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Abstract

Excitonic binding energies in graphene antidot lattices are calculated using the Wannier model
with the effective mass approximation. The screening is determined by solving the Poisson
equation for the two interface system air-graphene-SiO2 and calculating the dielectric function
of the graphene layer itself by employing a two band model of gapped graphene. An expression
for the binding energy which depends on the thickness of the graphene layer is obtained and it
is found that the exciton binding energy is almost independent of the layer thickness. Choosing
the graphene lattice constant acc = 1.42Å as the layer thickness it is found that the binding
energies are reduced by a factor of ≈ 2.6 compared to the much simpler model applied in [1]
and [2].

Furthermore, exciton binding energies are calculated using the Wannier model with linear
bands. This is more appropriate to graphene. It is found that the linear band model increases
the binding energy and thereby makes the electron and the hole more tightly bound. In
some cases the binding energy diverges which is probably due to limitations in the variational
approach used.

In addition, antidot lattices in which the holes are placed in a rectangular lattice are investi-
gated and compared to the hexagonal antidot lattices. It is found that the presence of a gap
is highly dependent on the details of the structure and that only structures for which the unit
cell width obeys the rule Ly = 3 + 2n (n = 1, 2...), with the width measured in the armchair
direction, have an appreciable band gap. Furthermore, in the case of hexagonal lattices the
gap is always located at the Γ point in the Brillouin zone, however, for different rectangular
lattices the gap moves around the Brillouin zone and might even be located between two high
symmetry points.



Preface

This work has been carried out during the period 1. Feb 2009 - 17. Jun 2009 and it con-
stitutes the thesis for my master degree in nanophysics. It is a continuation of a previous
work on graphene antidot lattices. Both this work and the previous work can be found at
www.repetit.dk. Although this work builds upon the results from a previous work, it can be
read independently. Some of the most important prerequisites are given in the introduction,
but additional information can be found in the appendices.

The software used for numerical calculations has been written using the Intel Fortran compiler
version 11.0.072 and the Intel Math Kernel Library (Intel MKL) version 10.1.025.

Throughout the text vectors are typeset as a, matrices as Â and operators as Â. Most of
the time matrices are written in uppercase and vectors in lowercase. Complex quantities and
Fourier transforms/coefficients are denoted with a tilde like σ̃.

The first chapter provides an introduction to graphene and graphene antidot lattices and it
presents the results from the previous work that this work builds upon. The chapter “Screening
in gapped graphene” explains the theory behind the model applied for the calculation of the
exciton binding energies. An appendix is provided in order to give further details on the calcu-
lation of the conductivity. The next chapter “Wannier model of excitons” explains the theory
behind excitons and how the excitonic binding energies can be calculated. “Implementation
and results” presents and discusses the results obtained. The final chapter concludes on the
results.

During the work on this thesis an article on quasi-particle effects in hexagonal antidot lattices
has been submitted for publication [1].

I would like to thank my supervisor, Professor, Thomas Garm Pedersen, for being very helpful
and motivating throughout my work on this thesis.

René Petersen
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Chapter 1

Introduction

1.1 The discovery of graphene

Graphene is a two dimensional one atom thick planar sheet of sp2 bonded carbon atoms
densely packed in a honeycomb structure. It is the building block of graphite, which consists
of planes of graphene stacked on top of each other. Carbon nanotubes and fullerenes can be
thought of as rolled up graphene sheets, so that graphene constitutes the basic building block
of many carbon allotropes. Graphene has shown superior electrical and mechanical properties
with a mobility on the order of 200000 cm2/(Vs) [3] and a Young’s Modulus of 500 GPa. For
comparison, silicon has an electron mobility of 1350 cm2/(Vs) and carbon nanotubes has a
Young’s Modulus of 1000 GPa. The high mobility makes ballistic transport over distances on
the order of micrometers possible [3].

(a) (b)

Figure 1.1: (a) Graphene flakes placed on an SiO2 wafer and viewed in an optical microscope. Mono-
layers can be found by searching for flakes which show the weakest contrast and examining them by
AFM. (b) A TEM image of graphene layers hanging freely on a scaffold of gold wires. [4]

Graphene is probably the best theoretically studied carbon allotrope. It is the starting point for
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1.1. THE DISCOVERY OF GRAPHENE

all calculations on carbon nanotubes and fullerenes. It is therefore quite ironic that only until
recently it was believed that graphene was impossible to synthesize. According to the Mermin-
Wagner theorem, long range order in two dimensions are theoretically impossible [5]. Since
graphene is a two dimensional crystal it should therefore not exist, and several attempts to
synthesize graphene have failed. This is because thermal fluctuations at growth temperatures
tend to twist and crumble otherwise flat nanometer scale graphene crystallites into stable 3D
structures like nanotubes or fullerenes. In 2005 though, a group from Manchester University
used a different and quite naive approach to the production of graphene [6]. By simply rubbing
a 3D layered crystal against another solid surface they found that among the resulting flakes
some single layer flakes were unexpectedly always found. The identification of the monolayers
among the other flakes produced was done by optical microscopy. By placing the flakes on top
of an oxidized silicon wafer the monolayers became visible because even the monolayers add
up sufficiently to the optical path length so that the interference color changes with respect to
the bare substrate. This can be seen in Fig. 1.1. These results show that graphene does in
fact exist and is quite easy to produce, and they have triggered an enormous research activity.

Another and possibly even simpler method for graphene production is tape peeling. By putting
a thin graphite sample onto adhesive tape, folding the tape back onto the graphite, so that
the graphite becomes sandwiched in between, peeling the tape apart and repeating the process
some 5-10 times, graphene layers can be produced [5]. The graphene layers can be subsequently
transferred onto a silicon dioxide surface for identification and characterization.

In a simple nearest neighbour model graphene is a semimetal with zero overlap between valence
and conduction bands. Graphene is peculiar in the respect that the bands are linear near the K
points at the corners of the Brillouin zone (see App. C for more about the peculiar behaviour
of graphene). In Fig. 1.2 the band structure of graphene is shown and the right part of the
figure shows the linearly dispersive bands. This linear dispersion closely resembles the Dirac
spectrum for massless fermions which is given by E = c~k where k = |k|. The linear dispersion
in graphene near the K points is given by E = vF~k so that the Fermi velocity vF ≈ 106 plays
the role of the speed of light. For these reasons the K points are also called the Dirac points.

Figure 1.2: The band structure of graphene. The left part shows the whole band structure and the right
part shows the linear dispersion around the dirac points. [7]

The surface to volume ratio of graphene is very large. Every atom is exposed on the surface and
all atoms are therefore available for interaction with nearby molecules. This makes graphene
very sensitive to changes in the local environment and its use as a sensor device is obvious.

The properties of graphene are metallic. If graphene is to be used as the main ingredient
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CHAPTER 1. INTRODUCTION

in future transistors instead of silicon, a method to make graphene semiconducting has to
be found. Inspired by the knowledge of carbon nanotubes (CNTs), the so called graphene
nanoribbons (GNRs) have recently become an active area of research [8]. GNRs are unfolded
carbon nanotubes and it is therefore reasonable to expect them to have some properties in
common. Due to confinement of the electrons in CNTs some CNTs become semiconducting.
When a CNT is unrolled the electrons are still confined to a small planar sheet and this causes
some GNRs to be semiconducting too. In [8] and [9] it is demonstrated that the band gap of
GNRs can be tuned by adjusting the GNR width. This opens up possibilities for using GNRs
in electronic and optical applications.

Another approach to making graphene semiconducting is to introduce an additional periodic
perturbation into the lattice. This can be done by making a periodic array of holes in the
graphene sheet [10] [11] [2]. Due to this additional potential a gap opens up at the Γ point in
the Brillouin zone. This gap can be tuned by adjusting the hole diameter and separation. In
[10] and [11] a simple tight binding model with nearest neighbour interactions and no overlap
of atomic wave functions has been used to determine electronic band structures and absorption
spectra of a number of graphene antidot lattices. The next section is devoted to explaining the
basic properties of graphene antidot lattices.

(a) (b)

Figure 1.3: Super cell structure of (a) a hexagonal {7,3} antidot lattice and (b) a square {9,2} antidot
lattice. The atoms within the white circles are removed to form the holes, and the arrow in the circles
illustrates the hole radius.

1.2 Gapped graphene and graphene antidot lattices

As mentioned in the previous section graphene can be turned semiconducting by the introduc-
tion of a periodic array of holes into the graphene crystal. This is called a graphene antidot
lattice, where the term antidot refers to the fact that the holes repel electrons in contrast
to quantum dots which trap them. The antidot lattices are characterized by the following
parameters

1. The geometry of the holes, i.e., are the holes arranged in a square lattice, hexagonal
lattice, or some other lattice.

2. The size of the holes.
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1.2. GAPPED GRAPHENE AND GRAPHENE ANTIDOT LATTICES

3. The distance between the holes.

4. Defects in the lattice, misplaced holes or missing holes.

In Fig. 1.3 two types of antidot lattices are shown. The left part of the figure shows a hexagonal
lattice with a possible choice of lattice vectors. The designation {7,3} denotes the parameters
of the hexagonal lattice. The first number refers to the edge length of the unit cell while the
second number refers to the radius of the hole. In the right part of the figure a square antidot
lattice is shown. Here the two parameters refer to the width of the unit cell and the radius of
the hole. The actual setup of the antidot geometry will be explained in more detail later. At
this point, what is important to know is that antidot lattices come in different geometries with
different parameters and the size of the gap depends on these parameters.

In an earlier work [1] band structures and optical spectra of a number of graphene antidot
lattices have been calculated in a nearest neighbour tight binding model (NN-TB), and in the
quasi-particle model (QP-TB) of Grüneis et al. [12]. The nearest neighbour model reproduces
the linear band structure with the correct slope in the vicinity of the Γ point, but it should be
used with care in the rest of the Brillouin zone and for higher excited states. DFT calculations of
band gaps and excited states underestimate the band gap and yield incorrect results for excited
states. The QP-TB model employed includes quasi-particle effects into the calculations and
these effects are known to be important in semiconductors. In Fig. 1.4 the band structures of
two antidot lattices, {12,5} and {17,5}, are shown. These two structures represent intermediate
and large structures, approaching what can be realized experimentally. The band structures
show that the band gap increases by about 10% to 15% when using the QP-TB model instead
of the NN-TB model, and this trend is seen for other antidot structures as well, at least when
the ratio of removed atoms to total number of atoms (before any are removed to form the hole)
is small, N1/2

rem/Ntotal ≈ 0. This is shown in Fig. 1.5, where it can also be seen that plotting the
band gap versus this characteristic ratio yields an approximately linear relationship for small
ratios.
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Figure 1.4: Band structures of (a) {12,5} and (b) {17,5} hexagonal antidot structures. The right part
of each figure is calculated in a nearest neighbour tight binding model (NN-TB) while the left part is
calculated in a quasi-particle tight binding model (QP-TB).

In Fig. 1.6 the absorbance spectra of hexagonal antidot lattices {10,x} and {12,x} are shown.
The dash-dotted lines are NN-TB and the solid lines are QP-TB. From these spectra the
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Figure 1.5: Plot of the band gap vs. N
1/2
rem/Ntot for various antidot structures. The QP-TB band gaps

generally lie higher than the NN-TB gaps when the ratio is small.

increase of the size of the band gap can also be seen since the absorption edge is shifted in
the QP-TB model. In addition, it is seen that the quasi-particle corrections to the spectra are
much more pronounced for structures with large holes compared to the size of the unit cell.
Some spectra are barely even recognizable when using the QP-TB model and in some cases
the band gap actually decreases in QP-TB.
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Figure 1.6: Real part of the conductivity (Re [σ̃(ω)], optical absorption) of (a) {10,x} antidot lattices
and (b) {12,x} antidot lattices in both the nearest neighbour tight binding (NN-TB) and quasi-particle
tight binding (QP-TB) model.

When an electron is excited into a conduction band state an empty electron state is left in
the valence band. This empty electron state behaves like a positively charged electron with
some effective mass, and can thus be viewed as being occupied by a positively charged “hole”.
The hole interacts with the excited electron through the Coulomb potential thus introducing
energy states which are lower than those of the excited electron. The bound electron-hole
pair moves through the crystal as a pair and can thus be viewed as a single particle. This
particle is called an exciton. Due to excitonic effects additional energy states are introduced
below the band gap. In the optical spectra excitonic effects should be seen as peaks below
the absorption edge. Neither the QP-TB nor the NN-TB model employed here take excitons
into account however, but using the simple Wannier model (this will be treated in more detail
later), a simple estimate of the exciton binding energies can be made. In the Wannier model
the exciton energy levels are give by
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1.3. THE PURPOSE OF THIS PROJECT

En = Eg −
Ry∗

(n+ 1
2 )2

, Ry∗ = 13.6[eV]
µ

ε2
(1.1)

where Eg is the band gap, n = 0, 1 . . ., and Ry∗ is the effective screened Rydberg with µ the
reduced exciton mass (µ = memh/(me + mh)) and ε the relative dielectric constant. The
effective Rydbergs of some antidot lattices are given below

Ry∗{5,1} = 55 meV Ry∗{5,3} = 574 meV Ry∗{10,1} = 13 meV
Ry∗{10,3} = 54 meV Ry∗{10,5} = 205.0 meV Ry∗{10,7} = 371.0 meV

For the first exciton state, n = 0, the binding energy is given by EB = −4Ry∗. This gives
quite large binding energies for all antidot lattices, which is expected since the effect is large
in graphene. For some antidot lattices however, the excitonic energy levels are negative. This
does not seem reasonable, because it would actually make the exciton state the ground state.
In employing the Wannier model some quite rough approximations have been made, and this
is probably the source of these seemingly unphysical results.

1.3 The purpose of this project

This work is a continuation of previous work on graphene antidot lattices [2] [1], although it
can be read independently. In the previous work hexagonal antidot lattices were treated and
the band structures, optical spectra and excitonic energies presented above were calculated
using a QP-TB (quasi-particle) tight binding model.

In [2] only antidot lattices with a hexagonal hole geometry have been investigated. Recently,
square antidot lattices have been fabricated experimentally [13], however, with a much larger
hole diameter and lattice constant than what it is possible to model numerically. It would
however be exciting to model small square antidot lattices numerically to see if some agreement
with the experimental results is seen. Thus, one of the main focuses of this work is to model
square antidot lattices and compare them to hexagonal lattices and to the experimental data.

As mentioned above, in the previous work, excitonic binding energies in graphene antidot
lattices have been determined based on the simple Wannier model. In the calculation of the
effective Rydberg one needs the effective dielectric constant and the calculation of this is itself a
complicated task. Therefore, the relative dielectric constant was calculated in a rather arbitrary
way, by assuming that the screening in the graphene layer was determined only by the average
of the screening in the surrounding media. Thus, with graphene on a silicon dioxide substrate
surrounded by air, the average dielectric constant becomes ε = 2.5. This gave unphysical
results for some lattices. The two most probable reasons for the failure of the model are as
follows

1. The calculation of the relative dielectric constant does not take into account the presence
of the graphene layer at all. It is based on the assumption that the very thin graphene
layer does not contribute much to the screening itself, but this is a very crude assumption.

2. The Wannier model in itself. In deriving the results Eqn. 1.1 the effective mass ap-
proximation has been used. This approximation basically assumes that the bands are
parabolic at the point of band gap, but in graphene antidot lattices the bands are only
parabolic very close to the band gap and linear farther away from it.
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CHAPTER 1. INTRODUCTION

The first of these reasons is the one which is expected to have the largest significance. Thus, two
things need to be done. First, a model of the relative dielectric constant taking into account the
presence of the graphene layer has to be made. Second, excitonic energies should be calculated
using the linear energy dispersion near the band gap instead of a parabolic dispersion.

10



Chapter 2

Screening in gapped graphene

2.1 Screening in a two interface system

As mentioned in the introduction, the calculation of the exciton binding energies in graphene
antidot lattices gave unphysical results in some cases when using a very simple estimate for
the screening in the graphene layer. One of the main reasons for this is probably the quite
naive calculation of the screening in the graphene layer, which did not take the graphene layer
itself into account, but simply assumed that the screening was determined by the surroundings
only. In this chapter a more satisfactory model of the screening is developed. The theory in
this chapter is based upon [14].

In a thin layer of a material characterized by a dielectric constant ε situated in between two
semi-infinite materials of dielectric constants εa and εb, the screening is determined by both ε
of the thin layer itself and by εa and εb of the surrounding material. The geometry is illustrated
in Fig. 2.1.

εa

εb

ε

z

r r´

z=0

z=d

Figure 2.1: Illustration of the geometry of a two interface system. The material characterized by ε is
sandwiched between two other materials characterized by εa and εb. r and r′ are the positions of two
electrons in the middle layer.

In order to determine the screening the interaction between two electrons located at r and
r′ in the middle layer is considered. The Poisson equation is then solved for this system to
determine the interaction of an electron at r with another electron at r′. From the resulting
expression the screening can be deduced.

From Maxwell’s equations ∇ · (εE) = ρ/ε0 and from electrostatics the electric field is given by
E = −∇φ so that
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CHAPTER 2. SCREENING IN GAPPED GRAPHENE

∇ · [ε(r)∇φ] =
−ρ
ε0

(2.1)

where φ is the electrostatic potential. If ε is independent of r the usual Poisson equation
∇2φ = −ρ/(εε0) is obtained. In the following, working with the potential energy U of an
electron instead of the electrostatic potential is preferred, thus

∇ · [ε(r)∇U ] =
|e| ρ
ε0

(2.2)

In the layer structure depicted in Fig. 2.1 the dielectric constant of the system changes only in
the z-direction. The potential is Fourier decomposed in the x,y plane according to (see App.
D)

U(r, r′) =
1

2π

∫
Ũ(z, z′; q)eiq·(ρ−ρ

′)d2q (2.3)

where r = (x, y, z) and ρ = (x, y) (the in-plane component) and similarly for the primed
coordinates. The charge density at r due to an electron at r′ is given by ρ(r, r′) = − |e| δ(r−
r′) = − |e| δ(x − x′)δ(y − y′)δ(z − z′). Of course the true charge density in the thin film is
further complicated by the other electrons, but it is assumed that these effects are included in
the dielectric constant. Fourier decomposing also the charge density in the x,y plane one gets
for the charge density

ρ(r, r′) = − |e| δ(z − z′) 1
2π

∫
eiq·(ρ−ρ

′)d2q (2.4)

Inserting the decomposition of the potential into the Poisson equation one obtains for the left
hand side

∇ ·
[
ε(r)∇ 1

2π

∫
Ũ(z, z′; q)eiq·(ρ−ρ

′)d2q

]
=

1
2π

∫ {
∇ ·

[
ε(r)∇Ũ(z, z′; q)eiq·(ρ−ρ

′)
]}

d2q

(2.5)

Using elementary vector calculus one arrives at (suppressing the dependence of ε and Ũ on r,
z, z′ and q)

1
2π

∫ {
−q2εŨ + iεq ·∇Ũ + iŨq ·∇ε+ ε∇2Ũ + iεq ·∇Ũ + ∇ε∇Ũ

}
eiq·(ρ−ρ

′)d2q

=
1

2π

∫ {
−q2εŨ + ε∇2Ũ + ∇ε∇Ũ

}
eiq·(ρ−ρ

′)d2q (2.6)

for the left hand side of the Poisson equation. The last equality follows for the following reason:
∇Ũ and ∇ε are always out of the plane because both Ũ and ε depend only on the spatial
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2.1. SCREENING IN A TWO INTERFACE SYSTEM

coordinate z, therefore, since q is always in the plane, the second, third and fifth term in the
above expression vanish. Inserting this and the Fourier decomposition of the charge density
into the Poisson equation

∫ {
−q2εŨ + ε∇2Ũ + ∇ε∇Ũ

}
eiq·(ρ−ρ

′)d2q =
−e2δ(z − z′)

ε0

∫
eiq·(ρ−ρ

′)d2q (2.7)

Since this is essentially the Poisson equation with the potential and the charge density Fourier
decomposed, it must of course be fulfilled everywhere in space. This means that the Fourier
components on the left hand side must equal the Fourier components on the right hand side,
and the following equation for the Fourier components is obtained

(
q2ε− ε∇2 −∇ε∇

)
Ũ =

e2δ(z − z′)
ε0

(2.8)

Since ε (the screening in the system) and Ũ depends only on the z coordinate the following
equation for the Fourier coefficients is obtained

(
q2ε(z)− ε(z) d

2

dz2
− d

dz
ε(z)

d

dz

)
Ũ(z, z′; q) =

e2δ(z − z′)
ε0

(2.9)

where the dependency of ε and Ũ on z, z′ and q has been reintroduced. In order to solve
this equation it is assumed that 0 ≤ z′ ≤ d, i.e., that the electron generating the potential
is always situated in the layer characterized by ε. The equation is solved for the three layers
separately. In the two layers z > d and z < 0 the delta function vanish for all z so that only
in the 0 ≤ z ≤ d layer does the delta function contribute. The solutions are of the following
types

Ũ(z, z′; q) =


Ae−qz z > d

Beqz z < 0

Ce−q|z−z
′| +De−qz + Feqz 0 ≤ z ≤ d

(2.10)

The exponential function e−q|z−z
′| gives a delta function when differentiated twice and thus

takes care of the delta function on the right hand side of the equation for the coefficients.
Since the potential has only been Fourier decomposed in the x,y plane the Fourier coefficients
Ũ(z, z′; q) need to represent the potential U(z, z′) in the z-direction. Thus, the coefficients and
the potential must have the same dependence on z and z′. Therefore, the boundary conditions
which have to be fulfilled by the potential applies to the Fourier coefficients

Ũ(d−, z′; q) = Ũa(d+, z′; q) (2.11)

Ũ(0+, z′; q) = Ũb(0−, z′; q) (2.12)

ε(z)
dŨ

dz

∣∣∣∣
z=d−

= εa
dŨa
dz

∣∣∣∣
z=d+

(2.13)

ε(z)
dŨ

dz

∣∣∣∣
z=0+

= εb
dŨb
dz

∣∣∣∣
z=0−

(2.14)
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CHAPTER 2. SCREENING IN GAPPED GRAPHENE

Upon solving these equations expressions for the constants A, B, D and F in terms of C can be
obtained. The constant C can be obtained by the requirement that the solution in the region
0 ≤ z ≤ d (Eqn. 2.10) has to be a solution to Eqn. 2.9. This gives

C =
e2

2qεε0
(2.15)

The calculation of the constants A, B, D and F using the boundary conditions is relatively
straightforward but tedious and is therefore not done here. Only the result for the Fourier
coefficients is given

Ũ(z, z′; q) =
e2

2εε0

e−q(z+z
′)

q

[
e2qz>(ε− εa) + e2dq(ε+ εa)

] [
ε− εb + e2qz<(ε+ εb)

]
e2dq(ε+ εa)(ε+ εb)− (ε− εa)(ε− εb)

(2.16)

where z> = max(z, z′) and z< = min(z, z′). This expression has been obtained by comparing
the expression for Ũ(z, z′; q) when z < z′ and z > z′. If the two dimensional limit is taken,
i.e., if both charges are placed at z = d/2, the following is obtained

Ũ(d/2, d/2; q) =
e2

2qεε0

1
εa−ε

(εa+ε)edq−εa+ε
+ εb−ε

(εb+ε)edq−εb+ε
+ 1

(2.17)

If this expression is compared to that of a single homogenous layer of dielectric constant ε
(obtained by putting εa = εb = ε in the above) it is seen that for the two-interface system the
role of the effective relative dielectric constant is played by

εeff = ε

[
εa − ε

(εa + ε) edq − εa + ε
+

εb − ε
(εb + ε) edq − εb + ε

+ 1
]

(2.18)

which describes the screening in the thin layer as a function of the layer thickness d. The
dependence on q describes the nonlocality of the screening in the layer. Taking this expression
to first order in d one obtains

εeff ≈
εa + εb

2
+
[
ε

2
− ε2

a + ε2
b

4ε

]
qd (2.19)

Thus, if an expression for the dielectric constant of the thin layer is known, the effective
dielectric constant of the system can be found. If the thin layer is modelled as a homogenous
layer the average dielectric constant can be calculated as [10]

ε = 1 +
iσ̃

dε0ω
(2.20)

where σ̃ is the complex 2D sheet conductivity. Inserting this expression in Eqn. 2.19 and
taking d to zero one obtains
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2.2. CALCULATION OF CONDUCTIVITY

εeff ≈
εa + εb

2
+

iqσ̃

2ε0ω
(2.21)

Thus, if an expression for the ω and q dependent complex sheet conductivity is known the ω
and q dependent effective dielectric function for the thin layer can be calculated. If the average
dielectric constant εave = (εa + εb)/2 and the 2D sheet susceptibility χ2D = iqσ̃/(2ε0ω) are
introduced the effective dielectric constant can be written as

εeff = εave + χ2D (2.22)

Upon Fourier transforming back to real space the potential becomes

U(r) =
1

2π

∫
eiq·r

qεeff(0, q)
d2q =

1
2π

∞∫
0

2π∫
0

eiqr cos θ

qεeff(0, q)
qdqdθ =

∞∫
0

J0(qr)
εeff(0, q)

dq (2.23)

where r is the distance between the two charges. The real space dielectric constant can be
calculated by writing the potential as U(r) = 1/ [rε(r)] so that

ε(r) =
1

rU(r)
(2.24)

2.2 Calculation of conductivity

The real part of the q-dependent conductivity in units of the graphene DC-conductivity σ0 =
e2/(4~) can be calculated from (App. A)

Re [σ̃(ω, q)] =
2~ω
πq2

∑
c

∑
v

∫ ∣∣〈Ψc,k + q| eiq·r |Ψv,k〉
∣∣2 δ(Ec,k+q − Ev,k − ~ω)d2k (2.25)

where the sum over c and v ranges over all conduction bands and valence bands for which
the transition energy Ec,k+q − Ev,k is equal to ~ω for some value of k. The above formula
describes the conductivity under indirect excitations from a valence band to a conduction band,
i.e., excitations from a state k to k + q. This expression for the q-dependent conductivity
transforms into the usual expression for the conductivity for small q. This can be seen by
expanding eiq·r ≈ 1 + iq · r and using the fact that the two states are orthogonal. Thus, for
small q

〈Ψc,k + q| eiq·r |Ψv,k〉 ≈ 〈Ψc,k + q| 1 + iq · r |Ψv,k〉 =
〈Ψc,k + q|Ψv,k〉+ iq · 〈Ψc,k + q| r |Ψv,k〉 (2.26)
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CHAPTER 2. SCREENING IN GAPPED GRAPHENE

Since the two states are orthogonal the first term on the right hand side is identically zero.
Thus, for small q

∣∣〈Ψc,k + q| eiq·r |Ψv,k〉
∣∣2 ≈ q2 |〈Ψc,k| r |Ψv,k〉|2 (2.27)

Using this expression in the q-dependent conductivity and rewriting the dipole matrix element
into the momentum matrix element [2] the usual expression for the conductivity is obtained.
Thus, the q-dependent conductivity has the usual conductivity as a limiting case. It should be
noted that only with the Fourier transform convention chosen in App. A does the q-dependent
conductivity correspond to the usual conductivity when q → 0, thus, the convention chosen is
particularly convenient in this case.

In the formalism of the tight binding method the matrix element between two states of the
crystal is given by

〈Ψc,k + q| eiq·r |Ψv,k〉 =
∑
p

∑
p′

cp
′

c (k + q)∗cpv(k) 〈Φp,k + q| eiq·r |Φp
′
,k〉 (2.28)

The matrix element between two Bloch states is

〈Φp,k + q| eiq·r |Φp
′
,k〉 =

∑
lmn

ei(R
p
lmn−R

p′
000)·ke−i·R

p′
000·q 〈ϕp

′
,Rp′

000| eiq·r |ϕp,R
p
lmn〉 (2.29)

In principle there are two sums, one for each Bloch function, and a factor of 1/U (U being the
number of unit cells), but due to the symmetry of the crystal one sum annihilates the factor
of 1/U . The matrix element between the atomic wave function ϕp

′
at position Rp′

000 and ϕp

at position Rp
lmn can be calculated by assuming that the exponential factor eiq·r does not

vary substantially in the region of r for which the product ϕp and ϕp
′

is different from zero.
This is a reasonable assumption since the momentum transfer in optical processes is small and
therefore q is small in magnitude. Under this assumption r in the exponential function can be
replaced by Rp′

000 and put outside the integral giving

〈Φp,k + q| eiq·r |Φp
′
,k〉 ≈

∑
lmn

ei(R
p
lmn−R

p′
000)·ke−i·R

p′
000·qei·R

p′
000·q 〈ϕp

′
,Rp′

000|ϕp,R
p
lmn〉

=
∑
lmn

ei(R
p
lmn−R

p′
000)·k 〈ϕp

′
,Rp′

000|ϕp,R
p
lmn〉

= Spp
′

(2.30)

Using this result the matrix element between two states of the crystal becomes

〈Ψc,k + q| eiq·r |Ψv,k〉 =
∑
p

∑
p′

cp
′∗
c,k+qc

p
v(k)Spp

′

= c∗c,k+q · Ŝ · cv,k
≈ c∗c,k+q · cv,k (2.31)

where overlap has been neglected in the last step.
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2.3. GAPPED GRAPHENE

2.3 Gapped graphene

Using a slightly modified version of the simple two band model of graphene in order to describe
graphene with a gap (see App. C for a description of the two band model) the conductivity
can be estimated and used to calculate the dielectric function. This model will be referred
to as the gapped two band model. The model makes no assumptions about the origin of the
band gap and therefore the results apply to gapped graphene in general, at least within the
validity of the approximations used in the model. In the two band model the tight binding
Hamiltonian is given by (see App. B for information on tight binding)

Ĥtb =
(

0 −γ1f(k)
−γ1f

∗(k) 0

)
(2.32)

where the designation “tb” means “two band”. This Hamiltonian is the simplest possible
description of pure graphene. In order to describe graphene with a gap, the Hamiltonian is
modified according to

Ĥgtb =
(

α −γ1f(k)
−γ1f

∗(k) −α

)
(2.33)

where “gtb” stands for “gapped two band”. This Hamiltonian is the simplest possible de-
scription of gapped graphene. The eigenvalues of this Hamiltonian are found by solving the
eigenvalue problem ĤgtbΨjk(r) = EΨjk(r) (the overlap matrix is approximated by the unit
matrix). The eigenvalue problem is rewritten according to

(Ĥgtb − ÎE)Ψjk(r) = 0 (2.34)

which has solutions other than the trivial one (Ψjk = 0) only if the determinant is equal to
zero. Thus, the eigenvalues are determined by

∣∣∣∣ α− E −γ1f(k)
−γ1f

∗(k) −α− E

∣∣∣∣ = 0 (2.35)

The energy eigenvalues are found to be given by E = ±
√
α2 + γ2

1 |f(k)|2, where the positive
solution corresponds to the conduction band while the negative solution corresponds to the
valence band. The gap is Eg = 2α. The band gap remains in the K point since the expres-
sion for f(k) is the same as in the two band model. By solving the eigenvalue problem the
eigenvectors in a basis of sub lattice Bloch functions are found to be

|c,k〉 =
(
eiθk

√
(Ec,k + α)/(2Ec,k),

√
(Ec,k − α)/(2Ec,k)

)
(2.36)

|v,k〉 =
(
−eiθk

√
(Ev,k + α)/(2Ev,k),

√
(Ev,k − α)/(2Ev,k)

)
(2.37)
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CHAPTER 2. SCREENING IN GAPPED GRAPHENE

where eiθk is given by f(k)/ |f(k)|. These eigenvectors have been obtained simply by solving
the tight binding eigenvalue problem with the overlap matrix equal to the unit matrix, and
demanding that the eigenvectors are orthonormal. To calculate the conductivity the matrix
element of eiq·r between the state of wave vector k in the valence band and the state of k+ q
in the conduction band is needed. Using Eqn. 2.31 the matrix element is given simply by

〈Ψc,k + q| eiq·r |Ψv,k〉 ≈ 〈c,k + q|v,k〉 =

=
1

2
√
Ec,k+q |Ev,k|

[√
(Ec,k+q − α) |Ev,k − α| − ei(θk−θk+q)

√
(Ec,k+q + α) |Ev,k + α|

]
(2.38)

where the absolute values come from the fact that Ev,k−α < 0, Ev,k+α ≤ 0 and Ev,k ≤ 0 ∀ k.

Using the fact that |a|2 = a2 and
√
|a|2 = −a, a ≤ 0 the squared matrix element becomes

∣∣〈Ψc,k + q| eiq·r |Ψv,k〉
∣∣2 ≈ 1

2

[
1 +

α2 + γ2
1 |fk+qfk| cos(θk − θk+q)

Ec,k+qEv,k

]
(2.39)

where the approximate equality stems from Eqn. 2.31. The cosine can be calculated directly
using Euler’s formulas so that it is not necessary to calculate the angles. In fact, one gets

|fk| |fk+q| cos(θk − θk+q) =
1
2
(
fkf

∗
k+q + fk+qf

∗
k

)
= Re [fk] Re [fk+q] + Im [fk] Im [fk+q]

(2.40)

which is more suitable for numerical computations. With this expression for the matrix ele-
ments one can return to Eqn. 2.25 and calculate the conductivity.
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Chapter 3

Wannier model of excitons

3.1 The Bethe-Salpeter equation

Excitons are, as the name suggests, a quasiparticle arising as a consequence of an excitation in
an insulator or a semiconductor. In a semiconductor it is created when a photon is absorbed
by an electron, raising the electron into a conduction band and leaving a “hole” in the valence
band, i.e., a missing electron. The electron and the hole are free to move through the crystal.
Since the electron is negatively charged and the hole acts as a positive charge the two particles
are bound together much like the electron in a hydrogen atom is bound to the nucleus. This
effectively reduces the energy of the exciton quasiparticle compared to the energy of a free
electron and a free hole. The strength of the binding between the electron and the hole
depends on the nature of the material in question, and effectively divides excitons into two
categories [15]

1. Frenkel excitons: In a material of low screening the Coulomb attraction between the
electron and the hole is strong and tends to localize the exciton, so that the electron and
the hole are close together. The binding energy of a Frenkel exciton is on the order of 1
eV.

2. Wannier excitons: If the material has a high dielectric constant the Coulomb potential is
strongly screened and the exciton binding energy is on the order of 0.1 eV. The Wannier
exciton is delocalized and is “spread” out over several unit cells in the crystal.

In this chapter the Wannier model of excitonic effects in semiconductors will be derived. This
model applies to Wannier excitons. The model is derived for 3D but it is easily adapted to 2D.
In a crystal the many particle ground state is given by the following Slater determinant [16]

|0〉 = |+v1
−
v1

+
v2
−
v2 . . .

+
vN
−
vN | (3.1)

where + means a spin up single electron state, − means a spin down single electron state, and
v indicates a valence band state. This is the Hartree-Fock (HF) many-particle ground state.
In the HF method the many-particle wave function is written as a single Slater determinant
as the one given above. In order to go beyond the HF method the wave function is written
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CHAPTER 3. WANNIER MODEL OF EXCITONS

as a linear combination of multiple Slater determinants. One might then wonder how these
determinants should be constructed since all valence states are already used in the HF single
determinant wave function. The conduction band states have not been used however, and so
one writes the wave function as a linear combination of the HF wave function and all singly
excited determinant wave functions. In a singly excited state an electron is excited from some
valence band state to a conduction band state. Since optical excitations do not flip spins,
the spin is conserved in the excitation process. A singly excited state with the spin preserved
can be constructed by making the substitution

+
vi →

+
cj or

−
vi →

−
cj in the ground state Slater

determinant

|+vi →
+
cj〉 = | . . . . . . +

cj
−
vi . . . . . . | (3.2)

|−vi →
−
cj〉 = | . . . . . . +

vi
−
cj . . . . . . | (3.3)

None of these states have definite total spin. The linear combination

|vi → cj〉 =
1√
2

[
|+vi →

+
cj〉+ |−vi →

−
cj〉
]

(3.4)

has definite total spin S = 0 and is thus a singlet state. Using the HF ground state as a starting
point an excited state of the crystal is now written as the HF ground state wave function (|0〉)
plus a linear combination of all possible singlet states

|exc〉 = Ψ0 |0〉+
∑
ij

Ψij |vi → cj〉 (3.5)

in the following the HF ground state wave function will be absorbed in the summation above
so that the excited wave function is written as

|exc〉 =
∑
ij

Ψij |vi → cj〉 = Ψ0 |0〉+ Ψ11 |v1 → c1〉+ Ψ12 |v1 → c2〉 . . . (3.6)

where the summation now covers all the singlet states but also the HF ground state. The
energy of this excited state is given by the expectation value of the Hamilton operator

〈exc| Ĥ |exc〉 = Eexc (3.7)

with the Hamilton operator given as

Ĥ =
2N∑
n=1

ĥn +
1
2

2N∑
n=1

2N∑
m=1

V (rn − rm), V (rn − rm) =
e2

4πε0 |rn − rm|
(3.8)

Here ĥ is the one electron terms, i.e., their kinetic energy and their interaction with the
(stationary) nuclei. Thus, one needs to find matrix elements of the Hamiltonian between two
singlet states
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Ĥij,kl = 〈vi → cj | Ĥ |vk → cl〉 (3.9)

and also between the ground state and singlet states

Ĥ0,kl = 〈0| Ĥ |vk → cl〉 (3.10)

It can be shown that the matrix element between the ground state and a singly excited state
vanishes [17]. Using the definition of the singlet states Eqn. 3.4 the matrix elements are given
by

Ĥij,kl =
1
2
[
〈+vi →

+
cj | Ĥ |

+
vk →

+
cl〉+ 〈+vi →

+
cj | Ĥ |

−
vk →

−
cl〉+

〈−vi →
−
cj | Ĥ |

+
vk →

+
cl〉+ 〈−vi →

−
cj | Ĥ |

−
vk →

−
cl〉
]

(3.11)

F̂ =
N∑
i=1

f̂(xi), a sum of one electron operators

a. FΨΨ′ = 0, if Ψ and Ψ′ differ in two or more spin-orbitals.

b. FΨΨ′ = 〈ψk| f̂ |ψ′k〉, if Ψ and Ψ′ differ in only the k’th spin-orbitals.

c. FΨΨ′ =
∑
k

〈ψk| f̂ |ψk〉, if Ψ = Ψ′, i.e. they do not differ in any spin-orbitals.
(3.12)

Ĝ = 1
2

N∑
i=1

N∑
j=1

ĝ(xi, xj), a sum of two electron operators

a. GΨΨ′ = 0, if Ψ and Ψ′ differ in three or more spin-orbitals.

b. GΨΨ′ = 〈ψkψl| ĝ |ψ′kψ′l〉− 〈ψkψl| ĝ |ψ′lψ′k〉, if Ψ and Ψ′ differ in exactly two spin-
orbitals.

c. GΨΨ′ =
∑
k 6=l

[〈ψkψl| ĝ |ψ′kψl〉 − 〈ψkψl| ĝ |ψlψ′k〉], if Ψ and Ψ′ differ in exactly one

spin-orbital.

d. GΨΨ′ = 1
2

N∑
k=1

N∑
l=1

[〈ψkψl| ĝ |ψkψl〉 − 〈ψkψl| ĝ |ψlψk〉], if Ψ = Ψ′, i.e. they do not

differ in any spin-orbitals. (3.13)

The matrix elements between singly excited states (the states given by Eqn. 3.3) are found by
using the rules for evaluating matrix elements between Slater determinants, see Eqn. 3.12 and
Eqn. 3.13 (or [18] for more information). Since the Hamiltonian is spin independent, the first
and fourth term as well as the second and the third term are equivalent, thus
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Ĥij,kl = 〈+vi →
+
cj | Ĥ |

+
vk →

+
cl〉+ 〈+vi →

+
cj | Ĥ |

−
vk →

−
cl〉 (3.14)

For the off diagonal elements, i.e., for i 6= k and j 6= l, the Slater determinants in both terms
differ in exactly two spin-orbitals, namely the i’th and the k’th. Therefore, using rule (b) of
Eqn. 3.13 one gets

〈+vi →
+
cj | Ĥ |

+
vk →

+
cl〉 = 〈vkcj |V |clvi〉 − 〈vkcj |V |vicl〉 (3.15)

〈+vi →
+
cj | Ĥ |

−
vk →

−
cl〉 = 〈vkcj |V |clvi〉 (3.16)

For the diagonal matrix elements, i = k and j = l, and with the same argumentation as above,
the cross term yields

〈+vi →
+
cj | Ĥ |

−
vi →

−
cj〉 = 〈cjvi|V |vicj〉 (3.17)

The calculation of the direct-term for the diagonal matrix is somewhat tedious. Using the rules
for evaluating matrix elements of both one and two electron operators though, the calculation
is fairly straightforward. Only the result is given here

〈+vi →
+
cj | Ĥ |

+
vi →

+
cj〉 = 〈0| Ĥ |0〉+ Ecj

− Evi
+ 〈cjvi|V |vicj〉 − 〈cjvi|V |cjvi〉 (3.18)

where Ecj
and Evi

are quasiparticle energies given by

Ecj = 〈cj | ĥ |cj〉+
N∑
n=1

{2 〈vncj |V |vncj〉 − 〈vncj |V |cjvn〉} (3.19)

Evi
= 〈vi| ĥ |vi〉+

N∑
n=1

{2 〈vnvi|V |vnvi〉 − 〈vnvi|V |vivn〉} (3.20)

The quasiparticle energies have quite simple physical interpretations. Ecj
represents the total

energy of an electron in the j’th conduction band state. The first term represents its kinetic
energy and its interaction with the nuclei of the lattice, while the summation represents its
Coulomb and exchange interaction with the remaining electrons in the valence band. Evi

has
a similar interpretation but for an electron in the i’th valence band state.

With the above expression for the matrix elements between singly excited states the matrix
element between any two singlets is given by

Ĥij,kl =
(
Ecj
− Evi

)
δikδjl + 2 〈vkcj |V |clvi〉 − 〈vkcj |V |vicl〉 (3.21)

where the energy is measured relative to the ground state energy 〈0| Ĥ |0〉. The matrix equation
to be solved is
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∑
ij

Hkl,ijΨij = EexcΨkl (3.22)

In a solid the individual states are indexed by the particular band they belong to and the
momentum of the state. Thus, the indexes i, j, k, l are transformed according to i → vk,
j → ck, k → v′k′ and l → c′k′. Only singly excited states between states of equal k are
allowed, i.e., only excitations of the type |vk→ ck〉. This makes sense because photons carry
negligible momentum. The matrix element then looks like (still measured relative to the ground
state energy)

Hvck,v′c′k′ = (Eck − Evk) δcc′δvv′δkk′ + 2 〈cvk|VX |c′v′k′〉 − 〈cvk|VC |c′v′k′〉 (3.23)

with the Coulomb and exchange matrix elements defined by

〈cvk|VC |c′v′k′〉 =
1
ε

∫∫
ϕ∗ck(r)ϕ∗v′k′(r

′)V (r − r′)ϕc′k′(r)ϕvk(r′)d3rd3r′ (3.24)

〈cvk|VX |c′v′k′〉 =
∫∫

ϕ∗ck(r)ϕ∗v′k′(r
′)V (r − r′)ϕvk(r)ϕc′k′(r′)d3rd3r′ (3.25)

The screening 1/ε has been introduced since the Coulomb potential is screened by the sur-
rounding charges. Using the transformations of i,j,k and l as it was done earlier, the matrix
equation now looks like

∑
vck

Hv′c′k′,vckΨvck = EexcΨv′c′k′ (3.26)

This matrix equation, with the matrix element given by Eqn. 3.23 is the Bethe-Salpeter
equation.

3.2 The Wannier model

In order to proceed the eigenstates of the crystal are written in accordance with the Bloch
theorem as

ϕαk(r) =
1√
Ω
uαk(r)eik·r (3.27)

where the functions uαk(r) are lattice periodic functions obeying

1
ΩUC

∫
UC

|uαk(r)|2 d3r = 1 (3.28)
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where the integral is taken over one unit cell. This in turn ensures that the function Eqn. 3.27
is normalized. Inserting the expression Eqn. 3.27 for the crystal states into the Coulomb and
exchange matrix element one gets, first for the Coulomb matrix element

〈cvk|VC |c′v′k′〉 =
1
εΩ2

∫∫
u∗ck(r)e−ik·ru∗v′k′(r

′)e−ik
′·r′V (r − r′)uc′k′(r)eik

′·ruvk(r′)eik·r
′
d3rd3r′

=
1
εΩ2

∫∫
u∗ck(r)uc′k′(r)ei(k

′−k)·ruvk(r′)u∗v′k′(r
′)ei(k−k

′)·r′V (r − r′)d3rd3r′

(3.29)

Now, the functions uαk are rapidly varying lattice periodic functions while the functions
ei(k−k

′)·r are slowly varying. . Thus, the product uvku∗v′k′ is rapidly varying and the product
V (r−r′)ei(k−k′)·r is slowly varying. This behaviour can be exploited in evaluating the integral.
Let S(r) be a slowly varying function and R(r) be a rapidly varying lattice periodic function,
then

∫
ΩUC

S(r)R(r)d3r =
N∑
l=1

∫
ΩUC(Rl)

S(r)R(r)d3r (3.30)

(3.31)

where the integral is taken over the unit cell with midpoint Rl and the contributions from
every single unit cell are summed. This gives the same result as if the integral was taken over
the entire crystal. Now, the slowly varying function is nearly constant across a single unit cell
so that S(r) can be replaced by its value at the midpoint of the unit cell

∫
ΩUC

S(r)R(r)d3r ≈
N∑
l=1

S(Rl)
∫

ΩUC(Rl)

R(r)d3r

=
N∑
l=1

S(Rl)
∫

ΩUC

R(r)d3r (3.32)

The last equality follows since it does not matter over which unit cell the integration is per-
formed because R(r) is lattice periodic. Finally, since the slowly varying functions barely varies
across a single unit cell one can multiply and divide the right hand side by ΩUC, treat ΩUC as
a volume element and rewrite the summation into an integral over the entire crystal

∫
ΩUC

R(r)S(r)d3r ≈ 1
ΩUC

∫
Ω

S(r)d3r

∫
ΩUC

R(r)d3r (3.33)

Using this result first for r and then for r′ the following is obtained for the Coulomb matrix
element
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3.2. THE WANNIER MODEL

〈cvk|VC |c′v′k′〉 =
1
εΩ2

Iv′k′,vkIck,c′k′

∫∫
ei(k−k

′)·(r′−r)V (r − r′)d3rd3r′ (3.34)

Ick,c′k′ =
1

ΩUC

∫
u∗ck(r)uc′k(r)d3r (3.35)

Since the integrand in Eqn. 3.34 only depends on the difference between r and r′ one can
rewrite the integral as

〈cvk|VC |c′v′k′〉 =
1
εΩ

Ivk,v′k′Ick,c′k′

∫
V (r)ei(k

′−k)·rd3r (3.36)

With the same argumentation as for the Coulomb matrix element, the exchange matrix element
becomes

〈cvk|VX |c′v′k′〉 =
1

Ω2

∫∫
u∗ck(r)uvk(r)uc′k′(r′)uv′k′(r′)V (r − r′)d3rd3r′

=
1
Ω
Ick,vkIv′k′,c′k′

∫
V (r)d3r (3.37)

Where it is assumed that V (r − r′) is slowly varying over a single unit cell. Since the lattice
periodic functions uαk(r) are orthogonal, one has for k = k′, Iαk,βk = δαβ . If the k dependence
of the lattice periodic functions is not too strong, one can assume that this relationship holds
even when k 6= k′, i.e., Iαk,βk′ = δαβ . The matrix elements then become

〈cvk|VC |c′v′k′〉 ≈
1
εΩ

∫
V (r)ei(k

′−k)·rd3r δvv′δcc′ (3.38)

〈cvk|VX |c′v′k′〉 = 0 (3.39)

From Eqn. 3.23 one finds the Hamiltonian matrix elements as

Hvck,v′c′k′ = Hvckk′δvv′δcc′ =
[
(Eck − Evk) δkk′ −

1
εΩ

∫
V (r)ei(k

′−k)·rd3r

]
δvv′δcc′ (3.40)

With this matrix element the matrix equation Eqn. 3.26 becomes

∑
k

Hvckk′Ψvck = EexcΨvck′ (3.41)

since all matrix elements with v 6= v′ or c 6= c′ vanish. Inserting the matrix element Eqn. 3.40
into the above equation one obtains

(Eck − Evk) Ψvck −
1

ε(2π)3

∫ [∫
V (r)ei(k

′−k)·rd3r

]
Ψvck′d

3k′ = EexcΨvck (3.42)

where the k summation has been rewritten into an integral.
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CHAPTER 3. WANNIER MODEL OF EXCITONS

3.3 The effective mass approximation

The last approximation in the Wannier model consists in applying the effective mass approxi-
mation. In this approximation the bands are assumed to be approximately parabolic near the
band gap in the Brillouin zone. The band energies Eck and Evk are accordingly written as

Eck = Eg +
~2k2

2me
Evk = −~2k2

2mh
(3.43)

Eck − Evk = Eg +
~2k2

2meh
(3.44)

where meh = memh/(me + mh) is the reduced effective mass. In the Coulomb term in Eqn.
3.42 the bracketed term is recognized as the Fourier transform of the potential V (r) so that

∫
V (r)ei(k

′−k)·rd3r = Vk−k′ (3.45)

Using this result and the effective mass approximation one obtains

EgΨk +
~2k2

2meh
Ψk −

1
ε(2π)3

∫
Vk−k′Ψk′d3k′ = EexcΨk (3.46)

The Coulomb term is the convolution of the potential and the wave function. From Fourier
analysis it is known that the Fourier transform of a convolution is equal to the product of
the Fourier components. Taking the Fourier transform of the above equation and using the
relations

1
(2π)3

∫
Ψkeik·rd3k = Ψ(r),

1
(2π)3

∫
Ψkk2eik·rd3k = −∇2Ψ(r) (3.47)

one obtains the Wannier equation

[
Eg −

~2∇2

2meh

]
Ψexc(r)− 1

ε(r)
V (r)Ψexc(r) = EexcΨexc(r) (3.48)

The Wannier equation can be rewritten into more appropriate units by measuring length in
terms of the effective unscreened Bohr radius a∗B = 4πε0~2/(mehe

2) and energy in terms of
the effective unscreened Rydberg Ry∗ = ~2/(2meha

2
B). Using the expression Eqn. 3.8 for the

potential the Wannier equation in natural exciton units becomes

[
Eg −∇2

]
Ψexc(r)− 2

rε(r)
Ψexc(r) = EexcΨexc(r) (3.49)

The binding energy of the exciton is given by EB = Eexc − Eg and in terms of the binding
energy the above equation is
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3.4. LINEAR BANDS

−∇2Ψexc(r)− 2
rε(r)

Ψexc(r) = EBΨexc(r) (3.50)

Where the binding energy EB is a negative quantity for the bound state solutions.

3.4 Linear bands

The effective mass approximation which was used above assumes that the bands are parabolic
near the band gap. This is far from always the case and in gapped graphene for instance the
bands are only parabolic very close to the band gap, but linear farther away. Thus, in gapped
graphene a more accurate approximation for the bands near the band gap is

Eck =
√
α2 + γ2

ck
2 (3.51)

Evk = −
√
α2 + γ2

vk
2 (3.52)

where Eg = 2α. These expressions reproduce the correct band structure near the band gap and
are thus valid for low energy excitations. The goal here is to describe excitonic effects below the
band gap, i.e., the excitonic energy states which are introduced below the lowest conduction
band. Such excitations are low energy excitations and therefore the above expressions are good
approximations for their purposes. For the two expressions to yield the correct effective masses
for the present structures it is required that

~2

(
d2Eck
dk2

)−1 ∣∣∣∣
k=0

= m∗e (3.53)

and similarly for the valence band. Differentiating and taking the limit where k → 0 one gets
γ2
c = ~2α/m∗e and thus

Eck =
√
α2 + α~2k2/m∗e (3.54)

Evk = −
√
α2 + α~2k2/m∗h (3.55)

If the gap is very small, i.e., for α → 0, these expressions describe pure graphene and should
accordingly reproduce the correct Fermi velocity for k far away from the band gap. The Fermi
velocity is equal to the slope of the bands divided by ~ and one finds for the conduction band
and for k → ∞, vF =

√
α/m∗e. Using the values m∗e = 0.008m0 (m0 being the free electron

mass) and α = 40.5 meV ([1] or Tbl. 4.1) one obtains a Fermi velocity of vF ≈ 0.94 ∗ 106 m/s,
close to the pure graphene value of 106 m/s.

Using these expressions for the band energies the eigenvalue problem Eqn. 3.42 becomes

√
α2 + γ2

ck
2Ψvck +

√
α2 + γ2

vk
2Ψvck −

1
ε(2π)3

∫
Vk−k′Ψvckd

3k′ = EexcΨvck (3.56)
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CHAPTER 3. WANNIER MODEL OF EXCITONS

Now, this equation cannot be inversely Fourier transformed in a simple way as it was done
under the effective mass approximation above. Instead, one has to calculate the kinetic energy
terms (the two first terms on the left hand side) in k-space. The Coulomb term (the third term
on the left hand side) can still be inversely Fourier transformed in the same fashion as before.
Thus, each term is evaluated in the most appropriate space by using the fact that the Fourier
transform is a unitary transformation so that it preserves the inner product (App. D).
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Chapter 4

Implementation and results

4.1 Screening in gapped graphene - two band model

In this section the q dependent conductivity spectra obtained using the two band model of
gapped graphene are presented. The spectra are calculated using Eqn. 2.25 and the matrix
element given by Eqn. 2.39. Due to the symmetry of the Brillouin zone the k integral in
Eqn. 2.25 need in principle only be over the irreducible slice of the Brillouin zone, since the
irreducible zone contains all the information contained in the whole Brillouin zone. One has
to be aware however, of the asymmetry of the involved quantities, i.e., the matrix element and
the transition energies. Due to the addition of the vector q to k of the final state the symmetry
is broken and the result will depend on the choice of irreducible zone used for the integration.
This is of course not physical since the result must not depend on how the integration is done,
and should for all irreducible zones give the same result as if the integration was performed
over the whole Brillouin zone. To restore the symmetry the integral is averaged over several q
vectors of constant magnitude but with angles varying between 0 and 2π.
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Figure 4.1: Real part (left) and imaginary part (right) of the graphene conductivity for various values
of q as a function of energy. The band gap is set to 0.5 eV.

In order to evaluate the effective dielectric function given by Eqn. 2.21 the complex sheet
conductivity is needed. The imaginary part of the conductivity can be calculated by using the
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CHAPTER 4. IMPLEMENTATION AND RESULTS

Kramers-Kronig relations which state that

Ri(ω) = −2ω
π

PV

∞∫
0

Rr(ω′)
ω′2 − ω2

dω′ (4.1)

Rr(ω) =
2
π

PV

∞∫
0

ω′Ri(ω′)
ω′2 − ω2

dω′ (4.2)

where R̃(ω) = Rr(ω) + iRi(ω) is an analytic function and PV means that the principal value
of the integral has to be taken, which in practice means that the singularity is excluded from
the integral. The numerical approximation to the imaginary part then becomes

Ri(ω) = −2ω
π

∑
i\i:ωi=ω

Rr(ωi)
ω2
i − ω2

∆ω (4.3)

so that the summation includes all i except the one which leads to ωi = ω. In Fig. 4.1 the real
and imaginary part of the conductivity is plotted. 96 q vectors in the directions 0 to 2π are
used, and the band gap is set to 0.5 eV. The k integration has been performed using the triangle
integration method [10] with 4096 triangles. From the imaginary part of the conductivity one
can proceed and calculate the effective dielectric function from Eqn. 2.21 for the 2D case and
from Eqn. 2.18 for finite thicknesses of the graphene layer.
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Figure 4.2: The effective dielectric function for two thicknesses of the graphene sheet calculated using
a band gap of 0.5 eV.

In Fig. 4.2 the effective dielectric function, εeff, is plotted for two values of the thin layer
thickness with εa = εair = 1 and εb = εSiO2

= 4, the 2D limit d = 0 and a finite thickness
d = acc, with acc = 1.42Å being the graphene carbon-carbon distance. It is seen that εeff

converges to a constant value for large values of q. For the 2D limit (d = 0) the effective
dielectric function starts in 2.5 for small q and converges to 2.5 for large q values. This makes
sense intuitively since large q values correspond to small distances between the charges. Thus,
when the charges are near each other or far apart the screening from the surrounding media
dominates. For finite thicknesses the screening for large q approaches 1, i.e., the screening
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4.2. EXCITON ENERGIES

in vacuum. One can say that the space between the two charges becomes depleted of other
charges due to the repulsion as the charges get close together, and only the vacuum screening
persists.

To calculate the real space dielectric function Eqn. 2.24 is used. The potential U(r) is needed
and can be calculated from Eqn. 2.23 by exploiting the behaviour of εeff for large q. For finite
d the effective dielectric function εeff approaches 1 for large q and in the 2D limit it approaches
the mean dielectric constant εave = (εa + εb)/2. This means that the integral in Eqn. 2.23 can
be evaluated in the following way

∞∫
0

J0(qr)
εeff(0, q)

dq =

∞∫
0

J0(qr)
(εeff − a) + a

dq =

b∫
0

J0(qr)
(εeff − a) + a

dq +

∞∫
b

J0(qr)
(εeff − a) + a

dq (4.4)

Here b is the value of q for which εeff reaches its asymptotic value a. For example, for the right
figure in Fig. 4.2 a = 1 and b ≈ 12.5. Thus, from b to ∞, εeff − a = 0 and therefore

b∫
0

J0(qr)
(εeff − a) + a

dq +

∞∫
b

J0(qr)
(εeff − a) + a

dq =

b∫
0

J0(qr)
(εeff − a) + a

dq +
1
a

∞∫
b

J0(qr)dq =

1
ar

+

b∫
0

(
J0(qr)
εeff

− J0(qr)
a

)
dq =

1
ar

+

b∫
0

aJ0(qr)− εeffJ0(qr)
a εeff

dq (4.5)

in the second step the lower limit in the last integral was changed from b to 0 and this was

compensated for by subtracting 1
a

b∫
0

J0(qr)dq. The integral from 0 to b can be easily evaluated

numerically and in the actual calculations a trapezoidal numerical integration has been applied.

In Fig. 4.3 the real space dielectric function has been plotted for a number of graphene layer
thicknesses. In the calculations the effective dielectric function has been calculated for 30000
values of q in the interval 0 to 80/acc using a band gap of 0.5 eV. The triangle integration has
been performed using 361 triangles (210 k-points). Even though 361 triangles are not enough
to obtain smooth conductivity spectra it is enough to obtain convergence in the final result for
the dielectric function. The most important observation to be made from the calculation of
the real space dielectric function, is that the final results are highly dependent on the thickness
of the graphene layer, especially around r ≈ acc. The actual thickness of a single graphene
layer is poorly defined, and so it becomes difficult to obtain physically justified results for
the screening in graphene on a substrate. From these results however, one can learn that the
screening in graphene on a substrate is not so simple and cannot be determined simply from
the properties of the surrounding media.

4.2 Exciton energies

Parabolic bands - the effective mass approximation

Using the real space dielectric function calculated above one can proceed and calculate the
excitonic binding energies from the Wannier equation Eqn. 3.50 under the effective mass ap-
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Figure 4.3: The real space dielectric function for four thicknesses of the graphene sheet calculated using
a band gap size of 0.5 eV.

proximation. To determine the energies the exciton eigenstates are needed. Using a variational
approach, one can assume that the radial part of the excitonic 1s state is given by

Ψexc(r) = 2ηe−ηr (4.6)

where η is a variational parameter to be determined later. The states are labeled similarly to
those of the hydrogen atom since the Wannier equation is mathematically similar to the equa-
tion for the hydrogen atom, and thus has the same set of solutions. Inserting this expression
into the 2D radial Wannier equation

[
− d2

dr2
− 1
r

d

dr
− 2
rε(r)

]
Ψexc(r) = EBΨexc(r) (4.7)

one obtains the following
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[
−η2 +

η

r
− 2
rε(r)

]
Ψexc(r) = EBΨexc(r) (4.8)

Left multiplication by Ψ∗exc(r) and subsequent integration over all space gives for the energy
expectation value

EB = η2

1− 8

∞∫
0

e−2ηr

ε(r)
dr

 (4.9)

In order to determine the parameter η the above expression is differentiated and put equal to
zero, thus

dEB
dη

= 2η

1− 8

∞∫
0

e−2ηr

ε(r)
dr + 8η

∞∫
0

re−2ηr

ε(r)
dr

 = 0 (4.10)

Since no analytical expression for ε(r) exists in the present model the integration has to be
performed numerically. One can take advantage of the limiting behaviour of ε(r) for large
values of r, i.e., ε(r) approaches εave for large r, just as it was done above for numerical
integration of expressions involving εeff. Upon doing this, the following expression is obtained

dEB
dη

=
8bη − 4
εave

e−2ηb + 2η

1− 8

b∫
0

e−2ηr

ε(r)
dr + 8η

b∫
0

re−2ηr

ε(r)
dr

 = 0 (4.11)

where b is the approximate value of r for which ε(r) has converged to εave. The above equation
is solved numerically using the algorithm described in Alg. 4.1.

When the optimal value of η has been found, the energy can be calculated by inserting η into
Eqn. 4.9. One has to remember that the energy calculated from this equation comes out in
units of the effective unscreened Rydberg, Ry∗ = 13.6 [eV] · µ where µ is the reduced effective
excitonic mass µ = memh/(me + mh) measured in units of the free electron mass m0. The
effective masses are taken from a quasi-particle (QP) tight binding model of graphene antidot
lattices [1] [2]. It is important to remember that the thickness of the graphene layer, d, has to
be measured in effective Bohr radii since d is coupled to q through Eqn. 2.18 and q is coupled
to r through Eqn. 2.24 and Eqn. 2.23. The effective Bohr radius is given by aB = 0.529[Å]/µ.

In Fig. 4.4 the exciton binding energy is plotted as a function of layer thickness. The parameters
used to make this plot are taken from the table in [2] calculated in the QP-TB model. They
are given in Tbl. 4.1

In the figure it is seen that the excitonic binding energy does not vary much as a function
of the layer thickness. That this makes good sense physically can be argued for by realizing
that the Wannier exciton is very delocalized with the electron and the hole separated by
several graphene lattice constants (≈ 25Å). The real space dielectric constant does not vary
significantly as a function of layer thickness in this domain. The heavy dependence on the
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Algorithm 1 Procedure for determining optimal value of η
1: procedure NumericalSolver
2: Accuracy = 0.000001;
3: Direction = 0;
4: ThisVal = 0.0;
5: LastVal = 0.0;
6: Step = 10.0;
7: CurrEta=0.000001; . A value close to but larger than zero
8: while Step > Accuracy do
9: ThisVal=dEB/dN(CurrEta) . Calc. dEB/dN in point CurrEta from Eqn. 4.11

10: if Direction 6= 0 then
11: if ThisVal*LastVal < 0 then . Check for sign reversal
12: Direction = -Direction;
13: Step=Step/2.0;
14: end if
15: else
16: Direction = 1; . Here it is assumed that the sought η is positive
17: end if
18: CurrEta = CurrEta + Direction*Step;
19: LastVal = ThisVal;
20: end while
21: end procedure

Eg = 81 Eg = 250 Eg = 358 Eg = 569 Eg = 577 Eg = 409
me 0.008 0.033 0.053 0.097 0.232 0.349
mh 0.008 0.031 0.047 0.083 0.658 0.130
µ 0.004 0.016 0.025 0.045 0.171 0.095

Table 4.1: Values of the effective masses and reduced effective masses used in calculating the exciton
binding energies. The gap energies are in meV and the masses are in units of the free electron mass.
The parameters are calculated from antidot lattices {12,1}, {12,3}, {10,3}, {8,3}, {10,5} and {10,7}
(left to right in the table).

layer thickness is found at small distances on the order of a few graphene lattice constants.
That the binding energy does not depend much on the layer thickness is convenient because it
is difficult to argue physically for the actual thickness of the graphene layer. Due to the weak
dependence the actual value of the thickness is not so important and choosing the graphene
lattice constant as the thickness, the binding energies are as follows

EB,81 = −13 meV EB,250 = −49 meV EB,358 = −78 meV EB,569 = −145 meV
EB,577 = −316 meV EB,409 = −593 meV

For comparison, the binding energies calculated using Eqn. 1.1 by assuming that the graphene
layer itself does not contribute to the screening, so that the screening is determined solely by
the surrounding media, are given by
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Figure 4.4: Exciton binding energies as a function of the layer thickness for a number of band gaps.

Eε=2.5
B,81 = −34 meV Eε=2.5

B,250 = −139 meV Eε=2.5
B,358 = −217 meV Eε=2.5

B,569 = −391 meV

Eε=2.5
B,577 = −820 meV Eε=2.5

B,409 = −1484 meV

Where the subscript ε = 2.5 is meant to indicate that these values of the binding energies
are calculated using the simple estimate of the screening. Thus, the improved model of the
screening reduces the binding energy by about a factor of 2.6. The binding energies in the
simple model indicate that the model yield unphysical results for both the structure with
Eg = 577 meV and the structure with Eg = 409 meV, since the binding energy is larger
than the band gap. In the more advanced model allowing for spatially varying screening
the discrepancy is resolved for the structure with Eg = 577 meV while it persists for the
Eg = 409 meV structure. Thus, the discrepancies are not resolved for all structures. It does
seem however, that it is only the structures with large holes compared to the unit cell size
which yield unphysical results.

Linear bands

The excitonic energies using the linear band model can be calculated using a variational ap-
proach as it was done in the last section. In this case however, one has to determine the
energy from Eqn. 3.56. Due to Parseval’s theorem (App. D) the energy expectation value is
preserved. This means that

∫
|Ψexc(r)|2 d2r =

∫
|Ψk|2 d2k (4.12)

Since the wave function is normalized the left hand side is equal to unity. Thus, the right hand
side is also equal to unity, corresponding to the obvious fact that the probability of finding
the exciton with some momentum between zero and infinity is unity. The kinetic energy terms
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of Eqn. 3.56 are evaluated in k-space while the potential energy term is evaluated in r-space
according to

Ekin =
∫ √

α2 + γ2
ck

2 |Ψvck|2 k d2k +
∫ √

α2 + γ2
vk

2 |Ψvck|2 k d2k (4.13)

Epot =
∫
V (r)
ε(r)

|Ψexc(r)|2 r d2r (4.14)

To proceed with the variational estimate of the binding energies an expression for the wave
function is needed. The ansatz used for the effective mass case in the last section is again used

Ψexc(r) = 2ηe−ηr (4.15)

This is plotted for η = 1 in the right part of Fig. 4.5 where it can be seen that this ansatz
allows the electron and the hole to be very close to each other.
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Figure 4.5: (left) Diagram of parabolic bands versus linear bands. Here it is seen that the energy
increases faster for the parabolic bands than for the linear bands as a function of the momentum.
Linear bands thus allows for higher momentum. (right) The ansatz for the wavefunction.

Using this ansatz is not without complications though. Due to the linear energy dispersion the
electron and the hole are allowed to have larger momentum than for parabolic bands because
the energy penalty paid is not as large as for the parabolic bands. This is illustrated in the
left part of Fig. 4.5. Larger k values mean smaller separation between the electron and the
hole which is favoured due to the Coulomb attraction. The kinetic energy penalty paid due to
the larger momentum is not large enough to keep the electron and the hole separated and so
the exciton collapses and the energy diverges. In practice this means that below some critical
value of the band gap the ansatz Eqn. 4.15 does not show a minimum for any value of the
variational parameter η. Using a higher value of the screening causes the Coulomb energy to
decrease and thus the exciton does not collapse. In this way non divergent binding energies
can be obtained.

In order to calculate the kinetic energy for this ansatz the Fourier transform is needed. The 2D
Fourier transform of a circularly symmetric function R(r) can be calculated in the following
way
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R̃(k) =
1

2π

∫∫
R(r)eik·rdxdy

=
1

2π

∫∫
R(r)eikr cos θrdrdθ

=
1

2π

∫
R(r)

[∫
eikr cos θdθ

]
rdr

=
∫
R(r)J0(kr)rdr (4.16)

which is just the zero’th order Hankel transform (also known as the Fourier-Bessel transform).
The Fourier transform is therefore also circularly symmetric. Thus, the Fourier transform of
the ansatz Eqn. 4.15 becomes

Ψk =
∫

Ψexc(r)J0(kr)rdr =
2η2

(η2 + k2)3/2
(4.17)

With this expression for the Fourier transform one can calculate the kinetic energy from Eqn.
4.13 and using the ansatz Eqn. 4.15 the potential energy can be calculated from Eqn. 4.14.
The optimal value of η, the value which minimizes the total energy, can then be found. Using
the simple approximation for the screening, i.e., assuming that the screening is a constant,
the binding energies can be calculated. In order to obtain non divergent binding energies the
screening must be large enough that the exciton does not collapse. The screening is set to
ε = 5.0. This gives the following binding energies calculated with the Wannier model using
linear bands

Elin
B,81 = −11 meV Elin

B,250 = −47 meV Elin
B,358 = −84 meV Elin

B,569 = −132 meV

Elin
B,577 = div. Elin

B,409 = div.

where the superscript “lin” means that these values are calculated using linear bands and
“div.” means that the binding energy is divergent for the relevant structure. For comparison,
the binding energies calculated using the Wannier model with the effective mass approximation
and a screening of ε = 5.0 are

Eε=5.0
B,81 = −8 meV Eε=5.0

B,250 = −34 meV Eε=5.0
B,358 = −54 meV Eε=5.0

B,569 = −97 meV

Eε=5.0
B,577 = −373 meV Eε=5.0

B,409 = −206 meV

For the two structures with Eg = 577 and Eg = 409 the binding energy again diverges in the
linear band model and the energy does not show a minimum for any value of η. The slope of
the bands for these structures is about a factor of 2-3 smaller than the slope of the band for the
other structures, which again makes it energetically too “cheap” to increase the momentum
and thereby decrease the electron-hole separation. The most important conclusion to make for
these results is that the binding energy increases (becomes more negative) in the linear band
model because the electron and the hole are allowed to be closer to each other.
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CHAPTER 4. IMPLEMENTATION AND RESULTS

4.3 Antidot geometry

In order to investigate the influence of the antidot geometry the band gap dependence on the
antidot lattice geometry is investigated. The band gaps in the two geometries will be compared
in order to determine the influence of the geometry on the band gap.

Setting up the hexagonal lattice

In order to apply the TB method the coordinates of the atoms within the unit cell have to
be known. In this section it is shown how to generate the geometry of the antidot lattice.
For the purpose of illustrating the setup of the unit cell geometry, i.e., to find the coordinates
of the atoms in the unit cell, unit cells without holes in them will be considered first. The
introduction of holes into the unit cells is discussed later.

To determine the coordinates of the atoms in the unit cell the lines which bound the unit cell
are first defined. These lines are shown as dashed lines surrounding the unit cell for a hexagonal
lattice in the left part of Fig. 4.6. To create the unit cell geometry one simply checks all points
among a set of points which is certain to contain the whole unit cell. If the point lies inside
the structure defined by the lines, it belongs to the unit cell. Any point can be transformed
into the first quadrant by taking the absolute value of x and y. Due to symmetry reasons, it
is enough to check if the transformed point lies within the area bounded by the x and y axes
and the two lines L1 and L2 in order to determine if the point belongs to the unit cell.

The lines are defined in terms of the unit cell size. The size of the unit cell is defined by the
edge length, L, and the edge length is expressed in terms of the number of hexagons on the
unit cell edge. For example, the structure shown in the left part of the figure has an edge
length of L = 3. The actual length of the unit cell edge in Ångstrøms is given by La0 where
a0 = 2.46Å is the graphene lattice constant. The lines L1 and L2 are defined by

L1: y = − x√
3

+ La0 (4.18)

L2: x =
√

3
2
La0 (4.19)

The condition for a point (x, y) being inside the unit cell then becomes

|x| <
√

3
2
La0 and |y| < − x√

3
+ La0 (4.20)

With the positions of the atoms within the unit cell specified, it still remains to specify the
lattice. The lattice vectors are given by

a1 =

(√
3

2
,

3
2

)
La0, a2 =

(√
3

2
,−3

2

)
La0 (4.21)

No single atom is shared between two or more unit cells. Each atom in the crystal belongs to
one and only one unit cell. This is important because in the TB model it must be specified
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Figure 4.6: Unit cells of the hexagonal and the rectangular lattice. The two leftmost unit cells are
for a {3,0} and a {4,1} hexagonal antidot lattice respectively. The two rightmost unit cells are for
rectangular lattices {3,3,0} and {5,7,1}. The numbers on the edges of the unit cells indicate the size
of the unit cells.

which types of atom each atom interacts with. Each atom in the unit cell is given a unique
number but if the atom is shared among several unit cells it is unclear which type of atom it
is. In order to avoid these complications the unit cells are chosen as shown.

In order to calculate the band structure it is necessary to know the reciprocal lattice vectors.
They can be calculated by the requirement that eiai·bj = 1 from which it follows that ai · bj =
2πδij . By exploiting this relationship the reciprocal lattice vectors are found to be

b1 =
(

1√
3
,

1
3

)
2π
La0

, b2 =
(

1√
3
,−1

3

)
2π
La0

(4.22)

The introduction of holes into the unit cell is simply a matter of removing atoms from the middle
of the unit cell. To create a circular hole atoms with coordinates which satisfy x2+y2 < (Ra0)2,
where R is the hole radius and not necessarily an integer, are removed. The hole radius is thus
expressed in terms of a0 just as the edge length.

Setting up the square/rectangular lattice

The procedure for setting up the square/rectangular antidot lattice does not differ much from
the procedure described above. The lines bounding the unit cell are defined and all atoms
within the bounds belong to the unit cell. In contrast to the hexagonal lattice, where the unit
cell is characterized by a side length and hole diameter, the unit cell in the square lattice is
determined by a height, a width, and a hole diameter. A lattice in the rectangular configuration
is designated as {Lx, Ly, R} where Lx is the width measured in the armchair direction, Ly is
the height measured in the zig-zag direction and R is the hole radius. Due to the symmetry of
the underlying graphene lattice a perfectly square antidot lattice cannot be constructed. An
almost square lattice can be made however, and the discrepancy becomes smaller for large unit
cells. The lattice vectors for the rectangular lattice are given by

a1 =
(

3 + 3Lx
2

, 0
)
a0√

3
, a2 =

(
0, 2(Ly + 1)

)
a0

2
(4.23)
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where Lx is the unit cell width measured in the armchair direction and Ly is the unit cell height
measured in the zig-zag direction. Antidot lattices in the rectangular geometry are designated
as {Lx, Ly, R}, where R is the radius of the hole. The corresponding reciprocal lattice vectors
are given as

b1 =
(

4π√
3a0(1 + Lx)

, 0
)
, b2 =

(
0,

2π
a0(1 + Ly)

)
(4.24)

An example of a rectangular lattice is shown in Fig. 1.3(b). The Brillouin zone in this geometry
is rectangular just as the direct lattice. In Fig. 4.6 two unit cells of the rectangular lattice are
shown. In order to obtain a lattice as close to a square lattice (not rectangular) as possible
one must, for the lattice vectors chosen, require that

|a1|
|a2|

=
√

3(1 + Lx)
2(1 + Ly)

≈ 1 (4.25)

which yields the following expression for Ly

Ly = round
[

1
2

(
√

3Lx +
√

3− 2)
]

(4.26)

where the result has to be rounded because non-integer values of Ly are meaningless. Using
this expression for Ly an almost square antidot lattice is obtained.

Results

In the context of square and rectangular antidot lattices it is interesting to know how the band
gap is influenced by the parameters of the lattice, that is, the unit cell width and height and
the hole size. In Tbl. 4.2 the band gaps for structures of a constant width 11, hole radius 2.0
and heights ranging between 5 and 24 are shown. Here it is seen that the band gap is only
appreciable for structures with unit cell heights obeying Ly = 2 + 3n with n = 0, 1, 2 . . ., and
this pattern continuous for even larger structures of height 24 and beyond (not shown in the
table). Most of the structures in the table with an indicated band gap of 0.0 eV do in fact
have a small band gap on the order of 1-5 meV.

In the case of hexagonal antidot lattices the band gap is always located at the Γ point in the
Brillouin zone independently of the size of the unit cell or the diameter of the hole. In the case
of rectangular antidot lattices the band gap is not fixed in the Brillouin zone. In some cases it
is located somewhere between high symmetry points of the Brillouin zone. This is because the
unit cell geometry does not follow the geometry of the underlying graphene lattice as it does
in the case of hexagonal lattices.

If the unit cell height is held constant and the width is varied the gap decreases with increasing
width. This is shown in Tbl. 4.3. The tendencies just described are seen for all structures and
for all hole sizes, they are however, more pronounced when the ratio of number of removed
atoms to total number of atoms is small.

In Fig. 4.7 the band gaps for several antidot structures in both the hexagonal and the square
geometry are plotted as a function of N1/2

rem/Ntot, the ratio of the square root of number of
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Antidot lattice Total atoms Removed atoms Gap [eV]
{11,5,2.0} 144 24 0.77
{11,6,2.0} 168 24 0.00
{11,7,2.0} 192 24 0.08
{11,8,2.0} 216 24 0.54
{11,9,2.0} 240 24 0.00
{11,10,2.0} 264 24 0.04
{11,11,2.0} 288 24 0.42
{11,12,2.0} 312 24 0.00
{11,13,2.0} 336 24 0.04
{11,14,2.0} 360 24 0.34
{11,15,2.0} 384 24 0.00
{11,16,2.0} 408 24 0.03
{11,17,2.0} 432 24 0.28
{11,18,2.0} 456 24 0.00
{11,19,2.0} 480 24 0.03
{11,20,2.0} 504 24 0.23
{11,21,2.0} 528 24 0.00
{11,22,2.0} 552 24 0.03
{11,23,2.0} 576 24 0.21
{11,24,2.0} 600 24 0.00

Table 4.2: Band gap as a function of unit cell height (hole separation in zig-zag direction) with the
unit cell width (hole separation in armchair direction) and the hole size held constant.

Antidot lattice Total atoms Removed atoms Gap [eV]
{5,8,2.0} 108 24 0.64
{7,8,2.0} 144 24 0.67
{9,8,2.0} 180 24 0.62
{11,8,2.0} 216 24 0.54
{13,8,2.0} 252 24 0.48
{15,8,2.0} 288 24 0.42
{17,8,2.0} 324 24 0.38

Table 4.3: Band gap as a function of unit cell width (hole separation in the armchair direction) with
the unit cell height (hole separation in the zig-zag direction) and the hole size held constant.
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Figure 4.7: Band gap for various antidot structures in both hexagonal and square hole geometries.

removed atoms to total number of atoms. This plot clearly shows that the band gap in the
rectangular geometry in many cases becomes much smaller than the band gap in a correspond-
ing hexagonal lattice. Here an antidot lattice in the hexagonal geometry is said to correspond
to an antidot lattice in the rectangular geometry if the ratio N1/2

rem/Ntot is approximately the
same in the two. From the figure it is seen that the presence of a gap is highly dependent
on that ratio. For two rectangular antidot lattices of nearly the same ratio one might have a
relatively large gap while the other have zero gap. According to the discussion above, rectan-
gular antidot lattices have appreciable gaps for small ratios only if the unit cell height obeys
Ly = 2 + 3n with n = 0, 1, 2 . . ., which explains the very rapid oscillations in the gap size in
Fig. 4.7.

For those rectangular antidot lattices with small N1/2
rem/Ntot ratios which do have an apprecia-

ble gap, an approximately linear relationship between ratio and gap is seen, just as for the
hexagonal lattice. An approximate expression for the linear behaviour is given by

Eg(x) ≈ 0.0036[ eV] + 27.23[ eV] x (4.27)

These results for rectangular lattices are important because they show that rectangular lattices
with band gaps are difficult to realize in practice. The very heavy dependence on the ratio
of removed atoms to total number of atoms means that small deviations in the production
could cause the gap to disappear. For hexagonal lattices one does not see the same heavy
dependence on the ratio between removed atoms and total number of atoms, which means
that hexagonal lattices is a better approach to making antidot lattices in order to introduce a
gap into graphene.

In [13] square antidot lattices have been fabricated, although, with a much larger lattice con-
stant and hole size than the structures which have been treated here. In [13] gaps on the order
of 6 meV are found. The calculations made in this work suggests that some rectangular/square
antidot lattices have either zero gap or a very small gap which is in accordance with the ex-
perimental results. If the linear relationship between the gap and the characteristic ratio is
extended to antidot lattices as the ones fabricated a gap of approximately 25 meV is deduced.
More work is however required in order to make any conclusions. The following questions need
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4.3. ANTIDOT GEOMETRY

to be addressed

1. How does defects influence the band gap in the rectangular geometry.

2. How does the much larger unit cell size in the experiments affect the band gap.

3. What is the explanation of the peculiar behaviour of the band gap seen in Tbl. 4.2.
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Chapter 5

Discussion and conclusion

In this work graphene antidot lattices have been investigated and the following issues have
been addressed

1. How are the exciton binding energies influenced when the assumption that only the
surroundings contribute to the screening in the graphene layer is abandoned, and the
screening from the graphene layer itself is included in the calculation?

2. How are the exciton binding energies influenced when the effective mass approximation
is abandoned and the linear band dispersion is used?

3. How is the band gap influenced when the hole geometry in an antidot lattice is changed
from a hexagonal lattice to a rectangular/square lattice?

The first point has been addressed by solving the Poisson equation for the two interface system
and using a model based on time dependent perturbation theory for the dielectric function of
the graphene layer. Earlier work yielded unphysical large exciton binding energies, and it is
expected that part of the discrepancy is due to the very rough calculation of the screening in
the graphene layer which was employed. The findings of this work is that the more advanced
model of the screening, allowing for the screening to be spatially varying, reduces the binding
energy by a factor of ≈ 2.6. The dependence of the real space dielectric function in Fig. 4.3
on the distance between the two charges show that the screening is nonlocal. This nonlocality
causes the simple model in which the screening is assumed to be a constant determined solely
by the surroundings to break down. The more advanced model employed in this work solves
part of the discrepancies, but for some structures, in particular structures with large holes
compared to the unit cell size, the binding energies are still unphysical large.

The second point has been answered by employing the Wannier model with linear dispersive
bands. A variational approach was used and the kinetic energy terms was calculated in k-space
while the potential energy was calculated in r-space. It was found that for some structures the
binding energy diverges while for others it was increased compared to the one calculated using
the effective mass approximation with ε = 5.0.

The third point has been investigated by modelling rectangular antidot lattices in the quasi-
particle tight binding model as it has been done for hexagonal lattices earlier. The findings
here are somewhat surprising since the presence of a band gap is highly dependent on the
details of the structure. Thus, for some rectangular lattices a large or moderate gap is found
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while for others the gap is vanishing. It has been shown that a non vanishing gap is present
for structures with unit cell heights obeying Ly = 2 + 3n where the height is measured in
the zig-zag direction of the graphene lattices. The presence of a gap does not show the same
strong dependence as a function of the unit cell width, which is measured in the armchair
direction. In this case the band gap merely decreases when the width increases since the hole
becomes an increasingly smaller perturbation. This is similar to what is seen for hexagonal
lattices. For heights obeying the aforementioned rule, the gap size does decrease as a function
of width. To uncover the reason for the somewhat peculiar behaviour of rectangular lattices
further investigations have to be made.

In conclusion, the goal of this thesis has been achieved. A more advanced model for screening
in graphene has been applied and part of the discrepancies seen in the more simple model has
been removed. Square antidot lattices have been investigated and it has been found that the
band gap is highly dependent on the details of the structure.
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Appendix A

Derivation of nonlocal
conductivity

The derivation of the nonlocal conductivity starts from the continuity equation which states

∇ · J = −dρ
dt

(A.1)

where J is the current density and ρ(r) is the charge density. The current density is given by
J = σE = σ∇U/ |e|, where U is the potential energy, and so the continuity equation becomes

σ∇2U = − |e| dρ
dt

(A.2)

Expanding the potential and the charge density as a Fourier series in the following way (see
App. D)

U(r) =
Ω

4π2

∫
q

Ũ(q)eiq·rd2q (A.3)

ρ(r) =
Ω

4π2

∫
q

ρ̃(r, q)eiq·rd2q (A.4)

and inserting this into the continuity equation, one obtains

σ

∫
q

Ũq2eiq·rd2q = |e|
∫
q

dρ̃

dt
eiq·rd2q (A.5)

Since this equation must be fulfilled for all r (the continuity equation has to be fulfilled at all
points in space), one must require the Fourier coefficients on both sides to be equal
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σq2Ũ = |e| dρ̃
dt

(A.6)

and thus

σ̃(q) =
|e|
q2Ũ

dρ̃

dt
(A.7)

Fourier transforming the charge density in time as well, one obtains the following expression
for the Fourier components of the conductivity

σ̃(ω, q) = − iω |e|
q2Ũ

ρ̃ (A.8)

In order to calculate the conductivity the Fourier component of the charge density is needed.
The charge density can be calculated by exploiting a result from time dependent linear response
theory

X(ω) = −
∑
m,n

fnm
〈ϕm| Ĥ |ϕn〉 〈ϕn| X̂ |ϕm〉

Emn − ~ω − i~Γ
(A.9)

where ϕm and ϕn are single particle wave functions, fnm = f(En) − f(Em) is the Fermi
occupation function, Emn = Em−En and Γ a damping related to energy losses in the system.
The summation covers all accessible states of the system. X̂ is the operator associated with
the observable X(ω) and Ĥ is the interaction of the perturbation with the system. In order to
calculate the induced charge density due to an external field oscillating at a frequency ω the
operators for the interaction and the observable are

Ĥ = U(r) (A.10)

X̂ = − |e| δ(r − r′) (A.11)

The operator for the charge density gives the charge density at r due to an electron at r′. The
charge density then becomes

ρ̃(ω, r′) = |e|
∑
m,n

fnm
〈ϕm|U(r) |ϕn〉ϕ∗n(r′)ϕm(r′)

Emn − ~ω − i~Γ
(A.12)

The potential U(r) is completely general so that this formula provides the charge density for a
temporally and spatially varying perturbation, with the restriction that the perturbation has
to be monochromatic. Expanding the potential as a Fourier series as it was done in Eqn. A.4
but looking only at a single Fourier component
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U(r) = Ũ(q)eiq·r (A.13)

and inserting this into Eqn. A.12

ρ̃(ω, r′) = |e| Ũ
∑
m,n

fnm
〈ϕm| eiq·r |ϕn〉ϕ∗n(r′)ϕm(r′)

Emn − ~ω − i~Γ

= |e| Ũ
∫
r

∑
m,n

fnm
ϕ∗m(r)ϕn(r)ϕ∗n(r′)ϕm(r′)

Emn − ~ω − i~Γ
eiq·rd2r

= |e| Ũ
∫
r

χ(r, r′)eiq·rd2r (A.14)

Fourier transforming with respect to the r′ coordinate, the Fourier component of the charge
density is obtained

ρ̃(ω, q) = |e| Ũ 1
Ω

∫
r

∫
r′

χ(r, r′)eiq·(r−r
′)d2rd2r′

 (A.15)

Inserting the q dependent charge density into the expression for the conductivity, Eqn. A.8

σ̃(ω, q) = − iωe
2

q2

1
Ω

∫
r

∫
r′

χ(r, r′)eiq·(r−r
′)d2rd2r′


= − iωe

2

q2

1
Ω

∑
m,n

fnm
〈ϕm| eiq·r |ϕn〉 〈ϕn| e−iq·r |ϕm〉

Emn − ~ω − i~Γ

= − iωe
2

q2

1
Ω

∑
m,n

fnm

∣∣〈ϕm| eiq·r |ϕn〉∣∣2
Emn − ~ω − i~Γ

(A.16)

In this expression the summations over m and n are over all valence band states and all
conduction band states. In a crystal there will be many conduction and valence band states
each indexed by a different value of the momentum k′, where the prime is used to indicate that
the different spin states are contained within the k′ summation (k′ denotes a spin-momentum
state). All these states in a particular conduction or valence band are denoted collectively by
c′ and v′ respectively, so that v′ = 1 denotes all the states of different k′ belonging to this
particular valence band. The summation above can be split as follows

∑
m,n

=
∑
m∈v′

∑
n∈v′

+
∑
m∈c′

∑
n∈c′

+
∑
m∈c′

∑
n∈v′

+
∑
m∈v′

∑
n∈c′

(A.17)

For the first two summations the occupation factor fnm is practically zero. The two summations
correspond to the contribution to the conductivity from excitations from a valence band to
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another valence band and from a conduction band to another conduction band respectively.
The probability of these transitions is very low at moderate temperatures. Using Emn = −Enm
and fnm = −fmn and exchanging the indices in the last summation (so that m runs over
conduction band states and n runs over valence band states) one obtains

σ̃(ω, q) = − i2ωe
2

q2

1
Ω

∑
m∈c′

∑
n∈v′

Emn
∣∣〈ϕm| eiq·r |ϕn〉∣∣2

E2
mn − (~ω + i~Γ)2

(A.18)

The sums here run over all valence band states and all conduction band states. Writing out
the sums as sums over bands and sums over spin-momentum

σ̃(ω, q) = − i2ωe
2

q2

1
Ω

∑
m∈c

∑
n∈v

∑
k′c

∑
k′v

Emn
∣∣〈ϕm(k′c)| eiq·r |ϕn(k′v)〉

∣∣2
E2
mn − (~ω + i~Γ)2

(A.19)

Since the operator eiq·r is independent of spin, the matrix element vanishes whenever the two
states differ in spin. Thus, the spin summation gives simply a factor of two, i.e.

∑
k′c

∑
k′v

=
2
∑
kc

∑
kv

. Now, according to the Bloch theorem the states in a crystal are given by

ϕm(kc) = um(kc)eikc·r (A.20)

ϕn(kv) = un(kv)eikv·r (A.21)

States of different k are orthogonal and therefore the matrix element vanish for states which
do not obey kc = q + kv. This effectively removes one of the k sums and one is left with

σ̃(ω, q) = − i4ωe
2

q2

1
Ω

∑
m∈c

∑
n∈v

∑
k

Emn
∣∣〈ϕm(k + q)| eiq·r |ϕn(k)〉

∣∣2
E2
mn − (~ω + i~Γ)2

(A.22)

Since the crystal is for all practical purposes infinite in the plane, the k states lie infinitely
close together. Therefore the k summation can be replaced by an integral

σ̃(ω, q) = − iωe
2

π2q2

∑
m∈c

∑
n∈v

∫
Emn

∣∣〈ϕm(k + q)| eiq·r |ϕn(k)〉
∣∣2

E2
mn − (~ω + i~Γ)2

d2k (A.23)

The absorption of the material is given by the real part of the conductivity. Due to the
imaginary i outside the sums, the contribution to the real part comes from the imaginary part
of the integrand. Since the nominator is always real, the only contribution to the imaginary
part comes from the denominator of the integrand,

1
(Emn)2 − ~2(ω + iΓ)2

=
1

[Emn − ~(ω + iΓ)] [Emn + ~(ω + iΓ)]
(A.24)
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Splitting the fraction into partial fractions according to

1
[Emn − ~(ω + iΓ)] [Emn + ~(ω + iΓ)]

=
A

Emn − ~(ω + iΓ)
+

B

Emn + ~(ω + iΓ)
(A.25)

the constants A and B can thus be determined (more than one solution exists) and they are
given by A = 1/(2Emn) and B = 1/(2Emn). Therefore, after some algebra

Im
[

1
(Emn)2 − ~2(ω + iΓ)2

]
=

1
2Emn

[
~Γ

(Emn − ~ω)2 + ~2Γ2
− ~Γ

(Emn + ~ω)2 + ~2Γ2

]
(A.26)

As the broadening Γ tends to zero in the above expression the last term on the right hand side
goes to zero and only the first term persists. For this term one gets

1
2Emn

lim
Γ→0

[
~Γ

(Emn − ~ω)2 + ~2Γ2

]
=

π

2Emn
δ(Emn − ~ω) (A.27)

This gives, for the real part of the complex conductivity

Re [σ̃(ω, q)] =
ωe2

2πq2

∑
m∈c

∑
n∈v

∫ ∣∣〈ϕm(k + q)| eiq·r |ϕn(k)〉
∣∣2 δ(Emn − ~ω)d2k (A.28)

In terms of the graphene minimum conductivity, σ0 = e2/(4~) the conductivity is

Re [σ̃(ω, q)] = σ0
2~ω
πq2

∑
m∈c

∑
n∈v

∫ ∣∣〈ϕm(k + q)| eiq·r |ϕn(k)〉
∣∣2 δ(Emn − ~ω)d2k (A.29)
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Appendix B

Tight binding theory

The tight binding (TB) method is a method used for calculation of electronic band structures
of solids. It is an LCAO (linear combination of atomic orbitals) approach to determining
the total wave function of the crystal, similar to the LCAO approach used for example when
calculating energy levels in atoms. The idea in the LCAO approach is that the complicated
unknown wave function can be written as a linear combination of relatively simple known
wave functions. For example, in determining the wave function of atoms with Z > 1 the wave
function is expanded in terms of hydrogenic orbitals which can be obtained analytically. The
problem is then a matter of customizing the orbitals to the specific situation and determining
the weighing coefficient of each of the hydrogenic orbitals. The last problem can be easily
solved by using for example the Hartree-Fock method.

Several variants of TB exist ranging from ab-initio (from first principles) to semi-empirical
methods. TB can be viewed as the counterpart to the nearly free electron model for which
the plane wave basis is the most suited in describing the delocalized nature of the electrons.
TB is used for description of electrons which are tightly bound to the nucleus and therefore
the plane wave basis is not suitable. The wave function is instead expressed in terms of the
wave functions of the localized orbitals which then constitute the basis. In semi-empirical TB
an explicit expression for the localized orbitals is not needed, only the matrix elements are
needed.

The wave function with band index j is expressed as

Ψjk(r) =
1√
U

N∑
p

U∑
lmn

bplmn,j(k) |ϕp,Rp
lmn〉 (B.1)

where the first summation runs over all atoms of the unit cell (N) which may or may not
be of the same type, and the second summation runs over all unit cells of the crystal (U).
Rp
lmn = la1 +ma2 +na3 +rp is the position of atom p in the unit cell lmn, where rp describes

the atom position within the unit cell . |ϕp,Rp
lmn〉 is the atomic orbital of type p centered at

position Rp
lmn. Now, according to the Bloch theorem [19] the wave function ψ of an electron

in a periodic potential can be written as

ψnk(r) = eik·run(r,k) (B.2)
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APPENDIX B. TIGHT BINDING THEORY

Since, in Eqn. B.1 for a particular choice of p, the sum over lmn runs over atoms of the same
type separated by Rlmn = la1 +ma2 +na3, a vector of the lattice, this particular sum can be
written as a Bloch function associated with atom p. Thus, a total of N Bloch functions exist,
each given by

Φpk(r) =
1√
U

U∑
lmn

eik·R
p
lmn |ϕp,Rp

lmn〉 (B.3)

By writing bplmn(k) = cp(k)eik·R
p
lmn where cp(k), is the weight of the p’th Bloch function in

the total wave function, Eqn. B.1 can be written as

Ψjk(r) =
N∑
p

cpj (k)Φpk(r) (B.4)

The wave function has now been reexpressed in a basis of Bloch functions. In order to determine
the coefficients cpj (k) and the energies corresponding to each wave function, the wave function
is inserted into the Schrödinger Equation (SE)

ĤΨjk(r) = Ej(k)Ψjk(r) (B.5)

By using Eqn. B.4 one gets

N∑
p

cpj (k)ĤΦpk(r) = Ej(k)
N∑
p

cpj (k)Φpk(r) (B.6)

Premultiplying by Φp
′∗
k and integrating over all space gives

N∑
p

cpj (k) 〈Φp
′

k | Ĥ |Φ
p
k〉 = Ej(k)

N∑
p

cpj (k) 〈Φp
′

k |Φ
p
k〉 (B.7)

Each particular choice of p′ gives a new equation, so that there will be as many equations as
there are atoms in the unit cell. This can be formulated as a generalized matrix problem

Ĥ · cj = Ej(k)Ŝ · cj (B.8)

The matrix Ĥ contains the matrix elements of the Ĥ operator and the matrix Ŝ contains the
overlap matrix elements. Both matrices are of dimension N ×N . The matrix elements can be
determined by inserting the expressions for Φpk and Φp

′

k , given by Eqn. B.3, into the expression
for the matrix elements. One obtains then
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〈Φp
′

k | Ĥ |Φ
p
k〉 =

1
U

U∑
l′m′n′

U∑
lmn

eik·(R
p
lmn−R

p′

l′m′n′ ) 〈ϕp
′
,Rp′

l′m′n′ | Ĥ |ϕ
p,Rp

lmn〉 (B.9)

〈Φp
′

k |Φ
p
k〉 =

1
U

U∑
l′m′n′

U∑
lmn

eik·(R
p
lmn−R

p′

l′m′n′ ) 〈ϕp
′
,Rp′

l′m′n′ |ϕ
p,Rp

lmn〉 (B.10)

Both sums in each matrix element run over every unit cell of the crystal. If one chooses a
particular set of values of l′m′n′ and then executes the other sum over lmn, it gives the same
as if another set of values of l′m′n′ had been chosen due to the periodicity of the crystal. It
does not matter which value is chosen and all choices of l′m′n′ give the same contribution to
the matrix element, so that the matrix element contains U equal terms. Thus, l′ = 0, m′ = 0
and n′ = 0 can be chosen and the factor of 1

U is annihilated

Ĥpp′ = 〈Φp
′

k | Ĥ |Φ
p
k〉 =

U∑
lmn

e
ik·
(
Rp

lmn−R
p′
000

)
〈ϕp

′
,Rp′

000| Ĥ |ϕp,R
p
lmn〉 (B.11)

Ŝpp′ = 〈Φp
′

k |Φ
p
k〉 =

U∑
lmn

e
ik·
(
Rp

lmn−R
p′
000

)
〈ϕp

′
,Rp′

000|ϕp,R
p
lmn〉 (B.12)

From these equations the matrix elements can in principle be obtained and the eigenvalue prob-
lem solved for each value of k within the first Brillouin Zone (BZ) in order to obtain the band
structure. However, if one does not have explicit expressions for the wave functions another
approach has to be taken. One way is to use the tight binding method to calculate certain
properties of the structure in question treating the matrix elements as fitting parameters. The
calculation can then be fitted to experimental data (empirical tight binding) or to other more
accurate calculations.

One task still remains for Eqn. B.4 to represent a physical wave function. The function has to
be normalized, i.e., one must require that the function obeys

〈Ψjk|Ψjk〉 =
N∑
p,p′

cpj (k)∗cp
′

j (k) 〈Φpk|Φ
p′

k 〉 =
N∑
p,p′

cpj (k)∗cp
′

j (k)Ŝpp′ = 1 (B.13)

Or in matrix form

c†j · Ŝ · cj = 1 (B.14)

which constitutes the normalization condition for the eigenvectors. The eigenvector and the
overlap matrix are of course all k dependent.

In the equations above no approximations are made. The crystal wave function is written
as a linear combination of atomic orbitals, but this is not an approximation since the atomic
orbitals constitute a complete set. The expressions for the matrix elements though, contain as
many terms as there are unit cells in the crystal, i.e., infinitely many. But since the interaction
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APPENDIX B. TIGHT BINDING THEORY

between atoms decreases rapidly when the distance between them increases, contributions to
the matrix elements from atoms separated by more than a few nearest neighbour distances can
be neglected. Often only nearest neighbours are included in the calculation but of course one
is free to choose the number of nearest neighbours to include.

Another approximation which is frequently made is to completely ignore the overlap and simply
put the overlap matrix equal to the unit matrix. In this way the matrix problem to be solved
becomes

Ĥ · cj = Ej(k)cj (B.15)

i.e., a standard eigenvalue problem which is easier and faster to solve. This approximation is
valid if the overlap matrix elements are small, i.e., if the atomic orbitals are strongly localized.

In the case of graphene it is the π electrons which are most interesting. This is because the
π electrons are free to move in contrast to the other electrons which participate in covalent
bonding and are therefore strongly localized. The π electrons therefore constitute the major
contribution to the electrical and the optical properties of graphene. Therefore, in Eqn. B.1,
the sum over p would be a sum over π orbitals only.
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Appendix C

Graphene two band model

By applying the TB model in its simplest version to pure graphene a simple model which
shows the most important features of graphene can be made. In this model the overlap is
ignored and only nearest neighbour interactions are considered. The graphene lattice consists
of two interpenetrating triagonal sub lattices which are called A and B in the following. Atoms
belonging to the A lattice are also identified as A and similar for atoms belonging to the B
lattice. Each atom has three nearest neighbours of the other type, i.e., an A atom has three
nearest neighbours which are B atoms. In Fig. C.1(a) a graphene sheet is shown. The red
atoms constitute the A sub lattice and the blue atoms constitute the B sub lattice. The set
of lattice vectors shown is the set belonging to the A sub lattice. A similar set belongs to
the B sub lattice. The shaded box shows the two atom unit cell of the graphene lattice. The
total graphene sheet can be described as a triagonal lattice with a two atom basis. The lattice
vectors of the graphene lattice is given by

a1 =

(√
3

2
,

1
2

)
a0, a2 =

(√
3

2
,−1

2

)
a0 (C.1)

where a0 = 2.46 Å is the graphene lattice constant. Since there are two atoms in the unit cell,
there are two Bloch functions. One for the A atoms and one for the B atoms. Thus, the matrix
elements of the Hamiltonian matrix are given by

〈ΦA| Ĥ |ΦA〉 = 〈ΦB | Ĥ |ΦB〉 = E0 (C.2)

〈ΦA| Ĥ |ΦB〉 = 〈ΦB | Ĥ |ΦA〉∗ = γ01

[
eik·r1 + eik·r2 + eik·r3

]
= γ01f1(k) (C.3)

where ri are the vectors which connect an A or B atom with its nearest neighbours. The
transfer integral γ01 = 〈ϕA(r)| Ĥ |ϕB(r − ri)〉 is the same for all i since all nearest neighbours
obviously lie in the same distance from the center atom. The vectors ri are given by

r1 = (
1

2
√

3
,

1
2

)a0, r2 = (
1

2
√

3
,−1

2
)a0, r3 = (−1, 0)a0 (C.4)
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a1

a2

(a)

Γ

K

b1
ky

kx

b2

M

(b)

Figure C.1: (a) a graphene lattice and the two atom unit cell in graphene. Atoms belonging to different
sub lattices are colored in different colors. (b) the Brillouin zone of graphene. The shaded area is the
irreducible BZ.

and the exponential factor f1(k) in Eqn. C.3 is therefore found to be

f1(k) = e−ikxa0/
√

3 + 2eikxa0/(2
√

3) cos(kya0/2) (C.5)

In order to calculate the band structure the reciprocal lattice vectors has to be known. These
are calculated from the requirement that eiai·bj = 2πδij from which it follows that ai · bj = 1.
The reciprocal lattice vectors are found to be

b1 =
(

1√
3
, 1
)

2π
a0
, b2 =

(
1√
3
,−1

)
2π
a0

(C.6)

From the reciprocal lattice vectors the first Brillouin zone can be constructed. This is done by
constructing the Wigner-Seitz cell from the reciprocal lattice vectors. The first Brillouin zone
is shown in Fig. C.1(b). The band structure is calculated by evaluating the eigenvalues of the
Hamiltonian matrix for k values on the path Γ−M −K − Γ. Setting E0 = 0 (it only causes
a shift of the eigenvalues) the eigenvalues are given by

∣∣∣∣ −E −γf1(k)
−γf∗1 (k) −E

∣∣∣∣ = E2 − γ2 |f(k)|2 = 0 (C.7)

so that the eigenvalues are given by E(k) = ±γ |f1(k)|. From this it is seen that if |f1(k)| = 0
for some k there will be no band gap. |f1(k)|2 is given by

|f1(k)|2 = 1 + 4 cos2
(
ky
a0

2

)
+ 4 cos

(
ky
a0

2

)
cos

(
kx

√
3a0

2

)
(C.8)
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The K point in reciprocal space lies at ( 2π√
3a0

, 2π
3a0

) and inserting this into the expression for

|f1(k)|2 one gets

|f1(K)|2 = 1 + 4 cos2 π

3
+ 4 cos

π

3
cosπ = 0 (C.9)

so that the bands meet in the K point. This point is called the Dirac Point. By doing a
second order expansion of the expression for the energy around the K point further properties
of graphene can be derived[7], i.e., putting k = K + q where |q| �K and using the addition
formulas for cosx one obtains

E(q) ≈ v |q| (C.10)

where v =
√

3γa0/2 . In the usual case one has E(q) = |q|2 /(2m) = v(q) |q| so that the
velocity depends on the wave vector q. In the case of graphene in the vicinity of the K point
the velocity does not depend on the wave vector. The velocity of electrons near the K point
is equal to the Fermi velocity vF = 106m/s[7] so that, still near the K point,

E(q) ≈ vF |q| (C.11)

The impact of this result is that the velocity of electrons near the Dirac point does not depend
on energy or momentum, but is equal to the Fermi velocity. The Fermi velocity in graphene is
∼ c/300, where c is the speed of light.
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Appendix D

The Fourier series and Fourier
transform

In this appendix Fourier series and Fourier transforms are explained, in order to give the
reader at least some background information on this subject [20]. The central theme in Fourier
analysis is to break complicated periodic functions into simpler periodic functions that are
easier to understand. For example, a Fourier series is a sum of sines and cosines which by
themselves are easy to understand. Since these functions constitute a complete orthogonal
set, any function can be build from sines and cosines. Thus, a complicated function can be
represented by a Fourier series, but the individual pieces are by themselves easy to deal with. A
Fourier series of an arbitrary periodic function f(x) = f(x+L) can be written in the following
way

f(x) =
∑
n

f̃ne
i2πnx/L (D.1)

where instead of sines and cosines the complex exponential function is used. The coefficients
are complex quantities and the summation ranges from n = −∞ to n = ∞. The function is
periodic with period L as one can easily see by writing

f(x+ L) =
∑
n

f̃(k)ei2πn(x+L)/L =
∑
n

f̃(k)ei2πnx/Lei2πn = f(x) (D.2)

since ei2πn = 1. It should be stressed that the function f(x) need to be periodic in order for
the Fourier series to converge. Non periodic functions are the domain of Fourier transforms
and will be dealt with later. Now, in order to determine the Fourier coefficients both sides of
Eqn. D.1 are multiplied by e−i2πmx/L and integrated from x = −L/2 to x = L/2, since the
complex exponential functions used here are orthogonal over this interval. Thus
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L/2∫
−L/2

f(x)e−i2πmx/Ldx =

L/2∫
−L/2

∑
n

f̃ne
i2π(n−m)x/Ldx =

∑
n

f̃n

L/2∫
−L/2

ei2π(n−m)x/Ldx

=
∑
n

f̃n
L sin [(m− n)π]

π(m− n)
= L

∑
n

f̃nδmn = Lf̃m (D.3)

Thus, the Fourier coefficients of Eqn. D.1 are given by

f̃n =
1
L

L/2∫
−L/2

f(x)e−i2πnx/Ldx (D.4)

It should be noted that the complex exponentials are orthogonal over other intervals as well,
for example the interval [−L,L]. Choosing another interval will of course not make a difference
to the Fourier coefficients. This is due to the periodicity of all involved quantities.

Now, one could wonder what would happen as the period of f(x) goes to infinity. Introducing
kn = 2πn/L and ∆k = 2π/L Eqn. D.1 becomes

f(x) =
L

2π

∑
n

f̃ne
iknx∆k (D.5)

As L becomes very large, ∆k → 0 and the kn’s become infinitely closely spaced. Thus, the
above expression looks like the Riemann definition of the integral and one can write in the
limit where L→∞

f(x) =
L

2π

∞∫
−∞

f̃(k)eikxdk (D.6)

This is the Fourier transform of f(x) and it is the generalization of the Fourier series Eqn. D.1
to non-periodic functions. In order to determine the Fourier coefficients one proceeds as in the
case of Fourier series by multiplying both sides of the equation by e−ik

′x and integrating with
respect to x from −∞ to ∞

∞∫
−∞

f(x)e−ik
′xdx =

L

2π

∞∫
−∞

f̃(k)

 ∞∫
−∞

ei(k−k
′)xdx

 dk (D.7)

The quantity in brackets is equivalent to the Dirac Delta function multiplied by 2π (actually,
it is one of the definitions of the Dirac Delta function) so that
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∞∫
−∞

f(x)e−ik
′xdx = L

∞∫
−∞

f̃(k)δ(k − k′)dk = Lf̃(k′) (D.8)

The Fourier coefficients are then given by

f̃(k) =
1
L

∞∫
−∞

f(x)e−ikxdx (D.9)

Eqn. D.6 and Eqn. D.9 constitute a Fourier transform pair. By combining these two equations
one obtains the Fourier integral theorem as follows

f(x) =
1

2π

∞∫
−∞

∞∫
−∞

f(x′)eik(x−x′)dx′dk (D.10)

Fourier transforms generalizes to more than one dimension in the obvious way

f(x) =
Ln

(2π)n

∫
f̃(k)eik·xdnk (D.11)

f̃(k) =
1
Ln

∫
f(x)e−k·xdnx (D.12)

where x and k are n-dimensional vectors. The Fourier coefficients can be chosen with an
arbitrary factor in front, as long as this is compensated for in the Fourier transform. This will
of course change the Fourier coefficients but not the Fourier transform. The factor of 1/(2π)
above can be split between the two equations as follows

f(x) =
Ln

(2π)n/2

∫
f̃(k)eik·xdnk (D.13)

f̃(k) =
1

Ln(2π)n/2

∫
f(x)e−k·xdnx (D.14)

An important property of a Fourier transformation is that it is a unitary transformation. This
means that it preserves the inner product so that the inner product of a function is equal to
the inner product of its Fourier transform, i.e.

∞∫
−∞

|f(x)|2 dx =

∞∫
−∞

∣∣∣f̃(k)
∣∣∣2 dk (D.15)

This relation is also known as Parseval’s theorem. It has the important property that energy
is conserved under a Fourier transform.
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