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Abstract:

Correspondence assertions are used as a means
to express authentication properties in com-
municating protocols expressed in the 7 and
Spi-calculi. A protocol is considered safe if
assertions in the protocol always hold. It
has been shown by Gordon and Jeffrey that
a type system can provide a sound approxi-
mation to the safety property. A paper by
Hiittel shows that sound and complete type
inference for such a system can be achieved
by encoding constraints to a subset of propo-
sitional logic, ALFP, which can be satisfied
by the Succinct Solver, a tool developed by
Nielson, Nielson and Seidl. In 2007, Fournet,
Gordon and Maffeis generalised the notion of
correspondence assertions by using Datalog, a
logic programming language utilising a subset
of ALFP, and developed a type system for ver-
ifying these assertions. An existing implemen-
tation of the type system with Datalog cor-
respondences was mentioned, but apparantly
not published. Likewise, the type inference
method of Hiittel has not seen an actual im-
plementation yet.

We aim to implement a type checker for the
type system with Datalog correspondences, as
presented by Fournet, Gordon and Maffeis.
We also aim to implement the type inference
method for a type system with non-injective
correspondences, as presented by Hiittel.

We use Objective Caml for both implementa-
tions. For the type checker implementation,
the Succinct Solver is used to interpret the
Datalog correspondences, as Datalog logic ex-
pressions are a subset of ALFP. For the type
inference implementation, the Succinct Solver
is used as the last stage of the inference algo-
rithm.

We prove that the algorithm used to imple-
ment the type checker is sound and complete.
We provide a few correctly typed examples
with the type checker. We do not complete the
type inference implementation. But we pro-
vide a partial implementation as a framework
for a complete implementation of the method.
We point to issues with the method and show
how they can be, or might be, solved.
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Chapter 1

Introduction

1.1 The Dolev-Yao Assumptions

In [3], Dolev and Yao present a number of assumptions that can be used as a framework
to reason about the security of cryptographic communication protocols. To focus on the
protocol itself, they remove considerations of any cryptographic algorithms the protocol
may use, by assuming that any ciphertext is unbreakable, its plaintext only accessible by
use of a decryption key. For the purposes of capturing protocol security, they also assume
that any attacker on the protocol has access to any message passing through the network,
can initiate communications with any user on the network, and has the opportunity to be
receiver to any initiation of communication. So while the assumptions do not allow for
the possible cracking of a ciphertext, they allow the attacker the opportunity of breaking
the protocol in any other way he or she can imagine within the scope of the network.
Such an attacker is frequently referred to as a “Dolev-Yao attacker”.

1.2 The 7- and Spi-calculi

In [15] and [16], Milner, Parrow and Walker present the w-calculus, a calculus of commu-
nicating systems which can be used to model communication protocols. In [1], Abadi and
Gordon extend the m-calculus with cryptographic primitives to create the spi-calculus.
Today, the names “m-calculus” and “spi-calculus” both cover a number of variants of
those calculi. The spi-calculi are interesting because they allow us to model crypto-
graphic protocols under the Dolev-Yao assumptions.

1.3 Correspondence Assertions

In [19], Woo and Lam suggests the use of correspondence assertions to formally define
authentication. In basic terms, correspondence assertions can be used to express that
when you reach one part of a protocol, some other specific part must have been executed
previously. This is formalised in the context of a spi-calculus by Gordon and Jeffrey
in [8] and [7], by the use of begin and end statements. We say that correspondences
hold if, in every run, every end statement corresponds to a previously executed begin
statement with the same label. These first papers specified injective correspondences,
where each begin statement may only satisfy a single end statement with the same label.



But in [6] for instance, Gordon and Jeffrey use non-injective correspondences instead.
For non-injective correspondences, each begin statement can satisfy any number of end
statements that have the same label.

The notion of safety is defined to hold for a protocol if all correspondence assertions
hold under every possible execution of that protocol. Robust safety holds if safety holds
under the assumption of a Dolev-Yao attacker. We note that sound and complete verifi-
cation of these properties is undecidable, on the grounds that we can express the halting
problem for the spi-calculus using correspondence assertions, and that the spi-calculus is
Turing complete. Using type systems for verification is a sound approach to the problem.

1.4 Type Systems and Type Inference

Apart from formalising correspondence assertions in the spi-calculus, Gordon and Jeffrey
also develop a type system for verification of the safety and robust safety properties in [8]
and [7]. To allow the verification of robust safety, Gordon and Jeffrey introduce opponent
types to indicate the influence of a Dolev-Yao attacker in the type system. Since then, the
spi-calculus and type system has been extended and built upon to allow such concepts
as: One-to-many correspondences ([6] by Gordon and Jeffrey), fractional effects ([11] by
Kikuchi and Kobayashi) and Datalog correspondences for authorisation policies ([4] by
Fournet, Gordon and Maffeis). Further, Gordon and Jeffrey also develop a similar type
system, which uses correspondence assertions to verify secrecy in [9], and in [14], Maffeis,
Abadi, Fournet and Gordon extend [4] to allow dynamic verification.

A type system in itself will only allow us to verify processes which have already been
typed. So given a process with type annotations, we can say if that process is well-typed,
and thus if the process is safe. Type inference will allow us to take a process without
type annotations and find an annotation that makes it well-typed, if possible. This can
ease the process of verification significantly.

Type inference for type and effect systems such as those treated here is a recent
development, and has been undertaken by such people as: Kikuchi and Kobayashi in [11]
and [12], and Hiittel in [10]. Kikuchi and Kobayashi use fractional effects to lower the
time complexity of type inference in [11], for a system without opponent types. In [12],
they introduce type inference for a system with opponent types, but modified to remove
opponent type rules, making the type system incomparable to the systems of Gordon and
Jeffrey. [10] takes a subset of the type system developed in [4], and presents an inference
method using ALFP and the Succinct Solver (a logic and a solver presented by Nielson,
Nielson and Seidl in [17]). The Succinct Solver was developed as a result of Nielson and
Nielson’s work on flow analysis, and it is worth noting that their work has resemblances
to type systems.

1.5 The Contributions of this Report

This report consists of two parts. The first part of the report concerns the implementation
of a type checker for the type system presented by Fournet, Gordon and Maffeis in [4].
Citing [4]: “We built a typechecker and a symbolic interpreter for our language”. Even
so, that implementation of the type system does not appear to have been published. In
chapter 2, we outline the spi-calculus and type system described in [4]. In chapter 3,
we describe a type checking algorithm and show a minor modification to the original
type system. In chapter 4, we highlight some implementation details that may hold an



interest to the reader. In chapter 5, we show a few examples of typed spi processes that
are accepted by the type checker.

The second part of the report changes the focus somewhat. We treat a slightly
different type system, described by Hiittel in [10] as a “subsystem of that of [4]”. The only
important difference from the type system described in [4] is the use of correspondence
assertions as described by Woo and Lam in [19], instead of Datalog correspondences.
Development of type inference methods for such a system has been undertaken from more
than one angle. One approach, used by Kikuchi and Kobayashi in [12] involves modifying
the type system presented by Gordon and Jeffrey in [7] to remove the opponent rules
(“Un” rules), and thus make the task of type inference simpler. The resulting system is
still sound with relation to safety and robust safety, but not comparable to the original
system in [7].

In chapter 6, we show the type system from [10] which represents a subset of the one
from [4]. In chapter 7, we explain the method from [10] and its motivation. In chapter 8,
we show the constraint generation part of [10] and touch on the subject of type abstrac-
tion. In chapter 9, we show the Alternation Free Fixpoint Logic (ALFP) from [17] and
go into detail with the subject of encoding constraints into ALFP formulae. In chapter
10, we show the correctness theorems from [10], stating soundness and completeness of
the inference method. In chapter 11, we touch on a few issues encountered during the
implementation, and discuss their possible solutions. In chapter 12, we highlight som
details of the implementation.

And finally, we make our conclusion in chapter 13.



Part 1

Type Checking



Chapter 2

A Spi Calculus with Datalog
Correspondence Assertions

In this chapter, we outline a spi-calculus with Datalog correspondence assertions for
expressing authenticity properties in the form of authorisation policies, and a type sys-
tem for verifying these correspondence assertions. The syntax and semantics are made
to closely resemble those of the spi-calculus presented in [4], with the differences that
the replication operator !, is bound to in statements, and M is annotated on match
statements (the exact reason for this is explained in section 3.3).

2.1 Syntax and Semantics

Syntax for Messages

I
M,N ::= message

T,Y, 2 name
ok ok token

pair(M, N) pair of messages
{M}n M encrypted by N

Names can be seen as the variables of a spi process. These variables may be bound in a
process by an in, new, decrypt, match or split term.

Syntax for Datalog
I

XY, Z logic variable
U = term
X logic variable
M spi calculus message
L= literal
p(ur, .. u,) predicate p holds for terms uq, ..., U,
C = Horn clause
L:—-Ly,...,L, clause, with n > 0 and fn(L) C U;fn(L;)
S = Datalog program
{C1,...,Cn} set of clauses

10



A Horn clause with n = 0 (no body), where each u; of literal L is a message, is called a
fact. We let F range over facts.

Inference of Facts
I 1

(Infer Fact)
L:-Ly,...,L,e€S SELoc Viel...n
SE Lo

where ¢ maps logic variables to messages
| 1

forn>0

Datalog use Horn clauses without function symbols for its logic expressions, which is
a subset of first order logic. For comparison, an expression such as FooBar(a,b) :
—Foo(a), Bar(b) would be written as Va(Vb(Foo(a) A Bar(b) — FooBar(a,b))) in first
order logic. First order logic can be used to form any Datalog logic expression, but
is more powerful as a logic, as it allows constructions such as disjunctions, existential
quantification and negation. In the second part of this report, section 9.1, we also present
ALFP, which is a larger subset of the first order logic.

Syntax for Processes
I

P Q,R:= process
in(M,z); P input
lin(M, x); P replicated input
out(M, N) output
new ¢ :T; P restriction of x in P
nil empty process

decrypt M as (y: T)n; P
match M : Ty as (N,y:T); P
split M as (z:T,y:U); P

S

expect F'

decryption of M with key N
match first pair component
pair splitting

Datalog Program
expectation of F

Syntax for Types

TU ==
Un
Ch(T)
Key(T)
Pair(z : T,U)
Ok(S)

type

opponent type
channel type

key type

dependent pair type
ok type

11



The function fn defines the set of free names of a process or type:

Free Names
I 1

fn(nil) =0
fo(in(M,xz); P) = £
fo(lin(M,z); P) = £
fo(out(M,N)) =f£

fo(new z: T; P) = fn(T) U fn(P)\{a:}
fn(decrypt M as (y:T)y; P) ==
fo(match M : Ty as (N,y:T); P)=f
fo(split M as (z:T,y:U);P) =1
F) £

fn(expect

The function bn defines the set of bound names of a process or type:

Bound Names
I 1

bn(nil
bo(in(M, z);
bo(lin(M, z);
bn(out(M

)
P)
P)
N))
bn(new z : T P)
)
)
)
)

} Ubn(P)
(in(M, x); P)

bn(decrypt M as (y: T)n; P
bn(match M : Ty as (N,y:T); P
ba(split M as (x: T,y :U); P
bn(expect F

y} Ubn(T) Ubn(P)
(Th) U{y} Ubn(T) Ubn(P)
(T)Ubn(U) U {z,y} Ubn(P)

0
{z
bn
0
{z} Ubn(T) Ubn(P)
{
bn
bn
0

For the full definition of fn and bn, see appendix A.1 and A.2.

Every x or y in the syntax denotes the binding occurrence of a name. in and new
binds « in P, decrypt and match binds y in P, and split binds « in U and P, and
y in P. The free names of a process are the names that are not bound by a binding
occurrence of that name. Most binding occurrences of names are annotated with types,
as can be seen in the syntax definitions of, new, decrypt, match and split. Types are
checked statically, and have no effect on runtime. We explain types and the type system
in section 2.2.

Alpha-conversion allows us to change the bound names of a process. An alpha-
conversion of a process P is a process P’ with the same meaning as P, but a different
set of bound names.

12



We define J{M/x} as the substitution of M for the free name z in J, where J is a
message, effect, type or process. See appendix A.4 for the formal definition.
The operational semantics are defined by structural equivalence and reduction rules.

Rules for Structural Equivalence: P = @

I

P=P

Q=P=P=Q
P=Q,Q=R=P=R

P=P =newz:T;P=newz:T;P
P=P =P|R=P|R

new z:T;(P|Q)=P|new z:T;Q

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Res)

(Struct Res)
(Struct Res Par)
(for = ¢ £n(P))
new x1: 11;new o : 1y, P = (
new I, : Th;new 1 : 11; P (
P |nil=P (
(
(

Struct Res Res)

for 1 # xo,x1 ¢ fn(Tn),xe ¢ fn(Ty))
Struct Par Zero)

PlQ=Q|P Struct Par Comm)
(PlQ)IR=P[(Q|R) Struct Par Assoc)

Rules for Reduction: P — P’

I
P=Q,0Q—-Q,Q)=P =P— P (
P—-P=P|Q—-P|Q (
P—P =newz:T;P —newx:T;P (Red Res)
out(m, N) | in(m,z); P — P{N/x} (Red Com)
out(m, N) | lin(m, z); P — P{N/z} | lin(m, z); P (Red Repl)
(
(
(

Red Struct)
Red Par)

decrypt {M}y as (y: T)x; P — P{M/y} Red Decrypt)
match (N, M) : Tyy as (N,y:T); P — P{M/y} Red Match)
split (M, N) as (z: Ty,y : T2); P — P{M/x}{N/y} Red Split)

|

We write P —* Q if P — @, or if there is some R for which it holds that P —* R and
R — Q. We write P —-L Qif P = Q or P —* (). The intuition then, is that @ is
reachable from P.

We can now define the notions of safety and robust safety in this calculus:

Definition 1. A process P is safe iff whenever P —% new z; (expect F' | P’), we have
P’ =S| P" for some P”, where S |= F.

Definition 2. A process P is robustly safe iff for every opponent O we have that P | O
is safe

2.1.1 Example

Most of the students and staff of the Department of Computer Science at Aalborg Uni-
versity are members of a social club, F-klub. To participate in F-klub activities, one
must be a member of F-klub. The Treo is an administrative group of F-klub, and to
become a member of F-klub, one has to make a deposit to the Treo. As an example of
how a spi-calculus with Datalog correspondences might be used, we will now present a
process which describes how membership of the F-klub works.

13



As the basis for the process, we formulate a policy in Datalog with the Horn clauses
A and B:

A = Factivity(U) : —Fmember(U)
B = Fmember(U) : —Treo(V'), Deposit(U, V)

A tells us that if U is a member of F-klub, then U may participate in F-klub activities.
B tells us that if V' is a member of the Treo, and U has made a deposit to V, then U is
a member of F-klub. To reason about Treo members, we use the process Pr:

Pr2lin (createTreo, v); (Treo(v) | lin (deposit, u);
(Deposit(u, v) | lin (checkdeposit, p); match pair(p, nothing) as (u, nothing);
out (confirm, {pair(u, pair(v, ok)}i))));
Sending v on the createTreo channel, will make v a Treo member by stating the fact
Treo(v). In turn, this spawns a process which will take and confirm deposits. To handle

the question of whether someone may participate in F-klub activities or not, we use the
process Pg:

Pr Zlin (activity, u);
(out (checkdeposit, u) | in (confirm, cipher);
decrypt cipher as {q}ir; match ¢ as (u, v);
(expect Factivity(u) | P))

We send u on the activity channel to check if w is allowed to participate in F-klub
activities. Pp tries to confirm this by querying one of the processes spawned by Pr on
the channels checkdeposit and confirm. By stating expect Factivity(u) in parallel with
P, we say that for this process to be safe, Factivity(u) must hold whenever we execute
P. As a finishing touch, we define the entirety as the process Sys, which we want to be
safe, and say that the key kf is restricted to Pr and Pp.

SygéA|B | (new kf; (Pr | Pr))

2.2 Type System

The type checker we develop is based on the type system presented by Fournet, Gordon
and Maffeis in [4]. The type rules are shown in table 2.1 and 2.2. To make the type
checker implementation simpler, we annotate M with a type in the (Proc Match) rule.
The exact reason for this is explained in section 3.3.

14



Good Message: E+-M : T

(Msg x) (Msg Encrypt) (Msg Encrypt Un)

Eto z€dm(E) EFM:T EFN:Key(T) EFM:Un EFRN:Un
Erz: E(x) Er{M}yN:Un E+{M}y:Un

(Msg Pair) (Msg Pair Un)

E-M:T E+N:U{M/s} EFM:Un EFN:Un
E  pair(M, N) : Pair(z : T,U) E + pair(M,N) : Un

(Msg Ok) (Msg Ok Un)
EFo £fn(S) Cdom(E) clauses(F) =C VCeS EFo
E I~ ok : Ok(S5) EFok:Un

Table 2.1: Good messages

15



Good Process: E+ P

(Proc Input)(p is either ! or nothing)  (Proc Input Un)(p is either ! or nothing)

E+-M:Ch(T) E,z:THP EFM:Un E,z:UntkP
Et+ pin(M, z); P Et+ pin(M,z); P
(Proc Output) (Proc Output Un)
Er-M:Ch(I) EFN:T EFM:Un EFN:Un
EF out(M,N) EF out(M,N)

(Proc Decrypt)
E+-M:Un EFN:Key(T) E,y:THP

E+ decrypt M as (y: T)n; P

(Proc Decrypt Un)
EFM:Un EFN:Un E,y:UnkP

E+ decrypt M as (y: Un)y; P

(Proc Split)
EFM:Pair(z:T,U) E,xz:T,y:UkFP
Etsplit M as (z:T,y:U); P

(Proc Split Un)
EFFM:Un FE;z:Un,y:UnkFP

Et+ split M as (z: Un,y: Un); P

(Proc Match)
E+M:Pair(x:T\U) EFN:T E,y:U{N/z}FP
Et+ match M : Pair(z : T,U) as (N,y : U{N/z}); P

(Proc Match Un) (Proc Res)
E-FM:Un EFN:Un Ey:UnkP FEz:TkFHP generative(T)
E F match M : Un as (N,y : Un); P Etrnewz:T;P
(Proc Par) (Proc Nil)
Ejenv(P) F P, E,env(P)F P, fn(P|Q) Cdom(E) Ero
EFP | Py E F nil

(Proc Fact)  (Proc Expect)
(E,C)Fo (E,C)Fo clauses(E) C
E-C E F expect C

Table 2.2: Good Processes

16



Chapter 3

Type Checking

In this chapter, we will treat the theoretical side of developing the type checker. In
section 3.1 we show the algorithms the type checker implements. In section 3.2, we
discuss why the algorithms are structured as they are. In section 3.3, we present the
reason for making an additional type annotation on match statements. In section 3.4,
we present correctness lemmas for the algorithms.

3.1 Algorithms

Algorithm 1, 2 and 3 are the pseudocode for an algorithm that performs type-checking
according to the type system described in section 2.2. The basic structure of these
algorithms is simple, and consists of a switch statement each.

The algorithms take the form of three recursive functions: env_judgment, msg_judgment
and proc_judgment. The functions consist of a switch on the structure of an environ-
ment, a message and a process, respectively. The cases of each switch cover all possible
syntactic structures of the element, and will check the element in accordance with the
type rules of section 2.2. Some constructions are covered by more than one case, to
handle specific permutations of the construction. The reason for having more than one
case for some constructions has to do with the fact that some types are generative and
have no message constructors, and the fact that we must often choose between either a
normal or an Un rule in the type system. We give a more detailed reasoning for this in
section 3.2. The output of each algorithm is a boolean value. If at any point an element
does not conform to the type rules, the algorithm returns false.

3.2 Cases of Generativity

Cases of the (Msg Encr) and (Msg Encr Un) rules are implemented in algorithm 2,
starting at line 2.10 and 2.21. The two cases correspond to the situation where the key
N is a name, and the situation where N is not a name. The reason for this distinction is
that the type Key(T') is generative. There are no message constructors for the Key(T)
type. So the only way N can be of type Key(T) is if N is a name, and the type can
be extracted from the environment. In line 2.10, we use the (Msg Encr) rule only if we
extract a Key(T') type. In line 2.21, we default on the (Msg Encr Un) rule if N is not a
name, because Key(7') has no message constructor.
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This approach to checking is repeated for several other rules, such as (Proc Decrypt™*),
(Proc Out*) and (Proc In*) where we can make decisions based on the form and type of
keys and channels, which are both generative types.

The (Proc Split*) rules (lines 3.50, 3.58 and 3.60) are a bit more challenging, because
they operate on pair messages. Pair messages are non-generative and we must therefore
handle the extra case of the message M being a pair constructor for which we do not,
strictly speaking, know the type. The type of pair(M, N) can be either Pair(x : T,U)
or Un. The solution for this case is to observe that if both T and U are Un (which
is the only case where we can use the (Proc Split Un) rule), using Pair(z : Un, Un) as
the type of M has the exact same result as using Un. So in the case of M being a pair
constructor, we can choose to always apply (Proc Split).

3.3 Annotating Match

During the implementation, a minor flaw was found in the (Proc Match) rule, from a
type checking perspective. Citing [4], the original (Proc Match) is presented as:

(Proc Match)
Er M :Pair(x:T,U) EFN:T E,y:U{N/z}FP
E +match M as (N,y: U{N/z}); P

If M is a name, we can extract the type of M from environment E. Thus, we can
know the types T' and U. However, M may not be a name. M may legally be a pair
constructor, in which case the exact type of M is unknown. In this case, neither 7' nor U
is known. To further complicate the issue, the type we annotate y with is the substituted
form of U. So any U we find must make U{N/z} possible.

In [5], Andersen implements a type checker for a similar type system, with a (Proc
Match) rule identical to the one shown here. Looking at the code however, it appears
that the possibility of M being a pair message was ignored, and that the type checker
will fail in that instance.

Our solution is a simple one, however: Instead of attempting to infer T and U, as
was the intention of Andersen in [5], we chose to annotate M with a type, so that T" and
U are always known.

Algorithm 1: env_judgment(env)

Data: Environment to be judged: enwv
Result: true if environment env is well-formed, false otherwise
switch env do

1.2 case ()
L return true
1.4 case K,z : T

| return env_judgment (E) A (fn(T) C dom(E)) A (x ¢ dom(E))

1.6 case E, ((M)
| return env_judgment (E) A (fn(4(M)) C dom(E))
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Algorithm 2: msg_judgment(E, msg, typ)

Data: Environment of message: F,
Message to be judged: msg,
Assumed type of message: typ
Result: true if message msg has type typ in environment E, false otherwise
switch msg do
2.2 case pair(M, N)
switch typ do
2.4 case Pair(z : T,U)
| return msg_judgment (E, M, T) Amsg_judgment(E, N, U{M/x})
2.6 case Un
| return msg_judgment(E, M, Un) Amsg_judgment (E, N, Un)
otherwise
L return false

ase {M}Name(x)
if typ = Un then
switch F(z) do
2.13 case Key(T)
return msg_judgment (E, M, T) A
L msg_judgment (E, Name(z), Key(T))

2.10

<]

2.15 case Un
| return msg_judgment (E, M, Un) A msg_judgment (E, N, Un)

otherwise
L return false

else
L return false

ase {M}y
if typ = Un then
| return msg_judgment (£, M, Un) Amsg_judgment (E, N, Un)
else
L return false

2.21

(<)

2.26 case Name(z)

| return (E(z) =typ) A (z € dom(E)) A env_judgment (F)
2.28 case ok

switch typ do

2.30 case Un
| return env_judgment (FE)
2.32 case Ok(S)

return (clauses(E) EC VC € S)A
(fn(S) C dom(E)) A env_judgment (F)

otherwise
L return false
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Algorithm 3: proc_judgment(E, proc)

3.2

3.4

3.6

3.8

3.20

3.22

3.24

3.26

Data: Environment of process: F,

Process to be judged: proc

Result: true if process proc is well-typed in environment F, false otherwise
switch proc do

case new ¢ : T; P
| return generative(T) A proc_judgment((E,z:T), P)

case (P|Q)

L

return fn((P|Q)) C dom(E) A
proc_judgment ((env(Q), E), P) A proc_judgment ((env(P), E), Q)

case nil
| return env_judgment (E)

case C
return env_judgment ((E, C'))
juadg

case expect C

| return (clauses(F) |= C) A env_judgment ((E,C))
case decrypt M as (y: T)name(x); P
switch E(z) do

Q

case Key(T)
return

msg_judgment (F, M, Un) Amsg_judgment (E, Name(z), Key(T)) A
| proc_judgment((E,y:T), P)
case Un

return msg_judgment (£, M, Un) A

msg_judgment (E, Name(z), Un) A
| proc_judgment ((E,y : Un), P)

otherwise
L return false

ase decrypt M as (y: T)n; P
return msg_judgment (£, M, Un) A
msg_judgment (E, N, Un) A

| proc_judgment ((E,y : Un), P)

ase match M : Ty as (N,y : Usyp); P
switch T, do

case Pair(z : T,U)
return msg_judgment (E, M, Th) Amsg_judgment(E, N, T) A
L proc_judgment ((E,y : U{N/z})) NU{N/z} = Usup
case Un
return msg_judgment (£, M, Un) Amsg_judgment (£, N, Un) A
L proc_judgment ((E,y : Un), P)

(* Switch statement continued on next page *)
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Algorithm 3: proc_judgment(E, proc)

3.30

3.32

3.34

3.38

3.40

3.42

3.44

3.48

3.50

3.52

3.54

3.58

3.60

(* Continuation of switch statement *)

C

o

<]

(<)

o

<]

<]

end

ase out(Name(z), N)
switch F(z) do
case Ch(T)
L return

msg_judgment (E, Name(x), Ch(T)) Amsg_judgment (E, N, T)
case Un

return msg_judgment (E, M, Un) A

msg_judgment (£, N, Un)
otherwise
L return false

ase out(M, N)
return msg_judgment (£, M, Un) A
| msg_judgment (£, N, Un)
ase pin(Name(y),x); P
switch F(y) do
case Ch(T)
return msg_judgment (E, Name(y), Ch(T)) A
proc_judgment ((E,z : T), P)
case Un
return
msg_judgment (E, Name(y), Un) A proc_judgment ((E,z : Un), P)
otherwise
L return false

ase pin(M, z); P
return msg_judgment (£, M, Un) A
| proc_judgment ((E,z : Un), P)
ase split Name(z) as (z: T,y :U); P
switch E(z) do
case Pair(z : T,U)
return msg_judgment (E, Name(z), Pair(z : T,U)) A
proc_judgment ((E,z : T,y : U), P)
case Un
return msg_judgment (E, Name(z), Un) A
proc_judgment ((E,z : Un,y : Un), P)
otherwise
L return false

ase split pair(M;y,Ms) as (z: T,y :U); P
return msg_judgment (F, pair(M;, M), Pair(z : T,U)) A
| proc_judgment((E,z:T,y:U), P)
ase split M as (¢ : T,y :U); P
return
| msg-judgment (E, M, Un) A proc_judgment ((E,z : Un,y : Un), P)
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3.4 Correctness

To prove the correctness of these algorithms in accordance with the type system, we
present the following five lemmas, asserting that the functions of the algorithm implement

the corresponding type judgments correctly.
Lemma 1. env_judgment(env) <= envhk o
Proof. Proof by induction in the structure of env. See appendix B.

Lemma 2. msg_judgment (E, msg, typ) = E F msg : typ

Proof. Proof by induction in the structure of msg. See appendix B.

Lemma 3. proc_judgment (E, proc) = E F proc

Proof. Proof by induction in the structure of proc. See appendix B.

Lemma 4. F F msg : typ = msg_judgment (E, msg, typ)

Proof. Proof by induction in the structure of msg. See appendix B.

Lemma 5. E F proc = proc_judgment (£, proc)

Proof. Proof by induction in the structure of proc. See appendix B.

O

By Lemmas 1, 2, 3, 4 and 5, the algorithms are both sound and complete in relation
to the type system. The boolean output of the algorithms correspond to acceptance or
rejection by the type system. This is interesting because our actual implementation of
these algorithms correspond very closely to the pseudocode. So barring any outright

bugs in the code itself, the implementation should be correct.
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Chapter 4

Implementing the Type
Checker

The type checker was implemented in Objective Caml, a multi-paradigm language sup-
porting both functional, imperative and object oriented constructions ([13]). The type
checker was written using only functional constructions, with one exception. In spichecker.ml
for instance, we use the only object in the entire program to keep track of command line
arguments. This prevalence of functional constructions is partly because the process of
syntax-tree traversals, as used in a type checker, is well suited for the functional paradigm.
But it is also partly because of the author’s wish to train himself in the practical use of
functional programming.

In this chapter, we first present the general purpose and use of each module, and how
they fit together in a dependency hierarchy. We then proceed to present some specific
implementation details that we believe may hold an interest to the reader.

4.1

Hierarchy

Figure 4.1 shows the hierarchy of module dependencies in the type checker. Following is
a short description of each module.

spichecker.ml: Main function of the type checker. This is the part of the code
which reflects the pseudocode in section 3.1.

spitree.ml: Syntax tree structure for the spi calculus. Contains string_of func-
tions for all elements of the structure.

spilexer.mll, spiparser.mly: Lexer and parser for the spi calculus. Parses to
the structure of spitree.ml.

aconv.ml: Alpha conversion. Contains a function to perform alpha conversion on
a spi process such that every binding name of the process is distinct. This function
is called before using the checker function in spichecker.ml. This simplifies the
process of type checking.

auxiliary.ml: Contains functions used by the type checking function of spichecker.ml,
such as fn, dom and clauses.
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ssolver/alfp.ml | ssolver/outputlexer.mil

ssolver/outputparser.mly

spitree.ml T
/ \ ssolver/ssolver.ml
spilexer.mll aconv.ml auxiliary.ml datquery.ml
spiparser.mly

~

spichecker.ml

Figure 4.1: Module hierarchy of the type checker. An arrow indicates a dependency.

e ssolver/alfp.ml: Syntax tree structure for ALFP. Contains string_of functions
for all elements of the structure.

e ssolver/outputlexer.mll, ssolver/outputparser.mly: Lexer and parser for
the output of the Succinct Solver.

e ssolver/ssolver.ml: Simple OCaml wrapper for the Succinct Solver. Contains
a function which returns the minimal solution to an ALFP formula represented by
the tree structure of ssolver/alfp.ml. It needs SML and a compiled Succinct
Solver heap to function.

e datquery.ml: Datalog interface to Succinct Solver wrapper. Contains functions to
convert from the Datalog substructure in spitree.ml to ALFP. Performs queries
on Datalog programs to resolve expect statements.

When spichecker.ml is executed with a spi process as input, the process is first
parsed, and then alpha converted through aconv.ml, and finally type checked. Whenever
a Datalog query needs to be performed, datquery.ml is called, which uses the Succinct
Solver through the modules in ssolver/ as its back-end for resolving queries.

4.2 Alpha Conversion

An alpha conversion of a process is another process with a different set of bound names,
but with the same meaning as the original process. The alpha conversion returned by
proc_subst in aconv.ml, ensures that every binding name is distinct, and that no bound
name is the same as a free name. This is handled by prefixing each name with a natural
number which is incremented for each new binding or free name. Being able to make
these assumptions makes type checking easier in general, not least because it makes the
process of capture-avoiding substitution trivial.

Three simple functions are responsible for the actual name substitution: subst_name,
bind and unbind. A substitution map and an accumulator is passed with each call to one
of the traversal functions. An updated substitution map and accumulator is returned
(us, ua), together with the alpha conversion of the element. All names in the alpha
conversion are on the form #_name, where # is a natural number and name is the name
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Listing 4.1: Function subst_name

let subst_name x accum substMap =
if SMap.mem x substMap then
(SMap. find x substMap, accum, substMap)
else
let newname = (string_of_int accum) ~ 7.7 " x in
let newMap = SMap.add x newname substMap in
(newname, accum + 1, newMap)

Listing 4.2: Function bind

let bind x accum substMap =
let newname = (string_of_int accum) "~ 7.7 " x in
let newMap = SMap.add x newname substMap in
if SMap.mem x substMap then
let oldname = SMap. find x substMap in
(newname, accum + 1, newMap, (x, oldname))
else
(newname, accum + 1, newMap, (x, ””))

from the original process. The accumulator ensures that every fresh name is unique by
increasing # for each name.

The algorithm itself can be seen from the “viewpoint” of the substitution map, which
at any given point during the execution maps names from the original process to names
in the alpha conversion.

If we see a free name, we call the subst_name function (listing 4.1). If the name
is in the map, we substitute. If not, we create a fresh name, substitute, and add the
substitution to the map. This way, we catch and substitute any free names to make sure
that bound and free names do not clash.

If we see a binding occurrence of a name, we call bind (listing 4.2) before traversing
into the scope it binds, and unbind (listing 4.3) afterwards. bind returns not only the
new name, accumulator and map, but also an old mapping that we may have replaced in
the substitution map, and which needs to be reinserted after the traversal of the bound
scope. Calling unbind with the old mapping will handle this reinsertion.

A feature of this approach is that the substitution map returned from the alpha
conversion represents the mappings of all the free names of the process. Any bound
name is removed by unbind when exiting the bound scope, while free names are left in
the map. To check for robust safety, we declare these names to be of type Un in the
environment passed to the type checker.

Having written these three functions, the matter of handling an alpha conversion
becomes the relatively simple, if tedious, task of writing the traversal functions and
remembering when to call which function. In hindsight, since the accumulator and
substitution map are used as persistent structures in the traversal functions of aconv.ml,
one might consider using mutable values to represent these, and avoid passing too many
arguments with each call.
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Listing 4.3: Function unbind

let unbind (x, oldname) substMap =
if oldname = ”” then
SMap.remove x substMap
else
SMap.add x oldname substMap

4.3 The Succinct Solver Wrapper

The folder ssolver/ contains the wrapper for the Succinct Solver, a program developed
by Nielson, Nielson and Seidl for the purpose of calculating models to ALFP formulae
([17]). ALFP is a subset of first order logic, and will be explained in detail in section 9.1.

The wrapper was developed as a “shortcut” to handle the evaluation of Datalog
queries. Several other tools might have been used for this purpose. The SWI-Prolog
interpreter was considered, for instance, as Datalog is a subset of Prolog. In the end, we
settled on using the Succinct Solver, since we would have to find a way to interface with
it anyway, in the type inference part of this project.

The type checker was written using Objective Caml, and is interpreted or compiled
with ocaml. The Succinct Solver was written using SML, and is interpreted or compiled
with smlnj (SML New Jersey). Perhaps surprisingly, directly interfacing between the two
does not yet appear possible, despite the fact that OCaml and SML are both considered
dialects of ML.

The solution used instead is conceptually simple, and consists of the type checker
executing the Succinct Solver command and parsing the output. In truth, this type
of solution should be considered a last resort, used in the absence of a more sensible
approach. It is very error-prone, and requires some care when formatting input and
parsing output. In this particular case, we should take note of the fact that the atoms
we use for terms in Datalog are Spi messages.

As part of the wrapper, we wrote ssolver/alfp.ml which contains a data-structure
for ALFP, with accompanying string of functions that facilitate the generation of
strings readable by the Succinct Solver. datquery.ml contains the function alfp_of _dat,
for converting from the Spi-representation of Datalog to ALFP. One reason that we can-
not use the ALFP data-structure for the Spi-representation, is that in Spi, we use Spi
messages as the atoms of Datalog terms. These messages must be converted to strings
to fit into the standard ALFP syntax. To make sure that these strings are unique for
unique messages, and that they are not misinterpreted in any way by either the parser of
the Succinct Solver or our parser for the resulting output, we make the string of msg
function in spitree.ml capable of using an alternative syntax, clearly marking names,
and using a set of characters that could not potentially be confused with the syntax of
ALFP.

Default message syntax
I 1

message ::=
ok ok token
{message}message encrypted message
pair(message,message) pair message
[’a’—’z’][’a’—’z’ A ;O)_;g;]* name
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Listing 4.4: Function type_equal

let rec type_equal ?(acc=0) t1 t2 =
match (tl1, t2) with
| (Un, Un) —> true
| (Key(t), Key(u)) — (type-equal Tacc:acc t u)
| (Ch(t), Ch(u)) —> (type-_equal Tacc:acc t u)
| (TPair(x, leftl, rightl), TPair(y, left2, right2)) —
if (type_equal Tacc:acc leftl left2) then
let rl_subst = subst_name rightl x (Name(string_of_int acc)) in
let r2_subst = subst_name right2 y (Name(string_of_int acc)) in
type_equal Tacc:(acc + 1) rl_subst r2_subst
else false
| (TOk(dl), TOk(d2)) —>
(List.for_all (fun dlelt —>
List .mem dlelt d2
) dl) &
(List.for_all (fun d2elt —>
List .mem d2elt dl
) d2)
| - — false

Alternative message syntax
I 1

message =
ok ok token
{message}message encrypted message
pair<message,message> pair message
Name<[’a’-’z’][’a’-’z’ ’A’=’Z’ 20°-29°] %> name

4.4 Type Equality

The problem of type equality was one problem that appeared trivial at first sight. One
might be tempted to think that types can be compared by the standard operator for
structural equality, “=". But one should be reminded that types can contain both
dependent pair types and Datalog facts in the form of the clauses D in a Ok(D) type.
A Datalog program is handled in our data structure as a list of clauses, and equality in
this case is just a matter of checking if all elements in one list is contained in the other,
and vice versa. While perhaps not as efficient as it could be, the implementation of case
(TOk(d1), TOk(d2)) in listing 4.4 is at least simple.

The problem with dependent pair types is that we can have two types, Pair(x : Un, Ok(D))
and Pair(y : Un, Ok(D3)) that have the same meaning but are not structurally equal,
because the binding name x differs from y. The solution is simply to perform alpha-
conversion to make the names equal whenever we need to check equality between two
dependent pair types. The fresh names for equality check are natural numbers, which
are accumulated recursively.
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4.5 Exception Handling

Calling what we do in the code for “exception handling” may be a stretch of the defini-
tion of “handling”. If at any type we encounter a type error, we raise an exception. This
being a type checker, we are not supposed to recover from a type error. So any exception
we catch in relation to a type error, is only caught to raise another exception with more
information accessible from that particular scope. In the main call to the type checker
in spichecker.ml, we simply catch and print the associated string of any TypeFailure
exception. The TypeFailure exception is raised if we catch a MsgTypeFailure excep-
tion from the main body of the checker functions (env_judgment, msg_judgment and
proc_judgment). MsgTypeFailure is raised on any type failure with an appropriate ex-
planatory string. TypeFailure adds the information of exactly which process caused
that exception.
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Chapter 5

Examples

To demonstrate the type checker we have included a few sample spi processes with the
checker, in the spisamples/ directory. We show a few of them here, together with a
short explanation. Since these examples are taken from text files, the formatting is a bit
different from other spi samples in this report. Each example shown here are well-typed
according to the type checker. To test the type checker, one simply has to make small
changes to the types or correspondences to introduce type errors, and see if the checker
catches the error.

5.1 Sign and Decrypt

The following process asserts a simple correspondence between two sub-processes, where
one sends a message to the other.

new ka:Key(Ok(send(a)));

(

(begin send(a)| out(pub, {ok}ka)) |

in(pub, crypt); decrypt crypt as {o:0Ok(send(a))}ka; end send(a)

)

5.2 Reviewer

The following example is an adaptation of an example presented by Fournet, Gordon and
Maffeis in [4]. It models a situation where a reviewer can file an opinion on a report, or
delegate that responsibility to another reviewer. If the reviewer is a referee, he may write
an opinion on a report assigned to him, or delegate that responsibility to someone else.
If the reviewer is a programme committee member (pcmember), he may file an opinion
on any report.

As a seemingly very large and complex process, this example highlights the possibility
of improving the type checker by implementing shorthand forms (syntactic sugar) for
common syntactic constructions, akin to the ones used in [4].

The policy presented as part of the process consists of three Horn clauses. The first
states that if principal U has been asked to review paper ID, and U has written opinion
R on paper ID, then R attaches to paper ID as the opinion of U.
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The second Horn clause states that if U is a programme committee member and R
is U’s opinion on ID, then R attaches to paper ID as the opinion of U. So anyone who
is a programme committee member may file opinions on papers.

The third Horn clause states that if principal U has been asked to review ID, and U
delegates ID to V', then V has been asked to review ID, and may do so.

({report (U,ID,R) :— referee(U,ID), opinion(U,ID,R);
report (U,ID,R) :— pcmember(U), opinion (U,ID,R);
referee (V,ID) :— referee (U,ID), delegate(U,V,ID)}
|
new pwdb:Ch(Pair (

u:

Un,

Pair (none:

Key (Pair (v:Un, Pair(id:Un, Ok({delegate(u,v,id)})))),
Key (Pair (id :Un, Pair(report:Un, Ok({opinion(u,id,report)}))))
)))
(lin(createReviewer , v);

new kdv: Key(Pair(z:Un, Pair(id:Un, Ok({delegate(v,z,id)}))));

new krv: Key(Pair(id:Un, Pair(report:Un, Ok({opinion(v,id,report)}))));

(out (pwdb, pair(v, pair(kdv, krv)))]|

(in (sendreportonline, inrep );
match inrep:Un as (v,inrest:Un);
split inrest as (id:Un, report:Un);

({opinion(v,id ,report)}

|out (filereport , pair(v,{pair(id, pair(report, ok))}krv)))
[l'in (delegateonline , inrep);

match inrep:Un as (v, inrest:Un);
split inrest as (w:Un, id:Un);
({delegate (v,w,id)}

|out (filedelegate , pair(v,{pair(w,pair(id,ok))}kdv)))
)

|new refereedb :Ch(Pair(u:Un, Pair(id:Un, Ok({referee(u,id)}))));
(lin (filereport , indat);split indat as (v:Un,e:Un);
in(pwdb, indat);
match indat:
Pair (u:Un,
Pair (none:Key(Pair (v:Un,
Pair (id :Un,

Ok({delegate (u,v,id)})))),
Key (Pair (id : Un,

Pair (report : Un,

Ok({opinion (u,id ,report)}))))))
as (v, inrest:Pair(none:Key(Pair (w:Un,

Pair (id:Un,

Ok({delegate (v,w,id)})))) .
Key (Pair (id : Un,

Pair(report :Un,
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Ok({opinion(v,id ,report)}))))))
split inrest as (kdv:Key(Pair (w:Un,

Pair (id :Un,
Ok({delegate (v,w,id)})))),
krv:Key(Pair (id:Un,
Pair (report :Un,
Ok({opinion (v,id ,report)})))));
decrypt e as {edec:Pair(id:Un,
Pair (report :Un,
Ok({opinion(v,id ,report)})))} krv;
split edec as (id:Un,
rest : Pair(report:Un, Ok({opinion(v,id,report)})));
split rest as (report:Un, o0:0k({opinion(v,id,report)}));
n(refereedb, indat);
match indat:Pair (u:Un, Pair(id:Un, Ok({referee(u,id)})))
as (v, rest:Pair(id:Un, Ok({referee(v,id)})));
match rest:Pair(id:Un, Ok({referee(v,id)}))
as (id, o:0k({referee(v,id)}));
expect report(v,id,report)
['in (filedelegate , indat); split indat as (v:Un, sigd:Un);
in(pwdb, indat);
match indat:Pair (u:Un,
Pair (none:Key(Pair (v:Un,
Pair (id :Un,
Ok({delegate (u,v,id)})))),
Key (Pair (id : Un,
Pair (report :Un,
Ok({opinion (u,id,report)}))))))
as (v, inrest:Pair(none:Key(Pair(w:Un,
Pair (id:Un,
Ok({delegate (v,w,id)})))),
Key (Pair (id : Un,
Pair(report :Un,
Ok({opinion (v,id ,report)}))))));
split inrest as (kdv:Key(Pair (w:Un,
Pair (id :Un,
Ok({delegate (v,w,id)})))),
krv:Key(Pair (id:Un,
Pair(report :Un,
Ok({opinion (v,id ,report)})))));
decrypt sigd as {edec:Pair(w:Un,
Pair (id :Un,

Ok({delegate (v,w,id)}
split edec as (w:Un, rest:Pair(id:Un, Ok({delegate(v,
split rest as (id:Un, 0:0k({delegate(v,w,id)}));

n(refereedb, indat);
match indat:Pair (u:Un,
Pair (id :Un, Ok({referee(u,id)})))
as (v, rest:Pair(id:Un, Ok({referee(v,id)})))
match rest:Pair(id:Un, Ok({referee(v,id)}))

\-g\-/
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as (id, o:0k({referee(v,id)}));
out (refereedb , pair(w, pair(id, ok)))

|new kp:Key(Pair (u:Un,Ok({pcmember(u)})));
(in (createpcmember, indat);
split indat as (u:Un, pc:Un);({pcmember(u)}
|out (pc, {pair(u,ok)}tkp))
|!in (filepcreport , indat);
split indat as (v:Un, indat:Un);
split indat as (e:Un, pctoken:Un);
in (pwdb, indat);
match indat:Pair (u:Un,
Pair (none:Key (Pair (v:Un,
Pair (id:Un,
Ok({delegate (u,v,id)})))),
Key (Pair (id : Un,
Pair(report :Un,
Ok({opinion (u,id ,report)}))))))
as (v, inrest:Pair(none:Key(Pair(w:Un,
Pair (id :Un,
Ok({delegate(v,w,id)})))),
Key (Pair (id : Un,
Pair (report :Un,
Ok({opinion (v,id ,report)}))))));
split inrest as (kdv:Key(Pair (w:Un,
Pair (id:Un,
Ok({ delegate (v,w,id)})))) .
krv:Key(Pair (id:Un,
Pair(report :Un,
Ok({opinion (v,id ,report)})))));
decrypt e as {edec:Pair(id:Un,
Pair (report :Un,
Ok({opinion(v,id ,report)})))} krv;
split edec as (id:Un,
rest: Pair(report:Un, Ok({opinion(v,id,report)})));
split rest as (report:Un,
0:0k({opinion(v,id ,report)}));
decrypt pctoken as {dcrypt:Pair(u:Un,Ok({pcmember(u)}))}kp;
match derypt: Pair (u:Un,Ok({pcmember(u)}))
as (v, 0:0k({pcmember(v)}));
expect report(v,id,report)
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Chapter 6

A Type System with Simple
Correspondence Assertions

The spi-calculus and type system we use for the part of the project concerning type
inference is slightly different from the ones used in the first part. For the calculus itself,
we can simply substitute begin ¢(M) for S and end ¢(M) for expect F in the syntax for
processes in section 2.1. For the semantics of the type system, we reproduce the system
of [10] here, in table 6.1 and 6.2. Although there are certain cosmetic differences, the only
real differences in what they express are related to the different kinds of correspondences.

We add the A notation, which denotes a type/effect assignment. If we say that T'Var
and E'Var denote the sets of type/effect variables, respectively, we can cite the definition
of A from [10]:

Definition 3. A type/effect assignment A is a finite function A : TVarU EVar — TUE
such that A(U) € T for U € TVar and A(R) € & for R € EVar.

Since we define another type of correspondence assertions, we also need to redefine
safety and restate the definition of robust safety:

Definition 4. A process P is safe iff whenever P —% new z; (end ¢(M) | P’), we have
P’ = begin ¢{(M) | P” for some P”

Definition 5. A process P is robustly safe iff for every opponent O we have that P | O
is safe
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Typed Message: E-a M : T
I

(Msg Def) (Msg Name)

EFAaM:T AX)=T Ero E=E. a:T E"
EbaM:X Ebaa:T

(Msg Encrypt) (Msg Encrypt Un)

EbAaM:T EFAN:Key(T) EFaAM:Un Eba N:Un
E}—A {M}N:Un E}—A {M}N:Un

(Msg Pair) (Msg Pair Un)

EFaM:T EfaM :T'(M) EbaM:Un Eba M :Un
E b pair(M,M’) : Pair(z : T, T (z)) E b pair(M,M’) : Un
(Msg Ok) (Msg Ok Un)

Eto A(R)=S S < effect(E) Ero
E b ok : Ok(R) EFaok:Un

Table 6.1: Type rules for messages
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Good Process: E+p P

(Proc Input)(p is either ! or nothing)  (Proc Input Un)(p is either ! or nothing)

EbAM:Ch(T) E,z:THAP EbAaM:Un E,z:UnkaP
E ba pin(M, z); P E ba pin(M, z); P

(Proc Output) (Proc Output Un)

EbAM:Ch(T) EFAN:T EFAM:Un Eba N:Un
EFA out(M,N) E Fa out(M,N)

(Proc Decrypt)
EbAM:Un Eba N:Key(T) E,y:THP

E ba decrypt M as (y: T)n; P

(Proc Decrypt Un)
EFAM:Un EFN:Un FEy:Unka P

E b decrypt M as (y: Un)y; P

(Proc Split)
Eba M :Pair(z:T\U) E,x:T,y:Uka P
Etasplit Mas (x:T,y:U); P

(Proc Split Un)
EFFAM:Un E;z:Un,y:Unka P

E Fa split M as (z: Un,y : Un); P

(Proc Match)
Eba M :Pair(z:T,U) EbAN:T E,y:UN)baP
E ba match M : Pair(z: T,U) as (N,y : U(N)); P

(Proc Match Un) (Proc Res)
EFAM:Un EFAN:Un Ejy:Unka P FE,x:ThHa P generative(T)
E A match M : Un as (N,y : Un); P Eranewx:T;P
(Proc Par) (Proc Zero)
E.env(P) Fa P1 E,env(Py) Fa Ps ErFo
Ebp P | Py E Fa nil
(Proc Begin) (Proc End)
Ero fn(M) Cdom(E) Eto fn(M) Cdom(E) (M) < effects(E)
E Fa begin ¢(M) Ebaend (M)

Table 6.2: Good Processes
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Chapter 7

Inferring Types and Effects by
ALFP

7.1 Method

In chapters 8 and 9, we describe some of the details of the inference method presented
n [10]. We devote this section to a more informal overview of that method. The basic
steps of the method are as follows:

1. Generate constraint ¢ from process P
2. Encode ¢ to the ALFP formula 1)

3. Feed the ALFP formula ¥ A 1, to the Succinct Solver, where v, is a formula of
axioms

The correctness properties of this method are stated through two theorems in [10]. These
theorems can informally be stated as follows:

e Soundness: Some type assignment makes P well-typed if 1) A 1., is satisfiable in
a failure-free model.

e Completeness: ¥ A 1, is satisfiable in a failure-free model if some type assign-
ment makes P well-typed.

We will come back to the formal statement of those theorems in chapter 10, when the
definitions to describe them is in place. For now, we will consider their implications
informally.

Informally, the satisfaction of an ALFP formula works by populating relations to find
the least solution of the formula (for more information, see section 9.1. In this case, we
use the Fail relation to indicate if a process is failure-free or not. If the least solution of
the encoded formula does not require us to populate Fail then the process is failure-free,
and vice versa. The two theorems we cited from [10] tells us that a process is failure-free
if and only if that process can be well-typed according to the type system.

One could say that extracting types from the result of the Succinct Solver and as-
signing them to the process is a fourth, optional stage to the algorithm presented above.
In theory, it is enough to look at the output of the Solver and confirm that the Fail
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relation is empty to know that inference has succeded and the process is robustly safe.
But in practice, it is not a bad idea to implement this fourth stage and feed the typed
process to an external type checker to verify the result. Incidentally, the type checker
developed in the first part of this project should suffice for that purpose. Although
the type system was built for Datalog correspondences, it is compatible with traditional
one-to-many correspondences. As Fournet, Gordon and Maffeis indicate in [4], one-to-
many correspondences has a simple translation to Datalog correspondences. We built
the type checker to accept the syntax for one-to-many correspondences, and perform the
translation in those cases.

The first stage of the inference algorithm is described in chapter 8, through a number
of rules defining which constraints to extract from each process and message primitive.
Each constraint rule reflects type rules from the type system in chapter 6, and defines
constraints from the conditions of each of those type rules.

In the second stage, the constraints are directly encoded to a conjunction of ALFP
formulae. A number of axioms are defined as part of the conjunction. These axioms
describe how to populate the relations using the information from the initial assertions
and Horn clauses encoded from the constraints.

In the third stage, we use the Succinct Solver to populate the relations. The relations
describe such information as type variables and type assignments, and should when
populated correctly, describe a correct typing of the process with an empty Fail relation
if and only if the process is robustly safe.

7.2 Reasoning

The task of type inference in a type system like the one Hiittel treats in [10] has been
undertaken by a few other people. In [2], Dahl develops a type inference algorithm where
type constraints are solved by unification, and effect constraints are solved by a non-
deterministic algorithm. In [11], Kikuchi and Kobayashi show a form of type inference
for a similar type system, but the focus is on reducing time complexity of inference, and
the type system is one without opponent types. So they can only check for safety, not
robust safety. In [12], Kikuchi and Kobayashi show an extension of the type inference
method of [11] which allows for opponent types. But while that type system is similar
to other type systems for verifying correspondence assertions, it is not comparable. To
make the task simpler in [12], the system was made to avoid separate opponent type
judgments. As a result, subject reduction does not hold, and some processes that can
be verified by the type system used in [10] cannot be verified by the type system used in
[12], and vice versa.

The method proposed by Hiittel in [10] and described above, qualifies in this context
as a new, experimental approach to the task of inferring types and effects in a type system
for verifying correspondence assertions. It also has the advantage of being sound and
complete with respect to a type system that is a proper subset of the system presented
previously in [4].
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Chapter 8

Constraint Generation

In this chapter, we will discuss the aspect of constraint generation presented by Hiittel
in [10]. In section 8.1, we present the constraint language itself. In section 8.2, we
present the constraint generation method. In section 8.3, we present some of the general
constraints implied by the use of axioms in the encoding to ALFP formulae. In section
8.4, we discuss the usage and meaning of type abstraction in the constraints.

8.1 Constraint Language

In [10], Hiittel presents a constraint language, intended as an intermediate step between
the type rules and the ALFP formulae. Below, we present this constraint language.
@ is the formula syntax, ¢ represents type constraints, ¢g effect constraints and ¢pg
environment constraints. It is worth noting that the constraint language is more powerful
than ALFP, so not everything that can be expressed with constraints can be encoded to
ALFP. A negation, for instance, can only be used as a query in the precondition of a
Horn clause in ALFP. So we can only use Ur # Un in ¢; of ¢1 = pa.

Equality, = denotes a necessary equality and Z denotes a possible equality. The
distinction is relevant because many of the type rules have two incarnations: A normal
rule and an Un rule, making it possible to type many constructions with either normal
or Un types. Necessary and possible equalities are used to express this by denoting Un
types as necessary whenever we must apply them, and other types as possible, to be
applied as necessary types to any type variable that did not receive the Un type.

Fail is intended to indicate failure of the formula, if it cannot be satisfied to represent
a safe assignment of types.
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=@ |1 A2 | 1 V2| 1= 2| Voo
¢ = o1 | b5 | dE

¢ = Ur = Ch(Uz,) | Ur = Pair(z : Up,,Ur,) | Ur = Un

| Ur = Key(Ur,) | Ur = U (z) | Ur £ Ur, (M)

| UT = Ch(UTl) | UT = Pair(x : UTl,UT2) | UT = Un
| Ur = Key(Ur,) | Up = Upl (x) | Ur = Ur, (M)

| Ur # Un | T generative | Fail | M : Up

¢s i=L4(M) < effects,eq(E) | EFR|S € E
op = wi(E) | (M) Cdom(FE) | z ¢ dom(F)

8.2 Constraint Generation

Table 8.1 and 8.2 shows how we generate constraints from messages and processes, re-
spectively.

8.3 General Constraints

The constraint generation shown in section 8.2 is a presentation of the one shown in
[10]. In truth, there are two kinds of constraints: Syntax based constraints and general
constraints. The ones we show in section 8.2 are only the syntax based constraints,
the constraints we extract from a spi process. In section 7.1, we discussed the inference
method, and mentioned the ALFP formula 1),,, as representing a number of axioms. Even
though they are not explicitly presented, 1., can be seen as the encoding of a number
of general constraints which express properties and operations such as type equality and
unification.

As an example, consider type equality. If we allow for a modification of the constraint
language syntax, we can express type equality as follows, saying that if two type are equal,
their inner types must also be equal:

Ch(Th)=Ch(Th) =T, =T,
Key(T1) = Key(12) = T1 = 1>

Pair(z : Th1,Th2) = Pair(zg : To1,Tee) = T11 = Tog AN Tho =T
Ok(S7) = Ok(S3) = S1 =5,

And unification may be represented by the following constraints:

T\ = Ch(T,

T = Key(T3

Ty = Pair(z : T, T3
T, = Ok(S

ANT3 =T = T5 = Ch(T3)

ATs =T, = Ts = Key(Th)

ATy =Ty = Ty = Pair(z : Ty, T3)
NTy =Ty = Ty = Ok(S5)

~— — ~— ~—
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Constraints from messages: EFa M ~ T ¢

(Msg Name) (Msg Name Un)

E=F z:Up E" E=F z:UnE"
Ebtaxz~Ur Awf(E) Ebaz~ Up;jz:Ur=UnAwf(E)
(Msg Ok)

ok : UrA

Ur = Un = wi(E))A
EI—AOkWUT; ( T? " W( ))

Ur = Ok(R)A

(Ur #Un = (E+ R) Awf(E))
(Msg Encrypt)
EEaA M~ UTl;(Pl EFA N~ UT2§<P2

Ur = Un A Uz, = Key(Ur, )A
Etra{M}y ~ Ur; | (Up, = Un= Up, = Un)A
P1 A P2

(Msg Pair)
EbA M~ UT1;<,01 EFA N~ UTQ;@2

Ur < Pair(z : Ur,, Up,) AUy, = UM ()
Et-a pair(M,N) ~ Ur; | (Up, = UnAUp, = Un = Up = Un)A
©1 A\ P2

Table 8.1: Constraint generation from messages
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Constraints from processes: E-a P~ ¢
I 1

(Proc In) (u is either ! or nothing)
ErAaM~Up;p1 E,x:Up, Fa P~ s Urp, fresh
. UT1 ; Ch(UTZ)/\
Eta pin(M,z); P~ | (U, = Un = Up, = Un)A
P1 A P2

(Proc Out)
Etra M ~Ur;01 EFaA N~ Urp;po
Uz, = Ch(Up, )A
E"A out(M,N)w (UYT1 :IJH:}(]T2 :Un)/\
w1 N\ P2

(Proc Res)
E,x:Upba P~ @1 Up fresh
E bFanew z; P~ x ¢ dom(E) A (—(T generative) = Fail) A ¢1

(Proc Par) (Proc Zero)
E env(P) ba P~ o1 E,env(Py) Fa Py~ o

Eba (Pu| P2) ~ @1/ o E Fa nil ~
(Proc Begin) (Proc End)

E ta begin (M) ~» wi(E) Afn(M) C dom(E) EFa end {(M) ~ (M) < effects,eq(E) A wi(E)

(Proc Decrypt)
EraM~Ur;p1r EFAN~Unips Ey:Urn ba P~ @3 U fresh
Uz, = Un A Us, = Key(Ur, )A
Eta decrypt M as (y)n; P~ | (Ur, = Un = Uz, = Un)A
w1 N2 N3

(Proc Split)
EbAaM~Urpspr E,x:Up,y:Up A P~ @y Urp,Urp, fresh
Ur, < Pair(z : Up,, Up,)A
Etasplit M as (z,y); P~ | (Up, = Un = Uy, = UnAUrp, = Un)A
1\ P2

(Proc Match)
E |_A M ~~ UTl;(Pl FE l_A N ~ UTQ;(pQ E/y : [JT3 l_A P~ ¥3 UT37UT07UT4755 fresh
Uz, = Pair(z : Ur,, Ur,) A Up, = Uz, (N)A
Eta match M as (N,y); P~ | (Up, =Un= Up, = UnAUp, = UnAUp, = UnAUy,)
P1 N\ p2 N3

Table 8.2: Constraint generation from processes
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With the provision that inconsistent types should result in failure. For instance:

T = Ch(TQ) NT3 = Key(T4) ATy =Ty = Fail

8.4 Type Abstraction

Abstraction and application of types are related to the dependent pair types of the type
system. The type Pair(z : T1,T5) is the type of a pair message whose left element may
be substituted for occurrences of x in T5. Consider the (Proc Match) rule:

(Proc Match)
Eba M :Pair(x:T1,T) EFAN:Ty E,y:To(N)kFa P
E A match M as (N,y: T»(N)); P

T5(N) is an application, and is the type resulting from a substitution of N for z in
T5. The question, which we will try to answer is: How do we find Pair(z : 71, T5), and
thus T5(N)? The type system is of course built on the assumption that we know both
Pair(z : T1,T) and the application To(N) for the purpose of type checking. But for
the purpose of type inference, it is our job to find those types. The task of deducing
a dependent pair-type does not appear trivial, however. The primitive we must deduce
dependent pair types from is, of course, pair messages. Consider the (Msg Pair) rule:

(Msg Pair)

EFaM:T EfaM :T'(M)

E b pair(M,M’) : Pair(z : T, T'(2))

We could easily find a fitting pair type by deducing T and T’(M), and then creating
the type Pair(z : T,T"(M)). But to make this a dependent pair type which can be used
in an application of (Proc Match), we have to find Pair(z : T,T'(z)). To illustrate this,
consider the following process:

((begin I(a) | begin k(a))
| (out (¢, pair(a,ok))

| in (¢, y); match y as (a, 2);
(end l(a) | end k(a))
)

Deducing the type of pair(a,ok) we may get Pair(x : Un, Ok(l(a), k(a))). But
for the benefit of later applications, we can choose to abstract away either one of
the a messages or both of them. Both Pair(xz : Un, Ok(I(z),k(a))) and Pair(z :
Un, Ok(l(x), k(z))) would be legal in this case.

By saying U} (x), we express the substitution of x for all occurrences of M, and
thus we abstract away M completely. Unfortunately, it is still an open problem whether
this kind of total abstraction works as intended, or if it makes the inference method
incomplete. If a typeable process exists whose types cannot be inferred by this kind
of abstraction, then it makes the method incomplete, and we would have to consider
enumerating all possible abstractions, for instance.

But the only place in the constraint rules where we use application is in (Proc Match),
and the semantic condition for reduction of a match statement is that N must match the
left element of M. Thus, in constructing the dependent type, we believe we may rely on
the assumption that N, and the message that was abstracted away are equal.
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Chapter 9

Encoding to ALFP

In this chapter, we define and explain the Alternation Free Least Fixpoint Logic (ALFP)
from [17] by Nielson, Nielson and Seidl. In section 9.1.1, we explain the syntax of ALFP.
In section 9.1.2, we explain the semantics of ALFP. In section 9.1.3, we explain the
concept of stratification, and why it is used.

9.1 ALFP

ALFP is interesting because it defines a useable set of logic where:
1. Every expressible formula is satisfiable, and has a unique least solution
2. The least solution to any formula can be found by a simple fixed-point algorithm

This particular description of ALFP is cited, with few changes, from [18].

9.1.1 Syntax

ALFP was introduced by Nielson, Nielson and Seidl in [17] together with the Succinct
Solver tool for solving ALFP formulae. ¢ signifies a precondition and v signifies a clause.
A formula is a clause (). R ranges over R, which is the set of relation symbols. = ranges
over a countable set of variables X

¢ = R(xl,...,xk) | _\R(‘Tl,... ,(ﬁk) | ¢1 /\(]52 ‘ (;51 V¢2 | E'.’E¢ ‘ V$¢
Y u=R(zy,...,xx) [ true [ 1 Ay | ¢ =1 [ Voo
R(ty,...,tx) is a predicate. Predicates and negated predicates in preconditions (¢)
are called queries and negated queries, respectively. Any other occurrences are called

assertions. An important distinction, as a query asks “is this predicate true?”, while an
assertion states that “this predicate must be true”.

9.1.2 Semantics

Which brings us to the semantics of ALFP. We define the universe U of atomic values
to be non-empty and finite. p and o are interpretations of relation symbols R and free
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(p,0) = Rz, -+ ) iff (0(z1),- -+ o(xr)) € p(R)

(p,0) | ~R(z1, - k) iff (0(z1),--- s o(r)) & p(R)

(p:0) = P12 iff (po) Edr and (p,o) = o
(0,0) k= 61V 62 T (po)Ed or (p0) o
(p,o) E Jx.d iff (p,olx +— a]) = ¢ for some a U
(p,o) = V. iff (p,olx—al)E¢ forallaecl
(p0) | Rz, wp) iff (0(z1),-- -, 0(xr)) € p(R)

(p,0) £ true always

(p:0) = 1 Ao iff (po) Edr and (p,0) = o
(po)Ed=1 iff (p,o) E ¢ whenever (p,0) |=¢
(p,o) EVza) iff (pyofz—a])Ev forallael

Table 9.1: Semantics of preconditions (top) and clauses(bottom).

variables x, respectively. p maps relations to sets of k-tuples. ¢ maps variables to atoms
of U. We define two satisfaction relations

(po) ¢ and (po) v

for preconditions and clauses in table 9.1. We write p(R) for the set of k-tuples (a1, - - , a)
from U associated with the k-ary predicate R. We write o(x) for the atom of & bound
to z, and o[z — a] for the mapping of o together with the mapping of z to a.

Variables are bound by the universal and existential quantifiers. Free variables in a
formula are viewed as constants from /. Given an interpretation oy of constant symbols
in a clause 1, an interpretation p of predicate symbols R is called a solution to 1,
provided (p, o9) = 1.

We let Ay ppp be the set of interpretations p of predicate symbols in R over U.
A aprp is then a complete lattice with relation to the lexicographical ordering = defined
by p1 E po, if and only if there is some 1 < j < s such that the following properties hold:

o p1(R) = p2(R) for all R € R with rank(R) < j

e p1(R) C pa(R) for all R € R with rank(R) = j

e cither j = s or p1(R) C p2(R) for at least one R € R with rank(R) = j
In [17], the authors also prove the following proposition:

Proposition 1. Assume ¢ is an ALFP formula and o is an interpretation of the free
variables in t. Then the set of all p with (p, 0¢) |= 9 forms a Moore family, i.e., is closed
under greatest lower bounds (wrt. C).

Most importantly, this means that for every initial interpretation py of predicate
symbols, there is a lexicographically least solution p of ¥ (given a fixed og) such that
po C p. pis then called the optimal solution of ¥ exceeding py.

When we talk about the “least solution” to some formula, we assume the least solution
exceeding po = ), unless otherwise specified.
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9.1.3 Stratification

In ALFP, formulae must be ordered in s strata, so ¥ = 1 A ... As. The rank of a
relation corresponds to the stratum in which it may be populated. So only the formula
1; may populate relations R if rank(R) = j. Assuming this, we can then populate the
relations in the order of their ranks. Queries may only be performed on relations with
a rank equal to or lower than the one that is being populated, as we do not know the
contents of higher ranked relations. Negated queries may only be performed on relations
with a rank strictly lower than the one that is being populated, since we have to know
the final population of a relation before we can know its negation.

Definition 6. By the syntax, a formula 1 can be expressed as a conjunction of clauses,
¥ =11 A... N1s. The set of relation symbols R is ranked by a function rank:R — N,
which satisfies the following for all 1 < j < s:

e For every assertion R in 1); we have rank(R) = j

e For every query R in 1; we have rank(R) < j

e For every negated query R in 9; we have rank(R) < j
Every index j is a stratum

To understand the reasoning for the syntax of ALFP formulae, note first that by
excluding the possibility of asserting falsehoods and negations, we exclude the possibility
of contradicting formulae, and thus the existence of unsatisfiable formulae. So to find a
solution to an ALFP formula, you do not have to deal with the satisfiability problem.
There is always a solution. By restricting the existential quantifier and disjunctions to
preconditions, we guarantee that there is always a unique least solution. This solution
corresponds to the least fixed point of a monotone function, and can be found by applying
a fixed point algorithm for each succeeding stratum.

9.2 Axioms

In this section we present samples of some of the axioms that accompany any encoding
of formulae from the constraint language.

One good example would be the axioms for populating the Subs relation. The Subs re-
lation is a quaternary relation presented as Subs(n’,n, m’, m), with the intended meaning
that substituting m’ for m in the message denoted by n, results in the message denoted
by m’. The following four formulae axiomatise Subs for the OkTerm, Name, TermPair
and Enc relations, each of which denote the kind of a message.

Vn.Vm’.Vm.(OkTerm(n)) = Subs(n,n,m’,m)

Vm’.Vm.(Name(m)) = Subs(m’, m,m’,m)

Vn.Vn1’.vnl.Vm’ Vm.Vn2’.¥n2.¥n’.(Subs(nl’,n1,m’,m) A Subs(n2’,n2,m’,m) A
TermPair(n,n1,n2) A TermPair(n’,n1’,n2’)) = Subs(n’,n,m’,m)
Vn.Vn1’.Vnl.Vm’.Vm.Vn2’.Vn2.¥n’.(Subs(n1’,n1,m’,m) A Subs(n2’,n2,m’,m) A
Enc(n,n1,n2) A Enc(n’,n1’,n2’)) = Subs(n’,n,m’,m)

Another one would be the representation of free names, the Fn relation. Fn is a binary

relation presented as Fn(n, m), with the intended meaning that n is a free name of m. n
is a name, but m may be either a message or a type. For message terms, the following
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three formulae axiomatise Fn for the Name, TermPair and Enc relations. OkTerm is not
a part of these, as there are no free names in an ok message.

Vn.(Name(n)) = Fn(n,n)
Vn.Vn1.vn2.¥m.((Fn(m,n1) V Fn(m,n2)) A TermPair(n,n1,n2)) = Fn(m,n)
Vn.Vn1.vn2.Vm.((Fn(m,n1) V Fn(m,n2)) A Enc(n,n1,n2)) = Fn(m,n)

The first axiom “initiates” the population of Fn by stating that any name is a free
name of itself. The two other axioms continue the population by stating, for pair mes-
sages and encrypted messages, that if some name is free in either term of the message,
then it is free in the message itself. The axioms for free names of types is more of the same.

vt.Vt1.Vm.(Ch(t,t1) A Fn(m,t1)) = Fn(m, t)

Vt.Vt1.Vm.(Key(t,t1) A Fn(m,t1)) = Fn(m, t)

Vt.Vt1.vt2.Vx.Vm.(Pair(t, x, t1,t2) A (Fn(m, t1) V Fn(m, t2)) A neq(m, x)) = Fn(m, t)
Vt.Vs.Vm.(Ok(t, s) A Fn(m, s)) = Fn(m, t)

Vm.Vn.V1.Vs.(Fn(n,m) A Effect(1,m, s)) = Fn(n,s)

Except for the axiom for the Pair relation. The neq relation simply indicates here that
m and z may not be equal. If they are, then the name is bound.

9.3 Encodings

9.3.1 Message Terms

To reason about messages in the ALFP formulae, we need to know which names are
messages, and which kinds of messages they are. Below, we show how messages are
encoded. Lowercase characters denote proper names of their uppercase counterparts. n
is the proper name of the message we encode. This works as a way of representing the
abstract syntax tree of a message in ALFP.

[pair(My, M3)] = TermPair(n, my,ma) A 1 A )
where [Mi] = ¢1, [Ma] = 92
[{Mi}ar,] = Enc(n, m1,ma) Aip1 Atbo
where [M;] = 11, [Ma] = 92
[n] = Name(n)
[ok] = OkTerm(n)

If messages(P) returns all messages of a process, then we add the conjunction

A Ml

M Emessages(P)

to the formula generated from P.
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9.3.2 Type Constraints

Type equalities and possible type equalities are simply encoded to corresponding rela-
tions. So for instance,

[Ur = Key(Ur,)] = Key(t, t1)
[Ur = Ch(Ur,)] = Ch(t, t1)
[Ur = Pair(z : Up,,Ur,)]| = Pair(t, z, 11, t2)
[Ur = Un] = Un(¢)
[Ur = Ok(Rs)] = Ok(s)

are the encodings for type equalities. Encodings for possible equalities are nearly iden-

tical, and can be obtained by replacing Z for = on the left hand side and postfixing
relation names with Q on the right hand side.
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Chapter 10

Correctness Theorems

In section 7.1, we briefly touched on two correctness theorems stated in [10], asserting
that the inference method is both sound and complete. We now present the formal
statements of those theorems. A few definitions are needed to understand this. Some
definitions have already been stated elsewhere, such as A (chapter 7), o and p (section
9.1.2). We will present a few more definitions along with the theorems.

Definition 7. Iff [z — y| € o for a mapping function o, some variable x and some atom
y, then x € dom(c). Likewise, dom(FE) will capture the domain of environment E (see
appendix A.3).

Definition 8. If some statement St can be derived from M, we say that M = St.

Definition 9. Assume F I ¢ and let M = (o, p) be a first-order structure. We say that
M < E if dom(c) = dom(E) and we have M = (x,t) € Type iff E(xz) = T. If also for
a given A we have M = (¢,m,s) € Effect iff E(z) : Ok(S) and (M) € A(S), we write
M < (E,A).

Theorem 1. If EFa P~ ¢ and E ba P where dom(A) = Var(v), then there exists a
failure-free model M where M < (E,A) and M = [¢ Apag].

Definition 10. Let A be a type/effect assignment and M be a first-order structure. We
write M [= A if for every X =T € A we have that M |= [X =T7.

Theorem 2. Suppose E b P~ 1. Whenever a first-order structure M satisfies that
M < E and is a failure-free model of [t Aaz], there exists a type/effect-assignment A
such that Et-a P, M < (E,A) and M = A.
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Chapter 11

Issues and Solutions

Hans Hiittel presents in [10] an attempt to achieve type inference in a type system
with both opponent types, dependent types and correspondence assertions, by encoding
constraints to ALFP and feeding them to the Succinct Solver. We have outlined this
method in previous chapters, and we have, in turn, made the first attempt to implement
this method of type inference. Considering the novelty of this approach, we were bound
to find some technical issues in [10], which we describe in this chapter together with
possible solutions.

11.1 Possible Types

In [10], possible types are included in the constraint rules seen in table 8.1 and 8.2, and
encoded to the may relations as seen in section 9.3. Apart from that however, no axioms
show how to deal with those relations. But this is more an oversight than an actual
issue, and finding the necessary axioms is not difficult once the intent behind the may
relations are clear: The Un relations must be populated in a stratum prior to the other
type relations. The may relations should then be used to populate the real type relation
whenever a type variable is not Un. This results in the possible type axioms in section
9.2.

11.2 Abstraction and Application

The relations Abs and App are intended to represent abstractions (7™ (x)) and applica-
tions (U(N)). We found that the exact implementations of Abs and App, as described
in [10] do not appear workable. The actual abstraction and application of types, for
instance, should yield new types. Consider the types Ur, = U3/ (z) and Ur, = Ur,(N),
and suppose we have Up, = Ch(Ur). Ur, may be an abstraction of Ur,, but they are
also two distinct types, and if we want to propagate the abstraction into Ur, to describe
Ur, properly, we need to create new type variables to describe the new type tree and,
ultimately, any abstractions on effects in the leaves of that tree. The same goes for appli-
cations, as seen in Ur,. Ur, is an application of Ur,, but both are distinct types, and to
describe the type of Uz, we need a set of variables for the new tree, with applications on
effect variables at the leaves. While it is possible that some form of function application
in ALFP would allow us to generate new type variables through the Succinct Solver it
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would be somewhat involved, and the current set of axioms and encodings would need
to be modified to allow for it.

Unfortunately, we did not get far enough to implement and test a possible solution
for this, but we do have one that may work. Instead of implementing this through ALFP,
it may be possible to handle the abstraction and application of types in the constraints
to some extent, before we start encoding the ALFP formula.

If we let Ur and Sr denote fresh variables, we can define a reduction £ on a constraint
formula :

Ur, = UM (z) AUz, = Ch(Up,) Ay 2 (Uz, = Un = Up = Un)A
? ? M
UT2 = Ch(UF) ANUR = UT3 (.’L’) Ay
Ur, = UM(x) AUz, = Key(Ur,) Ay 2 (Ur, = Un = Up = Un)A
? ? M
UT2 = Key(UF) ANUp = UT3 (l‘) A ’L/)l
Ur, = UM(x) AUp, = Pair(z; : Ur,, Ur,) Aty 2 (Up, = Un = Up, = Un) A (Ur, = Un = Up, = Un)A
Ur, < Pair(zy : Up,, Up,) A Up, = UM (z)A
Ur, = Ul () An
Ur, = UM(x) AUz, = OK(S) A ¢y 2 U, = OK(Sp) A Sp = SM () Aty
Uz, = Uz, (N) AUz, = Ch(Up,) Aty & (Up, = Un = Up = Un)A
Uz, = Ch(Up) AUp = U, (N) Aty
Ur, = Ur,(N) AUz, = Key(Ur,) Ay £ (Up, = Un = Up = Un)A
Un, = Key(Up) AUp = Uz, (N) Aty
Uz, = Ur,(N) AUz, = Pair(z : Ur,,Ur,) A1 2 (Up, = Un = Up, = Un) A (Ur, = Un = Up, = Un)A
? . ?
UT2 = PalI’(SL’ : UF1>UF2) A\ UF1 = UT3(N)/\
UF2 ; UT4(N) A 7/}1
Uz, = Uz, (N) AUz, = Ok(S) Ay £ Up, = Ok(Sp) A Sp = S(M) Aty
In the closure of &, this will let both abstractions and applications become “real” types
(one of Ch(Ur), Key(Ur), Pair(z : Ur,,Ur,), Un or Ok(S)), while propagating them

to become abstractions and applications directly on effect variables. This will hopefully
make the handling of these concepts simpler in the encoding to ALFP.

As an example, if we have that Up, < Ut (x), Ur, < Ch(Ur,) and Ur, < Ok(S) in
the constraints, we get:
Ur, = UM (x)
Ur, = Ch(Ur,)
Ur, = Ok(S1)
Sy = SM(z)

Where Ur,, Uz, and S; are fresh. Likewise, if Ur, = Ur,(N), the application is propa-
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gated:

Ur, = Uz, (N)

Uz, < Ch(Ur,)

Uz, = Ok(Ss)
Sy = S1(N)

This can all be performed in the space of possible types, which will only become real
types if they are not Un.

11.3 Relation Size Explosions

During the initial testing of the inference method, it was discovered that the Subs relation
would explode and become, apparently, intractably large. This happened because of the
Subs axioms for the OkTerm and Un relations, presented in [10] as:

Vn.¥Yn' ¥Ym.¥m'.OkTerm(n) = Subs(n’, n,m’,m)
VeVt Ym.NYm'.Un(t) A Un(t') = Subs(t',t,m’,m)

If a is the size of the OkTerm relation, and b is the number of names in the ALFP formula,
then the Subs axiom for the OkTerm relation would contribute with a * b3 predicates in
Subs. Fortunately, the OkTerm axiom turned out to be an error. As no substitution can
make an ok term change, we can say Vn.Vm.¥m’.OkTerm(n) = Subs(n,n,m’, m) instead,
and reduce the contribution of the axiom to a * b.

If we say a is the size of the Un relation, and b is the number of names in the
ALFP formula, then The Subs axiom for the Un relation would contribute with a? * b2
predicates in Subs. Fortunately, making the changes discussed in section 11.2, removes
the only axioms requiring the Subs relation for types, and thus remove the Subs axiom
for Un.
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Chapter 12

Implementing Type Inference

As the type checker of the first part of the report, the implementation of type inference
was also made in Objective Caml. This has even allowed some reuse of code from the
type checker. The main parser and the Succinct Solver has only been slightly modified
to strip out type annotations, and to make minor adaptations.

As with the type checker implementation, we show here the dependency hierarchy,
and then go into detail with some specific implementation details.

12.1 Hierarchy

Figure 12.1 shows the hierarchy of module dependencies in the type inference implemen-
tation. Following is a short description of each module.

spideducer.ml: Main function of the implementation. It uses the other modules to
open and parse the input, alpha convert the process, generate constraints, encode
a formula, and feed that formula to the Succinct Solver.

spitree.ml: Syntax tree structure for the spi calculus. Unmodified copy of the
same file of the type checker.

spilexer.mll, spiparser.mly: Lexer and parser for the spi calculus. Parses to the
structure of spitree.ml. Changes from the type checker version includes: Removal
of type annotations from the syntax. Every type is designated as “Unknown”.

aconv.ml: Alpha conversion. Unmodified copy of the same file of the type checker.

ssolver/: Succinct Solver wrapper. Slightly modified from the type checker for
adaptation purposes.

constraints.ml: Contains the data types for the constraint language.

constraintgen.ml: Contains constraint generation functions. Will generate a set
of constraints from a process.

axioms.ml: Contains the axiom formulae written in the ALFP data type.
latex_axioms.ml: While it may not be hard to write axioms in axioms.ml, read-

ing, understanding and maintaining an overview of them in that form would be a
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ssolver/outputlexer.mll
< ssolver/outputparser.mly

spitree.ml constraints.ml ssolver/alfp.ml

/ T \ T ssolver/ssolver.ml
alfpgen.ml
spilexer.mll aconv.ml constraintgen.ml
spiparser.mly v
\ T axioms.ml

spideducer.ml

Figure 12.1: Module hierarchy of the type inference implementation. An arrow indicates
a dependency.

thankless task. latex_axioms.ml will print the axioms in a more readable ETEX
form in the file axioms.tex, which can be a tremendous help for readability.

e alfpgen.ml: Contains encoding functions from the constraint language to ALFP.

Unfortunately, because of time constraints, and the fact that this is a first attempt
at an implementation of this particular method, we did not complete the implementa-
tion. But the ground work is complete. Adding, removing and modifying the axioms in
axioms.ml is close to trivial. The constraint generation of constraintgen.ml is equally
well-structured, and should not be difficult to modify either. The structure of the encod-
ing definitions in alfpgen.ml suffers slightly from the difference in syntax and expressive
power between the constraints and ALFP, and may need a bit of extra work to attain
the same level of structure.

12.2 Writing Up Axioms

Hiittel presents a great number of axioms in [10], written as ALFP formulae. These
axioms must be integrated in the implementation in a sensible way. Preferably one that
allows us a readable overview of the axioms.

We chose simply to write the axioms directly in the data type provided by ssolver/alfp.ml,
with a few helper functions to make the actual writing bearable. This way, we benefit
directly from the Objective Caml type checker, which will tell us if a formula is not well-
formed. We could have allowed writing the axioms in a more bearable syntax, but that
would require us to write our own parser with error reporting facilities for that syntax.

Small functions allows us to write frequently used elements as lists, such as aquantify,
which makes it possible to write the universal quantifiers of a formula as a list:

(* Prefiz a clause with a number of wuniversal quantifiers x)
let rec aquantify qlist clause =
match qlist with
| [] = clause
| (hd::tl1) — Forall(hd, aquantify tl clause)

Thus, the formula for substitution on pairs:
Vn.Vnl’.Ynl.Vm’.Vm.Vn2’.Vn2.Vn’.
(Subs(n1’,n1,m’,m)ASubs(n2’,n2,m’,m)ATermPair(n,nl1,n2) ATermPair(n’,n1’,n2’)) =
Subs(n’,n,m’,m)
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Can be written in the code as:

” 7 9 »” 79

let ax_tpair_subs = aquantify [’n”; ”nl’”; "nl”; "m’”; "m’; "n2’7;

(Leadsto(preand_of_list

R n277 ;

")

[PPredicate (subsrel, varlist ["nl’”; "nl”; "m’”; "m
PPredicate (subsrel , varlist ["n2’”7; 7"n2”; "m’”; "m’]);
PPredicate (tpairrel , varlist ["n”; ”nl”; ”n2”]);
PPredicate (tpairrel , varlist [?n’”; ”"nl’”; "n2’7])],

CPredicate (subsrel , varlist ["n’”; 7n”; "m’”; "m"])

)
)

It is still somewhat verbose, but it is a bearable way of writing the formulae. All
the formulae are concatenated into the list axioms, which may contain both clauses and
comment strings. This way, we can precede a conjunction of formulae in the list with a
comment which may be included in any printout of the formulae, and omitted when we
feed it to the Succinct Solver.

This brings us to the readability of the axioms. Clearly, maintaining an overview
of the axioms from the code would be difficult. For this purpose, we can present
latex_axioms.ml, and a number of latex_of _* functions in ssolver/alfp.ml. Exe-
cuting latex_axioms.ml will result in the file axioms.tex, which can be compiled by
KETEX to show a much more readable overview of the axioms, together with comments.

12.3 Encoding Constraint Formulae

The encoding of constraint formulae proved to be one of the more non-intuitive parts of
the implementation. Part of this is because the constraint language is more expressive
than ALFP logic. There are expressions which are possible in the given constraint lan-
guage, but have no equivalent in ALFP logic, such as @1 = (2 V ¢3) (disjunction in
a clause), or p; = Ur # Un (negation in a clause). But if the constraint generation
is good, we should never encounter such constraints. If we do, it is either a bug in the
implementation, or a problem with the constraint generation seen earlier in tables 8.1
and 8.2. This justifies the use of a UnsupportedByALFP exception in certain places in
alfpgen.ml. Fortunately, we have not encountered a case that raises such an exception
yet.

Another part of the reason that this part of the implementation seems non-intuitive,
is because of the need to encode such elements as messages and name-inclusion for envi-
ronments, which we decided to separate from the rest of the encoding. This is embodied
in the function formula_of _env, which encodes every name-inclusion of an environment,
and the function alfp_of msg, which encodes the kind of a message (see section 9.3). In
the process of encoding the main formula, we collect each environment and each mes-
sage. Afterwards, we pass each environment and each message to formula of_env and
alfp_of msg, respectively, and add the resulting formulae to the conjunction of the main
formula.
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Chapter 13

Conclusion and Future Work

In this report, we set out to develop a type checker for the type system presented in [4]
by Fournet, Gordon and Maffeis, and an implementation of the type inference method
developed in [10] by Hiittel. The type checker is in a functional state, but should be
considered a beta-version and may still contain significant bugs. The type inference
implementation was not completed, in part because of a relatively late start on that
project, and in part because of the need to address some technical issues with the method
itself. But the ground work has been laid, and completing the implementation is mostly
a question of modifying constraint generation and axioms in the code.

Further work on the type checker would involve some more thorough testing. We
also believe the utility of the checker could be greatly improved by the implementation
of syntactic sugar in the form of shorthand expressions akin to those already found
in [4]. Furthermore, we suspect we created some unnecessary redundancy in the type
annotations by introducing the extra annotation on match statements. We also believe
there may be other annotation redundancies in the type system. As seen in the reviewer
example in section 5.2, types have a tendency to become large and complex, so finding
and removing any such redundancies could greatly reduce the work involved in typing a
process.

As we mention previously, the implementation of type inference is not finished. In
theory, what is missing is not much, but in practice it depends on whether or not we find
any more technical issues with the method as described in [10], and how involved the
solutions would be. Future work on the implementation would involve completing it. As
it stands, the status is as follows:

e Constraint generation: Implemented, with the exception of the modification to
handle abstraction and application as described in section 11.2.

e Constraint encoding: Implemented.

e Axioms: The axioms governing types have been implemented, but the axioms
governing effects have not, so far. Most of that work amounts to simply writing
the axioms in from [10], although we believe the axioms for effects could be subject
to minor modifications to reflect the modification of section 11.2.

A point we would like to highlight is that in general, the most significant issues we
have encountered during this project were in some way related to dependent pair types
(the match annotation, section 3.3. Abstraction and application, section 8.4 and 11.2).
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We imagine a focus for further theoretical work could be a more thorough investigation
of how dependent pair types affect the task of type inference, and perhaps what impact
they have on type and effect systems in general.
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Appendix A

Full Function Definitions

A.1 Free Names (fn)

Find the free names of a process.

fn(ok) =10
fn(x) = {z}
(palr(M N)) =fn(M) U fn(N
fon({M}y)=fn(M) U fn(N
fn(nll =0

fo(in(M, z); P
fn(lin(M, x); P
n M) U fn( )

fn(Ok(S)) = £n(S)
fo(Pair(x : T,U)) = £o(T) U fn(U)\{z}
fn(Key(T)) = £n(T)
fn(Ch(T)) = £n(T)
fn(X) =10



A.2 Bound Names (bn)

Find the bound names of a process.

bn(nil) =0
bn(in(M, z); P) = {z} Ubn(P)
bn(lin(M, z); P) = ba(in(M, z); P)
bn(out(M,N)) =0
bn(new z : T; P) = {} Ubn(T') U bn(P)

)
)
) =
) =
) =
bn(decrypt M as (y: T)n; P) = {y} Ubn(T) Ubn(P)
ban(match M : Ty as (N,y: T); P) =bn(Ta) U{y} Ubn(T) Ubn(P)
bn(split M as (z: T,y :U); P) =bn(T) Ubn(U) U{z,y} Ubn(P)
F)
)
)
)
) =
) =

bn(expect

2} Ubn(T) Ubn(U)

A.3 Domain (dom)

Capture the domain of an environment.

)
dom(FE, begin {(M)) =
dom(z : T') = {x}
dom(begin 4(M)) =



A.4 Substitution

Substitute a message for a name.

ok{N/z} = ok
z{N/z} =N
e{N/yt ==

pair(M;, M>){N/z} = pair(M1{N/x}, Ma{N/z})
(M b AN/} = DM N 2 s (v
nil{N/x} = nil
(in(M,z); P){N/z} = in(M,z); P
(in(M, ); P){N/y} = in(M, z); P{N/y}
out(My, M2){N/z} = out(M{N/z}, Mo{N/z})
(new z : T; P){N/z} =new z : T{N/z}; P
(new z : T; P){N/y} = new z : T{N/x}; P{N/x}
(decrypt My as (y : T)a; P){N/y} = decrypt Mi{N/y} as (y : T{N/y}) o (n/yy;: P
(decrypt M as (y : T)a,: PY{N/a} = decrypt Mi{N/z} as (4 : T{N/2})ass /ey PLN/2)
)
)
)
)
)

’ﬂi

(match M : Ty, as (Mg,y ); P)Y{N/y} = match M1{N/y} : Mx{N/y} as (Tar, {N/y},y : T{N/y}); P
(match M, : Ty, as (Ma,y : T); P){N/z} = match M1{N/x}: Mo{N/xz} as (T, {N/z},y : T{N/z}); P{N
(split M as (z: T,y :U); P){N/x} = split M{N/xz} as (v : T{N/z},y : U); P
(split M as (z: T,y :U); P){N/y} = split M{N/y} as (z : T{N/y},y : U{N/y}); P
U);
t

i

)

(split M as (z: T,y : {N/z} =split M{N/z} as (z : T{N/z},y : U{N/z}); P{N/z}
J{N/z} = expect F{N/x}
Un{N/z} = Un
Ok(S){N/x} = Ok(S{N/z})
Pair(z : T,U){N/x} = Pair(z : T{N/x},U)
Pair(z : T,U){N/y} = Pair(z : T{N/y},U{N/y})
Key(T){N/z} = Key(T{N/x})
Ch(T){N/z} = Ch(T{N/z})
X{N/y} =X
(p(u1, - up) {N/2} = p(wr{N/x}, ..., un{N/x})
(L:=Lq,..., L){N/x} =L:—-Li{N/z},..., L.{N/x}
{Cy,..., CoH{N/z} = {C1{N/z},..., Cp{N/x}}

P
P
P
P
P
F

(expec
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Appendix B

Type Checker Correctness
Proofs

Lemma 1. env_judgment(env) <= envk o
Proof. Proof by induction in the structure of enwv.

e Base case: env_judgment (}) <= F (), line 1.2
This call is always true. The corresponding judgment states that () - o is always
good:

(Env 0)

OFo

e env_judgment(FE, z:T) <= E,x:TF o, line 1.4
This call is true if env_judgment (E) A (fn(T) C dom(E)) A (z ¢ dom(E)).
The inclusion conditions are identical to the ones in (Env x),
by the induction hypothesis, env_judgment (F) <= FE | o,
thus it holds that env_judgment (FE, 2:T) <= E,x: Tk o

(Env x)
Ero £n(T) Cdom(E) =z ¢ dom(E)

Ex:Tko

e env_judgment (E, {(M)) <= E,{(M)F o, line 1.6
This call is true if env_judgment (E) A (fn({(M)) C dom(E)).
The inclusion condition is identical to the one in (Env ¢(M)),
by the induction hypothesis, env_judgment (F) <= E I o,
thus it holds that env_judgment (E, {(M)) < E {(M)F o

(Env £(M))
Eto (fn({(M)) C dom(E))
EA4M)Fo

Lemma 2. msg_judgment (E, msg, typ) = E F msg : typ
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Proof. Proof by induction in the structure of msg. From lemma 1, we know that
env_judgment(E) = E F o.

e msg = pair(M, N), line 2.2

— When typ = Pair(xz : T,U), line 2.4
By the induction hypothesis
msg_judgment (E, M, T) = E'+ M : T and
msg_judgment (F, N, U{M/x}) = E+ N : U{M/z} hold,
thus by the (Msg Pair) rule,
msg_judgment (F, pair(M, N), Pair(z : T,U)) = E F pair(M, N) : Pair(x
holds.
— When typ = Un, line 2.6
By the induction hypothesis
msg_judgment (£, M, Un) = E+ M : Un and
msg_judgment (E, N, Un) = E + N : Un hold,
thus by the (Msg Pair Un) rule,
msg_judgment (E, pair(M,N), Un) = E F pair(M, N) : Un holds.

e msg = {M}Name(z), line 2.10

— When typ = Un and E(z) = Key(T), line 2.13
By the induction hypothesis
msg_judgment (E, M, T) = E+ M : T and
msg_judgment (E, Name(x), T) = E'+ Name(z) : T hold,
thus by the (Msg Encrypt) rule,
msg-judgment (E, {M }Name(z), Un) = E'F{M} Name(z) : Un holds.

— When typ = Un and E(z) = Un, line 2.15
By the induction hypothesis
msg_judgment (E, M, Un) = E+ M : Un and
msg_judgment (F, Name(x), Un) = E - Name(z) : Un hold,
thus by the (Msg Encrypt Un) rule,
msg_judgment (E, {M} name(z), UN) = EF {M} Name(z) : Un holds.

e msg = {M}n, when typ = Un and N # Name(x), line 2.21
By the induction hypothesis
msg_judgment (E, M, Un) = EF+ M : Un and
msg_judgment (E, N, Un) = E+ N : Un hold,
thus by the (Msg Encrypt Un) rule,
msg_judgment (E, {M}y, Un) = E+ {M}y : Un holds

e msg = Name(zx), when typ = T, line 2.26
If E(z) =T, the (Msg x) rule is applicable.
By lemma 1, env_judgment (F) = E I ¢ holds.
(x € dom(E)) = (x € dom(E)) is trivial.
Thus, msg_judgment (E, Name(z), T) = E F Name(z) : T holds.

e msg = ok, line 2.28

— When typ = Un, line 2.30
By lemma 1, env_judgment (F) = E I ¢ holds.
Thus, by the (Msg Ok Un) rule, msg_judgment (E, ok, Un) = E I ok : Un
holds.
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— When typ = Ok(S), line 2.32
By lemma 1, env_judgment (E) = E I ¢ holds.
(clauses(E) = C VC € S) = (clauses(E) =C VC € S) and
fn(S) C dom(FE) = fn(S) C dom(F) are both trivial.
Thus, by the (Msg Ok) rule, msg_judgment (F, ok, Ok(S)) = FE F ok :
Ok(S) holds.

O
Lemma 3. proc_judgment (E, proc) = E F proc

Proof. Proof by induction in the structure of proc.
From lemma 1, we know that env_judgment(F) = E F ¢.
From lemma 2, we know that msg_judgment(E, M, T) = E+- M :T.

e proc =new z : T; P, line 3.2
generative(T) = generative(T) is trivial.
By the induction hypothesis
proc_judgment (E,z : T), P) = (E,z : T) - P holds,
thus by the (Proc Res) rule,
proc_judgment(E, new z : T; P) = E + new z : T; P holds.

e proc = (P|Q), line 3.4
fn((P|Q)) C dom(E) = fn((P|Q)) C dom(E) is trivial.
By the induction hypothesis
proc_judgment ((env(Q), E), P) = (env(Q),E) - P and
proc_judgment ((env(P), E), Q) = (env(P), E) I @ hold,
thus by the (Proc Par) rule,
proc_judgment (E, (P|Q)) = E F (P|Q) holds.

e proc = nil, line 3.6
By lemma 1, env_judgment (E) = E I ¢ holds.
thus by the (Proc Nil) rule,
proc_judgment (£, nil) = E F nil holds.

e proc = C, line 3.8
By lemma 1, env_judgment ((E,C)) = (E,C) I ¢ holds.
thus by the (Proc Begin) rule,
proc_judgment (£, C') = E I C holds.

e proc = expect C, line 3.10
By lemma 1, env_judgment ((E,C)) = (E,C) I ¢ holds.
clauses(F) = C = clauses(E) = C is trivial.
thus by the (Proc End) rule,
proc_judgment (E, expect C') = E I expect C holds.

e proc = decrypt M as (y : T) Name(x); P> line 3.12

— When E(z) = Key(T), line 3.14
By lemma 2,
msg_judgment (E, M, Un) = F+ M : Un and
msg_judgment (E, Name(z), Key(T)) = E + Name(z) : Key(T) hold.
By the induction hypothesis,
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proc_judgment ((E,y : T), P) = (E,y: T) F P holds.
thus by the (Proc Decrypt) rule,

proc_judgment (£, decrypt M as (y : T) Name(z); P) =
E + decrypt M as (y : T') Name(s); P holds.

— When E(z) = Un, line 3.16
By lemma 2,
msg_judgment (£, M, Un) = E+ M : Un and
msg_judgment (E, Name(z), Un) = E - Name(z) : Un hold.
By the induction hypothesis,
proc_judgment ((E,y : Un), P) = (E,y : Un) - P holds.
thus by the (Proc Decrypt Un) rule,
proc_judgment (£, decrypt M as (y : Un)yame(a); P) =
E + decrypt M as (y : Un)yame(s); P holds.

e proc = decrypt M as (y: T)n; P, when N # Name(z), line 3.20
By lemma 2,
msg_judgment (E, M, Un) = E+ M : Un and
msg_judgment (£, N, Un) = E+ N : Un hold.
By the induction hypothesis,
proc_judgment ((E,y : Un), P) = (E,y : Un) - P holds.
thus by the (Proc Decrypt Un) rule,
proc_judgment (F, decrypt M as (y: Un)y; P) = E+ decrypt M as (y : Un)y; P
holds.

e proc = match M : Ty as (N,y : Ugwp); P, line 3.22

— When Ty = Pair(z : T,U), line 3.24
By lemma 2,
msg_judgment (F, M, Pair(z: T,U)) = E+ M : Pair(z : T,U) and
msg_judgment (£, N, T) = E+ M : T hold.
By the induction hypothesis,
proc_judgment ((E,y : U{N/z}), P) = (E,y: U{N/z}) - P
Use of the (Proc Match) rule implies that U{N/z} = Usyp
Thus by the (Proc Match) rule,
proc_judgment (E, match M : Ty as (N,y : Ugwp); P) =
Et+ match M : Ty as (N,y: Uswp); P

— When Ty; = Un, line 3.26
By lemma 2,
msg_judgment (£, M, Un) = E'+ M : Un and
msg_judgment (E, N, Un) = E+ M : Un hold.
By the induction hypothesis,
proc_judgment ((E,y : Un))
Thus by the (Proc Match) rule,
proc_judgment (F, match M : Un as (N,y : Un); P) =
E+ match M : Un as (N,y : Un); P

e proc = out(Name(x), N), line 3.30

— When E(z) = Ch(T), line 3.32
By lemma 2,
msg_judgment (E, Name(z), Ch(T)) = E + Name(z) : Ch(T) and
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msg_judgment (E, N, T) = E+ N : T hold.
thus by the (Proc Output) rule,
proc_judgment (F, out(Name(z), N)) = E F out(Name(z), N) holds.

— When E(z) = Un, line 3.34
By lemma 2,
msg_judgment (F, Name(z), Un) = E - Name(z) : Un and
msg_judgment (E, N, Un) = E+ N : Un hold.
thus by the (Proc Output Un) rule,
proc_judgment (E, out(Name(z), N)) = E F out(Name(z), N) holds.

e proc = out(M, N), line 3.38
By lemma 2,
msg_judgment (E, M, Un) = E'+ M : Un and
msg-_judgment (E, N, Un) = EF N : Un hold.
thus by the (Proc Output Un) rule,
proc_judgment (E, out(M, N)) = E F out(M, N) holds.

e proc = in(Name(y), z); P, line 3.40

— When E(y) = Ch(T), line 3.42
By lemma 2,
msg_judgment (E, Name(y), Ch(T)) = E + Name(y) : Ch(T) holds.
By the induction hypothesis,
proc_judgment ((E,z:T), P) = (E,z: T) F P holds.
thus by the (Proc Input) rule,
proc_judgment (E, in(Name(y),x); P) = E F in(Name(y), z); P

— When E(y) = Un, line 3.44
By lemma 2,
msg_judgment (F, Name(y), Un) = E F Name(y) : Un holds.
By the induction hypothesis,
proc_judgment ((E,z : Un), P) = (E,z : Un) F P holds.
thus by the (Proc Input Un) rule,
proc_judgment (E, in(Name(y), x); P) = E F in(Name(y),z); P

e proc =in(M,z); P, line 3.48
By lemma 2,
msg-judgment (E, Name(y), Un) = E + Name(y) : Un holds.
By the induction hypothesis,
proc_judgment ((E,z : Un), P) = (E,z : Un) - P holds.
thus by the (Proc Input Un) rule,
proc_judgment (E, in(M, z); P) = E F in(M, z); P holds.

e proc = split Name(z) as (z: T,y : U); P, line 3.50

— When E(z) = Pair(x : T, U), line 3.52
By lemma 2,
msg_judgment (F, Name(z), Pair(z : T,U)) = E + Name(z) : Pair(z : T,U)
holds.
By the induction hypothesis,
proc_judgment ((E,z: T,y :U), P) = (E,x: T,y : U) - P holds.
thus by the (Proc Split) rule,

68



proc_judgment (E, split Name(z) as (z: T,y : U); P) =
E + split Name(z) as (z: T,y : U); P holds.
— When E(z) = Un, line 3.54
By lemma 2,
msg_judgment (E, Name(z), Un) = E + Name(z) : Un holds.
By the induction hypothesis,
proc_judgment ((E,z : Un,y: Un), P) = (E,z: Un,y : Un) F P holds.
thus by the (Proc Split Un) rule,
proc_judgment (F, split Name(z) as (¢ : T,y : U); P) =
E + split Name(z) as (z: T,y : U); P holds.

e proc = split pair(M;, Ms) as (z: T,y : U); P, line 3.58
By lemma 2,
msg-_judgment (F, pair(My, Ms), Pair(z : T,U)) = E + pair(M;, Ms) : Pair(xz : T,U)
holds.
By the induction hypothesis,
proc_judgment ((F,z: T,y :U),P) = (E,z: T,y : U) + P holds.
thus by the (Proc Split) rule,
proc_judgment (E, split pair(M;, Ms) as (z: T,y :U); P) =
E I split pair(M;, M) as (z : T,y : U); P holds.

e proc =split M as (z: T,u: U); P, line 3.60
By lemma 2,
msg_judgment (£, M, Un) = E F M : Un holds.
By the induction hypothesis,
proc_judgment ((E,z : Un,y : Un), P) = (E,z : Un,y : Un) - P holds.
thus by the (Proc Split Un) rule,
proc_judgment (E, split M as (z:T,y:U); P) =
E+split M as (z: T,y : U); P holds.

Lemma 4. F F msg : typ = msg_judgment (£, msg, typ)

Proof. Proof by induction in the structure of msg. From lemma 1, we know that E
© = env_judgment (E).

e msg = pair(M, N), (Msg Pair) and (Msg Pair Un) are applicable.

— When using (Msg Pair), typ = Pair(z : T, U)
By the induction hypothesis,
E+M:T = msg_judgment (E, M, T) and
EF N:U{M/x} = msg_judgment (E, N, U{M/x}) hold,
thus by the case of line 2.4,
E - pair(M, N) : Pair(z : T,U) = msg_judgment (E, pair(M, N), Pair(z : T,U))
holds.
— When using (Msg Pair Un), typ = Un
By the induction hypothesis,
E+ M :Un = msg_judgment (E, M, Un) and
E+ N :Un = msg_judgment (E, N, Un) hold,
thus by the case of line 2.6,
E + pair(M,N) : Un = msg_judgment (E, pair(M, N), Un) holds.
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® Mmsg = N S ncrypt) an S ncrypt Un) are applicable.
g ={M}n, (Msg Encrypt) and (Msg Encrypt Un) pplicabl

— When using (Msg Encrypt), typ = Un and E + N : Key(T)
Because Key(T) is generative and has no message constructor, N = Name(x).
By the induction hypothesis,
Et+-M:T = msg_judgment (£, M, T) and
E+ Name(x) : T = msg_judgment (E, Name(x), T) hold,
thus by the case of line 2.13,
EFA{M}Nome(z) : Un = msg_judgment (E, {M} name(z), Un) holds.

— When using (Msg Encrypt Un), typ = Un and E + N : Un By the induction
hypothesis,
Et+ M :Un = msg_judgment (E, M, Un) and
E+ N :Un = msg_judgment (E, N, Un) hold,
thus by the cases of both line 2.15, which is used when N = Name(z) and
line 2.21, which is used otherwise,
EF{M}y :Un = msg_judgment (E, {M}x, Un) holds.

e msg = Name(z), (Msg x) is applicable, typ = T. (Msg x) is only applicable if
Ex)=T.
By lemma 1, E F ¢ = env_judgment (£) holds.
(x € dom(E)) = (x € dom(E)) is trivial.
Thus by the case of line 2.26,
Thus, E + Name(z) : T = msg_judgment (E, Name(z), T) holds.

e msg = ok, (Msg Ok) and (Msg Ok Un) are applicable.

— When using (Msg Ok Un), typ = Un
By lemma 1, E - ¢ = env_judgment (£) holds.
Thus, by the case of line 2.30, E - ok : Un = msg_judgment (F, ok, Un)
holds.

— When using (Msg Ok), typ = Ok(S)
By lemma 1, F F ¢ = env_judgment (£) holds.
(clauses(E) = C VC € S5) = (clauses(E) =C VYC € S) and
fn(S) C dom(FE) = fn(S) C dom(FE) are both trivial.
Thus, by the case of line 2.32, F - ok : Ok(S) = msg_judgment (E, ok, Ok(S5))
holds.

O
Lemma 5. E + proc = proc_judgment (E, proc)

Proof. Proof by induction in the structure of proc.
From lemma 1, we know that env_judgment(E) = E F o.
From lemma 4, we know that £+ M : T = msg_judgment (E, M, T).

e proc =new x : T; P, (Proc Res) is applicable.
generative(7T) = generative(T) is trivial.
By the induction hypothesis,
(E,z:T)F P = proc_judgment ((E,z : T), P) holds,
thus by the case of line 3.2,
Etnew z:T; P = proc_judgment (E, new z : T; P) holds.
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e proc = (P|Q), (Proc Par) is applicable.
fn((P|Q)) C dom(E) = fn((P|Q)) C dom(E) is trivial.
By the induction hypothesis,
(env(Q@), E) F P = proc_judgment ((env(Q), E), P) and
(env(P), E) F Q = proc_judgment ((env(P), F), Q) hold,
thus by the case of line 3.4,
E+ (P|Q) = proc_judgment (E, (P|Q)) holds.

e proc = nil, (Proc Nil) is applicable.
By lemma 1, E' - ¢ = env_judgment (£) holds.
thus by the case of line 3.6,
E + nil = proc_judgment (E, nil) holds.

e proc = C, (Proc Begin) is applicable.
By lemma 1, (E,C) I ¢ = env_judgment ((E, C)) holds.
thus by the case of line 3.8,
E + C = proc_judgment (E, C) holds.

e proc = expect C, (Proc End) is applicable.
By lemma 1, (E,C) F ¢ = env_judgment ((E, C)) holds.
clauses(F) = C = clauses(E) | C is trivial.
thus by the case of line 3.10,
E + expect C = proc_judgment (£, expect C) holds.

e proc = decrypt M as (y:T)n; P, (Proc Decrypt) and (Proc Decrypt Un) are
applicable.

— When using (Proc Decrypt), E+ N : Key(T).
Because Key(T) is generative and has no message constructor, N = Name(zx).
By lemma 4,
E+ M :Un = msg_judgment (E, M, Un) and
E+ Name(z) : Key(T) = msg_judgment (E, Name(z), Key(T)) hold.
By the induction hypothesis,
(E,y:T)F P = proc_judgment ((E,y : T), P) holds.
thus by the case of line 3.14,
E+decrypt M as (y : T) Name(z); P =
proc_judgment (£, decrypt M as (y : T') Name(); P) holds.
— When using (Proc Decrypt Un), E+ N : Un. By lemma 4,
E+ M :Un = msg_judgment (E, M, Un) and
E+ N :Un = msg_judgment (E, N, Un) hold.
By the induction hypothesis,
(E,y:Un)F P = proc_judgment ((E,y : Un), P) holds.
thus by the cases of both line 3.16, which is used when N = Name(z), and
line 3.20, which is used otherwise,
Et+ decrypt M as (y: Un)y; P =
proc_judgment (F, decrypt M as (y : Un)y; P) holds.

e proc =match M : Ty as (N,y : Usw); P, (Proc Match) and (Proc Match Un) are
applicable.

— When using (Proc Match), Ths = Pair(x : T,U) and Usy, = U{N/z}.
By lemma 4,
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Et+ M :Pair(x : T,U) = msg_judgment (£, M, Pair(z : T,U)) and

E+- M :T = msg_judgment (E, N, T) hold.

By the induction hypothesis,

(E,y :U{N/z})F P = proc_judgment ((E,y : U{N/z}), P)

Thus by the case of line 3.24,

E+Fmatch M : Pair(z : T,U) as (N,y : U{N/z}); P =

proc_judgment (F, match M : Pair(xz : T,U) as (N,y : U{N/x}); P) holds.

— When using (Proc Match Un), Ty = Un and Uy, = Un.
By lemma 4,
E+ M :Un = msg_judgment (E, M, Un) and
Et+ M :Un = msg_judgment (E, N, Un) hold.
By the induction hypothesis,
(E,y:Un)F P =
proc_judgment ((E,y : Un), P)
Thus by the case of line 3.26,
E+ match M : Un as (N,y : Un); P = proc_judgment (E, match M : Un as (N,y : Un);)
holds.

e proc = out(M, N), (Proc Output) and (Proc Output Un) are applicable.

— When using (Proc Output), E + M : Ch(T).
Because Ch(T) is generative and has no message constructor, M = Name(x).
By lemma 4,
E+ Name(x) : Ch(T) = msg_judgment (E, Name(z), Ch(T)) and
EF N :T = msg_judgment (E, N, T) hold.
thus by the case of line 3.32,
E - out(Name(z), N) = proc_judgment (E, out(Name(x), N)) holds.

— When using (Proc Output Un), £+ M : Un.
By lemma 4,
E+ M :Un = msg_judgment (E, M, Un) and
E+ N :Un = msg_judgment (E, N, Un) hold.
thus by the cases of both line 3.34, which is used when M = Name(x), and
line 3.38, which is used otherwise,
E+ out(M, N) = proc_judgment (E, out(M, N)) holds.

e proc = in(M, z); P, (Proc Input) and (Proc Output Un) are applicable.

— When using (Proc Input), E + M : Ch(T).
Because Ch(T) is generative and has no message constructor, M = Name(x).
By lemma 4,
E+ Name(y) : Ch(T) = msg_judgment (E, Name(y), Ch(T)) holds.
By the induction hypothesis,
(E,z:T)F P = proc_judgment ((E,z : T'), P) holds.
thus by the case of line 3.42,
E + in(Name(y),x); P = proc_judgment (E, in(Name(y),x); P)

— When using (Proc Input Un), E+ M : Un.
By lemma 4,
Et+ M :Un = msg_judgment (E, M, Un) holds.
By the induction hypothesis,
(E,z : Un) F P = proc_judgment ((E,z : Un), P) holds.

72



e proc
ble.

thus by the cases of both line 3.44, which is used when M = Name(x), and
line 3.48, which is used otherwise,
Et+in(M,z); P = proc_judgment (F, in(M, x); P)

=split M as (x: T,y : U); P, (Proc Split) and (Proc Split Un) are applica-

When using (Proc Split), E + M : Pair(z : T,U).

Because Pair(z:T,U) is not generative, either M = Name(z) or M =
pair(Mys, Nyy).

By lemma 4,

Et M :Pair(z : T,U) = msg_judgment (E, M, Pair(x : T,U)) holds.

By the induction hypothesis,

(Eyz:T,y:U)F P = proc_judgment ((E,z : T,y : U), P) holds.

thus by the cases of both line 3.52, which is used when M = Name(z), and
line 3.58, which is used when M = pair(Mys, Nas),

Etsplit Mas (z:T,y:U); P =

proc_judgment (F, split M as (z: T,y : U); P) holds.

When using (Proc Split Un), E+ M : Un, T = Un and U = Un.

By lemma 4,

Et+= M :Un = msg_judgment (E, M, Un) holds.

By the induction hypothesis,

(E,z:Un,y:Un)tF P = proc_judgment ((E,z : Un,y : Un), P) holds.
thus by the cases of both line 3.54, which is used when M = Name(z), and
line 3.60, which is used otherwise,

Et split M as (z: Un,y: Un); P =

proc_judgment (F, split M as (z: Un,y : Un); P) holds.
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Appendix C

Relations and Axioms

C.1 Relations

The ALFP formulae that follow in section 9.2 and 9.3 populate a number of relations.
We shortly explain the meaning of each relation in this section.

Names represent elements of the process and type system. We operate with a notion of
proper names of messages and environments. A proper name is an encoding representing
uniquely a message or environment in the process.

C.1.1 Equality and Inequality

In some cases, we need to know if two names are equal. Thus, the equality and inequality
relations:

e eq(x,y): The names z and y are equal

e neq(x,y): The names x and y are not equal

C.1.2 Type Relations
These relations indicate the content of a type variable:
e Un(t): The type variable T = Un
o Key(ty,t2): The type variable 71 = Key(T3)
o Ch(ty,t2): The type variable T} = Ch(T3)
e Pair(t1,x,t2,t3): The type variable T) = Pair(z : Tz, T3)
o Ok(t,s): The type variable T' = Ok(S)

Appending the postfix “Q” we get the may relations, indicating what may be con-
tained in a variable if it is not Un.

e UnQ(t): The type variable T < Un
e KeyQ(t1,t2): The type variable T} . Key(T»)

o ChQ(t1,%2): The type variable T; = Ch(T})
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e PairQ(t1,x,ta,t3): The type variable Ty Z Pair(z : T, T3)

e OkQ(t,s): The type variable T L Ok(S)

We have relations indicating generativity, type equality, as well as type assignments.
e Gen(t): Type variable T is generative

e NonGen(t): Type variable T is not generative

e Teq(t1,t2): Type variables 71 and T3 are equal

e Type(z,t): The type of name z is type variable T

C.1.3 Message Relations

We indicate what kind of message each proper name is related to.
e Name(m): Message M is a name
e OkTerm(m): Message M is an ok token
e TermPair(m,my,m2): Message M is the pair message pair(M;, Ms)
e Enc(m,my,mz): Message M is the encrypted message {M;} s,

Subs indicates exactly what happens to any proper name of a message when a sub-
message is substituted. Fn indicates the free names of an entity.

e Subs(z’,z,m/;m): The name 2’ results from substituting all occurences M with
M’ in the entity represented by z. z and 2z’ may be proper names of either terms,
effects or types.

e Fn(z,z): The name z is a free name in entity z. z may be the name of either a
term, effect or type

C.1.4 Effect Relations

The Effect relation indicates the content of effect variables.
o Effect(l,m,s): The effect (M) € S
e Eff(t): Type T contains effects

e NonEff(¢): Type T does not contain effects

C.2 Axioms

Following is the list of axioms currently in the type inference implementation.

e Equality and inequality on names. We simply describe that every distinct name is
equal to itself, and not equal to any other name.
Vx.eq(x,x) A Vx.Vy.(—eq(x,y)) = neq(x,y)
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Generativity and non-generativity. These formulae map types to the generativity
relations.

Vt.(Un(t)) = Gen(t)

Vt1.Vt2.(Key(t1,t2)) = Gen(t1)

Vt1.Vt2.(Ch(t1,t2)) = Gen(t1)

Vt1.Vx.Vt2.Vt3.(Pair(t1, x,t2,t3)) = NonGen(t1)

Vt.Vr.(Ok(t,r)) = NonGen(t)

Type equality. We say that if two types are equal, then their inner types are also
equal.

Vx1.Vx2.Vt1’.Vt1’ 2 .Vt2.Vt3.Vt4.Vt5.(Pair(t1’,x1,t2, t3)APair(t1’ ’, x2, t4, t5)A
Teq(t1’,t1°?)) = Teq(t2,t4) A Teq(t3,t5)

Ve12.Ve17 2 . ve2.Ve3.(Key(t1?,t2) AKey(t17 7, t3) ATeq(t1’,t1?)) = Teq(t2,t3)
Ve12.Ve12 2. ve2.¥e3.(Ch(t1?,t2) A Ch(t1’,t3) A Teq(tl’,t1’?)) = Teq(t2,t3)

Vt1’.¥t17 2 Vs1.Vs2.(Ok(t1?,s1) A Ok(t1°?,52) A Teq(t1’,t1°?)) = Teq(s1,s2)

Type equality is both reflexive and transitive.
Vt.Teq(t, t)

Vt1.Vt2.(Teq(t1,t2)) = Teq(t2,t1)
Vt1.Vt2.Vt3.(Teq(t1,t2) A Teq(t2,t3)) = Teq(t1,t3)

Substitution on terms

Vn.Vm’.¥m.(OkTerm(n)) = Subs(n,n,m’,m)

Vm’.Vm.(Name(m)) = Subs(m’, m,m’,m)

Vn.Vn1’.Vnl.¥Vm’.Vm.Vn2’.¥n2.vn’.(Subs(n1’,n1,m’, m)ASubs(n2’,n2,m’ , m)ATermPair(n,nl1,n2)A
TermPair(n’,n1’,n2’)) = Subs(n’,n,m’,m)

Vn.Vn1’.Vnl.Vm’.Vm.Vn2’.Vn2.vn’.(Subs(n1’,n1,m’, m)ASubs(n2’,n2,m’ ,m) AEnc(n,n1,n2)A
Enc(n’,n1’,n2’)) = Subs(n’,n,m’,m)

Substitution on effects
Vn.Vn’.V1.Vm.Vm’ Vs.Vs’.(Effect(1,n,s’) A Subs(n’,n,m’,m)) = Effect(1,n’,s)

Free names of terms. A name is always free in itself. For pairs and encryptions, if
a name is free in either element, it is free for the pair, or encryption.
Vn.(Name(n)) = Fn(n,n)

Vn.Vn1.vn2.Vm.((Fn(m,n1) V Fn(m,n2)) A TermPair(n,n1,n2)) = Fn(m,n)
Vn.Vn1.vn2.Vm.((Fn(m,n1) V Fn(m,n2)) A Enc(n,n1,n2)) = Fn(m,n)

Free names of types

Vt.vt1.Vm.(Ch(t, t1) A Fn(m, t1)) = Fn(m, t)

Vt.Vt1.vm.(Key(t,t1) A Fn(m,t1)) = Fn(m, t)

Vt.Vt1.vt2.Vx.Vm.(Pair(t, x, t1,t2) A (Fn(m,t1) V Fn(m, t2)) A neq(m, x)) = Fn(m,t)
Vt.Vs.Vm.(Ok(t, s) A Fn(m, s)) = Fn(m, t)

Vm.Vn.V1.Vs.(Fn(n,m) A Effect(1,m,s)) = Fn(n,s)

Possible types. These axioms were added to the ones of [10], to describe how the

= and = type relations interact. The Un relation is populated by the generation
rules in a stratum prior to all the other type relations. In that stratum, all the
types that must be Un are found, and a stratum later, the other type relations are

populated from the ~ relations to fill in those types that are not Un.
Vt.Vt1.(KeyQ(t,t1) A =Un(t)) = Key(t,t1)
Vt.Vx.Vt1.Ve2.(PairQ(t, x, t1,t2) A =Un(t)) = Pair(t, x,t1,t2)
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Ve.Vt1.(ChQ(t,t1) A =Un(t)) = Ch(t, t1)
Vt.Vs.(0OkQ(t, s) A =Un(t)) = Ok(t,s)
Vv.Vu.vm.Vt.(AbsQ(v,u,m,t) A =Un(v)) = Abs(v,u,m,t)
Vv.Vu.Vn.(AppQ(v,u,n) A =Un(v)) = App(v,u,n)

Axioms for deciding which types contain effects, and which do not.
Vt.Vs.(Ok(t, s)) = Eff(t)

Vx.Vt.Vt1.Vt2.(Pair(t, x,t1,t2)) = NonEff(t)

Vt.vt1.(Key(t,t1)) = NonEff(t)

Vt.Vt1.(Ch(t, t1)) = NonEff(t)

Vt.(Un(t)) = NonEff(t)

Ve1.Ve2.(Eff(t1) A Teq(t1,t2)) = Eff(t2)

Vt1.V£2.(NonEff(t1) A Teq(t1,t2)) = NonEff(t2)

We decide which environments are simple and which are non-simple.
Ve.Vt.Vx.(Env(x, t, e) A Eff(t)) = Simple(e)
Ve.(3t.3x.Env(x,t,e) A NonEff(t)) = NonSimple(e)

We find dependencies between effect variables.
Ve.Vx.Vt.Vs.Vs’.(Env(x, t,e) A Ok(t,s’) A EnvDep(s, e)) = Dep(s,s’)
Vs1.Vs2.Vs3.(Dep(s1,s2) A Dep(s2,s3)) = Dep(si,s3)

We find initial and non-initial effect variables.
Vs.Ve.(Simple(e) A EnvDep(s, e)) = Initial(s)
Vs.Ve.(EnvDep(s, e) A NonSimple(e)) = Notlnitial(s)

We find which messages are admitted by environments and effects
Vm.Ve.Vn.((=Fn(n,m) V Dom(n, e))) = Admits(e,m)
Vm.Ve.Vs.(Admits(e,m) A EnvDep(s, e)) = EffAdmits(s, m)

Axioms for abstraction. Propagates abstraction into abstracted type.
Vt1.Vt1’.V£2.Vm.Vx.(Ch(t1,t2) A Abs(t1’,t1,m, x)) = Abs(t1’,t2,m, x)
Vt1.Vt1’.Vt2.Vm.Vx.(Key(t1,t2) A Abs(t1’,t1,m,x)) = Abs(t1’,t2,m, x)

VE1.Vt12 . V£2.Vt3.Vt2’ .Vm.Vx1.Vx2.(Pair(t1,x1,t2,t3)AAbs(t1’, t1,m,x2)) = Abs(t1’,t2,m, x2)A
Abs(t1’,t3,m, x2)

Vt1.Vt1’ . Vs.Vm.Vx.(Ok(t1,s) A Abs(t1’,t1,m,x)) = Abs(t1’,s,m,x)

Axioms for application. Indicates application of a type abstraction.
Vt1.Vt2.Vt3.vt4.Vm1.Vm2.Vx.(Ch(t1,t2) A Abs(t1,t3,m1,x) A App(t4,t1,m2)) =

Ch(t4,t2) A Apply(t4,t4,m2,m1)

Vt1.Vt2.Vt3.Vt4.Vm1.Vm2.Vx.(Key(t1,t2) A Abs(t1,t3,m1,x) A App(t4,t1,m2)) =

Key(t4,t2) A Apply(t4, t4,m2,m1)
Vt1.Vt2.Vt3.Vt4.Vt5.Vm1.Vm2.Vx.Vx1.(Pair(t1,x1,t2,t5)AAbs(t1, t3,m1, x)AApp(t4, t1,m2)) =
Pair(t4,x1,t2,t5) A Apply(t4, t4,m2,ml)

Vt1.Vs.Vt3.Vt4.Vm1.Vm2.Vx.(Ok(t1, s)AAbs(t1,t3,m1, x) AApp(t4, t1,m2)) = Ok(t4, s)A
Apply(t4,t4,m2,m1)

Axioms for apply propagation. Propagates an application to inner types.
Vt.Vt1.vt2.vm1.Vm2.(Ch(t1,t2) A Apply(t,t1,m2,m1)) = Apply(t, t2,m2,m1)
Vt.V£1.Vt2.Vm1.Vm2.(Key(t1,t2) A Apply(t, t1,m2,m1)) = Apply(t, t2,m2,m1)
Vt.Vt1.Vt2.vt3.Vm1.Vm2.Vx.(Pair(t1, x, t2, t3) AApply(t, t1,m2,m1)) = Apply(t,t2,m2,m1)A
Apply(t, t3,m2,m1)

Vt.¥t1.Vs.Vm1.vm2.(Ok(t1,s) A Apply(t,t1,m2,m1)) = Apply(t, s,m2,m1)
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e Unification axioms. This is also a way of assigning types to isolated type variables.
Vt1.Vt12.V£2.(Ch(t1,t2) A Teq(t1,t1?)) = Ch(t1’,t2)
VE1.Vt12 V2. (Key(t1,t2) A Teq(t1,t1’)) = Key(t1’,t2)
Vt1.Vt12.Vt2.Vt3.vx.(Pair(t1,x,t2,t3) A Teq(t1,t1’)) = Pair(t1’,x,t2,t3)
Vt1.Vt1’.Vt2.(Ok(t1,t2) A Teq(tl,t1’)) = Ok(t1’,t2)

Vt1.vt1’.Vt2.Vm. (App(tl,t2,m) A Teq(tl,t1’)) = App(tl’,t2,m)
V£1.Vt1’.V£2.Vm.Vx.(Abs(t1,t2,m,x) A Teq(t1,t1’)) = Abs(t1’,t2,m, x)
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Appendix D

Type Checker Code

D.1 spiparser.mly

/* spiparser.mly x/

/+* Spi Calculus parser x/

%{

open Printf

let parse_error
print_endline
flush stdout ;;

%o}

%token <string> ID

%token <string> LVAR

%token <char> CHAR

%token NIL OK

%token BEGIN END BANG PAR OUT IN NEW DECRYPT SPLIT MATCH

%token CHAN UN KEY TOK TPAIR UNKNOWN

%token EMPTY PAIR COMMA LPAREN RPAREN LBRACE RBRACE COLON SCOLON AS DASH EXPECT

= (x Called by the parser function on error x*)

» A

s
(”spiparser:. s);

%start process

%start msgtype

%start resource

Y%start message

Y%type <Spitree.proc> process
%type <Spitree.typ> msgtype
%type <Spitree.datalog> resource
Ytype <Spitree.msg> message

%start dprogram

Y%type <Spitree.term> term

%type <Spitree.literal> literal
%type <Spitree.term list> restlit
%type <Spitree.hclause> hclause
Y%type <Spitree.literal list> restcl
%type <Spitree.datalog> dprogram
%type <Spitree.hclause list> restprog

%%
process: NIL { Spitree.PNil }
| OUT LPAREN message COMMA message RPAREN { Spitree.Out($3, $5) }
| IN LPAREN message COMMA ID RPAREN SCOLON process { Spitree.In($3, $5, $8)
| BANG IN LPAREN message COMMA ID RPAREN SCOLON process { Spitree.InRepl($4, $6, $9) }
| NEW ID COLON msgtype SCOLON process { Spitree.Nu($2, $4, $6) }
| LPAREN process parrest { if $3 = Spitree.PNil then
$2
else
Spitree.PPara($2, $3)
| BEGIN ID LPAREN message RPAREN { Spitree.Datprog ([[($2, [Spitree.SpiMsg($4)])]]) }
| END ID LPAREN message RPAREN { Spitree.Expect($2, [Spitree.SpiMsg($4)]) }
| DECRYPT message AS LBRACE ID COLON msgtype RBRACE message SCOLON process
{ Spitree.Decrypt($2, $5, $7, $9, $11) }
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H
parrest :

H
msgtype:

H
resource :

3

message :

3

term:

5
literal:
restlit:

hclause:

restcl:

dprogram :
restprog:

6%

D.2

{

SPLIT message AS LPAREN ID COLON msgtype COMMA ID COLON msgtype RPAREN SCOLON process

{ Spitree.Split (%2, $5, $7, $9, $11, $14) }

MATCH message COLON msgtype AS LPAREN message COMMA ID COLON msgtype RPAREN SCOLON process

{ Spitree.Match($2, $4, 87,
EXPECT ID LPAREN restlit { if

$9, $11, $14) }
(List.for_all (fun term —>
match term with
| Spitree.SpiMsg(.) —> true
| - —> false
$4)
then (Spitree.Expect($2,
else

dprogram { Spitree.Datprog($1) }

$4))

raise Parsing.Parse_error }

PAR process if $3 = Spitree.PNil then
$2

else
Spitree .PPara($2,

parrest {

$3) }
RPAREN { Spitree.PNil }

UN { Spitree.Un }

UNKNOWN { Spitree.Unknown }

KEY LPAREN msgtype RPAREN { Spitree.Key($3) }

TPAIR LPAREN ID COLON msgtype COMMA msgtype RPAREN { Spitree.TPair($3,
TOK LPAREN dprogram RPAREN { Spitree.TOk($3) }

TOK LPAREN resource RPAREN { Spitree.TOk($3) }

CHAN LPAREN msgtype RPAREN { Spitree.Ch($3) }

85,

LPAREN resource COMMA resource RPAREN { List.append $2 $4
ID LPAREN message RPAREN { [[($1, [Spitree.SpiMsg($3)])]] }

OK { Spitree.Ok }

LBRACE message RBRACE message { Spitree.Encr($2, $4) }

PAIR LPAREN message COMMA message RPAREN { Spitree.MPair($3,
ID { Spitree.Name($1) }

$5) }

LVAR { Spitree.Var($1) }
message { Spitree.SpiMsg($1) }
ID LPAREN restlit { ($1, $3) };
term RPAREN { [$1] }

term COMMA restlit { $1::8$3 };

literal COLON DASH restcl { ($1::$4) }
literal { [$1] };

literal COMMA restcl { $1::83 }
literal { [$1] };

LBRACE restprog { $2 }

hclause SCOLON restprog { $1::$3 }
hclause RBRACE { [$1] }

RBRACE { [] };

spilexer.mll

open Printf
open Spiparser

}

let
let

id =

rule
‘ [1 E)
"begin”
» end”
)

|

[’a
logvar =

spi_-tokens

7\t1

g
-

0
A

_a97]*
’O’—’Q’]*

= parse
'\n’] { spi-tokens
BEGIN }

END }

BANG }

PAR }

NIL }

OK }

LPAREN }

lexbuf } (% Skip whitespaces

*)

A A A o o A Ay
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D.3 spitree.ml

(x Spi—calculus data—structure x)
type name = string ;;
type label = string;;
type msg = Name of string

| Encr of msgxmsg
| MPair of msg*msg
\

Ok ;
(x Datalog structure x*)
type pred = string;;
type term = Var of string

| SpiMsg of msg;;
type literal preds*(term list );;
type hclause (literal list );;
type datalog = (hclause list );;

(x Spi—calculus data—structure, continued x)
type reso = Reso of labels*msg

| RPair of resoxreso
Empty ;;

Key of typ

Ch of typ

TPair of namextyp+*typ

TOk of datalog

Unknown ; ;

type proc = Out of msgsmsg

In of msg#namexproc

InRepl of msgknamesxproc

Nu of namextyps*proc

PPara of procxproc

PNil

(* Begin of labelxmsg

End of labelxmsgx)

Decrypt of msgsnamextypsmsg*proc
Split of msgknamextyps*namextyp*proc
Match of msg*typs*msgxnamextyp*proc
Datprog of datalog

Expect of literal;;

\
type typ = Un
\
\
\
\
\

(* Each element in an environment is either a type or an effect
type env_element = Type of namextyp

81

) { RPAREN }
{” { LBRACE }
'} { RBRACE }
[ { COLON }
5 { SCOLON }
{ comia }
»__” { DASH }
" out” { our }
)7in77 { IN }
”new” { NEW }
?decrypt” { DECRYPT }
" split” { SPLIT }
”match” { MATCH }
7 expect” { EXPECT }
17as7’ { AS }
” pair” { PAIR }
7 Ch” { CHAN }
| "Un” { UN }
" Key” { KEY }
7 Ok” { TOK }
»Pair” { TPAIR }
Tk { UNKNOWN }
| »Empty” { EMPTY }
id as str { ID str }
logvar as str { LVAR str }
_ as ¢ { printf ”"Unrecognized_character: _%c\n” c; CHAR c}
eof { raise End_of_file }

*)



| Effect of datalog;;

”Pretty—printing” functions for error—messages

(*

* Note that these functions should,

* syntax accepted by the parser.
*)
let rec string_of_msg msg =

match msg with
Name(x) —> x

Encr(m, n) —> Printf.sprintf "{%s}%s”
MPair(m, n) —> Printf.sprintf ”pair(%s, %s)’
Ok —> 7o0k” ;;

let rec string_of_msg_altsyntax msg =

match msg with
Name(x) —> ”Name<”

X

N

Encr(m, n) —> Printf.sprintf "{%s}%s”
MPair(m, n) —> Printf.sprintf ”pair<%s, %s>"
| Ok —> "ok” ;;
let rec string_of_reso reso =

match reso with
| Reso(l, m) —> Printf.sprintf "%s(%s)” 1
| RPair(r, s) —> Printf.sprintf 7 (%s, %s)”
| Empty —> ”Empty” ;;

(* This went a bit out of hand.

* of formatting lists than wusing fold?

* It appears to work this way, but it ’s something to
* for future work. x)

let string_of_term ?(altsyn = false) term =

match term with
| Var(x) —> x
| SpiMsg(msg) —>
if altsyn then
string_of_msg_altsyntax msg
else
string_of_msg msg;;

theoretically ,

(string_of_msg m)

)

(string_of_msg m)

termlist)
“altsyn:altsyn (List.hd termlist))

“altsyn:altsyn term))

and similar.
print in a

(string_of_msg n)

(string_-of_msg m) (string_-of_-msg n)

(string_of_msg n)
(string_-of_msg m) (string_-of_msg n)

(string_of_msg m)
(string_-of_reso

5)

r) (string_of_reso

Maybe there’s a more readable way

consider

9

(List.tl termlist))

let string_-of_literal ?(altsyn = false) (pred,
pred ~ 7 (” ° (string_of_term
(List . fold_left (
fun termstring term —>
termstring ~ 7 ,.” ° (string_of_term
DA
let string-of_hclause ?(altsyn = false) literals =

if (List.length
string_-of_literal
else
(string_-of_literal
(string_of_literal

literals) = 1 then
“altsyn:altsyn (List.hd

“altsyn:altsyn (List.hd

List . fold_-left (
fun litstring lit —>
litstring 7,27 7 (string_of_literal ~
(List.tl (List.tl literals));;
let string_of_datalog ?(altsyn = false) clauses =

if (List.length
7 {7 (string_-of_hclause

(List. fold_left (
fun clstring clause —>

clauses) > 0 then
(List .hd clauses))

clstring 75\ n” (string_-of_hclause
~ 77}77
else
ISR
let rec string_-of_typ typ =

match typ with

Un —> ”Un”
| Key(t) —> Printf.sprintf "Key(%s)”
| Ch(t) —> Printf.sprintf ”"Ch(%s)”
|
\

TPair(x, t, u) —> Printf.sprintf
TOk(r) —> Printf.sprintf "Ok(%s)”

? Pair(%s:%
(string_-o

82

literals))
“altsyn:altsyn (List.nth

literals)

W

literals

”

lit))

altsyn:altsyn

“altsyn:altsyn clause)) 7” (List.tl clauses))

(string_of_typ t)
(string_of_

typ t)
s,%s)” x (string_of_typ t) (string_-of_typ u)
f_datalog r)



let

”»

| Unknown —> ”x%” ;;

rec string_of_proc proc =

match proc with

(*

let

| Out(m, n) —> Printf.sprintf ”out(%s, %s)” (string_-of_msg m) (string_of_msg n)

In(m, x, p) —> Printf.sprintf ”"in(%s, %s); %s” (string_of_msg m) x (string_-of_proc p)
InRepl(m, x, p) —> Printf.sprintf ”!in(%s, %s); _%s” (string_of_msg m) x (string_of_proc p)

PPara(p, q) —> Printf.sprintf 7 (%s|\n_-%s)” (string_-of_proc p) (string_of_proc q)

PNil —> " nil”

|
| Nu(x, t, p) —> Printf.sprintf "new %s:%s; %s” x (string_of_typ t) (string_-of_proc p)
\
\

| Begin(l, m) —> Printf.sprintf “begin %s(%s)” | (string_of-msg m)

| End(l, m) —> Printf.sprintf "end %s(%s)” | (string_of-msg m)x*)

| Decrypt(m, x, t, n, p) —> Printf.sprintf "decrypt -%s_as _{%s:%s}%s; _%s”
(string_of_msg m) x (string_-of_typ t) (string_of_msg n) (string_of_proc p)

| Split(m, x, t, y, u, p) —> Printf.sprintf ”?split _%s_as_(%s:%s, %s:%s); %s”
(string_of_-msg m) x (string_-of_typ t) y (string_of_-typ u) (string-of_proc p)

| Match(m, t, n, x, usub, p) —> Printf.sprintf "match %s:%s_as_(%s, %s:%s); %s”
(string_of_-msg m) (string_of_typ t) (string_of_msg n) x (string_of_typ usub)

| Datprog(d) —> Printf.sprintf "%s” (string_-of_datalog d)

| Expect(f) —> Printf.sprintf ”expect %s” (string_of_literal f);;

rec string_of_env_element env_element =

match env_element with

let

| Type(x, t) —> Printf.sprintf "%s:%s” x (string_of_typ t)
| Effect(d) —> (string-of_datalog d);;

rec string_of_env env =

List.fold_-right (fun element env_str —>

Ay 9

(string_of_env_element element) ,-” 7 env_str) env 77

D.4 aconv.ml

open Spitree ;;

(x SMap is the basis for the substitution map of the

*
*

alpha conversion function. The substitution map
indicates what each nmame in the current scope must

* be substituted with.

*)

module SMap = Map.Make(String)

(*

* ¥ X X X X

*

*)

let

—— subst_name ——

Called on free names

Given some mname, we do the following:

If the name is in the map of substitutions

(It is either bound, or an already found free wvariable):

Substitute the name

Else (we have found a new free variable!):

Create a mew mame, and update the map and accumulator

subst_name x accum substMap =

if SMap.mem x substMap then

(SMap. find x substMap, accum, substMap)

else

* ¥ X ¥ ¥ X X

*

*)

»o» o~

let newname = (string_-of_int accum) ~ 7 _ x in
let newMap = SMap.add x newname substMap in
(newname, accum + 1, newMap)

— bind ——

Called for the binding occurrence of a name:

We generate a new unique name and update

the substitution map.

We return the new name, an updated accumulator

and the wupdated map.

We also return a tuple (z, oldname) or (z, 77),
containing the mapping we replace in this scope,
if any.

let bind x accum substMap =
let newname = (string-of_int accum) ~ 7_ x in
let newMap = SMap.add x newname substMap in
if SMap.mem x substMap then

» oA
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let oldname

(newname, accum
else
(newname, accum

(* unbind ——
* When exiting a sc

SMap. find x substMap

in

+ 1, newMap, (x, oldname))
4+ 1, newMap, (x, ”7))
ope, we must call wunbind

* with any mappings from the outer scope that must

* be reinserted in
*)
let unbind (x,
if oldname =
SMap.remove x su

else

» %

oldname)
then

the substitution map.

substMap

bstMap

SMap.add x oldname substMap

(x Input: a

accumulator,

s — substitution map *)

(* Returns: *_dat — updated datastructure,
ua — updated accumulator,
us — updated substitution map *)
let rec msg_subst msg a s = match msg with
| Name (x) —>
let (x_dat, ua, us) = (subst_name x a s) in
(Name (x-dat), ua, us)
| Encr (m, n) —>
let (m_dat, ua, us) = (msg_subst m a s) in
let (n_-dat, ua, us) = (msg_-subst n ua us) in
(Encr (m-dat, n_dat), ua, us)
| MPair (m, n) —>
let (m_dat, ua, us) = (msg-subst m a s) in
let (n_dat, ua, us) = (msg_subst n ua us) in
(MPair (m-dat, n_dat), ua, us)
| Ok —> (Ok, a, s);;
let rec reso_subst reso a s = match reso with
| Reso (1, m) —>
let (m_dat, ua, us) = (msg-subst m a s) in
(Reso (1, m_dat), ua, us)
| RPair (r, t) —>
let (r-dat, ua, us) = (reso-subst r a s) in
let (t-dat, ua, us) = (reso_subst t ua us) in
(RPair (r-dat, t-dat), ua, us)
| Empty —> (Empty, a, s);;
let literal_subst (pred, termlist) a s =
let (subst_termlist, ua, us) =
List.fold_right (fun term (data_accum, ua, us) —>

match term with

| Var(x) —> (term::data_accum, ua, us)
| SpiMsg(m) —>
let (term_dat, ua, us) = (msg_subst m ua us) in
(SpiMsg(term_dat ):: data_accum, ua, us)
) termlist ([], a, s)
in
((pred, subst_termlist), ua, us);;

let hclause_subst clause a s =

List.fold-right (fun literal (data_accum, ua, us) —>

let (lit_-dat , ua, us) = (literal_subst literal ua us) in
(lit_dat ::data_accum, ua, us)
) clause ([], a, s);;

let datalog-subst data a s =

List.fold-right (fun clause (data_accum, ua, us) —>

let (cl-dat, ua, us) = (hclause_subst clause ua us) in
(cl_dat ::data_accum, ua, us)
) data ([], a, s);;

let rec typ-subst typ a s = match typ with

| Un —> (Un, a, s)

| Key (t) —>

let (t-dat, ua, us) = (typ-subst t a s) in
(Key (t-dat), ua, us)
| Ch (t) —>
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(*

let (t-dat, ua, us) = (typ-subst t a s) in
(Ch (t-dat), ua, us)

TPair (x, t, u) —>
let (t_-dat, ua, us) = (typ-subst t a s) in

let (x-dat, ua, us, binding) = (bind x ua us) in

let (u-dat, ua, us) = (typ-subst u ua us) in

(TPair (x-dat, t_dat, u-dat), ua, (unbind binding us))
TOk (d) —>

let (d-dat, ua, us) = (datalog_subst d a s) in
(TOk (d-dat), ua, us)
Unknown —> (Unknown, a, s);;

rec proc-subst proc a s = match proc with

Out (m, n) —>
let (m_dat, ua, us) = (msg_subst m a s) in
let (n_-dat, ua, us) = (msg-subst n ua us) in

(Out (m-_dat, n_dat), ua, us)
In (m, x, p) —>

let (m_dat, ua, us) = (msg_subst m a s) in
let (x-dat, ua, us, binding) = (bind x ua us) in
let (p-dat, ua, us) = (proc_subst p ua us) in

(In (m-dat, x_-dat, p-dat), ua, (unbind binding us))
InRepl (m, x, p) —>

let (m_dat, ua, us) = (msg_subst m a s) in
let (x-dat, ua, us, binding) = (bind x ua us) in
let (p-dat, ua, us) = (proc_subst p ua us) in

(InRepl (m_dat, x_-dat, p-dat), ua, (unbind binding us))
Nu (x, t, p) —>

let (t-dat, ua, us) = (typ-subst t a s) in
let (x-dat, ua, us, binding) = (bind x ua us) in
let (p-dat, ua, us) = (proc_subst p ua us) in

(Nu (x-dat, t-dat, p-dat), ua, (unbind binding us))

PPara (p, q) —>
let (p-dat, ua, us) = (proc_subst p a s) in
let (g-dat, ua, us) = (proc-subst g ua us) in
(PPara (p-dat, g-dat), ua, us)

PNil —> (PNil, a, s)

| Begin (1, m) —>
let (m-dat, wa, us) = (msg_subst m a s) in
(Begin (l, m-dat), uwa, us)

End (1, m) —>
let (m_dat, wa, us) = (msg_-subst m a s) in
(End (1, m_dat), ua, us)x)

Decrypt (m, x, t, n, p) —>
let (m_dat, ua, us) (msg_subst m a s) in
let (t-dat, ua, us) (typ-subst t ua us) in
let (n_dat, ua, us) (msg_subst n ua us) in

let (x-dat, ua, us, binding) = (bind x ua us) in

let (p-dat, ua, us) = (proc-subst p ua us) in

(Decrypt (m-dat, x_-dat, t_dat, n_dat, p-dat), ua, (unbind binding us))
Split (m, x, t, y, u, p) —>

let (m_dat, ua, us) = (msg_subst m a s) in

let (t-dat, ua, us) = (typ-subst t ua us) in

let (x-dat, ua, us, xbinding) = (bind x ua us) in

let (u.-dat, ua, us) = (typ-subst u ua us) in

let (y-dat, ua, us, ybinding) = (bind y ua us) in

let (p-dat, ua, us) = (proc_subst p ua us) in

(Split (m-dat, x_-dat, t-dat, y-dat, u-dat, p-dat), ua,
(unbind xbinding (unbind ybinding us)))
Match (m, t, n, x, usu p) —>
let (m-_dat, ua, us) (msg_subst m a s) in
let (t-dat, ua, us) (typ-subst t ua us) in
let (n_dat, ua, us) (msg_subst n ua us) in

o=

let (usub_dat, ua, us) = (typ-subst usub ua us) in
let (x-dat, ua, us, binding) = (bind x ua us) in
let (p-dat, ua, us) = (proc_subst p ua us) in

(Match (m-_dat, t-dat, n_dat, x-dat, usub_dat, p-dat), ua, (unbind binding us))

Datprog(d) —>
let (d-dat, ua, us) = (datalog_subst d a s) in
(Datprog(d-dat), ua, us)

Expect (1) —>
let (l_-dat, ua, us) = (literal_subst 1 a s) in
(Expect(l_-dat), ua, us);;
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D.5 auxiliary.ml

(x 7Auziliary” functions. Used by the main checker functions. x)
open Spitree

module SSet = Set.Make(String);;

(* Name substitution for dependent pair—types
* We assume types from an alpha—converted process.
* Input:
* typ typ — Type to perform substitution in
* name current — Name to substitute
* msg newmsg — Message to substitute name with
* Output: typ — Substituted type
*)
let rec subst_name typ current newmsg =
let rec in_msg msg =
match msg with
| Name(x) —>

if x = current then
newmsg

else
msg

| Encr(m, n) —>
Encr(in-msg m, in_msg n)
| MPair(m, n) —>
MPair(in_msg m, in_msg n)
| Ok —> Ok
in
let in_literal (pred, termlist) =
let subst_termlist =
List .map (fun term —>
match term with
| Var(x) —> term
| SpiMsg(msg) —> SpiMsg(in_msg msg)
) termlist
in
(pred, subst_termlist)
in
let in_hclause clause =
List .map (fun literal —>
in_literal literal
) clause
in
let in_data data =
List .map (fun hclause —>
in_hclause hclause
) data
(x let rec in_reso reso =
match reso with
| Reso(l, m) —> Reso(l, in_msg m)
| RPair(r, s) —> RPair(in_reso r, in_reso r)
| Empty —> Emptyx)
in
match typ with
| Un —> Un
| Key(t) —> Key(subst_.name t current newmsg)
| Ch(t) —> Ch(subst_-name t current newmsg)
| TPair(x, t, u) —> TPair(x, subst_name t current newmsg,
subst_name u current newmsg)
| TOk(d) —> TOk(in-data d)
| Unknown —> Unknown;;

(x Decide type equality. Dependent pairs are taken into account using subst_-name
* Input:
* int acc — Accumulator for name substitution in dependent pair types.
* typ t1, t2 — Types for comparison.
* Output: bool, indicating equality between t1 and t2 x)
(xexception TypesNotEqual of typxtyp;;*)
let rec type_equal ?(acc=0) tl1 t2 =
match (t1, t2) with
| (Un, Un) —> true
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| (Key(t), Key(u)) —> (type-equal Tacc:acc t u)
| (Ch(t), Ch(u)) —> (type-equal T“acc:acc t u)
| (TPair(x, leftl, rightl), TPair(y, left2, right2)) —>
if (type-equal Tacc:acc leftl left2) then
let rl_subst subst_name rightl x (Name(string_of_int acc)) in
let r2_subst subst_name right2 y (Name(string_of_int acc)) in
type-_equal Tacc:(acc + 1) rl_subst r2_subst
else false (xraise (TypesNotEqual (t1, t2))=x)
(TOk(d1), TOk(d2)) —>
(List.for_all (fun dlelt —>
List .mem dlelt d2
) dl) &&
(List. for_all (fun d2elt —>
List .mem d2elt dl

) d2)
| - —> false;;
(x+ Find the domain of an environment
Input: list env_element env — Environment
Output: String Set — A set of strings representing the domain of env

Note on list—folding:
The reason we use fold_left here, 1is
because fold_left is tail—recursive, and because we are
folding into a set, order becomes irrelevant.
fold_right is wused in the effects function to preserve the
* order when folding into a nmew list.
*)
let dom env =
List.fold_left (fun sset typ —>
match typ with
| Type(x, -) —> SSet.add x sset
| - —> sset) SSet.empty env;;

* X K X X X X

(x Flatten effect to a list. Makes it easier to test for
* effect inclusion and extract effects.
* Input: reso s — Effect
* Output: list reso — Flattened list of effects (type Reso)
3
)
(xlet rec effect_to_list s =
match s with
| Reso(-, -) —> [s]
| RPair(r, t) —>
List.append (effect_to_list r) (effect_to_list t)
| Empty —> [];;*)

(x+ Eztract effects from environment

* Input: list env_element env — Environment
* QOutput: list reso — List of effects from environment
*)

(xlet effects env =
List. fold_right (fun eff list —>
match eff with
| Effect(r) —> r::list
| Type(-, TOk(s)) —> List.append (effect_to_list s)
| —> list

) env [];i;x)

let clauses env =
List.fold-right (fun eff list —>
match eff with
| Effect(d) —> List.append d list
| Type(-, TOk(d)) —> List.append d list
| - —> list
) env (135

(x+ Generative type?
*x Input: typ typ — Type
* Output: Boolean indicating if type typ is generative x*)
exception NotGenerative of typ;;
let generative typ =
match typ with
| Un —> true
| Key(-) —> true
| Ch(-) —> true
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| - —> false;;

(*+ Eztract environment from a process. Corresponds to definition of env function

* Input: proc proc — Process
* Output: Environment of process proc )
let rec env_of proc =
match proc with
| PPara(p, q) —> List.append (env_of q) (env_of p)
| Nu(x, t, p) —> List.append (env_of p) [Type(x, t)]
| Datprog(d) —> [Effect(d)]
(* | Begin(l, m) —> [Effect(Reso(l, m))]x)
I - = ]

(x Free name functions
* fn_msg, fn_res, fn_typ:
* Input: msg msg, reso res, typ typ, respectively.

* Output: String Set — Set of strings indicating the free names of the input.

let rec fn_msg msg =
match msg with
Name(x) —>

if x = 7%” then
SSet .empty
else

SSet.add x SSet.empty
| Encr(m, n) —> SSet.union (fn_msg m) (fn_msg n)
| MPair(m, n) —> SSet.union (fn_msg m) (fn_msg n)
| - —> SSet.empty;;
(xlet rec fn_res res =
match res with
| Reso(-, m) —> fn_msg m
| RPair(r, s) —> SSet.union (fn_res r) (fn_res s)
| - —> SSet.empty;;*)
let fn_literal (-, termlist) =
List.fold_left (fun accum_set term —>
match term with
| SpiMsg(msg) —>
SSet.union accum_set (fn_msg msg)
- —> accum.set
) SSet.empty termlist ;;
let fn_hclause clause =
List.fold_left (fun accum_set literal —>
SSet.union accum_set (fn_literal literal)
) SSet.empty clause;;
let fn_data data =
List.fold_left (fun accum._set clause —>
SSet.union accum_set (fn_hclause clause)
) SSet.empty data;;
let rec fn_typ typ =
match typ with
| Key(t) —> fn_typ t
| Ch(t) —> fn_typ t
| TPair(x, t, u) —>
SSet.union (fn_typ t) (fn_typ (subst_name u x (Name(”%”))))
| TOk(d) —> fn_data d
| - —> SSet.empty;;

(x Effect Inclusion
* Input: list Reso — List of effects. Important: Flatten before passing.
* Output: bool, indicating if all effects in sl is included in s2.
*)
exception EffectInclusion of string;;
let rec effectinclusion sl s2 =
match sl1 with
| [] —> true
| (x::effectrest) —>
if (List.mem x s2) then
effectinclusion effectrest s2
else
raise (EffectInclusion (” Effect.inclusion_failed:.”
(string_of_reso x) ~ 7_not_permitted”));;

(x Name extraction
* Input:
* name =z — Name
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* list env_element env — Environment
* QOutput: typ — Indicating the type of x in environment env
*)
exception NoName of string;;
let rec nametype x env =
match env with

| [] = raise (NoName (”Name.” ~ x ~ ”_not_found_in_environment”))
| Type(name, typ)::restenv —>
if x = name then
typ
else

nametype x restenv
| Effect(-)::restenv —>
nametype x restenv ;;

D.6 ssolver/alfp.ml

module SMap = Map.Make(String );;
module SSet = Set.Make(String);;

type term = Const of string
| Var of string
| FuncApp of strings(term list );;
type pre = PPredicate of string=x(term list)
| NPredicate of strings*(term list)
| PConjunction of prexpre
| Disjunction of prexpre
| Exists of stringspre
| Equal of termsxterm
| NEqual of termsxterm ;;
type cl = CPredicate of strings*(term list)
| Truth
| CConjunction of clxcl
| Leadsto of prexcl
| Forall of string=xcl;;

let freevar_from_term 7?(bound = SSet.empty) term =
match term with
| Var(x) —>

if (SSet.mem x bound) then
SSet .empty
else
SSet.add x SSet.empty
| - —> SSet.empty;;

let freevars_in_termlist ?(bound = SSet.empty) termlist =
List.fold_left (fun varset term —>
let freevar = (freevar_from_term ~bound:bound term) in

SSet.union freevar varset
) SSet.empty termlist ;;

let rec freevars_in_pre ?(bound = SSet.empty) pre =
match pre with
| (PPredicate(-, termlist) | NPredicate(-, termlist)) —>
freevars_in_termlist ~“bound:bound termlist
| (PConjunction(prel, pre2) | Disjunction(prel, pre2)) —>
SSet.union (freevars_in_pre ~bound:bound prel) (freevars_in_pre ~bound:bound pre2)
| Exists(x, pre) —>
freevars_in_pre “bound:(SSet.add x bound) pre
| (Equal(terml, term2) | NEqual(terml, term2)) —>
SSet . union
(freevar_from_term ~bound:bound terml)
(freevar_from_term ~bound:bound term2);;

let rec string_of_term term =
match term with
| Const(c) —> ¢
| Var(x) —> x
| FuncApp(func, termlist) —>
string_of_predicate func termlist
and string_of_predicate rel termlist =
let (term, trest) = ((List.hd termlist), (List.tl termlist)) in
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rel (string_of_term term)
(List. fold_left (
fun termstring term —>
termstring ~ 7 ,.7 °
~ 7’)77;;

let rec string_of_pre pred =
match pred with
| PPredicate(rel, termlist) —>
string_-of_predicate rel termlist
| NPredicate(rel, termlist) —>
717~ (string_of_predicate rel termlist)
| PConjunction(prel, pre2) —>
Printf.sprintf "%s. & %s” (string_of_pre prel) (string_of_pre pre2)
| Disjunction (prel, pre2) —>
Printf.sprintf "%s_| %s” (string_-of_pre prel) (string_of_pre pre2)
| Exists(str, pre) —>
Printf.sprintf 7?(E_%s.%s)” str (string_of_pre pre)
| Equal(terml, term2) —>
Printf.sprintf "%s.=%s” (string_of_term terml) (string_-of_term term2)
| NEqual(terml, term2) —>
Printf.sprintf "%s_!=_%s” (string_of_term terml) (string_of_term term2);;

(string_of_term term)) 7”7 trest)

let rec string_-of_cl clause =
match clause with
| CPredicate(rel, termlist) —>
string_of_predicate rel termlist
| Truth —> 717
| CConjunction(cll, cl2) —>
Printf.sprintf "%s_&-%s” (string-of_cl cll) (string-of_cl cl2)
| Leadsto(pre, cl) —>
Printf.sprintf 7 (%s-=>_%s)” (string_of_pre pre) (string_-of_cl cl)
| Forall(str, cl) —>
Printf.sprintf 7 (A %s.%s)” str (string_of_cl cl);;

D.7 ssolver/outputparser.mly

/* outputparser.mly x/
/* Parser for output of the Succinct Solver x*/

%{
open Printf
let parse_error s = (% Called by the parser function on error x)

print_endline (”SSolver_outputparser:.” = s);
flush stdout ;;

%}

%token <string> ID

%token <int> NUMBER

%token <char> CHAR

%token RELATION SLASH COLON

%token COMMA LPAREN RPAREN ENDING

%start output

%type <Alfp.term list list Alfp.SMap.t> output
Y%type <Alfp.term list list> tuples

Y%type <Alfp.term list> tuple

Y%type <Alfp.term list> termlist

%type <Alfp.term> term

9%

output: RELATION ID SLASH NUMBER COLON tuples output { Alfp.SMap.add $2 $6 $7 }

RELATION ID SLASH NUMBER COLON output { $6

RELATION ID SLASH NUMBER COLON tuples ENDING { Alfp.SMap.add $2 $6 Alfp.SMap.empty }
RELATION ID SLASH NUMBER COLON ENDING {Alfp.SMap.empty };

tuples: tuple tuples { $1::$2 }
| tuple { [$1] ;
tuple: LPAREN termlist RPAREN COMMA { $2 };

termlist: term COMMA termlist { $1::83 }
| term { [S1] };
term : ID { Alfp.Const($1) }
| ID LPAREN termlist RPAREN { Alfp.FuncApp(S1,$3) };
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D.8 ssolver/outputlexer.mll

{

open Printf
open Outputparser

}
let id — [7a7_7Z7 )A7_7Z7 7{7] [’07_797 7a)_7z7 7A’_7Z) 777 y __ 7<7 )>’ 7{7 )}7]*
let number = [0’ —=’"9’]+
rule out_tokens = parse
| [ 7 ’\t” '\n’] { out_-tokens lexbuf } (x Skip whitespaces x)
| ”Relation” { RELATION }
|7/ { SLASH }
|7 { COLON }
| 7,7 { coMMA }
| 7 ( { LPAREN }
| 7))~ { RPAREN }
| 74 { ENDING }
| id as str { ID str }
| number as num { NUMBER (int_of_string num) }
| - as ¢ { printf ”Unrecognized_character: _%c\n” c; CHAR c¢ }
| eof { raise End_of_file }

D.9 datquery.ml

let terms_of_terms ?(quotes = true) termlist =
List .map (fun spiterm —>
match spiterm with
| Spitree.Var(x) —> Alfp.Var(x)
| Spitree.SpiMsg(msg) —>
if quotes then
Alfp.Const (”\”” ~ (Spitree.string_of_msg_altsyntax msg)
else
Alfp.Const (Spitree.string_of_msg_altsyntax msg)
) termlist ;;

let cpred_-of_lit (rel, termlist) =
Alfp.CPredicate(rel, (terms_of_terms termlist));;
let ppred_of_lit (rel, termlist) =
Alfp.PPredicate(rel , (terms_of_terms termlist));;
let conj-of_ppreds literals =
List.fold_-left (fun ppred litfromlist —>
Alfp.PConjunction (ppred, ppred_-of_lit litfromlist)
) (ppred_of_lit (List.hd literals)) (List.tl literals)

let alfp_of_dat datprog =
let clauses =
List .map (fun hornclause —>
if List.length hornclause = 1 then
let literal = List.hd hornclause in
cpred_of_lit literal
else
let literal
let litlist

List .hd hornclause in
List.tl hornclause in

let clpred = cpred_-of_lit literal in
let conj = conj-of_ppreds litlist in
let freevars = Alfp.freevars_in_pre conj in

let hornclause = Alfp.Leadsto(conj, clpred) in
Alfp.SSet. fold (fun var clause —>
Alfp.Forall (var, clause)
) freevars hornclause
) datprog
in
List . fold_left (fun cl clfromlist —>
Alfp.CConjunction(cl, clfromlist)
) (List.hd clauses) (List.tl clauses);;

exception IllegalHornClause of string;;

let clauses_to_literals datprog =
List .map (fun clause —>
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if List.length clause = 1 then
List .hd clause
else
raise (IllegalHornClause ”Expected_fact ,_but_got_a_Horn_Clause”)
) datprog;;

(xexception ThisIsABug of string;;x*)
exception QueryFail of Spitree.datalog*Spitree.hclause;;
let querydat datprog queries ssolverheap =

let alfpclause = alfp_of_-dat datprog in
let deducedclause = Ssolver.deducible_facts alfpclause ssolverheap
in

if

(List . for_all (fun query —>
let cpred-of_lit_mod (rel, termlist) =
Alfp.CPredicate(rel, (terms_of_-terms ~“quotes:false termlist)) in
let query_alfp = cpred_-of_lit_-mod query in
(xprint_endline (”Query: 7 ~ (Alfp.string_of_-cl query_alfp));x)
List .mem query_alfp deducedclause) queries)
then true else
raise (QueryFail (datprog, queries))

D.10 spichecker.ml

open Spitree
open Auxiliary
open Datquery
open Printf
open Unix;;

let arguments =

object
val mutable heap = ”ssolver /heap”
val mutable version = false
val mutable help = false
method give_version = version <— true
method give_help = help <— true
method print_-vers = version

method print_help = help
method set_heap h = heap <— h
method get_heap = heap

end;;

(x Judgment of well—formedness of an environment
* Input: list env_element env — Environment to judge
* QOutput: bool, indicating well—formedness
*)
exception EnvFailure of string;;
exception TypeDomainInclusionFailure of typx(env_element list );;
exception DuplicateDeclaration of stringx*(env_element list );;
exception EffectDomainInclusionFailure of datalog*(env_element list );;
let rec env_judgment env =
match env with
| [] —> true
| Type(x, t)::env_rest —>
let typdominclusion = (SSet.subset (fn_typ t) (dom env_rest)) in
let notduplicate = (not (SSet.mem x (dom env_rest))) in
if not typdominclusion then
raise (TypeDomainInclusionFailure (t, env_rest));
if not notduplicate then
raise (DuplicateDeclaration (x, env_rest));
(env_judgment env_rest)
| Effect(d)::env_rest —>
let effdominclusion = (SSet.subset (fn_data d) (dom env_rest)) in
if not effdominclusion then
raise (EffectDomainInclusionFailure (d, env_rest));
(env_judgment env_rest );;

(x Judgment of the goodness of a message

* Input:
* list env_element env — Environment

92



* msg msg — Message
* typ typ — Type
* QOutput: bool, indicating if msg is good with type typ in environment env
*
)
exception MsgTypeFailure of string ;;
exception MessageTypeMismatch of msgxtyp ;;
exception NameDomainInclusionFailure of string=#(env_element list);;
let rec msg_judgment env msg typ =
let pair_judgment env m t n u =
(msg_judgment env m t) &
(msg_judgment env n u) in
let encrypt_judgment env m t n ntype =
(msg_judgment env m t) &
(msg_judgment env n ntype) in
try
match msg with
| MPair(m, n) —>
(match typ with
| TPair(x, t, u) —>
pair_judgment env m t n (subst_name u x m)
| Un —>
pair_judgment env m Un n Un
| - —> raise (MsgTypeFailure (sprintf ”Expected_type_Pair_or_Un,_not_type._%s”
(string-of_typ typ))))
| Encr(m, Name(x)) —>
(if (typ = Un) then
let n, keytype = (Name(x), (nametype x env)) in
(match keytype with

| Key(t) —>
encrypt-judgment env m t n keytype
| Un —>

encrypt_judgment env m Un n Un
| - —> raise (MsgTypeFailure
(sprintf ”"Expected_type_Key_or_Un_for_message_%s,_-not_type _%s”
(string_of_msg n) (string-of_typ keytype))))
else
raise (MsgTypeFailure (sprintf ”Expected_type_Un,_not_type._%s”
(string-of_typ typ))))
| Encr(m, n) —>
(if (typ = Un) then
encrypt_judgment env m Un n Un
else
raise (MsgTypeFailure (sprintf ”Expected_type_Un,_not_type. _%s”
(string_-of_typ typ))))
| Name(x) —>

let ntype = nametype x env in
let domaininc = (SSet.mem x (dom env)) in
let equality = (type_equal ntype typ) in

if not domaininc then
raise (MsgTypeFailure (sprintf ”"Name_%s._not_declared_in_environment._%s”
x (string_-of_env env)));
if not equality then
raise (MsgTypeFailure
(sprintf ”Given_type_%s._does_not_match_type_%s._from_environment .’
(string_of_typ typ) (string_of_typ ntype)));
(env_judgment env)

3

| Ok —>
(match typ with
| Un —>
env_judgment env
| TOk(d) —>
let domsubset = SSet.subset (fn_typ typ) (dom env) in
if not domsubset then
raise (MsgTypeFailure (
sprintf ”"Free_names_of_type _%s._not_a_subset_of_domain_of_environment _%s”
(string_of_typ typ) (string_-of_env env)))
else
(querydat (clauses env) (clauses_to_literals d) arguments#get_heap) &
(env_judgment env)
| - —> raise (MsgTypeFailure ”ok_token._must_have_type_Un_or_Ok(S)”))
with
| TypeDomainInclusionFailure(t, subenv) —>
raise

(MsgTypeFailure(sprintf
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”Message. %s:\nAll_free._names_in_type_%s_not_included_in_sub—environment\n%s_of_environment\n%s”
(string_of_msg msg) (string_of_typ t) (string_-of_env subenv) (string_of_env env)))
| DuplicateDeclaration (x, subenv) —>
raise (MsgTypeFailure
(sprintf ”Message %s:\nDuplicate_declaration._of_name_\"%s\” -in_environment\n%s”
(string_of_msg msg) x (string_of_env env)))
| MsgTypeFailure(str) —>
raise (MsgTypeFailure (sprintf ”Message %s:\n%s” (string_of_msg msg) str))
| QueryFail(datprog, queryclause) —>
raise (MsgTypeFailure
(sprintf ”Message -%s:\nDatalog_program._%s_does_not_entail -%s”
(string_of_msg msg) (string_of_datalog datprog) (string_-of_hclause queryclause)))

(x Judgment of the goodness of a process

* Input:
* list env_element env — Environment
* proc proc — Process

* Qutput: bool, indicating if process proc is good in environment env
*)
exception ProcTypeFailure of string;;
exception TypeFailure of string;;
let rec proc_judgment env proc =
let out_-judgment env m mtype n t =
(msg_judgment env m mtype) &
(msg_judgment env n t) in
let in_judgment env m mtype x t p =
(msg_judgment env m mtype) &
(proc_judgment (Type(x, t)::env) p) in
let decrypt-judgment env m n ntype y t p =
(msg_judgment env m Un) &
(msg-judgment env n ntype) &
(proc_judgment (Type(y, t)::env) p) in
let split_-judgment env m mtype x t y u p =
(msg_-judgment env m mtype) &
(proc_judgment (Type(y, u)::Type(x, t)::env) p) in
let match_judgment env m mtype n t y substu p =
(msg_judgment env m mtype) &
(msg_-judgment env n t) &
(proc-judgment (Type(y, substu)::env) p) in
try
match proc with
| Out(Name(x), n) —>

let m, chantype = (Name(x), (nametype x env)) in
(match chantype with
| Ch(t) —>
out_-judgment env m chantype n t
| Un —>

out_-judgment env m Un n Un
| - —> raise (MsgTypeFailure
(sprintf ”"Expected_type_Ch_or_Un_for_message_%s,_not_type._%s”
(string_of_msg m) (string_of_typ chantype))))

Out(m, n) —>
out-judgment env m Un n Un
(In(Name(y), x, p) | InRepl(Name(y), x, p)) —>
let m, chantype = (Name(y), (nametype y env)) in
(match chantype with

| Ch(t) —>
in_judgment env m chantype x t p
| Un —>

in_judgment env m Un x Un p
| - —> raise (MsgTypeFailure
(sprintf ”"Expected_type_Ch_or_Un_for_message._%s , _not_type._%s”
(string_of_-msg m) (string_of_typ chantype))))
| (In(m, x, p) | InRepl(m, x, p)) —>
in_judgment env m Un x Un p
| Nu(x, t, p) —>
(generative t) &
(proc_judgment (Type(x, t)::env) p)
| PPara(p, q) —>
(proc_judgment (List.append (env_of q) env) p) &
(proc_judgment (List.append (env_of p) env) q)
| PNil —> true
| Datprog(d) —>
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let domsubset =

SSet.subset (fn_-data d) (dom env) in
if not domsubset then

raise (MsgTypeFailure

(sprintf ”Free_names_of_program._%s._not_a_subset_of_domain_of_environment _%s”
(string_of_datalog d)

(string_of_env env)))
else

(env_judgment env)
| Expect(l) —>
let domsubset = SSet.subset (fn_literal 1) (dom env) in
if not domsubset then
raise (MsgTypeFailure

(sprintf ”Free_names_of_literal _%s_not_a_subset_of_domain_of_environment _%s”
(string_of_literal 1) (string_of_env env)))
else
(querydat (clauses env) [1]
(env_judgment env)
| Decrypt(m, y, tl1, Name(x), p) —>
let n, keytype = (Name(x), (nametype x env)) in
(match keytype with
| Key(t2) —>
if type_equal tl1 t2 then
decrypt_-judgment env m n keytype y t1 p
else
raise (MsgTypeFailure
(sprintf "Decrypt_failure:

arguments#get_heap) &&

_Key_type_%s._incompatible_with_message_type_%s”
(string_of_typ keytype) (string_of_typ tl1)))

| Un —>

decrypt-judgment env m n Un y Un p

| - —> raise (MsgTypeFailure

(sprintf ”Expected_type_Key_or.Un_for._message_%s ,_not_type_%s”
(string_of_msg n) (string_of_typ keytype))))
| Decrypt(m, y, t, n, p) —>

decrypt-judgment env m n Un y Un p

| Split (Name(z), x, t, y, u, p) —>
let m, pairtype = (Name(z), (nametype z env)) in

(match pairtype with
| TPair(x-dep, t-dep, u-dep) —>

let subst_-u = subst_name u_dep x_dep
let subst_pairtype = TPair(x, t,
if (type-equal t_dep t) then
if (type-equal subst_u u) then

(split-judgment env m subst_pairtype x t y u p)

(Name(x)) in
subst_u) in

else
raise (MsgTypeFailure
(sprintf ”Split_failure:

:.Type%s_incompatible_with_type _%s”
(string_of_typ u.dep) (string_-of_typ u)))
else
raise (MsgTypeFailure
(sprintf ”Split_failure:

( : | _Type_-%s._incompatible_with_type._%s”
string_of_typ t_dep
| Un —>

(string_of_typ t)))
split_judgment env m Un x Un y Un p
| - —> raise (MsgTypeFailure

(sprintf ”Expected_type_Pair_or_Un_for_message.%s , _not_type._%s”
(string_of_msg m) (string_of_typ pairtype))))
| Split (MPair(ml, m2), x, t, y, u, p) —>
let m, pairtype = (MPair(ml, m2), TPair(x, t, u)) in
split-judgment env m pairtype x t y u p
| Split(m, x, t, y, u, p) —>
split_.judgment env m Un x Un y Un p
| Match(m, mtype, n, y, usub, p) —>
(match mtype with
| Un —>
match_judgment env m Un n Un y Un p
| TPair(x, t, u) —>
if type_equal (subst_name u x n) usub then
(match_judgment env m mtype n t y usub p)
else
raise (MsgTypeFailure

(sprintf "type\n%s_does_not_match_substituted _type\n%s.”
(string_of_typ usub) (string_of_typ (subst_.name u x n))));
- —>

raise (MsgTypeFailure

(sprintf "Expected_type_Pair_or_Un_for._message.%s,_not_type_%s”
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(string_of_msg m) (string_-of_typ mtype))))
with
| MsgTypeFailure(str) —>
raise (TypeFailure (sprintf "In_process:\n-%s\n%s” (string_of_proc proc) str))
| QueryFail(datprog, queryclause) —>
raise (TypeFailure (sprintf "In_process._%s:\nDatalog_program_%s._does_not_entail _%s”
(string_of_proc proc) (string_of_datalog datprog)
(string_of_hclause queryclause)))

IR}

let name = ”Spi_Policy_-Checker” in
let version = 70.9” in

let help_-msg =

?Usage:.” ~ Sys.argv.(0) "~ ”_[options]._filename\n\n”
”Options:\n” ~
7 _——solverheap._<heapfile>_.___compiled_heap_of_the_Succinct_Solver\n”
7 e (default:_ssolver /heap)\n” ~
7 ——help e display_this_help_and_exit\n” °
Y ——Version cocec e output_version._information_and_exit”

if (Array.length Sys.argv) = 1 then
print_endline (help_msg)
else
let infile = Array.fold_left (fun prev_opt this_opt —>
match prev_opt with
| ”” —> this_opt
| ?——solverheap” —>
arguments#set_heap this_opt;

9

| ?——version” —>
arguments#give_version ;
this_opt
[
arguments#give_help;
this_opt
) 7”7 (Array.sub Sys.argv 1 ((Array.length Sys.argv) — 1))
in
if infile = "——version” then
arguments#give_version
else if infile = "——help” then

arguments#give_help ;
if ((not arguments#print_help) && (not arguments#print_vers)) then

let filechan = open_in infile in
let lexbuf = Lexing.from_channel filechan in
let ast = Spiparser.process Spilexer.spi_-tokens lexbuf in

let (ast_substituted , accum, substMap) = Aconv.proc_subst ast 0 Aconv.SMap.empty in
let freevars =
Aconv.SMap. fold (fun _ name list —>

Type(name, Un) :: list) substMap [] in
print_endline ”Alpha_converted._process:”;
print_endline ((string_of_proc ast_substituted) = 7\n”);

print_endline ”Free_names:” ;
Aconv.SMap.iter (Printf.printf "%s:_%s\n”) substMap;
try

let judgment = proc_judgment freevars ast_substituted in

if judgment then
Printf.printf ”\nCongratulations!_This_process_is_robustly_safe.\n”;

with

| TypeFailure(str) —> print_endline (”Failure:\n” ~ str)

(x| ProcTypeFailure(str) —> print_endline (7 Failure:\n” ~ str)

| MsgTypeFailure(str) —> print_endline (”Failure:\n” " str)x)

else
if arguments#print_vers then
print_endline (name ~ 7.7 °
else
print_endline (help_msg);;

version)
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Appendix E

Implementation of Type
Inference

E.1 spiparser.mly

Modification of spiparser.mly from D.1.

/* spiparser.mly x/
/+* Spi Calculus parser x/

%o{

open Printf

let parse_error s = (% Called by the parser function on error x*)
print_endline (”spiparser:.” " s);
flush stdout ;;

%}

%token <string> ID

%token <string> LVAR

%token <char> CHAR

%token NIL OK

%token BEGIN END BANG PAR OUT IN NEW DECRYPT SPLIT MATCH

%token CHAN UN KEY TOK TPAIR UNKNOWN

%token EMPTY PAIR COMMA LPAREN RPAREN LBRACE RBRACE COLON SCOLON AS DASH

%start process
%start message
%type <Spitree.proc> process
Y%type <Spitree.msg> message

%%
process: NIL { Spitree.PNil }
OUT LPAREN message COMMA message RPAREN { Spitree.Out($3, $5)
IN LPAREN message COMMA ID RPAREN SCOLON process { Spitree.In(3$3, $5, $8)
BANG IN LPAREN message COMMA ID RPAREN SCOLON process { Spitree.InRepl($4,
NEW ID SCOLON process { Spitree.Nu($2, Spitree.Unknown, $4)
LPAREN process parrest { if $3 = Spitree.PNil then
$2
else
Spitree.PPara($2, $3) }
BEGIN ID LPAREN message RPAREN { Spitree.Begin($2, $4) }
END ID LPAREN message RPAREN { Spitree.End($2, $4) }
DECRYPT message AS LBRACE ID RBRACE message SCOLON process
{ Spitree.Decrypt($2, $5, Spitree.Unknown, $7, $9) }
SPLIT message AS LPAREN ID COMMA ID RPAREN SCOLON process
{ Spitree.Split (%2, $5, Spitree.Unknown, $7, Spitree.Unknown, $10) }
MATCH message AS LPAREN message COMMA ID RPAREN SCOLON process
{ Spitree.Match($2, Spitree.Unknown, $5, $7, Spitree.Unknown, $10) }

parrest : PAR process parrest { if $3 = Spitree.PNil then
$2

else
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Spitree.PPara($2, $3) }

RPAREN { Spitree.PNil }

message : OK { Spitree.Ok }

LBRACE message RBRACE message { Spitree.Encr($2, $4) }

PAIR LPAREN message COMMA message RPAREN { Spitree.MPair($3,
ID { Spitree.Name($1) }

%%

E.2 spilexer.mll

Modification of spilexer.mll from D.2.
{

open Printf
open Spiparser

let id = [’a’f’z’] [’a’f’z’ A7 1017191]*
let logvar = ['A’="Z"] [’a’—’z" "A’—="Z" 0’ —’"97]x%
rule spi-tokens parse

=]

[7 7 ’\t” ’"\n’] { spi-tokens lexbuf } (x Skip whitespaces x)
”begin” { BEGIN }
”end” { END }
e { BANG }
k) ’ { PAR }
»nil” { NIL }
” ok” { OK }
(0 { LPAREN }
R { RPAREN }
T { LBRACE }
) { RBRACE }
v { COLON }
5 { SCOLON }
{ COMMA }
" _" { DASH }
”out” { our }
”in” {IN }
”new” { NEW }
?decrypt” { DECRYPT }
»split” { SPLIT }
”match” { MATCH }
(x | 7ezpect” { EXPECT }x)
| ”as” { AS }
?pair” { PAIR }
?Ch” { CHAN }
?Un” { UN }
" Key” { KEY }
‘ ’70k77 { TOK
> Pair” { TPAIR }
o { UNKNOWN }
» Empty” { EMPTY }
id as str { ID str }
logvar as str { LVAR str }
as ¢ { printf ?Unrecognized._.character: %c\n” c; CHAR c}
eof { raise End_of_file }

E.3 spitree.ml

Modification of spitree.ml from D.3.

(* Spi—calculus data—structure x)
type name = string ;;

type label = string;;

type msg = Name of string
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| Encr of msgxmsg
| MPair of msgs*msg
| Ok;;

(x Spi—calculus data—structure, continued x)

type

type

type

(*

(x E
type

(* ”

reso = Reso of labelxmsg
| RPair of resoxreso
Empty ;;

Key of typ

Ch of typ

TPair of namextyp*typ

TOk of reso

Unknown ; ;

proc = Out of msgxmsg

In of msgsnamexproc

InRepl of msg*namexproc

Nu of namextyps*proc

PPara of procsproc

PNil

Begin of labelx+msg

End of labelx*msg

Decrypt of msgxnamextypsmsg*proc
Split of msg#namextyps*namextyp*proc
Match of msg*typs*msgxnamextyp=*proc
Datprog of datalog

Ezpect of literalx);;

\
typ = Un
\
\
\
\
\

ach element in an environment is either a type or an effect x)
env_element = Type of namextyp
| Effect of reso;;

Pretty—printing” functions for error—messages and similar.

* Note that these functions should, theoretically, print in a
* syntax accepted by the parser.

*)

let rec string_-of_msg msg =
match msg with

Name(x) —> x

Encr(m, n) —> Printf.sprintf "{%s}%s” (string_-of_-msg m) (string-of_-msg n)
MPair(m, n) —> Printf.sprintf ”pair(%s, -%s)” (string_of_msg m) (string_of_msg n)
Ok —> "ok” ;;

let rec string_-of_msg_altsyntax msg =
match msg with

Name(x) —> ”Name<” x 7>

Encr(m, n) —> Printf.sprintf "{%s}%s” (string_of_-msg m) (string-of_msg n)
MPair(m, n) —> Printf.sprintf ”pair<%s, _%s>" (string_of_msg m) (string_.of_msg n)
Ok —> 7ok” ;;

let rec string_of_reso reso =
match reso with

Reso (1, m) —> Printf.sprintf "%s(%s)” 1 (string_of_msg m)
RPair(r, s) —> Printf.sprintf 7 (%s, -%s)” (string_-of_reso r) (string_-of_reso s)
Empty —> ”Empty” ;;

let rec string-of_typ typ =
match typ with

Un —> ”Un”

Key(t) —> Printf.sprintf "Key(%s)” (string_of_typ t)

Ch(t) —> Printf.sprintf "Ch(%s)” (string_of_typ t)

TPair(x, t, u) —> Printf.sprintf "Pair(%s:%s, %s)” x (string_of_typ t) (string_-of_typ u)
TOk(r) —> Printf.sprintf "Ok(%s)” (string-of_reso r)

Unknown —> 7 %” ;;

let rec string_of_proc proc =
match proc with

Out(m, n) —> Printf.sprintf "out(%s, %s)” (string_of_-msg m) (string_of_msg n)

In(m, x, p) —> Printf.sprintf ”7in(%s, %s); %s” (string_of_msg m) x (string_of_proc p)
InRepl(m, x, p) —> Printf.sprintf ”"!lin(%s, %s); %s” (string_of_msg m) x (string_of_proc p)
Nu(x, t, p) —> Printf.sprintf "new.-%s:%s; _%s” x (string_of_typ t) (string_-of_proc p)
PPara(p, q) —> Printf.sprintf ”(%s|\n-%s)” (string_-of_proc p) (string_of_proc q)

PNil —> 7" nil”

Begin(l, m) —> Printf.sprintf "begin %s(%s)” 1 (string_of_msg m)
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End(l, m) —> Printf.sprintf ”end %s(%s)” 1 (string_of_-msg m)
Decrypt(m, x, t, n, p) —> Printf.sprintf "decrypt %s_as _{%s:%s}%s; _%s”
(string_-of_msg m) x (string_-of_typ t) (string_of_-msg n) (string_-of_proc p)
Split(m, x, t, y, u, p) —> Printf.sprintf ”split Y%s_as_(%s:%s, %s:%s); _%s”
(string_of_msg m) x (string_of_typ t) y (string_of_typ u) (string_of_proc p)
Match(m, t, n, x, usub, p) —> Printf.sprintf "match_%s:%s_as_(%s, -%s:%s); %s”
(string_of_msg m) (string_of_typ t) (string_of_-msg n) x (string_of_typ usub) (string_of_proc p)
(* | Datprog(d) —> Printf.sprintf "%s” (string_-of_-datalog d)
| Ezpect(f) —> Printf.sprintf 7exzpect %s” (string_-of_literal f)=*);;

let rec string_of_env_element env_element =
match env_element with
| Type(x, t) —> Printf.sprintf "%s:%s” x (string_of_typ t)
| Effect(r) —> (string_of_reso r);;

let rec string-of_env env =

List . fold_-right (fun element env_str —>
»

(string_of_env_element element) ~ 7 ,.” " env_str) env 77 ;;

E.4 aconv.ml

Identical to aconv.ml from D.4.

E.5 constraints.ml

open Printf;;

type label = string;;

type name = string ;;

type typevariable = string ;;
type effectvariable = string;;

type reso = Reso of label*Spitree.msg
| RPair of resoxreso

| Empty;;
type env_element = Type of namextypevariable
| UnType of name
(* | EffectVar of effectvariablex)
| Effect of reso;;
type env = (env_element list );;

type basetype = Ch of typevariable
| Pair of namextypevariablextypevariable
| Un
| Key of typevariable
| Ok of effectvariable (x Addition to the syntaz x*)
| Abstraction of typevariablexSpitree.msg*xtypevariable
| Application of typevariablexSpitree.msg;;

type typeconstraint = MayEqual of typevariablexbasetype
| Equal of typevariablexbasetype
| NotUn of typevariable (x Addition to the syntaz x)
| Generative of typevariable
| NotGenerative of typevariable
(x| NotFN of namex Spitree.procx)
| HasType of namextypevariable
| Fail;;

type effectconstraint = EffectIncl of label*Spitree.msg*env
| Instantiates of envxeffectvariable
| InEnv of Spitree.reso*env;;

type envconstraint = WellFormed of env

| NamesInDom of Spitree.msgxenv
| NotInDom of namexenv ;;
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type formula = TypeC of typeconstraint
| EffectC of effectconstraint
| EnvC of envconstraint
| And of formulaxformula
| Or of formulaxformula
| Leadsto of formulaxformula
| Forall of namexformula
| Conjunction of (formula list)
| CommentConjunction of strings(formula list)
| True

IR}

let rec string_of_reso reso =
match reso with
| Reso(l, m) —> sprintf "%s(%s)” 1 (Spitree.string_of_msg m)
| RPair(sl, s2) —>
sprintf 7(%s, %s)” (string_of_reso sl) (string_-of_reso s2)
| Empty —> ”Empty”

bR}

let string_of_env_element element =
match element with
| Type(x, t) —> sprintf "%s:%s” x t
| UnType(x) —> sprintf "%s:Un” x
| Effect(reso) —> sprintf "%s” (string_-of_reso reso)

IR}

let string_-of_env env =
if (List.length env) > 0 then
7(” ° (string-of_env_element (List.hd env))
(List. fold_left (
fun envstring element —>

envstring ?." ° (string_-of_env_element element)) ””

77()37

E.6 constraintgen.ml

open Constraints;;
module SMap = Map.Make(String ) ;;

class genstring prefix =

object
val mutable counter = 0
method fresh =
let countval = counter in
counter <— counter 4+ 1;
prefix "~ (string_of_int countval)
end;;
let typevar = new genstring 7T” ;;
let effectvar = new genstring "R’ ;;
let namegen = new genstring ”"x”;;

let messages =
object
val mutable msglist = []
method add msg =
msglist <— msg:: msglist
method get =
msglist
end;;
let environments =
object
val mutable envlist = []
method add env =
envlist <— env::envlist
method get =
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envlist
end;;

exception NoName of string;;
let rec nametype x env =
match env with
| [] = raise (NoName (”Name.” ~ x ~ ”_not_found_in_environment”))
| Type(name, typvar)::restenv —>
if x = name then
Type(name, typvar)
else
nametype x restenv
| UnType(name)::restenv —>

if x = name then
UnType (name)
else

nametype x restenv
| Effect(-)::restenv —>
nametype x restenv

(* | EffectVar(-)::restenv —>
nametype = restenv*)
(* | Empty::restenv —>

nametype x restenvxk)
i
let rec env_of proc =

match proc with
| Spitree.PPara(p, q) —> List.append (env_of q) (env_of p)

| Spitree.Nu(x, -, p) —> List.append (env_of p) [Type(x, typevar#fresh)]
| Spitree.Begin(l, m) —> [Effect(Reso(l, m))]
I - = (I3

let rec collect_list_mayeq formula =
let from_typec typec =
match typec with
| MayEqual(tvar, basetype) —> [(tvar, basetype)]
[—
in
match formula with
| TypeC(tconstraint) —> from_typec tconstraint
| (EffectC(-) | EnvC(-)) —> []
| (And(f1, f2) | Or(fl1, f2) | Leadsto(fl, f2)) —>
List .append (collect_list_mayeq fl) (collect_list_mayeq f2)
| Forall(-, f) —> collect_list_mayeq f
| (Conjunction(flist) | CommentConjunction(., flist)) —>
List . fold_left (fun coll_list f —>
List .append (collect_list_mayeq f) coll_list
) [] flist
| True —> []

let table_of_list_mayeq may_list =
let may_table = Hashtbl.create 100 in
List.iter (fun (tvar, basetype) —>
Hashtbl.add may-table tvar basetype
) may_list;
may_table

(xlet propagate_abstraction formula =
let may-table = table_of_list-mayeq (collect_list_-mayeq formula) in
let in_typec typec =

match formula with

*)
exception Bug of string;;
exception TypeMismatch of string;;
let rec constraint_of_-msg env msg =
environments#add env;
match msg with
| Spitree.Encr(m, n) —>

let (utl, psil) = constraint_of_-msg env m in
let (ut2, psi2) = constraint_of_msg env n in
let ut3 = typevar#fresh in

(ut3,
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CommentConjunction (” (Msg_-Encr)” ,
[TypeC(Equal(ut3, Un));

TypeC(MayEqual(ut2, Key(utl)));

Leadsto (TypeC(Equal (ut2, Un)),
TypeC(Equal(utL n)));

psil;

psi2

]

)
| Spitree.MPair(m, n) —>
let (utl, psil) = constraint_of_msg env m in
let (ut2, psi2) = constraint_of_msg env n in
let ut = typevar#fresh in
let ut2p = typevar#fresh in
let x = namegen#fresh in

(ut,

CommentConjunction (” (Msg_Pair)” ,
[TypeC(MayEqual(ut, Pair(x, utl, ut2p)));
TypeC (MayEqual (ut2p , Abstraction (ut2, m, )));
Leadsto (And(TypeC(Equal(utl ,Un)), TypeC(Equ 1

TypeC(Equal(ut,Un)));

(ut2,Un))),

psil;
psi2

]

)
| Spitree.Name(x) —>
let xtype = nametype x env in
(match xtype with
| Type(-, tv) —>
(o
CommentConjunction (” (Msg_Name)”
[TypeC(HasType(x,tv));
EnvC(WellFormed (env ) )]

| UnType(-) —>
let ut = typevar#fresh in
(ut,
CommentConjunction (” (Msg_Name_Un)” ,
[TypeC(HasType (x,ut));
TypeC (Equal (ut,Un));
EnvC(WellFormed (env ) )]
))
| - —> raise (Bug (”Received_effect_or_empty_from_the_nametype_function.
”This_should_never_happen.._nametype_is_not_constructed_that_way.”))

» A

)
| Spitree.Ok —>

let r = effectvar#fresh in
let ut = typevar#fresh in
(ut,

CommentConjunction (” Msg_Ok” ,
[TypeC(HasType(”ok”, ut));
Leadsto (TypeC(Equal(ut,Un)),
EnvC(WellFormed (env)));
TypeC (MayEqual (ut ,Ok(r)));
Leadsto (TypeC(NotUn(ut)),
And(EffectC (Instantiates (env, r)), EnvC(WellFormed(env))))]
))

[N}

let rec constraint_of_proc env proc =
environments#add env;
match proc with
| Spitree.Out(m, n) —>
let (utl, psil) constraint_of_msg env m in
let (ut2, psi2) constraint_of_msg env n in
messages#add m; messages#add n;
CommentConjunction (” (Proc. Out)”7
[TypeC(MayEqual (utl ,Ch(ut2)));
Leadsto(TypeC(Equal(utl Un)) s
TypeC(Equal (ut2, Un)));

psil;
psi2]

)
| (Spitree.In(m, x, p)|Spitree.InRepl(m, x, p)) —>
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let (utl, psil) = constraint_of_msg env m in
let ut2 = typevar#fresh in
let psi2 = constraint_of_proc (Type(x, ut2)::env) p in
messages#add m;
CommentConjunction (” (Proc.In)” ,
[TypeC(MayEqual (utl ,Ch(ut2)));
Leadsto (TypeC(Equal(utl, Un)),
TypeC(Equal(ut2, Un)));

psil;
psi2]
)
| Spitree.Nu(x, -, p) —>
let ut = typevar#fresh in
let psil = constraint_of_proc (Type(x, ut)::env) p in
CommentConjunction(” (Proc_Res)” ,

[EnvC (NotInDom (
psil;
Leadsto (TypeC(NotGenerative(ut)), TypeC(Fail))

x, env));

Spitree.PPara(p, q) —>
let psil = constraint_of_proc (List.append (env_of q) env) p in
let psi2 = constraint_of_proc (List.append (env_of p) env) q in
CommentConjunction (” (Proc_Par)”,
[psil; psi2])
| Spitree.PNil —>
True
| Spitree.Begin(l, m) —>
messages#add m;
CommentConjunction (” (Proc_Begin)”,
[EnvC (NamesInDom (m, env ) ) ;
EnvC(WellFormed (env))])
| Spitree.End(l, m) —>
messages#add m;
CommentConjunction(” (Proc_End)” ,
[EffectC (EffectIncl (1l ,m,env));
EnvC(WellFormed (env))])

| Spitree.Decrypt(m, y, -, n, p) —>
let (utl, psil) = constraint_of_msg env m in
let (ut2, psi2) = constraint_of_msg env n in

let ut3 = typevar#fresh in
let psi3 = constraint_of_proc (Type(y, ut3)::env) p in
messages#add m; messages#add n;
CommentConjunction (” (Proc_Decrypt)”,

[TypeC(Equal(utl ,Un));
TypeC(MayEqual(ut2 ,Key(ut3)));
Leadsto (TypeC(Equal(ut2,Un)),

TypeC(Equal (ut3,Un)));

)

psil;
psi2;
psi3
]
)
| Spitree.Split(m, x, -, y, -, p) —>
let (ut0, psil) = constraint_of_msg env m in

let utl, ut2 = typevar#fresh , typevar#fresh in
let psi2 = constraint_of_proc (Type(y, ut2)::Type(x, utl)::env) p in
messages#add m;
CommentConjunction(” (Proc_Split)”,
[TypeC(MayEqual (ut0 , Pair (x, utl, ut2)));
Leadsto (TypeC(Equal (ut0,Un)),
And (TypeC(Equal(utl ,Un)), TypeC(Equal(ut2,Un))));
psil;
psi2

]

)
| Spitree.Match (m,

-, m, Yy, -, p) >
let (utl, psil) = constraint_of_msg env m in
let (ut2, psi2) = constraint_of_msg env n in

let utO0, ut3, utd = typevar#fresh , typevar#fresh , typevar#fresh in
let psi3 = constraint_of_proc (Type(y, ut3)::env) p in
let x = namegen#fresh in

messages#add m; messages#add n;

CommentConjunction (” (Proc_Match)” ,
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[TypeC(MayEqual (utl , Pair(x, utO, ut4)))
TypeC (MayEqual (ut3, Application (ut4,n))
Leadsto (TypeC(Equal(utl, Un)),

Conjunction ([TypeC(Equal(ut2, Un))
TypeC(Equal (ut0, Un))
TypeC(Equal (ut3, Un))
TypeC(Equal(ut4, Un))
)

);

psil;
psi2;
psi3

E.7 axioms.ml

open Alfp ;;
type con_element = Clause of cl
| Comment of string ;;
type commented_conjunction = (con_element list)

(x Shorthand functions. Using these can make azioms and encodings more readable in the code. x)
exception ClauseBuildError of string;;

(* Build a conjunction of clauses from a list x)
let rec cland_of_list flist =
match flist with
| (hd::[]) —> hd
| (hd::tl) —> ClAnd(hd, cland_of_list tl)
| [] —> raise (ClauseBuildError (”Bug:_Please_do_not_feed_cland_of_list_with_an_empty_list..”
?Be_nice_and_give_it _something_to_work_with.”))

(x Build a conjunction of preconditions from a list x)
let rec preand_of_list flist =
match flist with
| (hd::[]) —> hd
| (hd::tl) —> PreAnd(hd, preand_of_list tl)

| [] = raise (ClauseBuildError (”Bug:_Please_do_not_feed_preand_of_list_with_an_empty_list ..’

?Be_nice_and_give_it_something._to_work_with.”))

(x Prefiz a clause with a number of wuniversal quantifiers x)
let rec aquantify qlist clause =
match qlist with
| [] = clause
| (hd::tl) —> Forall(hd, aquantify tl clause)

(x Build a list of wvariables from a list of strings x)
let rec varlist strlist =
List.fold-right (fun str variables —>
Var(str ):: variables
) strlist []

(* Build a list of constants from a list of strings x*)
let rec constlist strlist =
List.fold-right (fun str constants —>
Const(str ):: constants
) strlist []

(* — Relations — x)

(x Messages *)

let tpairrel = ”"TermPair”
let encrel = ”"Enc”

let namerel = ”Name”

let tokrel = ”OkTerm”

(x Types *)

let keyrel = "Key”

let pairrel = ”Pair”
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let chrel = ”Ch”

let unrel = ”Un”
let okrel = 70k”
let typrel = ”Type”

let maypf = "Q”

(x Effects x)
let effectrel = ” Effect”

(* Generativity =)
let genrel = ”Gen”
let nongenrel = ”NonGen”

(x Equality *)
let eqrel = 7eq”
let neqrel = "neq”

(x Type equality x)

let teqrel = ”"Teq”

(x Substitution for equality for dependent types. x)

let subsrel = ”Subs”

let absrel = ”Abs”

let apprel = ”App”

let applyrel = ”Apply”

(x Free mnames x*)

let fnrel = ”Fn”

(* Name in domain *)

let domrel = ”Dom”

(x Elements of environments x*)

let envrel = "Env”

(x Effects and non—effects =)

let effrel = 7?Eff”

let noneffrel = ”NonEff”

(x Simple and non—simple environments *)

let simplerel = ”Simple”

let nonsimplerel = ”"NonSimple”

(x Dependency x*)

let deprel = ”Dep”

let deprefrel = ”DepRef”

let envdeprel = ”EnvDep”

(x Initial and non—initial effects x*)

let initrel = ”Initial”

let noninitrel = "NotInitial”

(* Failure — Unary. Give it a string ezplaining failure.

let failrel = ”Fail”

(x Admissibility x)

let admitsrel = ” Admits”

let effadmitsrel = ”?EffAdmits”

(*x Ranking of each relation x*)

let ranklist = [(domrel, 1); (x Domain relation x)
(eqrel, 1); (* Equality, rank 1 x)

(neqrel, 2);
(tpairrel , 2); (x Term relations
(encrel, 2);
(namerel, 2);
)
2

(tokrel, 2);

(subsrel, 2); (x Subs relation , rank 2 x)
(unrel, 2); (x Un relation, rank 2 x*)
(keyrel, 3); (x Other type relations ,
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(keyrel ~ maypf, 3);
(pairrel , 3);
(pairrel ~ maypf, 3);

(chrel, 3);
(chrel ° maypf, 3);
(okrel, 3);
(okrel maypf, 3);
(absrel, 3);

applyrel, 3);

typrel , 3); (x Type relation x)

teqrel , 3); (x Type equality , rank 3 x*)

genrel , 3); (* Gemnerativity and mon—generativity , rank 8 x)

€
(
(
(
(
(
(nongenrel 3);
(
(
(
(
(
(

envdeprel , 3); (x Dependency of effect wvariables on environments and each other,

deprel , 4)7

deprefrel 4);

envrel , 4) (* Environment relation , rank 4 x*)
snnplerel 4);  (x Simplicity relations, rank 4 *)
nonsunplcrcl 4);

(effectrel , 4)7 (¥ Effect relations, rank 4 x)

(effrel, 4);

(noneffrel , 4);

(initrel , 4); (x Initial and mnoninitial effects, rank 4 *)
(noninitrel , 4);

(fnrel, 5);

(admitsrel , 6); (x Admissibility, rank 6 x)
(effadmitsrel , 6);
(failrel , 6)

]

(x — Azioms — x*)

(x Equality and inequality =)
let eqneq = ClAnd(Forall (”x”,
CPredicate (eqrel , [Var(”x”); Var(”x”)])),
Forall (?x”, Forall("y”,

Leadsto (NegPredicate (eqrel , [Var(”x”); Var(y”)]),
CPredicate (neqrel, [Var(”’x”); Var("y”)])))));;
let axioms_eqneq = [Comment(” Equality _and_inequality_on_names._We_simply_describe_that.” ~

?every._distinct _name_is_equal_to_itself ,_”
”?and.not_.equal_to_any_other._name.” );
Clause (eqneq)]

(x Generativity =)
let ax_un = Forall("t”,
Leadsto (PPredicate (unrel, [Var(”t”)]),
CPredicate (genrel , [Var(”t”)])))
let ax_key = Forall(”t1”, Forall(”t2”,
Leadsto (PPredicate (keyrel , [Var(”t1”); Var(”t2”)]),
CPredicate (genrel , [Var(”t17)]))))
let ax_.ch = Forall(”t1”, Forall(7t2”,
Leadsto(PPredicate(chrel , [Var(”t1”); Var(”t2”)]),
CPredicate (genrel , [Var(”t17)]))))
let ax_pair = Forall(”t1”, Forall(”x”, Forall(”t2”, Forall(7t3”,
Leadsto (PPredicate(pairrel , [Var(”t1”); Var(”x”); Var(”t2”); Var(”t3”)]),
CPredicate (nongenrel , [Var(”7t17)]))))))
let ax_ok = Forall(”t”, Forall(”r”,
Leadsto (PPredicate (okrel, [Var(”t”); Var(”r”)]),
CPredicate (nongenrel , [Var(”t” )1))))
let axioms_gen = [Comment(” Generativity _and_non—generativity.” ~
” These_formulae_map_types_to_the_generativity._relations.”);
Clause (ax_un);
Clause (ax_-key );
Clause (ax_ch);
Clause (ax_pair);
Clause (ax_-ok)

]

(x Type equality x)
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(x Note: Doing this kind of type equality for the Un type would be pointless,
* as Un does mot contain any type or effect. x)

let pair_pre = PreAnd(PPredicate(pairrel , [Var(”tl’”); Var(”’x1”); Var(”t2”); Var(”t3”)])
PreAnd(PPredicate (pairrel , [Var(”tl’’”); Var(”?x2”); Var(7t4”);

PPredicate (teqrel , [Var(”t1’”); Var(7t1’°7)])))
let pair_cl = ClAnd(CPredicate(teqrel , [Var(”t2”); Var(”?t4”)]),
CPredicate (teqrel , [Var(”t3”); Var(”t57)]))
let ax_teq_pair = aquantify ["x17; ?x27; "t1°7; "t1°°7; 727 "t37; 7t4”; "t5"]
(Leadsto (pair_pre ,
pair_cl)
)

let key_pre = PreAnd(PPredicate(keyrel, [Var(”tl’”); Var(”t2”)]),
PreAnd (PPredicate (keyrel , [Var(”t1’’”); Var(”t3”)]),
PPredicate (teqrel , [Var(”t1’”); Var(”t1’°7)])))
let ax_-teq-key = aquantify ["t1’7; 7t1’°7; "t27; ”t37]
(Leadsto (key_pre,
CPredicate (teqrel , [Var(”t2”); Var(”t37)]))
)

let ch_pre = PreAnd(PPredicate(chrel, [Var(”t1’”); Var(”?t2”)]),
PreAnd(PPredicate (chrel , [Var(”t1’’”); Var(”t3”)]),
PPredicate(teqrel , [Var(”t1’”); Var(7t1’’”)])))
let ax_teq-ch = aquantify [7t1’7; 7t1’77; 7t27; 7t3”7]
(Leadsto (ch_pre,
CPredicate (teqrel , [Var(”t2”); Var(”t3”)]))
)

let ok_pre = PreAnd(PPredicate(okrel, [Var(”t1’”); Var(”sl1”)]),
PreAnd (PPredicate (okrel , [Var(”tl1’’”); Var(”s2”)]),
PPredicate (teqrel , [Var(”t1’”); Var(”t1’°7)])))
let ax_-teq_-ok = aquantify [7t1’7; 7t1’>°7; "s1”; 7s2”]
(Leadsto (ok_pre,
CPredicate (teqrel , [Var(”sl1”); Var(”s2”7)]))
)

let axioms_teq = [Comment(” Type_equality . _We_say._that_if_two_types_are_equal,.”
?then_their_inner_types_are_also_equal.”);
Clause (ax-teq-pair );
Clause (ax-teq-key );
Clause (ax_-teq-ch);
Clause (ax_-teq-ok)

]

(x General type equality azioms x*)
let ax_teq-reflexl = Forall(”t”, CPredicate(teqrel, [Var(”t”); Var(7t”)]))
let ax_teq-reflex2 = aquantify ["t1”; 7t27]
(Leadsto (PPredicate(teqrel , [Var(”t1”); Var(”?t2”)]),
CPredicate (teqrel , [Var(”t2”); Var(”t1”7)])))

let ax_teq-trans = aquantify [7t17; 7t27; 7t37]
(Leadsto (PreAnd (PPredicate (teqrel , [Var(”t1”); Var(”t2”)]),
PPredicate (teqrel , [Var(”t2”); Var(”t37)])),
CPredicate (teqrel , [Var(”t1”); Var(”t37)])))
let axioms_genteq = [Comment(” Type_equality_is_both_reflexive_and_transitive.”);
Clause (ax_teq-reflex1);
Clause (ax_teq-reflex2);
Clause (ax_-teq-trans)
]
(x Dependent types %)
(x Substitution on terms x*)
let ax_tok_subs = aquantify ["n”; "m’”; "m"]
(Leadsto (PPredicate (tokrel , [Var(”n”)]),
CPredicate(subsrel , varlist [”n”; 7"n”; "m’”; "m’])))
let ax_name_subs = aquantify ["m’”; "m’]
(Leadsto (PPredicate (namerel, [Var(”m”)]),
CPredicate (subsrel , varlist ["m’”; "m”; "m’”; "m”])))
let ax_tpair_subs = aquantify [Hnw; "nl’”; "nl”; "m’”; "m”; "n2’”; "n2”; 17n171]

(cland_of_list |
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Leadsto(preand_of_list [PPredicate(subsrel, varlist [”"nl1’”; "nl”; "m’”; "m”]);
PPredicate (subsrel , varlist [”n2’”; 7n2”; "m’”; "m”]);
PPredicate (tpairrel , varlist ["n”; 7nl”; 7n2”]);
PPredicate (tpairrel , varlist ["n’”; ”nl’”; "n2’7])],
CPredicate(subsrel , varlist [”n’”; ”"n”; "m’”; "m”])
D
let axiencisubs — aqual’ltify [77n)7; 7)n17)7; 7)n177; ’)m’77; ))mﬂ; 77n2)7); )71,127); 77n73)]
(cland_-of_list |
Leadsto(preand-of_list [PPredicate(subsrel, varlist [”"nl1’”; "nl”; "m’”; "m”]);
PPredicate (subsrel , varlist [”n2’”; 7n2”; "m’”; "m”]);
PPredicate (encrel, varlist [”n”; ”nl”; 7"n2”]);
PPredicate (encrel, varlist ["n’”; ”"nl’”; ”"n2’7])],
CPredicate (subsrel , varlist [”"n’”; "n”; "m’”; "m”])

)
D

let axioms_subs = [Comment(” Substitution_on_terms”);
Clause (ax_-tok_-subs);
Clause (ax_-name_subs);
Clause (ax_tpair_subs);
Clause (ax_enc_subs)

]

(x Substitution on effects x*)

let axieffectisubs — aquantlfy [)Ynﬂ 77n7’); 771)7; 7)m77; )7m)77; ” 7); » 737}
(Leadsto (PreAnd (PPredicate (effectrel, varlist [”1”; "n”; 7s’7]),
PPredicate (subsrel, varlist ["n’”; 7n”; "m’”; "m"])
CPredicate (effectrel , varlist [”17; "n’”; ”s”])

)
)

let axioms_effsubs = [Comment(” Substitution_on_effects”);
Clause (ax_effect_subs)

]

(x Abstraction on types x)
(x Woah. The definitions of abstraction and application are a bit confused.
* Hey! Subject for mext supervisor meeting. x)

(xlet az_abs_subs = aquantify ["n”; "n’”; *m”; "m’7; "¢r; vt0r
(Leadsto(preand_of_-list [PPredicate(typrel, wvarlist ["n”; 7t”]);
PPredicate (subsrel , varlist [7t’7; 7t7; "m’”; "m”]);

PPredicate (typrel, wvarlist ["n’7; 7t7])

,
CPredicate (absrel , varlist ["n’”; 7t”; "m’”; "m”])

)

let azioms = List.append azioms [Comment(” Abstraction on types”);
Clause (az_abs_subs)

I*)

(x+ Application on types x)
(*let amiappisubs j— aquantlfy [”vﬂ; H,UYH; 7771/]]’, U,’n’}; Hml!!; ngﬂ; ’!m377/

(
)*)

(x+ Free mames of terms x*)

let ax_name_-fn = Forall(”n”,
Leadsto (PPredicate (namerel, [Var(”’n”)]),
CPredicate(fnrel , varlist [”n”; "n”])))
let ax_tpair_fn = aquantify [”’n”; ”nl”; "n2”; "m”]
(Leadsto (PreAnd (Or(PPredicate(fnrel , varlist ["m”; 7nl”]),
PPredicate (fnrel , varlist ["m”; "n27])),
PPredicate (tpairrel , varlist ["n”; "nl”; ”"n2”])),
)

CPredicate (fnrel , varlist ["m”; "n”]

)
let ax_enc_-fn = aquantify [”’n”; 7nl”; ”"n2”; ”"m”|]
(Leadsto (PreAnd (Or(PPredicate(fnrel , varlist ["m”; ”"nl”]),

9
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PPredicate (fnrel , varlist [”m”; ”"n2”]))

>
PPredicate(encrel, varlist ["n”; "nl”; ”"n2”])),
CPredicate (fnrel , varlist ["m”; ”"n”]))
)
let axioms_fn = [Comment(” Free_names_of_terms._A_name_is_always_free_in_itself._.” ~
?For_pairs_.and_encryptions ,_if _a_name_is_free_in_either_element B _”

7it_is_free_for_the_pair,_or_encryption.”);

Clause (ax_name_fn);
Clause (ax_-tpair_-fn);
Clause (ax-enc_-fn);

]

(x Free mames of types x*)

let ax_ch_fn = aquantify ["t”; "t17; "m”]
(Leadsto (PreAnd (PPredicate(chrel , varlist [7t”; 7t17]),
PPredicate (fnrel , varlist ["m”; 7t1”])
CPredicate(fnrel , varlist ["m’; 7t”7])

)

let ax_key_fn = aquantify [7t”7; 7t1”; "m”]
(Leadsto (PreAnd (PPredicate (keyrel , varlist [7t”; "t17]),
PPredicate(fnrel , varlist ["m”; 7t1”])
CPredicate (fnrel , varlist ["m”; 7t”])

)
)

let ax_pair_fn = aquantify [7t7; "t1”7; 7t2”7; "x”; "m’]
(Leadsto(preand_of_list [PPredicate(pairrel, varlist ["t7; "x”; 7tl1”7; 7t2”]);
Or(PPredicate (fnrel , varlist ["m”; "t17]),
PPredicate (fnrel , varlist ["m”; "t27]));
PPredicate (neqrel, varlist ["m”; 7x7])
)
CPredicate(fnrel , varlist ["m”; 7t”7])

)
)

let ax_ok_fn = aquantify [7t”; ”s”; "m”]
(Leadsto (PreAnd (PPredicate (okrel , varlist [7t”; 7s”]),
PPredicate(fnrel , varlist ["m’; 7s”])
)
CPredicate(fnrel , varlist ["m’; 7t7])

)
)

let ax_effects_fn = aquantify ["m”; "n”; 717; 7s7]
(Leadsto (PreAnd (PPredicate(fnrel , varlist [”’n”; "m’]),
PPredicate (effectrel , varlist [”17; "m”; 7s”])
CPredicate(fnrel , varlist [”"n”; 7s”])

)
)

let axioms_-typfn = [Comment(” Free_names_of_types”);
Clause (ax-ch_fn);
Clause (ax_-key_fn);
Clause (ax_pair_fn);
Clause (ax_-ok_fn);
Clause (ax_-effects_fn);

]

let ax_may_key = aquantify ["t”; 7t17]
(Leadsto (PreAnd (PPredicate(keyrel ~ maypf, varlist [7t”; 7t17]),
NegPredicate (unrel , [Var(”t”)])),
CPredicate (keyrel , varlist ["t7; "t17])))

let ax_may_pair = aquantify [7t7; 7?x”; "t1”; 7t27]
(Leadsto (PreAnd (PPredicate(pairrel ~ maypf, varlist [7t7; 7"x”; "t17; 7t27]),
NegPredicate (unrel, [Var(”?t”)])),
CPredicate (pairrel , varlist [7t7; ”x”7; 7t1”; 7t27])))
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let ax_may_ch = aquantify [7t”7; 7t17]

(Leadsto (PreAnd (PPredicate(chrel ~ maypf, varlist [7t”; 7t17]),
NegPredicate (unrel , [Var(7t”)])),
CPredicate (chrel , varlist [7t7; 7"t17])))
let ax_may_ok = aquantify [7t”7; 7s”]
(Leadsto (PreAnd (PPredicate (okrel ~ maypf, varlist [7t7; 7"s”]),
NegPredicate (unrel , [Var(7t”)])),
CPredicate (okrel , varlist [7t”7; 7s”])))
let ax_may_abs = aquantify ["v”; "u”; "m’; 7t7]
(Leadsto (PreAnd (PPredicate (absrel "~ maypf, varlist ["v”; 7u”; "m’; "t”]),
NegPredicate (unrel , [Var(?v”)])),
CPredicate (absrel , varlist ["v”; "u”; "m”; 7t7])))
let ax_may_app = aquantify ["v”; "u”; "n”]
(Leadsto (PreAnd (PPredicate (apprel "~ maypf, varlist ["v”; 7u”; ”"n”]),

NegPredicate (unrel , [Var(”v”)]))

)
CPredicate (apprel, varlist ["v”; "u”; "n”])))
let axioms_may = [Comment(” Possible_types._These_axioms_were_added_to_the_ones_of_\\cite{HHWIP},_” ~
"to_describe_how_the_$=$_and_$\\mayeq$_type_relations_interact..” ~
?The_$\\Rel{” ~ unrel "~ ”}$_relation_is_populated_by_the_generation.” ~

» oA

?rules._in_a_stratum_prior_to_all_the_other_type_relations..
?In_that_stratum ,_all _the_types_that_must_be_\\Un{}_are_found,.”
7and_a_stratum._later ,_the_other_type_relations_are_populated_from.”
?the_$\\mayeq$_relations_to_fill _in_those_types_that.” ~
?are-_not_\\Un{}.”);

Clause (ax-may_key );

Clause (ax_-may_pair );

Clause (ax-may_ch);

Clause (ax_may_ok );

Clause (ax_-may_abs);

Clause (ax-may_app)

]

(x Effect and Non—effect azioms x)

let ax.eff_ok = aquantify [7t”7; 7s”]
(Leadsto (PPredicate (okrel, varlist ["t”; ”"s”]),
CPredicate (effrel , [Var(”t”)])))
let ax_eff_pair = aquantify ["x”; 7t7; 7t17; 7t27]
(Leadsto (PPredicate (pairrel , varlist [7t”; ”"x”; "t17; 7t2"]),
CPredicate (noneffrel , [Var(”t”)])))
let ax_eff_key = aquantify ["t”; 7t17]
(Leadsto (PPredicate (keyrel , varlist [7t”; 7t1”]),
CPredicate (noneffrel , [Var(”t”)])))
let ax_eff_ch = aquantify [7t7; 7t17]
(Leadsto (PPredicate (chrel , varlist [7t”7; "t17]),

CPredicate (noneffrel , [Var(”t”)])))

let ax_eff_un =
Forall ("t”,
Leadsto (PPredicate (unrel, [Var(”t”)]),
CPredicate (noneffrel , [Var(7t”7)]))

)
let ax_eff_teq = aquantify ["t1”; ”t27]
(Leadsto (PreAnd (PPredicate (effrel , [Var(?t1”)]),
PPredicate (teqrel , varlist ["t17; 7t27])),
CPredicate (effrel , [Var(”t27)])))
let ax_noneff_teq = aquantify [7t1”7; 7t2”]
(Leadsto (PreAnd (PPredicate (noneffrel , [Var(”t1”)]),
PPredicate (teqrel , varlist ["t17; 7t2”])),
CPredicate (noneffrel , [Var(”t2”)])))
let axioms_eff = [Comment(” Axioms_for_deciding_which_types_contain_effects ,_and_which_do_not.”);

Clause (ax_eff_ok );
Clause (ax_-eff_pair );
Clause (ax_eff_key );
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Clause (ax-eff_ch);
Clause (ax_eff_un);
Clause (ax-eff_teq);
Clause (ax_-noneff_teq);

]

(x Simple and monsimple environments x*)
let ax_simple = aquantify [7e”; 7t7; 7"x7]

(Leadsto (PreAnd (PPredicate (envrel , varlist ["x”; 7t7; "e”]),
PPredicate(effrel , [Var(”t”)])),
CPredicate (simplerel , [Var(”e”)])))
let ax_nonsimple =
Forall(7e”,
Leadsto ( Exists (7t”, Exists(”x”,
PreAnd (PPredicate(envrel , varlist [7"x7; "t”; "e”
PPredicate (noneffrel , [Var(”t”)])))),
CPredicate (nonsimplerel, [Var(”e”)])))
let axioms_simplicity = [Comment(”We_decide_which_environments_are_simple.” ~

”and_which_are_non—simple.”);
Clause (ax_simple);
Clause (ax_-nonsimple)

]

» ”» SRR

let ax_dep = aquantify ["e”; "x"; 7t”7; 7s”7; ”s
(Leadsto(preand_of_list [PPredicate(envrel, varlist [7”x7; 7"t7; "e”]);
PPredicate (okrel, varlist ["t”; 7s’”])
PPredicate (envdeprel , varlist [7”s”; 7e”])],
CPredicate (deprel, varlist ["s”; "s’7])))
let ax_dep-trans = aquantify [7sl1”; 7s27; 7s37]
(Leadsto(preand_of_list [PPredicate(deprel, varlist [”s1”; 7s2”]);
PPredicate (deprel, varlist [”s2”7; 7s3”]);],
CPredicate (deprel, varlist [”s1”; 7s37])))
let axioms_dependency = [Comment(”We_find._dependencies_between_effect_variables.”);

Clause (ax_dep );
Clause (ax_-dep_trans)

]

let ax_initial = aquantify ["s”; 7e”
(Leadsto (PreAnd (PPredicate (simplerel , [Var(”e”)]),
PPredicate (envdeprel , varlist [”s”; 7e”])),
CPredicate(initrel , [Var(”s”)])))
let ax_noninitial = aquantify [”"s”; 7e”]
(Leadsto (PreAnd (PPredicate (envdeprel , varlist ["s”; 7e”]),

PPredicate (nonsimplerel , [Var(”e”)])),
CPredicate (noninitrel , [Var(”s”)])

))

let axioms_initiality = [Comment(”We_find_initial_and_non—initial_effect_variables.”);
Clause (ax_initial);
Clause (ax_-noninitial)

]

let ax_admits = aquantify ["m”; 7e”; "n”
(Leadsto (Or(NegPredicate(fnrel , varlist [”n”; "m”]),
PPredicate (domrel, varlist ["n”; 7e”])),
CPredicate (admitsrel , varlist ["e”; "m”])))
let ax_effadmits = aquantify ["m”; "e”; ”s”
(Leadsto (PreAnd (PPredicate (admitsrel , varlist ["e”; "m"]),
PPredicate (envdeprel , varlist [7s”; 7e”])),
CPredicate (effadmitsrel , varlist [”s”; "m”])))
let axioms_admissibility = [Comment(”We_find _which_messages_are_admitted_by.” ~

?environments_and_effects”);
Clause (ax_admits );
Clause (ax_effadmits)

]

let ax_abs_ch = aquantify [7t17; "t1°7; 7t27; "m”; "x”]
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(Leadsto (PreAnd (PPredicate (chrel, varlist ["t1”7; 7t2”]),
PPredicate (absrel , varlist ["t1’”; "t17; "m”; "x”])),
CPredicate (absrel , varlist [7t1’7; "t2”; "m’; "x7])))
let ax_abs_key = aquantify ["t1”; 7t1’”7; 7t2”; "m”; 7x”
(Leadsto (PreAnd (PPredicate (keyrel , varlist [7t1”; 7t27]),
PPredicate (absrel , varlist ["t1’”; "t17; "m”; "x"])),
CPredicate (absrel , varlist [7t1’7; "t2”; "m’; "x7])))

let ax_abs_pair = aquantify |
(Leadsto (PreAnd (PPredicate (pairrel , varlist [”t1” ]
PPredicate (absrel , varlist ["t1’7; "t1”7; "m”; ”"x2"])
ClAnd (CPredicate (absrel, varlist ["t1’7; "t2”; "m’; "x27])
CPredicate (absrel , varlist ["t1’7; ”7t3”7; "m”; ”"x2”])

”tl”; ”tl”’; ”tzn; 7’1’,3”; ”t27”; ”m”; ” 1. ”X2”]
Px17; U427 743”7

let ax-abs_ok = aquantify [7t17; "t1°”; ”s”; "m”; 7x7]
(Leadsto (PreAnd (PPredicate (okrel, varlist ["t17; 7”s”]),
PPredicate (absrel , varlist [7t1’7; "t1”; "m’; "x”])),
CPredicate (absrel , varlist ["t1’7; ”s”; "m”; 7x”7])))
let axioms_abstraction = [Comment(” Axioms_for_abstraction..” ~
”Propagates_abstraction_into_abstracted._type.”);
Clause (ax_-abs_ch);
Clause (ax_abs_key );
Clause (ax-abs_pair);
Clause (ax_abs_ok)

let ax_app-ch = aquantify [7t17; ”t27; 7t3”; 7t4”; "ml”; ”"m2”; ”"x"”]
(Leadsto(preand_-of_list [PPredicate(chrel, varlist ["t1”; 7t27]);
PPredicate (absrel , varlist [7t1”; 7t3”; "ml”; 7"x”]);
PPredicate (apprel, varlist [7t4”; 7t17; "m2”])
s
ClAnd (CPredicate(chrel, varlist [7t4”; 7t27]),
CPredicate (applyrel , varlist [7t4”; "t4”7; "m2”; "ml”]))))

let ax_app-key = aquantify ["t17; 7t27; 7t3”7; ”"t4”; ”"ml”; "m2”; ”x”]
(Leadsto(preand_of_list [PPredicate(keyrel, varlist [7t17; "t27]);
PPredicate (absrel , varlist ["t1”; 7t37;
]PPredicate(apprel, varlist [7t47; 7t17;
)
ClAnd(CPredicate (keyrel , varlist [7t47; "t27]),
CPredicate (applyrel , varlist [7t4”; "t4”; "m2”; "ml”]))))

let ax_app-pair = aquantify [7t17; 7t27; 7t3”7; 7t4”; ”"t5”7; "ml”; "m2”; ”"x”; "x17]
(Leadsto(preand_of_list [PPredicate(pairrel, varlist [7t1”7; 7x1”; "t27; 7t57]);
PPredicate (absrel , varlist ["t1”; ”t3”; "ml”; "x7]);
PPredicate (apprel, varlist [7t4”; 7t1”7; "m2”])

1,
ClAnd(CPredicate (pairrel , varlist [7t4”; "x17; 7t2”; 7t57]),
CPredicate (applyrel , varlist [7t4”; "t4”; "m2”; "ml”]))))
let ax_app-ok = aquantify [”tl”; YT ME37 . Y447 "ml”; "m27 ”X”]
(Leadsto(preand_of_list [PPredicate(okrel, varlist ["t1”7; 7s”]);
PPredicate (absrel, varlist [7t1”7; 7t3”; "ml”; "x"]);
PPredicate (apprel, varlist [7t4”; 7t17; "m2”])
s
ClAnd (CPredicate (okrel , varlist [7t4”; ”s”]),
CPredicate (applyrel , varlist [7t4”; "t4”7; "m2”; "ml”]))))
let axioms_application = [Comment(” Axioms_for_application._”
?Indicates_application_of_a_type_abstraction.”);
Clause (ax-app-ch);
Clause (ax-app-key );
Clause (ax_app-pair);
Clause (ax_app-ok)

]
let ax_apply_-ch = aquantify [7t”7; 7t1”; 7t27; "ml”; 7"m2”]
(Leadsto (PreAnd (PPredicate (chrel , varlist ["t17; 7t27]),
PPredicate (applyrel , varlist [”t”; "t1”; "m2”; "ml”])),
CPredicate (applyrel , varlist ["t”; 7t27; "m2”; "ml”])))

let ax_apply-key = aquantify [7t7; 7"t1”; 7t2”; "ml”; ”"m2”]
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(Leadsto (PreAnd (PPredicate (keyrel , varlist ["t1”; 7t2”]),

PPredicate (applyrel , varlist ["t”; "t1”7; "m2”; "ml”])),
CPredicate (applyrel , varlist [7t”; ”7t2”; "m2”; "ml”])))
let ax_apply-pair = aquantify [7t”; 7t17; 7t2”7; 7t3”; "ml”; "m2”; 7x”]
(Leadsto (PreAnd (PPredicate(pairrel , varlist ["t17; ”"x”; "t27; 7t3"]),
PPredicate (applyrel, varlist ["t”; "t1”7; "m2”; "ml”])),
ClAnd(CPredicate (applyrel, varlist [7t”; 7t27; "m2”; "ml”]),
CPredicate (applyrel , varlist [”t”; 7t3”; "m2”; "ml”]))))
let ax-apply-ok = aquantify [7t”; 7t1”7; ”s”; "ml”; "m2”]
(Leadsto (PreAnd (PPredicate (okrel , varlist [7t17; "s”]),
PPredicate (applyrel , varlist [7t”; "t1”; "m2”; "ml”])),
CPredicate (applyrel , varlist [7t7; ”s”; "m2”; "ml1”])))
let axioms_apply = [Comment(” Axioms_for_apply_propagation..” ~

” Propagates_an_application_to_inner_types.”);
Clause (ax-apply_ch);
Clause (ax_-apply_key );
Clause (ax-apply_-pair);
Clause (ax_apply-ok)

]

(x Unification of isolated wariables x*)

let ax-uni_ch = aquantify [7t17; "t1°7; "t27]
(Leadsto (PreAnd (PPredicate(chrel , varlist [7t17; "t27]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (chrel , varlist [7t1°7; 7t27])))
let ax_uni_key = aquantify ["t1”; 7t1’7; 7t2”]
(Leadsto (PreAnd (PPredicate (keyrel , varlist [7t1”; 7t27]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (keyrel , varlist ["t1’7; ”"t27])))
let ax_uni-pair = aquantify [7t1”7; 7t1°”7; "t27; ”7t3”; 7x”
(Leadsto (PreAnd (PPredicate (pairrel , varlist [7t17; "x”; 7t2”7; "t37]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (pairrel , varlist [7t1’7; 7x”7; 7t2”7; 7t37])))
let ax-uni-ok = aquantify [7t17; "t1°7; "t27]
(Leadsto (PreAnd (PPredicate (okrel , varlist [7t17; 7"t27]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (okrel , varlist [7t1°7; 7t27])))
let ax_uni_a = aquantif PE17 76107 76275 "m”
pp q y ) ) 5
(Leadsto (PreAnd (PPredicate (apprel, varlist [7t1”; 7t27; "m"]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (apprel, varlist ["t1’7; ”"t2”; "m”])))
let ax_uni_abs = aquantify ["t1”; 7t1’”7; 7t2”; "m”; 7x”
(Leadsto (PreAnd (PPredicate (absrel , varlist [7t17; 7t27; "m”; "x"]),
PPredicate (teqrel , varlist ["t1”; 7t1°7])),
CPredicate (absrel , varlist ["t1’7; "t27; "m”; ”"x”])))
let axioms_unification = [Comment(” Unification_axioms._This_is_also_a_way_of_assigning.” ~

?types_to_isolated _type_variables.”);
Clause (ax_uni_ch);
Clause (ax_uni_-key );
Clause (ax-uni-pair);
Clause (ax_uni_-ok);
Clause (ax_uni_-app );
Clause (ax_uni_abs)

(x Proposition 1 x)

let ax_initial_effects = aquantify [7s”; 7s1”; 7e”; "m’]
(Leadsto(preand_of_list [PPredicate(effadmitsrel , varlist [”s1”; "m”]);
PPredicate (deprefrel , varlist [7s”; 7sl1”]);

PPredicate (initrel , [Var(”s”)]);

PPredicate (envrel, varlist [717; 7

m77; 77e71])
CPredicate (effectrel , varlist [71”7; "m”; 7”sl1”])))

(x Proposition 4 x)
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(xlet az_moninitial_effects = x*)

(x Proposition 5 x)
(xlet ax_semiinitial_effects =x)

let axioms = List.concat [axioms_eqneq;
axioms_gen;
axioms_teq;
axioms_genteq;
axioms_subs;
axioms_effsubs;
(x azioms_typsubs ;)
axioms_fn;
axioms_typfn;
axioms_may ;
axioms_eff;
axioms_simplicity ;
axioms_dependency ;
axioms_initiality ;
axioms_admissibility ;
axioms_abstraction;
axioms_application;
axioms_apply;
axioms_unification

]

(x Conjunction of axioms x)
let axiom_conjunction =
let filtered_list = List.fold-right (fun element accumd_list —>
match element with
| Comment(_-) —> accum._list
| Clause(cl) —> cl::accum_list
) axioms []
in
let ax_hd, ax-tl = (List.hd filtered_list , List.tl filtered-list) in
List . fold_left (fun ax_accum cl —>
ClAnd (ax-accum, cl)
) ax_-hd ax_tl

E.8 ssolver/alfp.ml

Modification of ssolver/alfp.ml from D.6.

module SMap = Map.Make(String );;
module SSet = Set.Make(String);;

type term = Const of string
| Var of string
| FuncApp of strings(term list );;
type pre = PPredicate of string=x(term list)
| NegPredicate of strings*(term list)
| PreAnd of prexpre
| Or of prexpre
| Exists of stringsxpre
| Equal of termsxterm
| NEqual of termx*term ;;
type cl = CPredicate of stringx*(term list)
| Truth
| ClAnd of clxcl
| CommentClAnd of stringxclxcl
| Leadsto of prexcl
| Forall of string=xcl;j;

let freevar_from_term ?(bound = SSet.empty) term =
match term with
| Var(x) —>

if (SSet.mem x bound) then
SSet .empty
else
SSet.add x SSet.empty
| - —> SSet.empty;;

let freevars_in_termlist ?(bound = SSet.empty) termlist =
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List.fold_left (fun varset term —>
let freevar = (freevar_from_term ~bound:bound term) in
SSet.union freevar varset
) SSet.empty termlist ;;

let rec freevars_in_pre ?(bound = SSet.empty) pre =
match pre with
| (PPredicate(-, termlist) | NegPredicate(-, termlist)) —>
freevars_in_termlist “bound:bound termlist
| (PreAnd(prel, pre2) | Or(prel, pre2)) —>
SSet.union (freevars_in_pre “bound:bound prel) (freevars_in_pre ~bound:bound pre2)
| Exists(x, pre) —>
freevars_in_pre “bound:(SSet.add x bound) pre
| (Equal(terml, term2) | NEqual(terml, term2)) —>
SSet.union
(freevar_from_term ~bound:bound terml)
(freevar_from_term ~bound:bound term2);;

let rec string_-of_term term =
match term with
‘ Const(c) SN 77\777; P 77\)777
‘ Var(x) N 77\7771 gt 77\7777
| FuncApp(func, termlist) —>
string_of_predicate func termlist

and string_of_predicate rel termlist =
let (term, trest) = ((List.hd termlist), (List.tl termlist)) in
rel © 7(” ° (string_of_term term)
(List . fold_left (
fun termstring term —>
termstring ~ 7 ,.” " (string_-of_term term)) 7" trest)

~ 77)77..
3

let rec string_-of_pre pred =
match pred with
| PPredicate(rel, termlist) —>
string_of_predicate rel termlist
| NegPredicate(rel, termlist) —>
717~ (string_-of_predicate rel termlist)
| PreAnd(prel, pre2) —>
Printf.sprintf "%s_ & %s” (string_of_pre prel) (string_of_pre pre2)
| Or(prel, pre2) —>
Printf.sprintf 7 (%s_| %s)” (string_of_pre prel) (string_of_pre pre2)
| Exists(str, pre) —>
Printf.sprintf 7?(E.%s.%s)” str (string_of_pre pre)
| Equal(terml, term2) —>
Printf.sprintf "%s.=_%s” (string_of_term terml) (string_of_term term2)
| NEqual(terml, term2) —>
Printf.sprintf "%s_!=_%s” (string_of_term terml) (string_-of_term term2);;

let rec string_-of_cl ?(commented = false) clause =
match clause with
| CPredicate(rel, termlist) —>
string_-of_predicate rel termlist
| Truth —> 71~
| ClAnd(cll, cl2) —>
Printf.sprintf "%s. & -%s” (string_-of_cl “commented:commented cll)
(string_-of_cl “commented:commented cl2)
| CommentClAnd (com, cll, cl2) —>

if commented = false then
Printf.sprintf "%s_& -%s” (string-of_cl cll) (string_-of_cl cl2)
else

Printf.sprintf ?\n\n\n#%s\n\n%s _&_%s” com (string_of_cl “commented:commented cll)
(string-of_cl “commented:commented cl2)

Leadsto (pre, cl) —>

Printf.sprintf 7?((%s).-=>_-%s)” (string_of_pre pre) (string-of_cl “commented:commented cl)
Forall (str, cl) —>

Printf.sprintf 7 (A%s.%s)” str (string_-of_cl “commented:commented cl);;

let rec latex_of_term term =
match term with
| Const(c) —> "\\Const{” ~ ¢ ~ 7}~
| Var(x) —> ?\\Var{” =~ x ~ 7}
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| FuncApp(func, termlist) —>
latex_of_predicate func termlist

and latex_of_predicate rel termlist =
let (term, trest) = ((List.hd termlist), (List.tl termlist)) in
"\\Rel{” "~ rel =~ 7”}_(” "~ (latex-of_term term) ~
(List. fold_left (
fun termstring term —>
termstring "~ 7 ,.” ° (latex_of_term term)) ”” trest)
~ 75)77;;

let rec latex_of_pre pred =
match pred with
| PPredicate(rel, termlist) —>
latex_of_predicate rel termlist
| NegPredicate(rel, termlist) —>
?\\neg” ~ (latex_of_predicate rel termlist)
| PreAnd(prel, pre2) —>
Printf.sprintf "%s_\\land %s” (latex_of_pre prel) (latex_of_pre pre2)
| Or(prel, pre2) —>
Printf.sprintf 7?(%s.\\lor %s)” (latex_of_pre prel) (latex_of_pre pre2)
| Exists(str, pre) —>
Printf.sprintf ”\\exists_\\Const{%s}.%s” str (latex_of_pre pre)
| Equal(terml, term2) —>
Printf.sprintf "%s.=%s” (latex_of_term terml) (latex_of_term term?2)
| NEqual(terml, term2) —>
Printf.sprintf "%s_\\not="%s” (latex_of_term terml) (latex_of_term term2);;

let rec latex_of_cl clause =
match clause with
| CPredicate(rel, termlist) —>
latex_of_predicate rel termlist
| Truth —> ”\\Const{1}”
| ClAnd(cll, cl2) —>
Printf.sprintf "%s-\\land %s” (latex_-of_cl cll) (latex_-of_cl cl2)
| CommentClAnd (com, cll, cl2) —>
Printf.sprintf "\n\n%s\n\n%s _& _%s” com (latex_of_cl cll) (latex_-of_cl cl2)
| Leadsto(pre, cl) —>
Printf.sprintf ”(%s)-\\Ra_%s” (latex_of_pre pre) (latex_of_cl cl)
| Forall(str, cl) —>
Printf.sprintf ”?\\forall_\\Const{%s}.%s” str (latex_of_cl cl);;

E.9 ssolver/outputparser.mly

Identical to ssolver/outputparser.mly from D.7.

E.10 ssolver/outputlexer.mll

Identical to ssolver/outputlexer.mll from D.8.

E.11 alfpgen.ml

#load " spitree.cmo” ;;

#load ”aconv.cmo” ;;

#load ”spiparser.cmo” ;;
#load " spilexer .cmo” ;;
#load ”axioms.cmo” ;;

#load ”constraints.cmo” ;;
#load ”constraintgen .cmo” ;;
#load ”ssolver.cma” ;;

open Alfp
open Axioms ;;
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module SMap = Map.Make(String );;

let propername_of_msg msg =
Spitree.string_of_msg msg

let propername_of_env env =
Constraints.string_of_env env
(x Spitree. string_of-env envx)

let formula_of_env env =
let e = propername_of_env env in
let rec assemble env =
match env with
| Constraints.Type(x, t)::restenv —>
ClAnd(CPredicate(envrel , constlist [x; t; e]),
assemble restenv)
| Constraints.UnType(x)::restenv —> assemble restenv
| Constraints.Effect (reso)::restenv —>
let rec formula_of_reso reso =
(match reso with
| Constraints.Reso(l, m) —>
CPredicate (envrel, constlist [l; propername_of_msg m; e])
| Constraints.RPair(rl, r2) —> ClAnd(formula_of_reso rl,
formula_of_reso r2)
| Constraints.Empty —> Truth)
in
ClAnd(formula_of_reso reso
| [] —> Truth

, assemble restenv)

in
assemble env

let rec formula_of_envlist envlist =
match envlist with
| env::restenvs —>
ClAnd(formula_of_env env, formula_of_envlist restenvs)
| [] — Truth

let listdom env =
List.fold_left (fun dlist typ —>
match typ with
| Constraints.Type(x, -) —> x::dlist
| Constraints.UnType(x) —> x::dlist
| - —> dlist
) 1] env

let domformula envlist =
let domains =
List .map (fun env —>
listdom env
) envlist
in
let formula_list =
List .concat
(List .map2 (fun env domain —>
List .map (fun name —>
CPredicate (domrel, constlist
[name; Constraints.string_of_env env])
) domain
) envlist domains)
in
List . fold_left (fun accum_formula formula —>
ClAnd (accum_formula, formula)
) (List.hd formula_list) (List.tl formula_list)

(x Create a map with the above ranks x)
let rank = List.fold_left (fun map_accum reltuple —>
let relation, rank = reltuple in
SMap.add relation rank map-accum
) SMap.empty ranklist

(x Stratify alfp formulae according to specified ranks x)
exception UnmatchedRank of string;;
let stratify alfp_cl =

let rec rank_of_cl cl =
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match cl with

cl2) °

| CPredicate(rel, _) —>
print_endline rel;
SMap. find rel rank
| Truth —> 0 (x Not a true/false wvalue! 0 is used to indicate to the rank comparison below
* that truth statements have no rank. x*)
| (ClAnd(cll, cl2) | CommentClAnd(-, cll, cl2)) —>
let rankl, rank2 = (rank_of_cl cll), (rank_of_cl cl2) in
(match (rankl, rank2) with
| (0, -) —> rank2
| (-, 0) —> rankl
RSN
if (rankl = rank2) || (rankl = 0) || (rank2 = 0) then
rankl
else
raise (UnmatchedRank (”.” (string-of_-cl ¢ll) =~ 7__.7 ~ (string-of_cl
7 _.—_Ranks_of_the_consequence_of_a_Horn_clause _must_match”)))
| Leadsto(-, cl) —>
rank_of_cl cl
| Forall(-, cl) —>
rank_of_cl cl

in
let rec annotate clause =
match clause with
| CPredicate(rel, _-) —>
[(rank_of_cl clause,
| Truth —> [(rank_of_cl Truth,
| (ClAnd(cll, cl2) |
List .append (annotate cll)
| Leadsto(-, cl) —>
[(rank_of_cl cl,
| Forall(-, cl) —>
let (rank,
[(rank,

clause)]

clause )]
in
let annotated_list =

annotate alfp
let

sorted_annotation =

in

let (-,
List . fold_-left (fun accum-_cl

) Truth

let print_commented_conjunction conj
List.iter (fun element —>

match element with

| Clause(cl) —>
print_endline
| Comment(str) —>
print_endline

) conj

(x — Encodings — x)

(x Message terms x)
let rec alfp_of_msg msg =

let n = propername_of_msg msg in

(n,

match msg with

| Spitree.MPair(msgl,

let ml, psil =

let m2,

ClAnd( psil ,
| Spitree.Encr(msgl,
let ml, psil = alfp_of_msg
let m2, psi2 = alfp_of_msg
ClAnd (CPredicate (encrel ,
ClAnd (psil, psi2))

| Spitree.Name(_-) —>

psi2))
msg2) —>

CommentClAnd ( -,

_) = List.hd (annotate cl)

_cl
List.sort (fun ell

stratified_list) = List.split
cl —>
ClAnd(accum-_cl,

((string_-of_cl

(\n” *

msg2) —>
alfp_of_msg msgl
psi2 = alfp_of_msg msg2
ClAnd (CPredicate (tpairrel ,

clause )]

Truth)]
cll, cl2)) —>
(annotate c¢l2)

in

in

el2 —>

let (rankl, _)

let (rank2, _)
compare rankl

ell
el2
rank?2

in
in

) annotated_list

sorted_annotation in

cl)

stratified_list

cl)

C )

A~y \n” )

str

in
in
[Const(n);

Const (ml); Const(m2)]),

msgl in
msg2 in
[Const(n);

Const(ml); Const(m2)]),
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CPredicate (namerel, [Const(n)])
| Spitree.Ok —>
CPredicate (tokrel , [Const(n)])
)

(x let msg-equality m n =
* Hang on. Where on earth are we using message equality? x*)

(x Type constraints x)
exception UnsupportedByALFP of string;;
exception NotImplemented of string;;
let rec clause_of_typeconstraint typeconstraint =
match typeconstraint with
| Constraints.Equal(t, basetype) —>
(match basetype with
| Constraints.Key(tl) —> CPredicate(keyrel, [Const(t); Const(tl)])
| Constraints.Pair(x, tl, t2) —>
CPredicate (pairrel , [Const(t); Const(x); Const(tl); Const(t2)])
| Constraints.Ch(tl) —> CPredicate(chrel, [Const(t); Const(tl)])
| Constraints.Un —> CPredicate (unrel, [Const(t)])
| Constraints.Ok(r) —> CPredicate (okrel, [Const(t); Const(r)])
| Constraints.Abstraction(u, m, x) —>
ClAnd(CPredicate(teqrel , constlist [t; u]),
CPredicate (absrel, constlist [t; u; propername_of_msg m; x]))
| Constraints.Application(u, n) —>
CPredicate (apprel, constlist [t; u; propername_of_msg n])

| Constraints.MayEqual(t, basetype) —>
(match basetype with

| Constraints.Key(tl) —> CPredicate(keyrel ~ maypf, [Const(t); Const(tl)])
| Constraints.Pair(x, tl, t2) —>

CPredicate (pairrel ~ maypf, [Const(t); Const(x); Const(tl); Const(t2)])
| Constraints.Ch(tl) —> CPredicate(chrel "~ maypf, [Const(t); Const(tl)])
| Constraints.Un —> CPredicate(unrel "~ maypf, [Const(t)])
| Constraints.Ok(r) —> CPredicate(okrel ~ maypf, [Const(t); Const(r)])
| Constraints.Abstraction(u, m, x) —>

ClAnd(CPredicate(teqrel , constlist [t; u]),

CPredicate (absrel ~ maypf, constlist [t; u; propername_of_msg m; x]))

| Constraints.Application(u, n) —>

CPredicate (apprel ~ maypf, constlist [t; u; propername_of_-msg n])

| Constraints.Generative(t) —> CPredicate(genrel, [Const(t)])
| Constraints.NotGenerative(t) —>

raise (UnsupportedByALFP ”Negated_predicates_can_only_occur_in_preconditions”)
| Constraints.HasType(x, t) —> CPredicate(typrel, constlist [x; t])
| Constraints.Fail —> CPredicate(failrel , [Const(”Something_failed!”)])

(* | Constraints.NotFN(_, _) —>
raise (UnsupportedByALFP ”Negated predicates can only occur in preconditions”)sx)

| Constraints.NotUn(-) —>

raise (UnsupportedByALFP ”Negated_predicates_can_only_occur_in_preconditions”)

[N

let rec precondition_of_typeconstraint typeconstraint =
match typeconstraint with
| Constraints.Equal(t, basetype) —>
(match basetype with
| Constraints.Key(tl) —> PPredicate(keyrel, [Const(t); Const(tl)])
| Constraints.Pair(x, tl, t2) —>
PPredicate (pairrel , [Const(t); Const(x); Const(tl); Const(t2)])
| Constraints.Ch(tl) —> PPredicate(chrel, [Const(t); Const(tl)])
| Constraints.Un —> PPredicate (unrel, [Const(t)])
| Constraints.Ok(r) —> PPredicate(okrel, [Const(t); Const(r)])
| Constraints.Abstraction(u, m, x) —>
PPredicate (absrel, constlist [t; u; propername_of_-msg m; x])
| Constraints. Application(u, n) —>
PPredicate (apprel, constlist [t; u; propername_of_msg n])

| Constraints.MayEqual(t, basetype) —>
(match basetype with
| Constraints.Key(tl) —> PPredicate(keyrel ~ maypf, [Const(t); Const(tl)])
Constraints . Pair(x, tl, t2) —>
PPredicate (pairrel = maypf, [Const(t); Const(x); Const(tl); Const(t2)])
| Constraints.Ch(tl) —> PPredicate(chrel "~ maypf, [Const(t); Const(tl)])
| Constraints.Un —> PPredicate(unrel ~ maypf, [Const(t)])
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| Constraints.Ok(r) —> PPredicate(okrel °~ maypf, [Const(t); Const(r)])
| Constraints.Abstraction(u, m, x) —>
PPredicate (absrel ~ maypf, constlist [t; u; propername_of_msg m; x])
| Constraints.Application(u, n) —>
PPredicate (apprel ~ maypf, constlist [t; u; propername_of_-msg n])
)
| Constraints.Generative(t) —> PPredicate(genrel, [Const(t)])
| Constraints.NotGenerative(t) —> NegPredicate(genrel, [Const(t)])
| Constraints.HasType(x, t) —> PPredicate(typrel, constlist [x; t])
| Constraints.Fail —>
raise (NotImplemented "We_only_use_Fail_as_the_final_relation_in_the_final_stratum..
"We_never._use_it._in_a_precondition”)
(* | Constraints.NotFN(z, p) —>
raise (NotImplemented "We need to somehow determine the free mames of a process.”)x)
| Constraints.NotUn(t) —>
NegPredicate (teqrel , constlist [t; ”Un”]) (* Might be wrong %)

» o~

bR

let clause_of_envconstraint envconstraint =
let namesindom propername env =
let e = propername_of_env env in
Leadsto (Exists (”n”,
PreAnd (PPredicate (fnrel , [Var(”n”); Const(propername)]),
NegPredicate (domrel, [Var(”n”); Const(e)]))),
CPredicate(failrel , [Const(”Free_names_of.” ~ propername ~
? _not.in_environment.” "~ e)])
) )
in

match envconstraint with
| Constraints.NotInDom (name, env) —>
Leadsto(PPredicate (domrel, constlist [name; propername_of_env env]),
CPredicate (failrel , [Const(” Restricted —.name_must_not_be_in_”
”the_environment_of_the_restriction”)]))

| Constraints.NamesInDom (msg, env) —>
let m = propername_of_-msg msg in
namesindom m env
| Constraints.WellFormed (env) —>
let rec wf env =
(match env with

| [l —> Truth
| Constraints.Type(x, tvar)::restenv —>
let name_restenv = propername_of_env restenv in

ClAnd (wf restenv ,
ClAnd(Leadsto (PPredicate (domrel, constlist [x; name_restenv]),
CPredicate(failrel ,
[Const (”Environment_is_not_well—formed:.”
(Constraints.string_of_env env))])),

namesindom tvar restenv))
| Constraints.UnType(x):: restenv —>
let name_restenv = propername_of_env restenv in
ClAnd (wf restenv ,
Leadsto (PPredicate (domrel, constlist [x; name_restenv]),
CPredicate(failrel ,
[Const (”Environment_is_not_-well—formed:.”
(Constraints.string_of_env env))]))

| Constraints.Effect(s)::restenv —>
ClAnd (wf restenv ,
namesindom (Constraints.string_of_-reso s) restenv)
o)
in
wf env

(x The mexzt two functions are the main functions for translating
* constraints to ALFP formulae. The functions illustrate a certain
* loss of expressive power compared to the original constraints.
* But if all goes well, we should not have overstepped these boundaries
* during constraint generation or the ALFP encoding. %)
let rec precondition_of_formula formula =
match formula with
| Constraints.TypeC(constr) —> precondition_of_typeconstraint constr
| Constraints.EnvC(constr) —>
raise (UnsupportedByALFP (”Environment_constraints_are_assertions.”
”?and_should_not._be_in_a_precondition.”))
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Constraints . EffectC (constr) —>
raise (UnsupportedByALFP "ALFP_effect._constraint_generation_not_.implemented_yet.”)
| Constraints.And(prel, pre2) —>
PreAnd (precondition_of_formula prel, precondition_of_formula pre2)
| Constraints.Conjunction(pre::[]) —> precondition_of_formula pre
| Constraints.Conjunction(pre:: rest) —>
PreAnd(precondition_of_formula pre,
precondition_of_formula (Constraints.Conjunction(rest)))
| Constraints.Conjunction ([]) —>
raise (UnsupportedByALFP ” Precondition_cannot_be_empty”)
| Constraints.CommentConjunction(-, -) —>
raise (NotImplemented "We_do_not_give._comments_in_preconditions”)
| Constraints.Or(prel, pre2) —>
Or(precondition_of_formula prel, precondition_of_formula pre2)
| Constraints.Leadsto(pre, cl) —>
raise (UnsupportedByALFP ”"Horn.clauses_are_not_allowed_in_ALFP_preconditions”)
| Constraints.Forall(x, cl) —>
raise (UnsupportedByALFP (” Quantification_should_happen_over_whole_clauses ,.
?not_just_preconditions.”))

» A

| Constraints.True —>
raise (UnsupportedByALFP ”Truth_statements_may_only._occur_as.a_clause”)

let rec clause_of_formula formula =

match formula with

| Constraints.TypeC(constr) —> clause_of_typeconstraint constr
| Constraints.EnvC(constr) —> clause_of_envconstraint constr
| Constraints.EffectC(constr) —>

CPredicate (failrel , [Const(”ALFP_effect_constraint_generation.”

?not_implemented_yet.”)])

| Constraints.And(cll, cl2) —> ClAnd(clause_of_formula cll, clause_of_formula cl2)
| Constraints.Conjunction(cl::[]) —> clause_of_formula cl
| Constraints.Conjunction(cl::rest) —>

ClAnd(clause_of_formula cl,

clause_of_formula (Constraints.Conjunction(rest)))

| Constraints.Conjunction ([]) —> Truth
| Constraints.CommentConjunction(com, cl::rest) —>

CommentClAnd (com, clause_of_formula cl,

clause_of_formula (Constraints.Conjunction(rest)))

| Constraints.CommentConjunction(com, []) —> Truth
| Constraints.Or(cll, cl2) —>

raise (UnsupportedByALFP ” Disjunction_is_only_possible_in_preconditions!”)
| Constraints.Leadsto(pre, cl) —>

Leadsto(precondition_of_formula pre, clause_of_formula cl)
| Constraints.Forall(x, cl) —> Forall(x, clause_of_formula cl)
| Constraints.True —> Truth

let infile = ”spisamples/match.spi” in

let filechan = open-in infile in

let lexbuf = Lexing.from_channel filechan in

let ast = Spiparser.process Spilexer.spi_-tokens lexbuf in

let (ast_substituted , accum, substMap) = Aconv.proc_subst ast 0 Aconv.SMap.empty in

le

(*

t freevars =
Aconv.SMap. fold (fun _ name list —>
Constraints.UnType(name) :: list) substMap [] in

print_endline ”Alpha_converted_process:”;

print_endline ((Spitree.string_of_proc ast_substituted) ~ ”\n”);
print_endline ”Free_names:”;

Aconv.SMap. iter (Printf.printf "%s:_%s\n”) substMap;
print_endline ”\n\nAxioms:”;

print_commented_conjunction axioms;

let typeconstraints = Constraintgen.constraint_-of_proc freevars ast_substituted in
let messagesformula =
print_endline ”Beskeder:\n”;
List.iter (fun element —>
print_endline (Spitree.string_-of-msg element)
) Constraintgen.messages#get;*)

let messages = Constraintgen.messages#get in
let hd, t1l = List.hd messages, List.tl messages in
let firstname, firstformula = alfp_of_msg hd in
List.fold_-left (fun accum-_cl element —>
let propername, formula = alfp_of_msg element in
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ClAnd(accum-cl, formula)
) firstformula tl

in

let dom_conjunction = domformula Constraintgen.environments#get in
let encodings = clause_of_formula typeconstraints in

let envformula = formula_of_envlist Constraintgen.environments#get in
let finalconjunction = (stratify (ClAnd(envformula,

ClAnd(dom_conjunction ,
(ClAnd(axiom_conjunction ,
ClAnd (messagesformula, encodings))))))) in
print_endline (string-of_cl “commented:true encodings);
print_endline (”Noncommented_formula:\n\n” ~ (string_of_cl finalconjunction)
?\n\nStop_noncommented._formula”);
Ssolver.deducible_facts finalconjunction ”ssolver/heap”

E.12 1latex_axioms.ml

#use ”axioms.ml” ;;
#load ” alfp.cmo” ;;
open Alfp;;

let latex_format =
"\\begin{itemize}” ~
List.fold_left (fun latex_accum element —>
match element with

| Comment(str) —> latex_accum ~ ”\n\n\\item.” ~ str
| Clause(cl) —> latex_accum ~ 7\\\\$” ~ (latex_of_cl cl) ~
?7” axioms
" 7\\end{itemize}”
in
let outfile = ”axioms.tex” in
let filechan = open_out outfile in

output.string filechan latex_format
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