for audio
ccessible from

back speed

peed is cha

o the effect

ble). The tes

 then playe

ability of th

ods to get

) – when a

eived qualit

layback spe

io is not wo

been include
o-tag and We
m http://www

differently

anged – wh

t achieved

st showed t

ed back on

his techniq

the same a

audio has b

ty is the sam

eeds for aud

orth the has

ed to the DV
eb Audio API)
w.webgamesa

and does n

en playback

when chan

that when a

half of the

ue in web

audio qual

been speed

me as audi

dio effects c

ssle.

VD, where a
). Examples h
audio.com/m

not apply an

k speed is c

nging the p

a source au

speed We

 remains u

ity with th

d up and sa

o saved at

could be us

59

an audio
have also

masters/

ny time-

changed

playback

dio was

b Audio

under a

e same

aved as

normal

eful but

60

8. Conclusive analysis

In this chapter a wider look to the results will be taken and analyzed; pros and cons of

different usage methods will be brought out in a process. Also it will be looked into, how

different aspects might influence the user experience in real life conditions and cases.

Page and resource loading times have always been something developers have had to

reckon with. From the tests related to download timings can be seen that the number of

requests made to the server has an impact to the download timings. Much as reducing the

number of audio files included to the web game can improve the performance, it cannot be

suggested that one could only benefit from it. The balance between the number of audio

files included and the length of the audio files have to be found based on the project at

hand – as also discussed previously, concatenating audio files together can lead to more

complex codebase since extra routines have to be programmed into the system to handle

the audio playback. When comparing audio-tag and Web Audio API in this matter, then

Web Audio API is clearly more flexible as it offers a better variety of methods for working

with audio – using concatenated audio increases greatly the implementation complexity

with audio-tag, but Web Audio API have the necessary functionality to make using

concatenated audio a solid option. In some cases this could also result in a more efficient

data network usage.

When the number of audio assets in a game starts to become a problem, then to optimize

the performance it might be a good idea to load the necessary audio assets only when

required (i.e when game is initially loaded, only audio used during menu screen will be

downloaded). This approach is beneficial in both implementation cases (audio-tag and Web

Audio API) because when game has been opened but the player leaves the page without

playing it further, no bandwidth will be wasted on loading unnecessary assets. With Web

Audio API a certain amount of decoding time will be added to the loading times, which

means that loading and decoding huge amount of audio during initial loading of the page

increases waiting time before user could interact with the page. Utilizing the possibilities of

asynchronous data retrieval it would be possible to find a balance between loading times

and number of files loaded at the time. In addition to the audio assets, games also include

number of graphic assets and script files which also have to be loaded and therefore it is

61

especially important to balance the performance – minimizing the number of HTTP request

is in the top of the list of techniques which helps to maximize web page display speed [49].

In the field of optimizing the loading of audio files, audio-tag seems to surpass Web Audio

API because of the optimization techniques built into the browsers – browser may decide

not to download a piece of audio when it is not needed and in case of large audio files the

network optimization happens automatically by default without the necessity of

implementing custom functions to deal with it. With Web Audio API, the optimization

techniques have to be designed and implemented manually by developer.

Browsers have gone through a tremendous development over the past years. With the rise

of HTML5 a set on new possibilities has opened up to the developers and the cross-browser

compatibility has also improved. The same multimedia functionality which once required

plug-ins is now supported by browsers by default. The new possibilities are welcome, but

using them to create multimedia solutions does not come without a hassle. Using Adobe

Flash for creating a multimedia application means that the experience is about the same

across different browsers and developers do not have to worry about the browser support

or any special cases. This is not the case when using native web technologies – the browser

support is different and often dictated by patent issues or corporate policies. Including an

audio file to a page means that multiple audio files have to be made available to offer the

same experience for the users’ of different browsers. Fortunately, when audio-tag has been

used, browsers will choose appropriate file type automatically – from the files listed

between audio-tag a browser will use an audio file it supports, which helps out a lot. Since

the Web Audio API have established more ground than Audio Data API (once developed by

Mozilla) and possibly becomes more widely supported over time means that multiple audio

files have to be provided (similarly when audio-tag has been used). In case of Web Audio

API there is a slight difference – Web Audio API does not have such an automatic file

selection method as audio-tag has and the file type selection has to be specifically

programmed by the developer. This means that instead of working on the final product

itself, one has to spend time to cover the extra cases and to deal with the browsers’

characteristics, making the implementation probably more time consuming than it would

with Adobe Flash.

Another set of issues come along with the characteristics of different types of audio files.

Since audio encoding technologies are different, audio files behave differently (as seen in

62

the test with looped audio). It is not that much of an issue when simply a song has been

included to a page for visitors to be listened, but when timings and performance are crucial

(as they are for games) then delivering a standardized user experience is not that easy.

Creating specific functions to cope with the problems induced by the audio encodings (for

example silence present in the beginning of MP3-files and padding at the end of MP3/MP4-

files) often create an unnecessary overhead and complexity. In Web Audio API it is

theoretically possible to remove the silence from buffer array, but that requires

manipulating with the arrays directly, which is CPU-heavy process and may not be worth it;

there are better ways to get the wanted result, like specifying playback regions. For audio-

tag the audio is implemented “as is” and cannot be altered directly.

When analyzing the applicability of different audio file types in the light of the test results,

then most suitable file type out of the three seems to be OGG. Working with it includes the

least amount of hassle – the file will be saved as is (encoder doesn’t alter the underlying

audio signal by adding unwanted silence) without any unwanted side effects, the decoding

process when used with the Web Audio API is rather quick (MP4 was decoded slightly

faster) and the bitrate-to-quality ratio is good. Unfortunately not all browsers support it,

meaning that still another file has to be included alongside OGG. MP3 is a widely used

compression format, but based on the results I would suggest to discard MP3-files

completely when adding audio to web games and use AAC/MP4-files instead. With its

encoder induced delay in the beginning and padding at the end MP3 file brings along

additional complications. MP4 files also have end padding which requires some effort to

get around of, but the audio quality is better than MP3’s [48] and the WebAudipAPI’s

decoding process will take about twice as less time than for MP3-s. When reading through

different books and looking at various audio-tag usage examples, one could notice a

pattern emerging – MP3 file has always the first source file included to the audio-tag. By

changing the audio source order and making the OGG file to be the first in the list

guarantees, that when browser support includes OGG files it will be used (browser picks the

first audio source it can deal with [27, 43]). This makes sure that the benefits of the OGG-

files can be utilized of all possible cases.

When coming to the world of sound effects the previous tests also cover some of aspects

related to implementing sound effects. With audio-tag I would suggest that the easiest way

of including sound effects to the game is to have one tag-block for each effect in use since it

63

is simpler than concatenating them and then trying to program extra functionality to deal

with the vast number of playback regions for one audio file. The downside of this is the

increased number of request which will be made to the server. It has been estimated that

each additional object will add extra 40ms of latency to the load time of the page; the

latency is also dependent on the location of web servers and the number of “hops” data

has to take to get from the source to the destination [49]. Analyzing the absolutely

necessary number of included audio effects and its effects on the page performance should

be part of the preliminary game design process when audio-tag has been used. When

implementing sound effects using audio-tag, then effects’ playback latency is something

that is heavily dependent on the processing power of the computer, meaning that

developers have to accept that the audio playback timings and thus user experience can be

varied across different systems.

Web Audio API offers better possibilities to the implementation of sound effects, since it

have methods for determining playback regions, making a concatenation of sound effects

to be a convenient solution (whenever applicable) – one file means small request delay and

better network efficiency. Also the playback timing is more consistent. Tests with audio

looping showed that even slower computers can effectively work with audio buffer assuring

an identical user experience across systems.

It has to be remembered that the tests were conducted only on Google Chrome and the

results may vary across different browser for better or for worse, but the suggestions and

proposed techniques should still remain valid.

64

9. Conclusion

From those two implementations covered in this paper it is clear that audio-tag is clearly

simpler and implementing audio using audio-tag is easy. The list of audio events and

properties seems to be sufficient to satisfy the needs of a less demanding project. As

upsides it is worth mentioning the facts that audio playback can be triggered as soon as

enough of the audio data has been buffered, a suitable audio file will be selected by the

browser automatically (assuming that at least one of the supported file types has been

provided within the audio-tag) and all major browsers support it one way or another. It

should be kept in mind that as the games get sonically more demanding audio-tag may not

be up to the task and it does not contest the possibilities of Adobe Flash, which still seems

to be the main way for delivering multimedia content over the Internet. When more

manipulation possibilities are needed but not necessarily with a precise playback timings,

then with some work one could use audio element as the input source to the Web Audio

API to apply additional processing to the audio (an example of it has been provided on the

following page: http://updates.html5rocks.com/2012/02/HTML5-audio-and-the-Web-

Audio-API-are-BFFs).

Web Audio API is still a rather young compared to some other web technologies and

therefore is prone to changes (hopefully to the better). Public W3 Audio Working Group’s

discussion archive shows a notable number of letters exchanged on various audio related

topics (http://lists.w3.org/Archives/Public/public-audio/) which encourages believing in the

sustainability of Web Audio API and in future improvements. A quick search around the

Internet reveals that there are also a number of Web Audio API-related bugs out there,

which influence the usage of that technology to some extent (for example a list of open

bugs can be found from

https://bugzilla.mozilla.org/buglist.cgi?component=Web%20Audio&product=Core&bug_sta

tus=__open__). Also the support is still rather limited and it may take some time before all

major browser vendors decide to make the functionality available to their browsers; for

example the latest Internet Explorer version (IE11, which has not been out very long at the

time of this writing) does not support it, even though the requests to include it to this

version was made by the community some time ago

(http://connect.microsoft.com/IE/feedback/details/799529/web-audio-api-support).

65

Implementing Web Audio API does require some finesse – trying to get a hold on the

technology can be quite time consuming in the beginning, but it does pack a rather

impressive list of methods to work with from dynamic audio generation to filters/effects to

audio visualization. Some of the cons of Web Audio API are that the mechanism to use a

supported audio file has to be programmed manually and is not done automatically by the

browser which means extra time spent not working with the solution itself. On the other

hand Web Audio API works wonderfully when the audio playback has to be timed rather

precisely. Still, it has to be remembered that the audio playback initiation relies on

JavaScript and if most of the system CPU has been consumed by dealing with game logic

the playback may be delayed because of the performance issues of JavaScript. All things

considered, after the initial waiting time to get the audio data decoded the implementation

seems to do pretty much what it was set out to do and could be a solid substitute for

Adobe Flash. When recorded audio will be used one still has to keep track on the amount of

used audio since decoding audio taxes hardware quite much and some cases can introduce

long waiting times. Decoding necessary audio assets into audio buffer at different times

over the lifetime of a gaming session could be a solution.

To conclude the results in a final compact form, a set of recommendations have been

generated, which can be useful when implementing audio to web based games.

• Analyze the technical requirements for audio – using audio-tag is easier but Web

Audio API offers more possibilities.

• Consider using not too many audio assets, as it can hurt loading times.

• When choosing audio asset’s quality, check the audio’s spectral data to make the

most optimal decision.

• When the number of assets cannot be limited, don’t try to load all audio at once

(especially when using Web Audio API due to the decoding time) – take advantage

of asynchronous loading and load them when necessary or on background.

• Consider using OGG and AAC/MP4 audio instead of MP3 whenever possible.

• Looping background audio with audio-tag works best when the piece of music has

set to be faded in/out or composed in a way which masks the break point.

• JavaScript is not as optimized as ActionScript, therefore the performance and

execution timings can vary even on more powerful devices – take into account that

game might be played on different devices with various processing capabilities.

66

10. Future works

This paper covers the topic of sound effects mostly on the theoretical level and analyses

their implementation possibilities-limitations based on the results of mostly background

audio related tests. The tests revealed some potential problematic aspects in the

performance of sound effects in web – playback delays, increase in file request times when

increasing the number of audio files, processing speeds and performance of JavaScript to

conclude the most prominent limitations. One of the possible future works is to create a

web game which incorporates a decent number of sound effects and conduct a qualitative

study to analyze the perceived performance of audio implementation methods in case of

audio effects in web games.

Since the tests were made only using Google Chrome, differences in performance across

browsers could and should be looked into. Based on my personal experience I would say

that even when certain elements or attributes are supported among all browsers, often

there are still some differences how one browser or another deals with elements or

executes specific snippets of code. With the increasing support of Web Audio API, browser

specific quirks and differences in handling Web Audio API’s methods could be analyzed in

the future (and a similar analysis could be made for audio-tag, though the latter seems to

work rather uniformly across browsers). Making a game to be played only on one platform

(let say a Google Chrome) and thus tying users to one browser or platform is not beneficial

in a long run; instead one should cover as many browsers and platforms as possible and try

to offer the same experience across them – to do that the differences in handling the audio

across browsers have to be looked into and dealt with accordingly.

The tests covered in this paper included only clean audio implementations (meaning that all

other aspects – codebase and graphic assets – were kept to a minimum) and in order to

find out how audio implementation methods perform under real conditions, a more

complex test environment is necessary which also includes a decent amount of graphic

elements and where system resources have to be shared among audio, visuals and game

logic. This would reveal how audio implementation methods perform under stress.

Using web as an implementation environment also gives the benefit of cross-device

compatibility which brings us to the world of mobile devices. How audio implementations

67

using audio-tag or Web Audio API perform on mobile devices is another topic that could be

looked into in the future. Mobiles are getting more powerful in terms of processing power

but they are still not as powerful as desktop computers or laptops. As seen from the tests,

the processing power of a device can in many cases directly influence either user

experience or game performance at large and mobile devices are no different. Also the

possibility of overheating and the battery consumption are some of the elements which

could theoretically act as additional limitations and could be looked into.

68

References

1. Collins, Caren (2008) Game sound – An Introduction to the history, theory, and

practice of video game music and sound design. The MIT Press

2. Video Game Console Library, http://www.videogameconsolelibrary.com

3. Baldwin, Neil (2009-2010) NTRQ: NES Tracker

4. NES Specifications. http://nocash.emubase.de/everynes.htm

5. Marks, Aaron (2009) The complete guide to game audio. For composers, musicians,

sound designers, and game developers. Second edition. Focal Press

6. Garcia, Juan M. (2006) From heartland values to killing prostitutes: An overview of

sound in the video game Grand Theft Auto Liberty City Stories, Audio Mostly 2006,

Piteå, Sweden, (October 11—12, 2006).

7. Stevens, Richard; Raybould, Dave (2011) The game audio tutorial. A practical guide

to sound and music for interactive games. Elsevier Inc.

8. Perron, Bernard; Wolf, Mark J. P. (2009) The Video Game Theory Reader 2.

9. Brown, Emily; Cairns, Paul (2008) A Grounded Investigation of Game Immersion

10. Ermi, Laura; Mäyrä, Frans (2005) Fundamental components of the gameplay

experience: Analysing immersion, Changing Views – Worlds in Play, Toronto, (June

16—20, 2005).

11. Sweetser, Penelope; Wyeth, Peta (2005) GameFlow: A Model for Evaluating Player

Enjoyment in Games

12. Sanders, Timothy; Cairns, Paul (2010) Time perception, immersion and music in

videogames.

13. Grimshaw, Mark; Lindley, Craig A.; Nacke, Lennart (2008) Sound and Immersion in

the First-Person Shooter: Mixed Measurement of the Player's Sonic Experience.

14. Cheng, Kevin; Cairns, Paul A. (2005), Behaviour, Realism and Immersion in Games.

CHI '05 Extended Abstracts on Human Factors in Computing Systems Pages 1272-

1275

15. Pivec, Paul; Pivec, Maja (2009) Immersed, but How? That Is the Question

16. Jørgensen, Kristine (2006) On the Functional Aspects of Computer Game Audio

17. Jennett, Charlene; Cox, Anna L.; Cairns, Paul; Dhoparee, Samira; Epps, Andrew; Tijs,

Tim; Walton, Alison (2008) Measuring and Defining the Experience of Immersion in

69

Games. Volume 66 Issue 9, September, 2008, International Journal of Human-

Computer Studies

18. Panksepp, Jaak; Bernatzky, Günther (2001) Emotional sounds and the brain: the

neuro-affective foundations of musical appreciation. Behavioural Processes 60

(2002) 133_/155

19. Karjalainen, Matti (1999) Immersion and content – a framework for audio research.

20. Cunningham, Stuart; Grout, Vic; Hebblewhite, Richard (2006) Computer Game

Audio: The Unappreciated Scholar of the Half-Life Generation. Proceedings of the

Audio Mosty Conference a Conference on Sound in Games

21. Chion, Michel (1994) Audio-Vision: Sound on Screen. Columbia University Press

22. Ekman, Inger (2005) Meaningful Noise: Understanding Sound Effects in Computer

Games

23. Kaye, Tomasz (2013) ibb & obb. Sound design post-mortem.

http://www.gamasutra.com/blogs/TomaszKaye/20131028/202776/ibb__obb_Soun

d_design_postmortem.php

24. W3C Working Draft. Web Audio API. http://www.w3.org/TR/webaudio/

25. Flanagan, David (2011) JavaScript: The Definitive Guide (6th Edition). O’Reilly Media

26. McFarland, David S. (2012) JavaScript & jQuery: The Missing Manual, Second

Edition. O’Reilly Media

27. Powers, Shelley (2011) HTML5 Media. O’Reilly Media

28. Levitin, Daniel J.; MacLean, Karon; Mathews, Max; Chu, Lonny (1999) The Perception

of Cross-Modal Simultaneity.

29. Adobe Community Help, Flash Professional – Using Sounds in Flash.

http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10cb1fe

1af6-7ce8a.html

30. Game{closure} DevKit Docs. Creating Audio Assets.

http://doc.gameclosure.com/guide/audio-assets.html#stereo-and-mono-files

31. Harris, Andy (2013) HTML5 Game Development for Dummies. John Whiley & Sons,

Inc.

32. Mozilla developer network. Media formats supported by the HTML audio and video

elements. https://developer.mozilla.org/en-

US/docs/HTML/Supported_media_formats

70

33. Fitzgerald, Chriz (2013) Sample Rate Explained.

http://learningcenter.berklee.edu/blog/sample-rate-explained Berklee College of

Music – Learning Center.

34. Juul, Jesper (2012) A Casual Revolution: Reinventing Video Games and Their

Players. The MIT Press

35. Facebook Application Center.

https://www.facebook.com/appcenter/category/games/’

36. Gay, Jonathan. The history of Flash.

http://www.adobe.com/macromedia/events/john_gay/page04.html

37. Grover, Chris (2012) Flash CS6: The Missing Manual. O’Reilly Media

38. Braunstein, Roger (2010) ActionScript 3.0 Bible. Wiley Publishing

39. W3Techs - Web Technology Surveys. Usage of Flash for websites.

http://w3techs.com/technologies/details/cp-flash/all/all

40. Adobe & HTML. http://html.adobe.com/mission/

41. W3C Working Draft (29 October 2013). HTML5 5.1 – A vocabulary and associated

APIs for HTML and XHTML. http://www.w3.org/TR/html51/embedded-content-

0.html#the-audio-element

42. W3C Schools. HTML Audio and Video DOM Reference.

http://www.w3schools.com/tags/ref_av_dom.asp

43. Mozilla developer network. Using HTML5 audio and video.

https://developer.mozilla.org/en-

US/docs/Web/Guide/HTML/Using_HTML5_audio_and_video

44. Smus, Boris (2013) Web Audio API. O’Reilly Media

45. Mozilla developer network. Introducing the Audio API extension.

https://developer.mozilla.org/en-US/docs/Introducing_the_Audio_API_Extension

46. Hacker, Scot (2000) MP3: The definitive guide. O’Reilly Media

47. Vorbis Homepage. http://www.vorbis.com/faq/

48. Brandenburg, Karlheinz (1999) MP3 and AAC explained. AES 17th International

Conference on HighQuality Audio Coding

49. King, Andrew B. (2008) Website Optimization. O’Reilly Media

50. Taylor Mark (2000) Lame Technical FAQ. http://lame.sourceforge.net/tech-FAQ.txt

71

51. Lutzky, Manfred; Schuller, Gerald; Gayer, Marc; Krämer, Ulrich; Wabnik, Stefan

(2004) A guideline to audio codec delay. Audio Engineering Society, Convention

Paper 6062

52. Bernsee, Stephan (1999) Time Stretching And Pitch Shifting of Audio Signals – An

Overview. http://www.dspdimension.com/admin/time-pitch-overview/

72

List of figures, tables and code examples

Figure 1 - The triangle of compromise in game audio by Stevens & Raybould 14

Figure 2 - Triangle of compromise for web conditions ... 15

Figure 3 - The basics of latency ... 17

Figure 4 - Differences in frequency data when different sampling frequencies have been

used. Colors represent the volume level of the sound on different frequencies (cyan is

lowest, light orange is highest) ... 19

Figure 5 - The class structure of Adobe Flash sound system .. 22

Code 1 - The minimum amount of code necessary for adding audio to page. Source:

W3Schools ... 24

Figure 6 - AudioContext with different AudioNodes. Source: W3C [24] 26

Table 1 - Hardware specifications of the computers used for testing 34

Figure 7 - Download times of 1 minute long MP3 file in case of different download speeds.

Red arrows appoint to the approximate position, where mobile connections reside on the

speed graph. (based on http://www.techspot.com/guides/272-everything-about-4g/). . 35

Table 2 - Average loading times of 1 minute long MP3-file in case of AUDIO-tag and Web

Audio API ... 38

Table 3 - Average loading times in milliseconds of 2 (2x1 minute), 3 (3x1 minute) and 5 (5x1

minute) minutes of audio data in case of AUDIO-tag and Web Audio API. 38

Table 4 - Average loading times in milliseconds of 2 and 3 minutes (in a single file) of audio

data. ... 39

Table 5 - Comparative table of request times. All times are in milliseconds. 41

Code 2 - JavaScript code responsible for decoding audio data and creating array buffer in

Web Audio API with the timer start and end commands (marked in red). 43

Illustration 4 - Google Chrome console window with the custom timings data. 43

Figure 8 – Web Audio API average decoding times across 3 different computer setups

(based on 128kbps MP3-s) .. 44

Figure 9 - Web Audio API average decoding times across 3 different computer setups

(based on 128kbps OGG-s) .. 45

Figure 10 - Web Audio API average decoding times across 3 different computer setups

(based on 128kbps AAC-audio) ... 45

73

Table 6 - Average differences of average decoding times between 128kbps and 256kbps

files .. 46

Table 7 - Comparison of decoding times (in milliseconds): 5x1minute vs 1x5minute of audio

data. Smaller times are better and marked as green. .. 47

Table 8 - The lenght of silence in breakpoints across different computer setups when using

MP3-s. .. 48

Figure 11 - Encoder & decoder delays and padding cause a "gap" in the loop when the track

is played iteratively. Figure taken from http://www.compuphase.com/mp3/mp3loops.htm

 ... 49

Table 9 - Spectral image before and after saving a piece of audio as MP3. On the “After

saving” image, the red lines represent the positions of the gaps; the gap in the beginning is

27ms, at the end 17ms. ... 50

Table 10 - The lenght of silence in breakpoints across different computer setups when using

OGG-s. ... 51

Table 11 - The lenght of silence in breakpoints across different computer setups when using

AAC-audio (in MP4 container). .. 51

Table 12 - Spectral image before and after saving a piece of audio as MP4. On the “After

saving” image, the red line represent the positions of the end padding; the gap at the end is

44ms. ... 52

Code 3 – JavaScript event listener responsible for custom looping functionality with logging.

 ... 54

Code 4 - Function defining the flow of the signal and other playback parameters. The loop

parameters are shown in red. ... 55

Table 13 - Reaction times of JavaScript when audio has been set to be looped through

manually created subroutine throughout the test computers. All given values are in

milliseconds. .. 56

74

Appendix A

Browser compatibility with <audio> tag according to [32].

Feature Chrome Firefox Internet Explorer Opera Safari
Basic support 3.0 3.5 9.0 10.50 3.1

<audio>: PCM in WAVE Yes 3.5 Not Supported Not
Supported

3.1

<audio>: Vorbis in WebM Yes 4.0 Not Supported 10.60 3.1 (must
be installed
separately)

<audio>: Vorbis in Ogg Yes 3.5 Not Supported 10.50 3.1 (must
be installed
separately)

<audio>: MP3 Yes Partial* 9.0 Not
Supported

3.1

<audio>: AAC in MP4 Yes Partial* 9.0 Not
Supported

3.1

<audio>: Opus in Ogg 27.0 15.0 Unknown Unknown Unknown

*Firefox supports MP3 and AAC partially. Because of the patent issues the support is not

built directly into Firefox but instead it relies on support from the operating system or

hardware. Therefore Firefox supports these formats on the following platforms: Windows

7+ (Firefox version 21.0), Windows Vista (version 22.0), Android (version 20.0).

75

Appendix B

The global attributes supported by the audio tag according to [27].

• accesskey – makes possible to access media element with specifically named

keyboard key.

• class – element class name.

• contenteditable – if the attribute’s value is true, content can be edited.

• dir – the directionality of the element’s text.

• draggable – determines, if the element can be dragged.

• dropzone – defines the action when an item is dropped on the zone.

• hidden – boolean attribute which determine if the element will be rendered.

• Id – a unique identifier for the element.

• lang – specifies the primary language of the content.

• spellcheck – used to enable spell and grammar checking of the element’s contents.

• style – inline CSS styling.

• tabindex – determines the element’s order in tabbing sequence.

• title – tooltip info.

76

Appendix C

The results of the test to determine whether there are any differences in loading times

when audio clip has been implemented using <audio>-tag or Web Audio API. Data is based

from the information gathered using Google Chrome Developer tools’ network timeline

view.

1 minute of audio Sending Waiting Receiving
<audio>-tag 1ms 292ms 1,49s

 1ms 289ms 1,49s

 1ms 274ms 1,49s

 1ms 275ms 1,49s

 2ms 288ms 1,49s

 1ms 284ms 1,49s

 0ms 279ms 1,49s

 4ms 279ms 1,49s

 2ms 284ms 1,49s

 1ms 268ms 1,48s

Web Audio API 1ms 113ms 1,42s

 2ms 125ms 1,47s

 1ms 110ms 1,49s

 1ms 115ms 1,50s

 1ms 113ms 1,50s

 1ms 114ms 1,50s

 0ms 118ms 1,50s

 0ms 118ms 1,49

 1ms 134ms 1.46s

 1ms 122ms 1.48s

77

Appendix D

The following data has been gathered using a specific command

(“window.performance.getEntries()[‘entry number’]”) in Google Chrome

Developer tools’ console window, which return raw timings data. All times in the following

tables are in milliseconds. Values in the “Request start”, “Response start” and “Response

end” columns are referencing to the time points when those specific events took place

during the page load.

The following table represents download timings’ data for 2-minutes of audio (2 x 1 minute

audio files)

2x1 minutes of
audio

Request
start

Response
start

Response
end

Total time Request
time

Receiving
time

<audio>-tag 547 938 4423 3876 391 3485

 945 1310 4424 3479 365 3114

 538 895 3916 3378 357 3021

 521 888 3878 3357 367 2990

 556 941 3939 3383 385 2998

 501 885 3881 3380 384 2996

 625 962 3989 3364 337 3027

 493 865 3867 3374 372 3002

 532 906 4376 3844 374 3470

 520 896 3892 3372 376 2996

Web Audio API 302 506 3548 3246 204 3042

 702 868 3914 3212 166 3046

 724 884 3933 3209 160 3049

 767 912 3975 3208 145 3063

 800 962 4022 3222 162 3060

 734 860 3977 3243 126 3117

 700 891 3950 3250 191 3059

 790 940 4036 3246 150 3096

 865 1012 4115 3250 147 3103

 714 854 3959 3245 140 3105

78

The following table represents download timings’ data for 3-minutes of audio (3 x 1 minute
audio files)
3x1 minutes of
audio

Request
start

Response
start

Response
end

Total Request
time

Receiving
time

<audio>-tag 610 1023 5606 4996 413 4583

 980 1661 6318 5338 681 4657

 562 1057 5618 5056 495 4561

 606 1301 5873 5267 695 4572

 717 1162 5696 4979 445 4534

 562 1034 5589 5027 472 4555

 1125 1767 6418 5293 642 4651

 669 1135 6054 5385 466 4919

 490 976 5551 5061 486 4575

 495 983 5770 5275 488 4787

Web Audio API 1110 1243 5935 4825 133 4692

 772 914 5817 5045 142 4903

 875 1120 5678 4803 245 4558

 917 1118 5721 4804 201 4603

 1365 1499 6320 4955 134 4821

 785 972 5702 4917 187 4730

 747 1001 5718 4971 254 4717

 780 986 5809 5029 206 4823

 748 986 5763 5015 238 4777

 734 901 5598 4864 167 4697

79

The following table represents download timings’ data for 5-minutes of audio (5 x 1 minute
audio files)
5x1 minutes of
audio

Request
start

Response
start

Response
end

Total Request
time

Receiving
time

<audio>-tag 540 1143 11069 10529 603 9926

 601 1262 9219 8618 661 7957

 936 1556 9511 8575 620 7955

 644 1202 9302 8658 558 8100

 1730 2133 9908 8178 403 7775

 606 1153 8858 8252 547 7705

 556 1162 10653 10097 606 9491

 1859 2982 11898 10039 1123 8916

 561 890 8823 8262 329 7933

 560 1154 8760 8200 594 7606

Web Audio API 1973 2224 10449 8476 251 8225

 937 1415 9084 8147 478 7669

 796 1047 8890 8094 251 7843

 893 1169 8995 8102 276 7826

 840 1065 8902 8062 225 7837

 901 1157 8975 8074 256 7818

 854 1055 8889 8035 201 7834

 752 1044 8908 8156 292 7864

 794 1208 8898 8104 414 7690

 879 1156 8933 8054 277 7777

80

Appendix E

Raw data of the tests which measure how the number of files influences the initial

response time. All values are in milliseconds.

10 x 3 sec of audio Request start Response start Request time
<audio>-tag 575 1221 646

 666 1274 608

 556 880 324

 652 1113 461

 2136 2761 625

 809 1265 456

 980 1437 457

 841 1433 592

 677 1142 465

 631 1253 622

Web Audio API 952 1115 163

 1264 1608 344

 1362 1688 326

 1026 1234 208

 831 1023 192

 888 1166 278

 1440 1756 316

 1141 1449 308

 838 982 144

 1617 1869 252

81

10 x 20 sec of audio Request start Response start Request time
<audio>-tag 641 1142 501

 2380 3060 680

 629 1616 987

 686 1330 644

 597 1239 642

 573 1227 654

 655 1088 433

 601 958 357

 541 1140 599

 509 1110 601

Web Audio API 826 1117 291

 1321 1813 492

 911 1218 307

 993 1296 303

 883 1059 176

 907 1208 301

 847 1092 245

 918 1221 303

 892 1187 295

 874 1181 307

82

Appendix F

The following table represents download timings’ data for 3-minutes of audio (1x3 minute

audio file).

 3 minutes of
audio

Request
start

Response
start

Response
end

Total Request
time

Receiving
time

<audio>-tag* 556 884 15032 14476 328 14148

 531 817 17038 16507 286 16221

 534 841 17075 16541 307 16234

Web Audio API 741 859 5648 4907 118 4789

 762 879 5666 4904 117 4787

 729 847 5603 4874 118 4756

 756 870 5581 4825 114 4711

 705 821 5531 4826 116 4710

 686 801 5490 4804 115 4689

 690 809 5519 4829 119 4710

 1028 1144 5921 4893 116 4777

 965 1081 5845 4880 116 4764

 695 810 5532 4837 115 4722

*Stopped testing with audio-tag after third trial due to the fact that after buffering 2MB of

audio data the download speed dropped significantly, resulting in a total download time up

to 16 seconds. The reason behind this might be related to the way how browser handles

the buffering of bigger audio files (which might include utilizing some sort of network traffic

optimization).

83

The following table represents download timings’ data for 2-minutes of audio (1x2 minute

audio file).

2 minutes of
audio

Request
start

Response
start

Response
end

Total Request
time

Receiving
time

<audio>-tag 541 775 3888 3347 234 3113

 553 847 3938 3385 294 3091

 644 880 3970 3326 236 3090

 503 756 3874 3371 253 3118

 504 814 3909 3405 310 3095

 474 770 3861 3387 296 3091

 538 832 3924 3386 294 3092

 493 786 3878 3385 293 3092

 539 836 3921 3382 297 3085

 519 806 3896 3377 287 3090

Web Audio API 1080 1201 4312 3232 121 3111

 1442 1845 4945 3503 403 3100

 1053 1341 4438 3385 288 3097

 789 905 4057 3268 116 3152

 1268 1384 4489 3221 116 3105

 782 905 4027 3245 123 3122

 717 831 3994 3277 114 3163

 689 803 3903 3214 114 3100

 757 878 4048 3291 121 3170

 846 960 4154 3308 114 3194

84

Appendix G

The following table shows raw timings the data in Table 13 is based on. The first column

shows the time in seconds, when the custom looping function was set to cut the audio and

change playback position back to the beginning of the file. The rest of the columns show

the values across test systems (from computer no 1 to 3) when the playback position was

really changed.

Ideal break time Break time/ Comp. no 1 Break time/ Comp. no 2 Break time/ Comp. no 3
68,623438 68,763462 68,764766 68,740115

68,623438 68,629753 68,844426 68,840426

68,623438 68,717583 68,783376 68,859646

68,623438 68,597312 68,830816 68,763766

68,623438 68,585312 68,812206 68,632446

68,623438 68,677583 68,794986 68,689496

68,623438 68,701583 68,772766 68,850426

68,623438 68,676583 68,812206 68,739546

68,623438 68,745022 68,706717 68,721327

68,623438 68,597312 68,764766 68,829816

85

 Ap
pe

nd
ix

 H

Ra
w

 d
at

a
of

 M
P3

 d
ec

od
in

g
tim

es
 in

 c
as

e
of

 W
eb

 A
ud

io
 A

PI
 (t

im
es

 in
 m

ill
ise

co
nd

s)
.

Co

m
pu

te
r n

o.
1

 C

om
pu

te
r n

o.
 2

 C
om

pu
te

r n
o.

 3

Th
e

av
er

ag
e

va
lu

e
of

 e
ac

h
co

lu
m

n
is

sh
ow

n
on

 th
e

ro
w

 b
et

w
ee

n
th

e
tr

ip
le

 li
ne

s.

1x
1m

in

96
kb

ps

2x
1m

in

96
kb

ps

3x
1m

in

96
kb

ps

5x
1m

in

96
kb

ps

1x
1m

in

12
8k

bp
s

2x
1m

in

12
8k

bp
s

3x
1m

in

12
8k

bp
s

5x
1m

in

12
8k

bp
s

1x
1m

in

19
2k

bp
s

2x
1m

in

19
2k

bp
s

3x
1m

in

19
2k

bp
s

5x
1m

in

19
2k

bp
s

30
30

59

00

88
77

14

28
4

31
68

57

62

88
69

14

67
1

30
17

59

11

88
49

14

66
2

28
79

59

79

88
68

14

44
1

31
77

59

70

87
17

14

45
2

31
77

59

54

86
13

14

75
4

29
45

58

01

85
69

14

06
7

29
57

59

74

86
72

14

60
4

32
08

58

89

89
63

14

63
9

30
01

59

41

88
80

14

44
4

31
02

57

66

88
34

14

49
3

30
47

59

73

86
26

14

33
2

28
56

58

54

88
34

14

38
1

28
99

59

49

85
51

14

59
1

32
15

58

16

88
31

14

59
9

29
65

57

79

87
16

14

45
6

31
74

58

08

89
01

14

43
7

30
21

58

45

88
97

14

48
5

29
60

58

34

88
34

14

40
2

29
64

57

25

86
91

14

52
2

30
63

60

84

86
76

14

50
8

30
26

,4
29

58

69
,7

14

87
96

,8
57

14

35
3,

57

29
48

58

50
,5

71

87
47

,8
54

14

53
8,

57

31
06

,8
57

59

24
,5

71

87
79

,2
85

14

56
8,

43

21
16

40

47

58
90

94

92

21
01

40

21

58
89

99

44

22
55

41

65

60
17

10

16
0

21
71

41

05

58
93

96

50

20
96

40

71

58
75

96

60

21
12

42

47

59
93

99

72

21
99

40

30

60
04

95

12

20
72

40

45

59
57

98

38

22
38

39

98

61
74

99

56

21
18

40

77

57
74

96

61

22
04

40

01

59
49

96

96

22
96

42

00

60
98

99

69

21
96

41

40

60
07

95

58

22
62

41

50

59
85

98

68

21
07

42

19

60
62

99

68

21
88

39

56

57
67

97

20

21
15

40

22

59
03

96

02

22
27

40

77

61
09

99

66

20
88

40

64

59
18

94

67

21
43

40

29

58
94

99

06

22
50

41

05

58
73

99

60

21
53

,7
14

40

59
,8

57

58
93

,2
86

95

80

21
41

,8
57

40

48
,4

29

59
21

,7
14

97

87
,7

14

22
12

,1
43

41

44
,4

29

60
46

,5
71

99

93

86

 1x
1m

in

96
kb

ps

2x
1m

in

96
kb

ps

3x
1m

in

96
kb

ps

5x
1m

in

96
kb

ps

1x
1m

in

12
8k

bp
s

2x
1m

in

12
8k

bp
s

3x
1m

in

12
8k

bp
s

5x
1m

in

12
8k

bp
s

1x
1m

in

19
2k

bp
s

2x
1m

in

19
2k

bp
s

3x
1m

in

19
2k

bp
s

5x
1m

in

19
2k

bp
s

13
87

26

78

39
83

66

35

13
51

26

64

40
03

66

84

13
87

26

96

40
03

66

66

13
68

26

77

39
28

67

13

13
25

26

83

39
84

66

46

13
77

27

07

40
19

66

70

13
31

26

81

39
70

66

04

13
83

26

95

39
93

66

49

13
87

27

01

40
19

66

81

13
62

26

76

39
71

65

98

13
84

26

13

39
99

66

64

13
84

26

87

40
12

66

47

13
74

26

77

39
66

65

94

13
66

26

58

39
91

66

70

13
88

26

91

40
02

66

62

13
74

26

16

40
04

65

95

13
64

26

60

39
95

66

17

13
82

27

03

40
09

66

73

13
73

26

64

39
52

66

01

13
36

26

45

40
00

66

52

13
80

27

02

40
05

66

73

13
67

26

67

39
67

,7
14

66

20

13
58

,4
28

26

59
,7

14

39
95

66

54
,5

71

13
83

,5
71

26

98
,1

43

40
09

,8
57

66

67
,4

29

 1x
1m

in
 2

56
kb

ps
2x

1m
in

 2
56

kb
ps

3x

1m
in

 2
56

kb
ps

5x
1m

in
 2

56
kb

ps
1x

5m
in

 9
6k

bp
s

1x
5m

in
 1

28
kb

ps
1x

5m
in

 1
92

kb
ps

1x
5m

in
 2

56
kb

ps

30
45

62

23

86
89

14

66
2

13
94

3
14

21
1

14
44

0
14

47
6

32
17

61

56

89
37

14

74
0

13
83

5
14

17
7

14
33

5
14

59
3

32
38

59

35

87
54

14

60
5

13
89

5
14

12
7

14
32

9
14

57
6

29
86

62

26

90
34

14

65
7

13
74

3
14

23
7

14
44

7
14

42
9

31
99

59

49

89
00

14

82
1

13
88

1
14

13
1

14
32

6
14

54
8

30
27

62

08

86
74

14

68
4

13
92

8
14

13
5

14
41

4
14

50
0

32
26

61

50

90
10

14

57
4

13
84

4
14

16
1

14
36

7
14

56
7

31
34

61

21

88
56

,8
57

14

67
7,

57

13
86

7
14

16
8,

43

14
37

9,
71

14

52
7

22
12

40

63

60
54

10

07
1

95
86

99

80

97
33

10

11
0

22
17

41

74

61
69

10

05
5

97
25

99

12

10
07

3
98

63

22
34

41

25

60
33

98

20

97
46

99

46

97
67

10

11
0

22
93

41

58

62
81

10

06
8

96
58

99

75

10
04

5
10

06
3

22
14

41

41

60
44

99

13

94
51

99

40

98
43

10

16
6

22
45

41

14

61
02

10

06
6

96
38

98

31

10
03

3
10

12
5

22
81

41

42

60
45

99

94

95
80

99

38

98
25

10

16
7

22
42

,2
86

41

31

61
04

99

98
,1

43

96
26

,2
86

99

31
,7

14

99
02

,7
14

10

08
6,

29

87

 1x
1m

in
 2

56
kb

ps
2x

1m
in

 2
56

kb
ps

3x

1m
in

 2
56

kb
ps

5x
1m

in
 2

56
kb

ps
1x

5m
in

 9
6k

bp
s

1x
5m

in
 1

28
kb

ps
1x

5m
in

 1
92

kb
ps

1x
5m

in
 2

56
kb

ps

14
02

27

15

40
43

67

30

64
82

66

63

67
13

67

15

13
92

27

24

40
46

67

00

64
67

66

42

66
97

67

45

13
87

27

22

40
65

67

31

64
58

66

40

66
70

67

23

13
91

27

28

40
20

67

48

64
95

65

72

66
78

67

02

13
89

27

06

40
53

67

33

64
95

66

21

66
62

67

18

13
98

27

07

40
49

67

08

64
87

66

06

66
85

67

64

13
96

27

18

40
06

66

92

64
56

65

96

67
25

67

47

13
93

,5
71

27

17
,1

43

40
40

,2
86

67

20
,2

86

64
77

,1
43

66

20

66
90

67

30
,5

71

 C

om
pu

te
r n

o.
 1

 –
 D

el
l L

at
itu

de
 D

63
0

(la
pt

op
),

CP
U

: I
nt

el
 M

ob
ile

 C
or

e
2

Du
o

T7
10

0
@

 1
.8

GH
z,

 C
or

es
: 2

, T
hr

ea
ds

: 2
, M

em
or

y:
 2

GB
 @

 3
33

M
Hz

 C

om
pu

te
r n

o.
 2

 –
 A

ce
r A

sp
ire

 7
73

9
(la

pt
op

),
CP

U
: I

nt
el

 C
or

e
i3

 3
80

M
 @

 2
.5

3G
Hz

; C
or

es
: 2

, T
hr

ea
ds

: 4
, M

em
or

y:
 4

GB
 @

 5
33

M
Hz

 C

om
pu

te
r n

o.
 3

 –
 H

P
Pa

vi
lio

n
50

0
(d

es
kt

op
),

CP
U

: I
nt

el
 C

or
e

i5
 3

35
0P

 @
 3

.1
0G

Hz
, C

or
es

: 4
, T

hr
ea

ds
: 4

, M
em

or
y:

 8
GB

 @
 8

00
M

Hz

88

 Ap
pe

nd
ix

 I

Ra
w

 d
at

a
of

 O
GG

 d
ec

od
in

g
tim

es
 in

 c
as

e
of

 W
eb

 A
ud

io
 A

PI
 (t

im
es

 in
 m

ill
ise

co
nd

s)
. T

he
 a

ve
ra

ge
 v

al
ue

 o
f e

ac
h

co
lu

m
n

is
sh

ow
n

on
 th

e
ro

w
 b

et
w

ee
n

th
e

tr
ip

le
 li

ne
s.

1x
1m

in

2x
1m

in

3x
1m

in

5x
1m

in
1x

1m
in

2x
1m

in
3x

1m
in

5x
1m

in

1x
1m

in
2x

1m
in

3x
1m

in
5x

1m
in

15
61

30

64

44
03

73

09

12
09

22

42

33
59

55

41

74
9

14
67

21

46

35
44

16
07

32

37

44
24

73

12

11
52

23

50

34
16

55

31

75
6

14
49

21

42

35
22

15
95

31

23

46
06

73

14

11
69

22

65

33
38

54

19

75
5

14
44

21

45

35
38

15
28

32

19

44
55

72

89

11
10

22

88

33
94

54

79

75
0

14
35

21

41

35
25

16
40

29

95

46
42

71

78

11
70

22

30

34
02

54

77

74
7

14
55

21

48

35
46

17
02

31

38

45
66

73

74

11
89

22

75

33
68

55

72

74
8

14
40

21

19

35
43

16
51

32

00

45
66

73

33

11
79

22

98

33
32

55

25

75
3

14
45

21

16

35
27

16
15

30

60

44
44

72

99

11
77

23

45

33
70

55

52

74
8

14
54

21

46

35
42

15
97

31

50

45
42

73

03

12
00

22

52

33
78

55

12

75
1

14
43

21

33

35
59

15
65

30

37

46
49

72

95

11
60

22

23

34
06

55

21

75
4

14
53

21

39

35
36

16
06

,1

31
22

,3

45
29

,7

73
00

,6

11
71

,5

22
76

,8

33
76

,3

55
12

,9

75
1,

1
14

48
,5

21

37
,5

35

38
,2

 C

om
pu

te
r n

o.
 1

 –
 D

el
l L

at
itu

de
 D

63
0

(la
pt

op
),

CP
U

: I
nt

el
 M

ob
ile

 C
or

e
2

Du
o

T7
10

0
@

 1
.8

GH
z,

 C
or

es
: 2

, T
hr

ea
ds

: 2
, M

em
or

y:
 2

GB
 @

 3
33

M
Hz

 C

om
pu

te
r n

o.
 2

 –
 A

ce
r A

sp
ire

 7
73

9
(la

pt
op

),
CP

U
: I

nt
el

 C
or

e
i3

 3
80

M
 @

 2
.5

3G
Hz

; C
or

es
: 2

, T
hr

ea
ds

: 4
, M

em
or

y:
 4

GB
 @

 5
33

M
Hz

 C

om
pu

te
r n

o.
 3

 –
 H

P
Pa

vi
lio

n
50

0
(d

es
kt

op
),

CP
U

: I
nt

el
 C

or
e

i5
 3

35
0P

 @
 3

.1
0G

Hz
, C

or
es

: 4
, T

hr
ea

ds
: 4

, M
em

or
y:

 8
GB

 @
 8

00
M

Hz

89

 Ap
pe

nd
ix

 J

Ra
w

 d
at

a
of

 A
AC

/M
P4

 d
ec

od
in

g
tim

es
 in

 c
as

e
of

 W
eb

 A
ud

io
 A

PI
 (

tim
es

 in
 m

ill
ise

co
nd

s)
. T

he
 a

ve
ra

ge
 v

al
ue

 o
f

ea
ch

 c
ol

um
n

is
sh

ow
n

on
 t

he
 r

ow

be
tw

ee
n

th
e

tr
ip

le
 li

ne
s.

1x
1m

in

2x
1m

in

3x
1m

in

5x
1m

in
1x

1m
in

2x
1m

in
3x

1m
in

5x
1m

in

1x
1m

in
2x

1m
in

3x
1m

in
5x

1m
in

16
35

30

58

42
24

70

63

10
85

22

01

31
67

52

84

74
3

14
37

21

17

35
16

16
31

30

30

43
52

70

19

11
42

21

86

32
19

53

41

74
2

14
14

20

82

34
72

16
44

29

42

44
21

68

57

11
22

21

96

32
42

53

35

74
2

14
31

21

03

34
49

13
97

30

03

43
53

69

37

12
12

21

93

32
07

52

62

73
7

14
18

21

35

34
79

16
07

28

91

42
18

69

87

11
74

21

64

31
96

53

32

70
3

14
25

21

08

34
80

16
38

30

82

43
95

68

76

11
36

21

84

32
09

53

64

73
7

14
39

20

90

34
72

16
32

29

02

43
30

70

18

11
36

21

88

31
62

53

16

74
0

14
26

21

16

34
90

15
25

30

53

44
60

68

77

11
85

21

87

32
62

52

95

74
4

14
21

21

17

34
66

16
56

28

82

43
68

69

77

11
25

21

88

32
50

53

35

74
0

14
48

21

08

34
64

16
35

30

58

42
24

70

63

11
61

21

78

32
82

52

21

70
2

14
35

21

19

34
88

16
00

,3

29
74

,6

43
57

,5

69
63

,5

11
47

,8

21
86

,5

32
19

,6

53
08

,5

73
3

14
29

,4

21
09

,5

34
77

,6

 C

om
pu

te
r n

o.
 1

 –
 D

el
l L

at
itu

de
 D

63
0

(la
pt

op
),

CP
U

: I
nt

el
 M

ob
ile

 C
or

e
2

Du
o

T7
10

0
@

 1
.8

GH
z,

 C
or

es
: 2

, T
hr

ea
ds

: 2
, M

em
or

y:
 2

GB
 @

 3
33

M
Hz

 C

om
pu

te
r n

o.
 2

 –
 A

ce
r A

sp
ire

 7
73

9
(la

pt
op

),
CP

U
: I

nt
el

 C
or

e
i3

 3
80

M
 @

 2
.5

3G
Hz

; C
or

es
: 2

, T
hr

ea
ds

: 4
, M

em
or

y:
 4

GB
 @

 5
33

M
Hz

 C

om
pu

te
r n

o.
 3

 –
 H

P
Pa

vi
lio

n
50

0
(d

es
kt

op
),

CP
U

: I
nt

el
 C

or
e

i5
 3

35
0P

 @
 3

.1
0G

Hz
, C

or
es

: 4
, T

hr
ea

ds
: 4

, M
em

or
y:

 8
GB

 @
 8

00
M

Hz

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

