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1. Introduction 

Audio elements play an important role in the world of computer games. In the world of 

browser based gaming, the majority of games have required some sort of third party plug-

in to overcome the limitations of the multimedia support in web browsers. The new HTML5 

standard, introducing native audio-video support, has added new features to the web, 

making it possible to implement audio into web applications and to create multimedia 

games solely by using proprietary web technologies. The HTML5 audio-tag is the 

standardized way to include audio elements to web. In addition – the Web Audio API is in 

development, which should open up even more possibilities when it comes to audio, 

including audio panning, filtering and effects to name a few. 

The goal of this paper is to look into the world of audio in games – the limitations, 

differences and possibilities of audio-tag and Web Audio API when it comes to 

implementing audio using web languages. This work covers the topics like the ease of use, 

the differences in implementation, the suitability for different purposes and how one 

method or another might affect the possible gaming experience (through usage of 

computer resources, loading times and differences in audio playback).  

Problem formulation:  

As a more specific problem formulation, the following postulation has been presented: 

How well do audio-tag and Web Audio API perform compared to each other and how 

they can be used in a most optimal way to deliver the best user- and aural experience in 

browser based games.  

The process of analyzing the problem stated above will consist of different parts – the 

efficiency of using data delivery networks (loading times, file request times); 

implementation method specific characteristics; performance related aspects when using 

different types of audio files; how implementation methods and audio file types behave 

when used under possible real life condition (in a form of looped background audio). The 

results will be analyzed and some of the downsides will be looked into in more detail, to 

inspect possible workarounds to the limitations imposed by the implementation methods 

and audio encoding technologies.   
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The research question was tested using two web pages – one for each audio 

implementation method – which acted as frameworks and were modified based on the 

nature of each individual test. To make the tests comparable, a set of guidelines were put 

in place to which both frameworks had to comply with.  

This paper is focused on the domain of PC-games and deals with audio which is recorded 

and sampled before implementation; the field of audio synthesis or MIDI-technology is 

beyond the scope of this paper. The reason is that limitations applying to the sampled 

audio are different from the limitations on synthesized or programmatically generated 

audio.  
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2. Background 

This chapter gives an overview of the history and the evolution of audio in games, why the 

development of audio technologies is of great importance to the games and how audio can 

influence the gaming experience. The second half of the chapter will cover the list of 

different audio types used in games and their roles. The history of the development of the 

game audio is essential to understanding the current situation of the industry and what 

kind of expectations a developer might have when working with game audio. 

2.1 The game audio history 

Audio playback has always been limited. The best example is the hardware development of 

gaming consoles. First generation consoles didn’t have any audio support or it was very 

limited. Magnavox Odyssey, the very first home video game system, had no sound. The 

following machines also started to implement sound – simple built-in sound speakers at 

first, later on more capable sound chips which generated sound for playback through TV-

speakers [1]. One of the quite common solutions for sound generation was using 4 channel 

chips – 3 sound channels and 1 noise generator – which could be found from many gaming 

consoles throughout the 70’s and 80’s [2]. Over the decades manufacturers added more 

channels which enabled programmers and composers to create more complex musical 

pieces. With the Nintendo Entertainment System (NES) (released in 1983 in Japan and 1985 

in US) the Programmable Sound Generator (PSG) was introduced to the gaming consoles 

and one of the PSG audio channels could have also been used to play audio samples [2, 3, 

4]. This was a step forward in the direction of how majority of the audio has been 

implemented today – the audio consists of recorded and sampled CD-quality stereo audio 

and is not generated on fly by sound synthesis chips [5]. NES used 5 channels of 

monophonic audio, a year later (in 1986) Sega introduced sound generators which were 

able to generate sounds in four octaves each. In 1989 the NEC TurboGrafx-16 had 6 

channels with stereo output, during the same time Sega Genesis brought 10 audio channels 

[5].  

In the 90’s games’ audio started to put more demand on the system resources. This 

becomes evident when we look at the specification of the game consoles released since the 

early 90’s – Play Station  (released in 1994) already had 24 audio channels and 512KB 
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dedicated memory, Nintendo 64 (released 1996) used shared memory of 4MB, Sega 

Dreamcast (released 1998) had 64 channels and 16MB of shared memory, Sony Playstation 

2 (released 2000) allowed programmers to work with 32MB of shared memory. A year later 

Microsoft released Xbox which had 64MB of memory, Xbox later version – Xbox360 (2005) 

– had 512MB of shared memory [2].  

2.2 The importance of sound in games 

The capabilities of audio have been varied a lot over the decades as seen from the previous 

quick overview of the game audio – the early game consoles lacked audio support or had 

primitive internal speakers to generate simple beep sounds. Later on multiple channel 

sound generation chips were added to the console boards, but there was still a long way to 

go until the technology allowed the usage of pre-recorded audio [2, 5]. It is understandable 

why audio has gotten and gets less attention in computer games since for players, the two 

most important features in computer games are playability and graphics, when they are 

choosing a game to buy [6].  

Even though players don’t consider audio as important, having a quality in-game audio can 

benefit the game in various ways. The game development studios have understood this and 

as a result they often have on-site sound engineers, working with games, to create the best 

possible aural environment for the games [1, 5].  

One might ask why is audio so important to the games. Sound plays different roles in games 

– it separates the player from the surrounding distractions, reflects the game state, acts as 

a feedback medium for player actions, helps the storyline progression, and makes the 

fictional world seem more realistic [1, 5, 7, 8].  

Lately more and more attention is given to the immersive qualities of games which are 

important in many ways. Immersion by definition is a state where entire player’s attention 

is on the game [9, 10, 11], the sense of time is reduced [9, 11, 12] and in some sense the 

player becomes a part of the experience itself [10, 13]. On one side, when players are 

immersed then different shortcomings in usability and conflicts between expectations may 

often remain unnoticed [14]. On the other hand, the goal of player-centered game design 

approach, is to increase player enjoyment [15], making immersion a vital element for the 

success of a game. If players do not enjoy the game, they will not play it [11]. Studies have 

shown that sound plays vital part in the immersive qualities of a computer game [1, 9, 13, 
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16]. As noted above, immersion has been associated with number of features: lack of 

awareness of time, loss of awareness of the real world by being completely focused on the 

game at hand, involvement and a sense of being in the task environment. Also emotional 

involvement seems to be one of the key factors [13, 17] and sound/music is a very powerful 

medium to affect one’s emotions [5, 18]. In addition it has been suggested that immersion 

correlates to the number of attentional sources (visual, auditory and mental) needed as 

well as the amount of each attentional type [9].  

Gameplay immersion can have different dimensions [10] – this means that one could have 

an immersive experience with early “Pong” game where audio is very primitive and does 

not contribute that much to the overall immersive experience – but increasing the realism 

of a soundscape can increase the strength of the sense of immersion [16]. In addition, 

better audio quality improves the overall experience - sensory immersion is related to the 

audiovisual execution of the game, and audiovisual quality and style has been regarded one 

of the central aspects of a good digital game, meaning that often higher quality audio leads 

to the higher level of immersion [10]. As audio hardware has matured, the quality of audio 

has tried to keep up with the hardware improvements; this includes adding surround sound 

to games [1]. Even though web games may not include surround sound, it is still important 

to deliver a reasonably high quality audio, since obviously it adds to the overall look and 

feel of the game and contributes to the gaming experience.  

Immersion in terms of audio, is a presentation of a soundscape in a way that listener has an 

impression of being entirely within a realistic sound environment [19] and it can be used to 

create the illusion that the world extends beyond the screen [6]. Sweetser and Wyeth have 

introduced a framework to rate the criterions of enjoyment in games [11] and some of the 

areas in which audio has a role to play are highlighted as follows:  

• games should provide a lot of stimuli from different sources; 

• players should receive immediate feedback on their actions; 

• players should become less aware of their surroundings; 

• games should have a high workload, while still being appropriate for the players’ 

perceptual, cognitive, and memory limits. 

As it becomes clear from the text above, sound and music have a distinct role to play in 

games. Even though players don’t consider the sound to be very important when they 
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choose games for playing [20] it still has a lot to contribute to the gameplay experience. It 

has been even theoretized that video games will eventually become interactive movies 

where the psychological effects of music and sound will be dominant [5].  

2.3 Types of sounds 

To keep the topic from becoming too broad, I am focusing on the audio which is present 

only during gameplay (background music and gameplay-related sound effects), leaving out 

sounds played during menu screens, intro and credit sequences, and cinematic cutscenes.  

In an average PC or console game1, a player is exposed to multiple types of audio. In the 

movie industry, the sounds are most commonly divided into two categories – diegetic and 

non-diegetic. Diegetic sounds are part of the physical realm of the actors, non-diegetic 

sounds are external to the story world and often are there to bind the images and 

contribute to the overall mood like conventional background music [21].  

Similarly to the film industry, diegetic sounds in games are those which have a physical 

source in the game environment and could be heard by the character in the game, i.e 

environmental sounds (wind, rain, thunder, birds etc), character sounds (breathing, 

footsteps), action sounds (sword swinging, gunshots, opening a door). The most commonly 

recognized non-diegetic sound in games is also background music. As in films it can convey 

the mood but it often gives feedback about the state of the game (i.e music changes during 

combat scenes or when time starts to run out) and therefore can influence the gameplay. 

Other types of non-diegetic sounds can include different audiocues which accompany 

banners or signs. The signs or banners are instructions, tips, and rules. These instructions 

are presented not as objects belonging to the fictional world but rather superimposed text, 

although part of the game [16, 22].  

Since games are dynamic entities, the audio in games can broadly categorized as 

diegetic/non-diegetic, but within those categories it can be separated even further. In 

games we can also talk about interactive and adaptive sounds – environmental sounds and 

background music which react to the in-game day-night cycle, action sounds which are 

                                                       
1 Author considers “an average PC or console game” as something which has meaningful game audio 
(gives feedback to the player), requires mouse/keyboard or game controller as an input device and 
requires some time commitment by the player.  
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played according to the player’s actions and changing environmental sounds [1]. The game 

audio can be classified even in a more detailed level - in a literature another layer has been 

introduced to the game audio, dividing diegetic and non-diegetic sounds also into masking 

sounds (sound signal is diegetic but signifies a non-diegetic event) and symbolic sounds 

(sounds relate to the in-game events while signals remain non-diegetic) [22]. Since in this 

paper the implementation is not focusing on to 3D game world, most of the sounds are 

non-diegetic and can be regarded as symbolic sounds.  
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The “triangle of compromise” in game audio development consists of three elements – 

variation, memory and quality. The audio designer has to keep in mind that there is a 

constant battle between these three properties and a balance has to be found between 

them. For example having a huge number of different high quality effects is very 

demanding on the memory. If an amount of memory is limited, then one has to decrease 

the number of used samples or decrease their quality.  

Theoretically each sound implemented in the game has a certain position in the “triangle of 

compromise” – having a sound element (for example sound of footsteps) with a small 

memory footprint2 means that also the quality has to be low and not many variations can 

be used, meaning that the same low quality sound will be played over and over again. A 

good example here are the footsteps sounds in the game Final Fantasi XII – in real life when 

a person walks on the same surface the footsteps will still sound differently, but in Final 

Fantasi XII there is only one sample for each surface type, which eventually gets very 

annoying and tend to break immersion. 

The “triangle of compromise” also holds well in terms of web-based games. In case of the 

web the triangle should also include bandwidth, since even though memory still remains an 

issue, the usage of audio in web is also strongly influenced by the bandwidth limitations. 

Most of the audio features are more-less dependent on the JavaScript which introduces 

another layer of limitations [24]. 

JavaScript is the programming language of the web. In web JavaScript is mainly used 

alongside other web technologies such as HTML (used to describe the content of pages) 

and CSS (used to change the presentation of pages). Through JavaScript one can interact 

                                                       
2 Memory footprint – the amount of memory software uses when running. 
(http://www.pcmag.com/encyclopedia/term/60598/memory-footprint) 

Figure 2 - Triangle of compromise for web conditions
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Figure 3 - The basics of latency 

Multiple studies have made about audio-visual simultaneity and in case of films and videos, 

audio is considered to be out of sync with video when a sound is approximately 75ms early 

or 90ms late (some of the studies have came to different conclusions with longer times 

from 130ms early and up to 250ms late). [28] In games the early audio timing doesn’t 

apply, since audio playback is dependent on the gamers’ actions. I would theorize that in 

case of games, the latency should be smaller, since gamer usually can expect a sound based 

on his/her actions. Web Audio API documentation mentions latency from 3-6 milliseconds 

up to 25-50 milliseconds to be reasonable (of course it depends on the type of application) 

[24].    

3.2 Practices to cope with the limitations 

Because of the limited nature of audio processing, different techniques, solutions and 

practices have been developed over time to cope with the limitations and fully utilize the 

capabilities of the audio. In a book „The Game Audio Tutorial“ Richard Stevens and Dave 

Raybould (with the help of numerous contributors) discuss different ways how to work with 

audio in games and to make audio memory footprint smaller by finding a compromise 

between audio quality and required resources, while giving gamers the best aural 

experience possible [7]. The following is a list of techniques represented, in the book, on 

how to reduce the usage of resources by audio elements. Each list element also includes a 

little analysis on if and how it would be possible to implement that specific method using 

the audio implementation methods for web.  

3.2.1 Saving file as mono 

Saving an audio file as mono is the quickest way to reduce the file size two times. Saving 

audio files as mono has been mentioned by different sources - Adobe Community Help 

suggests that if no compression has been used then it is a good practice to use mono 

sounds [29], game{closure} DevKit Docs suggest that mono files should be used when 

possible [30], sound effects and speech audio are usually saved as mono files [5]. 
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Figure 4 - Differences in frequency data when different sampling frequencies have been used. Colors represent the 
volume level of the sound on different frequencies (cyan is lowest, light orange is highest)  

The previous figure represents the visual audio spectral data of a sound effect I created. As 

one can see, there are only a limited amount of high frequencies present in the beginning 

of sound file, which means that concatenation could be successfully used on this audio file. 

Also if the lack of high frequencies do not affect the audible quality of the audio, one can 

simply save audio with a lower sampling rate.  

This is an advanced functionality that game engines are able to provide, but implementing 

it in the web can be more complicated, since this is not a native functionality that web 

languages could provide.  

3.2.4 Saving file at twice the speed 

One way of decreasing the file size but not sacrificing much of the quality is to increase the 

raw audio source playback 2 times before rendering it out as a game audio asset. It could 

be done in different audio editing programs with a time compression functionality which 

allows manipulating with the audio playback speeds. In the game itself, the file would be 

played back 2 times slower, thus creating the feel of the original sound effect. This 

technique makes it possible to save 50% of the audio file size compared to the original 

“unstretched” audio. 

In the web both HTML5 audio-tag and Web Audio API support playback speed changes [24, 

27].  
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3.2.5 Different playback speeds 

One fairly common technique is to use the same audio file for multiple effects simply by 

changing the playback speed of the audio file. This allows a reducing of audio memory load 

and also reducing the number of files included in the game.  

3.2.6 Reducing load time 

One of the techniques used in computer games is to concatenate the audio effects into one 

single file. Reading a number of different audio files from hard drive or from optical disk 

induces delay – even though it may not be a very long delay it still can result in unwanted 

effects not acceptable by game developers. By including audio markers to a single file it is 

possible to start playing from different places. The problem in this case is the following – is 

it possible to make browsers to recognize media markers inside a sound file? The technique 

itself would benefit page loading time, because for each file the browser loads during the 

opening of a web page, it has to send a separate request to the server. Reducing the 

number of requests made by the browser decreases the page loading time (as we can see 

from the test results covered in later chapters). 
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4. Audio implementation methods and file types 

This chapter talks about the ways the audio can be implemented in browser based games, 

covering the currently most widely used Adobe Flash and the native browser technologies 

including their technical possibilities and characteristics. In the second part of the chapter 

the sound file types, which can be used in browsers, have been covered.  

4.1 State of the art 

4.1.1 Adobe Flash 

When talking about browser based games, then these games are more casual type of 

games. Casual games are commonly described as games which allow people to have a 

meaningful play experience within a short time frame [34]. For example one game round of  

Bejeweled Blitz, one of the most popular games in Facebook [35], lasts for one minute, 

while in case of hardcore games3 one round may take up to an hour or sometimes even 

more. This has a lot to do with web browsers’ and bandwidth limitations, therefore also the 

audio of browser based games tend to be rather limited, for example one background 

music loop plus a handful of sound effects.  

Currently most of the games which can be played through browser will need the browser to 

support of Adobe Flash which has been the de facto standard for web-based gaming [31]. 

Adobe Flash has been on the web gaming scene for a long time. It was originally designed 

for doing web drawings and animations but has evolved a lot since [36]. Today one can do 

many things using Flash – it includes creating animations, 3d effects, play audio (in which 

this paper is most interested in), multimedia streaming, Flash can be used for 

presentations, creating interfaces for info kiosks, creating games, mobile and desktop 

applications [37]. 

In terms of Flash’s audio capabilities most of it is available through a Flash-specific scripting 

language called ActionScript. ActionScript is a language used to program interactive Flash 

content. It has some similarities with JavaScript but also inherits some elements from 

languages like Java and C and it can be used to control animations, data, playing audio and 

                                                       
3 Hardcore game is traditionally considered to require a large time commitment for a meaningful experience 
and to make demands on the skills and commitment of a player itself. [23] 
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Figure 5 - The class structure of Adobe Flash sound system

video, user events etc and for accessing Flash libraries and APIs [38]. ActionScript was 

introduced in 2000, its latest third version was released 2006 and it introduced a number of 

new possibilities [37]. In Adobe Flash there are two types of sounds: event sounds (has to 

be downloaded before playing) and stream sounds (playback will start as soon as enough 

data has been downloaded). These types of sounds can be used in different ways: to have a 

sound played continuously or synchronize it with a specific animation. In Flash there is even 

a special event that can be used if one wants to trigger another event after the sound has 

finished playing. In Flash one can load sounds dynamically and have access to audio 

envelopes [29].  

In Adobe Flash audio playback uses different classes. Each sound has to be encapsulated 

into Sound object, which also deals with loading and buffering audio data. The playback of 

Sound object is controlled through SoundChannel class. The panning and volume of a 

SoundChannel can be controlled with SoundTransform class. From there the sound is 

forwarded to SoundMixer class, which is the global mix of all played sounds. If overall 

volume and panning has to be changed, then it can be done through SoundMixer’s own 

SoundTransform class. At any given point the maximum number of mixed SoundChannels is 

32 [38].  
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The previous figure shows in overall the hierarchy of sound system classes in Adobe Flash. 

This kind of approach makes it possible to tweak each sound or group of sounds separately.  

A list of functionality what Adobe Flash allows to do according to [38]:  

• “Seek” functionality or in other words to determine the starting point of the playback in 

the audio file. 

• Looping (the number of loops has to be set).  

• Possibility to access MP3-files’ metadata (i.e song name, artist, track number, album 

name etc). 

• Display sound’s waveform or frequency spectrum.  

• Change audio playback sample rate/speed. 

• Extract any portion of audio and modify its data.  

• Audio synthesis and dynamic writing to audio buffer 

In Flash there are multiple ways how to implement sound – it is possible to work with audio 

by using ActionScript or to add audio to the timeline. The way of implementation depends 

on the usage of the sound – for example when sound has to be exactly in sync with an 

animation then it is done by including a sound file to the animation timeline. If syncing is 

not a priority then it is also possible to stream audio, but if the audio has to match with 

some animations, then on slower connections it could result in a bad user experience [37]. 

Adobe Flash has set high standards to how one could work with audio in the web. Since 

usage of Flash for websites is declining quite rapidly [39] and Adobe is paying more and 

more attention on creating tools to allow content to be exported into web standards [40], it 

also means that a browsers native audio support has to keep up with the developments in 

this area.  

4.1.2 <audio>-tag 
Implementing sound elements to a web page has always been a problem. This is one of the 

reasons Flash become standard for web-based gaming. Before HTML5 there was no 

standardized native support for audio embedding to the page. The new tag included in 

HTML5 is <audio> tag [31]. The most basic code for embedding an audio file into a web 

page looks like the following: 
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embeddable content; preload – attribute to hint browser whether it should download the 

content automatically or wait for a specific input from user; autoplay – file can be set to 

start playing as soon as enough data has been downloaded; mediagroup – a way to group 

more than one media file together (can be used to start the playback of multiple files 

simultaneously); loop – audio file will be looping; muted – media plays without the sound 

(user has to unmute manually); controls – if attribute present, then media playback 

controls will be shown in the browser; volume – sets or returns the volume of the audio 

[27, 41, 42]. The list of attributes is longer but it is not convenient to list them all here. 

In HTML5 it is possible to seek through media (audio and video) and also specify the 

playback range (play only a portion of the media) [43]. The latter functionality should 

become handy in browser-based games. As mentioned previously in the “Working within 

the limits” chapter – concatenating audio files can reduce loading times and be especially 

beneficial in reducing the number of request made to the server.  

<audio> element has also number of limitations. Among other things it is difficult to 

implement precise timing controls, the number of sounds playable at once is limited, pre-

buffering a sound is not very reliable, no real-time audio effects, no audio analyzing 

capabilities [44]. 

In addition while going through the list of functionality and attributes one could notice that 

one of the most common parameter is missing – panning. While using audio-tag for audio 

playback it is not possible to pan audio sources to right or left (there is no reference to 

panning mentioned in the W3C documentation). If dynamic panning (panning audio 

elements based on the location of the audio source on the screen) is absolutely necessary 

then it has to be done through other means.  

4.1.3 Web Audio API 

Web Audio API is created to enable audio processing and synthesizing in web applications. 

Its modular structure can somewhat be compared with the Adobe Flash’s sound system – 

the overall audio rendering is defined by number of connected AudioNode objects (the 

matter of AudioNodes will be covered in more detail later). The Web Audio API standard is 

currently in the state of Working Draft, which means that it is prone to change [24]. 

Web Audio API is completely separate from the audio-tag (although it has integration 

points with other web APIs). Web Audio API overall goal is to make the functionality found 
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Web Audio API W3C documentation lists a number of predefined features which can be 

used for processing the sound. Many of the features are made specifically for games to 

improve the gaming experience and increase the immersive qualities of the game. Some of 

the more relevant features for this paper are: low latency sound playback, automations, 

audio spatialization (different panning modes, distance attenuation, occlusion, obstruction, 

Doppler shift, source-listener4 model), high quality room effects (small/large room, 

cathedral, concert hall, cave, comb filter effects to name a few), dynamics compression, 

audio filters. Most importantly this list of features supported by the Web Audio API makes 

it possible to use it for 3D games since audio sources can be placed in the 3D space and 

playback parameters being changed depending on the relative location of the audio source 

from the listener [24]. 

Since Web Audio API is meant to extend the capabilities of web browser, there are still 

some performance considerations which come with it. One of the most relevant issues is 

latency (discussed above in more details) – the time between user action and a sound being 

heard.  

To deal with the resource limitations (especially with CPU power), there are some measures 

implemented into the Web Audio API which help to cope with the processing limitations. 

The Web Audio API offers a way to monitor CPU load to dynamically implement 

adjustments, preventing it from going too high. Another option offered by the API is voice-

dropping – limiting the number of sounds played at the same time to keep the CPU usage in 

a reasonable range. This can be done either by setting a certain number of allowed voices 

or monitor and drop them dynamically. Other recommendations for conserving resources 

include simplifying audio effects used in the audio signal path and running audio rendering 

at a lower sample rate [24]. 

Web Audio API extends the possibilities of web to a greater extent, allowing programmers 

to create more complex audio solutions. Working with JavaScript in browsers has its 

limitations, but the API introduces different ways to cope with the limitations to deliver the 

best possible audio experience. 

                                                       
4Source-listener acts as a microphone-like device. It receives audio from any given audible sound source in the 
game space.  (http://docs.unity3d.com/Documentation/Components/class-AudioListener.html) 
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4.1.4 Audio Data API 

One has to remember not to confuse Web Audio API with the Audio Data API (sometimes 

also referenced as Audio API). Audio Data API was developed by Mozilla to extend HTML5 

audio and video elements by exposing audio metadata and raw audio data (similarly to 

Web Audio API to enable working with sample data) but has since been deprecated and its 

usage is not recommended [27, 45]. 

4.2 Sound file types 

As mentioned previously there are multiple limitations which affect the sound in games and 

especially when implementing it using web technologies. There are multiple types of sound 

that one can use. This chapter will cover the principles and differences related to the file 

types which can be used in web. When implementing audio in the web three audio types 

will be used – MP3-files, audio encoded with Vorbis inside the OGG-container and AAC 

encoded audio inside the MP4-container.  

4.2.1 WAV audio 

Audio files with WAV-extension usually consist of uncompressed soundform data in Pulse-

Code Modulation (PCM) representation [27]. PCM sound data is a binary digital 

representation of an analog sound [1]. Files with .wav extension is a standard for PC, the 

equivalent file type for Mac-computers has .aiff extension. Since both of these file types are 

uncompressed it means large file sizes [5]. The large file sizes make the usage of WAV-audio 

inefficient; also WAV-audio has not been supported by all of the major browsers (without 

an equivalent file type to fall back to) which is the reason why this type of audio will not be 

used during testing. 

4.2.2 MP3 

MPEG-1 Audio Layer 3 is the most well-known audio compression method, commonly 

referred as MP3 because of the file extension (.mp3). MP3 is a lossy format – in other 

words it means that some of the audio data will go missing during compression [27]. 

MP3 compression method is based on psycho-acoustic principles – sounds that are hard to 

hear (high-frequency sounds or quieter sounds masked by other ones) are removed from 

the audio data resulting in a smaller file size. Since decoding MP3-files for playback takes 
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5. Implementation and methodology  

This chapter gives an overview of the methodology used to test different aspects of the 

performance of audio implementation methods in web – test approach, used test 

environments,  

5.2 The technical solution of the implementation 

Based on my understanding how game audio might be implemented in the web based 

games, and to make the tests more easily comparable across both implementation 

methods (audio-tag and Web Audio API), two web pages have been programmed to act as 

frameworks. Both pages have been programmed to comply with the following technical 

requirements: 

• Uses compressed audio file to save bandwidth. 

• Streamed over the Internet (audio data doesn’t have to be fully loaded before 

playback). 

• Possibility to change playback volume 

Most of the tests were made with 1 minute long audio files; the number and the quality of 

audio files were changed based on the type of the test. For testing network speeds, a 1-

minute long MP3 file (with approximate file size of 938KB) was used as a standard. For tests 

related to background audio it was made sure that the audio clips were also about 1 minute 

long, so the test outcomes could be compared more easily. All the audio is in stereo - this 

means bigger audio files but soundwise is more pleasurable to work with. Also the audio 

cross-over functionality has been added to the frameworks, since it is important for 

creating dynamic background music in a form of changing background audio, based on the 

game state or other parameters. The frameworks have been set to start audio playback 

automatically after the page has finished loading, which can be done through JavaScript by 

calling a “play”-method. In case of audio-tag all the audio included to the page are counted 

and the first audio element added to the page is played; in case of Web Audio API no 

specific tags have been added to the body of the page, but all audio files are listed in a 

JavaScript array and the first audio file in the list is played (the audio data also has to be 

decoded first before the playback could be initiated).  
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Also the user interface was standardized - both implementations include the following 

custom UI elements:  

• Volume slider – enables user to change the playback volume. The default volume 

assigned during page load is 20% of the file’s original volume. Volume slider will 

affect the playback volume of the currently playing file (the current file will be 

tracked by the script). 

• Playback buttons – enables user to start or stop the sound. Buttons which cannot be 

pressed (or when a button press would not change the playback state) are disabled 

(e.g. when a sound is already playing then “Play” button is grayed out). In case of 

audio-tag there is no dedicated stop method, which means that the playback will be 

paused and the playback time set to 0. For WebAudipAPI the play and stop buttons 

will either create the connection from the source to the destination of the 

AudioContext class or destroy it.   

• Crossfade button – enables to fade from one audio into another. When the button 

is pressed, a next audio file will start to play (with a playback volume of 0), then 

over a period of 1 second the next audio clip’s playback volume will be increased to 

the level of the previous audio; at the same time the currently played audio file’s 

volume will be decreased to 0. At the end of the crossfade the next audio clip will be 

assigned to be as the current audio clip and the previous audio clip’s playback will 

be stopped. The approach to the crossfade is quite the same for both 

implementations but the complexity of the code is very different – in case of audio-

tag, the referencing audio files are as easy as referencing to the id-attribute of the 

tag; in Web Audio API the way audio data has been referenced is completely 

different, making the implementation more complex (the current implementation 

method utilizes the possibilities of multidimensional arrays). 

• Audio selection list – this area lists all the audio elements one could select between 

when doing a crossfade. The equivalent for the selection list are the changes in the 

game conditions or views (i.e background music changes when going from title 

window into the game) based on the user interactions. When audio-tag has been 

used for the implementation, the number of audio elements are counted, added to 

an array and then the selection list is dynamically created based on the array. A 

similar process takes place when Web Audio API has been used with the difference 
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5.3 Implementation to test looped background audio 

One of the most prevalent test cases is to find out the suitability of the audio 

implementation methods for implementing looped background audio and compare the 

performances. These tests should also bring out the possible bottlenecks of the 

technologies when sound effects are to be used and implemented. During testing only 

nondiegetic music has been used, which plays on the background and is not part of the 

possible game world itself (i.e environmental sounds like weather, birds or scenery), but 

also often environmental sounds may suffer the same problems as music (i.e clearly 

noticeable looping or moments of silence in between loops).  

From the early history of games the background music has often been a looped sound 

sequence or a looped audio file. This was mostly because of the limited nature of system 

resources and therefore the same piece of music was used over and over again. The 

downside of this approach was the repetitive nature of the background music [1]. Many of 

the games use the approach of dynamic audio – the music changes over the course of the 

gameplay based on the location or game state thus eliminating the repetitiveness from 

it [5].  According to the game audio academicians the preferred length of the audio file is 3- 

to 4-minutes without a noticeable breakpoint, if audio is suppose to loop continuously [5]. 

In this case the lengths of the used audio clips are around 1 minute (as mentioned in the 

previous subchapter), cut in the way to create a possibly seamless transition at the 

breakpoint. A 1 minute loop is quite short but it was chosen to reduce the server load 

during testing. 

5.4 Computers’ specifications used for testing 

Depending on the nature of the test, the patterns and the tendencies between conditions 

become evident only when tested on multiple systems with different capabilities. Some of 

tests were carried out on 3 different computers with diverse hardware setups. Hardware 

configuration data has been gathered using a free hardware identifier “CPU-Z”7; to put the 

CPU-performances into perspective the CPU-benchmark scores8 have been included at the 

end of the computer specification details. The hardware specifications are following: 

                                                       
7 http://www.cpuid.com/softwares/cpu-z.html 
8 The scores are based on the information at http://www.cpubenchmark.net 
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Computer number Hardware specification 

Computer no. 1 Dell Latitude D630 (laptop); CPU: Intel Mobile Core 2 Duo T7100 @ 1.8GHz; 

Cores: 2; Threads: 2; Memory: 2GB @ 333MHz (CPU benchmark score 1042) 

Computer no. 2 Acer Aspire 7739 (laptop); CPU: Intel Core i3 380M @ 2.53GHz; Cores: 2; 

Threads: 4; Memory: 4GB @ 533 MHz (CPU benchmark score 2117) 

Computer no. 3 HP Pavilion 500 (desktop) CPU: Intel Core i5 3350P @ 3.10GHz; Cores: 4; 

Threads: 4; Memort: 8GB @  800MHz (CPU benchmark score 6143) 

Table 1 - Hardware specifications of the computers used for testing 

From computer one to three, the hardware gets better and enables us to see, how different 

hardware (and the amount of processing power available) affects the performance of 

different aspects of audio in web. All the tests have been carried out using the latest 

version of Google Chrome, since it can be considered to be the flagship of browsers (it gets 

the highest score in “HTML5 TEST”9 and has the best score in HTML5 audio support). During 

testing, each computer run only the necessary programs and default background processes 

to get the most unified results across the systems.   

Tests which results are theoretically not affected by the processing capabilities of a 

computer but by other factors instead, have been conducted only on one setup.  

5.5 Measuring and data logging 

During testing a number of diverse aspects have been measured. Google Chrome 

Developer Tools10 offer a great variety of possibilities for developers to get an overview of 

the overall page loading times which are useful for optimizing web pages. By default the 

feedback data is limited as browsers’ developer tools don’t give any information about the 

execution of certain processes or separate JavaScript functions unless breakpoints have 

been set or some specific logging functionality has been programmed into the web page. 

Google Chrome provides developers with a Console API11, which provides methods for 

outputting various data in the console window. The more specific usage of the logging 

solutions has been covered in more details alongside the explanation of each separate test.  

                                                       
9 HTML5 TEST analyses browser support of various HTML-tags and attributes. Test can be found from  
http://beta.html5test.com/index.html 
10 Developer Tools window can be openedby clicking Customize and control menu -> Tools -> Developer tools 
or by right-clicking on a web page and then clicking on “Inspect element”.  
11 Console API documentation: https://developers.google.com/chrome-developer-tools/docs/console-api 
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start playing a 1 minute long MP3-file (with size ~938KB). The test has been made under 

the following conditions:  

• Average server ping time: 25ms 

• Trace route analysis showed 7 hops to reach the destination server.  

•  The download speed on paper should be 5Mbps, average real download speed is 

~4.9Mbps. (based on the Ookla Internet speed test at www.speedtest.net) 

Among other things the relationship between the number of requested files, the lengths of 

audio files and server response times have been analyzed, which from the perspective of 

webpage optimization are important [49].  

6.1.2 Ways of measuring 

For measuring the speed Google Chrome developer’s network tool has been used, which 

shows how much time it took to download the file and from which parts the total 

download time consists of. The data is visualized on a timeline, giving developers an 

overview of the downloaded files, loading order and timings.  

 

Illustration 2 - Google Chrome developer tools' network tab with timings information. 

The download phases are described by the Google developer tools documentation12:  

• Blocking – Time the request spent waiting for an already established 

connection to become available for re-use. 

• Sending – Time spent sending request. 

• Waiting – Time spent waiting for the initial response. 

• Receiving – Time spent receiving the response data. 

                                                       
12https://developers.google.com/chrome-developer-tools/docs/network 
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When the total download time of multiple audio files have been measured, the Network 

tool’s view does not provide accurate timings data. Analyzing the request-download 

timings of multiple files requires working with the Google Chrome Developer Tools’ console 

window, because getting exact timing information from the Network tab’s timeline area is 

rather impossible.  

 

Illustration 3 - Google Chrome developers tools’ network tab in case of three audio files. Tests showed that there is no 
consistency in the order of downloads.  

From the visual representation it is difficult to accurately determinate the timings – the 

download times of each individual file is available, but often it is impossible to get the total 

download time from the download start of the first audio file until the finish of the last 

audio file. By entering a specific command into the developers tools console window it is 

possible to access the same raw timings data the visual representation relies on –the 

command “window.performance.getEntries()[‘entry number’]” (where ‘entry number’ is 

the number of the file requested by the parser or by script) returns the full overview of the 

timings related to that specific file (the ‘entry numbers’ were initially determined by trial 

and error). By comparing the timings of audio files to each other it is possible to determine 

how much time it takes to request and download the files. The method is based on Google 

Chrome Developer Tools documentation (https://developers.google.com/chrome-

developer-tools/docs/network).  

6.2.3 Testing and results 

The test has multiple stages to cover many possible loading cases. Each test case was made 

in two sets – loading audio for audio-tag and for Web Audio API. The download speeds 

were carried out 10 times for each type of audio to eliminate the possibility that the test 

would be influenced by random fluctuations of the connection.  

The first test was to measure download times of 1 minute of MP3-audio. The timings data 

was based on the Google Chrome developers tools network window and the average 

results are shown in the following table: 
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(there are some special cases which will be mentioned later) and files have to be loaded 

and decoded first, which introduces additional waiting time. The goal of the test is to 

analyze the factors that influence the decoding time.  

The test was conducted in multiple parts: to test the decoding differences across different 

audio file types, the decoding timings were tested in case of 128kbps MP3, OGG and AAC 

(in MP4 container). A separate test was conducted to determine if the differences in the 

audio quality affects the decoding times, for which MP3-files were used with different 

bitrates (96kbps, 128kbps, 192kbps and 256kbps); for each bitrate there were 5 different 

test cases – 1, 2, 3 or 5 minutes of audio in the form of 1 minute long audio and to test if 

the decoding time is affected by the number of file requests made to the server the 

decoding time of one 5 minute long MP3 file was compared to time which takes to decode 

five 1 minute long files. To find out, how the computer hardware affects the decoding time, 

all test conditions were carried out on all 3 different hardware setups (systems detailed 

specifications can be found from Table 1).  

Since Web Audio API requires the page to be in a web server environment, a local web 

server was created in each test computer using WampServer. WampServer is a web 

development environment, which enables developing web applications on a local computer 

without the necessity of having an online hosting solution.  

6.2.2 Ways of measuring  

To measure the delay time before the playback one has to measure the time it takes to 

execute the function which decodes the files. To measure the function execution time the 

console.time(label) and console.timeEnd(label) commands will be used. When 

console.time(label) is called, a timer will be started and run until 

console.timeEnd(label) will be called (with the same label) which stops the measuring 

and outputs the time value into console window.  
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BufferLoader.prototype.loadBuffer = function(url, index) { 
    var request = new XMLHttpRequest(); 
    request.open("GET", url, true); 
    request.responseType = "arraybuffer"; 
    var loader = this; 
    request.onload = function() { 
        console.time("AudioFile" + index);  
        loader.context.decodeAudioData( 
            request.response, 
            function(buffer) { 
       if (!buffer) { 
                    alert('error decoding file data: ' + url); 
                    return; 
                } 
                loader.bufferList[index] = buffer; 
                player.bf[index] = loader.bufferList[index]; 

console.timeEnd("AudioFile" + index); 
                if (++loader.loadCount == loader.urlList.length) 
                    loader.onload(loader.bufferList); 
            } 
        ) 
    } 
    request.onerror = function() { 
        alert('BufferLoader: XHR error');         
    } 
    request.send(); 
} 

Code 2 - JavaScript code responsible for decoding audio data and creating array buffer in Web Audio API with the timer 
start and end commands (marked in red).  

This technique can be used to get information about any JavaScript function performance. 

In this case those command lines have used and inserted into the code to measure 

decoding times of audio files. The function represented in Code 2 will be initiated every 

time an audio file is decoded. By inserting the timer commands in the specific positions 

(shown in red) it is possible to measure the decoding time of each separate file. To measure 

the overall length of the decoding process another timer has been set to start before the 

first call of this code block and stopped before the audio playback begins. After the 

implementation the console window returns the following data:  

 

Illustration 4 - Google Chrome console window with the custom timings data.  
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Audio API one has to set the audio source to be loopable (i.e source.loop = true). To 

approach the question about the performance of the looped audio a test was conducted on 

three different computer setups (the same setups also used in the previous tests) with 

three different audio file types (MP3, OGG and AAC/MP4). The main area of interest in 

measuring the quality of looped audio is to determine the amount of silence present at the 

breaking point of the loop. Among previously stated test goals this reveals and helps to 

analyze possible shortcomings in the designs of audio formats when it comes to using them 

in web. 

6.3.2 Ways of measuring 

Testing that kind of functionality means that in most cases the conventional developer 

tools do not have methods to test looping quality and playback delays, therefore the 

timings were measured manually. The process of testing playback delays included multiple 

steps: audio playback was initiated, the playback was internally recorded by an audio 

editing program (many soundcards enable users to record so called “stereo mix” which 

means that the final audio signal can be internally routed back to the computer and 

recorded), the recorded audio was later analyzed and the different timings were measured 

using audio selection tool inside the editing program. Manual measuring of timings was 

also used in cases where no direct audio recording was involved but only specific time 

ranges had to be measured.  

6.3.3 Looping and MP3-files 

The following table concludes how much of a silence is present at the breakpoint: 

 Computer no. 1 Computer no. 2 Computer no. 3 

Audio-tag 

256ms 115ms 105ms 

Web Audio API 

49ms 49ms 49ms 

Table 8 - The lenght of silence in breakpoints across different computer setups when using MP3-s.  
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playback, but seemingly this is not the case with Google Chrome (see Table 6). The delay at 

the end of the file originates from the design of MP3 – MP3s are divided into frames, each 

frame consists of 1152 time samples. The MP3 file has to end with a full frame. When there 

is not enough audio data to fill the last frame (meaning that the number of samples in the 

song are not an exact multiple of 1152), then the last frame of data is padded with zeroes 

[50]. 

How the previous theory applies in reality? When opening a WAV file in a audio editing 

program (for example Audacity) and saving it as a MP3 file, on can notice an additional 

silence added at the beginning and at the end of the audio (see Table 7 below) in the 

freshly created MP3 file. The silence cannot be removed from the file and thus is also 

present during the audio playback in the web. When the audio file has set to be looped, 

then the end padding and encoder delay will be the main reasons for the gap between the 

end and the beginning.  

   1 second long audio clip’s spectral image 

Before saving 

 

After saving 

 

Table 9 - Spectral image before and after saving a piece of audio as MP3. On the “After saving” image, the red lines 
represent the positions of the gaps; the gap in the beginning is 27ms, at the end 17ms.  

In Table 8 the amount of silence present when used Web Audio API is 49ms while the sum 

of the silence shown in the Table 9 is 44ms. This shows that the size of the gap can vary, 

which is also possible according to the architecture of the MP3 files: the total amount of 

silence in the beginning is fixed, but the silence at the end can vary depending on how 

many zeroes will be padded at the end of the last audio frame. The worst case scenario is 

that the silence at the end is as long as the silence in the beginning, resulting in a total of 

54ms of silence.  
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6.3.4 Looping and OGG-files 

OGG-files are completely different and do not have same issues as MP3-files. Saving an 

audio as an OGG does not introduce any silence or padding inside the file but instead it is 

saved as is. Since there is no encoder induced delays the gap when using audio-tag is 

smaller. Some of the improvements can also probably put down to how the decoder works. 

In case of Web Audio API the looping takes place seamlessly regardless of the test 

computer’s processing capabilities. The following table shows the amount of silence in case 

of OGG files across all three test setups:  

 Computer no. 1 Computer no. 2 Computer no. 3 

Audio-tag 

171ms 65ms 65ms 

Web Audio API 

No Gap No Gap No Gap 

Table 10 - The lenght of silence in breakpoints across different computer setups when using OGG-s. 

6.3.5 Looping and MP4-files 

The following table shows the amount of silence during looping when AAC audio was used: 

 Computer no. 1 Computer no. 2 Computer no. 3 

Audio-tag 

171ms 65ms 65ms 

Web Audio 

API 

No Gap No Gap No Gap 

Table 11 - The lenght of silence in breakpoints across different computer setups when using AAC-audio (in MP4 
container). 

Using AAC audio (in MP4 container) resulted in a smaller gap compared to MP3 files. When 

looking at the browser compatibility with different audio file formats (Appendix A) then one 



52 

 

could see that the browsers which support MP3 also support MP4 format, making MP4 a 

good substitute for MP3. MP4 file doesn’t have encoder induced delay in the beginning but 

it has the padding at the end. The amount of padding can also vary depending on the 

amount of audio data added to the last frame of the audio file.  

   1 second long audio clip’s spectral image 

Before saving 

 

After saving 

 

Table 12 - Spectral image before and after saving a piece of audio as MP4. On the “After saving” image, the red line 
represent the positions of the end padding; the gap at the end is 44ms.  

When looking at the gap times in the previous tables, the data shows that the audible gap is 

also there because of how the browser handles the audio files – a certain amount of the 

silence will be introduced when the playback position is changed back to the beginning 

while looping. When OGG-file was used, the gap on a fastest computer was 65ms, with 

MP4 the gap was 95ms (which includes 23ms of encoded silence), and with MP3 the gap 

was 105ms (which includes 55ms of encoded audio).  This shows that the performance of 

audio decoders and the amount of decoder induced silence is different. From the end point 

of view the OGG performs the best (across all 3 computers the looping gap was the 

smallest); the MP3 decoder seems to be most efficient when it comes to decoder induced 

silence but unfortunately the overall length of the silence is still the longest due to the 

silence encoded into the file, which makes MP4 to be a better option.  

6.4 Overcoming limitations of looping 

6.4.1 Introduction, test conditions and measuring 

Looking at the previous data raises a question, whether there are any possible solutions to 

overcome the limitations? When using audio-tag the decoder induced delay is always 

present and especially prominent on slower computers. Web Audio API decodes the audio 
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and therefore doesn’t suffer from decoder delays, but the silence inside the audio file itself 

will come along during the creation of buffer array. 

One of the easiest solutions is to use fading whether the audio itself has been faded in and 

out on the audio file or fading has been created programmatically. Based on my own 

experience this technique has been used extensively even In high quality PC-games – one of 

the latest example is Hearthstone (a strategy card game by Blizzard) where audio fades out 

at some point and comes back later. One of the possibilities is to set the breakpoint to be in 

a position, where a moment of silence seems to be part of the audio and doesn’t break the 

perceived consistency of the audio piece.   

When none of these previously stated techniques can be used due to the nature of the 

audio design, and when audio-tag has been used, then theoretically another possibility is to 

loop the audio “manually” by change the playback position at a right time. In a test case 

created to investigate the possibility further, the same background audio was used as for 

the other looping tests but the amount of silence in the beginning and at the end of the file 

was increased up to 1 second (with the MP3 and MP4 files the end padding makes it 

difficult to get the timing exactly right); then an event listener was added to the audio 

element which changed the playback position to 1 second (where the actual audio data 

begins) whenever the playback position reached the end of the playable audio data (1 

second from the end of the file). Another fixed amount of silence, which is set to be longer 

than the encoder delay, could also be a possibility. 

Using this sort of manual looping should in theory eliminate the encoder delay and padding 

from the playback. The downside of this approach is that there will be a fixed amount of 

delay in the beginning when audio file’s playback starts, but this could be dealt with for 

example including a small part of audio to the beginning of the file which will be left out 

from the loop later on. Theoretically, one could set the playback start position to the point 

where the silence in the beginning of the file ends, but this increases the complexity of the 

code – in order for this to work another method has to be included, which checks whether 

enough audio data has been buffered for the playback position to be changed and after 

that starts playback, otherwise when the command has been given to set the playback 

position to somewhere else in the file, that position may not yet exist, since not enough 

audio data has been fetched. In other words it is impossible to set the playback position to 

1 second when only 500ms worth of audio data has been downloaded.  
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The following snippet of code is responsible for changing the playback time back to 

beginning with some data logging methods to give feedback about the timings. The code 

outputs two values into browser’s console window – the time point where the script is set 

to make the break and when the break has actually been made.  

currentAudio.addEventListener("timeupdate", function() { 
var duration = currentAudio.duration; 

      var change = duration - 1.4; 
      var position = currentAudio.currentTime; 
                              
      if ( change <= position) { 
       console.log (ch); 
           console.log (position); 
           currentAudio.currentTime = 1; 
      } 
}); 

Code 3 – JavaScript event listener responsible for custom looping functionality with logging.  

The test revealed some of the bottlenecks also mentioned earlier in this paper – the 

performance of JavaScript and its timing accuracy. The code can be tuned to compensate 

possible delays induced by JavaScript. In theory the audio file should have 1 second of 

silence at the end of the file (end padding still remains to be a problem), so the script 

should change the current playback time to the beginning when one second is remaining 

from the end of the file. Checking if exactly one second has left to be played is impossible 

(the conditional equation of “if playback time is equal to breaking point time, then make 

the break” did not work), therefore currently the event listener checks whether the current 

playback position has gone past the potential breaking point. To compensate the possible 

reaction delay the breaking point in the code example has been set to 1.4 seconds from the 

end of the file. The test was conducted under multiple compensational values from 1.2 to 

1.4 seconds. 

When using Web Audio API the problem related to the decoder is eliminated since the files 

have been decoded and buffer array has been used, but the gaps and silence already 

present in the source file remains, which is a problem when MP3- or MP4-files have been 

used. Using OGG-file as the source of the audio whenever possible is probably the best 

option since the OGG-files does not include any encoder induced silence, but not all 

platforms might support OGG. When the same approach has been taken (to include 1 

second of silence to the beginning and at the end) then Web Audio API has a specific 
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attributes to determine the start and the end of the loop which can be used for this 

purpose.  

var Play = function(bufferedData, looping, sourceGain) { 
        this.source = context.createBufferSource(); 
        this.source.buffer = bufferedData; 
        this.source.loop = looping; 
        var duration = this.source.buffer.duration; 
        this.source.loopStart = 1; 
        this.source.loopEnd = duration - 1; 
        this.source.gain.value = sourceGain; 
        this.source.connect(gainNode); 
        gainNode.gain.value = volumeVal / 100; 
        gainNode.connect(context.destination); 
        this.source.start(0);  
    }; 

Code 4 - Function defining the flow of the signal and other playback parameters. The loop parameters are shown in red. 

The implementation of this is fairly easy – before the playback the loopStart attribute is 

set to 1 and the loopEnd attribute is set dynamically to be one second from the end based 

on the length of the buffer. The previous snippet of the code (Code 4) represents the 

function responsible for connecting audio source to the destination and among other also 

defines looping parameters. 

6.4.2 Test results (audio-tag)  

This technique enables one to partly overcome the problem with the silence, but it greatly 

increases the complexity of the code and is not really reliable solution for the following 

reasons. Since browsers are different and the file support is different, then also the OGG 

file has to be presented inside the audio-tag. When OGG file has been used instead of 

MP3/MP4, the problem with the encoded silence does not exist, meaning that an extra 

amount of silence has to be put into the OGG files manually or an extra subroutine has to 

be programmed into the code, which keeps track of the file type currently used and 

changes the playback and looping conditions based on this information.  

The timings data showed that there was no consistency in the timings when the actual 

break was made. Interestingly enough, by comparing the reaction times shown in Table 13, 

it can be seen that the fluctuation of timings between computer no. 1 (slowest) and 

computer no. 3 (fastest) are about the same. From the computer no 1 to 3 the standard 

deviations are 64,1852; 39,6832 and 76,4229 milliseconds respectively, which show that 

even on a powerful computer JavaScript is not reliable when it comes to perfectly timed 

executions.   
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7. Reducing the usage of system resources 

In chapter 3 some of the ways were covered which have been used in games to reduce the 

usage of system resources by audio. In this chapter the list will be gone through and 

analyzed the suitability of the techniques in web environment in the light of the previous 

tests.  

One of the most viable options mentioned in chapter 3 is to use mono audio. This reduces 

the size of the files 2 times and subsequently reduces the data network usage, also when 

Web Audio API has been used, using mono files their decoding time will be reduced to half. 

This is a simple way to improve the overall performance significantly when usage of stereo 

audio is not crucial. 

Concatenation (loading multiple audio parts as one file) is also one of the techniques 

mentioned. By using concatenation the web game could theoretically benefit from the 

reduced overall load times, but technically it could work out only when Web Audio API has 

been used to deliver audio. Audio-tag lack reliable default support for playing only parts of 

the file and therefore requires a custom functions to make it work, which may not be the 

most efficient way of implementing audio.  

One of the most interesting techniques mentioned is the way of saving file twice the 

original speed and then playing it back on half of the speed, which should result in a smaller 

source audio file. It won’t be looked into how game engines handle this technique, but 

browsers do not seem to do very well. There are multiple ways of shortening the length of 

an audio file – one of the ways is to basically save the file at twice the playback speed which 

also results in a change of pitch, another way is to use time-stretch technique, which leaves 

the pitch intact but changes the speed [52]. When changing the playback speed in case of 

audio-tag, the browser handles the playback speed by the standards of time-stretch. When 

listening to the examples it becomes evident that audio-tag is not capable of incorporating 

this technique in purpose of saving bandwith and reducing loading time. There are too 

many artifacts present in the audio for this to be an option.  
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8. Conclusive analysis  

In this chapter a wider look to the results will be taken and analyzed; pros and cons of 

different usage methods will be brought out in a process. Also it will be looked into, how 

different aspects might influence the user experience in real life conditions and cases.   

Page and resource loading times have always been something developers have had to 

reckon with. From the tests related to download timings can be seen that the number of 

requests made to the server has an impact to the download timings. Much as reducing the 

number of audio files included to the web game can improve the performance, it cannot be 

suggested that one could only benefit from it. The balance between the number of audio 

files included and the length of the audio files have to be found based on the project at 

hand – as also discussed previously, concatenating audio files together can lead to more 

complex codebase since extra routines have to be programmed into the system to handle 

the audio playback. When comparing audio-tag and Web Audio API in this matter, then 

Web Audio API is clearly more flexible as it offers a better variety of methods for working 

with audio – using concatenated audio increases greatly the implementation complexity 

with audio-tag, but Web Audio API have the necessary functionality to make using 

concatenated audio a solid option. In some cases this could also result in a more efficient 

data network usage. 

When the number of audio assets in a game starts to become a problem, then to optimize 

the performance it might be a good idea to load the necessary audio assets only when 

required (i.e when game is initially loaded, only audio used during menu screen will be 

downloaded). This approach is beneficial in both implementation cases (audio-tag and Web 

Audio API) because when game has been opened but the player leaves the page without 

playing it further, no bandwidth will be wasted on loading unnecessary assets. With Web 

Audio API a certain amount of decoding time will be added to the loading times, which 

means that loading and decoding huge amount of audio during initial loading of the page 

increases waiting time before user could interact with the page. Utilizing the possibilities of 

asynchronous data retrieval it would be possible to find a balance between loading times 

and number of files loaded at the time. In addition to the audio assets, games also include 

number of graphic assets and script files which also have to be loaded and therefore it is 
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especially important to balance the performance – minimizing the number of HTTP request 

is in the top of the list of techniques which helps to maximize web page display speed [49]. 

In the field of optimizing the loading of audio files, audio-tag seems to surpass Web Audio 

API because of the optimization techniques built into the browsers – browser may decide 

not to download a piece of audio when it is not needed and in case of large audio files the 

network optimization happens automatically by default without the necessity of 

implementing custom functions to deal with it. With Web Audio API, the optimization 

techniques have to be designed and implemented manually by developer.  

Browsers have gone through a tremendous development over the past years. With the rise 

of HTML5 a set on new possibilities has opened up to the developers and the cross-browser 

compatibility has also improved. The same multimedia functionality which once required 

plug-ins is now supported by browsers by default. The new possibilities are welcome, but 

using them to create multimedia solutions does not come without a hassle. Using Adobe 

Flash for creating a multimedia application means that the experience is about the same 

across different browsers and developers do not have to worry about the browser support 

or any special cases. This is not the case when using native web technologies – the browser 

support is different and often dictated by patent issues or corporate policies. Including an 

audio file to a page means that multiple audio files have to be made available to offer the 

same experience for the users’ of different browsers. Fortunately, when audio-tag has been 

used, browsers will choose appropriate file type automatically – from the files listed 

between audio-tag a browser will use an audio file it supports, which helps out a lot. Since 

the Web Audio API have established more ground than Audio Data API (once developed by 

Mozilla) and possibly becomes more widely supported over time means that multiple audio 

files have to be provided (similarly when audio-tag has been used). In case of Web Audio 

API there is a slight difference – Web Audio API does not have such an automatic file 

selection method as audio-tag has and the file type selection has to be specifically 

programmed by the developer. This means that instead of working on the final product 

itself, one has to spend time to cover the extra cases and to deal with the browsers’ 

characteristics, making the implementation probably more time consuming than it would 

with Adobe Flash.  

Another set of issues come along with the characteristics of different types of audio files. 

Since audio encoding technologies are different, audio files behave differently (as seen in 
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the test with looped audio). It is not that much of an issue when simply a song has been 

included to a page for visitors to be listened, but when timings and performance are crucial 

(as they are for games) then delivering a standardized user experience is not that easy. 

Creating specific functions to cope with the problems induced by the audio encodings (for 

example silence present in the beginning of MP3-files and padding at the end of MP3/MP4-

files) often create an unnecessary overhead and complexity. In Web Audio API it is 

theoretically possible to remove the silence from buffer array, but that requires 

manipulating with the arrays directly, which is CPU-heavy process and may not be worth it; 

there are better ways to get the wanted result, like specifying playback regions. For audio-

tag the audio is implemented “as is” and cannot be altered directly. 

When analyzing the applicability of different audio file types in the light of the test results, 

then most suitable file type out of the three seems to be OGG. Working with it includes the 

least amount of hassle – the file will be saved as is (encoder doesn’t alter the underlying 

audio signal by adding unwanted silence) without any unwanted side effects, the decoding 

process when used with the Web Audio API is rather quick (MP4 was decoded slightly 

faster) and the bitrate-to-quality ratio is good. Unfortunately not all browsers support it, 

meaning that still another file has to be included alongside OGG. MP3 is a widely used 

compression format, but based on the results I would suggest to discard MP3-files 

completely when adding audio to web games and use AAC/MP4-files instead. With its 

encoder induced delay in the beginning and padding at the end MP3 file brings along 

additional complications. MP4 files also have end padding which requires some effort to 

get around of, but the audio quality is better than MP3’s [48] and the WebAudipAPI’s 

decoding process will take about twice as less time than for MP3-s. When reading through 

different books and looking at various audio-tag usage examples, one could notice a 

pattern emerging – MP3 file has always the first source file included to the audio-tag. By 

changing the audio source order and making the OGG file to be the first in the list 

guarantees, that when browser support includes OGG files it will be used (browser picks the 

first audio source it can deal with [27, 43]). This makes sure that the benefits of the OGG-

files can be utilized of all possible cases.  

When coming to the world of sound effects the previous tests also cover some of aspects 

related to implementing sound effects. With audio-tag I would suggest that the easiest way 

of including sound effects to the game is to have one tag-block for each effect in use since it 
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is simpler than concatenating them and then trying to program extra functionality to deal 

with the vast number of playback regions for one audio file. The downside of this is the 

increased number of request which will be made to the server. It has been estimated that 

each additional object will add extra 40ms of latency to the load time of the page; the 

latency is also dependent on the location of web servers and the number of “hops” data 

has to take to get from the source to the destination [49]. Analyzing the absolutely 

necessary number of included audio effects and its effects on the page performance should 

be part of the preliminary game design process when audio-tag has been used. When 

implementing sound effects using audio-tag, then effects’ playback latency is something 

that is heavily dependent on the processing power of the computer, meaning that 

developers have to accept that the audio playback timings and thus user experience can be 

varied across different systems.  

Web Audio API offers better possibilities to the implementation of sound effects, since it 

have methods for determining playback regions, making a concatenation of sound effects 

to be a convenient solution (whenever applicable) – one file means small request delay and 

better network efficiency. Also the playback timing is more consistent. Tests with audio 

looping showed that even slower computers can effectively work with audio buffer assuring 

an identical user experience across systems.  

It has to be remembered that the tests were conducted only on Google Chrome and the 

results may vary across different browser for better or for worse, but the suggestions and 

proposed techniques should still remain valid.   
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9. Conclusion 

From those two implementations covered in this paper it is clear that audio-tag is clearly 

simpler and implementing audio using audio-tag is easy. The list of audio events and 

properties seems to be sufficient to satisfy the needs of a less demanding project. As 

upsides it is worth mentioning the facts that audio playback can be triggered as soon as 

enough of the audio data has been buffered, a suitable audio file will be selected by the 

browser automatically (assuming that at least one of the supported file types has been 

provided within the audio-tag) and all major browsers support it one way or another. It 

should be kept in mind that as the games get sonically more demanding audio-tag may not 

be up to the task and it does not contest the possibilities of Adobe Flash, which still seems 

to be the main way for delivering multimedia content over the Internet. When more 

manipulation possibilities are needed but not necessarily with a precise playback timings, 

then with some work one could use audio element as the input source to the Web Audio 

API to apply additional processing to the audio (an example of it has been provided on the 

following page: http://updates.html5rocks.com/2012/02/HTML5-audio-and-the-Web-

Audio-API-are-BFFs).  

Web Audio API is still a rather young compared to some other web technologies and 

therefore is prone to changes (hopefully to the better). Public W3 Audio Working Group’s 

discussion archive shows a notable number of letters exchanged on various audio related 

topics (http://lists.w3.org/Archives/Public/public-audio/) which encourages believing in the 

sustainability of Web Audio API and in future improvements. A quick search around the 

Internet reveals that there are also a number of Web Audio API-related bugs out there, 

which influence the usage of that technology to some extent (for example a list of open 

bugs can be found from 

https://bugzilla.mozilla.org/buglist.cgi?component=Web%20Audio&product=Core&bug_sta

tus=__open__). Also the support is still rather limited and it may take some time before all 

major browser vendors decide to make the functionality available to their browsers; for 

example the latest Internet Explorer version (IE11, which has not been out very long at the 

time of this writing) does not support it, even though the requests to include it to this 

version was made by the community some time ago 

(http://connect.microsoft.com/IE/feedback/details/799529/web-audio-api-support).  
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Implementing Web Audio API does require some finesse – trying to get a hold on the 

technology can be quite time consuming in the beginning, but it does pack a rather 

impressive list of methods to work with from dynamic audio generation to filters/effects to 

audio visualization. Some of the cons of Web Audio API are that the mechanism to use a 

supported audio file has to be programmed manually and is not done automatically by the 

browser which means extra time spent not working with the solution itself.  On the other 

hand Web Audio API works wonderfully when the audio playback has to be timed rather 

precisely. Still, it has to be remembered that the audio playback initiation relies on 

JavaScript and if most of the system CPU has been consumed by dealing with game logic 

the playback may be delayed because of the performance issues of JavaScript. All things 

considered, after the initial waiting time to get the audio data decoded the implementation 

seems to do pretty much what it was set out to do and could be a solid substitute for 

Adobe Flash. When recorded audio will be used one still has to keep track on the amount of 

used audio since decoding audio taxes hardware quite much and some cases can introduce 

long waiting times. Decoding necessary audio assets into audio buffer at different times 

over the lifetime of a gaming session could be a solution.  

To conclude the results in a final compact form, a set of recommendations have been 

generated, which can be useful when implementing audio to web based games. 

• Analyze the technical requirements for audio – using audio-tag is easier but Web 

Audio API offers more possibilities. 

• Consider using not too many audio assets, as it can hurt loading times. 

• When choosing audio asset’s quality, check the audio’s spectral data to make the 

most optimal decision. 

• When the number of assets cannot be limited, don’t try to load all audio at once 

(especially when using Web Audio API due to the decoding time) – take advantage 

of asynchronous loading and load them when necessary or on background. 

• Consider using OGG and AAC/MP4 audio instead of MP3 whenever possible.  

• Looping background audio with audio-tag works best when the piece of music has 

set to be faded in/out or composed in a way which masks the break point. 

• JavaScript is not as optimized as ActionScript, therefore the performance and 

execution timings can vary even on more powerful devices – take into account that 

game might be played on different devices with various processing capabilities.   
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10. Future works 

This paper covers the topic of sound effects mostly on the theoretical level and analyses 

their implementation possibilities-limitations based on the results of mostly background 

audio related tests. The tests revealed some potential problematic aspects in the 

performance of sound effects in web – playback delays, increase in file request times when 

increasing the number of audio files, processing speeds and performance of JavaScript to 

conclude the most prominent limitations. One of the possible future works is to create a 

web game which incorporates a decent number of sound effects and conduct a qualitative 

study to analyze the perceived performance of audio implementation methods in case of 

audio effects in web games. 

Since the tests were made only using Google Chrome, differences in performance across 

browsers could and should be looked into. Based on my personal experience I would say 

that even when certain elements or attributes are supported among all browsers, often 

there are still some differences how one browser or another deals with elements or 

executes specific snippets of code. With the increasing support of Web Audio API, browser 

specific quirks and differences in handling Web Audio API’s methods could be analyzed in 

the future (and a similar analysis could be made for audio-tag, though the latter seems to 

work rather uniformly across browsers). Making a game to be played only on one platform 

(let say a Google Chrome) and thus tying users to one browser or platform is not beneficial 

in a long run; instead one should cover as many browsers and platforms as possible and try 

to offer the same experience across them – to do that the differences in handling the audio 

across browsers have to be looked into and dealt with accordingly.  

The tests covered in this paper included only clean audio implementations (meaning that all 

other aspects – codebase and graphic assets – were kept to a minimum) and in order to 

find out how audio implementation methods perform under real conditions, a more 

complex test environment is necessary which also includes a decent amount of graphic 

elements and where system resources have to be shared among audio, visuals and game 

logic. This would reveal how audio implementation methods perform under stress. 

Using web as an implementation environment also gives the benefit of cross-device 

compatibility which brings us to the world of mobile devices. How audio implementations 
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using audio-tag or Web Audio API perform on mobile devices is another topic that could be 

looked into in the future. Mobiles are getting more powerful in terms of processing power 

but they are still not as powerful as desktop computers or laptops. As seen from the tests, 

the processing power of a device can in many cases directly influence either user 

experience or game performance at large and mobile devices are no different. Also the 

possibility of overheating and the battery consumption are some of the elements which 

could theoretically act as additional limitations and could be looked into. 
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Appendix A 

Browser compatibility with <audio> tag according to [32]. 

Feature Chrome Firefox Internet Explorer Opera  Safari
Basic support 3.0 3.5  9.0  10.50  3.1 

<audio>: PCM in WAVE Yes 3.5  Not Supported  Not 
Supported 

 
 

3.1 

<audio>: Vorbis in WebM Yes 4.0  Not Supported  10.60  3.1 (must 
be installed 
separately) 

<audio>: Vorbis in Ogg Yes 3.5  Not Supported  10.50  3.1 (must 
be installed 
separately) 

<audio>: MP3 Yes Partial*  9.0  Not 
Supported 

 
 

3.1 

<audio>: AAC in MP4 Yes Partial*  9.0  Not 
Supported 

 
 

3.1 

<audio>: Opus in Ogg 27.0 15.0  Unknown  Unknown  Unknown 

 

*Firefox supports MP3 and AAC partially. Because of the patent issues the support is not 

built directly into Firefox but instead it relies on support from the operating system or 

hardware. Therefore Firefox supports these formats on the following platforms: Windows 

7+ (Firefox version 21.0), Windows Vista (version 22.0), Android (version 20.0).  
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Appendix B 

The global attributes supported by the audio tag according to [27].  

• accesskey – makes possible to access media element with specifically named 

keyboard key. 

• class – element class name. 

• contenteditable – if the attribute’s value is true, content can be edited. 

• dir – the directionality of the element’s text. 

• draggable – determines, if the element can be dragged. 

• dropzone – defines the action when an item is dropped on the zone. 

• hidden – boolean attribute which determine if the element will be rendered. 

• Id – a unique identifier for the element. 

• lang – specifies the primary language of the content. 

• spellcheck – used to enable spell and grammar checking of the element’s contents. 

• style – inline CSS styling. 

• tabindex – determines the element’s order in tabbing sequence.  

• title – tooltip info. 
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Appendix C 

The results of the test to determine whether there are any differences in loading times 

when audio clip has been implemented using <audio>-tag or Web Audio API. Data is based 

from the information gathered using Google Chrome Developer tools’ network timeline 

view.  

1 minute of audio Sending Waiting Receiving 
<audio>-tag 1ms 292ms 1,49s 

 1ms 289ms 1,49s 

 1ms 274ms 1,49s 

 1ms 275ms 1,49s 

 2ms 288ms 1,49s 

 1ms 284ms 1,49s 

 0ms 279ms 1,49s 

 4ms 279ms 1,49s 

 2ms 284ms 1,49s 

 1ms 268ms 1,48s 

Web Audio API 1ms 113ms 1,42s 

 2ms 125ms 1,47s 

 1ms 110ms 1,49s 

 1ms 115ms 1,50s 

 1ms 113ms 1,50s 

 1ms 114ms 1,50s 

 0ms 118ms 1,50s 

 0ms 118ms 1,49 

 1ms 134ms 1.46s 

 1ms 122ms 1.48s 
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Appendix D 

The following data has been gathered using a specific command 

(“window.performance.getEntries()[‘entry number’]”) in Google Chrome 

Developer tools’ console window, which return raw timings data. All times in the following 

tables are in milliseconds. Values in the “Request start”, “Response start” and “Response 

end” columns are referencing to the time points when those specific events took place 

during the page load.   

The following table represents download timings’ data for 2-minutes of audio (2 x 1 minute 

audio files) 

2x1  minutes of 
audio 

Request 
start 

Response 
start 

Response 
end 

Total time Request 
time 

Receiving 
time 

<audio>-tag 547 938 4423 3876 391 3485 

 945 1310 4424 3479 365 3114 

 538 895 3916 3378 357 3021 

 521 888 3878 3357 367 2990 

 556 941 3939 3383 385 2998 

 501 885 3881 3380 384 2996 

 625 962 3989 3364 337 3027 

 493 865 3867 3374 372 3002 

 532 906 4376 3844 374 3470 

 520 896 3892 3372 376 2996 

Web Audio API 302 506 3548 3246 204 3042 

 702 868 3914 3212 166 3046 

 724 884 3933 3209 160 3049 

 767 912 3975 3208 145 3063 

 800 962 4022 3222 162 3060 

 734 860 3977 3243 126 3117 

 700 891 3950 3250 191 3059 

 790 940 4036 3246 150 3096 

 865 1012 4115 3250 147 3103 

 714 854 3959 3245 140 3105 
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The following table represents download timings’ data for 3-minutes of audio (3 x 1 minute 
audio files) 
3x1 minutes of 
audio 

Request 
start 

Response 
start 

Response 
end 

Total Request 
time 

Receiving 
time 

<audio>-tag 610 1023 5606 4996 413 4583 

 980 1661 6318 5338 681 4657 

 562 1057 5618 5056 495 4561 

 606 1301 5873 5267 695 4572 

 717 1162 5696 4979 445 4534 

 562 1034 5589 5027 472 4555 

 1125 1767 6418 5293 642 4651 

 669 1135 6054 5385 466 4919 

 490 976 5551 5061 486 4575 

 495 983 5770 5275 488 4787 

Web Audio API 1110 1243 5935 4825 133 4692 

 772 914 5817 5045 142 4903 

 875 1120 5678 4803 245 4558 

 917 1118 5721 4804 201 4603 

 1365 1499 6320 4955 134 4821 

 785 972 5702 4917 187 4730 

 747 1001 5718 4971 254 4717 

 780 986 5809 5029 206 4823 

 748 986 5763 5015 238 4777 

 734 901 5598 4864 167 4697 
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The following table represents download timings’ data for 5-minutes of audio (5 x 1 minute 
audio files) 
5x1 minutes of 
audio 

Request 
start 

Response 
start 

Response 
end 

Total Request 
time 

Receiving 
time 

<audio>-tag 540 1143 11069 10529 603 9926 

 601 1262 9219 8618 661 7957 

 936 1556 9511 8575 620 7955 

 644 1202 9302 8658 558 8100 

 1730 2133 9908 8178 403 7775 

 606 1153 8858 8252 547 7705 

 556 1162 10653 10097 606 9491 

 1859 2982 11898 10039 1123 8916 

 561 890 8823 8262 329 7933 

 560 1154 8760 8200 594 7606 

Web Audio API 1973 2224 10449 8476 251 8225 

 937 1415 9084 8147 478 7669 

 796 1047 8890 8094 251 7843 

 893 1169 8995 8102 276 7826 

 840 1065 8902 8062 225 7837 

 901 1157 8975 8074 256 7818 

 854 1055 8889 8035 201 7834 

 752 1044 8908 8156 292 7864 

 794 1208 8898 8104 414 7690 

 879 1156 8933 8054 277 7777 
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Appendix E 

Raw data of the tests which measure how the number of files influences the initial 

response time. All values are in milliseconds.  

10 x 3 sec of audio Request start Response start Request time 
<audio>-tag 575 1221 646 

 666 1274 608 

 556 880 324 

 652 1113 461 

 2136 2761 625 

 809 1265 456 

 980 1437 457 

 841 1433 592 

 677 1142 465 

 631 1253 622 

Web Audio API 952 1115 163 

 1264 1608 344 

 1362 1688 326 

 1026 1234 208 

 831 1023 192 

 888 1166 278 

 1440 1756 316 

 1141 1449 308 

 838 982 144 

 1617 1869 252 
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10 x 20 sec of audio Request start Response start Request time 
<audio>-tag 641 1142 501 

 2380 3060 680 

 629 1616 987 

 686 1330 644 

 597 1239 642 

 573 1227 654 

 655 1088 433 

 601 958 357 

 541 1140 599 

 509 1110 601 

Web Audio API 826 1117 291 

 1321 1813 492 

 911 1218 307 

 993 1296 303 

 883 1059 176 

 907 1208 301 

 847 1092 245 

 918 1221 303 

 892 1187 295 

 874 1181 307 
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Appendix F 

The following table represents download timings’ data for 3-minutes of audio (1x3 minute 

audio file). 

 3 minutes of 
audio 

Request 
start 

Response 
start 

Response 
end 

Total Request 
time 

Receiving 
time 

<audio>-tag* 556 884 15032 14476 328 14148 

 531 817 17038 16507 286 16221 

 534 841 17075 16541 307 16234 

Web Audio API 741 859 5648 4907 118 4789 

 762 879 5666 4904 117 4787 

 729 847 5603 4874 118 4756 

 756 870 5581 4825 114 4711 

 705 821 5531 4826 116 4710 

 686 801 5490 4804 115 4689 

 690 809 5519 4829 119 4710 

 1028 1144 5921 4893 116 4777 

 965 1081 5845 4880 116 4764 

 695 810 5532 4837 115 4722 

*Stopped testing with audio-tag after third trial due to the fact that after buffering 2MB of 

audio data the download speed dropped significantly, resulting in a total download time up 

to 16 seconds. The reason behind this might be related to the way how browser handles 

the buffering of bigger audio files (which might include utilizing some sort of network traffic 

optimization). 
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The following table represents download timings’ data for 2-minutes of audio (1x2 minute 

audio file). 

2 minutes of 
audio 

Request 
start 

Response 
start 

Response 
end 

Total Request 
time 

Receiving 
time 

<audio>-tag 541 775 3888 3347 234 3113 

 553 847 3938 3385 294 3091 

 644 880 3970 3326 236 3090 

 503 756 3874 3371 253 3118 

 504 814 3909 3405 310 3095 

 474 770 3861 3387 296 3091 

 538 832 3924 3386 294 3092 

 493 786 3878 3385 293 3092 

 539 836 3921 3382 297 3085 

 519 806 3896 3377 287 3090 

Web Audio API 1080 1201 4312 3232 121 3111 

 1442 1845 4945 3503 403 3100 

 1053 1341 4438 3385 288 3097 

 789 905 4057 3268 116 3152 

 1268 1384 4489 3221 116 3105 

 782 905 4027 3245 123 3122 

 717 831 3994 3277 114 3163 

 689 803 3903 3214 114 3100 

 757 878 4048 3291 121 3170 

 846 960 4154 3308 114 3194 
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Appendix G 

The following table shows raw timings the data in Table 13 is based on. The first column 

shows the time in seconds, when the custom looping function was set to cut the audio and 

change playback position back to the beginning of the file.  The rest of the columns show 

the values across test systems (from computer no 1 to 3) when the playback position was 

really changed.  

Ideal break time  Break time/ Comp. no 1 Break time/ Comp. no 2 Break time/ Comp. no 3
68,623438 68,763462 68,764766 68,740115 

68,623438 68,629753 68,844426 68,840426 

68,623438 68,717583 68,783376 68,859646 

68,623438 68,597312 68,830816 68,763766 

68,623438 68,585312 68,812206 68,632446 

68,623438 68,677583 68,794986 68,689496 

68,623438 68,701583 68,772766 68,850426 

68,623438 68,676583 68,812206 68,739546 

68,623438 68,745022 68,706717 68,721327 

68,623438 68,597312 68,764766 68,829816 
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