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ABSTRACT

The privacy-aware proximity detection ser-

vice determines if two users are close to

each other without need to disclose their

exact locations. Such kinds of services are

getting increasingly popular, fueled by an

increase in the availability of positioning

devices like GPS.

This thesis presents two novel client-server

proximity detection frameworks which of-

fer a new set of features, lacked by alterna-

tive solutions. One of these is �blind query

evaluation� which enables strong user lo-

cation privacy. The server detects proxim-

ity between users by analyzing encrypted

rather than spatial position data. Experi-

mental results show that both frameworks

are scalable to high number of users and

convince that they are applicable for real

world application.
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1.1 Motivation

With more than three billion out of the world's six billion people carrying mobile devices,

the mobile Internet could soon tower over the PC-based Internet as we know it today. This

expansion is enabled by the increased popularity of mobile devices, which are becoming more

convenient, cheaper, and powerful. When these devices are equipped with geo-positioning

technology, a variety of location-based services (LBSs) are available over the Internet to mobile

device users.

Location-based services allow users to request nearest point-of-interest, such as an ATM or

a restaurant, use turn-by-turn navigation with real-time tra�c information, and locate other

people. Users are interested in such services, thus the number of available location-based

application is constantly increasing.

Recently emerged location-based mobile social networking services hold substantial poten-

tial and it is predicted that their revenues will reach $3.3 billion by 2013. These services allow

users to share real-life experiences via geo-tagged user-generated multimedia content, exchange

recommendations about places, identify nearby friends and set up ad hoc face to face meetings.

When users use mobile social networking services (also other LBSs), they are usually re-

quired to provide their exact geographical locations. This sometimes threatens them, as many

people clearly consider their location privacy a fundamental right. By using such services and

sending their locations, users can endanger their security because, for example, an attacker can

track them. This tracking capability of attackers opens up many crime possibilities (harass-

ment, car theft, burglary, kidnapping, etc.).

The nearby-friends identi�cation is becoming attractive feature of mobile social networking

services as they allow users to see other users' locations on a screen, receive noti�cations

about their proximity, and get their occupation status. Thus more and more commercial online

services, like Google Latitude, Loopt, support it. In such services, when some user require a level

of privacy and wants to hide his location on their friends' mobile devices, he usually disables

location sharing with a service provider. This also prevents the user from being noti�ed about

the proximate friends, as well as user's friend to know about the user's proximity. Thus, due

to poor location-privacy support, the nearby-friend detection is not always possible in existing

mobile social networking products.

To challenge the problem we present two privacy-aware proximity detection approaches, the

FriendLocator and the VicinityLocator. They both are general frameworks to ensure

user location privacy in proximity-based services, where a distance between entities reaching

some threshold triggers an action.

The FriendLocator and the VicinityLocator can be used to provide location privacy

and nearby-friends identi�cation in new or existing mobile social networking products. They
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may function as a component part such that the software on mobile devices may switch from

complete user location sharing into our proposed protocol depending on user privacy require-

ments. The service in both cases would be able to inform the user about his nearby friends and

let his friends to do the same.
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1.2 Content

The FriendLocator and the VicinityLocator were explained in two distinct articles,

which we here in combine and deliver as our Master's thesis. The work, which has been done

during the spring semester of 2009, is introduced by the following time line:

February 1 - March 13 We have produced an 18 page article, introducing the FriendLo-

cator. The article is based on a semester rapport done in the fall semester where

primarily existing location privacy, proximity detection solutions were reviewed and the

ideas of FriendLocator were presented. The article and previous semester paper were

done with the additional co-author Ove Andersen. The article was submitted to SSTD

2009 conference at 13th of March and besides Ove Andersen, also introduces Simonas

�altenis and Man Lung Yiu as co-authors.

April 27 - May 5 The 18 pages article of FriendLocator was accepted to SSTD 2009 as

short research paper, thus during a period of 1 week we prepared 6 pages version of this

article. The 6 pages article is included in the Appendix.

March 13 - June 11 Motivated by the additional knowledge about the work done with pri-

vacy and proximity detection, we develop a new approach, the VicinityLocator, where

we combine ideas of the other authors' solution with ideas of our FriendLocator. We

assemble our work into the Master's thesis.

In order to test both approaches we implemented two prototypes, the VicinityLocator,

FriendLocator, and one additional competitor, on the .Net platform. Prototypes were tested

on a dataset, containing simulated locations of objects, moving from sources to destinations,

following the road-network of the German city Oldenburg. The dataset was generated with

Brinkho�'s network-based generator.

Both FriendLocator and VicinityLocator approaches were developed to detect prox-

imity between pairs of moving objects without requiring them to reveal any spatial information.

Our approaches use client-server architecture and, unlike other solution, do not require users

to communicate in peer-to-peer mode. Here the central server checks if two users are close to

each other by �blindly' evaluating encrypted representations of user locations for equality.

In the FriendLocator any two users mutually agree on some threshold and then the

system noti�es them once the Euclidean distance between two users becomes lower than the

threshold. On the contrary in the VicinityLocator, every user individually speci�es so-called

vicinity regions around their locations and the system noti�es a user if any other user enters his

vicinity region. These regions can be any arbitrary shape. Moreover, the precision of proximity

detection in the FriendLocator is dependent on the mutually agreed upon distance threshold
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of two users, in the VicinityLocator however, users can select any level of precision they

desire.

Implementations of these two approaches shares general concepts such as encryption, mul-

tiple spatial tessellations, mapping of user location into regions, but the understanding of

proximity and principles of proximity detection are di�erent.

In the following parts we present FriendLocator (Part II) and VicinityLocator (Part

III), followed by conclusion (Part IV) and our submitted 6 page version of the FriendLocator

paper in the appendix (Part V).
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Part II

FriendLocator

-

A Location Privacy Aware Friend

Locator

11



Abstract

The so-called friend-locator location-based service noti�es a user if the user is geographically

close to any of his or her friends. Services of this kind are getting increasingly popular, fueled

by the rise of web-based social networking and increase in the availability of positioning devices

like GPS. In practice, users require such services to satisfy user-de�ned privacy requirements.

Existing commercial friend-locator applications only support the all-or-none privacy option,

i.e., the users exact location is reported to all of the user's friends or it is hidden completely.

In the mobile computing, e�cient proximity detection methods have been proposed, however,

they do not o�er any privacy to the users. The challenge is to develop a communication-e�cient

solution such that (i) it detects proximity between a user and the user's friends, (ii) any other

party (e.g., another user or the server) is not allowed to infer the location information of the

user, and (iii) users have �exible choices of their proximity detection distances. To address this

challenge, we develop a client-server solution for proximity detection based on an encrypted,

grid-based mapping of locations. A user's location is converted to a `meaningless' tuple that

enables proximity detection among friend pairs, yet the tuple cannot be used to derive the user's

exact location. Experimental results show that our solution is indeed e�cient and scalable to

a large number of users.

1.3 Introduction

Mobile devices with built-in geo-positioning capabilities are becoming cheaper and more popular

[5]. Disclosing their location information (e.g., via Wi-Fi, Bluetooth, or GPRS) mobile users

can enjoy a variety of location-based services (LBSs). In particular, mobile social-networking

LBSs are predicted to become a multi-billion dollar industry over the next few years [1]. One

type of such services is a friend-locator service, which shows users their friends' locations on

a map and/or helps identify nearby friends. Several friend-locator services, like iPoki, Google

Latitude, and Fire eagle 1 are now available on the Internet.

In existing services, the detection of nearby friends can be done only manually by a user,

e.g., by periodically checking a map on the mobile device. In addition, this works only if the

user's friends agree to share their exact locations or at least obfuscated location regions (e.g.,

downtown area). In case all users' friends require complete privacy, they disable their location

sharing and this prevents the user from �nding his or her nearby friends. Typically, LBS users

require some level of privacy and may even feel unsecure, if it is not provided [9]. Thus, due

to poor location-privacy support, the nearby-friend detection is not always possible in existing

friend-locator products.
1http://www.ipoki.com; http://www.google.com/latitude; http://�reeagle.yahoo.net
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The challenge is to design a friend-locator LBS that preserves the users' location privacy

and enables automatic detection of nearby friends. Such a service must deliver noti�cations to

a user when any of his or her friends is nearby. It must be e�cient in terms of communication

costs and users must have a �exibility to choose di�erent preferences for nearby-friend detection.

In the research areas of databases and mobile computing, e�cient proximity detection

methods for moving objects have been proposed [2, 17]. However, these methods do not o�er

any location privacy. On the other hand, many location-privacy solutions exist [13, 6, 3, 7], but

they mostly focus on querying the service provider for publicly known information (e.g., nearby

restaurants or cinemas) using the `hidden' location of a user as a query point. In contrast, in

this paper, the user's locations are both query and data points and they need to be hidden

from the service provider and other users.

To address the challenge, we develop a client-server, location-privacy aware friend-locator

LBS, the FriendLocator. The proposed solution is based on both spatial cloaking and

encryption. Any user location is mapped into a grid cell and then converted into an encrypted

tuple before it is sent to the server. Having received the encrypted tuples from the users, the

server can only compute proximity between them, but not deduce their actual locations. As the

proximity detection is done at a central server, users do not know the exact locations of their

friends. To optimize the communication cost, the FriendLocator employs a �exible region-

based location-update policy where regions shrink and expand depending on the distance of a

user from his or her closest friend.

The paper is organized as follows. We brie�y review related work in Section 1.4 and then

de�ne our problem setting in Section 1.5. FriendLocator is presented in Section 1.6. Then,

its resilience against two advanced types of attacks is studied in Section 1.7. Section 1.8 presents

extensive experimental results of our proposed methods and Section 1.9 concludes the paper.

1.4 Related Work

In this section, we review relevant work on location privacy and proximity detection.

1.4.1 Location privacy

In the most common setting assumed in location-privacy research, an LBS server maintains a

public set of points-of-interest (POI), such as gas stations. The goal is then to retrieve from

the server the nearest POIs to the user, without revealing the user's private location q to the

server. In contrast, the users' locations are both query locations and points-of-interest in our

friend-locator problem setting.

Solutions for location privacy can be broadly classi�ed into two categories: spatial cloaking
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and transformation. Spatial cloaking is applied to generalize the user's exact location q into a

region Q′, which is then used for querying the server. This approach can then be further divided

into two sub-categories: spatial k-anonymity and obfuscation. Most k-anonymity methods

[8, 13] employ a trusted third-party anonymizer to maintain the locations of all users. At query

time, the anonymizer expands the user's location q into a k-anonymous region Q′ such that it

contains q and the locations of at least other k−1 users. The region Q′ is then sent to the LBS

server, which returns all the results that are relevant to any point in Q′. Even if the attacker

knows the locations of all users at the time of the query, the identity of the querying user can

be inferred only with the probability 1/k.
The drawback of this approach is that the trusted anonymizer can become both a perfor-

mance bottleneck and the single point of attack. In contrast, obfuscation techniques [6, 3] do

not require any trusted anonymizer as the region Q′ is computed at the client side. The recently

proposed SpaceTwist [18] can also be viewed as an obfuscation technique because it does not

employ any trusted anonymizer.

Finally, the transformation approaches [10, 7] map the user's location q and all POIs to a

transformed space, in which the LBS server evaluates queries blindly without knowing how to

decode the corresponding real locations of the users. However, the method of Khoshgozaran and

Shahabi [10] does not guarantee the accuracy of query results whereas the method of Ghinita

et al. [7] incurs high computational time at the server.

1.4.2 Proximity detection

Given a set of mobile users and a distance threshold ε, the proximity detection problem is to

report, continuously, all events when a pair of mobile users comes within the distance ε of each

other. Most of the existing solutions [2, 17] focus mainly on optimizing the communication and

computation costs, rather than o�ering privacy to the users. Xu et al. [17] develop a centralized

solution for a problem called multi-body constraint detection, which is a generalization of the

proximity detection problem. However, the solution requires each mobile client to report his

exact location to the server. Clearly, this violates the privacy requirements of users. Amir

et al. [2] propose a peer-to-peer solution, called Strips, to reduce the communication cost of

proximity detection. A strip of width ε is established midways between a pair of friends u and

v. As long as both users do not travel across the strip, they are guaranteed to be not within

proximity, so they do not need to communicate with each other. Otherwise, the users' u and

v exchange their locations. Then, depending on the actual distance between them, they either

establish a new strip or detect proximity. Unfortunately, the performance of the peer-to-peer

method does not scale well in case each user has a large number of friends. Furthermore, the

peer-to-peer approach requires users to exchange their exact locations, so it does not provide
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su�cient level of privacy for our application. These two issues motivate us to develop an

e�cient privacy-aware friend-locator solution.

Ruppel et al. [15] develop a centralized solution that supports proximity detection and

provides the users a certain level of privacy. It �rst applies a distance-preserving mapping (a

rotation followed by a translation) to convert the user's location q into a transformed location

q′. Then, a centralized proximity detection method is applied to detect the proximity among

those transformed locations. However, Liu et al. [11] points out that such distance-preserving

mapping is not safe and the attacker can easily derive the mapping function and compute the

users' original locations.

In contrast, our solution employs encrypted coordinates rather than distance-preserving

mapping, rendering it di�cult for the attacker to decode the true locations of the users.

Some of the above-mentioned privacy protection methods can be adapted to provide a

certain level of privacy when used with the proximity detection methods. In particular, the

experimental study described in Section 1.8 compares our proposed solution with a baseline

solution, which combines the Strips technique [2] with a spatial cloaking method, such that (i)

it correctly detects proximity among the users, (ii) it o�ers some privacy via spatial cloaking,

and (iii) its communication cost is lower than Strips due to the use of a centralized (untrusted)

server.

As described in the following, encrypted tuples are used in our proposed solution so it o�ers

a much stronger notion of privacy than the baseline approach.

1.5 Problem De�nition

In this section we introduce relevant notations and formally de�ne the problems of proximity

detection and privacy-aware friend locating.

We assume a setting where a large number of mobile device users form a social network.

These devices, called mobile terminals (MT), are equipped with positioning and communication

technology and can communicate with a central location server (LS) in an online mode. We

use the terms mobile terminals and users interchangeably and denote the set of all MTs and

their users in the system by M ⊂ N.
The friend-locator LBS noti�es two users u, v ∈M|u 6= v if u and v are friends and proximity

between u and v is detected. Given distance thresholds ε and λ, proximity and separation of

two users u and v is de�ned as follows [2]:

1. if dist(u, v) ≤ ε, users u and v are in proximity;

2. if dist(u, v) ≥ ε+ λ, users u and v are in separation;
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3. if ε < dist(u, v) < ε + λ, the service can freely choose to classify users u and v as being

either in proximity or in separation.

Here, dist(u, v) denotes the Euclidean distance between u and v. Parameter ε is called the

proximity distance, and it is selected by the two users' u and v. Parameter λ ≥ 0 is a service

precision parameter and it introduces a degree of freedom in the service.

As di�erent pairs of friends may want to choose di�erent proximity distances, we use ε(u, v)
to denote the proximity distance for the pair of users u, v ∈M. Note that ε(u, v) is de�ned only
if u and v are friends. For simplicity, we assume all friendships to be mutual, i.e., if v is a friend

of u, then u is a friend of v, and the proximity distance to be symmetric, i.e., ε(u, v) = ε(v, u)
for all friends u, v ∈M.

We assume that for any pair of friends, a proximity noti�cation must be delivered to MTs

as soon as the proximity is detected. The next proximity noti�cation is sent to this pair of

users only after their separation is detected followed by the new detection of proximity.

For simplicity, separation noti�cations are not considered in this paper, but it is trivial to

augment the proposed algorithms to send such noti�cations.

The friend-locator LBS must be e�cient in terms of mobile client communication and

provide the following privacy guaranties for each user u ∈M:

� The exact location of u is not disclosed to any party, including any other user and the

location server.

� User u permits the proximity to be detected only with his friends and does not allow

anybody else to detect his proximity.

The following two sections present the proposed friend-locator algorithms that meet these

requirements.

1.6 Our Proposed Solution

We propose a novel, incremental grid-based proximity detection algorithm. It is designed for

a client-server system architecture and satis�es user location privacy requirements, de�ned in

Section 1.5. First, we present a general proximity detection idea and its extension. Then,

the algorithms of the FriendLocator, our privacy-aware friend-locator LBS, are presented.

Table 1.1 summarizes the notations used in this paper.

1.6.1 Grid-Based Proximity Detection

Let us consider three parties: two friends, u1 and u2 ∈M, and the location server. Both users

can send and receive messages to and from LS. User u1 is interested in being informed by LS
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NotationMeaning

M A set of all MTs or their users
ε The proximity distance
λ The precision parameter
CM A function that maps a 2D spatial location to an LMG cell
Ψ, EΨ Ψ is a one-to-one encryption function, used by EΨ to encrypt

LMG cell coordinates into a four-tuple of encrypted values
Γ A function that detects proximity or separation given the four-

tuples of encrypted values of two users
L A function mapping a proximity level to an LMG cell size
Lε(u, v) The proximity level selected by users u and v

Table 1.1: Table of Notations

when user u2 is within proximity and vice versa.

Assume that users' u1 and u2 share a homogeneous grid with square cells of width d > 0.
Each column (row) of this grid has associated a column-wise (row-wise) unique number, which

we term an encryption number. The grid, together with the encryption numbers, constitutes a

Location Mapping Grid (LMG). The LMG is generated by two users agreeing on a shared cell

size d and a function Ψ. Function Ψ : N 7→ N is a one-to-one encryption function that maps

a column or row number to a corresponding encrypted number2. The Ψ and d are secret and

known only to u1 and u2. In practice, Ψ can be implemented as a keyed secure hash function

(e.g., SHA-2) such that it is computationally infeasible for the attacker to break.

Each time u1 or u2 moves in the Euclidean space and enters a new cell of LMG, the following

steps are taken:

� The user maps the current location (x, y) into an LMG cell (k,m)=CM(x, y, d), where

CM(x, y, d) = (bx
d
c, by

d
c). (1.1)

� The user maps cell coordinates (k,m) into a 4-tuple of encrypted values e = EΨ(k,m),
where

EΨ(k,m) = (Ψ(k),Ψ(k + 1),Ψ(m),Ψ(m+ 1)). (1.2)

Let the returned e be (α−,α+,β−,β+). Then, (α−,α+) and (β−,β+) are encrypted values

of two adjacent columns k and k + 1 and two adjacent rows m and m+ 1 respectively.

� The user sends the 4-tuple e to LS.

Due to u1 and u2 using identical LMG, with the same encrypted number assignments for
2For simplicity, we use the same encryption function for both columns and rows.
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Col/
Row

Ψ

0 c0

(5)
1 c1

(9)
2 c2

(1)
3 c3

(7)

(a) (b) (c) (d)

Figure 1.1: Example of proximity detection

each column and row, LS can detect proximity between them by checking if the following

function is true:

Γ(e1, e2) =
(
(e1.α

− = e2.α
−) ∨ (e1.α

− = e2.α
+) ∨ (e1.α

+ = e2.α
−)
)

(1.3)

∧
(
(e1.β

− = e2.β
−) ∨ (e1.β

− = e2.β
+) ∨ (e1.β

+ = e2.β
−)
)
.

Parameters e1 and e2 are 4-tuples delivered from users' u1 and u2 respectively. Note that

since Ψ is a one-to-one mapping, Γ is evaluated to true if and only if ku1 or ku1 + 1 matches

ku2 or ku2 + 1 and mu1 or mu1 + 1 matches mu2 or mu2 + 1, where (ku1 , mu1) and (ku2 , mu2)

are LMG cells of users u1 and u2 respectively.

Figures 1.1a and 1.8b depict a simple example that explains how LS can detect proximity

or separation between u1, u2, and u3, utilizing 4-tuples of encrypted values and Γ. Here, three
users share an LMG with cell sizes equal to d. Each row and column has encrypted values

c0 . . . c3 assigned according to Ψ, which is shown in Figure 1.1a. The algorithm maps locations

of users u1, u2, u3 to cells (1, 0), (2, 1), (0, 2) respectively. Using function Ψ, the corresponding

4-tuples of encrypted values, e1 = (c1, c2, c0, c1), e2 = (c2, c3, c1, c2), and e3 = (c0, c1, c2, c3), are
computed and sent to LS. Due to e1.α

+ = e2.α
− = c2 and e1.β

+ = e2.β
− = c1, Γ(e1, e2) = true,

thus LS reports proximity between u1 and u2. No proximity for u3 is reported, as Γ(e3, e1) =
Γ(e3, e2) = false.

Figures 1.1c and 1.1d visualize two proximity detection extremes. The locations of two

users, u1 and u2, are shown relatively to LMG. In both cases, Γ is equal to true, however, in

the case depicted in Figure 1.1c, Γ returns false when user u2 moves away from u1 on a diagonal

and dist(u1, u2) becomes greater or equal to 2d
√

2, while, in Figure 1.1d, Γ returns false when

user u2 moves away from u1 in a horizontal direction and dist(u1, u2) becomes higher than d.

18



This means that, when two users u1 and u2 are considered proximate by the algorithm, the

upper bound of the distance between them varies in the range [d, 2d
√

2) depending on how the

locations of the users map to LMG. This is formalized in Lemmas 1, 2 and Theorem 3.

Lemma 1. If LMG's cell size is d, e1 and e2 are 4-tuples of encrypted values from users u1

and u2, and dist(u1, u2) ≤ d, then Γ(e1, e2) is always true.

Proof. Assume that user's u1 location is (x1,y1) and it can be mapped to LMG cell (k1,m1)=CM(x1, y1, d).
When dist(u1, u2) ≤ d, the user u2 can be in location (x1 ± dx,y1 ± dy), where 0 ≤ dx ≤ d

and 0 ≤ dy ≤ d. According to the de�nition of CM , this location can be mapped into cell

(k2,m2) = (bx1
d ±

dx
d c, b

y1
d ±

dy

d c). As dx
d ≤ 1 and dy

d ≤ 1, (k2,m2) can only be equal to one

of (k1,m1), (k1 ± 1,m1), (k1,m1 ± 1), or (k1 ± 1,m1 ± 1). For the Γ(e1, e2) to be true, current

or adjacent column and row numbers of users u1 and u2 must match, i.e. ((k1 = k2 − 1) ∨
(k1 = k2) ∨ (k1 = k2 + 1)) ∧ ((m1 = m2 − 1) ∨ (m1 = m2) ∨ (m1 = m2 + 1)). Observe

that this holds for all cases of u2's cell coordinates, proving that Γ(e1, e2) is always true when
dist(u1, u2) ≤ d.

Lemma 2. If LMG's cell size is d, e1 and e2 are 4-tuples of encrypted values from users u1

and u2, and dist(u1, u2) ≥ 2
√

2d, then Γ(e1, e2) is always false.

Proof. Let us start with a one-dimensional case and de�ne user's u1 location by coordinate x1,

which is mapped to k1 = bx1
d c. Let us vary x1 in order to �nd a maximal distance dxmax ≥ 0

from user u1 to user u2 such that u1's and u2's locations are mapped to the same or adjacent

1D cells, i.e., dxmax = max{r ∈ R≥0|bx1
d + r

dc− b
x1
d c ≤ 1}. In cases when x1 = n · d, n ∈ N, we

have dxmax = 2d− δ, where δ > 0 is a small real number. If we introduce another dimension,

dymax = 2d − δ. Then, dmax =
√

2(2d− δ)2 < 2d
√

2 − δ, the maximal distance between

u1 and u2 in 2D space such that the two users fall within the same or adjacent cells (i.e.,

Γ(e1, e2) = true). As dmax is smaller than 2
√

2d, the algorithm will always detect no proximity

when dist(u1, u2) ≥ 2
√

2d.

Theorem 3. The LMG-based proximity detection approach that uses LMG with cell size d

detects proximity with parameter settings ε = d and λ = ε(2
√

2− 1).

Proof. The theorem follows from the de�nition of proximity and separation in Section 1.5,

Lemmas 1 and 2, and the observation that dist(u, v) ≥ d + d(2
√

2 − 1) is equivalent to

dist(u, v) ≥ 2
√

2d.

Note that an encrypted 4-tuple cannot be directly mapped back to the real world position

without knowing Ψ and d. If Ψ is strong and secure, our approach provides privacy for user

locations in case of a malicious LS. The approach also provides user location privacy in case
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of malicious friends, because none of the user's friends knows encrypted values of the user.

However, user location privacy can be breached in cases of collectively malicious LS and some

friend's MT. In this case, the attacker is able to �nd the real world region, containing the

user. We address this type of attack in Section 1.7.2, but note that, even if such an attack is

successful, the user's location is revealed only with a precision of a grid cell, which indirectly

cloaks the exact location of the user.

1.6.2 Incremental Proximity Detection Approach

The idea presented in the previous section is not �exible, as it does not allow for pairs of

users to choose individual proximity distances (ε). Also if ε (and d) is too small, too many

location updates may be generated as the users change grid cells. To solve these problems, in

the following, we extend the idea and present the incremental proximity detection algorithm

that uses multiple grids.

We let all users in M share a list of LMGs with di�erent cell sizes instead of a single LMG.

Level zero LMG in that list has the largest grid cells. Cell sizes gradually decrease going from

lower to higher level grids. Each user generates such a list of LMGs utilizing two shared private

functions ψ and L. Function ψ was already de�ned in Section 1.6.1. Function L : N 7→ R is a

strictly decreasing function which maps level number to a cell size of LMG at that level.

Theorem 3 and function L gives a correspondence between each level and proximity de-

tection distance. An LMG at level l ∈ N can be used to detect proximity with the following

settings ε = L(l), λ = L(l) · (2
√

2 − 1). Thus, every two friend's u1, u2 ∈ M can choose an

LMG level, called proximity level, that corresponds to their proximity detection settings best.

Let us denote this proximity level Lε(u1, u2) : M×M 7→ N. Again, as we have pairs of mutual
friends and non-friends in the system, this function is de�ned only for friend pairs and it is

symmetric, i.e., Lε(u1, u2) = Lε(u2, u1) for all u1, u2 ∈M, if u1 and u2 are friends. In addition

to the increased �exibility of choosing the proximity distance, multiple levels of grids enable

incremental detection of proximity, which is made possible by the following theorem.

Theorem 4. Let LMGs at all levels be aligned to coordinate axes and L(l − 1) ≥ 2L(l) for

l ∈ N. Then, if proximity between users u1, u2 was detected at level l, i.e., Γ equals to true at

that level, it will also be detected at level l − 1.

Proof. Using the fact that Γ is true at level l and reusing the proof of Lemma 2, we �nd a

maximal distance between u1 and u2 along one of the coordinate axes, the dxmax = 2L(l)− δ,
where δ is a small positive number. Then, we can �nd L(l−1) that guarantees proximity along

the chosen coordinate axis for level l − 1, i.e., (b (x1+dxmax)
L(l−1) c − b x1

L(l−1)c) ≤ 1, where x1 is a

coordinate of u1. The condition holds when dxmax
L(l−1) ≤ 1, thus 2L(l)−δ

L(l−1) ≤ 1 and L(l− 1) ≥ 2L(l).
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The same holds in the other dimension, thus when L(l− 1) ≥ 2L(l) no two user locations exist
for which Γ holds at level l, but not at level l − 1.

Assume that L(l) = g · 2−l, where g is some level zero cell size. Then L(l − 1) = 2L(l) and
the list of LMGs satis�es the conditions of Theorem 4, which means that, if a proximity between

friends u1 and u2 is detected at level Lε(u1, u2), it will also be detected at level Lε(u1, u2)− 1.
This enables incremental proximity detection under which users stay at the grid of the lowest-

possible level such that few grid-cell updates are necessary. Only when proximity at a low level

is detected, the users are asked to switch to a higher level. The following section presents the

algorithms that implement this approach.

1.6.3 The FriendLocator design

The design of FriendLocator is based on an incremental proximity detection idea and em-

ploys client-server architecture. It provides privacy for all user locations and o�ers users a

choice of discrete proximity detection settings, i.e., discrete values of ε and λ.

As described in Section 1.6.2, all users in the system share the list of LMGs, de�ned by Ψ and

L. The FriendLocator uses a trusted third-party server (TTS) as one possible alternative

to achieve this. The TTS is accessible from all MTs and LS and it maintains and distributes

Lε, Ψ, and L to the appropriate parties. Note that TTS does not participate in friend locating,

thus knows no user-location data.

We de�ne FriendLocator by providing handler algorithms for di�erent type of software

events on mobile terminals and the location server. In particular,

onMessageReceived(msg, arg) is a handler executed on MT or LS each time one receives

a message of type msg with arguments arg from the other party. A summary of message

types with their arguments is presented in Table 1.2.

onLocationChange(lnew) is a handler executed on MT each time its positioning device re-

ports a new geographical location lnew.

Algorithm 1 speci�es a behavior of MT. It contains local data de�nitions, functions, and

main software event handlers employed by a client.

On initialization, MT contacts TTS to get Ψ and L. The TTS replies with anMttsC message

and MT stores the data in its memory.

Every MT locally stores a stack CS, which contains unencrypted LMG cell coordinates

(k,m) for di�erent levels, starting from level zero at the bottom of the stack and up to u's

current level, |CS| − 1. When MT u gets a new location from its positioning device, the

onLocationChange handler is �red. If u's location change triggers an LMG cell change at
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Message Args Sender Description
Mel u, l, e MT MT with id equal to u sends this message to

LS in order to report its encrypted values e =
(α−, α+, β−, β+) at level l.

Mprox v LS MT is informed that his friend v is within proxim-
ity.

MLevInc l LS MT is asked to increase its level up to level l.
MttsC L, Ψ TTS MT is provided functions L and Ψ when any of

them changes on TTS.
MttsS M, Lε TTS LS is provided a set of all users M and function Lε

when any of them changes on TTS. Note that Lε
encapsulates a social-network.

Table 1.2: FriendLocator LBS message types

some levels starting from level |CS| and lower, all such cells are removed from CS automatically

decreasing u's current level. Then, function pushLocAndSend is called, which computes u's

cell coordinates for level |CS|+ 1, adds them to CS, and sends their encrypted version to LS.

If the location server asks MT to increase his current level to l (by sending an MLevInc

message), the corresponding handler executes pushLocAndSend multiple times to increase

the level (lines 13 and 14). Handling of Mprox message is trivial.

Algorithm 2 provides local data de�nitions and software event handlers for LS. Note that

function get(S, i) gets the i-th element of stack S counting from its bottom.

The LS maintains a set of user identi�cation numbers, M, and a set of proximity levels Lε
for all pairs of friends within the social-network. In addition, for every u ∈M, a stack SL(u) is
maintained, containing 4-tuples of encrypted values for levels zero to u's current level. A set P
is used to remember pairs of friends currently in proximity in order to avoid sending duplicated

Mprox messages.

Once the location server gets from TTS an MttsS message and saves M and Lε, it can start

processing Mel messages from MTs. A message Mel with arguments u, l, and e is handled by,

�rst, removing old 4-tuples of encrypted values of levels higher or equal than l from the stack

SL(u) (lines 2 and 3). The received e is then pushed to SL(u), followed by searching for a

proximity between u and some v ∈ M with the de�ned Lε(u, v). Let lm be the highest level

commonly employed by users u and v, but not higher than Lε(u, v). If Γ is true at level lm, two

cases are possible. If lm = Lε(u, v), then LS sends proximity messages to users u and v (lines

10 to 12). Otherwise one or both of the users are on level lm that is too low, thus LS tells one

or both users to switch to a common level lm + 1 (lines 14 to 17).

To illustrate the working of the algorithms an example scenario is visualized in Figure 1.2.

It shows the geographical locations of two friends u1 and u2, and their mappings into LMGs at
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Data: u ∈M - current user ID.
CS - a stack of LMG cell coordinates (k,m) at di�erent levels, starting from level 0.
lcur - u's current geographical location.
pushLocAndSend()1

Push CM(lcur.x, lcur.y, L(|CS|)) result to stack CS;2

Send to LS Mel(u, |CS| − 1, EΨ(top(CS)));3

onLocationChange(Location lnew)4

lcur ← lnew;5

wasPopped← false6

while |CS| > 0 and top(CS) 6= CM(lcur.x, lcur.y, L(|CS| − 1)) do7

Pop from stack CS;8

wasPopped← true;9

if wasPopped or |CS| = 0 then10

pushLocAndSend(G)11

onMessageReceived(Message MLevInc,Level l)12

while |CS| ≤ l do13

pushLocAndSend(G)14

onMessageReceived(Message Mprox,Friend v)15

Output "Friend ",v, " is in proximity!";16

Algorithm 1: The MT's event handlers in FriendLocator.

4 di�erent snapshots of time. Note that lower level grids are on top in the �gure. Assume that

u1 and u2 have agreed on Lε(u1, u2) = 2 and have already sent their encrypted values for levels

0 and 1 to LS. Figure 1.2a visualizes a scenario when LS detects a proximity at level 0, but not

at level 1. As Lε(u1, u2) > 1, nothing happens until a location change. Figure 1.2b shows the

case where both users have changed their geographical location. User u2 did not go from one

cell to another at his current level 1, thus it did not report a new 4-tuple of encrypted values.

On contrary, user u1 changed the cell not only on level 1, but also on level 0, thus it reports

new 4-tuples of encrypted values for level lcur(u1) = 0. The LS detects a proximity between u1

and u2 at level 0 and commands u1 to switch into a level 1, because Lε(G, u1, u2) > 0. Figure
1.2c shows user locations mapping into LMGs when u1 have delivered a 4-tuple of encrypted

values for his new current level 1. Again, LS detects proximity at level 1 and commands both

users u1 and u2 to switch to level 2. When 4-tuples of encrypted values for level 2 are delivered

from users u1 and u2 to LS, it detects the proximity at this level (see Figure 1.2d) and, because

2 = Lε(u1, u2), proximity noti�cations are sent to u1 and u2.
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Data: M - a set of users; SL(u)∀u ∈M - a stack of user's u 4-tuples of encrypted
values for di�erent levels of LMGs; P ⊆M×M - a set of currently proximate
friend pairs.

onMessageReceived(Message Mel,User u,Level l, e)1

while |SL(u)| > 0 and |SL(u)| ≥ l do2

Pop from stack SL(u);3

Push e to stack SL(u);4

foreach v ∈M such that v 6= u and |SL(v)| > 0 and Lε(u, v) is de�ned do5

lm ← min(|SL(u)| − 1, |SL(v)| − 1, Lε(u, v));6

if Γ(get(SL(u), lm), get(SL(v), lm)) then7

if lm = Lε(u, v) then8

if 〈u, v〉 /∈ P then9

insert the pair 〈u, v〉 into P;10

send Mprox(v) to MT u ;11

send Mprox(u) to MT v;12

else13

if lm = |SL(u)| − 1 then14

send MLevInc(lm + 1) to MT u15

if lm = |SL(v)| − 1 then16

send MLevInc(lm + 1) to MT v17

else18

remove the pair 〈u, v〉 from P;19

Algorithm 2: The LS's event handlers in FriendLocator.

Figure 1.2: Proximity detection in the FriendLocator

Note that the presented algorithms implement a kind of adaptive region-based update policy.

If a user is far away from his friends, he or she stays at a low-level grid with big cells, which
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results in few cell-change updates as the user moves. Only when the user approaches one of

the friends, is he asked to switch to higher levels with smaller grid cells. Thus, at a given

time point, the user's current communication cost is not a�ected by the total number of his or

her friends, but by the distance of the closest friend. The scalability of FriendLocator is

explored experimentally in Section 1.8.

1.7 Attacks and Extensions

In this section, we address most signi�cant types of privacy attacks, the joint LS & MT attack

and the history attack. In order to prevent these attacks or reduce their e�ects, we o�er two

solutions, the grouping of users and the dynamic transformation and encryption.

1.7.1 Attacks

Joint LS & MT Attack. Section 1.6.1 explains how the presented proximity detection

approach does not preserve user location privacy when the LS and an MT are collectively

malicious. When an attacker of FriendLocator has access to LS and at least one MT,

intercepted Ψ and L can be used to �nd current geographical regions, i.e., LMG grid cells, of

every user in the system. The grouping of users, presented in Section 1.7.2, limits the number

of users a�ected by such an attack.

LS History Attack. Consider two consecutive four-tuples of encrypted values received by

the server: (c3, c2, c4, c6) followed by (c2, c7, c6, c5). Each four-tuple corresponds to four adjacent
grid cells. Because the upper right corner of the �rst four grid cells has the same encrypted

coordinates (c2, c6) as the lower left corner of the next four grid cells, the server can conclude

that the user moved approximately north-east between the two timestamps. In this way, if

the server observes the encrypted values for some time, quite an accurate approximation of the

shape of the user's trajectory can be constructed, especially if the user stays at a high-level grid

with small grid-cell size. If it is known that the users move in a road network, the obtained

trajectory shape can be matched to a real road network, disclosing both the user's location

history and his or her current location. The dynamic transformation and encryption, presented

in Section 1.7.3, is a solution to minimize such vulnerability.

1.7.2 Grouping of Users

In order to limit the number of users that can be a�ected by a joint LS & MT attack, we group

the users into, possibly overlapping, groups, so that each user is put into one or more groups.

Both friends and non-friends can belong to the same group, but if two users are friends, they
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Figure 1.3: User grouping

must be in at least one common group. Each such group G is assigned a distinct pair of ΨG

and LG, thus, if the joint LS & MT attack is successful, it a�ects only the groups which contain

the malicious MT. The location privacy of the users in these groups is compromised, but all

other users are una�ected as they use di�erent functions Ψ and L.

User-grouping support in our system can be achieved by letting the FriendLocator server

treat each user group G as a new set of all users, M. Each user u in the system, depending on

how many groups he or she is a part of, will have to work with multiple ΨG and LG.

Figures 1.3a and 1.3b visualize two user-grouping extremes. Here, user groups are depicted

by ellipses and pairs of friends are represented by two circles connected with the arrows. In

Figure 1.3a, each pair of friends in the system belongs to a distinct user group. In Figure

1.3b, all users belong to a single user group. If an attacker can access LS and the MT of u1

in Figure 1.3a, he can discover LMG cells only of u1 and u2. In contrast, if the attacker has

access to LS and some u in Figure 1.3b, he is able to discover LMG cells of any user in the

system. If we consider communication e�ciency, in FriendLocator with user-group support,

a single user movement might cause cell crosses in LMGs of multiple user groups. Because

such cell crosses result in updates to the server, the user grouping in Figure 1.3a might cause

increased amount of client communications in comparison with Figure 1.3b. Summarizing,

Figure 1.3a provides maximal privacy, however su�ers from communication overhead. On the

contrary, in Figure 1.3b, MT's computational and communication performance is much better,

however there is much higher privacy-vulnerability risk. User groups enable a trade o� between

these extremes, as exempli�ed in Figure 1.3c. We evaluate the communication overhead when

multiple user groups are used in Section 1.8.

In this paper, we do not consider how the user groups are created. This can be done

automatically or manually by the users themselves. In the latter case, the users that have a

certain level of mutual trust can be grouped to the same user group. Note that the trust extends

only to sharing encryption functions. No location information (encrypted or non-encrypted) is

ever exchanged directly between the users.
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1.7.3 Dynamic Transformation and Encryption

The history attack can be made ine�ective by periodically modifying the grid function CM

(see Equation 1.1). For example, every few minutes, all grids can be rotated by an angle

that is random but common to all users. The new CM(x, y, d, θ) would get an additional

argument, angle θ. This angle would then be periodically re-distributed to the clients by TTS.

Alternatively, to remove this redistribution cost, common pseudo-random number generator

could be used by all clients. Note that such a solution adds to communication costs as every

change of CM requires re-sending the current encrypted grid-coordinates of every user (and

resetting the current grid level to zero).

1.8 Experimental Study

We have implemented the FriendLocator, which consists of our proposed proximity detection

solution (in Section 1.6) coupled with the support of user groups (see Section 1.7.2). For

the sake of comparison, we also implemented a Baseline privacy-aware proximity detection

solution, which will be presented in Section 1.8.1. Both the FriendLocator and Baseline

are implemented in the C # language.

In this section, we mainly study the communication cost (i.e., the number of messages)

of the solutions with respect to various parameters. Observe that this performance metric

is machine-independent. Section 1.8.2 discusses the experimental setting and Section 1.8.3

presents our experimental results.

1.8.1 Competitor Solution

We consider a competitor solution called Baseline , which also operates on the client-server

architecture. It o�ers the users location privacy via a grid-based spatial obfuscation technique

(see Figure 1.4a), where the parameter d denotes the side length of a grid cell. A user ui
computes the cell ci that contains his location and then sends the bounding rectangle of ci to

the server. The user does not need to send any further messages to the server until it moves

into another cell.

The �lter and re�nement paradigm is applied for detecting the proximity among friend

pairs. Suppose that the users ui and uj are friends. Let their current cells be ci and cj

respectively. The server computes the minimum distance mindist(ci, cj) and the maximum

distance maxdist(ci, cj) between the cells ci and cj [14]. An example is illustrated in Figure

1.4a. Then, the server compares those distances with the proximity detection distance ε, as

follows.
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1. If maxdist(ci, cj) ≤ ε, then proximity is detected.

2. If mindist(ci, cj) > ε, then no proximity is detected.

3. If mindist(ci, cj) ≤ ε < maxdist(ci, cj), then the server invokes the re�nement step �

requesting the users ui and uj to detect proximity themselves by using the peer-to-peer

Strip algorithm [2].

Observe that, in Baseline , the value of d can be varied independently of ε without a�ecting

the correctness of proximity detection. This value represents a trade-o� between the privacy

and the communication cost. A large d o�ers the user a high degree of privacy but the users

may need to participate in the re�nement step frequently, incurring high communication cost.

On the other hand, a small d helps reducing the total re�nement cost of the users, but it only

provides the user a small amount of privacy.

It is worth noticing that the privacy notion o�ered by Baseline is weaker than the one

o�ered by FriendLocator. For Baseline , the server knows the cell ci where the user ui is

located. In contrast, FriendLocator employs encrypted coordinates, making it hard for the

server to derive the possible spatial region containing the user.

1.8.2 Experimental Setting

Workload Generation and Problem Parameters. The network-based generator [4] is

used to produce a workload of users moving on the road network of the city of Oldenburg. The

area of the map is 26915*23572 units2, corresponding to 14.00*12.26 km2. Observe that 1 unit

is equivalent to 0.52 meters. A location record is generated for each user at each time stamp,

whereas the duration of two consecutive time stamps is 1 minute. The average speed of the

users is 52 km/h (i.e., 1670 units per time stamp).

Unless otherwise stated, the number of users is set to 50000 and the number of time stamps

is set to 40. Thus, the workload consists of 2 million location records. We partition the set of

users into disjoint groups, where each group contains 250 users by default. Within the same

group, the friend relationships between users form a complete graph and there are no friendships

between the users of di�erent groups. The proximity detection distance ε is set to 200 units by

default.

Setting of System Parameters. For the Baseline method, the default value of d is set to

200 units, in order to o�er su�cient privacy protection to the users.

For the FriendLocator method, we set its LMG function L(l) = g ·2−l, where l indicates
the level and g denotes the side length of the cell at the lowest level (i.e., level 0). The default
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value of g is 12800 units. The proximity level Lε is set to 6, meaning that the side length of a

cell at the highest level equals to ε (i.e., 200 units).

1.8.3 Experiments

In the following experiments, unless otherwise stated, we report the number of messages (sent

and received) per user per time stamp.

In the �rst experiment, we compare the number of proximity events generated by Friend-

Locator and Baseline methods. In order to experimentally demonstrate Theorem 3, we

run two instances of the Baseline : (i) Base-Min �xes its proximity detection distance ε to

L(Lε) = 200, and (ii) Base-Max �xes its ε value to 2
√

2 · L(Lε) = 2
√

2 · 200. Figure 1.4b plots

the average number of proximity events per user per time stamp, by varying the number of

users per group. The number of proximity events in FriendLocator stays between those

obtained from the Base-Min and Base-Max, con�rming with the result of Theorem 3.
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Figure 1.4: E�ect of the number of users per group, and the total number of users

We then investigate the communication cost (i.e., the number of messages) per user per
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time stamp in the FriendLocator and Baseline methods. We consider instances of Baseline

with the value of d ranging from 200 to 800, representing di�erent degrees of privacy protection.

Figure 1.4c shows the cost with respect to various numbers of users per group. The cost of

Baseline becomes high in case the users require a high amount of privacy (say, d = 800).
For very small group sizes, FriendLocator is slightly less e�cient than Baseline . As the

group size increases, the cost of FriendLocator increases very slowly and it outperforms the

Baseline by far. The cost of Baseline increases linearly because the cost of the re�nement step

is linear to the number of users in a group.

Next, we study the e�ect of the total number of users on the communication cost, in terms

of the distributed cost among the users and the centralized cost at the server. Figure 1.4d

shows the total number of messages during 40 time stamps as a function of the total number of

users in the system, with the number of users per group �xed to 250. Clearly, FriendLocator

incurs substantially lower total cost than Baseline .

We proceed to study the impact of the proximity detection distance ε on the cost per user per

time stamp (see Figure 1.5a). Both Baseline and FriendLocator have similar performance

at small ε (below 10). As ε increases, Baseline invokes the re�nement step frequently so its

cost rises rapidly. At extreme ε values (above 10000), most of the pairs are within proximity so

the frequency and cost of executing the re�nement step in Baseline are reduced. Observe that

the cost of FriendLocator is robust to di�erent values of ε, and its cost rises slowly when ε

increases.

Recall from Section 1.8.2 that the setup of FriendLocator is con�gured by two parame-

ters: the base level cell extent g and the proximity level Lε. Now, we �x the proximity detection

distance ε to 200, while varying the values of g and Lε such that L(Lε) = 200. Figure 1.5b

shows the cost per user per time stamp as a function of the base-level cell size g. The value

of g is increased from 200 to 12800, while Lε is reduced from 6 down to 0 respectively. At low

values of g, the lowest-level grid is dense so the users rarely change their levels. However, a user

needs to report a new encrypted tuple frequently as he or she travels across adjacent cells. On

the other hand, at large values of g, the lowest-level grid is sparse. Thus, it is more likely for

two friends to fall in the same or adjacent cells in the base level, causing them to switch to a

denser level and increase the cost. The graphs show that the performance of FriendLocator

is robust with respect to various values of g. The cost at g = 12800 is only at most two times

of the cost at g = 200. Remember, that high number of levels (equivalent to large value of g in

this experiment) gives high �exibility for the users when choosing proximity distance. Another

nice feature of FriendLocator is that, when the number of users within the same group

increases from 5 to 1000, the cost per user per time stamp increases only �ve times, although

the number of friendships grows exponentially.
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Note that the user groups are disjoint in all previous experiments. We proceed to investigate

how the overlapping among user groups a�ects the communication cost. In this experiment, a

speci�c user u? has 80 friends. They are assigned to a set of overlapping groups such that: (i)

all groups have the same size, and (ii) any di�erent groups share only the common user u? but

nobody else.

Figure 1.5c plots the communication cost for the user u? per time stamp. When u? is a

member of many groups, each group has a small number of users and u? spends less cost per

group. Thus, the communication cost of u? grows sub-linearly with the number of groups that

he belongs to.
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Figure 1.5: E�ect of various parameters on the communication cost per user

1.9 Conclusion

In this paper we develop the FriendLocator, a client-server solution for detecting the prox-

imity among friend pairs, while o�ering them location privacy. The client maps a user's location

into a grid cell, converts it into an encrypted tuple, and sends it to the server. Based on the

encrypted tuples received from the users, the server determines the proximity between them

blindly, without knowing their actual locations. Furthermore, we propose a multi-grid approach

for optimizing the communication cost of our solution, and also study its resilience against two

interesting types of attacks. Experimental results suggest that FriendLocator incurs low

communication performance, it is scalable to a large number of users, and its performance is

robust with respect to various parameters.

In the future, we plan to extend the proposed solution for proximity detection of moving

users on a road network, in which the distance between two users is constrained by the shortest

path distance between them.
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Abstract

The privacy-aware proximity detection service determines if two users, e.g., friends, vehicles,

etc., are close to each other without requiring them to disclose their exact locations. Existing

proposals of such service provide weak privacy, low precision guarantees, or lack of �exibility

for user settings.

In this work, we combine the best features of existing proposals and build our client-server

solution for proximity detection based on encrypted partitions of the spatial domain. Our

service noti�es a user if any pre-selected users enters his speci�ed �area of interest�, called a

vicinity region. Unlike in other proposals, our solution supports irregular-shaped, dynamically-

changeable vicinity regions, which enables various proximity detection scenarios that are not

possible with existing solutions.

It also o�ers strong user location privacy where the server evaluates proximity queries blindly

without manipulating spatial the data of any user. Experimental results show that our solution,

being equipped with a new set of features, performs well compared to existing solutions.

1.10 Introduction

Mobile devices with built-in geo-positioning capabilities are becoming cheaper and more popular

[5]. Disclosing their location information (e.g., via Wi-Fi, Bluetooth, or GPRS), mobile users

can enjoy a variety of location-based services (LBSs). One type of such services is a friend-

locator service, which shows users their friends' locations on a map and/or helps identify nearby

friends. Friend-locator together with other mobile social-networking services are predicted to

become a multi-billion dollar industry over the next few years [1]. Thus several friend-locator

services, like iPoki, Google Latitude, and Fire Eagle 3 are now available on the Internet.

In existing friend-locator services, the detection of nearby friends can be done only manually

by a user, e.g., by periodically checking a map on the mobile device screen. This works only

if the user's friends agree to share their exact locations or at least obfuscated location regions

(e.g., downtown area). However, LBS users often require some level of privacy and may even

feel threatened [9] if it is not provided. If all user's friends require complete privacy, they have

to disable their location sharing, thus also preventing the user from �nding his or her nearby

friends. Consequently, due to poor location-privacy support, the nearby-friend detection is not

always possible in existing friend-locator products.

Nearby friends detection can be enabled to privacy-concerned users utilizing existing privacy-

aware proximity detection methods [15, 12, 16]. They allow two users to determine if they are

close to each other without requiring them to disclose their exact locations to a service provider
3http://www.ipoki.com; http://www.google.com/latitude; http://�reeagle.yahoo.net
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Figure 1.6: Types of vicinities and proximity detection scenarios

or other friends. They track all users in the real-time and generate noti�cations if any two

friends becomes close to each other.

Most of existing methods assume that two users are close to each other if a so-called vicinity

region of one user either contains the location or intersects the vicinity region of other user.

The vicinity regions enclose users' locations and can be understood as parameters of a spatial

range query over exact or region-enclosed user locations. Existing proximity detection methods

only support static shape vicinities that are circular-shaped and user-location-centered [12]

(Fig. 1.6a) or rectangular-shaped and not user-location-centered [16] (Fig. 1.6b). Both types

of vicinities enable proximity detection only in non-constrained Euclidean space, e.g. football

�eld with no obstacles, where on proximity noti�cation users can walk in a straight line to each

other. However if the distance between two users is constrained by the shortest path distance,

that is not always equal to crow-�y distance, then the existing methods are not applicable.

For example, if two users are located on di�erent banks of the river (Fig. 1.6c) such that

existing methods classify them being in proximity, then generated proximity noti�cation might

not be very useful for users. It might be complicated for users to meet each other, because the

distance (d2) of shortest path following the road-network could be much higher than the crow-

�y distance (d1). Moreover, �xed-shape vicinity based services do not allow users to choose

�areas of interest�. This could be inconvenient in some cases, e.g. if the user uses the service to

�nd friends in some bar (Fig. 1.6d) and his friends are traveling along some nearby road with

no plans entering the bar, then the user is �ooded with meaningless proximity noti�cations.

This scenario is very likely if the user has many friends and the road is tra�c-intensive.

The introduced shortcoming of the scenarios can be eliminated if instead of static-shape,

dynamic-shape vicinities were used. In the �rst case (Fig. 1.6c), if user u1 at current time

moment could select vicinity region such that distance between every point of the region and

u1 location following the road-network is less than some threshold, then user u2 would not be

detected in u1 proximity. Similarly in the second case (Fig. 1.6d), if user u1 could preselect

vicinity region, matching the bar as it is his �area of interest�, then only user u2 would be

identi�ed by the system. The challenge is to develop the proximity detection method that
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supports both user location privacy and dynamic-shape vicinities.

To address the challenge, we combine ideas from existing solutions and develop a client-

server, location-privacy aware proximity detection service, the VicinityLocator. The pro-

posed solution is based on both spatial cloaking and encryption. Here groups of users share

an encryption function and some space-partitioning, e.g. a grid, mesh, or Voronoi diagram,

that are used to compute encrypted representations of user locations and dynamic vicinities.

Encrypted representations are sent to the central server, which, based on the values received,

compute proximity between users blindly without knowing any spatial data of the users. Users

can individually specify their dynamic vicinities, minimum location privacy requirements and

service precision settings. Our VicinityLocator employs a �exible location-update policy,

forcing users to update their location data only when leaving some automatically adjustable

regions, that shrink and expand depending on the distance of a users closest friend.

The paper is organized as follows. We brie�y review related work in Section 1.11 and then

de�ne our problem setting in Section 1.12. The VicinityLocator is presented in Section 1.13.

In Section 1.14 we present 3 general attacks applicable to our solution. Section 1.15 presents

extensive experimental results of our proposed approach.

1.11 Related Work

In this section we review general location privacy preserving techniques followed by the relevant

work on location privacy in proximity detection services.

1.11.1 General Location Privacy Techniques

In the most common setting assumed in location-privacy research, an LBS server maintains a

public set of points-of-interest (POI), such as gas stations. The goal is then to retrieve from

the server the nearest POIs to the user, without revealing the user's private location q to the

server. Many location privacy solutions exist for this setting and they can be broadly classi�ed

into two categories: spatial cloaking and transformation.

Spatial cloaking [8, 13, 6, 3] is applied to generalize the user's exact location q into a region

Q′, which is then used for querying the server. The region Q′ is then sent to the LBS server,

which returns all the results that are relevant to any point in Q′. Such technique ensures that

even if the attacker knows locations of all users, the identity of the querying user can be inferred

only with some probability.

The transformation approaches [10, 7] map the user's location q and all POIs to a trans-

formed space, in which the LBS server evaluates queries blindly without knowing how to decode

the corresponding real locations of the users.
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In contrast, in the proximity detection problem, the users' locations are both query loca-

tions and points-of-interest that must be kept secret. Thus the existing spatial cloaking and

transformation techniques that assume public datasets cannot be directly applied for the prox-

imity detection. However the concepts of spatial cloaking and transformation can be and are

used in the existing privacy-aware proximity detection methods.

1.11.2 Privacy-aware proximity detection methods

Anonymous User Tracking for Location-Based Community Services

Ruppel et al. [15] develop a centralized solution that supports proximity detection and provides

the users a certain level of privacy. It �rst applies a distance-preserving mapping (a rotation

followed by a translation) to convert the user's location q into a transformed location q′. Then,

a centralized proximity detection method is applied to detect the proximity among those trans-

formed locations. However, Liu et al. [11] points out that such distance-preserving mapping

is not safe and the attacker can easily derive the mapping function and compute the users'

original locations.

Privacy-Aware Proximity Based Services

Mascetti et al. [12] present a privacy preserving solution which employ the �lter-and-re�ne

paradigm.

All users collectively agree on privacy settings and individually specify radii of their circular-

shaped vicinities. Note that only this type of vicinity is supported. The privacy settings are

speci�ed by two - coarse and �ne - spatial-domain subdivisions, so called granularities. Each of

them contains discrete number of non-overlapping regions, called granules. The coarse and the

�ne spatial granularities represents users minimum privacy requirements, for the central server

and any other users respectively, with each granule being a minimum uncertain region.

A user maps his location into some granule gc of the coarse granularity and then constructs

the cloaking region by merging gc intersecting granules of the �ne granularity. The cloaking

regions of every user are sent to the server. When the server receives the cloaked region of

some user u1, it performs a rough proximity detection between u1 and his friends. For all

friends u2 of u1the server �rst computes a minimum and maximum distances between cloaking

regions of u1 and u2. Then, depending on the speci�ed thresholds and computed distances, the

server classi�es users being in, not-in, or possibly-in proximity. For the �rst two outcomes the

server immediately report the proximity status to the users, however if users are classi�ed as

being possibly-in proximity, then it forces them to perform user-to-user communication to re�ne

their proximity status. The introduced concepts required by server-side proximity detection
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Figure 1.7: Concepts used in Mascetti et al. [12] solution

are visualized by Fig. 1.7a. It visualizes coarse and �ne granularities (two overlapping grids

in the background), u1 and u2 cloaking regions, minimum and maximum distances between

them, user u1 true vicinity (solid-line circle), and u1's vicinity, seen from the server perspective

(dashed-line region).

In the re�nement step, �rst two users map their locations and vicinity regions into the

�ne granularity where granules usually are much smaller than in the coarse granularity. Later

they check if one user location enclosing granule lays inside the set of granules, intersecting the

other user vicinity. Depending on the result of the granule-inclusion checking, either proximity

or separation is detected. Note that due to utilized secure two-party computation protocol,

the set-inclusion checking is performed without need to reveal one user's location and vicinity

granules to another user. Figure 1.7b visualizes a scenario, where user u2 current location

enclosing granule (dark rectangle) intersect with u1 vicinity region. In this case, proximity

between u1 and u2 will be detected.

Unlike in our approach, their proposal does not completely hide user locations from the

central server as it always knows their cloaked regions. If the strong privacy is required users

are forced to perform user-to-user communication more frequently thus signi�cantly increasing

amount of client communication due to expensive secure two-party computation protocol. Also,

in case of strong privacy, the amount of false-positives in the proximity detection are introduced

with no speci�ed distance guarantees for the users.
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A Location Privacy Aware Friend Locator

�ik²nys et al. [16] have developed a centralized privacy-aware proximity detection method,

called FriendLocator, which provides strong privacy guaranties and employs spacial grid-

based technique to optimize communication cost. The whole space is divided into equal-sized

grid cells, such that sizes can be changed for each user individually at the runtime. A group

of users map their locations into the grid and, prior to sending these mappings to the server,

encrypts them with a shared secret encryption function. This process can be explained by the

example [16] visualized in Fig. 1.8a and 1.8b. Here some users u1, u2, and u3 share a grid, where

each row and column has encrypted values c0 .. c3 assigned according to Ψ, shown in Fig. 1.8b.

Users u1, u2, and u3 map their locations into grid cells (1,0), (2,1), and (0,2) and utilizing Ψ
construct encrypted coordinates (c1,c2,c0,c1), (c2,c3,c1,c2), and (c0,c1,c2,c3) respectively. Here

encrypted coordinates contains 4 integers (α−, α+, β−, β+), where (α−, α+) and (β−, β+) are

encrypted values of two adjacent columns k and k + 1 and two adjacent rows m and m + 1,
where k and m are the column and row number of cell containing user location.

The central server receives users' encrypted coordinates, performs their matching, and in

case of a match informs the pair of users. Here some encrypted coordinates e1 and e2 match if

Eq. 1.4 holds, and it is then known that the distance between two users is lower than the grid

cell sizes dependent constant. Users, unlike the server, know how to compute the constant.

Γ(e1, e2) =
(
(e1.α

− = e2.α
−) ∨ (e1.α

− = e2.α
+) ∨ (e1.α

+ = e2.α
−)
)

(1.4)

∧
(
(e1.β

− = e2.β
−) ∨ (e1.β

− = e2.β
+) ∨ (e1.β

+ = e2.β
−)
)
.

Users �x some constants on the server specifying how many consecutive encrypted location

matches must be found at the so called list of grids in order to detect users as being in proximity.

Here the list of grids de�nes multiple grids with constantly decreasing cell sizes, where every

grid is identi�able by its level number. After each encrypted coordinate match, the server checks

if required level is reached. If so, then users are informed about their proximity, otherwise the

server sends a message to one or both of the users asking them to use a �ner grid, i.e., increase

their current level, for the next matching iteration. For examples, if we assume that the grid

in Fig. 1.8a corresponds to users required level, then by evaluating Eq. 1.4 we can deduce that

users u1 and u2 are in proximity and u3 in separation with others.

Users can shift from �ner to coarser grids as they move. Once some user change his location,

he automatically switches into coarsest possible grid, where user's location change caused the

cell cross. Note that depending on user movement length and cell sizes of user's current level

grid, the movement may or may not trigger user location update.
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Figure 1.8: Example of proximity detection in the FriendLocator

The limitation of the FriendLocator is its low, and uncontrollable, precision of the

proximity detection. On the proximity noti�cation the actual distance between two users can

be any in the range from ε to ε+λ, where ε is required proximity distance and λ = ε(2
√

(2)−1)
is the precision parameter. Note, that in most other proximity detection approaches, unlike in

FriendLocator, the parameter λ can be chosen freely by users. High and unchangeable λ

values might be unacceptable in some applications especially if high values of ε are used.

Moreover, the FriendLocator is not suitable for the �river� and the �bar� proximity

detection scenarios (See explanation of Fig. 1.6c and 1.6d) as it does not support dynamic-

shape vicinities. It only mimics rectangular-shaped and non-centered user-location vicinities,

where regions are constructed from 4 adjacent grid cells (See Fig 1.8a) and their intersections

at required level triggers the proximity event.

1.11.3 Our contribution

In this work we combine best features of the previously presented proximity detection ap-

proaches to build our solution, the VicinityLocator. The solution combines the ideas of

encrypted coordinates, their blind evaluation at the server-side, and vicinity's representation

by granules, where sizes can be changed dynamically. Our solution, unlike Mascetti et al.

[12] proposal, employs only centralized architecture, where the server knows no spatial data of

users. It allows users individually select preferable proximity detection precision and supports

changing over time, irregular-shaped vicinities. These are unsupported features in existing

privacy-aware proximity detection solutions. Our proposal is designed for 2D environment, but

it can without much change be applied to n-dimensions.
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Figure 1.9: User locations, vicinities, and friend-ship relation example

1.12 Problem De�nition

In this section we introduce relevant notations, formally de�ne privacy requirements and be-

havior of our proximity based service.

We assume a setting where a set of users form a social network and all of them carries a

mobile device(MD) with positioning and communication capabilities. All MDs are online and

have access to central location server (LS). We use the terms mobile device, user, and client

interchangeably and denote the set of all users or MDs by M ⊂ N. The users forming the social

network are de�ned by the friend-ship relation F, where {(u, v), (v, u)} ∈ F if u, v ∈ M are

friends.

Let us assume a 2D scenario, where users from M can freely move in Euclidean space

and every user u ∈ M at the current time moment de�nes loc(u) and vic(u). Here loc(u) =
(loc(u).x, loc(u).y) represents u's 2D location and vic(u) speci�es u's dynamic vicinity region.

The vicinity region is a single- (like circle, rectangle, etc.) or multi-parted (composition of more

than one circle, polygon, etc.) region around a user location and it can be understood as an

in�nite set of spatial points that changes over the time. Introduced concepts are visualized in

Fig. 1.9a. Here arrows, small circles, and �lled regions represent users' friend-ships, locations,

and vicinities. A corresponding friend-ship relation F is given in Fig. 1.9b.

The privacy-aware proximity based service noti�es user u ∈ M if any of his friends v ∈
M|(u, v) ∈ F enters his vicinity region. More speci�cally, �rst all of u's friends are classi�ed to

be in proximity or separation by checking following conditions:

1. if loc(v) ∈ vic(u) user v is in u's proximity;

2. if distLV (loc(v), vic(u)) > λ, user v is in u's separation;

3. if distLV (loc(v), vic(u)) ≤ λ, the service can freely choose to classify v as being in u's

proximity or separation.

Here distLV (l, v) denote a shortest Euclidean distance between location l and vicinity region

v. If l is inside v then distLV (l, v) = 0.The λ ≥ 0 is a service precision parameter and
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introduces a degree of freedom in the detection of location-to-vicinity intersection. Note, that

small values of λ corresponds to higher precision. When the classi�cation is complete, u is

provided with a set of proximate friends that now are classi�ed as being in proximity while

they were not in proximity (were in separation) before. Every user has to have ability to tweak

their desirable service precision level λ and the service has to possibly minimize amount of

client communication depending on its λ setting.

In addition to that, for every user u ∈M the service has to satisfy following location privacy

requirements:

� The exact location of u is not disclosed to any party (e.g., any other user or the LS).

� User u allows nobody else but his friends to see him in their vicinities.

The following section details our proposed proximity based service, that meet these require-

ments.

1.13 Our privacy-aware proximity based service

In this section we introduce base concepts employed in our proximity detection service, followed

by client, server algorithms and examples of behavior.

1.13.1 Proximity detection idea

This section describes how the LS can locate users in their friend's vicinity without disclosing

their locations and vicinities.

Similarly to Incremental Proximity Detection Approach [16], where all users in M share a list

of grids, here we let all users in M share a list of granularities. The list of granularities, denoted

by Γ, contain �nite or in�nite number of granularities Γ(l)|l = 0, 1, 2, .... A single granularity4

speci�es a divisions of the spatial domain into a number of non-overlapping regions, called

granules[12]. The granularity's index l ≥ 0 in the Γ is termed the level of granularity. Every

granularity Γ(l) at levels l = 0, 1, 2, ... satis�es following three properties:

� Every granule g ∈ Γ(l) is identi�able by an index, say id(g) ∈ N.

� Every granule g ∈ Γ(l) has a bounded, not higher than L(l), size, i.e. ∀g ∈ Γ(l),MaxDist(g) ≤
L(l), whereMaxDist(g) is maximal Euclidean distance between any two points of region

g.

� Granule sizes bound L(l) in level l is always lower than in level l− 1, i.e. L(l) < L(l− 1).
4 Note, that a grid is a special case of granularity
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Figure 1.10: The valid list of granularities and the behavior of the granularity-based classi�er

� Every granule in level l is fully contained by some granule at level l − 1.

Figure 1.10a visualizes a valid granularity list, where uniform grids are used as granularities

and grid cells are used as granules in levels 0 to 2. Note, that the �gure shows only subsets of

all available cells for every grid. The �top-view� projection of this list is provided in Fig. 1.10b.

Solid, dashed and dotted lines depict boundaries of cells at levels 0, 1, 2 respectively. Every cell

in levels l = 0, 1, 2 should be identi�able and not higher than L(l) size. For example, maximal

distances between any two points of some cells c0,c1, c2 at levels 0,1,2 respectively are 70.71,
35.36, 17.68 and they correspond to levels' L values in the uniform grids case. Moreover, cells

of lower level grids fully contain cells of higher level grids.

Let us assume, that a list of granularities Γ is globally de�ned in the system and thus �xed

on all clients.

Similarity to FriendLocator [16], we let all users in M also share an encryption function

Ψ. Ψ : N 7→ N is one-to-one function that is used to map index id(g) of some granule g to

corresponding encrypted representation. In practice Ψ can be implemented as a keyed secure

hash function (e.g. SHA-2) such that it is computationally infeasible for the attacker to break.

A key of the hash function can be distributed among clients of M in peer-to-peer fashion or

with help of some trusted third-party server.

When Ψ is known by clients, but not by the LS, each client utilizing Ψ can encrypt indices of

granules that enclose their location and vicinity at some granularity. Encrypted representation

of these indices can be compared on the LS without need to disclose indices of granules and

consequently the vicinity or location of any user. In particular, assume that two friends u1, u2

use granularity of some level l (Fig. 1.10c) and the user u2 �nds his location containing granule

gl, applies Ψ on its index id(gl) and sends encrypted representation, e123, to the LS. Similarly

user u1 �nds all his vicinity intersecting granules gv, applies Ψ on their indices and send their

encrypted representations, {e342, e433, e034, e211, e987, e123}, to the LS. If encrypted index
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of u2's location granule, e123, can be found in encrypted indices set of user u1 vicinity then we

can conclude that user u2 is in u1's vicinity with some precision. Let us call such user-to-vicinity

intersection detection approach by granularity-based classi�er. More over utilizing knowledge

about each granularity in the list we can derive Lemma 5.

Lemma 5. The granularity-based classi�er can be used to classify the user u2 as being in u1's

proximity or separation with precision parameter setting λ = L(l), de�ned in Section 1.12.

Proof. According the Section 1.12, in order for user u2 to be in u1's proximity or separation,

conditions distLV (loc(u2), vic(u1)) ≤ λ, and loc(v) /∈ vic(u) must hold. If the encrypted index

of u2's location granule, like e123, can be found in encrypted indices set of user u1 vicinity, due to

Ψ is one-to-one mapping we can conclude that u2 location containing granule gl is in u1's vicinity

intersecting granules set gv. Then we know that granule gl both encloses u2 location loc(u2)
and intersects with u1 vicinity vic(u1). Utilizing properties of granularity at level l, we know

that maximal Euclidean distance between any two points within granule gl is lower-equal than

L(l), i.e. MaxDist(gl) ≤ L(l). Thus the shortest Euclidean distance between location loc(u2)
and the vicinity region vic(u1) cannot be higher than L(l), i.e. distLV (loc(u2), vic(u1)) ≤ λ.

Similarly we can prove that if gl cannot be found in gv then loc(v) /∈ vic(u).

According to Lemma 5, the λ value depends on granule sizes bound function L and the

granularity level l. We can observe that higher levels provide higher proximity detection preci-

sion such that liml→∞ λ(l) = liml→∞ L(l) = 0. However as we go to higher levels the number

of vicinity intersecting granules increases causing higher client communication. Thus we let for

every user u ∈M to select a constant Lmax(u) that has following meanings:

� User u will never use granularities of higher than Lmax(u) levels thus limiting his worts

case communication.

� User u lets other users to detect him in a proximity with no higher than λ = L(Lmax(u))
precision.

� User u will be able to detect friends being in his proximity with no higher than λ =
L(Lmax(u)) precision.

� Every encrypted coordinate of user that is sent to LS will have no higher than L(Lmax(u))
resolution, i.e., if the attacker brakes the encrypted coordinate, then deciphered value will

correspond to cloaking region with maximum distance between two points no lower than

L(Lmax(u)).

Users can freely select such Lmax at runtime and upload it to the LS. Note that this does

not violate user location privacy as it does not reveal any spatial information.
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Message
Type

Args Sender Description

Mel u, l,
g∗l , g∗v

MD MD with id equal to u sends this type of message to
the LS in order to report his encrypted location g∗l and
the vicinity g∗v for level l.

Mprox v, l LS The LS sends this type of message to a MD to inform
that his friend v is within his vicinity at granularity
level l.

MLevInc l LS The LS sends this type of message to some MD to
make it increase its level up to level l.

Table 1.3: Client and server messages types

The introduced granularity-based classi�er is integrated into our proximity detection service

which is de�ned using client and server algorithms in the following section.

1.13.2 Client and Server algorithms

We de�ne our proximity based service by providing handler algorithms for di�erent type of

software events on a MD and the LS, in particular:

onMessageReceived(msg, arg) A handler is executed on a MD or the LS each time one

receives a message of type msg with arguments arg from other party. A summarizing list

of employed messages with their arguments is presented in Table 1.3.

onLocationChange() A handler executed on a MD, each time its geographical location

changes.

Algorithms 3 and 4 specify the behavior of the MD and the LS. They contains local data

de�nitions, functions and software event handlers.

A MD u remembers his last positioning unit reported geographical location loc(u), and for

granularity levels l = 0..|GS| − 1 (see Alg. 3) locally stores his location and vicinity mappings,

i.e., indices of location and vicinity granules, in the stack GS. Once MD changes its location,

the onLocationChange handler is triggered. Then if user's location change invalidates current

location or vicinity granules at levels l = |GS|−1..0, the MD removes respective elements from

GS, thus reducing his employed current level |GS| − 1. Note, that this corresponds to zero

or more u's switches from �ner to coarser grids. At least one current level reduction is always

followed pushAndSend call, which computes new location and vicinity mappings for |GS|
(current + one level) and sends them to the LS.

Client granularity level shifts can be visualized by Fig. 1.11a and 1.11b, where user's u1

vicinity and user's u2 current location mapping into list of granularities (grids) are visualized at
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Data: u ∈M - current user ID.
loc(u) - user's current location.
vic(u) - user's vicinity region.
GS - Stack of 2-tuples 〈gl, gv〉. Each 2-tuple correspond to a level l. gl is loc(u) granule
index at level l. gv is a set of granule indices, where each granule intersects u's vicinity
and has granularity of level l.
Lmax(u) - user speci�ed highest granularity level.
mapLocToGranularity(Level number level)1

gl ← {id(g)|g ∈ Γ(level) : loc(u) ∈ g} ;2

gv ← {id(g)|∀g ∈ Γ(level) : g ∩ vic(u) 6= ∅};3

return (gl, gv);4

pushAndSend()5

(gl, gv) ← mapLocToGranularity(|GS|);6

Push 〈gl, gv〉 to stack GS;7

Send to LS Mel(u, |CS| − 1,Ψ(gl), {Ψ(g)|∀g ∈ gv});8

onLocationChange()9

wasPopped← false10

while |GS| > 0 and top(GS) 6= mapLocToGranularity(|CS| − 1) do11

Pop from stack GS;12

wasPopped← true;13

if wasPopped or |GS| = 0 then14

pushAndSend()15

onMessageReceived(Message MLevInc,Level l)16

while |GS| ≤ l and |GS| ≤ Lmax(u) do17

pushAndSend()18

onMessageReceived(Message Mprox,Friend v,Levell)19

Output "Friend ",v," with precision ", L(l), " is inside our vicinity!";20

Algorithm 3: The MD's event handlers in our proximity based service.

consecutive time snapshots. Note, that due to simplicity u1's current location and u2's vicinity

mappings are not shown. User u1 changes his location and shifts from level 1 to level 0 (Fig.

1.11a and 1.11b) because his location change invalidates his vicinity mappings at levels 1 and

0. In contrary, u2 location change causes no location mapping changes in levels 1 and 0, thus

he stays in level 1.

For every user u the LS locally stores GL(u), which is an encrypted alternative for GS.

It contains encrypted representations of u's location and vicinity granule indices for levels
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Figure 1.11: Example of level changes and proximity detection within VicinityLocator

0..GL(u)− 1. The u's stack GS is synchronized with GL(u) with help of Mel message. When

the LS received this type of message, then the handler onMessageReceived is executed. It

�rst updates the GL(u) and later checks if any of u's friends entered its vicinity or if user u

entered his friends vicinities. This is checked by searching if encrypted location granule g∗l can

be found in the set of encrypted vicinity granules g∗v for some friend f at some level lm. The

level lm is the highest level, available in GL(u) and GL(v) that does not exceed Lmax(u) and
Lmax(v). If g∗l is found in the g∗v but the lm is lower than Lmax(u) and Lmax(v), it means than

the proximity detection precision can be still be increased as users speci�ed Lmax values are

not yet reached, thus the LS sends MLevInc to one or both users, asking them to increase they

current levels. Otherwise, if g∗l is found in the g∗v and lm is equal to Lmax(u) or Lmax(v) then
the LS sends Mprox message, informing a user about a presence of friend in his vicinity.

Let us assume that Lmax(u1) = Lmax(u2) = 2 in Fig. 1.11 example. The server �nds that

g∗l of user u2 lays in g∗v of user u1 at level 0 in Fig. 1.11a, thus due to 0 = lm is lower than

Lmax(u1) or Lmax(u2) it sent MLevInc messages to both users asking them to increase their

current levels. When they both deliver level 1 encrypted coordinates, that are higher than level

0 precision, the LS no longer founds g∗l in g∗v and then nothing happens until one of them starts

moving. When u1 sends his location data for level 0 in Fig. 1.11b, the lm is set to 0 and due to

it is lower than Lmax(u1) or Lmax(u2) and user u2 is at level 1 already, only the user u1 is asked

to switch to level 1. Similarly, when the LS �nds g∗l in g∗v at level 1 in Fig. 1.11c it asks both

users increase their levels as 1 = lm is still lower than Lmax(u1) or Lmax(u2). When two users

deliver their encrypted location data to the LS for level 2 in Fig. 1.11d, the lm = 2 is equal to

Lmax(u1) and Lmax(uu), then the user u1 is informed about u2 proximity with message Mprox.

Note that similarly to the FriendLocator [16], the presented algorithms implement a

kind of adaptive region-based up-date policy. The clients updates their encrypted location

data on the LS only when location change triggers the change of location or vicinity granularity

mappings, i.e. user location and vicinity enclosing granules, at their current levels. And if some

user is far away from his friends, then he or she stays at a low-level granularity with large cells,
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which results in few encrypted location data updates as the user moves. Only when the user

approaches one of the friends, is he asked to switch to higher levels with smaller granules. Thus,

at a given time point, the users current communication cost is not a�ected by the total number

of his or her friends, but by the distance of the closest friend.

Next we review several optimizations possibility that can help reduce client communication

and server computation costs, followed by a technique to minimize privacy leakage if encryption

function Ψ is intercepted by an adversary.
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Data: M - a set of users;
F - a friendship relation that contains pairs of friends and thus represents the social
network.
Lmax(u)∀u ∈M - highest granularity level speci�ed by user u.
GL(u)∀u ∈M - a stack of 2-tuples 〈g∗l ,g∗v〉, where every 2-tuple corresponds to level l.
g∗l is an encrypted index of granule containing u current location at level l. g∗v is a set of
encrypted granule indices, where each granule intersects u's vicinity and has granularity
of level l.
P(u) ⊆M - a set of u ∈M's currently proximate friends.
onMessageReceived(Message Mel,User u,Level l, g∗l ,g

∗
v)1

while |GL(u)| > 0 and |GL(u)| > l do2

Pop from stack GL(u);3

Push 〈g∗l ,g∗v〉 to stack GL(u);4

foreach v ∈M such that v 6= u and |GL(v)| > 0 and (u, v) ∈ F do5

lm ← min(|GL(u)| − 1, |GL(v)| − 1, Lmax(u), Lmax(v));6

vInU ← get(GL(v), lm).g∗l ∈ get(GL(u), lm).g∗v;7

uInV ← get(GL(u), lm).g∗l ∈ get(GL(v), lm).g∗v;8

if vInU = true or uInV = true then9

if lm = Lmax(u) or lm = Lmax(v) then10

if vInU and v /∈ P(u) then11

insert v into P(u);12

send Mprox(v, lm) to MD u;13

if uInV and u /∈ P(v) then14

insert u into P(v);15

send Mprox(u, lm) to MD v;16

else17

if lm = |GL(u)| − 1 then18

send MLevInc(lm + 1) to MD u19

if lm = |GL(v)| − 1 then20

send MLevInc(lm + 1) to MD v21

if vInU = false then22

remove v from P(u);23

if uInV = false then24

remove u from P(v);25

Algorithm 4: onMessageReceived event handler on the LS.
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1.13.3 Incremental update optimization

A client in the VicinityLocator service constantly report encrypted location data as he

moves. The data consist of encrypted indices of user current location and vicinity enclosing

granules of some granularity level. According the protocol even if one (or more) location and

a vicinity enclosing granule changes due to user movement, user's respective encrypted data

must be updated on the LS by sending a Mel message. Thus, in most cases user's two Mel

messages of consequent time steps would contain duplicated encrypted granules.

Clients communication can be reduced by enabling so called incremental updates(IU). On

user location change, instead of sending Mel, the client may send new type of message, say

MelUpd containing items u, l, g∗l , g∗vDel, g∗vIns. New items g∗vDel, g∗vIns de�ne encrypted

granules that must be deleted and inserted on the LS in order to fully update user u encrypted

data for level l. More precisely, ifm1 andm2 are two consequent messages of typeMel such that

m1.u=m2.u and m1.l = m2.l then the client may send a message m3 of type MelUpd instead of

m2, where m3.g∗vDel = m1.g∗v \ m2.g∗v and m3.g∗vIns = m2.g∗v \ m1.g∗v. For example, if some

user wants to update his encrypted granules for time step 1 while encrypted data for time step

0 is already on the server, it is enough for him to send a message m3, containing sets g∗vDel

and g∗vIns. Figure 1.12 visualizes locations, vicinities, and vicinity-intersecting granules of a

user at two consequent time steps 0 and 1. Darkened sets of cells gvDel and gvIns visualize

unencrypted representation of sets g∗vDel and g
∗
vIns. Note, that introduction ofm3 helps reducing

communication only if |m3.g∗vDel| + |m3.g∗vIns| < |m2.g∗v|.

!(
!(U Uts=1

ts=0
gvIns

gvDel

Figure 1.12: Granules deletion and insertion sets

Our presented client and server algorithms (See Alg. 3, 4) can be easily modi�ed to support

incremental updates. In the current implementation once a user goes from higher to lower levels

(switches into coarser granularity) granules of active level are being removed from stacks on

client and server (GS and GL) without possibility to reuse them. The idea is to preserve these

granules on both client and server such that it would be possible to compute sets gvDel, gvIns,
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g∗vDel, and g∗vIns.

The incremental updates impact on client communication is evaluated in Sec. 1.15.

1.13.4 Server computation optimization

Our VicinityLocator implementation checks if user's u1 location lays inside a vicinity of

user u2 by performing u1's encrypted location granule g∗l search in the u2 encrypted vicinity

granules set g∗v. This operation could be expensive in terms of computation especially if g∗v
stores encrypted granules of high granularity levels.

Linear granule search worst case performance O(|g∗v|) can be improved up to O(log(|g∗v|)) if
clients would be required to sort encrypted granules in g∗v prior sending them to the LS. Then

a binary search algorithm can be used on the LS to locate encrypted granule in an encrypted

vicinity. As an alternative, the server may build the B-tree or hash table on values of g∗v locally.

1.13.5 Grouping of Users

Currently all users in M share a single encryption function Ψ. Security of Ψ directly in�u-

ence location privacy of all users in the system. An adversary knowing Ψ can easily decipher

encrypted granules of user current location and his vicinity. It is di�cult to ensure that the

function Ψ will stay secret in case of a high number of users of the VicinityLocator service.

In order to limit a�ected users in case of leaked Ψ, a so called grouping of users can be

enforced. The friend-grouping is introduced in the long-paper version of the FriendLocator

[16]. The idea is that all users in the system are grouped into possibly overlapping groups, so

that each user is put into one or more groups. Both friends and non-friends can belong to the

same group, but if two users are friends, they must be in at least one common group. Each

such group G is assigned a distinct ΨG function and it is used by all members of G. Then if

such ΨG is leaked, only the location privacy of the users in group G are compromised.

Our presented algorithms of VicinityLocator can be easily modi�ed to support friend

groups. The client and the server should treat each group individually such that client report

his encrypted location data for all groups that he part of and the server analyzes encrypted

data of one group users at the time. In this paper, we do not consider how these groups are

created. This can be done automatically or manually by the users themselves.

1.14 Vulnerabilities & Points of Attack

We here address a few of the possible vulnerabilities of the VicinityLocator approach. We

assume correct behavior of both the server and clients, and thus exclude attacks where an

attacker may want to modify either server or client to e.g. trigger a �spamming� behavior. The
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attackers goal will for each attack be to compromise the privacy of the largest possible number

of clients in the VicinityLocator system.

1.14.1 Compromised Client

If an attacker gains control over a client he will, for each group (see 1.13.5) the client is member

of, have the Ψ function used to calculate granules at the client.

If the client itself is compromised by an attacker, the Ψ function is not much help to him,

since he cannot do much else than encode granules sent to the server, but if one imagines that

the attacker only temporarily gains control, then he can use the Ψ function to �Clone� the

original client. This problem is however easily made void by changing the Ψ function regularly.

By using the battleship method the attacker can guess the location of other users with same

group membership as the compromised client 5.

One way an attacker may �play battleship� in order to �nd the location of other users (with

same group membership) would be to send a false vicinity covering the area he is interested in

�nding other users, the attacker will then be noti�ed by the server if any other user is within

his false vicinity. The attacker then continues to cut the vicinity in half, doing a binary search

until he has found the granules of all users within the larger area he initially sent his false

vicinity for at the start6.

By using groups this attack is already very limited, since each client is assumed to have far

fewer friends then the overall amount of users in the VicinityLocator system. Furthermore

it is worth noticing that the attacker can never get an actual location of a user, since all he

can get a matching granule which corresponds to a spacial area and not a point. There is also

a build in limit on the amount of precision the attacker can achieve because each users Lmax
is a limit on the precision that any user will reveal.

If we limit the attackers goal to only focus on a single friend, then using the binary search

method described will enable the attacker to track the single friend with the amount of vicinity

splits he have to do in worst case being: Θ(Log( B(cg)
B(max))) where B(cg) is the size of attackers

current granule and B(max) is the granule size at the maximum precision attacker can get,

either by setting his own Lmax or reaching the friends Lmax.
5In the game of battleships two opponents take turn to guess the location of the others battleships placed at

secret locations in a grid.
6The amount of granules needed to be searched in the worst case is cl+1−1

c−1
where l is the number of levels

needed to be traversed, and c the number of granules each granule at level l is divided into at l + 1
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1.14.2 Compromised Server & Client

If the attacker has gained control over both the server and client, he has all info from 1.14.1

as well as all users encrypted center and vicinity granules, as well as their group memberships

(see 1.13.5).

The attacker can do the same as in 1.14.1, only now the attacker can skip the battleship step

and decode obfuscated location (center granules) of friends directly, making it actually feasible

to track all friends, this however is still only valid for the groups that the compromised client

is member of.

This attack has the same limitations as 1.14.1, except that since the attacker now skip the

battleship stage, it is feasible for the attacker to track many users (as long as they are in the

same group as the compromised client)

1.14.3 Frequency

In this attack the server is compromised, and thus the attacker knows all users encrypted center

and granules, stored on the server, as well as their group memberships.

The attacker can compare the frequency of users with same center and vicinity granules,

the attacker can then see if many users have the same granules, and reason about the actual

location (e.g. if attacker knows the national soccer team is playing, and he can see many users

suddenly all sharing granules). The attacker can possibly collect the data over time and maybe

make this attack more e�cient by looking for frequency in locations over time, e.g. if there is

a central place most people must pass during the day (city center/a bridge etc.), the attacker

can then use historical information to identify which granules correspond to this location.

There is a simple solution to thwart the e�ectiveness of this attack, and that is to change

the Ψ function as some interval, making it impossible for the attacker to compare granules from

di�erent intervals. If we furthermore assume that the server would not be informed when Ψ
function is changed, then this attack becomes void.

1.15 Experimental Results

We here present performance tests to support our claims that our solution is e�cient and

applicable in a real world scenario. To support our claims we have implemented a prototype

of our solution, as well as the approach from [16] for comparison. For simplicity in comparing

the two implementations, Γ contains granularities as a grid with uniform squares, where edge

length B(l) depends on level l. We set B(l) = L0 · 2−l where B(l) = L(l)√
2
, l is level, and L0 is

the cell side length at level 0.

53



!È
U1 R

!È
U1 R

!(
!(U

U ts=1
ts=0

g vIns

gvDel

Vicinity before rasterization Vicinity after rasterization RN- and IU-based vicinity
rasterization

(a) (b) (c)

Figure 1.13:

1.15.1 Filtering and Unrestricted Vicinities

In the VicinityLocator prototype we have implemented a road network �lter(RF) which

minimizes the amount of granules needed to be sent to server, based on the road segments

which intersects with the granules calculated for a user's vicinity.

User U1 �rst calculate the intersection of road segment with his circular area of the interest,

in proximity detection (see Fig. 1.13a). Afterwards U1 rasterizes 7 the area of his vicinity (see

Fig. 1.13b). The granules intersecting with road segments have been darkened to show that

it is only these cells which will be sent to the server after U1 has run the road network �lter

on his rasterized vicinity. To make the road network �lter as realistic as possible, especially in

dense grids at high levels, we have put in bu�ers around all edges in the Oldenburg �les. The

Oldenburg edges have two categories for road types, and when using the road network �lter we

have 2 di�erent road widths to simulate small and large roads.

The idea of the road network �lter is closely tied to the VicinityLocators ability to

handle user vicinities of arbitrary shapes. In fact, the road network �lter is a speci�c way to

take advantage of this ability. It can clearly be seen in Fig. 1.13b that when the road network

�lter has been run U1s vicinity is no longer circular, in fact it is not even solid anymore. It is

this �exibility we take advantage of when using the road network �lter.

When road network �lter is used together with incremental updates (See sec. 1.13.3) the sets

of granules, needed to be sent to server by user u, are visualized in Fig. 1.13c. Darkened sets

of cells gvDel and gvIns correspond to u's vicinity cells at time step 0 that must be respectively
7By rasterizing we are here referring to the process of converting an area into uniform cells of a prede�ned

size and shape
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deleted and inserted in order to update cells of rasterized vicinity at time step 1.

Data Generation

The datasets used in our experiments are based upon the German city of Oldenburg. The

data generator [4] gives allowance for controlling the number of users, their speed and each

users number of consecutive position points. The area of Oldenburg is 26915 ∗ 23572 units2,

corresponding 14 ∗ 12.26 km2. A location record is generated for each user at each time stamp,

and the duration between two consecutive timestamps is 1 minute. The average speed of the

users is 52 km/h (i.e. 1670 units per time stamp).

Test System Parameters

Both FriendLocator and VicinityLocator shares a number of settings which we, unless

otherwise stated, set to default values for the experiments. The number of users is set to 50000

and the number of timestamps is set to 40, thus producing a workload of 2 million location

records. We partition the set into disjoint groups, where each group contains 250 users by

default. Within the same group, the friend relationships between users form a complete graph.

The default cell size of L0 is 12800 units and the maximum level allowed by users, denoted

Lε and Lmax for FriendLocator and VicinityLocator respectively, is set to 6, giving cell

sizes ε and B(Lmax) of 200 units 8. In the VicinityLocator implementation, the vicinity

region is circular, and the default radius is 500, corresponding to 260 meters.

Experiments

We will in the following focus mainly on the performance parameter of messages, since it is

an important parameter in real world usage since users will have to pay for data when using

VicinityLocator.

In Fig. 1.14a we show the cost of increasing the precision of proximity detection. We

increase Lmax, and thereby number of possible levels users can shift into. The experiment was

run without any optimizations, with incremental updates(IU), with road network �lter(RF),

and with jointly applied road network �lter and incremental updates (IU & RF). At level 10

the IU technique saves a user 50% of the granules he would have to send, and the RF technique

saves a user almost 80%. The e�ect of the two optimization techniques is really good. When

we combine IU and RF we send less than 10% of the granules sent by the unoptimized version

of VicinityLocator.
8λ is ε ∗ (2

√
2− 1) for FriendLocator and B(Lmax) ∗

√
2 for VicinityLocator
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Figure 1.14: (a) E�ect of increasing Lmax with and without the Incremental Update(IU) and
Roadnetwork Filter(RF) optimizations. (b) The total amount of messages when increasing
radius of vicinity.

In Fig. 1.14b we show the e�ect on granules sent, when increasing the radius of users

vicinity. This test is done with 2000 users split into 8 groups of 250 each, over 40 timestamps.

When using RF there is a signi�cant reduction which, as expected, is larger when the radius

increases. This is because there are more road segments to work on. The IU optimization does

however perform extremely well, giving a linear increase in granules, as oppose to the quadratic

increase without any optimization. If RF and IU were to be used simultaneously the granule

count would be lowered more. It is important to remember that the total amount of messages

does not change for either of the three options.

In Fig. 1.15a the amount of proximity events generated when increasing the size of groups

are measured for FriendLocator and VicinityLocator. Because of the di�erence in way

FriendLocator and VicinityLocator do proximity detection 9
VicinityLocator would

have to set Lmax to 0.37 level below Lε of FriendLocator, and since levels are discrete values

this is not possible. To make the comparison fair we therefore compare VicinityLocator

and FriendLocator with Lε and Lmax of 6, as well as VicinityLocator for Lmax = 5.
When we do this we get a precision of VicinityLocator that is higher and lower than

FriendLocator, for Lmax = 6 and 5 respectively. We can see that the number of proximity

events in FriendLocator is bound by the two test of VicinityLocator just as we would

expect.

We want to motivate what an optimal cell side length L0 at level 0 might be. Note that

changing of L0 gives the e�ect that there will be fewer or no level shifts (but maybe more cell

9
VicinityLocator does proximity detection by vicinity- and center cell overlap, while FriendLocator

detects proximity by searching overlap between 4 cells of every user.
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Figure 1.15: (a) Change in number of proximity event when increasing number of users in a
group. (b)The total messages sent by 2000 users, when decreasing level zero, keeping B(Lmax)
constant. Users have a radius of 200 (104 meters), the results are compared with FriendLo-

cator results

boundary crossings) in order to deliver same proximity detection precision. To this end we

vary L0 and Lmax, keeping B(Lmax) = 200 and users' vicinity radius equal to 200 throughout

the tests (See Fig. 1.15b). We compare against FriendLocator with equivalent precision,

where setting of ε is equal to 200. We plot the graph for 5 and 10 users in the system, setting

all users in one group for each test. It is clear from Fig. 1.15b that the VicinityLocator

performs better in the amount of messages. The optimal L0 is the lowest point on each of the

four graphs in Fig. 1.15b.

In Fig. 1.16a we show the e�ect on messages sent/received by user0 for each time stamp,

when we (i) keep the number of friends constant at 80 (ii) increase the number of groups

user0's friends are partitioned into (iii) let user0 be member of all groups. It is clearly seen

thatVicinityLocator is almost consistently performing at 50% less messages for all partitions

of user0's friends. We can see that partitioning the friends into more group raises the message

cost, but it also heightens security and lets the user organize his friends, which may let the

user save communication in the end, since the user may not want to update his location for all

groups at all times e.g. he may only want to send updates to his �work�-group when he is at

his job.

Figure 1.16b show the total amount of messages sent for one timestamp for 25000, 50000,

and 75000 users with the number of users per group �xed at 250. It is clear from the graph

that VicinityLocator incurs a higher amount of communication than FriendLocator.

But when looking the number of messages per user (See Table 1.4), then there is only a 0.6

message di�erence. Furthermore, the test show that the amount of communication is very
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User count
Messages
FL VL

25000 2.69 2.92
50000 2.46 2.93
75000 2.38 2.94

Table 1.4: Messages per User from Fig. 1.16b
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Figure 1.16: (a) The message cost for a user when increasing number of group memberships.
(b) The total number of server messages for one time stamp for varying amounts of users.

stable with VicinityLocator, while the FriendLocator communication is actually falling.

In Fig. 1.17 we are trying to make a fair comparison between FriendLocator and Vicin-

ityLocator by forcing VicinityLocator to simulate the dependence between precision and

privacy, which is one of the main problems in the FriendLocator. We do this simulation

of the FriendLocator behavior by setting the B(Lmax) = ε and Lmax = Lε. It is clear

from Fig 1.17a and 1.17b that VicinityLocator sends both more messages and granules

than FriendLocator. When increasing the vicinity-radius or ε, the di�erence in messages is

however not very large.
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Figure 1.17: Simulating the behavior of FriendLocator with VicinityLocator, the two
approaches are compared on the amount of messages (b) and granules (a) sent to server.

1.16 Conclusion

In this paper we develop the VicinityLocator, a client-server solution for detecting proximity

by inclusion of one user's location inside another user's vicinity, while o�ering users control over

both location privacy and precision of proximity detection.

The client maps its location into a granule and �nds all granules contained in his vicinity,

which can be shaped arbitrarily. The client then encrypts its location- and vicinity- granules

and sends them to the server which checks for proximity by checking for inclusion of u1's

location granule in the set of u2's vicinity granules. The server does the test blindly, without

ever knowing anything about user locations.

We look at three interesting types of attacks which can be applied to VicinityLocator,

and we show that VicinityLocator has numerous features helping to limit the e�ect of any

attack.

Experimental results showed that VicinityLocator performs adequate for real world ap-

plication and it is scalable to high number of users. Our presented optimization techniques

worked very well and in some cases cut the amount of data transferred by approximately 90%.

Experiments showed, that VicinityLocator' features such as irregular shaped vicinities and

adjustable precision do not give signi�cant overhead in terms of communication when com-

pared with the FriendLocator. Note, that the FriendLocator has none of the mentioned

features.

In the future, we plan to extend the proposed solution for proximity detection to sup-

port dynamically changing shape and size of granules, adapting to user behavior, giving lower

communication cost for the users.
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During the semester we have developed two distinct client-server based privacy preserving

frameworks for notifying users in a proximity. They provide strong location privacy to users

and o�er control over various parameters such as proximity distances and precision.

The VicinityLocator introduces new features compared to other friend detection solu-

tions and o�ers allot of �exibility, however it is slightly more expensive in terms of communica-

tion. The FriendLocator provides a di�erent method than VicinityLocator for users to

specify their desirable proximity distances. In the FriendLocator users pair-wise agree on

their proximity distances, where as in the VicinityLocator every user in the system selects

their �area-of-interest� individually. The FriendLocator is more limited in terms of control

over precision parameters, but performs better in typical scenarios.

We have shown that both VicinityLocator and FriendLocator are resilient against

general types of attack, and they both suggest methods to limit any privacy leak which would

occur. The performance studies from both theVicinityLocator and FriendLocator paper

suggest that the amount of communication our solutions require does not exceeds a limit we

would assume users are willing to pay for their privacy. Also, experiments with prototypes

show that they are scalable for large number of users and applicable in real world systems.

A possible topic for further studies would be to look at di�erent criteria for location updates.

Currently both the FriendLocator and VicinityLocator implement region based update

policy, where users update their location once they cross cell boundaries. In other existing user

tracking solutions more advanced update policies such as velocity-vector-based or roadnetwork-

based policy help signi�cantly cut down communication cost without a�ecting quality of service.

Thus it would be interesting to see how any of those policies can be integrated into our solutions.

Another interesting research direction would be our solution adaptation for some existing cloud

computing infrastructure, such as Google AppEngine, Windows Azure, Amazon EC2, etc.
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Appendix A

A Location Privacy Aware Friend

Locator (6 Page Version)

Abstract

A location-based service called friend-locator noti�es a user if the user is geographically close

to any of the user's friends. Services of this kind are getting increasingly popular due to the

penetration of GPS in mobile phones, but existing commercial friend-locator services require

users to trade their location privacy for quality of service, limiting the attractiveness of the

services. The challenge is to develop a communication-e�cient solution such that (i) it detects

proximity between a user and the user's friends, (ii) any other party is not allowed to infer the

location of the user, and (iii) users have �exible choices of their proximity detection distances.

To address this challenge, we develop a client-server solution for proximity detection based on

an encrypted, grid-based mapping of locations. Experimental results show that our solution is

indeed e�cient and scalable to a large number of users.

Introduction

Mobile devices with geo-positioning capabilities are becoming cheaper and more popular. Con-

sequently users start using friend-locator services (e.g., Google Latitude, FireEagle) for seeing

their friends' locations on a map and identifying nearby friends.

In existing services, the detection of nearby friends is performed manually by the user,

e.g., by periodically examining a map on the mobile device. This works only if the user's

friends agree to share either exact or obfuscated location. However, LBS users usually demand

certain level of privacy and may even feel insecure if it is not provided [9]. Due to the poor

support for location privacy in existing friend-locator products, it is sometimes not possible to
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detect nearby friends if location privacy is desired. The challenge is to design a communication-

e�cient friend-locator LBS that preserves the user's location privacy and yet enables automatic

detection of nearby friends.

To address the challenge, we develop a client-server, location-privacy aware friend-locator

LBS, called the FriendLocator. It �rst employs a grid structure for cloaking the user's

location into a grid cell and then converts it into an encrypted tuple before it is sent to the

server. Having received the encrypted tuples from the users, the server can only detect proximity

among them, but it is unable to deduce their actual locations. In addition, users are prevented

from knowing the exact locations of their friends. To optimize the communication cost, the

FriendLocator employs a �exible region-based location-update policy where regions shrink

or expand depending on the distance of a user from his or her closest friend.

The rest of the paper is organized as follows. We brie�y review related work in Section A

and then de�ne our problem setting in Section A. The FriendLocator is presented in Section

A. Section A presents experimental results of our proposal and Section A concludes the paper.

Related Work

In this section, we review relevant work on location privacy and proximity detection.

Location privacy

Most of the existing location privacy solutions employ the spatial cloaking technique, which

generalizes the user's exact location q into a region Q′ used for querying the server [8]. Alter-

native approaches [10, 18, 7] have also been studied recently. However, all these solutions focus

on range/kNN queries and assume that the dataset is public (e.g., shops, cinemas). In contrast,

in the proximity detection problem, the users' locations are both queries and data points that

must be kept secret.

Proximity detection

Given a set of mobile users and a distance threshold ε, the problem of proximity detection is to

continuously report all events of mobile users being within the distance ε of each other. Most

existing solutions (e.g., [2]) focus on optimizing the communication and computation costs,

rather than location privacy.

Recent solutions were proposed [15, 12] to address location privacy in proximity detection.

Ruppel et al. [15] develop a centralized solution that applies a distance-preserving mapping

(i.e., a rotation followed by a translation) to convert the user's location q into a transformed

location q′. Unfortunately, Liu et al. [11] point out that distance-preserving mapping can be
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easily attacked. Mascetti et al. [12] employ a server and apply the �lter-and-re�ne paradigm

in their secure two-party computation solution. However, it lacks distance guarantees for the

proximity events detected by the server, and leads to low accuracy when strong privacy is

required. Unlike our approach, the central server in their proposal knows that a user is always

located within his or her cloaked region.

Our solution is fundamentally di�erent from the previous solutions [15, 12] because we

employ encrypted coordinates to achieve strong privacy and yet the server can blindly detect

proximity among the encrypted coordinates.

Problem De�nition

In this section we introduce relevant notations and formally de�ne the problems of proximity

detection and its privacy-aware version.

In our setting, a large number of mobile-device users form a social network. These mobile

devices (MD) have positioning capabilities and they can communicate with a central location

server (LS). We use the terms mobile devices and users interchangeably and denote the set of

all MDs (and their users) in the system by M ⊂ N.
The friend-locator LBS noti�es two users u, v ∈ M|u 6= v if u and v are friends and the

proximity between u and v is detected. Given the distance thresholds ε and λ, the proximity

and separation of two users u and v are de�ned as follows [2]:

1. If dist(u, v) ≤ ε, then the users u and v are in proximity;

2. If dist(u, v) ≥ ε+ λ, then the users u and v are in separation;

3. If ε < dist(u, v) < ε + λ, then the service can freely choose to classify users u and v as

being either in proximity or in separation.

Here, dist(u, v) denotes the Euclidean distance between the users u and v. The parameter

ε is called the proximity distance, and it is agreed/selected by u and v. The parameter λ ≥ 0 is

a service precision parameter and it introduces a degree of freedom in the service. As di�erent

pairs of friends may want to choose di�erent proximity distances, we use ε(u, v) to denote the

proximity distance for the pair of users u, v ∈M. For simplicity we assume mutual friendships,

i.e., if v is a friend of u, then u is a friend of v, and we let the proximity distance to be

symmetric, i.e., ε(u, v) = ε(v, u) for all friends u, v ∈M.

A proximity noti�cation must be delivered to MDs when proximity is detected. Any sub-

sequent proximity noti�cation is only sent after separation have been detected.

The friend-locator LBS must be e�cient in terms of mobile client communication and

provide the following privacy guarantees for each user u ∈ M: (i) The exact location of u is
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never disclosed to other users or the central server. (ii) User u only permits friends to detect

proximity with him.

Proposed Solution

In this section we propose a novel, incremental proximity detection solution based on encrypted

grids. It is designed for the client-server architecture, it is e�cient in terms of communication,

and it satis�es user location-privacy requirements (see Sec. A).

Grid-based encryption

Let us consider three parties: two friends, u1 and u2 ∈M, and the location server (LS). Both

users can send and receive messages to and from LS. User u1 is interested in being informed

by LS when user u2 is within proximity and vice versa.

Assume that users u1 and u2 share a list of grids, where a grid index within the list is

termed level. Grids at all levels are coordinate-axis aligned and their cell sizes, i.e., width and

height, at levels l = 0, 1, 2, ... are �xed and equal to L(l). We let L(l) = g · 2−l, where g is some

level zero cell size. Then sizes of cells gradually decrease going from lower to higher levels, level

zero cells being the largest.

Each column (row) of each of these grids is assigned a unique encryption number. A grid

within the list, together with encryption numbers, constitutes a Location Mapping Grid (LMG).

Each user generates such a list of LMGs utilizing two shared private functions L and ψ, where

Ψ : N 7→ N is a one-to-one encryption function (e.g., AES) mapping a column/row number to

an encryption number.

Incremental proximity detection

Assume that users u1 and u2 use an LMG of some level l. Whenever a user moves into a new

cell of LMG, the following steps are taken:

(i) The user maps the current location (x, y) into an LMG cell (k,m)=(bx/L(l)c, by/L(l)c).
(ii)The user computes an encrypted tuple e = (l,α−,α+,β−,β+) by applying EΨ(l, k,m) =
(l,Ψ(k),Ψ(k+1),Ψ(m),Ψ(m+1)), where (α−,α+) and (β−,β+) are encrypted values of adjacent

columns k and k + 1 and adjacent rows m and m+ 1 respectively.

(iii) The user sends the encrypted tuple e to LS.

Since u1 and u2 use the same list of LMG, with the same encryption-number assignments

for each column and row, the LS can detect proximity between them by checking if the following

function is true:
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Γ(e1, e2) = (e1.l = e2.l) ∧ ((e1.α
− = e2.α

−) ∨ (e1.α
− = e2.α

+) ∨ (e1.α
+ = e2.α

−))
∧ ((e1.β

− = e2.β
−) ∨ (e1.β

− = e2.β
+) ∨ (e1.β

+ = e2.β
−)).

Parameters e1 and e2 are encrypted tuples delivered from users u1 and u2 respectively. Note

that since Ψ is a one-to-one mapping, Γ is evaluated to true if and only if ku1 or ku1 +1 matches

ku2 or ku2 + 1 and mu1 or mu1 + 1 matches mu2 or mu2 + 1, where (ku1 , mu1) and (ku2 , mu2)

are LMG cells of users u1 and u2 respectively.

In the extended version of this paper we prove that an LMG at level l can be used to

detect proximity with the following settings ε = L(l), λ = L(l) · (2
√

2 − 1), i.e., Γ is always

true when dist(u1, u2) ≤ L(l) and always false when dist(u1, u2) ≥ L(l) · 2
√

2. Every two

friends u1, u2 ∈ M choose an LMG level, called proximity level Lε(u1, u2) that corresponds

best to their proximity detection settings. Then our approach forces every user to stay at

the lowest-possible level such that few grid-cell updates are necessary. Only when proximity

between friends u1, u2 ∈M is detected at a low level, are they asked to switch to a higher level.

This repeats until required level Lε(u1, u2) is reached or it is determined that users are not in

proximity.

Figure A.1 illustrates the approach. It shows the geographical locations of two friends u1

and u2, and their mappings into LMGs at 4 snapshots in time. Note that lower level grids are

on top in the �gure. Assume that u1 and u2 have agreed on Lε(u1, u2) = 2 and have already

sent their encrypted tuples, for levels 0 and 1 to LS. Figure A.1a visualizes when LS detects

a proximity at level 0, but not at level 1. As Lε(u1, u2) > 0, nothing happens until a location

change. In Figure A.1b both users have changed their geographical location. User u2 did not

go from one cell to another at his current level 1, thus he did not report a new encrypted tuple.

User u1 however, changed cells at both level 1 and level 0, he therefore sends a new encrypted

tuple for level 0. The LS detects a proximity between u1 and u2 at level 0 and asks u1 to

switch to level 1, because Lε(u1, u2) > 0. Figure A.1c shows user LMG mapping when u1 has

delivered new encrypted tuple for level 1. Again, LS detects proximity at level 1 and commands

both users u1 and u2 to switch to level 2. When both encrypted tuples for level 2 are delivered

to LS, it detects the proximity at this level (see Figure A.1d) and, because 2 = Lε, proximity

noti�cations are sent to u1 and u2.

Note that the presented algorithms implement an adaptive region-based update policy. If a

user is far away from his friends, then he stays at a low-level grid with large cells, resulting in

few updates for the user's future movement. Only when the user approaches one of his friends,

he is asked to switch to higher levels with smaller grid cells. Thus, at a given time moment,

the user's current communication cost is not a�ected by the total number of his friends, but

by the distance to his closest friend.
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Figure A.1: Two-user proximity detection in the FriendLocator

Experimental Study

The proposed FriendLocator and a competitor solution, called Baseline , were implemented

in C#. In this section, we study their communication cost in terms of messages received by the

clients and the server. The network-based generator [4] is used to generate a workload of users

moving on the road network of the German city Oldenburg. A location record is generated for

each user at each timestamp.

Competitor Solution

The Baseline employs the �lter-and-re�ne paradigm for proximity detection among friend pairs.

Each user cloaks its location by using a uniform grid, and sends its cell to the server. Filtering

is performed at the LS, which calculates the min and max distances [14] between the cells ci
and cj of the users ui and uj . The LS then checks the following conditions:

1. If maxdist(ci, cj) ≤ ε, then LS detects a proximity.

2. If mindist(ci, cj) > ε, then LS detects no proximity.

3. If mindist(ci, cj) ≤ ε < maxdist(ci, cj), then users ui and uj invoke the peer-to-peer

Strips algorithm [2] for the re�nement step.

The resulting communication cost is lower than Strips due to the use of a centralized (un-

trusted) server. Observe that, the Baseline does not use encrypted tuples as in our Friend-

Locator solution, so it o�ers a weaker notion of privacy.

Experiments

We �rst study the impact of the proximity detection distance ε on the cost per user per times-

tamp (Fig. A.2a). Both Baseline and FriendLocator have similar performance at small ε
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(below 10). As ε increases, Baseline invokes the re�nement step frequently so its cost rises

rapidly. At extreme ε values (above 10000), most of the pairs are within proximity so the

frequency and cost of executing the re�nement step in Baseline are reduced. Observe that

the cost of FriendLocator is robust to di�erent values of ε, and its cost rises slowly when ε

increases. Figure A.2b shows the total number of messages during 40 timestamps as a function

of the total number of users in the system. Clearly, FriendLocator incurs substantially

lower total cost than Baseline . In Fig. A.2b the distributed messages represent peer-to-peer

messages.
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Figure A.2: E�ect of various parameters on the communication cost

Conclusion

In this paper we develop the FriendLocator, a client-server solution for detecting proximity

among friend pairs while o�ering them location privacy. The client maps a user's location into a

grid cell, converts it into an encrypted tuple, and sends it to the server. Based on the encrypted

tuples received from the users, the server determines the proximity between them blindly,

without knowing their actual locations. Experimental results suggest that FriendLocator

incurs low communication cost and it is scalable to a large number of users.

In the future, we plan to extend the proposed solution for privacy-aware proximity detection

among moving users on a road network, in which the distance between two users is constrained

by the shortest path distance between them.
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