
Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
DK-9220 Aalborg EAST
Denmark

A Mobile Solution for the
Home Care Sector in Herning

Municipality

DAT6

Aalborg University

June 2009

Group members: Lasse Soelberg soeldk@cs.aau.dk
Peter G. Poulsen pfnui@cs.aau.dk

Faculties of Engineering, Science and Medicine

Department of Computer Science

Title:
A Mobile Solution for the Home
Care Sector in Herning Munici-
pality

Project period:
DAT6,
2009-02-01 to 2009-06-11

Project group:
d620a

Group members:
Lasse Soelberg
Peter G. Poulsen

Supervisors:
Hua Lu

Number of copies: 5

Number of pages: 109

Abstract:

This project concerns the development
of a mobile solution for the Home Care
Sector in Herning Municipality. This
system guides the employees through
the day by providing a daily plan which
contains all needed information. The
project is motivated by two problems
with their current browser based sys-
tem; the client require access to the
central system at all times and there
is long response times when contact-
ing the central system. We solve these
problems by not using a browser based
system, this allows us to store the data
on the mobile clients. By storing the
data on the client we lower the amount
of communication needed and we solve
the problem of needing a connection at
all times.

Preface

This report is the result of our master thesis project for the DAT6 semester
at Aalborg University. The DAT6 semester is the second of two semesters
where we specialise in database technology. The first semester, DAT5, were
used to develop a business intelligence solution for Herning Municipality.
This semester we changed focus and are working on a new mobile system for
Herning Municipality. This is motivated by problems within their current
mobile system which we found out about during the development of the
DAT5 project.

We would like to thank Herning Municipality for cooperating, providing
data and help formulate a problem statement. We would also like to thank
Hua Lu for supervising us during the development of this project.

Lasse Soelberg

Peter G. Poulsen

5

6

Contents

1 Introduction 9

1.1 Scenario . 9

1.2 Goals for our Solution . 10

2 Analysis 13

2.1 Daily Plan . 13

2.2 Database . 13

2.3 Recovery . 26

2.4 Service . 30

2.5 Mobile Client . 31

2.6 Communication . 37

2.7 Security . 47

3 Design Overview 51

3.1 Architecture . 51

3.2 Models . 52

3.3 Data Access Layer . 55

3.4 Service . 56

3.5 Client . 57

4 Data Access 59

4.1 Generating the Daily Plan . 59

4.2 Writing Updates to the Database 66

5 Service 79

5.1 Service Implementation . 79

5.2 Configuration . 80

5.3 HomeCareService Implementation 81

5.4 Models Namespace Implementation 84

7

CONTENTS

6 Mobile Client 89
6.1 User Interface . 89
6.2 Communication . 92
6.3 Storing Data . 96
6.4 Models Namespace Implementation 100

7 Discussion and Conclusion 105
7.1 Discussion . 105
7.2 Conclusion . 106

Bibliography 109

8

Chapter 1

Introduction

This project concerns the development of a mobile solution for the Home
Care Sector in Herning Municipality. For this project Herning Municipality
have provided a dump of their database along with a guide to their current
mobile system. This project is motivated by two problems within the current
mobile system. The first is that the system is slow when communicating with
the central system. Herning Municipality have told us that getting a response
from the central system can take more than 30 seconds. The second problem
is that the current mobile client requires a connection to the central system
at all times. This gives problems since some citizens live in areas that doesn’t
have mobile coverage.

The solution has two main purposes; to provide the home care employee
with a daily plan which contains all information needed for that day and
updating the central system with delivered services.

1.1 Scenario

At the beginning of the work day the employees in the Home Care Sector
of Herning Municipality receives a daily plan. A daily plan contains all the
information the employee needs during that day. This includes the date of
the daily plan, a work period and a list of citizens to visit. The list of visits
contains information like name and address of the citizen along with a list of
services which should be delivered.

The employee deliver the services described on the daily plan to the cit-
izens. The delivered services have to be recorded in the central system so
Herning Municipality can account for the used resources. The recorded in-
formation includes time spent on a visit, start time for the given visit etc.

9

Introduction

1.1.1 Current System

Herning Municipality already have a mobile system for their Home Care
Sector. Each employee have an HP iPAQ hw6915 Mobile Messenger pda. The
current system is browser based which has both its strengths and weaknesses.
The strengths and weaknesses of the current system will be discussed later,
we are just going to describe the disadvantages we will be focusing on solving
here.

One of the weaknesses are that their current system require a contin-
ues connection to be used. This is a problem since it is not all citizens in
Herning Municipality that lives in a place with phone coverage. Another big
issue is that it is slow in use. Response times larger than 30 seconds while
communicating with the central system is not uncommon.

1.1.2 Limitations and Assumptions

We do not have time to implement a system with full functionality. We
are only going to implement a system that have the most basic functions
which is needed to generate a daily plan, get it to the employee and send
the information back to the central system. The limitations and assumptions
are:

• We are not going to implement many functions which the current sys-
tem contains. This could for example be the ability to record breaks,
move visits around and cancel visits on citizen requests. These func-
tions can be added at a later time.

• We assume that we do not have to update the central system in real
time. This is reasonable since the data is used to manage the used
resources. This has to be done over a long time so data missing for the
current day does not have much impact.

• We are not allowed to change the database structure. This is a limita-
tion since our system have to be build on an already working database.
If we changed the structure we might break their current systems;
CARE and MobileCARE.

1.2 Goals for our Solution

We want to make a mobile system that solves the two problems with the
current system. Namely it is slow and it requires a continues connection.

10

1.2 Goals for our Solution

This means that the system have to be optimised in regards to response
times so the employee does not have to wait for the system. It also have to
be implemented so it does not need access to the central server at all times.
The project focuses on implementing this for the standard scenario.

Besides the two goals we also have a number of criteria that we want to
achieve with our solution.

• Data Input at a Minimum: The employee should not have to in-
put much data into the system. This criteria should ensure that the
employees in Herning Municipality would actually use the designed
system.

• Data Quality: It is important to ensure high data quality within their
database. This means that we cannot insert the same row multiple
times and we have to insert valid data if possible.

• Sensitive Data: The data in the database is person sensitive. This
means that it should not be possible to intercept the data and get
a meaningful result. To ensure this criteria we have to ensure high
security on the communication parts.

The solution will consist of three parts. The data access layer which
handle the communication to the database. A service which handle commu-
nication between a mobile client and the data access layer. And finally a
mobile client which is used by the Home Care employees.

11

Introduction

12

Chapter 2

Analysis

This chapter contains an analysis of the key issues we will be focusing on.
Section 2.1 will focus on the daily plan. Section 2.2 will focus on the database
and how to retrieve the information needed for the daily plan. Section 2.3 will
focus on recovery to ensure no data is lost within the system. Section 2.4 will
focus on the service which binds our system together. Section 2.5 will focus
on the mobile client and the requirement to our mobile application. Section
2.6 focus on the communication between the service and the mobile client.
Section 2.7 focus on how to keep the data safe during the communication.

2.1 Daily Plan

This section will describe what information is needed on a daily plan. The
section is based on the manual for Herning Municipality’s current mobile
solution. This should allow us to ensure that our system deliver the same
information as the current system to the Home Care employees.

The information needed on the daily plan is shown in Table 2.1. The
information needed on each visit is shown in Table 2.2. The information
needed on each service is shown in table 2.3.

2.2 Database

Our scenario can be split into two separate tasks. The first is creating the
daily plan for a given home care employee and the second is updating the
database with the delivered services. These two tasks does not have anything
in common except they use the same data which means the data extracted
from the database will also be used to update the database.

13

Analysis

Employee Name: The employee can verify that the correct
daily plan was received.

Date: The employee can verify that the daily plan
is for the correct date.

Work Period: Used to show if the daily plan are for day(07-
15), evening(15-23) or night(23-07).

List of Visits: The visits the employee have to perform on
the given day. This list can contain a ran-
dom number of visits. Each visit contains an
amount of attributes.

Table 2.1: Information Needed on the Daily Plan

Citizen Name: Used to identify and address the citizen prop-
erly.

Citizen Address: Used to find the citizen.
Citizen Key: Describes where to find a key if needed.
Citizen City: Used to find the citizen.

Citizen Postcode: Used to find the citizen.
Citizen Phone: Used to contact the citizen if needed.

Visit Start: The time the visit is supposed to begin.
Visit End: The time the visit is supposed to end.

List of Services: The list of services the employee have to de-
liver to the citizen. The list can contain a
random number of services. Each service
have a set of attributes.

Table 2.2: Information needed for each Visit

Service Description: Brief description of the service which have to
be delivered.

Service Duration: Duration of the service.
Service Details: Detailed information for the service. This

could be if the employee needs a tool to per-
form the service.

Table 2.3: Information needed for each Service

14

2.2 Database

2.2.1 Retrieving the Daily Plan

To retrieve the necessary information from the database we need to access
seven different tables. These are AID LEVEL, AID NEED TYPE, AID TI-
ME HISTORY, CLIENT, PERSONNEL, PROCEDURE CODE and POST-
CODE. The foreign key relationship between these tables can be found on
Figure 2.1. An arrow from AID TIME HISTORY to PERSONNEL means
that AID TIME HISTORY contains a foreign key constraint for PERSON-
NEL. The figure contains 9 tables, but CLIENT MODULE and REFERRAL
are only used to show that a foreign key exist all the way from AID TIME HIS-
TORY to CLIENT, no data are retrieved from any of the two tables. The
remainder of this section describes each of the seven tables and any problems
the design of the tables might cause. Each description contains a table with
4 columns. First column is the attribute name. Second column is if the
attribute is a part of the primary key either (Y)es or (N)o. Third column is
if the attribute is null-able either (Y)es or (N)o. Fourth column is the data
type of the attribute, CHAR(10) means CHAR(10BYTE).

Figure 2.1: Table Relations Within the Database.

• AID TIME HISTORY: This table contains a row for each service
which should be delivered over a given time period to a given citizen.
This makes the table the ideal entry point for creating the daily plans,
since there is a 1-to-1 correspondence between a row in this table and
a service on the daily plan. The table contains the attributes INI,
DATE FR, DATE TO and WEEKDAY NO which identify all the ser-
vices the employee should deliver on a given date. The remainder of
the attributes found on Table 2.4 on the next page are either foreign
keys or written on the daily plan. No foreign key constraint exist on
MODULE TYPE NO, AID NEED TYPE NO and AID LEVEL even

15

Analysis

though they are the primary key of the AID LEVEL table. This miss-
ing foreign key is also the only drawback of this table since it allows
for invalid values for each of these attributes.

Attribute Primary Key Null-able Data Type

INI N Y CHAR(10)
DATE FR Y N DATE
DATE TO N Y DATE
WEEKDAY NO Y N NUMBER
C CPR NO Y N CHAR(10)
START TIME Y N CHAR(4)
NOTE N Y VARCHAR2(355)
MODULE TYPE NO Y N NUMBER
AID NEED TYPE NO Y N NUMBER
AID LEVEL Y N NUMBER

Table 2.4: AID TIME HISTORY Attributes.

• AID NEED TYPE: This table describes the different services that
can be delivered to citizens. This could for example be cleaning or
bathing. This table is used to get the description for each service that
should be delivered. The needed attributes from this table can be found
in Table 2.5.

The table has one drawback it is inconsistently using the NEED TEXT
attribute. This means that the NEED TEXT attribute can contain two
different kinds of values. The first is an actual description of a service
and the second is a procedure code. If it contains a procedure code the
attribute PROCEDURE CODE will contain a value.

Attribute Primary Key Null-able Data Type

MODULE TYPE NO Y N NUMBER
AID NEED TYPE NO Y N NUMBER
NEED TEXT N Y VARCHAR2(40)
PROCEDURE CODE N Y VARCHAR2(10)

Table 2.5: AID NEED TYPE Attributes.

• AID LEVEL: This table describe how critical help is needed. This
could for example be that someone needs 50 minutes of help with clean-
ing. The information gained from this table is the duration of each

16

2.2 Database

service which should be delivered. The attributes of this table can be
found in Table 2.6.

Attribute Primary Key Null-able Data Type

MODULE TYPE NO Y N NUMBER
AID NEED TYPE NO Y N NUMBER
AID LEVEL Y N NUMBER
DURATION N N NUMBER

Table 2.6: AID LEVEL Attributes.

• CLIENT: This table contains the information on all the citizens which
are receiving or have received services. The table is used to gain all
information regarding the citizens. This could for example be name
and address. The needed attributes can be found on Table 2.7.

The table contains one problem which is that POSTCODE, foreign key
to the POSTCODE table, is null-able. This means that it is possible
that it does not exist.

Attribute Primary Key Null-able Data Type

C CPR NO Y N CHAR(10)
NAME N Y VARCHAR2(50)
SURNAME N Y VARCHAR2(50)
ADDR STRT N Y VARCHAR2(55)
RES PHONE NO N Y CHAR(12)
KEY NO N Y VARCHAR2(20)
RES POSTCODE N Y CHAR(4)

Table 2.7: CLIENT Attributes.

• POSTCODE: This table is used to translate postcodes into city names.
The needed attributes can be found on Table 2.8.

Attribute Primary Key Null-able Data Type

POSTCODE Y N CHAR(4)
CITY N Y VARCHAR2(40)

Table 2.8: POSTCODE Attributes.

17

Analysis

• PERSONNEL: This table contains information on the employees.
The table is used to extract the employee’s name, NAME and SUR-
NAME columns, for verification reason. The needed attributes can be
found on Table 2.9.

Attribute Primary Key Null-able Data Type

INI Y N CHAR(10)
NAME N Y VARCHAR2(34)
SURNAME N Y VARCHAR2(34)

Table 2.9: PERSONNEL Attributes.

• PROCEDURE CODE: This table is used to translate the procedure
code from AID NEED TYPE into descriptions of the given service.
The needed attributes can be found on Table 2.10

Attribute Primary Key Null-able Data Type

PROCEDURE CODE Y N VARCHAR2(10)
DESCRIPTION N N VARCHAR2(60)

Table 2.10: PROCEDURE CODE Attributes.

The table designs gives us certain problems. These problems are described
below with possible solutions.

2.2.1.1 Inconsistent Use of NEED TEXT in AID NEED TYPE

The problem is that the NEED TEXT attribute in AID NEED TYPE can
contain both a procedure code and a description. If the first is the case the
attribute PROCEDURE CODE will contain a value otherwise it will contain
null. To get the description of a procedure code we have to access the table
PROCEDURE CODE. The scenario is shown in Figure 2.2. There are three
possible solutions for this problem:

• The first solution is to do a custom implementation to solve the prob-
lem. This could be to first queue AID NEED TYPE, then identify the
procedure codes by using the PROCEDURE CODE attribute. The
last step would be to make a second query on PROCEDURE CODE
based on the identified procedure codes. This allow us to not access
PROCEDURE CODE at all if no procedure codes are identified.

18

2.2 Database

• The second solution is to leave the procedure codes in the daily plan.
This would assume that the employee knew what all the procedure
codes meant which is unreasonable to believe.

• The last solution is described in [LP76] and uses the three order logic
described in [Cod86]. This is achieved by using the outer join in SQL.
The drawback of this approach is that we always have to check for null
values even on not null-able attributes. This makes the application
harder to maintain.

We have chosen to do a custom implementation. The reason for choosing
a custom implementation is that the drawbacks of the other approaches are
too much. The second approach would require all the employees to know all
the procedure codes, which is unreasonable. The last approach could work
but the join operation would make it hard to understand and maintain the
code.

Figure 2.2: Inconsistent Use of NEED TEXT.

2.2.1.2 No Foreign Key to AID LEVEL

The problem of no foreign key constraint from AID TIME HISTORY to
AID LEVEL or AID NEED TYPE means that it is possible to have in-
valid values in AID TIME HISTORY. Invalid values have the consequence
that service description and service duration can not be extracted from the
database. The two values have different impact on the daily plan and will
be treated as two different problems. Another problem can be derived from
the missing duration values.

• The problem of a missing service description can be handled in two
different ways. The problem occur if the combination of MODULE TY-
PE NO and AID NEED TYPE NO is invalid.

– The first is to remove the service from the daily plan. This gives
the impact that the employee have no chance to deliver the service.
Furthermore if services are removed there is a chance that an

19

Analysis

empty visit could be left in the daily plan. In this case the visit
should also be removed and citizens might complain because they
were expecting a visit.

– The second is to leave the service on the daily plan. This would
show the employee that something were supposed to be delivered.
In this case it will be up to the employee to find out which service
should be delivered.

• The problem of a missing duration can only be handled in one way since
there is nothing to base a calculation on. The problem occur when
the combination of MODULE TYPE NO, AID NEED TYPE NO and
AID LEVEL is invalid.

– The way is to leave a default value in case the value can not be
extracted from the database. This allow the employee to deliver
the service and to calculate the needed time by themselves.

• The last problem is derived from missing duration values for services.
The problem consist of calculating the end time for the visits since no
duration nor end time for each visit is present within the database.
There are two possible ways to calculate the end time.

– The first way is using the formula EndTime = StartT ime +∑
Service.Duration. Where Service.Duration is the duration of

a service which have to be delivered on the given visit. This ap-
proach has the drawback that it will not calculate the correct end
time if services are missing their duration value. In case of missing
duration values this calculation will give too short visits.

– The second way is using the formula EndTime = NextV isit.Start−
Transport. Where NextVisit.Start is the start time of the next
visit and the Transport is the amount of time it takes to drive
from the current visit to the next, this value can be extracted
from the database. The drawback of this approach is that it re-
quire a Transport value to be present for all visits and the last
visit will not have a next visit to base the calculation on. If the
Transport value is missing in the database this calculation will
give too long visits.

2.2.1.3 Null-able Citizen Address Attributes

The problem is that some of the attributes which describe the address of the
citizen are null-able. If these values can not be extracted from the database

20

2.2 Database

it will be impossible for the employee to find the given citizen. This problem
only exist in theory since the database is filled with information from the
National Register of Persons, which is updated automatically. This means
that even if the attributes are null-able they should never in practise be left
as null.

2.2.2 Updating the Database

The second part of the data access layer have to update the database with the
delivered services. This information goes into the tables AID DELIVERED
and PP REG. AID DELIVERED has an entry for each delivered service and
PP REG has an entry for each of the following events: Start of day, end
of day, transport, visit and pause. An entry could for example be that the
employee started the day at 07:30 or that an employee visited a citizen from
08:24 to 08:42.

2.2.2.1 AID DELIVERED

AID DELIVERED contains 12 attributes which are all part of the primary
key. The 12 attributes along with an explanation is shown in Table 2.11.

C CPR NO: The CPR number of the citizen whom re-
ceived the service. The citizen have to exist
within the CLIENT table but no foreign key
constraint exists.

REFERRAL DATE: The date of referral. It has nothing to do
with the actual service and it can be ex-
tracted from the CLIENT table.

MODULE TYPE NO: The main category of the delivered service.
This could be a numeric value representing
nursing. The value have to exist in the ta-
ble MODULE TYPE but no foreign key con-
straint exists.

AID NEED TYPE NO: Numeric value representing the service
which have actually been delivered. The
combination of MODULE TYPE NO and
AID NEED TYPE NO should exist in the
table AID NEED TYPE but no foreign key
constraint exists.
Table 2.11 – Continued on Next Page

21

Analysis

Table 2.11 – Continued from Previous Page
AID LEVEL: Numeric value indicating the duration

of the given delivered service. The
combination of MODULE TYPE NO,
AID NEED TYPE NO and AID LEVEL
should exist in AID LEVEL but no foreign
key constraint exists.

WEEKDAY NO: A numeric value representing the given week-
day the service were delivered. Monday is 1,
Tuesday is 2 etc.

START TIME: The time of the day the employee started de-
livering the given service. This could for ex-
ample be 1845.

PERSON NO: If multiple people were needed to deliver the
given aid. The first employee have number
1, second 2 etc. Our system will not con-
tain functionality to change this value and
the default value 1 will always be used.

PLAN DATE: The date the service were supposed to be de-
livered. This could be different than the ac-
tual date if the citizen and employee agrees
to change it.

DELIV BY INI: A unique identifier for the given employee
who delivered the service. The unique iden-
tifier consist of 10 digits.

DELIV DATE: The date the service were actually delivered.
This could be different from the planned date
in case the service were planned for 23:55 but
delivered at 00:05.

PP REG ID: DELIV BY INI, DELIV DATE and
PP REG ID should have been a foreign
key to PP REG according to the comments
in the database. No foreign key constraint
exists however.

Table 2.11: AID DELIVERED Attributes.

22

2.2 Database

2.2.2.2 PP REG

The second table is PP REG. This table contains 26 attributes, 3 of them
are part of the primary key, namely INI, REG DATE and ID. This table
also have attributes which are not used. These attributes are CAR TYPE
and TRIPCOUNTER. All attributes except those which are not used are
explained in Table 2.12

INI: Unique identifier for the given employee
who participated in the event. The iden-
tifier consist of 10 digits and it should exist
in the PERSONNEL table but no foreign
key constraint exists.

REG DATE: The date the event occurred.
ID: Unique number assigned to each event to

make them unique for the given day. This
have nothing to do with the actual event.

EVENT TYPE ID: Used to describe the different events. This
is a number between 1 and 5. 1 - Start day,
2 - End day, 3 - Transport, 4 - Visit, 5 -
Pause.

START TIME: The time of the day when the given event
started.

DURATION: The duration of the given event in min-
utes.

C CPR NO: The CPR number of the citizen if the
event is a visit. Null otherwise. The CPR
number should exist in the CLIENT table
but no foreign key constraint exists.

PAUSE ID: Unique number identifying which kind of
pause were taken, only filled if the event
was a pause. Null otherwise. We will
not implement the functionality to record
pauses.

END TIME: The time of the day when the given event
ended.

DISP START TIME: The time of the day when the given event
was suppose to start.

Table 2.12 – Continued on Next Page

23

Analysis

Table 2.12 – Continued from Previous Page
MODULE TYPE NO: The type of visit, nursing, home aid etc.

Only filled if the event is a visit. Null
otherwise. The value should exist in the
MODULE TYPE table but no foreign key
constraint exists.

ORIG DATE: The date the event was suppose to occur.
ACT DATE: The date the event actually occurred.

ORIG START TIME The time of the day when the given event
was suppose to start.

ACT START TIME: The time of the day when the given event
started.

ORIG DURATION: The duration the event was supposed to
last.

ACT DURATION: The duration the event lasted.
CLIENT ABORTED: Flag to indicate if client aborted the visit.

We will not implement the functionality
to let clients abort a visit.

PDA CHANGED: Flag to indicate if the change were made in
mobileCARE. In our case always negative.

CARE CHANGED: Flag to indicate if the change were made
in CARE. In our case always negative.

APPROVED CHANGE: User who approved the change.
LAST MODIFIED INI: Employee who last modified the entry. In

our case this will be the employee who per-
formed the event. The value should exist
in PERSONNEL but no foreign key con-
straint exists.

LAST MODIFIED TIME: The date when the last modification hap-
pened.

ON BEHALF OF INI: Ini of the employee the modification were
done in behalf of, if someone else did it.
This value should exist in the PERSON-
NEL table but no foreign key constraint
exists.

Table 2.12: PP REG Attributes.

24

2.2 Database

2.2.2.3 The Information Needed to Populate the Tables

We need to receive enough data from the mobile client to fill out the above
two tables. For this purpose we have identified the minimum amount of data
we need to sent. The reason we only want to sent the minimum amount is
that we want to lower the communication cost. The overall needed data can
be found on Table 2.13 and the data for each visit can be found on Table
2.14.

EmployeeID: The unique identifier of the employee. This is needed as
insert value and to retrieve the same information which
created the daily plan.

StartDayTime: The time of the day when the employee started working.
This is needed in PP REG as one of the events.

EndDayTime: The time of the day when the employee stopped working.
This is needed in PP REG as one of the events.

Table 2.13: Needed Overall Update Data from the Mobile Client.

StartTime: The time of the day when the employee started the visit.
This is needed in PP REG.

EndTime: The time of the day when the employee stopped the
visit. This is needed in PP REG.

PlanDate: The date the visit were planned to happen. This is
needed as insert value and to retrieve the needed data
from other tables.

ActualDate: The date the visit actually happened. This is needed
in PP REG as both REG DATE and ACT DATE, fur-
thermore it will also be the one of the foreign key values
in AID DELIVERED.

CitizenCPR: The CPR number of the citizen which the visit were
delivered to. This is needed to ensure that the extracted
data from other tables are assigned to the correct visits.
It is also needed as insert value for PP REG.

Table 2.14: Needed Update Data for each Visit from the Mobile Client.

2.2.2.4 Problems With Updating

The design of the two tables gives us some problems. These problems will be
outlined in the remainder of this section and solutions to each problem will
be proposed.

25

Analysis

Missing External Foreign Keys: This problem is a lack of foreign keys
to other tables. This could for example be CLIENT or PERSONNEL. This
problem has two different solutions based on the attributes in question.

• The first solution is for the tables which have foreign keys in AID TI-
ME HISTORY. These attributes will be considered to correct since we
are extracting them from AID TIME HISTORY. This means that we
do not have to do anything further for these values. Examples of such
values are C CPR NO and INI.

• The second solution is for the tables which does not have foreign key
constraints in AID TIME HISTORY. This means that the data might
be invalid. In these cases we can insert the values extracted from
AID TIME HISTORY since we have no possible ways to deduct what
the values are for the invalid data. Examples of such attributes are
MODULE TYPE NO, AID NEED TYPE NO and AID LEVEL.

Missing Foreign Key on AID DELIVERED: This problem is a miss-
ing foreign key constraint on AID DELIVERED to PP REG. This foreign
key constraint were meant to exist, which can be seen from the comments
on the attributes in AID DELIVERED. There is only one solution to this
problem; to ensure that the data is inserted into PP REG first. This allow
us to refer the rows from AID DELIVERED to the events in PP REG.

2.3 Recovery

There are two reasons for implementing data recovery. These are explained
below.

• The first reason is to ensure fast response time for the clients. This is
in the case of multiple clients requesting an update at the same time.
It will not be possible to insert all the request within a limited time
range so we have to store the data while waiting for it to be inserted
into the database.

• The second reason is to ensure that no data is lost in case of failures.
The different types of failures are explained in the next chapter. Our
recovery scheme will only cover transaction failures and system failures.

The remainder of this section is based on the information from [Gra81]
and [HR83].

26

2.3 Recovery

2.3.1 Failures

The failures can be split into three categories; transaction failure, system
failures and disk failure. This section will describe the categories along with
the data loss in case of a failure.

• Transaction Failure: Transaction failure happens when a condition
within the system means that the transaction could not happen. This
could happen if the connection to the database is lost, for example if
the database crashes. This kind of failure does not give any data loss
since the data will still be present within the system.

• System Failure: System failure happens when the system shutdowns
unexpectedly. This could happen if the power turned off during a
thunderstorm. This kind of failure suffers from data loss as all volatile
storage, like cache and main memory, is lost.

• Disk Failure: Disk failures happens when the non-volatile storage
stops working. This could happen if a fire destroys the entire system.
This kind of failure gives the most data loss as both volatile and non-
volatile storage is lost.

2.3.2 Recovery Techniques

This section will describe the recovery technique we are going to use. This
recovery scheme will not cover disk failures since techniques to approximate
stable storage is outside the scope of this project. This means that this
section will focus on system failures since transaction failures can be handled
by repeating the insert operation.

There are two possible recovery schemes; Time-Domain Addressing and
Log-Based Recovery. We have chosen to use Log-Based Recovery since we do
not need the feature of getting a view of how the database looked at a given
point in time. The Log-Based Recovery scheme builds around two operations;
Undo and Redo. In our case we will only need the Redo operation since we
are only inserting into the database. This means that our insert operation
have to be idempotent so we can be sure that a row is only inserted one time
no matter how many times the insert operation is done.

The log stores all the data received from the clients. The data is stored
in this log file until it is successfully committed to the database. After each
commit we can do a checkpoint and remove the already committed data from
the log file. This means that only a minimum have to be redone in case of a
system failure.

27

Analysis

2.3.3 Concurrency

The log file on the server will be accessed by all the clients and a high degree
of concurrency will be going on. This section will focus on the solution to
handle the concurrent access to the shared resource; the log file. This section
is based on [Han72].

The way to handle the many update requests are by using mutual ex-
clusion to ensure that only one thread access the log file at any given time.
There are two different kinds of threads which will try to access the file. The
first is the update requests from the clients which will write their update
information into the log file. The second kind is the thread which will in-
sert the data into the database. None of these threads will be given priority
to the log file since the read operation is done infrequently since high data
quality has to be ensured. This means that the insert operation will be time
consuming since many checks have to be done and data have to be extracted
from the database.

2.3.4 Implementation

The log can be implemented with different approaches. The remainder of
this section will focus on the strengths and weaknesses of each approach.
This will be illustrated using an example with an UpdateObject containing
two delivered visits. The used data can be found in Table 2.15.

UpdateObject

EmployeeID:999999999 StartDayTime:0930 EndDayTime:1045
First Visit

StartTime:0934 EndTime:1004 PlanDate:01-10-2008
ActualDate:01-10-2008 CitizenCPR:9999999999

Second Visit
StartTime:1010 EndTime:1040 PlanDate:01-10-2008

ActualDate:01-10-2008 CitizenCPR:9999999998

Table 2.15: Example Data.

2.3.4.1 Text File

One possibility is implementing the log as a plain text file. This is optimal
regarding disk space since the bare minimum can be stored. The solution
has some drawbacks since all parsing have to be done by us. Furthermore it
will be hard to maintain the solution if changes are happening to the input.

28

2.3 Recovery

An example of storing the example update object as a plain text file can be
found in Figure 2.3.

Figure 2.3: Result using Plain Text Recovery.

2.3.4.2 XML File

Another possibility is to implement the log as an XML file. This gives some
overhead in storage as all the tags for each object are stored. The optimal
part of this approach is that reading and writing to XML is supported by
the .NET framework. This means that it will be easy to maintain and up-
date in case of changes to the update objects. An example of the stored
UpdateObject can be found on Figure 2.4.

Figure 2.4: Result using XML Recovery.

2.3.4.3 Conclusion

We have decided to use the XML implementation of the log file. The reason
is that the storage overhead caused by using XML should rather small since
the update objects are removed from the file after being successfully inserted
into the database. Furthermore the support of the .NET framework will
make it easier to maintain and update the recovery.

29

Analysis

2.3.5 Recovery Based Problem

Recovery gives us one problem because of a poorly defined primary key in
PP REG. The problem is that the primary key can not be used to ensure
uniqueness. This means that the primary key allows for us to insert the
same data multiple times in case of a redo action after a crash. Table 2.16
shows the primary key attributes of two events done by the same employee
on the same date. It can be seen that the first two attributes have the same
value. The ID is assigned by our application. This means that it can not be
assigned before we know which values are already in use and if some of the
rows have already been inserted.

Event 1
INI:9999999999 REG DATE:08-10-01 ID:1

Event 2
INI:9999999999 REG DATE:08-10-01 ID:2

Table 2.16: Recovery Problem Example.

The solution is to use other attributes when checking for uniqueness. The
chosen attributes are INI, REG DATE, EVENT TYPE ID, START TIME,
END TIME and C CPR NO. These attributes can ensure uniqueness in al-
most all cases.

2.4 Service

The service binds the entire system together. It communicates with both the
mobile client and the database.

2.4.1 Requirements

Even though the service is important, there aren’t many requirements for it,
since most of the functionality is implemented in either the client or the data
access layer. The requirements we have identified are:

1. Platform independent communication.

2. Implementation should be hosted in an existing system.

3. Easy to develop and maintain.

30

2.5 Mobile Client

2.4.2 Our Choice

The service implementation should be able to run on the already existing
servers at Herning Municipality. The current system is hosted in a Windows
server environment which gives us three different options to implement a
service in:

1. PHP

2. Classic ASP

3. .NET

The existing environment already hosts .NET pages and services and
thus have support for developing solution based on the .NET framework.
This makes the choice easy for us, since we are already familiar with .NET
development using C# and Visual Studio.

2.5 Mobile Client

An important part of our solution is the mobile client. It is through this
client that the users will interact with the system, and as such it is a very
important part of our solution.

In this section we will start with examining the already existing solution.
We will then define requirements for our solution. And finally we will decide
on an implementation language.

2.5.1 The Current System

The existing mobile solution that is used by Herning Municipality is browser
based. The devices used are HP iPaq hw6915 Mobile Messenger, which is
shown in Figure 2.5. The operating system used is Windows Mobile 5.0 and
the browser is Mobile Internet Explorer. Figure 2.6 shows the main menu of
the existing system.

2.5.1.1 Advantages with the current system

There are two main benefits of using a browser based system. The first is
that the clients don’t have to be updated with new versions of the system,
since it resides entirely on a server. If there is an update to the system, all it
takes is to update the server and all clients will automatically be using the
new version.

31

Analysis

Figure 2.5: HP iPAQ hw6915 Mobile Messenger.

Figure 2.6: Main menu for the existing mobile client solution.

32

2.5 Mobile Client

Another advantage is that all you need on a client is a browser, which,
at least in theory, makes it easy to change platform. The reason why it is
only in theory is because the html output is specifically generated towards a
240x240 pixel screen, which is what the HP iPAQ hw6915 uses.

2.5.1.2 Disadvantages with the current system

There are two major disadvantages with using a browser-based solution. The
first one is that there always have to be network access. No network access
means no contact to the server and thus the system is unusable. This is one
of the problems that Herning is facing with the current system. There are
not coverage throughout the Municipality.

Another disadvantage is that there needs to be transferred more data
across the network, since all markup for the page has to be delivered and not
only the data to display, and this can be a problem if the transfer rate of the
network isn’t high enough.

2.5.2 Requirements

There are several requirements that a client for the system should fulfil.

1. It should be useable on different devices, such that the Municipality
are not limited in their choice of mobile device.

2. It has to be able to communicate with a central service.

3. It should not rely on a continues network connection.

4. It should be possible to close the client without loosing information
and on restart of the client it should continue where it left.

2.5.3 Implementation Language

There are several possibilities for choosing a programming language for the
client implementation. The operating system on the existing mobile devices
is Windows Mobile 5 which natively supports programs written in C++ and
C#/VB using the .NET Compact Framework. Hewlett Packard has also
added a Java Micro Edition virtual machine to the system.

Being Windows Mobile there is also the possibility to add further runtime
environments to the system if needed, which for example can add support for
using Python as the implementation language. We will however only focus
on the more established C-style languages namely C++, C# and Java.

33

Analysis

In the following we will examine the three possibilities before deciding on
a language.

2.5.3.1 C++

C++ compiles directly into machine code. This can make the solution very
efficient, both in terms of execution time and the amount of system memory
used. It as also a well supported language, so there exists a lot of support
for it, both in regards to tools, Visual Studio for example, and in regards to
good information on the internet.

One of the biggest problems with native code (C/C++) is the use of
memory. Especially when it comes to cleaning up the memory. Since it is
an unmanaged environment there is no garbage collection and this puts the
responsibility of cleaning up memory on the developers. This can result in
memory leaks which can have severe side effects on mobile devices. Especially
Nokia phones have had problems where memory allocated to objects that
weren’t cleaned up would continue to be used by those objects, even though
the phones have been turned off and on, eventually rendering the phone
useless when all memory is used and with no way of clearing the memory
unless the phone is sent to the manufacturer for a hard reset.

Another problem with using C++ is the lack of portability of the com-
piled programs. Programs are compiled specifically to the platform they are
run on. This means that programs made for Windows Mobile 5.0 won’t nec-
essarily work on newer or older versions of Windows Mobile, let alone on
devices not using Windows Mobile.

2.5.3.2 C#

For a managed environment Microsoft has .NET Compact Framework, which
makes it possible to use either C# or Visual Basic as implementation lan-
guage. Being a managed environment, .NET takes care of all memory allo-
cation as well as using garbage collection for cleaning up the memory. This
removes any issues of persisting memory leaks across restarts of the client
software.

Programs written in C# compiles to MSIL (MicroSoft Intermediate Lan-
guage), which is the byte code language for the .NET framework. Using this
intermediate language makes programs somewhat portable. They can be
run on any version of Windows Mobile that has .NET Compact Framework
installed, but not on any other architecture.

Being a modern language, C# comes with features not present in the
other options, for example C# Generics[MSD05] and LINQ[MSD09]. The

34

2.5 Mobile Client

language also features an extensive standard class library, even though it is
not as huge as the one for the full version of .NET.

2.5.3.3 Java Micro Edition

Java Micro Edition (Java ME, formerly J2ME) is a widely used language
for platform independent programs running on various mobile devices. Al-
most all devices comes with a Java environment (for example the Symbian
platform) or has the possibility of installing one (for example the Windows
platform). The only platform today that doesn’t support Java is the iPhone
OS for Apple’s iPhone. This makes Java ME very portable, since it runs on
pretty much anything.

Given its large distribution, Java ME has a lot of support. There are a lot
of information on the internet as well as good tool support. Both Eclipse1 and
NetBeans2 are good choices for development environments. There also exist
many open source projects that can add support for features not included in
the language, such as JSON support3.

A problem with Java ME is that it is an ageing platform. It is based on
Java 1.3, which has been around since the early 2000’s. So no support for
newer language constructs, such as Generics which was introduced with Java
1.5. Its standard library is also limited compared to Java Standard Edition.

2.5.4 Conclusion

Our choice of implementation language should adhere to the requirements
described in Section 2.5.2. Requirements 2-4 are fulfilled for the three differ-
ent choices, they are all capable of communicating on a network and storing
data locally. The difference is in portability, how easy it is to develop in the
given language and how much prior experience we have with it.

2.5.4.1 C++

If the only requirement for the client was to make it as efficient as possible,
C++ would be the best choice, since it is unmanaged and thus doesn’t sit
on top of another framework. Development is more difficult than with a
managed language since the developers need to take care of garbage collection
themselves.

1http://www.eclipse.org
2http://www.netbeans.org
3http://www.json.org

35

Analysis

Portability is not high with a C++ based solution. It is tied very much
to a single platform. There are no guarantees that a program will run on
different versions of Windows Mobile. Especially not future versions, since
they can have changed features that will break existing programs.

As a final note most of our development efforts during our studies have
been done in other languages than C/C++, making our development expe-
rience with unmanaged languages low.

2.5.4.2 C#

C# as the implementation language seems as a good choice when it comes
to features within the language and in the standard class library. Devel-
opment can be done inside Visual Studio which have a positive impact on
productivity.

The biggest downside is that it has to be run on a Windows platform,
although that includes Windows CE, Windows Mobile 5, Windows Mobile 6
and any future versions of Windows Mobile.

Our programming experience with C# is high, it has been the main
language for development during our time at the university. However that
has been in relation to desktop and server development. We have never done
any development for Windows Mobile devices.

2.5.4.3 Java Micro Edition

A big strength of Java ME is that it is platform independent and widely
supported by mobile manufacturers. This makes it a good choice when it
comes to developing highly portable mobile applications.

Java ME is not as feature rich as C# and the standard library is not as
extensive as the .NET version, which will mean a higher development effort
has to be put into it.

We have a lot of programming experience with the Java platform, which
also includes previous experience with Java ME development.

2.5.4.4 Summary

Table 2.17 shows how the three languages evaluates according to our criteria.
X denotes fully support, ÷ denotes does not support and + denotes partial
support.

36

2.6 Communication

C++ C# Java

Support X X X
Portability ÷ + X
Language features + X +
Managed code ÷ X X
Programming experience ÷ + X

Table 2.17: Evaluation criteria for the mobile client implementation lan-
guage.

2.5.4.5 Our Choice

Our choice for implementation language has fallen on Java ME. This is mainly
due to two things: Firstly it is the most portable option and secondly we have
prior experience with it. And especially the portability aspect is very com-
pelling, since our communication solution with more work can be extended
into a general solution that can be used on almost any mobile device, new
as well as old.

2.6 Communication

The communication protocol used for the system has to be fairly lightweight,
since it has to function on a mobile device. It should be platform indepen-
dent, since the client and service will be implemented in different program-
ming languages. In addition it would also be nice to have a solution that
is simple to develop and maintain. There are several ways that this can be
accomplished in. We will take a look at the following three different ways:

1. Custom build network protocol.

2. SOAP based XML Web Services.

3. RESTful services.

To help determine which approach is the most suitable one for our purposes,
we will examine the strength and weaknesses for each different way, by the
use of an example based on a use case from the project.

2.6.1 Example

The use case we base our example on, is for a user to retrieve a daily plan.
By providing a user name to the service, the users daily plan for the current
day will be returned.

37

Analysis

Table 2.18 shows the elements used to describe a daily plan. Table 2.19
shows the elements used to describe a single visit. Both daily plan and
visit are kept more simple in this example that they will be in the actual
implementation. This is because the example only needs to help us determine
which approach to use and as such it is too time consuming to make a full
implementation of the use case.

Name Description

Username Username of the employee
Name Name of the employee
Date The date the daily plan is valid
Visits A list of the citizens the user has to visit

Table 2.18: The elements describing a daily plan.

Name Description

Citizen The name of the citizen
StartTime The planned start time for the visit
EndTime The planned end time for the visit

Table 2.19: The elements describing a visit.

For the purpose of this example, we have created 2 daily plans that are
stored in an XML file. An excerpt of this file is shown in Figure 2.7, where
it is the daily plan for the fictitious user John Doe that is used. The date for
the visit is set to the current date. Figure 2.8 shows the C# class used to
represent a daily plan in the system and Figure 2.9 shows the C# class for
a visit.

In order to examine the communication that happens between clients
and servers, we use the tool Fiddler4, which is a proxy that logs all in-
and outgoing traffic on HTTP(S) and allows the user to inspect the data in
details.

2.6.2 Custom Build Solution

The main benefit of using a specialised custom protocol, is that it can be
made very efficient, both in terms of the size of the information sent across the
network as well as how many resources are used to process the information.

4http://www.fiddler2.com/fiddler2/

38

2.6 Communication

Figure 2.7: Excerpt from a XML file containing daily plans.

Figure 2.8: The DailyPlan class. Figure 2.9: The Visit class.

39

Analysis

Building a custom solution comes with some major disadvantages though.
There is a lot more development involved, since the communication stack has
to be made specifically for the solution and thus increasing the complexity of
the solution quite substantially. There are also no existing frameworks that
can be used to speed up development. Another complication is that there
are no inherent platform independence, since the solution isn’t build using
well-known frameworks.

We have chosen not to implement a version of our example using this
approach. Simply because it is a too time consuming task to build it. There
are many decisions to make, some of which are: Which protocol to use?
TCP/IP? UDP?. Which format should the response have? XML? HTML?
binary?. What about the client? Is Fiddler enough or does we have to also
develop a client to see a result?

2.6.3 SOAP Based XML Web Services

XML Web Services (WS-*) are a well proven technology for making platform
independent communication using the HTTP protocol. It uses a WSDL file
to describe the services that it offers. From this file a client is then able to
see how a request should be formed, in order to use the services.

It is very easy to make an XML Web Service on the .NET platform. A
simple one, as the one used in our example, is literally done in a matter of
minutes.

2.6.3.1 Retrieve a Daily Plan

The method to retrieve a daily plan is shown in Figure 2.10. It opens the
XML file containing the daily plans, finds the plan that matches the supplied
user name and then creates a DailyPlan instance containing the name and
list of visits for that user. The Date element is set to the current date. A
new instance of the Visit class is created for each visit belonging to the daily
plan.

In order to send values along with a request, in our case the user name
of a specific user, the value has to be specified within the soap envelope sent
to the server. Figure 2.11 shows the request send to the server to get the
daily plan for the user with username 12AB. The response from the server is
shown in Figure 2.12.

40

2.6 Communication

Figure 2.10: Method to retrieve a daily plan.

Figure 2.11: The entire request message sent to the service in order to invoke
the getDailyPlan method with the username value of 12AB.

41

Analysis

Figure 2.12: The response message recieved from the xml web service when
the getDailyPlan method is invoked with the username value of 12AB.

2.6.4 RESTful Web Services

Before looking at RESTful web services, we should first take a look at REST
itself. REST is short for REpresentational State Transfer and was first intro-
duced by Roy Fielding in his doctoral dissertation in 2000 [Fie00]. Fielding
was one of the authors of the HTTP/1.0 specification and the primary archi-
tect behind HTTP/1.1. REST is an architectural style and not a model. This
means that it follows principles and not rules. The four principles behind
REST are:

• Resources.
Resources are the primary abstraction of information in REST. A re-
source is identified through a URI (Uniform Resource Identifier). The
URI does not have to be static, it can be dynamic, for example the URI
”http://cs.soelsoft.dk/dat6/Service1.svc/dailyplan/12AB” will return
the daily plan for the user 12AB. If there are changes in visits to per-
form on the current day in the underlying system, the URI does not
change.

• Uniform Interface.
To manipulate resources REST uses the verbs defined by the HTTP
protocol, more precisely the four verbs GET, POST, PUT and DELETE
(the HTTP 1.1 protocol also defines the verbs OPTIONS, HEAD,
TRACE and CONNECT). GET is used to retrieve information, such
as getting a list of parts. POST is used to update already existing
resources, for example the price of a part, PUT is used to add new

42

2.6 Communication

resources or completely replace existing resources, DELETE is used to
delete resources.

• Descriptive Messages.
A message in REST should contain all information needed to under-
stand the message. This is done with the use of the HTTP header, for
example if the message contains a JPEG image, the headers Content-
type is set to ”image/jpeg”.

• Stateful Interactions Through Hyperlinks.
All interaction with resources are stateless. This means that every
request should contain all the information needed to understand the
request. All interactions happens through hyperlinks, so if a request
returns information about another resource, the URI for the resource
should be included.

2.6.4.1 The Example Implementation

The implementation of the example uses Windows Communication Founda-
tion (WCF) as a framework for the service. Services in WCF can, with a
little effort, be designed to use a REST friendly way of communication. The
service consist of a config file that describes the HTTP endpoint, which is
shown in Figure 2.13. An interface that describes the methods to use and
finally an actual implementation of the interface. The address to the service
is ”http://cs.soelsoft.dk/dat6/Service1.svc”.

2.6.4.2 Retrieve a Daily Plan

Figure 2.14 shows the interface that belongs to the parts list resource. It
defines that a client should access the resource via HTTP GET, that the
URI for the resource is the service address with ”dailyplan/{username}”
appended, where {username} is a variable that automatically gets used in
the signature, and finally that responses will be formatted as JSON objects5.

Figure 2.15 shows the actual implementation of the interface. The imple-
mentation is very similar to the SOAP based approach. The only difference
is in getting the physical address for the XML file.

The request sent to the server is shown in Figure 2.16, and Figure 2.17
shows the response.

5Visit http://json.org for an explanation of JSON

43

Analysis

Figure 2.13: an excerpt of the web.config file that shows the definition of the
REST enabled endpoint for the service.

Figure 2.14: The interface that defines the method to retrieve a daily plan.

Figure 2.15: The implementation to retrieve a daily plan.

44

2.6 Communication

Figure 2.16: The entire request message sent to the RESTful service in order
to call the getDailyPlan method with the username value of 12AB.

Figure 2.17: The response message received from the RESTful service when
the getDailyPlan method is called with the username value of 12AB.

2.6.5 Conclusion

There are 3 main requirements that our choice should fulfil: It should be
platform independent, it should be fairly lightweight and it should be simple
to develop and maintain.

2.6.5.1 Custom Build Solution

The custom build solution has the potential to be very lightweight, since
the size of message can be kept as low as possible. Also the parsing of the
messages can be made very efficient, since it only has to parse fixed cases.

The biggest problem with a custom build solution, is that it is exactly
that: Custom build. That makes it complex to develop and maintain and
this is not what we are looking for.

2.6.5.2 SOAP Based XML Web Service

The biggest advantage with a WS-* web service is that it is a well-known
way of making an online service and thus that exists good tooling support for
it. The example service is created literally within a few minutes. This makes
development and implementation, particularly of the service itself very fast
and easy.

The problem comes on the client side though. Java Micro Edition does
not have built in support for WS-* web services, just as there is no built
in XML parsers. There are an extension to the specification available that

45

Analysis

makes Java Micro Edition able to use WS-* services (JSR 172), but since this
has to be implemented by the phone manufacturer and only newer devices
have this, we have chosen to disregard it. This means that we have to use
either our own solution or import an already built one (it could for example
be kSOAP 26).

Another issue with a WS-* based solution, is that it introduces significant
overhead. The communication requests and responses from Section 2.6.3,
shows that there is a lot of data to transmit when using SOAP. Parsing
XML files can also be a problem for devices with limited resources, simply
because of the lack of memory and processing power.

2.6.5.3 RESTful Web Service

The support for making RESTful services, especially using WCF, has in-
creased a lot recently. It doesn’t take much more effort to setup a new
RESTful based service compared to a WS-* based service. This makes it
easy to build and maintain the service.

The only thing needed on the client to communicate with the service is
the use of HTTP, and all Java Micro Edition implementations are capable of
this, since it is part of the specification of CLDC 1.0 that it supports HTTP
communication. There is a limitation though, and that is that only the verbs
GET and POST are supported which limits the options on the server side,
since operations using PUT and DELETE has to be defined through the use
of POST.

WCF gives the developer two choices in regards to the format of requests
and responses for the service, namely XML or JSON. As described in the pre-
vious section, Java Micro Edition does not contain an XML parser, however
that is also the case regarding a JSON parser. So no matter if the choice ends
with being XML or JSON, there needs to be implemented a parser for it.
But since the JSON format is more lightweight than XML, so is the resulting
parser making it more suited for limited devices.

With regards to the messages sent using JSON, the requests and responses
in Section 2.6.4 shows that the overhead is limited.

2.6.5.4 Summary

To help us make a decision, we have made a table where we have evaluated
the three different ways for communication. X denotes fully support, ÷
denotes does not support and + denotes partial support.

6http://ksoap2.sourceforge.net/

46

2.7 Security

Custom WS-* RESTful

Use of existing server framework ÷ X X
Use of existing client framework ÷ + +
Lightweight messages X ÷ +
Lightweight parsing of messages X ÷ +
Simple to build and maintain ÷ X X

Table 2.20: Evaluation criteria for communication choice.

2.6.5.5 Our Choice

Since the clients have to run on limited devices, our emphasis is on keeping
the messages and parsing of the messages as light as possible. This suggest
that we should choose a custom build solution, however this choice will add
a lot of complexity to the project. Using a RESTful service will give us
an existing framework to use, as well as keeping the message overheard to
a minimum, especially when using JSON as the message format. For this
reason we have chosen RESTful services as our communication architecture.

2.7 Security

Since the information that we have to send between the client and service
contains sensitive information about citizens (such as social security number,
name and address), we have to protect the data during transmission.

There are two security issues to look at: First, what kind of encryption
to use and second, the transmission format.

2.7.1 Encryption

There are many encryption algorithms that have been developed through the
years. Notable algorithms includes the Data Encryption Standard (DES),
Triple DES and Advanced Encryption Standard (AES).

DES was developed in the 1970’s and are no longer considered secure.
Triple DES is an enhancement to DES that uses the DES cipher three times
on each block, in order to increase the key size without making a new algo-
rithm. AES is based on the Rijndael algorithm and is described in [DR02].

47

Analysis

AES is the recommended encryption standard for the US Government
and is approved for SECRET with 128 bit keys and TOP SECRET with 192
and 256 bit keys7. For these reasons, we have chosen to use AES for our
solution.

2.7.2 Implementation

There are no cryptography implementations in the class library for Java
ME, therefore we have to either develop our own implementation of AES
or use a third party implementation. We have chosen to use a third party
implementation.

The implementation we have chosen is made by a group called The Legion
of the Bouncy Castle8. We have chosen their implementation because they
have both Java ME and C# implementations as well as being free of charge
for use and distribution.

2.7.3 Transmission Format

Another security issue are regarding the format of the transmitted data. If
we use the DailyPlan class from Section 2.6 as an example, we can choose to
encrypt the values for each attribute or we can choose to encrypt the entire
object.

If we choose to encrypt the values of each attribute, an example of what
a resulting json object would like are shown in Figure 2.18. A huge disadvan-
tage with this approach is that we actually disclose the nature of the data
that is send, even though the actual values is unreadable. An advantage
though is that the implementation especially on the service is simple for the
communications part, since WCF is able to automatically convert objects
send and received to and from json.

Figure 2.18: A DailyPlan with encrypted attribute values.

Another approach is to encrypt everything. The advantage of this method
is that besides being encrypted there isn’t disclosed any information about

7The policies for using AES in the US Government can be found here:
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf

8http://www.bouncycastle.org/

48

2.7 Security

the nature of the data. A big disadvantage is that we cannot take advantage
of WCF’s capabilities for converting objects to and from json and thus would
have to make a custom transport protocol which would complicate the service
implementation.

A third option is to combine the two. By making a simple object that
is used as a carrier for any encrypted data, we will still retain the ability
to use automatic conversion as well as not disclosing information about the
nature of the encrypted data. Table 2.21 shows the only element belonging
to the EncryptedData class and Figure 2.19 shows an example of what an
EncryptedData objects json representation could look like.

Attribute Data type

Data String

Table 2.21: The element describing the EncryptedData object.

Figure 2.19: A EncryptedData object with a completely encrypted Daily-
Plan.

We have chosen to use an EncryptedData object as transmission format,
since not only will it allow us to use WCF’s built in conversion ability, but it
will also give us a central place to do decryption and encryption, such that
objects added to an EncryptedData instance will be automatically encrypted
and automatically decrypted when retrieved again.

49

Analysis

50

Chapter 3

Design Overview

In this chapter we will give an overview of the design of the solution. We will
describe the objects that is needed for communication between the client and
the service, since they have to be implemented in different languages and run
on different platforms.

We will also describe the interfaces that the service expose, such that we
can built a client that uses the service.

Figure 3.1 shows an overview of the solution. An employee uses a mobile
device to interact with a service at Herning Municipality. The service does
all communication with a database.

Figure 3.1: Overview of the solution

3.1 Architecture

Our solution consists of three main parts: A data access layer, a service
and a client. Each with its own namespace, which is d620a.HomeCare.DAL,
d620a.HomeCare.Service and d620a.HomeCare.Client respectively. There is
a fourth part that contains the objects that are passed between the other

51

Design Overview

three namespaces. This part belongs in the namespace d620a.HomeCare.Models.
The four namespaces and their dependencies are shown in Figure 3.2.

Figure 3.2: The four namespaces and their dependencies

In the following sections we will take a more detailed look at the four
different parts.

3.2 Models

The Models namespace contains the classes and interfaces that are used for
communication between the other 3 parts. In this section we will take a look
at the members of this namespace.

3.2.1 Data Access

We use the Repository pattern for access to the data. This pattern makes
it easier for us to test the system during development, since the service can
be developed independent from the data access layer and just use a simple
implementation of the interface to provide data. The class diagram of the
interface is shown in Figure 3.3. The interface defines three methods:

• GetDailyPlan: This method retrieves daily plan for the given em-
ployee id on the given date.

• UpdateDatabase: Updates the repository with the provided Upda-
teObject. Returns true if the update was successful.

• GetEmployeeId: Returns the employee id that belongs to the user
with the supplied username and password. Returns null if no user exist.

52

3.2 Models

Figure 3.3: The ICareRepository interface

3.2.2 Daily Plan

We use three classes to describe the daily plan for an employee. These classes
are shown in Figure 3.4. A daily plan is built by the data access layer and
sent to the client.

• DailyPlan: Has information related to the daily plan. Such as the
employee’s name, the date and the list of visits that the employee has
to do.

• Visit: Has information related to a specific visit. This information
includes who to visit, where they live and the time frame the employee
should be at the citizen. It also contains a list of the tasks that the
employee has to do.

• Task: Has information related to a single task, such as what to do and
how long it is scheduled to take to do.

Figure 3.4: The classes used to describe a daily plan.

3.2.3 Update Object

We use two classes to describe the information that needs to be updated,
after an employee has carried out his/her daily plan. Figure 3.5 shows the

53

Design Overview

two classes. It is the client that builds the UpdateObject and then sends it
to the data access layer through the service.

• UpdateObject: Stores start- and end times for the watch as well as
list of the visits that has been carried out.

• DeliveredVisit: Has information regarding a performed visit. Infor-
mation includes who was visited, start and end times of the visit and
the date. The reason for both a planned day and a actual day, is that
the date shifts if the actual start time of the visit is 00:05, but was
planned to start at 23:55.

Figure 3.5: The classes used to describe the information to update in the
database.

3.2.4 Login

The LoginUser class is used to store an employee’s login credentials. It is
send encrypted to the service to allow the service to verify that the employee
has the rights to perform the requested action. Figure 3.6 shows the class.

Figure 3.6: The class used to describe the login credentials of a user.

3.2.5 Encrypted Data

Two classes are used to hold and encrypt/decrypt objects that should be
transmitted. These two classes are shown in Figure 3.7.

• EncryptedData: Contains the object to be transmitted. The ob-
ject is serialised to and from json as well as encrypted and decrypted
automatically.

54

3.3 Data Access Layer

• Encryptor: Does the actual encryption and decryption on byte arrays.

Figure 3.7: The class used to describe the data that are transferred across
the network.

3.3 Data Access Layer

The data access layer has two main purposes. To generate the daily plan
and to update the database with new information.

3.3.0.1 Generating the Daily Plan

The daily plan is generated based on two parameters; EmployeeID and Date.
The output of the generation is either a daily plan, which contains all the
correct information for the given date, or a completely empty daily plan,
if the request happens on a day without work. There are several issues to
consider.

• Information Quality: The information have to be as correct as pos-
sible. This is possible in many cases but certain design flaws within
the database means that it will not always be. In the case of missing
information default values are used which allow the employee to do
their own interpretations of what is needed.

• Response Time: The response time should be good. This is a must
since we are working on making a system which solve the problems of
the current system.

3.3.1 Updating the Database

The database is updated based on an UpdateObject received from the mobile
client. The output is a Boolean which indicate if the object was successfully
received and stored. There are several issues to consider.

55

Design Overview

• Data Quality: The data inserted into the database has to be of the
highest quality. High quality means that rows are only inserted one
time and the inserted data is valid. Always inserting valid data might
not be possible since the database already contains invalid data. In
these cases the inserted values will be the same as the invalid values.

• Data Loss and Response Time: The system should be fast to re-
spond that the data have been received and stored. This is not possible
if inserting directly into the database. Instead an intermediate recov-
ery system is used to ensure that no data is lost and give fast response
time. This can be done since the data only have to be inserted into the
recovery system before a response is generated.

3.4 Service

The service binds the entire solution together. It is responsible for commu-
nicating with both clients and the data access layer. The data access layer is
used through the ICareRepository interface, described in Section 3.2.1. The
following sections outline requirements for the implementation of the service.

3.4.1 Service Interface

The service needs to expose two methods. One method is for retrieving a
daily plan and the other is for receiving an update to store. This section
contains the needed information to access those two methods.

3.4.1.1 Daily Plan

This is the method that retrieves a daily plan. The information needed to
access this method is as follows:

• URI: ”dailyplan/login”, where login is an EncryptedData json string
containing a LoginUser object for the user to retrieve the daily plan for.
The EncryptedData object should be sent as a url safe base64 string,
without any padding.

• HTTP Verb: GET

• Response: The response should be an EncryptedData object contain-
ing a DailyPlan instance.

56

3.5 Client

• Status Codes: 200 OK, if the daily plan has been successfully created.
403 Forbidden if the login credentials are wrong. 400 Bad Request if
the login cannot be cast into a LoginUser object. 500 Internal Server
Error if there are other errors.

3.4.1.2 Update

This is the method that updates the database with an UpdateObject. The
information needed to use this method is as follows:

• URI: ”update/login”, where login is an EncryptedData json string
containing a LoginUser object for the user to retrieve the daily plan
for. The EncryptedData object should be sent as a url safe base64
string, without any padding.

• HTTP Verb: POST

• Request: The object received should be an EncryptedData object
containing an updateObject instance.

• Status Codes: 200 OK, if the update has been successfully added.
403 Forbidden if the login credentials are wrong. 400 Bad Request if
the login cannot be cast into a LoginUser object. 500 Internal Server
Error if there are other errors.

3.4.2 JSON

Since we are using WCF for the communication part for the service, the
framework takes care of serialising objects to and from json, as long as those
objects are a part of the signature of the service methods. However, since
the Data attribute within the EncryptedData object contains a json string
representation of another object, we need to be able to convert to and from
json objects.

Instead of making our own implementation of a json parser, we have
chosen to use an Open Source parser called Json.NET, which is available
from Microsoft’s community site for Open Source software1.

3.5 Client

The client is the only means for interacting with the service. It will be im-
plemented in Java and built for the Java Micro Edition platform. There are

1http://json.codeplex.com/

57

Design Overview

three main areas of requirements to look at: The user interface, communica-
tion and storing of data.

3.5.1 User Interface

The users of the systems are employees in the home care sector at Herning
Municipality in Denmark. This means that we will implement the user inter-
face in Danish, since we cannot guarantee that the users understand English.
Also the data stored in the database is in Danish and it will only confuse
people to be presented with different languages.

3.5.2 Communication

In order to not freeze the UI during communication sessions, the communi-
cation should happen in a separate thread. To keep the user informed of the
communication process, a waiting screen should be displayed. It is important
that the screen always shows some form of progress, such that the user don’t
think the system has crashed.

3.5.3 Storing Data

There are several items that needs to be stored in persistant storage on the
client. The login credentials, the daily plan received from the service and the
information that makes up the UpdateObject.

The reason for storing these informations in persistant storage is to allow
the client application to be closed without loosing information. It will not
be good if the users cannot make a phone call without loosing all data.

3.5.4 JSON

Java Micro Edition does not have built in support for json. So in order to
use json objects, we have to either built a json parser or use a third party
parser. We have chosen to use the org.json.me parser which is available on
the json.org website2

2Link to the implementation: http://www.json.org/java/org.json.me.zip

58

Chapter 4

Data Access

Section 2.2 analyses the database provided by Herning Municipality. This
database have some design problems, which the data access layer should
handle. Section 2.2 is split into two pieces; analysis of the data retrieval to
generate the daily plan and analysis of the update procedure. This chapter
will also be split into these two piece.

4.1 Generating the Daily Plan

This section will focus on the generation of the daily plan. The generation
require three queries; MainQuery, NeedTypeQuery and ProcedureQuery. An
example will show how the daily plan is generated. The example is shown
for an employee with one visits and the visit contains two services. This is
a simplified example and should only be considered like this. The input to
GetDailyPlan method is shown in Table 4.1.

Attribute Value

EmployeeID 9999999999
Date 01-10-2008

Table 4.1: GetDailyPlan Input Data.

Attribute Value

EmployeeName
Date 01-10-2008

WorkPeriod

Table 4.2: DailyPlan object.

Before the first query is executed the DailyPlan object is created and the
date is added, it is not possible to add WorkPeriod and EmployeeName at
this time since we don’t know the values. This leave the DailyPlan object
shown in Table 4.2. No visits or services are created yet. Each object will be
represented as a table containing two or three columns. The first column will
be the attribute name, the second will be the current value of the attribute

59

Data Access

and the last if present will be the source. The source column is only used
when executing queries to show which attributes contains the object values
within the database.

4.1.1 MainQuery

The MainQuery is based on INI, DATE FR, DATE TO and WEEKDAY NO
from AID TIME HISTORY. These four attributes can be used to identify
all services which have to be delivered by a given employee (INI) on a given
weekday (WEEKDAY NO) from date (DATE FR) to date (DATE TO). This
means that all services which satisfy the following INI = EmployeeID,
DATE FR ≤ Date ≤ DATE TO and Date.WeekDay = WEEKDAY NO
have to be delivered by the given employee on the given day. A note on this
part is that DATE TO is null-able so if the value is null it is considered to
be larger than date.

The MainQuery extract data from AID TIME HISTORY, CLIENT, PER-
SONNEL and POSTCODE and is based on the analysis in Section 2.2. This
means that joins are only done on foreign key constraints. The query created
by our example can be found on Listing 4.1. Based on this query all visits and
services are created on the DailyPlan object. This means that the example
DailyPlan object can be found on Table 4.3, the Visit object on Table 4.4, the
first Service object on Table 4.5 and the second Service object on Table 4.6.
Furthermore a list of objects containing the values MODULE TYPE NO,
AID NEED TYPE NO and AID LEVEL are created. These values can be
directly mapped to the services on the daily plan. The values are used by
the next query.

Listing 4.1: Main Query.
select CLIENT.C_CPR , CLIENT.NAME , CLIENT.SURNAME , CLIENT.

KEY_NO , CLIENT.ADDR_STRT , CLIENT.RES_PHONE_NO ,
AID_TIME_HISTORY.START_TIME , AID_TIME_HISTORY.
MODULE_TYPE_NO , AID_TIME_HISTORY.AID_NEED_TYPE_NO ,
AID_TIME_HISTORY.AID_LEVEL , AID_TIME_HISTORY.NOTE ,
PERSONNEL.NAME , PERSONNEL.SURNAME , POSTCODE.POSTCODE ,
POSTCODE.CITY

from AID_TIME_HISTORY join CLIENT on AID_TIME_HISTORY.
C_CPR_NO = CLIENT.C_CPR_NO join POSTCODE on CLIENT.
POSTCODE = POSTCODE.POSTCODE join PERSONNEL on
AID_TIME_HISTORY.INI = PERSONNEL.INI

where AID_TIME_HISTORY.INI = ’9999999999 ’ and
AID_TIME_HISTORY.DATE_FR <= ’08-10-01’ and (DATE_TO >= ’
08-10-01’ or DATE_TO IS NULL) and WEEKDAY_NO = 3

order by START_TIME

60

4.1 Generating the Daily Plan

Attribute Value Source

EmployeeName NoName PERSONNEL.NAME
PERSONNEL.SURNAME

Date 01-10-2008
WorkPeriod

Table 4.3: DailyPlan object.

Attribute Value Source

CitizenCPR 9999999999 CLIENT.C CPR NO
Citizen NoName CLIENT.NAME

CLIENT.SURNAME
Address NoWhere Street 99 CLIENT.ADDR STRT

PostCode 9999 POSTCODE.POSTCODE
City NoWhere POSTCODE.CITY

PhoneNumber 99999999 CLIENT.RES PHONE NO
StartTime 0930 AID TIME HISTORY.START TIME
EndTime

Key None Needed CLIENT.KEY NO

Table 4.4: Visit object.

Attribute Value Source

Description
Duration
Details None AID TIME HISTORY.NOTE

Table 4.5: First Service object.

Attribute Value Source

Description
Duration
Details Something AID TIME HISTORY.NOTE

Table 4.6: Second Service object.

61

Data Access

4.1.1.1 AddWorkPeriod

The method AddWorkPeriod is invoked after the MainQuery is executed and
the result added to the DailyPlan object. This method will add one of three
possible work periods to the DailyPlan object. The possible WorkPeriods
can be found in Table 4.7 which also contains an English translation of each
possible value. The WorkPeriod is assigned based on the Visits contained in
the DailyPlan object. Each visits StartTime is counted within one of these
ranged. The range with the most StartTimes are assigned as the work period
for the DailyPlan object. From our example we only have one Visit object
which have StartTime 0930. The WorkPeriod is assigned the value Day since
the only visit is in this range. This gives the DailyPlan object shown in Table
4.8.

Danish English Period

Dag Day 07:00-15:00
Aften Evening 15:00-23:00
Nat Night 23:00-07:00

Table 4.7: WorkPeriod Translation.

Attribute Value

EmployeeName NoName
Date 01-10-2008

WorkPeriod Day

Table 4.8: DailyPlan object.

4.1.2 NeedTypeQuery

The NeedTypeQuery is based on MODULE TYPE NO and AID NEED TY-
PE NO from AID LEVEL. The reason it is not based on AID LEVEL as well
is that we have found invalid AID LEVEL values in AID TIME HISTORY.
This query is generated based on the list generated by the MainQuery and
it is only generated if our DailyPlan contains any services. The statements
used for this query are AID NEED TY PE NO = Task.AidNeedTypeNo
and MODULE TY PE NO = Task.ModuleTypeNo.

The query extract data from AID NEED TYPE and AID LEVEL since a
foreign key constraint exist. An example of the query based on our example
can be found on Listing 4.2. Only the two example Service objects are
modified by the result of this query. The two new Service objects can be
found on Table 4.9 and Table 4.10. Table 4.10 shows the second Service
object contains a procedure code. This procedure code is added to a list
which is used to generate the last query.

62

4.1 Generating the Daily Plan

Listing 4.2: Getting Task Information.

select AID_NEED_TYPE.MODULE_TYPE_NO , AID_NEED_TYPE.
AID_NEED_TYPE_NO , AID_LEVEL.AID_LEVEL , AID_NEED_TYPE.
DESCRIPTION , AID_LEVEL.DURATION , AID_NEED_TYPE.
PROCEDURE_CODE

from AID_NEED_TYPE join AID_LEVEL on (AID_NEED_TYPE.
MODULE_TYPE_NO = AID_LEVEL.MODULE_TYPE_NO and
AID_NEED_TYPE.AID_NEED_TYPE_NO = AID_LEVEL.
AID_NEED_TYPE_NO)

where (AID_NEED_TYPE.MODULE_TYPE_NO = 1 and
AID_NEED_TYPE_NO = 15) or (AID_NEED_TYPE.MODULE_TYPE_NO
= 1 and AID_NEED_TYPE_NO = 19)

Attribute Value Source

Description Cleaning AID NEED TYPE.NEED TEXT
Duration 20 AID LEVEL.DURATION
Details Something

Table 4.9: First Service object.

Attribute Value Source

Description AAF6 AID NEED TYPE.NEED TEXT
Duration 10 AID LEVEL.DURATION
Details Something

Table 4.10: Second Service object.

4.1.2.1 CalculateEndTime

The method CalculateEndTime is called after executing and storing the re-
sult of the second query. This method use the duration of the Service objects
to calculate the EndTime for each visit. The formula used is EndTime =
StartT ime +

∑
Service.Duration where Service.Duration is the duration

of a service which have to be delivered on the given visit. Since the two
Service objects in our example has durations 20 minutes and 10 minutes re-
spectively, it will take the employee 30 minutes to finish the visit. This value
is added to StartTime to calculate the EndTime for the visit. The updated
Visit object can be found in Table 4.11.

63

Data Access

Attribute Value

CitizenCPR 9999999999
Citizen NoName
Address NoWhere Street 99

PostCode 9999
City NoWhere

PhoneNumber 99999999
StartTime 0930
EndTime 1000

Key None Needed

Table 4.11: Visit object.

4.1.3 ProcedureQuery

The ProcedureQuery is based on the PROCEDURE CODE attribute from
the PROCEDURE CODE table. The query is generated using the list of
procedure codes generated by NeedTypeQuery and it is only generated if
the list is not empty. It uses the statement PROCEDURE CODE =
procedurecode.

The query extract data from PROCEDURE CODE. This is done to trans-
late all the Service objects with procedure codes as description. In our exam-
ple this is only the second Service object. An example based on our example
can be found on Listing 4.3. The updated second Service object can be found
in Table 4.12.

Listing 4.3: Procedure Code Translation.

select PROCEDURE_CODE , DESCRIPTION
from PROCEDURE_CODE
where PROCEDURE_CODE = ’AAF6’

Attribute Value Source

Description Medicine PROCEDURE CODE.DESCRIPTION
Duration 10
Details Something

Table 4.12: Second Service object.

64

4.1 Generating the Daily Plan

4.1.3.1 SortVisitsForNight

The method SortVisitsForNight is invoked after executing ProcedureQuery
and updating the DailyPlan object. This method is quite simple and it
is only executed if the WorkPeriod of the DailyPlan object is Night. The
method switch around the Visits so those before midnight are first and those
after midnight are after. Since our DailyPlan object example is for Day this
method is never invoked. Table 4.13 shows 4 visits on a DailyPlan object
with WorkPeriod night. Table 4.14 shows the same DailyPlan object after
this method is invoked.

Visit StartTime

Visit 1 0010
Visit 2 0030
Visit 3 2315
Visit 4 2345

Table 4.13: Before.

Visit StartTime

Visit 3 2315
Visit 4 2345
Visit 1 0010
Visit 2 0030

Table 4.14: After.

4.1.4 Testing

The three methods executing the queries are private methods to our data
access class, which also implements the interface described in Section 3.2.1.
The private methods have been tested with unit tests using reflection. This
has been done to ensure correct behaviour of each individual part. The
overall public method, namely GetDailyPlan from the interface, have also
been tested to ensure correct end to end results. However it has not been
tested with all possible combinations of inputs since it should only test the
interaction between the different private methods.

A goal for our solution is that it has to be fast. It has been tested and a
daily plan can be created in less than 10 sec. We have not tested for multiple
users at the same time so the time could be higher if the system went live.

4.1.5 Recovery

There is no recovery implemented on this part of the data access layer. The
reason for this is that the response time will be too slow if the employees
have to wait for the system to recover. Instead the employee should request
the daily plan at a later time when the system should have recovered.

65

Data Access

4.1.6 Problem Solutions

In section 2.2 certain problems were outlined with ideas to possible solutions.
This section will focus on which solutions were chosen along with their im-
plementations.

4.1.6.1 Inconsistent Use of NEED TEXT in AID NEED TYPE

We have implemented our own solution to the problem of inconsistent use of
NEED TEXT in AID NEED TYPE. The implementation uses the queries
found on Listing 4.2 and Listing 4.3. The result of the first query is analysed
for procedure codes, done by checking if the PROCEDURE CODE attribute
is null. The identified procedure codes are used to generate the second query
which will translate the procedure codes into descriptions.

4.1.6.2 Missing Foreign Key to AID LEVEL

The problem of the missing foreign key constraint from AID TIME HISTORY
to AID LEVEL gave three problems.

• The problem of a missing description is left to the employee to solve.
This means the services will be included on the daily plan even if the
description can not be extracted from the database. This was chosen
to give the employee a chance to deliver the services if it is possible to
identify.

• The problem of missing duration values could only be solved by using
a default value. The value chosen is 0 so each time an employee finds a
service with 0 as duration they have to chose how much time to spend
on it.

• Calculating the end time for visits uses the formula EndTime = Start
T ime+

∑
Service.Duration where Service.Duration gives the duration

value for a service which have to be delivered on the given visit. The
drawback was that missing duration values would count as 0 which
would give too short visits. It will be left to the employee to know
that the end time will be wrong if any services have a default value as
duration.

4.2 Writing Updates to the Database

This section will focus on the design and implementation of the second part
of the solution; updating the database with new data. This part consist of a

66

4.2 Writing Updates to the Database

Figure 4.1: Overview of the Recovery Process.

recovery scheme and the actual updating method.

4.2.1 Recovery

It is important that the clients get a fast response when trying to update the
database. For this reason we have decided to implement a recovery scheme.
The recovery scheme writes the UpdateObject received from the clients to
an XML document and respond when this action is successful. This gives
the faster response time as the user does not have to wait for the data to be
successfully inserted into the database. Another thread reads from the given
XML document and insert the data into the database. This is illustrated on
Figure 4.1.

The illustration shows that the recovery class contains three public meth-
ods. The incoming update requests uses the write method and the back-
ground thread uses the read and delete methods. To speed up the process
for the clients the write method returns a Boolean indicating if the received
UpdateObject was successfully written to the XML document. The Boolean
is returned to the client and if the data was successfully written it can be
removed here. The background thread reads the first node from the XML

67

Data Access

document with the read method and if it is successfully inserted into the
database the delete method will remove the node from the XML document.

Multiple clients can request updates at the same time and the background
thread will be reading and deleting as well. This means that many threads
will try to access the XML document concurrently. To avoid this problem
of concurrency we have implemented the Recovery class as a singleton. This
allow us to monitor the instance using the static methods of the Monitor
class, which is a part of the standard library. The Monitor class ensures that
only one thread can access the given object at any time.

4.2.1.1 XML Structure

The XML document is structured with a root node at the top. Each child of
the root node is an UpdateObject. The UpdateObject node contains three
attributes, which are EmployeeID, StartDayTime and EndDayTime from
the UpdateObject. The children of an UpdateObject node are Visit nodes.
A Visit node has 5 children; StartTime, EndTime, PlanDate, ActualDate
and CitizenCPR from the DeliveredVisit object. The structure of the XML
document can be found on figure 4.2. However as we use Log-Based Recovery,
it is important that all operations which insert data into the database is
idempotent. The reason for this is that the same operations can be executed
many times because of system failures.

4.2.2 Implementation

The implementation of the database access is using a separate background
thread. This thread reads from the XML document and if the update node
is successfully inserted into the database, it is removed from the XML doc-
ument. The process of getting the update node inserted into the database
consist of six steps which are explained below. This process is only started
if an update node is present in the XML document.

• Transforming the UpdateObject: This step transform the Upda-
teObject into objects which contains the same attributes as PP REG
and AID DELIVERED.

• Inserted Into PP REG: This step checks if the UpdateObject have
already been inserted into PP REG. This is needed because our recov-
ery scheme has to be idempotent.

• Delivered Services: This step retrieve which services were delivered
on each visit.

68

4.2 Writing Updates to the Database

Figure 4.2: XML Structure.

69

Data Access

• Calculating the Duration: This step calculate how much time were
assigned to each visit. This is done by adding the duration of all the
delivered services.

• Inserted Into AID DELIVERED: This step checks if the Upda-
teObject has already been inserted into AID DELIVERED. This along
with step 2 should ensure that our insert operation is idempotent.

• Inserting the UpdateObject: The last step insert the objects which
are not marked as AlreadyInserted into the database.

This section uses two local types of objects, namely PP REG objects and
AID DELIVERED objects. These objects contains the same properties as
the attributes in the table of the same name. The properties of PP REG
objects and AID DELIVERED objects can be found in Figure 4.3. The
objects does not contain the same amount of properties as the number of
attributes in the table. The reason for this is that some of the information
can be shared and also some of the attributes are the same. For example on
PP REG objects there are no reason to have more than two start time value,
one for the actual start time and one for planned start time, even though the
table contains four different start time attributes.

Figure 4.3: UML Diagram.

The remainder of this section will go through the six steps of the insert
process. An example will illustrate each of the six steps. The example will use
the UpdateObject found in Table 4.15 and the DeliveredVisit object found
in Table 4.16. This UpdateObject will generate five PP REGObjects and
two AID DELIVEREDObjects. We will only show PP REGObjects 1 and 3

70

4.2 Writing Updates to the Database

since the remaining three PP REGPObjects will have the same information
filled in on each step as PP REGObject 1.

Attribute Value

StartDayTime 0922
EndDayTime 1010

Table 4.15: UpdateObject.

Attribute Value

StartTime 0932
EndTime 1004

CitizenCPR 9999999999
PlanDate 633584160000000000

ActualDate 633584160000000000

Table 4.16: DeliveredVisit.

4.2.2.1 Transforming the UpdateObject

The first step transforms the UpdateObject into a list of PP REG objects. It
generate a PP REG object for the StartDayTime entry, two PP REG objects
for each visit(one is the visit and the other is the transport to the visit) and
two more entries for the EndDayTime(one for the end of day and one for
transport from last visit). This means that if the UpdateObject contains x
visits it will generate 2x + 3 entries for the PP REG table. PP REGObject
1 can be found on Table 4.17 and PP REGObject 3 can be found on Table
4.18.

Attribute Value

EmployeeID 9999999999
ActualStartTime 0922
ActualEndTime 0922
PlanStartTime
ActualDuration 0
PlanDuration

EventID 1
PP REGID
CitizenCPR
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo

Table 4.17: PP REGObject 1.

Attribute Value

EmployeeID 9999999999
ActualStartTime 0932
ActualEndTime 1004
PlanStartTime
ActualDuration 32
PlanDuration

EventID 4
PP REGID
CitizenCPR 9999999999
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo

Table 4.18: PP REGObject 3.

71

Data Access

4.2.2.2 Removing Already Inserted PP REG Objects

This step is done to ensure an idempotent insert process. It is done by
querying PP REG and mark already inserted PP REGObjects. It is not
possible to identify the already inserted objects on the primary key since it
consist of INI, REG DATE and ID. The first two attributes are the same for
all events done by a given employee on a given day and the last attribute is
assigned by the application. Instead of using the primary key we have decided
to use the attributes INI, REG DATE, EVENT TYPE ID, START TIME,
END TIME and C CPR NO. This will ensure uniqueness in almost all cases.
An example where it would not ensure uniqueness is if the employee click
though the daily plan in less than a minute. In this case all the transport
events will have the same values for all the attributes.

This step also assign PP REGID to all PP REGObjects. The query used
for our example can be found in Listing 4.4. The updated PP REGObjects
can be found on Table 4.19 and Table 4.20.

Listing 4.4: PP REG Query

select ID , REG_DATE , EVENT_TYPE_ID , START_TIME , END_TIME
from PP_REG
where INI = ’9999999999 ’ and (REG_DATE = ’08-10-01’)

Attribute Value

EmployeeID 9999999999
ActualStartTime 0922
ActualEndTime 0922
PlanStartTime
ActualDuration 0
PlanDuration

EventID 1
PP REGID 1
CitizenCPR
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo

Table 4.19: PP REGObject 1.

Attribute Value

EmployeeID 9999999999
ActualStartTime 0932
ActualEndTime 1004
PlanStartTime
ActualDuration 32
PlanDuration

EventID 4
PP REGID 3
CitizenCPR 9999999999
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo

Table 4.20: PP REGObject 3.

72

4.2 Writing Updates to the Database

4.2.2.3 Extracting the Missing PP REG Information

This step extracts the PlanStartTime and ModuleTypeNo for each PP REGObjects
with EventTypeID 4. It also creates a list of AID DELIVEREDObjects for
each visit (EventTypeID 4). The query used for this step can be found in
Listing 4.5. The updated PP REGObject with EventTypeID 4 can be found
in Table 4.22. An example of a AID DELIVEREDObject can be found in
Table 4.21.

Listing 4.5: Data Extract Query.

select C_CPR_NO , REFERRAL_DATE , START_TIME , MODULE_TYPE_NO ,
AID_NEED_TYPE_NO , AID_LEVEL , WEEKDAY_NO

from AID_TIME_HISTORY
where INI = ’9999999999 ’ and ((DATE_FR < ’08-10-01’ and (

DATE_TO > ’08-10-01’ or DATE_TO is null))

Attribute Value

ReferralDate 05-10-2008
ModuleTypeNo 1
AidNeedTypeNo 4

AidLevel 4
WeekDayNo 3

PersonNo 1

Table 4.21:
AID DELIVEREDObject.

Attribute Value

EmployeeID 9999999999
ActualStartTime 0932
ActualEndTime 1004
PlanStartTime 0930
ActualDuration 32
PlanDuration

EventID 4
PP REGID 3
CitizenCPR 9999999999
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo 1

Table 4.22: PP REGObject 3.

4.2.2.4 Calculating the PlanDuration for Visits

This step calculates the PlanDuration based on the planned duration for each
visit. This means that this value can be invalid if AidLevel values are invalid.
The calculation is done based on the following formula PlanDuration =∑

Service.P lanDuration where Service.PlanDuration is the allocated time
for a service that had to be delivered on the given visit. An example of
the query can be found in Listing 4.6. The result of the query only modify

73

Data Access

Attribute Value

EmployeeID 9999999999
ActualStartTime 0932
ActualEndTime 1004
PlanStartTime 0930
ActualDuration 32
PlanDuration 30

EventID 4
PP REGID 3
CitizenCPR 9999999999
ActualDate 01-10-2008
PlanDate 01-10-2008

ModuleTypeNo 1

Table 4.23: PP REGObject 3.

PP REGObjects with EventTypeID 4. The updated object which satisfy
this can be found in Table 4.23.

Listing 4.6: AID LEVEL Query.

select DURATION
from AID_LEVEL
where (MODULE_TYPE_NO = 1 and AID_NEED_TYPE_NO = 4 and

AID_LEVEL = 4)

4.2.2.5 Removing Already Inserted AID DELIVERED Objects

This step is the final part to ensure that the insert process is idempotent.
This step queries the AID DELIVERED table to find the already inserted
AID DELIVERED objects. An example of the used query can be found
on Listing 4.7. This step could have been done by the database since all
attributes are part of the primary key. We have decided to include the step
since changes might happen to the database in the future.

Listing 4.7: AID DELIVERED Query.

select C_CPR_NO , START_TIME , MODULE_TYPE_NO ,
AID_NEED_TYPE_NO , AID_LEVEL , DELIV_DATE

from AID_DELIVERED
where DELIV_BY_INI = ’9999999999 ’

74

4.2 Writing Updates to the Database

4.2.2.6 Inserting the Data into the Database

The sixth step inserts all objects, which were not identified as already inserted
by step 2 and step 5, into the database. This is done by normal insert into
statements. The commit statement is executed after all rows have been
inserted into both tables. The last thing done by this step is to remove the
XML node from the XML document if it was successfully committed to the
database. An example of a PP REG object insert can be found on Listing
4.8 and a AID DELIVERED object insert can be found on Listing 4.9. The
query found in Listing 4.8 is modified if EventTypeID is different from 4.
The reason for this is that EventTypeID 4 is a visit and therefore got for
example a visited citizen attached. These values are just left as null in case
of other events.

Listing 4.8: Insert Into Query 1.

insert into PP_REG(INI , REG_DATE , ID , EVENT_TYPE_ID ,
START_TIME , DURATION , C_CPR_NO , END_TIME ,
DISP_START_TIME , MODULE_TYPE_NO , ORIG_DATE , ACT_DATE ,
ORIG_START_TIME , ACT_START_TIME , ORIG_DURATION ,
ACT_DURATION , CLIENT_ABORTED , PDA_CHANGED , CARE_CHANGED ,
LAST_MODIFIED_INI , LAST_MODIFIED_TIME)

values (’999999999 ’, to_date(’08-10-01’, ’yy -mm -dd’), ’3’,
’4’, ’0932’, ’32’, ’9999999999 ’, ’1004’, ’0930’, ’1’,
to_date(’08-10-01’, ’yy -mm -dd’), to_date(’08-10-01’, ’yy
-mm -dd’), ’0930’, ’0932’, ’30’, ’32’, ’n’, ’n’, ’n’, ’
9999999999 ’, to_date(’08-10-01’, ’yy-mm-dd’))

Listing 4.9: Insert Into Query 2.

insert into AID_DELIVERED(C_CPR_NO , REFERRAL_DATE ,
MODULE_TYPE_NO , PLAN_DATE , AID_LEVEL , AID_NEED_TYPE_NO ,
WEEKDAY_NO , START_TIME , PERSON_NO , DELIV_BY_INI ,
DELIV_DATE , PP_REG_ID)

values (’9999999999 ’, to_date(’08-10-05’, ’yy -mm -dd’), ’1’,
to_date(’08-10-01’, ’yy -mm -dd’), ’4’, ’4’, ’3’, ’0932’,
’1’, ’9999999999 ’, to_date(’08-10-01’, ’yy -mm -dd’), 3)

4.2.3 Testing

This part of the data access layer is tested using unit tests. To ensure no old
data is stored in the XML file or in the database all inserted data is removed
from these before starting the tests. We will test if the data is correctly
inserted into the XML file, if the insert operation is idempotent and if the
data is correctly inserted into the database. We have tested the following:

75

Data Access

• Correct Insertion into XML File: This is tested using the three
public methods of the Recovery class. We insert two UpdateObjects
into the XML document. We read the first UpdateObject and checked
if it contained all the correct data. Afterwards we remove the first
UpdateObject from the XML file and read the next UpdateObject and
also checked if it contained the correct the information.

• Idempotent: We tested that our insert operation was idempotant by
inserting the same UpdateObject twice into the XML file. The back-
ground thread should insert the first UpdateObject into the database
but should identify the second as already inserted. The database was
queried to check if it contained the right amount of rows or too many.

• Correct Insertion into Database: We tested that an UpdateObject
inserted into the XML file also gave the right amount of rows and that
the rows contained the right information in database. This was done
by inserting the UpdateObject into XML file, let the background insert
it into the database and query the database for the information back.
We had to let the test thread sleep while waiting for the background
thread to insert the information into the database.

4.2.4 Problem Solutions

In section 2.2 certain problems were outlined with ideas to possible solutions.
This section will focus on which solutions were actually used along with their
implementations.

4.2.4.1 Missing External Foreign Keys

The missing foreign keys can be put into two categories. The first is those
that have a foreign key constraint in AID TIME HISTORY. The second is
those that does not.

• The first kind are already ensured to exist. The reason for this is that
we insert the data which were extracted from AID TIME HISTORY.
AID TIME HISTORY contains the foreign key constraints so the ex-
tracted data is correct. Therefore it can be inserted into the new tables
without doing any checks.

• The second kind can not be ensured to exist since the foreign key con-
straint does not exist in AID TIME HISTORY. This means that we
might work with invalid data in the first place. It is possible for us

76

4.2 Writing Updates to the Database

to verify if the data is valid or not but we don’t have any possibil-
ity to insert other values in case of invalid data. The reason for this
is that we have no chance to detect what the right values should be
and the attributes are not null-able. Examples of these attributes are
MODULE TYPE NO, AID NEED TYPE NO and AID LEVEL.

4.2.4.2 Missing Foreign Key on AID DELIVERED

The problem of no foreign key constraint from AID DELIVERED to PP REG
is solved by inserting all rows in PP REG before inserting anything into
AID DELIVERED. The structure chosen for this is to create overall PP REG
objects and have the AID DELIVERED objects inside the PP REG objects.
This means that the foreign key can be created from the overall data in
PP REG and we do not assign wrong values as foreign key.

4.2.4.3 Recovery Based Problem

The problem of a purely defined primary key in PP REG is solved by us-
ing other attributes to ensure uniqueness. The attributes chosen are INI,
REG DATE, EVENT TYPE ID, START TIME, END TIME and C CPR NO.
It is still possible to have multiple rows with the same information if the em-
ployee just click all the way though the daily plan in less than one minute.
However all the rows will still be inserted since we are not doing a commit be-
fore after all rows are inserted, so these rows containing the same information
will not be set as already insert and therefore get different ID’s assigned.

77

Data Access

78

Chapter 5

Service

As described in Section 2.6, we will make a RESTful service using Windows
Communication Foundation. To learn how to build a service, we have been
using a blog series made by Rob Bagby, who is a developer evangelist at
Microsoft.[Bag08]

The two basic components to the service, is the interface, IHomeCareSer-
vice, and the implementation of the interface, HomeCareService. Figure 5.1
shows a class diagram with these 2 elements.

Figure 5.1: The interface and class that makes up the service.

5.1 Service Implementation

There are 3 parts to look at for the implementation of the service. The
configuration of the service through the web.config file and the IHomeCare-
Service interface, the implementation of the IHomeCareService interface and
the implementation of the d620a.HomeCare.Models namespace. An overview

79

Service

of the classes and interfaces used in the implementation is shown in Figure
5.2.

The remaining sections in this chapter will explore the implementations
of these three parts.

Figure 5.2: Overview of the classes and interfaces used in the service imple-
mentation.

5.2 Configuration

Section 3.4.1 describes the behaviour that the service should adhere to. Some
of the behaviour’s are implemented through the IHomeCareService interface.

5.2.1 Daily Plan

Figure 5.3 shows the method declaration to retrieve a daily plan, and as can
be seen, it follows what was described in Section 3.4.1. What the method at-
tributes means is that the method is a part of the service (defined by the Op-
erationContract attribute). If there is a GET request (defined by the WebGet
attribute) that matches the address ”HomeCareService/dailyplan/{login}”
(defined by UriTemplate), invoke the RetrieveDailyPlan method with {login}
as input parameter and a EncryptedData object as return parameter. The
return parameter should be formatted as a json object (defined by Respon-
seFormat).

80

5.3 HomeCareService Implementation

Figure 5.3: The interface code for the RetrieveDailyPlan method.

5.2.2 Update

The method declaration to receive an update is shown in Figure 5.4. Again,
the OperationContract attribute means that the method is a part of the
service. The WebInvoke attribute defines that if a POST request matches
the address ”HomeCareService.svc/update/{login}”, the method named Up-
dateDailyPlan should be invoked with {login} and the POST’ed Encrypted-
Data elements as input parameters. The received EncryptedData element
should be formatted as a json object.

Figure 5.4: The interface code for the UpdateDailyPlan method.

5.2.3 Web.config

The basic configuration of the service, happens through the web.config file.
This is where the service is told to use a RESTful style or a more tradi-
tional XML Web Service style. More specifically it is in the section sys-
tem.servideModel that the service configuration happens. Figure 5.5 shows
the configuration needed for our service implementation.

5.3 HomeCareService Implementation

The HomeCareService class implements the IHomeCareService interface and
thus comtains the actual implementation of the service. There are three
methods in the class: The two interface methods and a method to convert
the encrypted login string to a LoginUser class.

81

Service

Figure 5.5: An excerpt from the web.config file, showing the configuration of
the service endpoint.

5.3.1 Daily Plan

Three parts from the d620a.HomeCare.Models namespace are needed for the
service to process the request for a daily plan. The three parts are: Daily
Plan (see Section 3.2.2), Login (see Section 3.2.4) and Encrypted Data (see
Section 3.2.5).

Figure 5.6 shows the implementation of the RetrieveDailyPlan method.
The method is where the HTTP status codes from Section 3.4.1 is imple-
mented. If the received login string cannot be converted to a LoginUser
instance, the status code 400 (BadRequest) will be returned. The employ-
eeId is retrieved form the data access layer and if there is no employeeId for
the given user, the status code 403 (Forbidden) is returned. Next the daily
plan for the user is retrieved for the current day. If a DailyPlan instance is
returned from the data access layer, the status code is set to 200 (OK) and
a EncryptedData object is returned containing the DailyPlan instance.

82

5.3 HomeCareService Implementation

Figure 5.6: The implementation code for the RetrieveDailyPlan method.

5.3.2 Update

The UpdateDailyPlan method also requires three parts from the Models
namespace. It uses the Login and Encrypted Data parts, like the method to
retrieve a daily plan, and then it uses the Update Object part (see Section
3.2.3).

The implementation of the UpdateDailyPlan method is shown in Fig-
ure 5.7. Retrieving the LoginUser instance and the employeeId is the same
for this method as for the UpdateDailyPlan method. After an employeeId
has been retrieved from the data access layer, the UpdateObject instance is
retrieved from the EncryptedData input parameter and the employeeId and
UpdateObject is used as input parameters to the UpdateDatabase method of
the data access layer. If the update has been performed successfully, the sta-
tus code 200 (OK) will be returned, otherwise the status code 500 (Internal
Server Error) will be returned.

83

Service

Figure 5.7: The implementation code for the UpdateDailyPlan method.

5.4 Models Namespace Implementation

Most of the classes in the Models namespace have trivial implementations
only consisting of properties with get and set methods. As an example of
this, Figure 5.8 shows the complete implementation of the Task class.

There are two classes of interest to look at in the Models namespace.
And this is the EncryptedData and Encryptor classes. These two classes
are responsible for conversion and encryption of objects and as such it is
important that their behaviour is the same on both the service and the client.
In the following we will outline the C# implementation of these classes, which
is based on the UML class diagram from Figure 3.7.

5.4.1 EncryptedData

Before the EncryptedData class can be transmitted through the service, it has
to be serialised. This happens by decorating the class with the DataContract
attribute. The members of the class that should be serialised has to be
decorated with the DataMember attribute. This also makes it possible to
keep methods and properties in the class that is local to the implementation
but shouldn’t be part of the serialised result.

84

5.4 Models Namespace Implementation

Figure 5.8: The implementation code for the Task class.

5.4.1.1 Data property

When the service receives an EncryptedData json object, it will call the
Data property’s set method to populate it with the data. This will also
decrypt the data. When the service sends an EncryptedData object it will
call the property’s getter to retrieve the data to send. Figure 5.9 shows the
implementation of the property.

Figure 5.9: The implementation code for the Data property in the Encrypted-
Data class.

5.4.1.2 FromJsonString

This method returns an object instance with the provided type based on the
json string stored in the data attribute. The work itself happens through the

85

Service

use of the third party library Json.NET. Figure 5.10 shows the implementa-
tion of the method.

Figure 5.10: The implementation code for the FromJsonString method in the
EncryptedData class.

5.4.2 Encryptor

It is the Encryptor class that is responsible for the encryption and decryption
processes. It uses the AES engine made by the Bouncy Castle group1. What
follows is an explanation of the methods in the Encryptor class.

5.4.2.1 Constructor

The constructor take a key as input parameter. The key has to be the same
on both the client and service side for the encryption/decryption process to
be successful. The AES engine is instantiated and the key is converted into a
byte array that contains 32 elements. This gives a key size of 256 bit, which
is the most secure key size that is supported by AES (it also supports 128
and 192 bit keys). If the input key doesn’t contain 32 characters, 0 will be
added as padding until there is exactly 32 characters. Figure 5.11 shows the
implementation of the constructor.

5.4.2.2 CallCipher

CallCipher is the method that performs the actual encryption/decryption. It
sets up the output byte array before the AES engines ProcessBytes method
is called. This methods processes the input data byte array into the output
byte array. The implementation is shown in Figure 5.12.

5.4.2.3 Encrypt

The Encrypt method takes an unencrypted byte array as input parameter
and returns an encrypted byte array. It initialises the AES engine to do
encryption with the key that was provided in the constructor. The first pa-
rameter in the Init method is used to determine if the engine should perform

1http://www.bouncycastle.org/

86

5.4 Models Namespace Implementation

Figure 5.11: The implementation code for the constructor in the Encryptor
class.

Figure 5.12: The implementation code for the CallCipher method in the
Encryptor class.

87

Service

encryption or decryption. If the value is true it will encrypt and if it is false
it will decrypt. The implementation is shown in Figure 5.13.

Figure 5.13: The implementation code for the Encrypt method in the En-
cryptor class.

5.4.2.4 Decrypt

The Decrypt method is very similar to the Encrypt method. The only dif-
ference is that it initialises the AES engine to do decryption by setting the
boolean value in the Init method to false. The implementation is shown in
Figure 5.14.

Figure 5.14: The implementation code for the Decrypt method in the En-
cryptor class.

88

Chapter 6

Mobile Client

The mobile client is the means for interacting with the service. In this Chap-
ter we will explore the development of the client, starting with a presentation
of the user interface before discussing the implementation of the communi-
cation and storage parts and ending with the implementation of the Models
namespace.

6.1 User Interface

On program startup, it will ask for the users credential. Figure 6.1 shows
the screen where the user types in his or her username and password. After
pressing the Login button, the user will be asked if it is okay to use air-
time, this screen is shown in Figure 6.2. Figure 6.3 shows the screen that is
displayed while the client communicates with the service.

When a successful response has been received from the service the received
daily plan is shown to the user. Figure 6.4 shows a daily plan for an employee,
where there are two citizens to visit.

To see the details associated with a visit, the user can mark a visit and
press the details button. Figure 6.5 shows an example of the details belonging
to a visit.

Finally when all visits has been carried out, the service is contacted with
the update information. Figure 6.6 shows the response for a successful up-
date.

6.1.1 DailyPlanForm

Besides displaying the plan to the employee the DailyPlanForm form is also
used to guide the employee through the workday. This is done through

89

Mobile Client

Figure 6.1: The login screen. Figure 6.2: Request for airtime.

Figure 6.3: The waiting screen shown
during communication. Figure 6.4: The daily plan screen.

Figure 6.5: The visit screen.
Figure 6.6: The response screen after
a successful update.

90

6.1 User Interface

the button in the lower right corner in Figure 6.4, which will change name
depending on which state the form is in. The button can have four different
names, which are shown in Table 6.1.1 along with the English translations
of the names.

Button Name In English

Start Vagt Start Watch
Start Besøg Start Visit
Afslut Besøg End Visit
Afslut Vagt End Watch

Table 6.1: The different button values

6.1.1.1 The Different States

The DailyPlanForm can be in several different states, which are shown in
Figure 6.7. The form is in the initial state when it is first displayed to the
user. When the employee chooses to begin his or her watch, the time of day
is recorded and the form transitions to the watch state. Here there is a check
to see if there are any citizens to visit, that haven’t had a visit yet. If so,
the buttons value changes to ”Start Besøg” and the form transitions to the
Transport to Citizen state and lasts until the employee starts the actual visit.
This happens by pressing the button which will record the time of day for the
start of the visit, change the button value to ”Afslut Besøg” and transitions
the form to the Visit state. When the employee has carried out all the tasks
associated with the visit, the button is pressed which records the time of day
and transitions the form back to the Watch state.

Finally, when there are no more visits to do, the button value changes to
”Afslut Vagt” and the form transitions to the Transport to End state, which
lasts until the employee has returned to the starting point. At this time the
button is used for the last time, which will record the time of day, start the
procedure of sending the updates to the service and transition the form to
the final state.

91

Mobile Client

Figure 6.7: The state diagram for the daily plan screen.

6.2 Communication

All communication with the service is initiated through the Herning midlet
class. To avoid having the communication freeze the program execution,
the midlet delegates the job to a worker thread that does the actual com-
munication. Figure 6.8 shows the class diagram for the ConnectionWorker
class as well as the methods from the Herning midlet class that is used for
communication.

Figure 6.8: The class diagram for the CommunicationWorker class.

6.2.1 Herning Midlet

The midlet contacts the service on two different occasions. The first one is
to retrieve the daily plan for the user, this task is handled in the loginUser
method. The second occasion is when the update has to be send to the service

92

6.2 Communication

and this is handled by the sendUpdate method. Finally the responses from
the service are handled by the networkResponse method. In the following
we will take a closer look at the three methods.

6.2.1.1 loginUser

The loginUser method is invoked when the user presses the login button on
the login screen. The method retrieves a LoginUser instance and a daily plan
from storage. If the entered username and password matches those from the
LoginUser instance and the daily plan exists, the daily plan will be loaded,
otherwise a call to the ConnectionWorker’s go method will start the process
of retrieving the plan from the service. Figure 6.9 shows the implementation
of the loginUser method.

Figure 6.9: The loginUser method in the Herning midlet class.

6.2.1.2 sendUpdate

The sendUpdate method is invoked when the employee has finished the
watch. It takes an UpdateObject instance which will be added to an En-
cryptedData object that is used as input parameter for the Connection-
Worker’s go method. Figure 6.10 shows the implementation of the sendUp-
date method.

93

Mobile Client

Figure 6.10: The sendUpdate method in the Herning midlet class.

6.2.1.3 networkResponse

The networkResponse method is invoked from the ConnectionWorker class
when there has been a successful response from the service. Depending on
if the response is caused by a request for a daily plan or an update, it will
either display the daily plan or mark the current plan as completed. Figure
6.11 shows the implementation of the method.

Figure 6.11: The networkResponse method in the Herning midlet class.

6.2.2 ConnectionWorker

The ConnectionWorker class runs in its own thread, such that it won’t freeze
the midlet during communication sessions with the service. As long as there
are no requests for the service it will be in the wait state and it’s only when
there is a message to send that it will go into an active state.

The notification to enter the active state happens in the go method, which
is also where the data needed to make the communication is entered. The
implementation of the go method is shown in Figure 6.12.

When the worker enters the active state, it will call the sendMessage
method, which takes care of the actual communication.

6.2.2.1 sendMessage

The sendMessage method starts by creating a connection instance with the
information received through the go method. It will also switch the display to

94

6.2 Communication

Figure 6.12: The go method in ConnectionWorker class.

show the waiting screen to keep the user informed about the communication
process. Figure 6.13 shows this initialisation part.

If the invocation happens because there is an update to send to the ser-
vice, the UpdateObject has to be send as a POST attachment. Figure 6.14
shows the steps taken to send an update.

If the service’s response to the request is successful, it will return an
HTTP status code with value 200. This will cause the method to invoke
the networkResponse method in the Herning midlet with appropriate values.
Figure 6.15 shows the implementation.

Figure 6.13: Initialisation of the HTTP connection.

Figure 6.14: Sending an update.

95

Mobile Client

Figure 6.15: A successful response received from the service.

6.3 Storing Data

We need to be able to store the daily plan received from the service as well
as all the time of each event (start and end of the watch and each visit). If
these values only exist in memory, it will not be possible to shut down the
client without loosing the data. A possible scenario where the program could
be shut down is when the employee makes a phone call.

To store the data we will use the Record Management System (RMS)
that comes with Java Micro Edition. It is a database system that allows a
Java program to use persistent storage1.

Our storage solution consists of two classes. HomeCareRS, which is the
main class for interacting with the record store and RecordStoreWorker,
which executes the actual inserting of data in the record store in a sepa-
rate thread.

6.3.1 HomeCareRS

There are three different things we need to store in persistent storage:

1. The LoginUser instance associated with the current employee.

2. The DailyPlan received from the service.

3. The UpdateObject that has to be sent to the service.

6.3.1.1 LoginUser

We need to store the LoginUser instance so the employee doesn’t have to
enter the login credentials again when the update is send to the service. It

1For an introduction to RMS visit
http://developers.sun.com/mobility/midp/articles/databaserms/

96

6.3 Storing Data

is also compared to the user name and password that an employee inputs in
order to verify if the employee already has a saved daily plan.

The method to save the LoginUser instance is invoked from the loginUser
method in the Herning MIDlet class (the method is shown in Figure 6.9)
when it has been determined that there does not exist a previously stored
daily plan. Figure 6.16 shows the implementation of the method that save a
LoginUser instance.

Figure 6.16: The method to store a LoginUser instance in the record store.

The method to retrieve a LoginUser instance from the record store is
invoked at the beginning of the loginUser method in the Herning MIDlet
class. The implementation is shown in Figure 6.17.

6.3.1.2 DailyPlan

The DailyPlan instance is stored as the JSON string representation that is
received from the service. We have chosen this strategy since we don’t need
to change the information in the object and a single string is a lot easier to
handle than complex objects. Only having a single string to store and retrieve
makes the implementation trivial, except for one thing. Each DeliveredVisit
belonging to the UpdateObject is stored for itself, and the records that will
contain them have to be added before they can be used and that happens in
the method that saves the daily plan. The save method is shown in Figure
6.18.

97

Mobile Client

Figure 6.17: The method to retrieve a LoginUser instance from the record
store.

Figure 6.18: The method to a DailyPlan instance in the record store.

98

6.3 Storing Data

6.3.1.3 UpdateObject

The UpdateObject is divided into two parts, one containing the information
related to the watch and one part that is related to each visit. This causes
the save method for the UpdateObject to only be called twice. The first time
is to save the start time for the watch and the second time is to save the end
time for the watch.

Having each visit have its own records limits the amount of data that
we need to write every time there is an update. As with the updateObject,
every DeliveredVisit needs to be stored twice. The first time to store the
initial data (such as the citizen’s cpr number) and the start time of the visit.
The second time is to store the end time of the visit. If a watch contains 10
visits we will only store each visit twice instead of 20 times.

6.3.2 RecordStoreWorker

The RecordStoreWorker is responsible for storing data in the record store.
The class extends the Thread class, such that the storing of data happens
in its own thread, and thus not freezing the user interface when writing to
persistant storage. Figure 6.19 shows the class diagram for the RecordStore-
Worker class.

Figure 6.19: The class diagram for the RecordStoreWorker class.

The run method is inherited form the Thread class and is used to put the
thread in a wait state until some data has to be stored in the record store.
It will the call the saveData method and return to the wait state.

The saveItems method is invoked from the HomeCareRS class whenever
there is data to store. The inputType parameter is used to determine which
record to update, it can either be LoginUser, DailyPlan, UpdateObject or a
DeliveredVisit. The data byte array is the actual data to store. The method
signals the thread to enter the active state which will call the saveData
method.

The saveData method stores the data in the record store. The implemen-
tation is shown in Figure 6.20.

99

Mobile Client

Figure 6.20: The saveData method in the RecordStoreWorker class.

6.4 Models Namespace Implementation

The implementation of the Models namespace is not as simple for the client
as it is for the service. Even though most classes just consists of private
variables with getters and setters, it is not enough. The problem comes when
the classes has to be made into a json string representation. The service uses
.NET reflection through the Json.NET component to automatically create a
json string from an object instance or an object instance form a json string.
Java does not have the reflection ability, so the creation of strings and objects
have to be implemented into each class that needs the functionality.

In the following we will take a closer look at these changes, as well as ex-
amine the Java implementation of the EncryptedData and Encryptor classes.

6.4.1 Changes to the Models Namespace

Four classes has to be changed to add this behaviour. Figure 6.21 shows
the updated DailyPlan class diagram, Figure 6.22 shows the updated Upda-
teObject class diagram, Figure 6.23 shows the updated EncryptedData class
diagram and finally Figure 6.24 shows the updated LoginUser class diagram.

Figure 6.21: The changed class dia-
gram for the DailyPlan class.

Figure 6.22: The changed class dia-
gram for the UpdateObject class.

100

6.4 Models Namespace Implementation

Figure 6.23: The changed class dia-
gram for the EncryptedData class.

Figure 6.24: The changed class dia-
gram for the LoginUser class.

6.4.1.1 fromJson

The fromJson method has been added to two classes: DailyPlan and En-
cryptedData. It takes a json string as input and populates the class vari-
ables with the values from the json string. Figure 6.25 shows the fromJson
implementation in the EncryptedData class.

In this case there is only a single attribute to populate: data. A JSONOb-
ject instance is created from the json string input parameter. The data at-
tribute is then set to the value of the attribute named Data in the JSONOb-
ject instance.

Figure 6.25: The fromJson method in the EncryptedData class.

6.4.1.2 toJson

The toJson method has been added to the EncryptedData and UpdateObject
classes. The method creates a json object representation of the class and
returns the string representation of the json object. Figure 6.26 shows the
toJson implementation in the EncryptedData class.

101

Mobile Client

Figure 6.26: The toJson method in the EncryptedData class.

6.4.2 Encrypted Data

The EncryptedData object is responsible for encrypting and decrypting json
string representations of the objects that are send to and received from the
service. The encryption happens in the constructor, and decryption happens
in the getData method. Figure 6.27 shows the constructor and Figure 6.28
shows the getData method.

Figure 6.27: The constructor in the EncryptedData class.

Figure 6.28: The getData and setData methods in the EncryptedData class.

102

6.4 Models Namespace Implementation

6.4.3 Encryptor

The Java implementation of the Encryptor class is very similar to the C#
implementation for the service. The differences are in the way to convert
a string to a byte array (Java has a getBytes method on the String object,
.NET uses a encoding class in the System.Text namespace) and the way to
synchronise the encrypt and decrypt methods. Besides these two differences,
the implementations are identical.

As an example Figure 6.29 shows the Java implementation of the encrypt
method and by comparing it to the C# implementation from Figure 5.13, the
only difference is that the Java implementation uses the synchronize keyword
for synchronisation where the C# implementation uses an attribute.

Figure 6.29: The encrypt method in the Encryptor class.

103

Mobile Client

104

Chapter 7

Discussion and Conclusion

This chapter contains discussion and conclusion of the project.

7.1 Discussion

This section will discuss alternative solutions to problems introduced within
this project along with the reasons why these have not been chosen. Fur-
thermore the limitations and assumptions will be discussed.

7.1.1 Missing Functionality

The system we have developed only have the most basic functionality. It
can only work with a daily plan for the current day. And only with the
information that has been planned for it. It is not possible to change infor-
mation belonging to the plan. For example if the employee has to make an
unscheduled visit to another citizen, the visit cannot be added to the daily
plan. The same is true for the services to deliver. It is not possible for the
employee to change them using our system.

Other missing functionality includes the ability to make a phone call to
the citizen that the employee is about to visit and to be able to see the daily
plan for another day.

7.1.2 Database Structure

We are not allowed to change the database structure since Herning Munici-
pality currently have their own system running on it. However changing the
structure of the database would have allowed us to improve the insertion a
lot since many of the problems are from design problems within the database.
An example is missing foreign keys which even allow for bad data quality.

105

Discussion and Conclusion

7.1.3 Updating the Database

We are currently only updating the database when the work day ends. This
could give the potential for higher data loss if a disk failure occurs on the
mobile client towards the end of the work day. To avoid this data loss it
could be possible to send the current UpdateObject to the service, whenever
there is added information and the device has network coverage.

7.2 Conclusion

We have developed a mobile solution. The mobile solution allows the em-
ployees in Herning Municipality to request a daily plan for their current work
day. At the end of the day the central server is updated with the new data.

The solution has only been tested in our own development environment
and not in the production environment at Herning Municipality. Because of
this, we cannot say how our solution performs during communication sessions
compared to the existing solution.

7.2.1 The Goals

We had two goals for the system: It should be more responsive than the
current system and it should not have the need for a continues network
connection.

7.2.1.1 Responsive System

The existing system have long response times for each server request. And
since it is browser based, every action in the system issues a new server re-
quest. Our solution to this problem is to limit the number of server requests.
We only access the server twice: The first access is to retrieve a daily plan
containing all information related to the employees workday, the second is to
send the data that needs to be updated.

If the time problems comes from either the network or the database ac-
cess, then our request for a daily plan will not be faster than the existing
system, since there is no way to generate a daily plan without accessing the
database. However we only have to do this once for each workday, since we
store the entire plan locally on the employee’s mobile device and any sub-
sequent request, until the update is send back to the server, is performed
locally and thus will be instant.

When we send the update back to the server, we store the update in-
formation in a log file at the server. When the log file has been saved, the

106

7.2 Conclusion

client is informed that the update has been received, before the update gets
added to the database. This way the database access does not influence the
response time and the user should be getting a faster response.

7.2.1.2 No Continues Connection

With our solution the employee only have to access the service at the begin-
ning and end of the workday. During the period where the employee visits
the different citizens, our solution doesn’t require a network connection and
thus it doesn’t matter if the citizens live in places that does not have network
coverage.

7.2.2 Criteria

We defined three criteria that we would like our solution to achieve: Minimal
data input, high data quality and protection of sensitive data.

7.2.2.1 Data Input at a Minimum

This criteria have been achieved to the extent that the employee only have to
input a user name and a password to receive a daily plan. The client program
then guides the employee through the workday, where all the employee has
to do is to choose the next action (for example Start Visit or End Visit). The
update is sent to the server automatically when the workday has come to an
end.

7.2.2.2 Data Quality

This criteria have been harder to work with since the data quality in their
current database is not high. Examples of this is that certain tables allows
for invalid data which means that in certain cases it would not be possible
to extract the duration for a service from the database. The criteria have
been fulfilled to the point that we ensure that each row is only inserted one
time. Furthermore we also ensure that the data quality in the database is
not getting any worse. This means that the places where we only have access
to invalid data we do not have any other options but to insert this invalid
data into the database again.

7.2.2.3 Sensitive Data

This criteria have been fulfilled to the extent that we have used 128 bit AES
encryption for all data sent between the web service and the mobile client.

107

Discussion and Conclusion

This means that if the information is intercepted during transmission, no
useful data about the citizens can be retrieved by an attacker.

108

Bibliography

[Bag08] Rob Bagby. Demystifying the code, rest in wcf blog series index,
2008.

[Cod86] E. F. Codd. Missing information (applicable and inapplicable) in
relational databases. SIGMOD Rec., 15(4):53–53, 1986.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Springer, 2002.

[Fie00] Roy T. Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,
Irvine, 2000.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations (in-
vited paper). In Very Large Data Bases, 7th International Con-
ference, September 9-11, 1981, Cannes, France, Proceedings, pages
144–154. IEEE Computer Society, 1981.

[Han72] Per Brinch Hansen. Structured multiprogramming. Commun.
ACM, 15(7):574–578, 1972.

[HR83] Theo Härder and Andreas Reuter. Principles of transaction-
oriented database recovery. ACM Comput. Surv., 15(4):287–317,
1983.

[LP76] M. Lacroix and A. Pirotte. Generalized joins. SIGMOD Rec.,
8(3):14–15, 1976.

[MSD05] MSDN. An introduction to c# generics, 2005.

[MSD09] MSDN. Language-integrated query (linq), 2009.

109

	Introduction
	Scenario
	Goals for our Solution

	Analysis
	Daily Plan
	Database
	Recovery
	Service
	Mobile Client
	Communication
	Security

	Design Overview
	Architecture
	Models
	Data Access Layer
	Service
	Client

	Data Access
	Generating the Daily Plan
	Writing Updates to the Database

	Service
	Service Implementation
	Configuration
	HomeCareService Implementation
	Models Namespace Implementation

	Mobile Client
	User Interface
	Communication
	Storing Data
	Models Namespace Implementation

	Discussion and Conclusion
	Discussion
	Conclusion

	Bibliography

