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Movement disability is one of the most invalidating conditions
in consequence of a spinal cord injury. Consequences of SCI
can be wide spread implying variety of complications, and
several functions may be affected. SCI and can be devastating
dependent on the level of injury on the spinal cord, causing a
near total loss of independence in the case of high-level injury.
Rehabilitation devices that enable paralyzed people to perform
daily activities or restore even a modest level of independence
have the potential to generate an enormous impact on the
quality of life and lower the related costs to society.

In severely motor impaired individuals, only a few modalities
remain under voluntary control, which complicates the
opportunity for these individuals to use assistive technology to
allow them to independently perform movements essential for
many self-care activities.

Neuroprosthesis operate through a command interface that
measures some modality over which voluntary control is
maintained, and translates this to a specific operation of the
prosthesis via electrical stimulation in case of FES and FET.

A configuration based on a Multi Layer Perceptron Neural
Network was proposed to predict the users intent based on
gaze-direction and the muscle activity recorded non-invasively
from the proximal arm muscles. Additionally, a possibility of
simplifying the control of electrical stimulation, was
investigated based on muscle synergies extracted by non-
negative matrix factorization

From 7 subject the users intent was predicted based on surface
EMG and simulated gaze-direction, indicating a clear
improvement compared to predictions based on the muscle
activity only. The Neural Network outperformed the
predictions achieved with a Kalman filter.

In 1 subject, the muscle activation level in 9 distal arm
muscles was predicted continuously using the Neural network
based on the muscle activity from the Deltoid muscle and
recorded gaze-direction.

Further, the muscle activity in 12 muscles could be
reconstructed based on a low dimensional muscle activation
pattern, indicating a simplified approach for the stimulation
control in a FES or FET system.

The data basis of this analysis should in future work be
extended and additionally it should be demonstrated that
individuals accurately can control the muscle synergies in a
real-time FES/FET application.
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Reading instructions

The report consist of 5 parts indicated with roman numbetisertable of contents and as depicted in fiquré 1.1.

PartV
Appendix

Elaborated topics

Part I1 Part III
Methods Results
Part IV
Data collection Preliminary results Recapitulation
Data analysis Experimental results and future work
Discussion
Part I

Introduction

Area of interest
Problem statement

Figure 1.1: Report structure, showing the 5 main parts in which the repativided. The arrows indicates how the
different parts are linked.

Part | introduces the area of interest in the project, andiges an overview of previous literature within the relevan
research field, together with an results based on prelipighata. Thus Part | formulates the scope of the project, and
is summarized in the problem statement.

Part Il describes the methods used both for the data calleofithe preliminary data (previously collected by others)
and the conducted experiments, together with methods éoddte analysis.

Part Il presents the results based on the preliminary deddikewise for the collected data.

Part IV rounds of the main part of the report containing theedssion of the results and an outline of future work.
After the main report follows the appendix in part V, contagchapters that elaborate some of the presented infor-
mation in the report, and additionally new information isramluced. No information is contained in the appendix,
which is not referred to in the main report.

A CD is enclosed containing the application written for tiperimental part together with the collected data on which
the data analysis is based.

Selected terms throughout the report are explained in thesgty.






Contents

| TSI
[Glossar}

I_Introduction |

[2__Paralysis and rehabilitation

[2.4 Functional components of a FES system . . . . . . .

[2.5__Decoding based on a multi-modal approach . . . . .

(2.6 Reduction of the complexity for movement control . .

[3__Problem statemenit

based on a multi laver perceptron network
|4 4 Extrac:tlon of muscle svnergies and motor commands

[5_Protocolb

l6__Preliminary decoding results

[6.1 Prediction of kinematics and muscle activity . . . . . . .t

[7__Experimental result$

wﬂw ----------

©

14
19
24

25

27

29
29
30
32
37
39

41
41
43

55

57
57



Vi

Contents




List of Figures

21 Thevertebralcolumn . . . . . . o o o 10
[2.2 Schematic representation of the functional compor#f@#FES system . . . . . . . . . . . ... .. 15
[2.3 Prediction of muscle activity from preliminarydata . . . . . . . . ..o 20
2.4 Prediction of muscle activity from oreliminarv data . ..o 21

14.8 _Reconstruction of muscle activity from muscle synesgied motor commands . . . . . . ... ... 38
4.9 _Simplified approach for neural conlrol . . . . . . . . ... 38

[5.10 Setupofevetracking . . . . . . . .. ... e 47
15.11_Synchronization of the SEMG, motion capture, and @géing . . . . . . . . .. ... ... ... .. 49
[5.12_Prediction performance of MLP NN as a function of nundfereurons (muscle activity) . . . . . . . 50




List of Figures

ivi i [ . . e 103
ivi ' A2 104
E.3 Recorded muscle activity, subject 1, tr bl 3

4 Recon Iction performance a

a function of numbertpheted synergies and motor commands . . 106
a function of numbertéeted synergies and moto 'ﬁnds .. 107




List of Tables







FES

FET

Functional Electrical Stimulation. Electrically elicite
muscle contractions coordinated in a manner that pro-
vides functiorl[122], page 12

Functional electrical therapy, page 12

Forward dynamics Dynamics is the study of bodies in motion. For-

Glossary

ALS

ANN

ANN

BCI

ward dynamics is based on determining the movement
based on the forces., page 17

Goal-directed movement Goal-directed movement is a type of move-

Amyotrophic lateral sclerosis. A progressive and fatal
neurodegenerative disease caused by the degeneration of
motor neurons, the nerve cells in the central nervous sys-
tem that control voluntary muscle movement, with the
result of loosing the ability of the brain and spinal cord to
incite muscular activity and respiration, page 10

Artificial Neural Network is an adaptive, and most often

ment of high prevalence in our everyday life. Goal-
directed movements are typically directed toward one of a
(possibly large) number of discrete goals available in the
subject’'s workspace. These goals may be visual targets
presented on a computer screen or physical objects lo-
cated near the subject. Furthermore repeated movements
to the same goal are not identical. E.g. there may be
variability in movement speed or curvature. Finally the
trajectories generally start at rest, proceed out to the de-
sired goal, and end at re5t[178], page 9

nonlinear system that learns to estimate a function fromverse dynamics Is the transformation from a desired motion (input

data or associate input vectors with specific output vec-
tors and is based on the operation of biological neural
networks, page 34

Artificial Neural Network is an adaptive, and most often

is position, velocity, and acceleration of each limb seg-
ment together with external forces), to the muscle forces
or activations that are needed to drive the limb according
to the desired motio [10], page 23

nonlinear system that learns to estimate a function froghcobian matrix The Jacobian is the matrix of all first-order partial

data or associate input vectors with specific output vec-
tors and is based on the operation of biological neural
networks, page 113

Brain computer interface. A direct brain-computer in-

Kinematics

derivatives of a vector-valued function, page 38

Motion description. E.g. speed, position, or angular ve-
locity., page 9

terface is a device that provides the brain with a new.ower motor neurons The motor neurons connecting the brainstem

non-muscular communication and control chanhel[172],
page 16

Cerebral Palsy Refers to one of a number of neurological disorders

that appear in infancy or early childhood and permanently
affect body movement and muscle coordination without
worsen over time. Cerebral palsy is caused by abnormal-
ities in parts of the brain that control muscle movements
[100], page 11

Co-contraction Muscle co-contraction can be defined as the simulte’ill-1

D.O.F

DVT

EEG

neous activation of agonist and antagonist muscle groups
crossing the same joint and acting in the same plane [83],
page 25

Degrees of freedom. Represent the number of indepéW‘J
dent movements an object can make. For a biological
motor system it is the number of dimensions in which the
system can independently vary., page 14

Deep vein thrombosis. The formation of a blood clotMUAP

thrombus, in a deep vein with the most severe compli-
cation being a clot traveling to the lungs causing a pul-
monary embolism, page 11

and spinal cord to muscle fibers, bringing the nerve im-
pulses from the upper motor neurons out to the muscles.
The axon’s from the lower motor neurons terminates on
an effector, the muscle. The upper motor neurons origi-
nates from the motor region of the cerebral cortex or the
brain stem and carry motor information down to the final
common pathway (the motor neurons not directly respon-
sible for stimulating the target muscle), page 13

Primary motor cortex mediates voluntary movements of
the limbs and trunk. It is called primary because it con-
tains neurons that project directly to the spinal cord to
activate somatic motor neurons, page 16

Motor unit consist of ana-motor neuron (final point
of summation for all descending and reflex input) in
the spinal cord and the muscle fibers it innervates [89],
page 25

Motor unit action potential is the combination of the mus-
cle fiber action potentials from all the muscle fibers of a
single motor unit, i.e. individual MU action potentials
[I71], page 31

Electroencephalography. The measurement of the elddultiple sclerosis Multiple sclerosis, also known as disseminated scle-

trical activity generated by the brain, page 16

Endpoint stiffness The relationship between externally imposed hand

displacements and the resultant forces. Hence arm resis-

rosis, is an autoimmune condition in which the immune
system attacks the central nervous system, leading to de-
myelination [136], page 10

tance to applied perturbations. The endpoint stiffness deluscle synergy A set of relative non-negative levels of muscle acti-

termines how strongly external disturbances are rejected
during maintenance of posture or movement, page 14

vation that recruits a group a muscles in a coordinated
manner, page 26
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Muscular dystrophies Genetic, hereditary muscle diseases that causeMG Surface electromyogram comprises the sum of the elec-
progressive muscle weakness. Muscular dystrophies are trical contributions made by the active motor units as de-
characterized by progressive skeletal muscle weakness, tected by the electrodes placed on the skin overlying the
defects in muscle proteins, and the death of muscle cells muscle[[33[_8B], page 16

and tissue, page 11
Sigmoidal function A sigmoid function refers to the mathematical

NMF Non-negative Matrix Factorization, page 39 function which produces a S-shaped sigmoid curve. The
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Paralysis and rehabilitation

Movement disability is one of the most invalidating conalits in consequence of a spinal cord injury (SCI). Paralysis
often imply loss of independence and good health since treyzad individuals loose their abilities to interact with
their surroundings and are unable to complete many aetvititical for independent living, such as eating, reaghin
and acquiring objects. Tasks, which are considered simpldaken for granted by healthy people.

Paralysis can occur from different causes, among otheskesand fatal accidents resulting in SCI and can be dev-
astating dependent on the level of injury on the spinal coadsing a near total loss of independence in the case of
high-level injury. Unfortunately, neurons generally exbhlittle regenerative capacity, resulting in permanearnége

to the nerves. Hence a lot of focus has been aimed at reladibititechnologies to restore lost functions.

This chapter introduces upper extremity movements thaessential in our everyday living, different degrees of
paralysis, and the consequences for motor impaired ingilédand for the society. Also different rehabilitationttec
nologies for paralyzed individuals are introduced.

2.1 Upper extremity movements in everyday living

One category of movements are goal-directed, which cheriaes most upper limb movements, in the contrary to
cyclic movements, e.g. as seen during [20]. Goal-thebenovements are an essential part of everyday living
such as reaching, grasping, pointing, throwing, drawirgdwriting, keyboarding, tracking, object manipulatitg. e

all being different modalities of goal-directed movementsis kind of movement is a planned change of arm and
hand segments positions, leading to a task, and dependsalarecé of initial programming and subsequent correc-
tion. Goal-directed movement is a complex sequence of katieravents, which can be divided into different phases
[81]. The initial programming is based partly on the visualgeption of an object and partly on proprioception[122].
Generating movement requires the nervous system to itigagnati-modal sensory information, make complex trans-
formations between different spatial and intrinsic cooadé systems, and to generate motor commands adequate to
attain the arm movement[122].

Reaching in specific is described as an arm manipulationdsiwwo points. It is a complicated multi-joint move-
ment directed to a defined pointin space performed by coatelirotation at the shoulder and elbow joints. Reaching
movements have an initial acceleration phase and a finaleaatien phase, resulting in a bell-shaped velocity profile
The hand follows relatively simple and often straight pathspace.

The reaching movement comprises several different aetsyieach having specific characteristics that requirediff
ent feedback mechanisms. E.g. reaching in a tracking gctiensists of movement of the hand along a prescribed
trajectory. Visual information during reaching to a tarigatsed to identify the target and its location in space, and f
corrections of ongoing movemerit, [122]

Many of the basic movements that a paralyzed individual daigsire are simple goal-directed movements, such as
reaching, pointing and grasping, which can be considerée the building blocks of more complex actions, such as
eating.

Movement impairment may have devastating consequencasdiwiduals, who can no longer perform tasks, which
previously were taken for granted. Causes and consequehpagalysis are the focus of the following section.

2.2 Causes and consequences of movement impairment

The spinal cord consists of spinal nerve fibers that transemsory information from the body to the brain and motor
information from the brain to the body. Injury to the spinak@ results in interruption of the transmission of this
information. SCI refers to any injury of the neural elemenithin the vertebral column and can occur from either a
traumatic injury or from a disease to the vertebral column.
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Traumatic injury can e.g. occur from motor vehicle crasffedls, and acts of violence or sports activities. Often SCI’
due to traumatic injury lead to the backbone pinching theapiord, causing bruising or swelling. The injury can
tear the spinal cord and the nerve fibefs. [101] Infectiousli®mns being infections involving the spinal canal (in-
cluding epidural abscesses (infection in the epiduralaspaceningitis (infection of the meninges), subdural abses
(infections of the subdural space), and intramedullargesses (infections within the spinal cord), tumors, mldtip
sclerosis, Amyotrophic lateral sclerosis (ALS ), braimst@afarcts are some of the pathological conditions that can

cause SCI[J101, 102, 114]

The neurological level (referring to the location of thetedral column, numbered and named according to their
location c.f. figurd_Z]1) and the extent of the lesion detasgithe consequences of a SCI. The higher the level of
injury, the more extended the paralysis and sensory[[os.[T®ie highest level of injury is categorized from injuries

at the cervical segments (C1-T1), as tetraplegia, whickesloss of functions in almost every extremity of the body.
Individuals with high-level tetraplegia (defined from thmufth cervical level (C4) and above) would typically have
limited upper extremity movements, retaining voluntarytrol over head and neck muscles and in some cases have
minimal control of shoulder movement through trapeziusvigt{2] 101]. C4 tetraplegia is the highest level of paral-
ysis without the individuals being ventilator dependemt.atidition tetraplegic individuals with C3-C4 SCI exhibit
extensive denervation of the shoulder and elbow muscle® [#2 a lower level of injury, the paralysis is categorized
from injuries at the thoracic segments (T2-S5) as paraplegiising paralysis of the lower extremities [101].

. T2 -T8: Chest and rib muscles

- T6 -T12: Abdominal muscles

Thoracic vertebrae

L1-L5,S1: Leg muscles Lumbal vertebrae
S1: Leg muscles
S2: rectum, pelvic floor Sacral vertebrae
S2 - S5: Bowel, bladder, sexual function

Figure 2.1: The vertebral column and spinal cord can be divided into fegions, Cervical, Thoracic, Lumbal, and
Sacral based on the regions in which the vertebras are gusitiand where the nerves from the spinal
cord leaves the vertebrae. Modified frdm|[45, 2]

SCI's are classified, as a complete injury when all neuromsatrand no link between the brain and the body periphery
exist, thereby lacking the possibility to recover the fumas of the limbs below the level of injury. In a complete inju
there is no motor or sensory function in the S4, S5, or anal.arean incomplete injury, some control of the body
may still remain and offers possibilities to recover somactions below the level of injuryl [8, 101]

All types of paralysis affect the paralyzed individual'slapto interact with their environment and clearly a corafd
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injury resulting in high-level tetraplegia being the mosvere case, with no control of either the lower or upper
extremities and often they lack the possibility to breathumtarily. Consequences of SCI can be wide spread, and
several functions may be affected as well as several coatjgits may occur as listed in the followirid [8, 127, 1145]

e Paralysis with muscle atrophy and spasticity

e Risk of pressure ulcers

e Unable to control bladder and bowel, risk for urinary trafections
e Changes in sexual function

e Endocrine and metabolic changes due to the physical inigctiv

e Bone decalcification with extended risk of fractures, ogt#osis

e Affection of blood vessel and blood pressure (hypotensiahsevere hypertension (autonomous hyperreflek-
sia), and extended risk of deep vein thrombosis (DVT))

e Depression
e Diabetes mellitus
e Increased body fat mass

e Cardiovascular deconditioning

According to [2] approx. 3000 individuals suffer from pacatetraplegia in Denmark (the number is uncertain due to
no central registration). Out of 1000 persons each year imizgk subject to SCI approximately 10% will be cervical
fractures([136]. Approx. 75% of the paralyzed individuails goung males with no cognitive impairment and with a
long life expectancy, approaching 40 years for injuriesiimed at the age of 20, after the time of injury [102]. These
individuals are entirely dependent on outside assistamickafgely all activities essential for daily living, inaling
eating, personal hygiene, bladder and bowel care and &aimgf in and out of bed.

This independence has high economical cost for the sochatgording to [102] the average lifetime medical cost
(average yearly health care and living expenses) for aniohgil injured at the age of 25 exceeds $3 million in USA,
excluding indirect costs such as lost wages and the impaitteoimdividual’s family-.

Other causes of movement impairment can be head injurybingalsy, advanced-stage muscular dystrophies, and
diseases of the neuromuscular junction [114].

The succeeding section provides insight into a range oftiétadion options for persons suffering from paralysis
focusing mainly on high-level tetraplegia.

2.3 Rehabilitation for movement impaired individuals

Damage to nerves is in most cases permanent, since nestad ignerally exhibit limited regenerative capacity. In
contrast to advances in the care of SCI only little has bebieged clinically to reverse the neurological loss associ-
ated with SCI by protection or regeneration of axons withia $pinal cord.[[58] The neurological outcome of SCl is
first and foremost determined by the extent of the damagesdaatgshe moment of injury and still today no treatment
can change that outconie [127]. Consequently, persongisigffieom SCI must contend with multiple neurological
sequelae of SCI such as paralysis, sensory loss, autongsfimdtion, loss of bladder and bowel contiol [127].

Rehabilitation devices that enable paralyzed people ttopardaily activities or restore even a modest level of inde-
pendence have the potential to generate an enormous impgciadity of life and in addition lower the related costs

to society [28]. The goal of rehabilitation is to enable mmest impaired individuals to regain the highest possible
level of independence.

1These statistics is not available in Denmark or Euloge[14]
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Numerous approaches have been taken to develop techrolagul in the area of rehabilitation of paralyzed indi-
viduals to facilitate independent communication and nigghihmong these the mouth stick, sensors activated by eye
blinks, respiration or head movement[[7, 145]. In sevemadyor impaired individuals, only a few modalities remain
under voluntary control, which complicates the opportyfor these individuals to use assistive technology to allow
them to independently perform movements essential for reatiycare activities.

The following subsection focuses on a promising approadmpsove independence of severely movement impaired
individuals, namely neurorehabilitatidn [145].

Neurorehabilitation

Neurorehabilitation comprises methods and technologyrfakrimizing the efficiency of preserved neuromuscular
structures in individuals suffering from motor disabéii Thus neurorehabilitation relates to developing newanov
ment strategies based on preserved sensory and motor systhith without training otherwise would remain unused.
Individuals subject to SCI can have intrinsic resourcestinay still be available if they are developed appropriately
and used in a functional manner. The effectiveness of nehadnilitation activities is depended on the degree of dis-
ability and to the specificity of losses of neural connedtid@2?2]

Spontaneous recovery of functions occurs through the psaafecompensation, substitution, and dynamic reorganiza-
tion through training. Organization of learning within tberebral cortex results from the repeated activity on thie pa
of the individual and becomes organized into a functionsteay of behavior. The repeated activities can also change
the neuronal connections and function at lower levels ot#rgral nervous system. These processes lead to new types
of integrated multiple sensory modalities, which direeffect the abilities for voluntary motor contrél.[122]

Functional electrical therapy Neuromuscular stimulation for motion can be applied fohlktberapeutic and func-
tional purposes. Therapeutic purposes, functional ébattherapy (FET), includes clinical interventions frormple
exercises for muscle conditioning through motor releagnin

FET is one strategy to assist individuals in executing fiomel movement after SCI. FET is suitable for individuals
who have reduced voluntary control of muscles due to a pgadriixation of the joint[128]. This approach facilitate
voluntary movement by learning the diminished movementlbgtdcal stimulation allowing regaining of voluntary
control of some muscles [122].

The purpose of FET is to improve tissue health or voluntancfion by inducing physiological changes, which re-
main after stimulation [114]. In addition, chronic use of FRas proved to have a positive effect on the bone density
[92]. [58] has recommended regular FET to maintain the ogitiphysical and psychological condition of individuals
suffering from SCI. Regular sensory stimulation througé skin maintain the retained neurological functions and
returning reflexes closer to the normal physiological stateddition [49] speculated that the normal neural cimguit
within the spinal cord, necessary for gait and other motacfions, needs continuous maintenance by FES and/or
body weight supported treadmill, training ambulation. ke patterned neural activity that FET comprises has been
suggested to be important for both development and recmfergurological functions [86].

Furthermore, physical exercise both stimulates the pribahs of endorphins and contributes to the upregulation of
brain derived neurotrophic factor, which may promote syicagnd functional plasticity within the brain and spinal
cord [161].

This suggests that the therapeutically effects of eletgtimulation of paralyzed muscles may have an substantial
effect on both the peripheral system in form of strengthgtie muscles, increasing the range of movements, and
decreasing spasticity, and contemporary on the functionggnization of the CNS.

Functional electrical stimulation Functional electrical stimulation (FES) facilitate ditigcspecific functions in
daily living.

Paralyzed or paretic muscles can be made contract by agdiyinelectrical currents to the intact peripheral motor
nerves innervating them. When electrically elicited mesabntractions are coordinated in a manner that provides
function, it is called FES. It is the application of low elgcal currents to excitable (neuromuscular) tissue to Bipp
ment or replace function that is lost in neurologically inmpd individuals[114].
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The purpose of FES is to enable function by replacing or tisgig person’s voluntary ability. Neuroprosthesis are
FES devices used as a substitution for lost neurologicaitfom[114,122]. Both sensory, e.g. auditory, visual, and
motor function can be restored with FES. However only newscular FES, for restoration of motor function, is
considered in this work.

FES for restoration of motor function has numerous physidantages including preventing DMT [90], preventing
pressure ulcers[22], increasing muscle strength by eseeimfi muscles post SCI[126, 131], increase muscle mass
[138] thereby being effective in preventing muscle atrqpkbuilding muscles from an atrophied stage, increase the
range of motion, inhibit spasticity, and reeducate volgntauscles, increase cardiac output, the peripheral venous
blood return, and muscle oxidative capadity [114].

Neuroprostheses

A neuroprosthesis replaces or augment a function that tsolodiminished because of an injury or disease to the

nervous system. The basic principle of a neuroprosthetiigistimulation of neuromuscular tissue.

Neuroprosthesis operate through a command interface teasumes some modality over which voluntary control is

maintained, and translates this to a specific operationepthbsthesis[118]. Several control modalities have been
applied such as residual movement, EMG, respiration, vodeemands, and brain activity. FES devices used as a
substitution for lost neurological function are called rearosthesis/[[114]

After SCI muscles below the level of injury are still conrexttto the CNS but will no longer be under voluntary
control. Movement restoration can be achieved by the uskesiet muscles by by-passing the damaged motor struc-
ture, applying electrical currents to lower motor neurosiag electrodes placed on or near the innervating nervesfiber
for the specific muscles.

Thus, for FES to be effective, the lower motor neurons mushtaet (excitable) from the anterior horns of the spinal
cord to the neuromuscular junctions in the muscles, whiehtabe activated [114]. This is usually the case with
SCl, stroke, head injuries, cerebral palsy, and multiplerssis [114]. Most neuroprosthesis for restoration of@not
function have been primarily targeted toward SCI’s.

Stimulating the innervating axons appropriately can etiction potentials, and the strength of the muscle coritnact

is regulated by modulating stimulus parameters (e.g. dugdiand duration of the stimulus pulses, while the fre-
quency is often kept constant) [122]. Coordination of salelectrically activated muscles can produce a functional
limb movement.

A lot of development and progress have been seen in the fighE8fin restoring upper limb functions but the main
part of the studies have been demonstration studies [14.objective with upper limb FES is to promote function,
such as reaching and grasping.

Especially upper limb FES applications for control of theathan individuals with C5-C6 tetraplegia have been in
focus. C5-C6 tetraplegic individuals generally retainggiovoluntary control over shoulder and elbow joints to plac
the hand in positions below the level of the shoulder, thtaimang basic reaching abilities, which makes the target
joints for FES in this population wrist, fingers, and thumb dgoasp and release [96]. E.g. the FreeHand system has
been developed to allow C5 or C6 tetraplegic individualsetstare abilities to grasp, hold, and release objécts [61].
The system uses an implanted receiver-stimulator and-efwdrinel electric stimulation of the grasping muscles of
one arm is controlled by using contra lateral shoulder ma@rgs Results have shown positive effects in form of sig-
nificantly improved pinch force and improvement in graslease abilities[66, 11.3][ [113] presented results showing
that the majority (87% of 34 individuals) were satisfied witle FreeHand system and stated that it improved their
activities in daily living. Additionally it was reported # the system had a positive impact on their life (88%).

[125] developed an external device, using three channeiifoulating finger flexors, extensors, thumb flexors, with
the a control signal based on wrist position transducer. Bibaic glove FES system was shown in a study applied
on 12 C5-C7 tetraplegic individuals to increase the sulsj@ziwer grasp and range of movements[12[]. [147] in-
vestigated the functional effects of the NESS Handmast&4hT6 tetraplegia individuals. Results showed that the
Handmaster had functional benefit in C5 tetraplegic indigid, though with the requirement of sufficient shoulder
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and biceps function combined with absent or weak wrist esaen [82] tested the benefit of a transcutaneous FES
system to improve grasp function in 11 C4-C7 tetraplegidviddals. Eight out of a total of nine who used the FES
as neuroprosthesis showed improved grasp function andrpgahce in activities of daily living.

In FES the placement of an electrode on the triceps has beaatommon option to improve the control of reach-
ing, promoting elbow extension through triceps stimulatif21,[42] 18] showed among others, that elbow extension
enhances tetraplegic individuals ability to grasp and malaie objects![117] showed that triceps FES improved pos-
tural arm stability evaluated by endpoint stiffness, whitfaracterizes the relationship between externally inghose
hand displacements and the resultant forces (estimatéugdapplication of planar, stochastic perturbations).

[87] showed that successfully reaching and moving an olject improved and the time required to acquire an object
while reaching was significantly decreased. 11 arms of paragth SCI received a triceps electrode as an addition
to a hand-grasp neuroprosthesis. Triceps stimulationigiedva significantly stronger elbow extension moment than
a posterior deltoid to triceps tendon transfer. The elboigresion moment generated through simultaneous activation
of the tendon transfer and triceps electrode was alwaydegrétan either method used alone. The elbow extension
resulted in a decreased amount of time required to acquitgbgatt while reaching and significantly increased the
ability to successfully reach and move an object.

[168] showed that individuals suffering from tetraplegia enore independent in self-care tasks with active confrol o
elbow extension compared to tetraplegic individuals withdtioning wrist extension without active elbow extension

However restoring of arm reaching in high-level tetrapteigidividuals is more complicated due to the very few
movements that remains under voluntary control (such agldapelevation, head movement, voice, and respiration)
and to the fact of extensive denervation of shoulder andrelibascles important for controlling the proximal limb.
In addition FES systems for this population should providetwl of the finger, thumb, wrist, elbow, and shoulder
joints[98].

For high-level tetraplegic individuals to achieve the éypiio position their hand in the workspace at a desired dbjec
a simultaneous control of at least two degrees of freedor® (B). (translation and grasping) is requifed[118]. Only
few have used FES for restoration of arm function in this paien, which might be attributable to the difficulties in
determining subjects intent in multiple D.O.F. tasks anddlect the appropriate patterns of muscle coordination for
restoring the intended movements.

Multi-joint neuroprosthesis for high-level tetraplegmividuals have previously combined slings and balancest fo
arm orthoses with FE$ [146] allowing individuals to graspobiject from a horizontal workspacé. [53] first demon-
strated that FES could be used for the restoration of reaotraloin high-level tetraplegic individuals by pre-
programmed control of elbow extension/flexion or hand graépase controlled by detection of respiration (inspi-
ration/expiration).

[1486] developed a FES system that allowed one complete @ptegic individual to control the level of stimulation
and choose between two pre-programmed stimulation pat{both designed to couple hand and arm movements to
allow hand-to-mouth activities) for hand grasp and relea®mw movement, and arm adduction, using contra lateral
shoulder movement and combined the FES with a suspendgdasigrovide stability of the glenohumeral joint, since
the rotator cuff and deltoid muscles (muscles acting toil&tatihe shoulder) could not be stimulated due to denerva-
tion. [99] developed a similar FES system using vocal conusdriggering preprogrammed hand prehensions, arm
motion, and other functions.

In these approaches a pre-programmed set of muscle stiamufstterns was used and some also require assistance
to place the object in the user’s hand or at a specific locatitime workspace, which limits the functional use of such
devices.

The following section presents the functional componehéskEES system.

2.4 Functional components of a FES system

Figure[2.2 shows a schematic representation of a FES syetamstoration of movement.
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Figure 2.2: Schematic representation of the functional componentd@&2 system. The users intent is decoded and
converted into control commands in the command interfam® Bignals originating from some modality
of which the user has retained voluntary control. The cdrgystem sends command signals to the
electronic stimulator, which in turn generates trains dépsi of electrical charge and deliver these to the
excitable tissue via the electrodes. Eventually this etite movement, and feedback can be returned to
the control system and possibly to the paralyzed individMaidified from [122[127]

Two fundamental components of a FES system are the decbeerdmmand interface in figure 2.2) for inferring the
users intent and the controller (control system in figuré 2controlling the stimulation of the targeted paralyzed
muscles according to users intent. Thus, the decoder isiaduaer that monitor signals produced voluntary by the
user122]

Subject-controlled FES can be open- or closed-loop. In dpep controlled FES, the electrical stimulator controls
the output whereas closed-loop FES employs sensors (etgntfmoneters and goniometers) to facilitate greater re-
sponsiveness to prevent certain conditions such as madied, or to irregularities in the environment, e.g. exéér
perturbations.

Electrodes act as interfaces between the electrical sitbmuand the nervous system. Surface electrodes are used
exclusively for routine physical therapy. FES electrodms be external (surface) or surgically implanted depending
on the application, the device, and the patient’s neéd<, [127] The interface between the FES system and the user
should allow for simple and intuitive control (decodinghieh also allows for compensation of disturbances (cohntrol
Furthermore such interfaces should limit the surgery meglfior implanting FES systenis [137].

Decoding of the users intent has been based on a large rardjfenént approaches, among which some are in-
troduced in the following subsection.

2.4.1 Decoding the users intent

In a FES system the initial step is decoding, which previphsls been based on numerous different approaches. De-
coding of the users intent besides FES is seen in other acesffor rehabilitation devices including artificial limbs
wheelchairs, and communication aids.

Amplitude, speed, and direction of arm motions vary betwaiéierent upper limb goal-directed movements, which
place demands on both the decoder (command interface) amaitroller in a FES system [20]. First of all the basis
for allowing a variety of different movements is to separthiese in the decoding process of the users intent based
on the available signals, of which voluntary control stkists. Contemporary, the controller needs to provide a rich
variety of stimulation patterns.

Interfaces that can be controlled via the subconscioustiessthe user to be more attentive to the task at hand instead
of being occupied by controlling the neuroprosthesis.ihgtthe command control be a natural extension of the users
intact motor system will increase the likelihood that therusan achieve some subconscious confroll[137].
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The following two subsections provide an insight into sonfi¢he signals and methods utilized for decoding, and
are divided into invasive and noninvasive approaches ctispéy.

Invasive approaches

It was observed by [39] that the firing rate of cells in the @ignmotor cortex (M1) were approximated by a cosine
‘tuning function’, i.e. the direction of arm movement dugireaching is coded by neurons with a firing rate that varies
as the cosine of the angle between a cell’'s preferred dimeethere it is maximally active and the actual movement
direction.

Later they proposed the population vector hypothésis [dgfssting that the direction of hand movements could be
predicted by combining data from many neurons, i.e. a painaector constructed from the firing rates of many
cortical neurons tends to point in the direction of the ham@ment. Thus, the activity in the primary motor cortex
is believed to be related to the movement of the hand (hitgwed-features) and not to lower level features of the
individual joints, such as the shoulder and elbow and masblat makes up the movements as suggested by [156].
This framework of relating the neural activity and the hanation has since then been subject to much work in the
field of decoding. E.g[ 1148, 175, 1178, 174, 1176.]1169] 140Etexploited the feasibility of decoding the user intention
based on intra-cortical recordings from populations ofroas by implanted electrodes in motor cortex in non-human
primates and in humans. It is discussed whether the motéexcexplicitly codes for higher task-level parameters
(e.g. direction of hand movement) or for intrinsic paramefe.g. muscle force)[9B,38].

Beside focusing on prediction of the limb kinematics andaiyits, the accuracy with which the muscle activity of
arm and hand muscles can be predicted based on intra-taxticdty has also been investigatéd [119].

Noninvasive approaches

Invasive approaches are impeded by the surgical risks gicalrimplantation and by the substantial problems in
achieving and maintaining stable long term recordihgs]18&o, it is recommended that the interfaces in FES sys-
tems should limit the surgery required for implanting theteyns[[1317].

Even though noninvasive recordings provide less fidelitjmpared to invasive methods, they have great potential
for use in FES and FET systems. Several approaches havedieen¢.g. by([53] who demonstrated control of a FES
system by detection of respiration (inspiration/expeaji and by[[57] showing that impaired shoulder movements
and proprioception reduce the utility of shoulder moveradat higher dimensional control in the C5-C6 popula-
tion. The Electroencephalography (EEG) has likewise bessd fior decoding, often in brain computer interfaces
(BCI's), e.g. [12[14B]. The EEG is easily contaminated frartifacts caused by e.g. eye- or head movement since
the electrical activity is measured on the scalp. Even thatipas been shown that this contamination can be re-
duced by signal processing ]44], the application of EEG icodiéng is often limited to separate classes of movement
and thus is not considered for continuous decoding, suclyathe hand trajectory or muscle activity during reaching.

Surface electromyography (SEMG ) is non-invasively reedréfom the surface of the skin and the equipment for
recording the signals are relative simple, e.g. there isaalrior straps and harnes<es [110]. SEMG has been utilized
in many studies, an overview of a fragment of the literatargrovided in table 2F1 and has been used for decoding
and discriminating between different movements in FESesyst

It emerges that especially discrimination between moverokasses for the control of prosthesis, in particular the
upper limb, has received considerable attention in prexiesearch, e.d. [63, 82, 153] 65,142 [17, 56]. Many of these
approaches yields simplistic control schemes consistirgglinited number of controllable movements of the upper
limb. Thus movements are selected among a few stored pregrmuscle stimulation activated by a control signal
of which the user has voluntary control.

This is an obvious limitation compared to the functionatifythe natural upper limb. The number of controllable
D.O.F is limited to the number of classes that can be distsigad in the EMG by pattern recognition, and thus pre-
determined. In contradt[35] has proposed a method fongedtilimited number of reference directions in a defined

2For more details, see tatjle A on page 87
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plane, and from these determine infinitely movement dioestbased on movement probabilities in those directions.
This approach enabled EMG control of an omnidirectionahfsi and it was demonstrated that the system could
provide smooth pointing for an upper limb amputee. Hencg si®wed that the developed system was capable of
pointing in any direction by expressing infinitely many mment directions based on a combination of a limited
number of reference directions.

A different focus has been to predict kinematics data (ergmfelbow and shoulder), i.e. angle, angular velocity
and acceleration, hand (endpoint) trajectory €.¢. [5, 692%,[18[ 94] from the SEMG. Kinematic predictions in the
context of FES can be used for shaping the stimulus patterparalyzed limbs that are to be controlled and in the
context of prosthetics; dynamics can be used directly fatrod of the joints.

Others have estimated patterns of muscle activity fromt jeinematics e.g. [[139.]3. 119], which can be utilized
directly for electrical stimulation. Though ih [139, 3] alsetion of the desired trajectory should be completed by
the paralyzed individual, which is clearly an obstacle foe target population [189] suggested that selection of a
desired trajectory by the paralyzed individual could be@atd by providing the user with a menu of selectable stored
movements. An obvious drawback is related to the limited enoants available for high-level tetraplegics, preventing
them for using any movements for this selection, thus sucimtanface will imply cumbersome control of the FES
system.

[53] have used the EMG from averaged EMG signals obtained fiormal subjects to identify patterns of muscle
activity associated with a particular movement, which theme applied in tetraplegic subjects for the control of a
FES system. However with this method, the available movesraitited by the control signals showed to be limited
to the motor task, from which the EMG signals were originafigorded.

Study Subjects Input Aim Output Application Evaluation
119 Two male rhe- Neural activ- Linear system with multiple inputs and a single output, EMG from arm and hand muscles (Me- Predictionforusein FES for ~ Magnitude of coefficient of
sus monkeys ity i.e. linear filtering dial deltoid, biceps, triceps, and above the tetraplegics determinatio
flexor musculature for the hand)
six able bod- SEMG Time-delayed artificial neural network (TDANN) Shoettdand elbow kinematics (angle, Predictionforusein FES for ~RMS error
ied  subject angular velocity, and angular accelera- tetraplegics
and two C5 tion) of the four joint angles (elbow
tetraplegic flexion-extension and shoulder horizon-
tal flexion-extension, elevation-depression,
and internal-external rotation)
One Macaca  Neural activ- Linear summation of the neuron activities and an ANN EMG (predicted from neural activity) and ~ BMI Correlation coefficient for

fuscata mon- ity model trajectories of the hand and elbow position both the EMG prediction
key (predicted from the estimated EMG) and the trajectory recon-
struction
[&] Five healthy SEMG Patterns of muscle activity (EMG) Probabilistic methmased on probability ~ Prediction of muscle pat- VAF and RMS error
subjects distributions computed from training from  terns in a FES system
one subject and applied to the remaining
four subjects
63 One subject SEMG Features: discrete Hopfield netwdalssification: atwo  Classes of movement Myoelectric signal analysis Correaisification of arm
layer perceptron network functions
94 One subject SEMG ANN (joint torque) and a dynamic handdeiq(from Joint torque Controlling of a prosthetic  Visual comparison of joint

joint torque to joint angles)

hand by torque control of
each joint

torque, position (true and es-
timated)

35 Five healthy  SEMG
subjects and
one sub-

Recurrent Log-Linearized Gaussian Mixture Network Omnidirectional pointing device

(based on a hidden Markov model) and an impedance
model (inertia and viscosity is included)

Error between movement di
rection of pointing device
and instructed direction

Direction error

ject with

the forearm

amputated
- SEMG Multilayer perceptron neural network Discriration of limb functions Limb function identification |defitiation rate
7 Two amputee  SEMG Recurrent Neural network based on a hidden Markov Discrimination of motions (wrist flex-  Human-machine interface  Discrimination rate

subjects and
three healthy

model

ion/extension, supination/pronation) and
hand grasping/opening))

for prosthetic control

subjects
One healthy SEMG, veloc- Forward dynamics model, artificial neural network Endpointajectories  (dynamic joint  characterization of the rela-  Coefficient of determination
subject ity and posi- torques (from ANN) at the elbow and tions between muscle activ-

tion

shoulder was input to forward dynamics
model)

ity and dynamical kinemat-
ics

29 Seven healthy ~ SEMG
subjects

Back Propagation Through Time-ANN

Movement trajeg{arandy coordinates)

Devise a computational
model of how motor activity
of upper-limb functional
movements is controlled in
normal subjects and altered
by different neuromuscular
injuries and diseases

RMS error
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Four healthy SEMG Dynamic recurrent neural networks Arm kinematicar{dz coordinates) Identification of the relation-  Visual inspection and ro-
subjects ship between EMG activity  bustness of model in terms
and arm kinematic of applying perturbation and
investigate the resulting dif-
ference between the actual
and predicted kinematics.
1153 One healthy sSEMG ANN (Non-linear decoding filters designed using multi- Classes of movements EMG based control for Discrimination rate
subject layer, feed-forward Artificial Neural Networks) for clas- upper-limb prostheses
sification, feature extraction was based on four time-
domain EMG features; Mean of the absolute value, Willi-
son Amplitude, Variance, and Waveform length
- SEMG Features: time domain (mean absolute value (M2gfo Discrimination of eight hand movements Control for hand prosthesis Discrimination rate
crossing (ZC), Wilson amplitude (WAMP), slope sign (hand opening and closing, pinch, thumb
changes (SSC) and coefficients of autoregressive modelflexion, wrist radial flexion and extension
(AR)), time-frequency (short time Fourier transform and wrist flexion and extension)
(STFT), wavelets transform (WT), and wavelet packets
transform (WPT)), dimensionality reduction: PCA and
class separability, classification: ANN and fuzzy infer-
ence system
142] Three healthy  Static SEMG Features: RMS of windowed steady state EMGsiflas  Discrimination of eight hand movements EMG control of rdbot Discrimination rate
subjects cation: linear support vector machines Prostheses for amputees and
partially paralyzed
143 One subject EEG and Dynamic Bayesian network Discrimination between left @gtirthand BCI Discrimination rate
SEMG movement
Eleven SEMG Pattern recognition: HMM Identification of six disttdonb motions Control of upper extremity  Discrimination rate
healthy (wrist flexion, wrist extension, supination, prostheses
subjects pronation, hand open, and hand close).
54 12 healthy SEMG Gaussian mixture models Multiple limb motion classifion (wrist EMG control of powered Classification rate
subjects flexion, wrist extension, forearm supina- upper limb prostheses
tion, forearm pronation, hand open, and
hand close)
SEMG Features: Wavelet transform (variance, maximurd a Identification of finger movements (middle ~ Control of prosthetic hand Classification rate
mean absolute value of the wavelet coefficients), classifi- finger flexion/ extension, index finger ex-
cation: ANN tension/ flexion, thumb extension/ flexion)
Four healthy SEMG Features: Local extrema and zero crossing of a newldentification of different hand movements  Identification of hand move-  Classification rate
subjects multi-wavelet function (hand opening and closing, pinch, thumb ments
flexion, wrist radial flexion and extension
and wrist flexion and extension)
One Cc4 Inspiration Selection of predefined movements, trapezoidal approxi- Multichannel stimulation patterns Multichannel FES sgste Capability of a C4
tetraplegic and expiration mation method of EMG activities for C4 tetraplegics tetraplegic  to  conduct
subject the predefined movements

One subject SEMG Linear multiple regression model taingles (multi-finger angles corre- EMG control of upper limb Tracking error
sponding to the different motions) to dis- prosthesis
criminate between different motions (grip,
open, and chuck of a hand)
139 One healthy Hand kine- Probabilistic approach based on Bayes' theorem Muscleigctind frequency modulated — Restoration of movement RMS error between desired
subject matics activity using FES movements and movements
generated by electrical stim-
ulation
Ten nor- SEMG optimal wavelet packet method Classification of défehand movements Classification of SEMG Classification rat
mally limbed
subjects
Five healthy = sEMG Features: square mean value, standard deviation and ku Classification of different EMG patterns Non-invasive HMI erBentage error between
subjects tosis index, Classification: Nearest neighbor statistital classification and the desired
gorithm command
Four healthy SEMG Three layer ANN based on a modified Backpropagation Identification of different finger motions EMG based tele@ing a classification rate
subjects algorithm and AR modeling dexterous robot hand
12 normally SEMG Features: time domain statistics, i.e. the numbermf ze Continuous classification of differenthand EMG control of powered Classification rate
limbed sub- crossings, the waveform length, the number of slope sign movements prostheses.
jects changes, and the mean absolute value in each analysis
window, classification: linear discriminant analysis
115 Four healthy SEMG K-nearest neighbor classifier, genetic algorithm &a-f Classification of different movements Operating a robotand Classification error rate
subjects ture selection prosthesis
[130] Four subjects  sEMG Classification: approximate maximum likelihood clas- Classification of different switch signals EMG control ofridapros- Misclassification rates
with limb de- sifier, hierarchical classifier, fuzzy classifier, multiay theses
ficiencies perceptron
[0} Three normal  sEMG Feature extraction: Gabor transform and mean absoluteClassification between different type of EMG control of prosthetic  Classification rate (Discrim-
subjects value to extract information from the EMG, classifica- movements (wrist motions: supination, hand inating rates are calculated
tion: Feed- forward neural network pronation, flexion and extension, hand mo- by the comparison between
tions: 2-5th fingers flexion, 2-5th fingers the instructions and the con-
extension, thumb flexion, thumb extension, trol commands in an ability
4-5th fingers flexion, and 2-3rd fingers ex- test)
tension)
16  healthy SEMG Features: time-frequency representations based dn Hu Classification of different states Classification of SEMG aglfication error
subjects gins’ time domain features, the short-time Fourier trans-
form, the wavelet transform, and the wavelet packet
transform, dimensionality reduction: PCA and CS, clas-
sification: Linear discriminant analysis, Multilayer per-
ceptron
[ 4 complete SEMG Two layer Neural network Stimulation level FES to enyploiceps ex- Amount of stimulation and
C5/C6 SCI tension size of the produced force

subjects




2.5 Decoding based on a multi-modal approach 19

Table 2.1: Literature overview of studies using SEMG for decoding.

The control methods in upper extremity neuroprosthesie lmalied primarily on external joint angle sensors, ac-
celerometers, or switches. One important area in the aiplity of FES/FET systems is control algorithms that
enable intuitive operation of the neuroprosthesis witelitonscious attention [47]. As it appears from the outline
above, only few have used the EMG for control in a FES and FEtesys and most researchers have focused on
discriminating among classes of movements, hence notgiraycontinuous control.

The use of the SEMG for continuous control of a FES/FET systgmires identification of appropriate control mus-
cles contemporary with determining how to optimally extraseful information from the SsEMG that can serve as
indicator for the users interit [111/4, 120].

Moreover, extracting sufficient information from the aadile sources of the paralyzed individuals, e.g. sources of
which voluntary control is maintained, is likewise essahntEspecially in cases of the SEMG being somewhat inade-
quate in expressing the intent of the user, additional ssucan presumably improve decoding.

2.5 Decoding based on a multi-modal approach

The user intent is in most FES systems decoded from singlessof information[[112], e.g. the EMG as outlined
above. Using only a single modality as a source of infornmati@y not be sufficient to adequately reduce the uncer-
tainty in the decoded intention of the user [141].

On the contrary natural control of movement is based on moliial approach, and to achieve accurate reach and
grasp objects, gaze-direction is important since it reflecir attention, intention, and desire][16]. Some of the most
common motor behaviors in everyday life are pointing anclireg objects under visual guidance, hence eye-hand co-
ordination plays an important role in goal-directed readhesveryday living, since the arm movements are typically
associated with eye-movements toward the same goal initidsdf movement. It has been shown that performance
(such as time and accuracy) improves when eyes and hand nogetker[[123, 85, 163, 103, 160, 30].

Thus detection of gaze-direction is believed to contritwitéy important (and additional) information compared to
the SEMG. During reaching tasks, gaze anticipates the mertnof the arms, thus giving useful information about
the intention of the movement[158], and in fact the eye masmtisiusually precede the motor acts they mediate by a
fraction of a second [74][151] used gaze direction in camabon with detection of the human body motion, which
allowed them to disambiguate possible interpretationetittions of the humari. [116] showed a tight coupling of the
gaze and hand movement during a natural task and furthefi@deshowed that the human brain utilizes continuous
visual feedback from the hand to guide reaching movemertsigfhout their extent.

[7] investigated the improving effect of neural prosthesieen gaze direction was accounted for in the operation of
the prosthesis. It was shown that eye-position did imprbeeperformance, defined as the accuracy of the desired
endpoint.The decoding accuracy of the reaching endpoistimproved when eyetracking was included (by the use
of eyetracking glasses) (66%, 59% on average across faticstaigurations) and when gaze-direction instead esti-
mated from the neural activity (61%, 56%) was compared tordigaration without any eyetracking (45%, 44%).

The effect of including multiple modalities was investigdtin a preliminary analysis based on recorded data from

[95].

2.5.1 Analysis of the effect of including gaze-direction

The aim of the following analysis was to achieve insight itfite effect of adding information from an extra modality
to predict the users intent in form of muscle activations kinématics during single and multi joint reaching move-
ments.

Based on recordings from [95], who recorded sEMG from 12resdeand flexor muscles of the upper arm and concur-
rently the kinematics from single and multi joint movemeih& muscle activity was predicted in the 9 distal muscles
(Brachioradialis, Anconeus, Biceps medial head, Biceteydd head, Brachialis, Triceps lateral head, Triceps long
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head, Pectoralis, Latissimus) and the positior andy of the endpoint of the hand, from the three deltoid muscles
(Deltoid anterior, Deltoid medial, Deltoid posterior) asichulated gaze-direction. The recordings were based on the
protocol outlined in section 5.1.

Since no gaze-direction was recorded during these expetaythis was simulated from the kinematic data represent-
ing the endpoint position of the marker placed most distathenarm (corresponding to the endpoint position of the
hand), with noise added.

The predictions were performed utilizing a MLP NN and the idah filter (for comparison) and the predictions
were evaluated based on the coefficient of determinaf8n, The MLP NN and the Kalman filter is introduced

in chapte 4 on page P9, and the practical implementatioreatian[5.2 on page #3 arf is introduced in chap-
ter[4 on page 39. Further details of the results in this afséye found in chaptér 6 on pagg 57.

Figure[2.83 and2]4 shows the predictions of the muscle &ctiltiring single and multi joint movement based on
MLP NN and the Kalman filter with (yellow and green respedtiyeand without (red and blue respectively) the
inclusion of gaze-direction.

Single joint movement
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Figure 2.3: Predictions of the muscle activity during single joint mment based on MLP NN and the Kalman
filter with (yellow and green respectively) and without (i@d blue respectively) the inclusion of gaze-
direction.
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Figure[2.B revealed well predicted muscle activity for alisoles with single exceptions, i.e. for the Kalman filter
(both cases) in Pectoralis and Latissimus. Likewise thentgalfilter based on SEMG and gaze-direction showed only
minor accuracy in Brachialis. Also the baseline in e.g. dp&long head did not capture the baseline well, but was in
the contrary underestimated compared to the other methatithe true signal.

Multi joint movement
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Figure 2.4: Predictions of the muscle activity during multi joint movent based on MLP NN and the Kalman filter
with (yellow and green respectively) and without (red angehiespectively) inclusion of gaze-direction.

FromZ.%, it was seen that MLP NN based on SEMG and gaze-idinagdve predictions, which very well reconstructed
the true muscle activity, capturing most characteristidh.P NN based on the SEMG only showed well predicted
results in most cases, though e.g. in Pectoralis the baseks often over estimated. The configurations based on
the Kalman filter predicted well the activity in Biceps laEhead, Brachialis, and Brachioradialis, whereas exeessi
under- and overestimations were seen in Pectoralis angdiatis.

Figure[2.5 shows the performance of the predictions of theameuactivity during single and multi joint movement
based on MLP NN and the Kalman filter with (yellow and greempeesively) and without (red and blue respectively)
the inclusion of gaze-direction.

The predictions of the muscle activity revealed a clear mapment for both the single and multi joint movements by
including the gaze-direction and utilizing the MLP NN foetpredictions. In all cases gaze-direction improved the
predictions and furthermore the MLP NN outperformed thenia filter in all cases.

The muscle activity predictions were improved on averagesacall muscles for the single and multi joint movements
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Figure 2.5: Performance of predictions of the muscle activity duringgt (left) and multi joint (right) movement
based on MLP NN and the Kalman filter with (yellow and greempeesively) and without (red and blue
respectively) the inclusion of gaze-direction.

with approx. 24% based on MLP NN, and 5% using the Kalman fiker the single joint movement the predictions
of the muscle activity were improved by approx. 29% and 9%tierMLP NN and the Kalman filter respectively.
Figure[2.6 shows the predictions of the kinematics duringlsiand multi joint movement. Predictions based on both
SEMG and gaze-direction is very close to the true signalctvhiake them hard to identify on the figures.

Single joint movement Multi joint movement
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Figure 2.6: Predictions of the kinematics during single joint (left)damulti joint (right) movement based on MLP
NN and the Kalman filter with (yellow and green respectivelyyl without (red and blue respectively) the
inclusion of gaze-direction.

From figurd Z.b it was clear that the inclusion of the predigjaze-direction substantially improved the predictions,
seen as prediction very close to the true signal what males thard to identify on the figure. This was the case
for both the single and multi joint movements. Without thedirection included, the MLP NN outperformed the

Kalman filter by capturing more of the edges in the true signal

Though, for the single joint movement, the prediction basedhis configuration still showed a lack of capturing

the extremities in the true position. The Kalman filter ord{idwed the trend over large periods, thus not capturing
the peaks seen in the true signal. For the multi joint movepr@nme of the two configurations captured well the

characteristics of the true position. Ynthe predictions only hardly followed the variations in thaet position. InX,

the Kalman filter showed a very varying prediction substdiytdifferent from the true position.

Figure[2.T shows the performance of the predictions of therkiatics during single and multi joint movement based
on MLP NN and the Kalman filter with (yellow and green respeadti) and without (red and blue respectively) the

inclusion of gaze-direction.



2.5 Decoding based on a multi-modal approach 23

Multi joint movement Single joint movement
® MLP: SEMG “ MLP: eyetrack and sSEMG ® Kalman: sSEMG ® Kalman: eyetrack and SEMG
100 T 100
80 80
60 ~ 60
~
40 “ 40
20 20
0 0
X Y X Y

Figure 2.7: Performance predictions of the kinematics during mulgt{t) and single joint (left) movement based on
MLP NN and the Kalman filter with (yellow and green respedtiyand without (red and blue respec-
tively) the inclusion of eyetracking.

For the Kinematics the improvements were substantiallpdrigFor the multi joint movement, the predictions were
improved on average by approx. 84% and 74% using the MLP NNKaahchan filter respectively. For the single
joint movement, the predictions were improved by approx%4ghd 65% for the MLP NN and the Kalman filter
respectively.

The preliminary results clearly indicated that adding amaerodality in form of gaze-direction had the potential of
increasing the prediction performance during reachingenmnts. The outcome of the kinematics predictions were
as expected, since the simulated gaze-direction is alrmosasto the true kinematics.

2.5.2 Controller

The controller of a FES or FET system provides the requiredateustimulation level (i.e. specification of tempo-
ral patterns of muscle stimulation to provide the desiredentent), based on the commands from the user, i.e. the
decoded intent of the user. For upper limb neuroprosthéssappropriate shoulder and arm muscles needs to be
stimulated to enable coordinated arm movements [20]. Nigtsirould the controller provide muscle stimulation but
also regulation of these patterns to correct for unantieghahanges in either the stimulated muscles (e.g. fatigue)
the environment (e.g. external perturbations).

The complexity of the musculoskeletal systems complicttesemporal specification of the control, for the upper
limb neuroprosthesis. The stimulation patterns must aticiau the nonlinear nature of the muscles, between muscle
output and limb output, contemporary with the varying loadauntered during interaction with the environmént [20].
Different approaches can be undertaken to access the nacsisiation needed for the stimulation and the relationship
between muscle activity and various dynamics and kinemaficnovement have been investigated widely in the lit-
erature.

One approach is an inverse musculoskeletal model, a mativam@escription of the musculoskeletal system, with
the kinematics, i.e. motions, as input to compute the regifiorces or muscle activations [109] 60} 51, 11].

The inverse dynamic problem involves the transformatiomfia desired motion to the forces or muscle activations
that are needed to drive the forearm and hand during reachévgment, which is a hard computational challenge
because several limb segments must be combined, and thaumrg changes in the mechanical properties of the
limbs and the environment must be taken into accdunt [10].

Another approach is by predicting the muscle activatioeledirectly from the signals recorded from the modalities
that are remained under voluntary control. Continuousidpation of the muscle activity pattern during execution of
a desired movement trajectory, can serve as control sigmeaitly, e.g. by conversion into frequency-modulatedtsai

of constant current pulses. Previously stimulus frequdras/been linearly related to the amplitude of the average
muscle activity in some specified time period [139].][41]difee activity from the proximal muscles under voluntary
control (shoulder muscles and elbow flexor muscles) in Cie@éplegics to estimate the stimulation level in Triceps
to produce elbow extension. The muscle activation leveiénshoulder and elbow flexors were associated to a prede-
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fined set of endpoint force load during training, which woalso occur during validation.

Proportional control consists of commands which yields stesy response with a magnitude proportional with the
command provided [137]. Examples are observation of weist pngle, and EMG of the wrist extensor muscles [47].
[137] Static control in the contrary is based on on/off cohtsuch as button switches [98], wrist mounted switches

[125], and sip-puff switchels[45].

2.6 Reduction of the complexity for movement control

Human movements involves activation of a large number obmanits (MUs) and the movements can span multiple
muscles. Coordination of a large number of D.O.F in the miosteletal system is necessary to produce movement.
The number of available D.O.F of the body is typically gredian that required to reach a behavioral goal and the
number of muscles per one D.O.F is much greater than two. rédisndancy is exploited by the nervous system to
control actions in a flexible way, i.e. the same behavioral gan be accomplished in differently depending on inten-
tion, external environment, or intrinsic constrainfs. Téjus the many D.O.F of the musculoskeletal system provide
great flexibility, but at the same time it increases the caxip} of the control problem.

Even simple tasks, such as moving the hand to a target locatiplies an infinite number of possible paths that the
hand can move along. For each of these paths the hand caw fafianfinite number of trajectories, i.e. velocity
profiles, and each location of the hand along the path couldché&ved by multiple combinations of joint angles
[L73]. Each arm configuration can be achieved by many difftemeuscle activations, due to the overlapping actions
of the muscles and their ability to co-contrdct [173].

This redundancy is characteristic in most everyday taskZ][and introduces the redundancy problem in control,
where the number of available independently controllechides available for a controller, is greater than the numbe
of independent parameters describing a motor task. Ofalbtissible solutions, one must be chosen. The essence of
motor control has been formulated to be the elimination efrédundant D.O.[E[76]

Any ordinary human activity requires the cooperation ambnge number of structurally diverse elements (e.g.
joints and muscles). It has been hypothesized for such @aiiping systems that the elements are organized into
synergies defined as functional groupings of structurahelds (e.g. neurons, muscles, or joints), temporarily con-
strained to act as a single urit [72]. The synergy hypothesisidered in this work is related to muscle synergies
[79,[10[159] 28, 27.]1].

Thus, the neural control of movement has been studied orstwergtion that the CNS simplify the complexity in the
control of movements by producing movements in a simplifiechner. One strategy of the production of movement
is believed to be spinally organized muscle groupings, ifclvkhe activation level is specified togethier [159]. Thus
synchronous muscle synergies is a set of relative non-ivegatels of muscle activation that recruits a group of
muscles in a coordinated manner, i.e. coherent activatibaggroup of muscles[68, 26, 25,127]. This simplifies the
control by the CNS since groups of muscles can be controfiathiés, which has been indicated in previous studies
including leg movements in frogs [27,126], forearm movensearitmonkeys[108],and humans [55].

Further it has been suggested that the CNS constructs compiscle activation patterns for a wide range of motor
behaviors based on flexible combinations of only a few musyhergies[[154, 95]. Hence the produced movements
are based on a coordinated activation of muscle syneffte&g.rhe set of relative non-negative levels of muscle ac-
tivation (the muscle synergy) is scaled by a non-negativeommmmand (neural command signal) and the global
muscle activation level (muscle activation pattern) ofreawscle is constructed by the summation of the contribu-
tions from all synergies, weighted by the motor commands summing the muscle activation patterns generated by
different synergies [154, 95].

Hence the movement tasks are executed by translating rteskalevel commands into muscle activation patterns by
synchronous muscle synergles[l54|, 95]. Thus muscle siasesige basic building blocks from which many different
movements can be derived. [34]



Problem statement

Movement disability is one of the most invalidating injugigat can follow an SCI, which imply loss of independence
and good health. Paralyzed individuals loses their abdlito interact with their surroundings and cannot complete
many daily activities critical for independent living. Higevel SCI is devastating causing a near total loss of in-
dependence. This independence has high economical casiefaociety in form of medical cost for the paralyzed
individuals who have a long life expectancy.

Damage to nerves are in the far most cases permanent anfbteahabilitation technology for the SCI population
for performing daily activities or for restoring even a metlevel of independence has a great potential to generate
an enormous impact on quality of life and to lower the relatests to society. Especially active control of elbow
extension has shown to be very important for ensuring indegece in individuals who are subject to tetraplegia.

FES is a promising technology for restoring motor functionimproving the overall health of SCI individuals through
enhanced use of the cardiovascular and musculoskeletehsysFES systems have been in focus in much research,
particularly for the restoration of arm reaching. This irdiés the multi joint system consisting of the shoulder and
elbow during planar movements, which is especially releiraa wide range of functional tasks. Regain useful arm
movement is regarded as one of the most important factoredaining functional independence.

Individuals suffering from C4 tetraplegia have only veryfenuscles under voluntary control limiting the type of
movements they can generate and furthermore they are stijextensive denervation of shoulder and elbow mus-
cles important for controlling the proximal limb. Thesetfars complicates the restoration of arm reaching in this
population and consequently only few have used FES for tniggse.

Many approaches in development of FES systems have utpizegdrogrammed set of muscle stimulation patterns and
in some systems assistance is required to place the obji irser's hand or at a specific location in the workspace,
which limits the functional use of these devices. Also tressification of different classes of movement have been
the aim in many studies. More flexible control of a FES systethérefore believed to expand the repertoire of motor
functions available to paralyzed individuals. Restoratid flexible arm control through FES presents challenges to
both decoding of the users intent and controlling the statioih of the respective muscles to realize that intent tiihou
movements of the paralyzed limb.

Several studies have focused on decoding the users intentgth intracortical recordings of neural activity, while
only a few have utilized noninvasive methods based on sEM@ass [41]. Such a noninvasive approach would be-
sides FES also be clinical applicable for FET.

Only few have estimated the muscle stimulation level diyef [112,[139], in the contrary to an inverse modeling
approach based predictions of Kinematics. Especially sigeofi SEMG as control signal in such an approach has been
subject for limited investigation, i.e. that by [41] was Ited to a predefined set of associations between an endpoint
force and stimulation level.

These facts motivated the focus in this study to be aimed ptdwing the decoding of the users intent and create
the basis for extending the possible muscle stimulatiotepat in a FES and FET system. The preliminary results
presented and the results outlined frarn [7] underlined &tiemality in pursuing the approach of decoding the users
intent from the muscle activity in the distal muscles in tipper limb or the kinematics based on the muscle activity
in the proximal Deltoid muscle in combination with gazeedition.

The believe in muscle synergies appeared as a sound foandatithe simplified control of movements by the CNS
in which spinally organized muscle groupings can be coleitiohs units, and seemed as an engaging strategy for
application for electrical stimulation of paralyzed limi3his approach would allow construction of complex muscle
activation patterns for a range of motor behaviors basedesibfe combinations of a few muscle synergies. A direct
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Problem statement

implication of this could be the simplification of stimulati control.

It was hypothesized that non-invasively decoding of thesusgent during planar arm
reaching could be obtained from a multimodal approach basedEMG and gaze-
direction.

In addition a simplified representation of the users inteas \investigated to serve ag
control in electrical stimulation.

The project aim is illustrated in figure=3.1

Decoding of the users intent

D . . .
Paralyzed user Users intent

Proximal muscles
under voluntary control Muscle

SEMG activity
Muscle activity Distal paralyzed
—pp—| Decoder muscles

Eyes Kinematics

S — -
Gaze-direction Paralzyed limb

Decoding of the users intent
and simplified control of movements

Paralyzed user
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Users intent
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Figure 3.1: Top: The first aim was to decode the users intent from proxiearded SEMG combined with gaze-
direction of the user recorded with eyetracking to deteemimether enough information could be ex-
tracted from the selected modalities to predict this inten{muscle activity or kinematics). Bottom:
Second aim was to investigate whether the decoded inteheafger in form of muscle activity could be
simplified for the control of stimulation.

The overall objective of this work was to develop the fouimtato a clinical applicable system using electrical stimu-
lation both for functional and therapeutic use. In a closepIFES, the approach taking targets individuals suffering
from high tetraplegia and should enable them to perform dimatted planar movement. In FET control, the founda-
tion is for therapeutic control for e.g. hemiplegic indivads and for rehabilitation of individuals who have suftére
from stroke.

The project was a proof of concept of the suggested methods.
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Decoding of the users intent

Decoding of the users intent is founded on signals genefededmodalities that are remained under the users vol-
untary control. Two relevant types of signals during a ré@aghask is believed to be the myoelectrical signal and
gaze-direction, which will be apparent from the succeedaions.

The myoelectrical signal provides access to the physioldgirocesses that cause the muscles to generate force,
produce movement and accomplish the countless functidmshvallow us to interact with the surrounding world.

It represents electrical currents generated in the musiktlaag contraction, depicting the neuromuscular actsiti
[64]. Voluntary limb movement is a result of the brain getigigaa spike train of action potentials that is transmitted
through the efferent nerve to a presynaptic membrane, mgtise neurotransmitter in this membrane to release and
diffuse to the postsynaptic muscle membrane. This causepa@latization and an initiation of an action potential,
which propagates across the length of the muscle’s surfiaca ion transfer, causing the muscle to contract. The
waveform traveling along the muscle fibers is known as a matdraction potential (MUAP). The sEMG records the
composite of the voltage changes generated by these indiadtive MUAPS, i.e. the sum of the electrical contribu-
tions made by the active motor units as detected by electnoldeed on the skin overlying the mustle[71,[88, 33].
The gaze-direction recorded from eyetracking, is tightpted to the hand movement during natural reaching move-
ments[[134]. Evidence has suggested that humans plan umyeadtivity in three-dimensional Cartesian coordinates
[Q], and that this target activity is transformed into thestle activity required to produce the desired limb dynamics

[149].

The aim was to decode the users intent, which was expresseudhin of the following
1. Arm kinematics

2. The muscle activation pattern in the distal primary es¢es and flexors of the arm

3. Low dimensional motor commands

The muscle activity can be used directly in the stimulatiomcpss of FES and FET systems, e.g. by converting the
activity into frequency-modulated trains of constant eatrpulses[[139]. Hence, expressing the intent of the user in
terms of muscle activity, can at the same time serve as daigral for the electrical stimulation in the construction
of specific movements.

The predictions should be based on the muscle activity iptbrimal flexion/extension muscles of the shoulder and
from the gaze-direction of the user as depicted in figure 4.1

4.1 Extraction of muscle activation level from the EMG

The raw EMG signal is a complex spiky signal that can be dilffimuinterpret. The linear envelope is a rectified and
smoothed version of the EMG, which result in a slowly varytrend, representing the muscle activity.

The raw EMG signal is transformed into a linear envelope liywfave rectification followed by a low-pass filtering.
The characteristics of the low-pass filter determines theathmess and duration of the bursts of activiity [4,[50, 89].
A cutt-off frequency of 1 Hz was chosen [95.50] 15,1144, 118yure[4.2 illustrates the process of extracting the
linear envelope.

Two methods were investigated for the predictions, nantedyktalman filter and the Multi layer perceptron neural
network (MLP) NN, which are introduced in the following tdger with the extraction and reconstruction method for
the low dimensional control. Finally the evaluation measused for quantification of the accuracy of the predictions
is presented.
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Figure 4.1: Decoding the users intent in terms of kinematics, muscliigcin the primary extensors and flexors,
and low dimensional motor commands, based on the combimatfithe recorded muscle activity in the
proximal flexion/extension muscles of the shoulder and giaaetion. Two decoders were compared on
their prediction performances.
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Figure 4.2: Generation of the linear envelope of the SEMG.

4.2 Decoding based on the Kalman filter

The Kalman filter can estimate the state of a linear dynanstesy from a series of noisy measurements together with
a model of the dynamics of the system. Thus although the efadesystem is not directly available, it is possible
to estimate the state indirectly. The Kalman filter has besddor prediction of the kinematics (e.g. hand endpoint
position and velocity)[173], the hand trajectory (positiwelocity, and acceleration) based on intracortical réicgs
representing the neural firings in the motor cortex [178) IL7B].

The Kalman filter uses knowledge about the dynamics of theesy$o estimate the system state, i.e. the muscle
activity or the endpoint position of the hand. The state froprevious time instancex(k — 1)) is converted into a
state in a future point in timex(k)) [L67]. The generative model underlying the Kalman filteitlisstrated in figure
43

Z representing the observations, i.e. the eyetracking aratimactivity in the proximal muscleg,representing the
muscle activity, kinematics, or the motor commands dependn the representation of the intent of the user.

The Kalman filter is an estimator, that minimizes the estadatrror covariance and estimates the state1" of a
discrete-time controlled processgdenoting the number of states as expressed in equatibn@’] [1

Xk = AXk_1+ Wk (4.2)

The observationg € (1" can be expressed as in equafiod 4.2

Zi = Hxy + qx 4.2)

wg andgg are random variables representing the process and meamiranise respectively [167]. These are in-
dependent of each other, have white noise properties, amdah@robability distributions as expressed in equation

43
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Figure 4.3: Underlying model of the Kalman filter. Only the outp)is observable, while the underlying parameters
w, g represents process and measurement noise respectivcipeannderlying true state are hiddex.
is a linear coefficient matrix that relates the system sta#e a previous time instant(k— 1)) to the state
at the current time stex(k)). H relates the states to the measuremapts

p(w) ~ a(0,W) (4.3)
p(a) ~ «(0,Q)

In practice, the process noise covarialléeand measurement noise covariagzenight change with each time step,
i.e. each measurement, but are assumed constant, and cefoitaée determined prior from trainirig [167].

The matrixA € O"*" relates the state at the previous time step.1, to the state at the current st&pThis is a linear
coefficient matrix, which perform state prediction with@onhsidering any measurements. In pracBamight change
with each time step, but is often assumed constani [167]nTatexH € O™ " relates the states to the measurements
zx with m denoting the number of input channeld. might also change with each time step, but is often assumed

constant[[16]7].
The Kalman filter algorithm is depicted in figure 4.4

Kalman filter algorithm

Initial estimates 1) 2)

States Time update/ » | Measurement update/
. Ll .
Error covariance State prediction State correction

!

Figure 4.4: Kalman filter algorithm. Initially estimates are providext the states and the error covariance. The state
and error covariance is predicted in (1) and updated in (2)dified from [167]

Y

The Kalman filter estimates the states by the use of feedlmatkat. The first main step estimates the process state at
one particular time, and updates the process state witlinaltéeedback in form of a noisy measurement, within the
second main step.

The equations for the Kalman filter can be divided into théofeing [167]

1. Time update/ state predictor equations

Responsible for predicting the current states based onqu®states, and error covariance estimates to
obtain ama priori estimate for the current time step

2. Measurement update equations/ state corrector equations

Responsible for the feedback and incorporation of new a unreasent into the a priori estimate, with the
aim of obtaining an improved posteriorestimate
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In the Kalman filter cycle, the time prediction projects therent state estimate ahead in time, before the measurement
update corrects the projected estimate with an actual measumt at that specific time.

The a priori and a posteriori estimate errcgs¢an be defined as in equation}4.4 with € 0" being defined as the

a priori state estimate at timlegiving knowledge about the process priork@nd Xy € 0" being defined as the a
posteriori state estimate at tirkgiven measuremeunt.

a priori estimate error= true state- a priori estimate < ¢ = xx—X, (4.4)
a posterior estimate erro& true state- a posteriori estimate < ¢ = Xk — Xk

The a priori estimate error covariance is expressed in @nfdid, since the errors are zero mean.

P =E[g& ] (4.5)

and the a posteriori estimate error covariance is descibeguatioi 4.6

P = E [exer] (4.6)

The a posteriori state estimatecan be expressed as a linear combination of the a priori attiy, and the weighted
difference between an actual measurenzgiaind the measurement predictidiX, as expressed in equationi4.7

)’Zk:)?i;—i—K (Zk—H)'ZE) 4.7)

When the measuremeneisidual (zk — Hf(i;) in equatio 47 approximates zero, the predicted and acteasurement
are in close agreement.

The matrixK € 0™™Min equatiod 4l is the Kalman gain, which minimizes the a @it error covariancg from
equation46.[1167]

Implementation of the Kalman filter was done in Maffabased on[[178]. For a more detailed description of the
Kalman filter, please refer to [167.,159].

4.3 Decoding based on a multi layer perceptron network

Neural networks have been applied in a wide variety of ergging problems involving pattern recognition, pattern
classification, adaptive filtering, and control [20, 1626/191,/41]. The successes presentedin([20] (162,106, 71, 41],
indicates the usefulness of neural networks in differentgonents of a variety of FES control systems.

An artificial neural network (ANN) is an array of processansttis linked by connections that can be weakened
or strengthened and the concept is based on inspirationtfrerimterconnected neurons of the brain]152]. Thus the
functional model of the biological neuron contains thresibaomponents, namely the synapses of the neuron (mod-
eled as weights), and the components representing théaetithin the neuron cell, which consists of an adder (sums
up all inputs modified by their weights), and an activationdiion. In this fashion the neuron receives an input and
produces a response as output [152].

The ANN is an adaptive, and most often a nonlinear systemglwéstimate a function (or the relationship between
input and output vectors) without requiring a mathematé=scription of how the output functionally depends on
the input, i.e. the network learn from input/output data gke® [152]. The capability of learning complex nonlinear
input-output mappings is one of the characteristics th&ameural networks an attractive option in many biomedical
problems. The adaptive capabilities of neural networkseadakem particularly attractive for rehabilitation apptic
tions in which the system is often customized for particindividuals.[20[ 105]

The network is adaptive in the sense that the system paresrate changed during operation, i.e. during training.
After the training phase the ANN parameters are fixed andytses can be deployed, i.e. during validation.

The input/output training data are fundamental in ANN sil@®nveys the necessary information to find the optimal
parameters of the network. According to the success of aitigma specific function based on the series of examples
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of correct responses, the connections between the prosesscstrengthened or weakened. Hence instead of working
based on an explicit set of rules to follow, the network opesdased on the weights of the links within it. The non-
linear nature of the neurons (the processing elements)dasthe system with a high level of flexibility to achieve
the desired input/output relation. [152]

One of the most widely used types of neural networks is the MNA(also denoted a multilayer feed-forward neural
network). An elaborated description of the neural netwsround in appendix chapter F on page]109.

Introduction to the MLP network

An MLP NN consists of a network of perceptrons (neurons), imol the data flow strictly feedforward from input
to output units, and the data processing can extend oveipheulayers of units, without feedback connections. The
MLP NN consists of the following elemeni{s [132]

Input layer is a layer of neurons that receives information from extesoarces (in a biological neuron the input
corresponds to sensory nerves), and passes this infomtatibe network for processing

Hidden layer is a layer of neurons that receives information from the trigyer and processes them in a hidden way,
i.e. it has no direct connections to the outside world. Alrections from the hidden layer are to other layers
within the system

Output Layer is a layer of neurons that receives processed informatidnsands output signals out of the neural
network (corresponding to motor nerves in a biological nayr

Bias is an offset or threshold value in the neurons. The functidh@bias is to provide a threshold for the activation
of neurons. The bias input is connected to each of the hiddématput neurons in a network

A typical MLP NN consists of a set of source nodes forming tiygut layer, one or more hidden layers of compu-
tation nodes, and an output layer of nodes. A single layerat@etwork has severe restrictions limiting the type of
tasks such a network can solve. A two layered feed-forwamlai@etwork with biases, a non-linear sigmoid layer,
and a linear output layer is capable of approximating angtion with a finite number of discontinuities to arbitrary
precision [36/ 48, 24].

If linear output neurons are used, the network outputs denda any value instead of being limited to a small range
as is the case with the sigmoid functiohs![91]

Each perceptron computes a single output from multiplevakled inputs by forming a linear combination according
to its input weights, the synaptic efficacy in a biologicalra, the bias, forming the post-synaptic potential of a
neuron, and transforming the output through the nonlinetiration function. The strength of the connection between
an input and a perceptron is determined by the value of thghtigie. negative weight values reflect inhibitory con-
nections, while positive values designate excitatory ections.

The actual activity within the neuron cell is determined imgar combining the input and the weights together with
the bias. Lastly the activation functiof)maps the output into the range 0 to 1 in the case of the Sigautidation
function, such as the simple logistic Sigmoid function. sthinction allows MLP networks to model both mildly and
strongly nonlinear mappings, since the function is linesairthe origin and saturating rather quickly away from the
origin. [152] This transfer function is often used in badlojpagation networks, e.g. [69,163./70]. The capability of
MLP NN stems from the non-linearities used within the nodes.

A two layer network with one hidden layer can be represenseshawn in figuré&415

X represents the input unitdl(x 1), W1 (Sx N) the weights between each input unit and each of the unitsan t
hidden layer §x 1), y1 (Sx 1) is the output vector of the hidden lay®V, (Q x S) being the weights between the
hidden layer and the output layeD & 1). by andb; are the biases for each of the units in the hidden and the butpu
layer respectively. The input signal propagates throughmgtwork layer-by-layer and all neurons from one layer are
connected to the neurons in the next layer.

The network shown is a full-connected (output from each irgma hidden neuron is distributed to all of the neurons
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Input Hidden layer of logsig neurons Output layer

y1 = logsig(w1x + by) y = lin(way; + bs)

Figure 4.5: Two layer MLP neural network with one hidden layer constoi S units with the logistic Sigmoid as
transfer function, and one output layer consistingQtinits with linear transfer functionsx (N x 1)
representing the input¥y; (Sx N) being the weights between each input and each of the unttsein
hidden layer $x 1),y1 (Sx 1) being the output vector of the hidden layéf; (Q x S) being the weights
between the hidden layer and the output laggk(1). b1 andb; are the biases for each of the units in the
hidden and the output layer respectively.

in the following layer), two layer, feed-forward (the vatuenly move from input to hidden to output layers, no values
are fed back to earlier layers), perceptron neural netwbik. number of input neurons corresponds to the number of
input variables (e.g. the number muscle activations), hadchtimber of output neurons is the same as the number of
desired output variables (e.g. muscle activation, low disi@nal motor commands, kinematics).

The process of the neural network can be expressed in egléa8o

Q N
Ym = Z Wmq -0 (Z Wkn'Xn> (4.8)
= =1

N——
Output layer o 1st

hidden layer

X being then™ input, win being the weight from input to nodek, Wmg being the weight from node to outputm,
andym being outputm.

The network is an implementation of a composite functiomfiiaput to output space, which is called the network

function [132].

Learning of the neural network

A neural network has to be trained, such that the networkumresl the desired output given a set of inputs. l.e. the
strength of the connection weights have to be adjusted adedo achieve the desired behavior, which allow the
characteristics of the input training data to be inferretlisTrequires a learning algorithm, to which a set of desired
input-output mappings are presented, and in response tesagorrection steps iteratively until the network leams t
produce the desired response. As seen in figude 4.6, theérgaayorithm is a closed-loop presentation of input-
output mappings (training data) and of corrections to thevok parameters to minimize the prediction erfor.[132]
During the training process, the outputs can likewise beifpd as targets.

The error of a particular configuration of a network, can btderined by applying the network on training data
set and compare the predictions with the true outputs, thumsifg the error function. The error surface iNa- 1
dimensional surface, each weight and threshold being ardiime in the space. Hence the goal of the training process
is to find the optimal combination of weights, i.e. the lowgsint in the many dimensional error surface, so that the
network function approximates a given function descritmeglicitly through some training samplés 132, 152].

From an initially configuration of weights and thresholdss bbjective of the training algorithm is to seek for the
global minimum. The gradient of the error surface is tygicahlculated in each point and the search continues along
the steepest descent.

The back propagation algorithm is a popular learning methdnch looks for the minimum of the error function in
weight/bias space using the method of gradient descens.méihod requires the computation of the gradient vector
of the error surface at each iteration step.
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©) /‘ Network \@

Training input/target data ‘ Compute error

(true vs. predicted output)

& Adjust network OJCD

weights according to
learning algorithm

Figure 4.6: Closed loop learning algorithm. The learning algorithm @tdathe network parameters according to
previous experience until a solution is found. For each infhe network produces an output (1) and
the error between the predicted and desired output is eaémli(2). The weights are adjusted to reduce

the error according to some learning algorithm. (1) - (3) req@eated for every sample in the case of
incremental training until the errors are minimized. Maetiffifrom [132]

The sigmoid function always have a positive derivative feodlope of the error function provides a greater or lesser
descent direction, which can be followed. The gradientargmbints along the line of steepest descent from the current
point, thus by moving along by some step size the vector titwe @iill decrease.

The learning algorithm progresses iteratively through miper of epochs. For each epoch the training data set is
applied to the network, from which the prediction error carcbmputed and the weights can be adjusted according to
the error surface gradient and process can be repeatedrd¢esp continues until some criteria have been reach, e.g.
a certain number of epochs have evolved, the error has réachappropriate level or when it stops improving.

In the back-propagation learning algorithm the forwardsgaredicts the outputs from the given inputs evaluated and
in the backward pass, the partial derivatives of the costtfan with respect to the different weight parameters are
propagated back through the network where the weights taeme adapted. Using the back propagation algorithm,
the output errors are propagated back to the previous lasieg the output element weights [132]. The following
summarizes the steps and equations involved in the backgadipn algorithm [132].

1. Setinitial weights
Feed forward computation
Backpropagation to output layer

Backpropagation to hidden layer

o~ 0D

Weight update

The algorithm is stopped according to a defined stop criterofeed forward computation stores both the evaluation
of the primitive function and the derivatives. In the backagation the constant 1 is fed into the output layer and the
network is run backwards. The incoming information to a nsdedded and the result is multiplied by the derivative
stored in that unit. The result is transmitted to the lefthia tinit and the result collected at the input unit is the deriv
tive of the network function with respect to the input to thegwork.

Please refer to appendix sectjon F.3 on pagé¢ 112 for a maaiedbtiescription of the back propagation algorithm.

The backpropagation method suffers from various converg@noblems[[129]. These problems can be solved by
using second order derivatives, which is applied in the hbeeg-Marquardt (LM) algorithm, one of the most widely
used optimization algorithms and is suggested for modesiaes feedforward neural networks (up to several hundred
weights) [43)84] 28]. In the following, the LM algorithrn [8@33] is introduced to an extent which explains the
parameters, which are configured in practice. For a detdisdription of the LM algorithm please refer ko [62, 124],
since this is beyond the scope of this report.

The Levenberg-Marquardt algorithm

The LM algorithm relies on both the first and second ordenagirie of the error in the search for the optimal weights.
The LM algorithm provides a faster solution due to the incogpion of the second derivative of the error information
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and automatic incorporates adjustments of the learninanpeters.[[80]

The idea of the LM algorithm is to minimize the squared distsge, € = x — &, i.e. € is the vector of network errors.
Letting f being an assumed functional relation which maps a paramettorp € R™ to an estimated measurement
vectorX = f(p), X € R". The basis of the LM algorithm is a linear approximationftin the neighborhood op.

[133,80]

For a small|Ap||, a Taylor series expansion lead to the approximation in topid.9

f(p+24p) ~ f(p) +IAp (4.9)

J being the Jacobian matr@%, containing the first order derivatives of the network esroith respect to the weights
and biases. At each step in the iterative algorithm is to fired\, that minimizes the quantity given in equatfon4.10

Ix=f(p+28p)[| = [[x— F(p—JIDp)|| = |le— IBp|| (4.10)

The minimum is attained whe\, — € is orthogonal to the column space dfyielding JT (JA, — €) = 0, A, being
the solution to the normal equationdin4.11

JTan, =3¢ (4.11)

The matrixJ"J in the left side in equation 4,11 is the approximate Hessian,an approximation to the matrix of
second order derivatives. The LM algorithm solves a sligintation of equation 4.11 as seen in equafion}4.12, called
the augmented normal equations

NAap =J"e (4.12)

The off-diagonal elements &f are identical to the corresponding elementd'af and the diagonal elements are given

in equation 4,13

Nii = p+[37 i, u> 0 (4.13)

The diagonal elements df J is altered by damping, whegeis the damping term. If the updated parameter vector
p+ Ap, &, computed from equatidn 4.112, leads to an reduction in thar efthe update is accepted and the process
repeats with a decreased damping term. Otherwise eqliafidnsisolved again, and the process iterates until a value
of A, is found (corresponding to one iteration of the LM algoridhnihe damping term is adjusted at each iteration
to assure a reduction in the erigrthus the damping is raised if a step fails to redaieed otherwise the damping is
reduced.[[73]

The steps of the LM algorithm is the followinig [150]

1. Inputs are presented to the network and the correspowdipgits and errors are computed. The mean square
error over all inputs is computed

2. The Jacobian matriXwith respect tg is computedp representing the weights and biases of the network

3. The Levenberg-Marquardt weight update equdfion|4.1@Ned to obtaim,

4. The error is recomputed usimpgt+ Ap. In case the new error is smaller than the one computed inlstdpe
training parametaun is reduced by, andp = p + Ap is computed and the algorithm returns back to step 1. If
the error is not reduced, theris increased byt and returns to step 3

5. The algorithm is terminated when at least one of the faligveonditions is met
Magnitude of gradientsg!, i.e. JT¢) drops below some threshotd
The relative change in the magnitudedgfdrops below a thresholp
The errore" € drops below a threshol
A maximum number of iterationlg,axis completed

pt andu are predefined values, typically initiated to 10 and 0.1eetipely.[150]
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4.4 Extraction of muscle synergies and motor commands

The muscle activation pattern can be expressed as in egl#&fid as the relationship between muscle synergies and
motor commands$ [95) 1]

X =S-P(k) (4.14)
SandP being
N synergies

S11 S12 ... SIN
S=| : : : : }M muscles

SM1 SmM2 ... SuN

K samples

p1(1) pi(2) ... p(K)
P= : : : : }N commands

pn(l) pn(2) .. pr(K)

for N < M. P(k) = [pa1(Kk), p2(K), .., pn(K)] being a vector of motor commands,(k) being then'th motor command
at timek, i.e. P(N x K). The activity levels of théM involved muscles are described by the muscle activatiotovec
X(K) = [x1(k),x2(K), ..., xm(K)], xm(k) being the level of activation for thewth muscle. S (M x N) is the muscle
synergies (each column representing a synergy) repragehg gain by which the’'th motor command is transferred
to them'th muscle activation signal. Thus, the muscle actitgan be represented by a linear combination ofgihe
motor commands.

Non-negative Matrix Factorization (NMF) method, is amohg most widely used in the literature, e.d. 1[95, 1],
to estimateSandP, as seen in equati@n 4114 knowing oXyk) and constrainingandP(k) to be non-negative.

A positive driving signal for generating the activity is inrcespondence with a positive muscle activity.

The procedure for extraction and reconstruction is illtstd in figuré 4]7.

Extraction of Muscle synergies and motor commands

Synergy matrix
Muscle Extraction
activation level method Sr
Xr NMF
Pr

Low dimensional
motor commands

Figure 4.7: Extraction of synergiesS) and motor command$>f), extracted from training data&X{), denoted by
subscripfl using the NMF method.

4.4.1 Extraction of synergies and motor commands

Based on[[78] the NMF implies finding a set of non-negativerimdactorsS (M x N) andP (N x K), such that
X = SP, as expressed in equation 4.15

NMF(X) — SP (4.15)
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X (M x K) being a non-negative matrix.

Equation 4.16 expresses the NMF algorithm based on the phicdtiive update rules [78] ensuring the Euclidean
distance between the true matdxand SP, ||X — SP|| (cost function used for quantification of the quality of the
approximation) is non-increasing and invariarfb&indP are at a stationary point of the distance.

(STX)nk (X I:’T)mn
Pk — Pik=——s5— — Sin—— 4.16
nk nk(STSP)nk Smn Smn(SPFT)mn ( )
Thus, the synergy matri$ and motor commandB(k) are updated iteratively during a number of iterations, from
which the muscle activation to some degree can be recotestirdepending on the dimensionality of the factorization.
For further details of the NMF algorithm, please refer to][78

4.4.2 Reconstruction of the muscle activation from synergis and motor commands

[95] showed that the muscle activation can be reconstrdobed Sy andXy using a modified version NMF by fixing
the set of synergies and hence only updating the motor comsnarthe reconstruction of the muscle activation as
depicted in figuré 418

Reconstruction of muscle activation level

Muscle
activation level

Reconstruction Muscle

Xv method activation level
Modified ,
‘ > \vp P O
St

Synergy matrix

Figure 4.8: Reconstruction of muscle activity from a fixed set of musgieesgies 1) extracted from the training
and the muscle activatioi() from the validation data using the modified NMF.

4.4.3 A simplified approach for stimulation control

In the context of a FES/FET system the reduction of the coxitglén the control of movement implies that the
number of control signals from the controller, can be redua=illustrated in figurg 4.9

Simplified control of movements ——

—® Xy (k)
Py (k) —
© St :
Py (k) —— ’
——@ X (k)

Figure 4.9: Simplified approach for stimulation controM muscles can be controlled by the synergy ma8ix
extracted once from training data and tiiec M decoded motor commanég (k) at each time instande
from online recordings.

In practice this can be achieved by estimating the musclergynmatrix once from training data, and decode the
motor commands at each time instance online.
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4.5 Evaluation of predictions

The prediction of the kinematics and muscle activity waduated by the coefficient of determinatioR?) as illus-
trated in figuré 4,70

Evaluation of predictions

Paralyzed user

Proximal muscles True intent
under voluntary control

sEMG Users intent
Muscle activity

—Ppp  Decoder —| Prediction |—— R?

Eyes

Gaze-direction

Figure 4.10: Evaluation of predictions bi?.

R? is presented in equatién 5.P.4, which expresses the pezeplatined variability in the true value explained by the
predicted value [104]R? is in linear regression equal to the square of the correlaiiefficient between two variables

[104].

N1 (4.17)

Xn andy, being the observed valugstheir samples mean, amdbeing the standard deviations (see equdiion 4.18) of
the two variables.

N
))2 ) ngl(xn — 1) (Yn — Hy)

(4.18)

R? has been used by several other autHors|[11<, 95,170, 26162Dfor evaluating the performance of the recon-
struction and prediction of signals.
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5.1 Preliminary data

This section contains an outline of the protocol descrilpedkitail in [95]. The aim of the data collected based on this
protocol was to achieve some preliminary insight of theeféd including multiple modalities in the prediction of the
users intent in form of arm kinematics or muscle activity.

Data was collected from 7 subjects during multi joint andgknjoint (elbow joint) movements in the horizontal
plane with the subjects sitting in front of a table with therdoant right arm supported by a custom designed mechan-
ical apparatus allowing flexion and extension of shoulderelbow. Audible cues were provided to indicate the start
and end of a movement to ensure correct speed of the moveniksaus movement was of 1 s duration and between
each movement, there was a pause of 5 s.

The starting position for the single joint task was with tligogv flexed, i.e Ve; = 60° as illustrated on figule 5.1, and
the shoulder angle at 9QEL1), 135 (EL2) or 180 (EL3) depending on the variation.

Ve =150° /Vﬁlf 150°
Ver =600 777"~
‘w ‘1
Vel =60°
— — S Ve = 1500
Vin =90° Vi, =135° Vi =180°

Figure 5.1: Elbow movements (extension of the elbow fron? 80 150°) at three different fixed shoulder angl&gy,
being the shoulder angle, akg being the elbow angle. Modified frorm [95]

The subject was asked to extend the elbow to the angle 1&fter a pause the subject was asked to do the reverse
movement, returning to the starting position. This was aége additional 4 times, so that a total of 5 extensions and
5 flexions were obtained in 60 seconds. Two repetitions df gagation were made.

The multi joint reaching task is shown in figlirels.2 where thigjsct was asked to reach targets in 12 directions, using
both the shoulder and elbow. The start position of the elb@s @0 and start position the shoulder was varied in
three variations frovsy = 100°, 110°, and 120.

Figure 5.2: Multi joint movement. The subject was asked to reach tarigei® directions marked on a target board,
using both the shoulder and elbow. The start position of thevewas 90 and start position the shoulder
was varied in three variations from 19@.10°, and 120. Modified from [95]

Surface EMG signals were recorded synchronously in a hipalafiguration from 12 muscles of the right arm and
upper trunk (Brachioradialis, Anconeus, Biceps medialdh&iceps lateral head, Brachialis, Triceps lateral head,
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Triceps long head, Deltoid medial, Pectoralis, Deltoiceaiot, Deltoid posterior, Latissimus).

A motion tracking with 8 infrared digital video cameras gyatrecorded the position of reflective markers placed
at four superficial locations of the shoulder and arm of tHgext, specifically left acromion (LAC), right acromion
(RAC), lateral epicondyle of humerus (LEP) and posteriodpoint between styloid processes of radius and ulna
(MST) as depicted in figufe 5.3.

T MST

LAC RAC LEP

Figure 5.3: Position of reflective markers at left acromion (LAC), right¢romion (RAC), lateral epicondyle of
humerus (LEP) and posterior midpoint between styloid pees of radius and ulna (MST). Modified
from [95]

The EMG envelope was obtained by full wave rectification awdpass filtering and the 3D positions of the reflective
markers were projected to the horizontal plane.

The analysis based on this preliminary data is describdukiridilowing.

Post processing

The position of the endpoint of the hand and the muscle &giivithe 9 distal muscles (Brachioradialis, Anconeus,
Biceps medial head, Biceps lateral head, Brachialis, padateral head, Triceps long head, Pectoralis) were pestlic
based on the muscle activity in the three parts of the proli@litoid muscle as outlined in figure™.4.

The predictions were based on two different decoders, nathel Kalman filter and a MLP NN as introduced in
sectior] 4.2 on page B0 ahd 4.3 on page 32 respectively.

Decoding muscle activity

Muscle activity in
proximal muscles

Muscle activity in
Distal muscles

— Decoder o

Decoding kinematics

Muscle activity in
proximal muscles

—— Decoder —— Kinematics

Figure 5.4: Outline of the approach for predicting the muscle activitd &inematics based on either Kalman filtering
or MLP NN as decoding method.

Eyetracking was simulated as the recorded position of mdrkeorresponding to the endpoint of the hand) with noise
added (zero-mean and SD of 4).

The evaluation of the predictions was based onRhéntroduced in sectiop 5.2.4 on pagd 53. All predictions were
based on 80% training data and 20% validation data.
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5.2 Conducted experiments

The aim of conducting these experiments was to collect datavestigate whether the muscle activity in primary
extensors and flexors of the arm, as described in appenditerffa T on page 93, in combination with gaze-direction
contained sufficient information for prediction of the usitent. The protocol was modified from [95].

5.2.1 Experimental setup

The experiment consisted of planar multijoint arm movenwittt the dominant arm of 1 subject (age 26, weight
78 kg, height 1.79 m). The subject provided written inforneedsent before participation and the procedures were
approved by the local ethic committee.

During movement in the horizontal plane the subject satantfiof a table with the lower arm supported against a
horizontal surface and the subject was instructed to rélexubrestrained hand during recordings. The experimental
setup is illustrated in figufe 8.5. Pictures of the entireigetre located in appendix chadfter C on page 95.

EMG amplifier ‘ =)
PRESEESN
Figure 5.5: Experimental setup illustrated with the motion capturetesys eyetracking, EMG amplifier, and hand
load.

Audible cues were given to indicate the start and end of a mew as illustrated on figute 5.6 with a warning cue
before each 'start movement’ signal to indicated start of@maent, and an 'end movement’ signal to indicate when
target should be reached. Thus each movement had a duréfieamd the interval between each movementwas 5 s.
During the reaching movements, the subject moved a load@2@0 cm high, radius 2 cm) in the dominant hand to
improve the signal to noise ratio of the EMG and likewise, ltteed served as a focus point for the gaze during the
movement, ensuring that the head was in an angle making e dstectable for the eyetracker. Previously it has
been shown that synergies are invariant for speed and Idadnirs of muscle activation [37].

Before the reaching task, the subject was asked to trairei@hing movement, to learn the position of the targets and
to maintain the correct speed of the movements. The pogifitime targets corresponding to that of a clock had to be
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L reaching out start-cue
— reaching out end-cue
L reaching back start-cue

— warning cue
L warning cue

7 8

™ L reaching back end-cue

1 2 3
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Figure 5.6: Audible movement cues indicating when the subject shouald and stop the movement, and hence the
speed of the movement. One warning cue was provided beforg'start-movement’ cue.

memorized, since the subject was asked to keep the gazefatthsepoint on the moving load. This dissociated from
the natural focus point during movement, i.e. the endpairgett, due to a limitation of the specific eyetracker, which
was not attached to the head of the subject.

Between each trial (3 in total), consisting of one repatitibreaching to each of the 12 randomized targets, the subjec
rested for 2 minutes. The subject did not report any fatiguénd the experiment.

5.2.2 Task description

The subject was asked to perform planar goal directed moveél second duration. The goal directed movements
are illustrated on figule 5.7

12

Figure 5.7: Goal directed movements to 12 targets marked with a targatdbpositioned with respect to the eye-
tracker, such that target 6 still allowed the eyetrackeraok the gaze.

The reaching movements were performed at a target boardl®i#tvenly spaced targets placed on a circle. In the
starting position the target board marking the 12 targetspessitioned in front of the eyetracking, such that target 6
still allowed the eyetracker to track the gaze and the hargdplaced in the midpoint of the target board.

Targets were reached in randomized order (each targetrecclitime in each trial) and every other movement was
reaching back to the midpoint. This yielded a total of 36 héag-out and 36 reaching-back movements during a
period of 2 seconds (1 in each direction). During the tasiesstibject was instructed to carefully follow the reaching
focus point on the load hand with the eyes.
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5.2.3 Data recording

Three types of signals were recorded during the experiment

1. Surface EMG
2. Motion capture

3. Gaze-direction

Surface EMG

Surface EMG signals were recorded synchronously in a hipalafiguration from 12 muscles of the right arm and
upper trunk. Self-adhesive gel-filled Ag/AgCl electrodésnpu®Neuroline 720 01-K/12, Ambu A/S, Ballerup,
Denmark) placed with an inter-electrode distance of 22 mentfe to centre).

Signals were recorded with a sample frequency of 2048 Hz amglieed with a gain of 2000 (EMG-USB, LISIiN

- OT Bioelettronica, Rivarolo, Torino, ltaly), band passeiied (& order Bessel filter, bandwidth 10-750 Hz) and
A/D-converted with a 12-bit resolution (Acquisition v. 0.Tor EMG128 USB2, Sirio Automazione S.R.L, Rivoli,
Italy).

Prior to electrode placement hair was removed and the skiacgwas prepared by gentle abrasion (Every conductive
abrasive paste, Meditec, Parma, Italy). The skin was theameld with water and finally dried with paper.

The reference electrode was a conductive wrist band soakedter prior to the experiment to increase conductivity.
Bipolar electrode pairs were placed in the following 12 nieisites

1. Brachioradialis (BIO, 1/6 of the distance ranging from thidpoint between the cubit fossa and the lateral
epicondyle to the styloid process of ulna)

2. Anconeus (ANC, 2 cm distal to the midpoint between therédtepicondyle and the olecranon process)

3. Biceps brachii medial head (BME)

4. Biceps brachii lateral head (BLA)

5. Brachialis (BIA, 4 cm in the direction towards the acromifsom the midpoint between the fossa cubit and the
lateral epicondyle)

6. Triceps lateral head (TLA)

7. Triceps long head (TLO)

8. Deltoid medial part (DME)

9. Pectoralis major (PEC, 1/3 of the distance ranging froenglenohumeral joint to the lowest point of the ster-

num)

10. Deltoid anterior part (DAN)

11. Deltoid posterior part (DPO)

12. Latissimus dorsi (LAT, 4 cm below the inferior border bétscapula, half the distance between the spine and
the lateral edge of the body)

For muscles where no specific electrode placement is mettjdhe electrodes were placed according to SENIAM
recommendation§ [50]. A pair of electrodes was placed dweldft Pectoralis major and served as a ECG reference.
The electrode placements are illustrated in figuré 5.8.

Motion capture

High speed cameras tracked the changing positions andtatimrs of the upper limb segments via reflective ball
shaped markers (diameter 18 mm) placed superficial at thdddroand arm of the subject, i.e. at the left acromion
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Biceps

Péctoralis Pectoralis ‘
| medial head

Brachioradialis

et D1 I
P Anconeus —— fifedial hgad

Jlong head

Figure 5.8: Electrode placement. BIO (brachioradialis), ANC (anc@)eBME (biceps brachii medial head ), BLA
(biceps brachii lateral head), BIA (brachialis), TLA (&jes lateral head), TLO (triceps long head), DME
(deltoid medial part), PEC (pectoralis major), DAN (dett@interior part), DPO (deltoid posterior part),
LAT (latissimus dorsi).
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i,
%; <

— y —

T MST

LAC RAC LEP
Figure 5.9: Placement of the four reflective markers at left acromion@)Aight acromion (RAC), lateral epicondyle
of humerus (LEP) and at the posterior midpoint between styloocesses of radius and ulna (MST). The
position was recorded using the eight shown high-speedrimdrdigital cameras.

(LAC), right acromion (RAC), lateral epicondyle of humellu&EP) and posterior midpoint between styloid processes
of radius and ulna (MST) as illustrated in figlire]5.9

The position of the markers were recorded using a motiorkitngcsystem (Qualisys Track Manager, Qualisys AB,
Gothenburg, Sweden) with 8 infrared digital video cameRr®Reflex MCU, Qualisys AB, Gothenburg, Sweden).
Data was recorded with a sampling frequency of 240 Hz.

Gaze-direction

Gaze-direction was recorded using an eyetracker (TobilOX&ye-Tracker, firmware 1.1.14) sampled at 120 Hz, and
acquired using Tobii Studio v.1.3.23 running on Windows Xife eye tracker communicated with the computer via a
standard network cablg[155]. Figlire 5.10 shows the eydtrgsetup.

Configuration of eyetracker setup

10 cm

59 cm
12 cm

Figure 5.10: Relevant measures for the eyetracking setup. The subjecplaaed approximately 70 cm. from the
eye-tracker in an upright position (9@ith the horizontal plane).
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The distance from the eye-tracker to the subject was apmiely 70 cm, adjusted to achieve the optimal configu-
ration. The placement of the eye-tracker ensured that the gagle did not exceed 3% any point on the virtual
screen.

Distance to calibration grid 59 cm, measured from the back edge of the eye-tracker to ¢in¢ énd of the virtual
screen

Horizontal eyetracker angle Adjusted with respect to each subject, such that the eygda@red in the center of the
status track window when the subject is placed 70 cm fromyeetacker. Approx. 15

Height from table to virtual screen 8 cm

Height from table to eyetracker foot Approx. 12 cm, adjusted to the individual subject, so ensptemal tracking
of the eyes

Initially the eyetracker was calibrated, to learn the chtmastics of the subject’s eye movement to achieve aceurat
estimation of the gaze points, and to associate a posititireadye to a specific location in the working space. During
calibration, the subject concentrated on focusing the egpdive calibration points, depicting the extremity pointsia
the center of the workspace.

An elaborated description of the configuration of the speeifietracker is located in appendix chapter G.

5.2.4 Post processing

The post processing methods used for prediction and eiatuate based on the methods presented in chap-

ter[@ 0N page 29.

Extracting the muscle activation

The EMG signals were band pass filteret! @fder zero-lag Butterworth digital filter, pass band 20-#@9 to atten-
uate DC offset, motion artifacts and high frequency nai€g.[5

The filtered signal was full wave rectified and low pass fildef#" order zero-lag (the data was processed in both for-
ward and reverse direction) Butterworth digital filter,-oiit frequency 1 Hz) to obtain the muscle activation patsern
See also sectidn 4.1.

Projection of markers to the horizontal plane

The 3D positions of the reflective markers were projectetieédiorizontal plane by discarding tAecoordinate since
the subject performed planar arm movement, i.e. the positicere projected to the horizontal plane.

Synchronization of signals

The EMG, motion capture, and eyetracking were synchrorazdtiustrated on figule 5.11.

An external application was developed to start the Eyetiadkg events and at an event send a signal to the other
recording system via the PCs parallel port. The logged emedisignal sent to the other recording systems were used
as synchronization signal.

The signal from the trigger-application was initiated whikee recordings were already started on the EMG, the mo-
tion capture, and eyetracking systems. All samples recbficen the three recording systems before and after the
synchronization signal indicating start and stop of reiduysl were discarded.

The development of the synchronization configuration idarpd in detail in append[x H on page 123.

Resampling to a common sampling frequency

To reduce the computation time, the EMG envelopes (samptg f2048 Hz), motion capture recordings (sample
freq. 240 Hz), and the eyetracking (sample freq. 120 Hz) wesampled to a common sampling frequency of 40 Hz
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Synchronization of signals
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Figure 5.11: Synchronization of the SEMG, motion capture and eyetragkécordings.

by interpolation. The resampling induced no significansloginformation in the EMG envelopes since frequency
content above 20 Hz was highly attenuated. A 40 Hz samplimuiency for the motion capture and eyetracking was
also sufficient since no human movements are expected tochavgonents faster than 10 Hz.

Reduction of ECG artifact in the EMG recordings

Due to EMG recordings near the heart, such as electrodédosat the Pectoralis major, and Latissimus as shown
by [95], a ECG reference channel was recorded simultangavith the SEMG and used for removal of the ECG
contamination by a Least Mean Squares (LMS) adaptive teasal/(50 taps) filter with a step size of 808 [95].

Prediction of the users intent

The predictions were based on a MLP NN as presented in s&Efion

The network consisted of 1 hidden layer with 10 neurons,Hergrediction of both the muscle activity, motor com-
mands, and the kinematics, using the sigmoid transfer immat all units. The transfer function for the output layer
was a linear function returning the input passed to it. Legyof the neural network was based on the Levenberg-
Marquardt back-propagation.

The number of neurons was based on the analysis d®tas a function of number of neurons in the hidden layer as
outlined in figurd 5.12, and elaborated in appendix ch@pter page 5[7.

Initially the relation between input and output patterns\earned by the network in a training session. The training
stopped if the maximum number of repetitions were reachethevalidation performance increased more than 6
times since the last time it decreased [28].

Following the training session was the validation sessidrich reconstructed the output signal. The inputs for this
session were not part of the training data.

The feedforward neural network was implemented in M&tlaising the Neural Network Toolbox Matl&h[28] using
newff[training input, training target, hidden layer size(s), transfer function(s) from hidden

and output |ayer] (creates the feed-forward network objecty,ai n[ network object, training input,
training target] (trains the neural network), arsdlnfi nput, network object] (simulates the network). The
newf f automatically initializes the weights with the Nguyen-\Wd/ layer initialization function, which initializes a
layer’s weights and biases according to the Nguyen-Widnitralization algorithm[[I08, 111]. The algorithm chooses
values in order to distribute the active region of each nedetermined by the transfer function) in the layer approx-
imately evenly across the layer’s input space. Due to a @egfreandomness in the values, they are not initialized to
the same value each time the function is called.

The initialization of the weights can influence the perfonoaof the neural network, thus each predictions was per-
formed 3 times to ensure that the network solution was npptd in any local minimum.

Levenberg-Marquardt algorithm was used for training, \tatso was part of the neural network toolbox for Matlab.
In Matlab it is implemented in Matld via a standard backpropagation technidué [43]. The weigthtlae biases of
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Figure 5.12: Prediction performance of the muscle activity as a functbmumber of neurons depicted from the
concatenated data (light grey) and for mean across all @siscl

the network were iteratively adjusted to minimize the netamerformance function chosen as the mean square error
between the estimated and true outputs.

To make the training more efficient, the inputs and outpute@d\NN was preprocessed, per default in the implemen-
tation in Matlab. Network-input processing functions sorm the input into a better form for the network, i.e. the
inputs and outputs were scaled to fall within a specified eart), 1] and processing functions associated with the
network output transformed targets into a better form fdmoek training, and reverse transformed outputs back to
the characteristics of the original target dafta) [28]

Summary of parameters in neural network The feed-forward neural network was configured with theofelhg
settings([28]

Number of hidden layers 1

Number of neurons in hidden layer 10 for both the prediction of kinematics and muscle activity

Transfer functions ’log-sig’ and 'purelin’ function for the hidden and outpatyler respectively

Learning algorithm Levenberg-Marquardt back-propagation using the stanctamfiguration in Matlab (fog, g,
“71 Umax) [@]

Maximum number of repetitions 150

Initialization algorithm Nguyen-Widrow

Performance function Mean square error

Maximum validation failures 6

The following subsections describe the predictions dejpgyah the type of signal to be predicted, and on which data

basis. The first 80% of the data was used for training, anda$te20% which was not included in the training, was
used for validation.
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Prediction configurations

The different variations of the predictions are summarirethble[5.1 and are named according to the prediction
variation, and colored. For each configuration, the inmutisplayed and so is each of the outputs that is predicted by
the use of the individual configurations.

Conf. Input Output
SEMG, Truegaze Sim.gaze sEMG Motor commands Kinematics
SEM X X X
SSE X X X X
STE X X X X
TET X X X
SSP X X X

Table 5.1: Variations of the input and output for the different preitintconfigurations. sEMgbeing the muscle ac-
tivity in the proximal Deltoid muscle, true gaze being theaeled gaze-direction, sEM®eing the muscle
activity in the distal muscles, motor commands being the dawensional motor commands, kinematics
being the position of the endpoint of the hand.

The colors and abbreviation of the variations follows tlyleout the rest of the report. Figure5.13 depicts an overview

of the different configurations
The muscle activity in the SSP configuration was recongtifitom the predicted motor commands and the four

synergies, c.f. appendix section E on page| 103 extractedtfie training data.
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Figure 5.13: Overview of the prediction configurations. Shown only foe thuscle activity as output. SEM (red) is
based on the muscle activity in the Deltoid muscle as inmd sae used for prediction of muscle activity
in the distal muscles and kinematics. SSE (blue) is basetl@muscle activity in the Deltoid muscle,
and simulated gaze-direction for the prediction of musclévay in the distal muscles and kinematics.
STE (green) is based on the muscle activity in the Deltoidateusnd recorded gaze-direction, and used
for the prediction of the muscle activity in the distal meschnd kinematics. TET (purple) is based
on the recorded gaze-direction, and used for the predictishe muscle activity in the distal muscles
and also the kinematics. Finally, SSP (orange) is based @milscle activity in the Deltoid muscle
and recorded gaze-direction, and used for the predictidneofow dimensional motor commands. The
muscle activation level is reconstructed by use of the gyneratrix extracted from the training data and
the predicted motor commands.
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Extraction of synergies and motor commands

The motor commands and muscle synergies were extractedtfromuscle activation level from all muscles, both
proximal and distal muscles, from the training data. Theasted motor commands (training target), the muscle
activity (from the proximal muscles), and recorded gazedlion served as basis for predicting the motor commands.
The muscle synergies and motor commands were extracted baséMF as described in sectipn 4.4.3 on page 38.
Figure[5.1# depicts the reconstruction performance asaifmof number of synergies.

R? as a function of number of synergies

> .
Mean R? across muscles ~ —e—Mean concatenated R? across trials

120

100 -
80 |-

| A

40 |

R2

20

. | . | . |
1 2 3 4 5 6 7 8 9 10 11
Number of synergies

Figure 5.14: Reconstruction performance of predicting the motor conasamthe individual muscles (black, mean
SD across the number of muscles) and for the concatenateébdat! muscles (grey, meah SD across
the three trials) as a function of number of synergies.

Since the aim was to predict the muscle activity in the irdlial muscles, 4 synergies were chosen to be extracted
based. Further details of this analysis is founs in appetiaptef .

Prediction performance

The predictions of the kinematics and muscle activationd, the reconstruction of the muscle activations from the
synergies and motor commands, were evaluate®Pbintroduced in equatiqn 4.17 on page 39. For both the priedict
of the muscle activation and the kinematiB$,was both computed for the individual muscles and acrossiascias,
i.e. for the muscle activations these were concatenateallfaruscles and for the kinematics the positiorxiandy
was concatenated.
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Preliminary decoding results

The analysis in this chapter is the basis for the resultsmadtlin the introduction in sectidn 2.5 on pag¢ 19, and
served as basis for indicating whether the muscle actixiynfthe proximal shoulder muscles in the Deltoid contained
sufficient information, to allow decoding of the muscle wityiin the distal muscles of the forearm and the kinematics
of the hand (hand endpoint position).

In addition it was the aim to investigate the effect of addéygtracking to the prediction basis. Hence these results
was the foundation for the evolvement of the main focus & pioject.

Finally two methods of predictions were compared, namebylmased on the Kalman filter and one based on the MLP
neural network.

The results obtained was based on data obtained by [95] seulin chaptef 5.1 on page}41.
6.1 Prediction of kinematics and muscle activity

Figure[6.1 an@6]2 shows the evaluation (in mearR?bf the predictions of the kinematics and the muscle agtivit
respectively utilizing both the Kalman filter and the MLP NNtlmand without simulated eyetracking. The results are
represented as mean across all seven suhjeS3. The MLP NN was configured according to the protocol in ¢thap
and was optimized with respect to both the kinematic badruscle activity predictions.
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Figure 6.1: Comparison of predictions using the Kalman filter and the NNI¥? of the kinematics in the single joint
movement based on the muscle activity in the three proxiralbidl muscles with (green and yellow
respectively) and without simulated eyetracking (blue mattrespectively).

Prediction of the muscle activity seen on figurd 6.1 (lefgdzhon the single joint movement revealed that the MLP NN
using SEMG combined with eyetracking yielded the best pteti performance with aR? up to 83% for Triceps long
head. This combination produced on average across all saianlprediction performance of approx. 62% compared
to 33% for the prediction based on MLP using only SEMG. Theniai filter yielded on average a prediction of the
muscle activity based on the SEMG only of approx. 21%, ant eyetracking included approx. 29%.

The prediction of the kinematics seen on figurd 6.1 (rights aiapprox. 100% on average across the two directions
for both of the prediction methods and with eyetrackingudeld. Based on the SEMG only, the prediction using the
MLP NN gave a prediction performance of approx. 51% and thienida filter a prediction of 34%. The outcome of
the kinematics predictions were as expected, since thdaiaetbeyetracking is almost similar to the true kinematics.



Preliminary decoding results

Predictions of the muscle activity and kinematics for thdtijaint movements seen on figute 6.2 (left and right
respectively) showed similar characteristics as the ptiedis during the single joint movement.

Muscle activity single joint movement Kinematics - single joint movement
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Figure 6.2: Comparison of predictions using the Kalman filter and the MNP of the kinematics in the multi joint
movement based on the muscle activity in the three proxiralibidl muscles with (green and yellow
respectively) and without simulated eyetracking (blue @tbrespectively).

The muscle activity was on average across all muscles usm@d/LP NN based on sEMG only predicted with a
performance of approx. 33%, and combining the SEMG with tredracking yielded a performance of approx. 48%.
Predictions of the muscle activity based on the Kalman fileesed on the SEMG and sEMG and eyetracking yielded
on average approx. 20% and 25% respectively. The eyetme#tso improved the prediction of the kinematics to
the multi joint movement yielding a performance of appro2%®and 97% for the MLP NN and the Kalman filter
respectively.

From the predictions seen in figurel6.1 6.2 it was condltitk the MLP NN yielded the best predictions of both
the kinematics and the muscle activity. Furthermore it appe clearly that the simulated eyetracking improved all
predictions compared to using only the sEMG.



Experimental results

This chapter contains the results achieved from the cordwtperiments.

7.1 Recorded data

The trials performed by subject 1 followed the experimeptatocol in sectiofi 512.
Figure 7.1 depicts the recorded muscle activity for sutfidot all 12 muscles shown from in the time interval 200-400
S.
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Figure 7.1: Recorded muscle activity from trial 1.

From figurd 7.1l the movements was seen as clear peaks in ttobenacsivity. Not all 12 muscles participated in the
different movements, e.g. as seen for Pectoralis. It wadégsaoted that the muscle activity did not reach the baselin
before a new movement was started seen in all cases, e.gsag@min the peaks for Triceps long head and in Biceps
medial head after approx. 225 s.

Figure[ 7.2 shows the recorded eyetrack from trial 1.

From figurd_Z.P it was seen that the subject followed the hadgeaint very precise, since the 12 targets were clearly
identified from the eyetracking. The dense areas in the figm@ due to the 5 s pauses between each reaching
movement, and thus more fixation points were recorded dtiniese periods.
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Figure 7.2: Recorded gaze-direction from trial 1.

7.2 Prediction of muscle activity

This subsection presents the predictions of the muscleitydti the nine distal muscles based on the different config-
urations introduced in the protocol in chagter 5.2 on page 43

The evaluation of the predictions is depicted in figure 7.3henfacing page based on the different configurations
summarized in table7.1. The evaluations were provided @anmeSD across the three trials.

Conf. Input Output
SEMG, Truegaze Sim.gaze sEMG Motor commands Kinematics
SEM X X X
SSE X X X X
STE X X X X
TET X X X
SSP X X X

Table 7.1: Variations of the input and output for the different preitintconfigurations. sEMgbeing the muscle ac-
tivity in the proximal Deltoid muscle, true gaze being thearled gaze-direction, sEM®eing the muscle
activity in the distal muscles, motor commands being the dawensional motor commands, kinematics
being the position of the endpoint of the hand.

STE based on the SEMG and the recorded gaze-direction fesimsapproximate 49%+ 4.8% in Brachioradialis

up to approx. 73%+ 9.2% in Triceps long head with an overall prediction averagbB8%+ 7.0% (average

of evaluations shown across all muscles ). Concatenatidheopredictions across all muscles yieldedRenof
83.5%+1.2.

SSE based on the simulated gaze-direction and the sEMGviedldrend of the predictions based on the sSEMG and
recorded gaze-direction. Predictions from3Pb+ 7.8% (Brachioradialis) up to 81.3%8.6% (Triceps long head)
was achieved. On average the muscle activity was predicitadan R? of approx. 59%=+ 7.0%. Concatenation
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Figure 7.3: Evaluation of the predictions of the muscle activation ie ¢hdistal muscles. THe? is shown for all the
three trials (mear:- SD) for each individual muscle for the predictions usingdiféerent configurations.
SEM (red) was based on the muscle activity in the Deltoid heuss input. SSE (blue) was based on the
muscle activity in the Deltoid muscle, and simulated gazeetion. STE (green) was based on the muscle
activity in the Deltoid muscle and recorded gaze-directiaT (purple) was based on the recorded gaze-
direction. Finally, SSP (orange) was based on the musdigtgéh the Deltoid muscle and recorded gaze-
direction, and used for the prediction of the low dimenslanator commands. The muscle activation
level was reconstructed by use of the synergy matrix exddaftom the training data (from all 12 muscles)
and the predicted motor commands.

resulted in an evaluation on &%+ 3.6%.

SEM based on the muscle activation yielded predictions fapprox. 88%+ 5.0% (Triceps long head) up to 59.2%
(Latissimus) and on average across all the muscles the enastivity was predicted with aR? of 38.4%+ 7.0.
Predictions on the concatenated muscle activity yielde?aom 715%+ 2.2%.

TET based on gaze-direction revealed predictions frorA%3 5.8% (Anconeus) up to 78%+ 6.9% (Triceps long
head). The average predictions gaveRarof 35.5%+ 10.5% and predictions on the concatenated data resulted in an
R? on 660%-+ 3.6%.

SSP predicting the motor commands based on SEMG and eyielgakediction results yielde®? values of 206%-+
8.9% (Pectoralis) and up to 8%+ 12.9% (Triceps long head) and average across all muscles 8¥&067.1%. The
prediction of the concatenated data yieldedR&mf 84.7%-+ 2.0%.

The evaluations revealed that the predictions using STHedkthe highest predictions in all muscles. SSP showed
a good performance in many cases, similar to the performahte STE. In Pectoralis, the SEM showed a better
performance than the SSP.

Only SSE showed close to a similar prediction performandkérpredictions, but since this was based on simulated
gaze-direction, this served as a comparison with the recbghze-direction. It was indicated from the simulated
gaze-direction, which was almost similar to the true endpposition of the hand, that it was of crucial influence on
the predictions, in correspondence with the recorded gazetion.

Especially the predictions of the muscle activity in Trisdpng head and Triceps lateral head based on STE, SSP,
and TET showed a higR? and in the contrary showed a low performance fore SEM iniigathat the predictions

of the muscle activity in these muscles were highly dependenhe gaze-direction and concurrently, the sEMG did
not contain much information about the reaching tasks,the.muscles were active for all targets but contained not
enough information about the movements to be able to préugctnuscle activation. STE and SSP improved the
predictions with almost 36% for Triceps lateral head, angrap. 61% for Triceps long head.

In all cases it was seen that the SEMG and the gaze-direcigtateygl higher predictions when combined (STE and
SSP) than individually (SEM and TET).
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From these results it was indicated that the optimal corditiom for predicting the muscle activity was based on the
SEMG and gaze-direction, and even suggested that the theevactivity could be reconstructed satisfactory in many
cases based on the predictions of the motor commands.
Figure 7.2 depicts the predictions of all 9 distal muscles

Prediction of muscle activity in 9 distal muscles
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Figure 7.4: Prediction of muscle activity in all 9 distal muscles usingESgreen) based on the muscle activity in the
Deltoid muscle and recorded gaze-direction. SSP (orangepased on the muscle activity in the Deltoid
muscle and recorded gaze-direction, and used for the piedf the low dimensional motor commands.
The muscle activation level was reconstructed by use ofyhergy matrix extracted from the training
data (based on all 12 muscles) and the predicted motor condsn@he predictions were compared to the
true muscle activity (grey).

From figure[ 7.} it was seen that the muscle activity in all fessavere predicted quite well throughout the entire
period. The predictions captured most aspects of the mastidty. Both configurations tended to have some char-
acteristics prediction errors, including not capturing éxtreme peaks of the muscle activity, e.g. in the Bicepsdht
head, Biceps medial head and Latissimus there are caseslefastimation and for Brachioradialis, and Pectoralis
overestimation was seen in some cases for the SSP confaguestpecially. This was noticeable for all cases where
the muscle activity did not reach the baseline before thetosfsa new movement. During the quiescent periods, the
SSP configuration seemed to underestimate the activityireRrachioradialis and Pectoralis.
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7.3 Prediction of motor commands

This subsection presents the results from the predictiassdconfiguratioB SR implying the prediction of the motor
commands and reconstruction of the muscle activity. Theaeted synergies from the training data and the predicted
motor commands are shown in figlirel7.5}+7.7 for trial 1-3 retipely.

[7.3 showed the synergies and motor commands from trial 1a$t seen that the muscles were maximally active in
only one synergy at the time. E.g. Anconeus was active ontlyarfirst synergy, responsible for the extension of the
forearm. Deltoid anterior was primarily active in the sed@ynergy responsible for flexion of the shoulder. Deltoid
medial was active in the third synergy responsible for abidoof the shoulder.

Synergy 4 consisted of the primary extensor muscles Tricaferal head, and Triceps long head.
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Figure 7.5: Extracted synergies and predicted motor commands noradgl@rresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoidateusnd recorded gaze-direction, and used
for the prediction of the low dimensional motor commandse Wuscle activation level was reconstructed

by use of the synergy matrix extracted from the training datal2 muscles) and the predicted motor
commands. Shown for trial 1.
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Trial two, depicted in figurE716, showed a similar pattenntf@ synergies as in trial 1. Synergy one with the Deltoid
anterior being mainly active. Synergy 2 with Deltoid poigteand medial being most active. Anconeus was mainly
active in the third synergy and synergy 4 consisted primarlthe active extensor muscles Triceps lateral and long
head.
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Figure 7.6: Extracted synergies and predicted motor commands noradgalrresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoidateuand recorded gaze-direction, and used
for the prediction of the low dimensional motor commandse Wuscle activation level was reconstructed
by use of the synergy matrix extracted from the training datial2 muscles) and the predicted motor
commands. Shown for trial 2.
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Trial three, shown in figure_7.7 showed similar charactesso the first two trials, showing synergy 1 with Deltoid
medial and anterior being mainly active, synergy 2 with Ameas being mainly active, and synergy 3 with the Deltoid
medial and anterior being most active, and synergy 4 witbefis lateral head and long head being mainly active.
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Figure 7.7: Extracted synergies and predicted motor commands noradgl@rresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoidateusnd recorded gaze-direction, and used
for the prediction of the low dimensional motor commandse Wuscle activation level was reconstructed
by use of the synergy matrix extracted from the training datal2 muscles) and the predicted motor
commands. Shown for trial 3.

7.3.1 Summary

The synergies from the three trials revealed very similéiepas and it appeared as if the synergies could be attdbute
to separation of movements, e.g. flexion, extension, or @bmas suggested by e.g. [95].

Furthermore it was indicated that one synergy was activinguyuiescent segments, e.g. synergy 2 in trial 2 with the
Deltoid posterior and medial being most active, since tlaesgrimarily responsible for abduction of the shoulder.
From the synergies it was revealed that the primarily activescles were Anconeus, medial, anterior and posterior
part of the Deltoid, Triceps long head and Triceps laterabhand the Pectoralis.

7.4 Prediction of kinematics

This subsection presents the prediction of kinematicsesponding to the endpoint of the hamd &ndy-coordinate
for marker 4).
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Experimental results

The evaluation of the predictions is depicted in fiJure 7 $soeon STE (green), SSE (blue), SEM (red), TET (purple)
as meant SD across the three trials.

Prediction of kinematics during reaching movement
ISTE WSSE WSEM WTET

100
80

% 40
20

Figure 7.8: Evaluation of kinematics predictions. THR is shown for all the three trials (meah SD) for each
movement direction. SEM (red) was based on the muscle Bctivithe Deltoid muscle as input. SSE
(blue) was based on the muscle activity in the Deltoid mysaid simulated gaze-direction. STE (green)
was based on the muscle activity in the Deltoid muscle andrdecl gaze-direction. TET (purple) was
based on the recorded gaze-direction.

SEM showed aiR? of 83.4%+ 4.9 in x and 794%+ 4.1 iny, and TET showed an prediction performance o#88+

4.7 in x and 610%+ 14.9 in y, whereas STE yielded an prediction of. 8%+ 4.9 in x and 794%+4.1 iny. As
expected, SSE yielded a very good prediction 798+ 0.0 in x and 996%-+ 0.1 iny), since this basically equals the
true kinematics, though with noise added.

gaze-direction alone did show a prediction of 55% bettarand 30% better iy compared to the predictions achieved
with the SEMG alone.

It was seen that the combination of gaze-direction and sESIE] outperformed the predictions based on the signals
individually. Additionally the standard deviation was degsed compared to the SEM in batandy and than TET
iny.

Figure[7.9 shows the predicted position xiandy respectively) for trial 1 utilizing SEM, STE, and the truesi@mn.

Prediction of kinematics
STE — TET SEM — True

800

600

1 > 400

200

I I I I I
0 20 40 60 80 100 120
Time [s] Time [s]

Figure 7.9: Prediction of position inx (left), andy-direction (right). SEM (red) was based on the muscle agtivi
the Deltoid muscle as input. STE (green) was based on thelenastvity in the Deltoid muscle and
recorded gaze-direction. TET (purple) was based on thededaaze-direction. The configurations was
compared to the true position (grey).

Left shows for SEM that the prediction follows the trend of thue position, but throughout the period, the estimate
appeared noisy.

STE in the contrary showed a better performance, e.qg. akgeare identified, though in some cases the position
was predicting excessive noisy in the negative decreagaisy which also characterized some periods with the TET
configuration. Both STE an TET follows the overall trend of thue signal, and especially the rising peaks and the
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first falling peak were well predicted. From figiire]7.9 (righhe position based on SEM was followed somewhat the
true position, not reaching the peaks of the positions and/etl sporadically peaks in the prediction. The predictions
based on STE showed a trend close to the true position, batrie sases the position was predicting excessive noisy.

7.5 Summary

From the above observations it was clear that the muscleitgatould be predicted very well based on the muscle
activity from the deltoid muscle in combination with eyetking. Clearly it was revealed that the inclusion of an extra
modality, i.e. using both SEMG and eyetracking, indeed mapd the prediction performance of the muscle activity,
compared to using only one modality, i.e. SEMG or eyetragki@parately. Likewise, predictions of the motor com-
mands (SSP) and reconstruction of the muscle activity geld many cases a similar performance as achieved using
both modalities (STE).

In general the predictions showed that the overall trenth@ttue muscle activity was followed well for all muscles.

It was seen that the EMG did not reach the baseline in multiplscles before a new movementis started and in these
intervals the muscle activity was often under estimated.

Similar for the prediction of the kinematics, adding an éddal modality, clearly improved the prediction perfor-
mance compared to predictions based on SEMG only and minopared to predictions based on the eyetracking
only.

The predictions of the kinematics revealed somewhat naissnates both based on the SEMG or eyetracking individ-
ually.
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Discussion

The overall objective of this work was to contribute to ther@lepment of an upper-limb FES and a FET system
applicable for clinical use. The systems should be able store abilities regarded critical for independent living,

aiming to provide the possibility to improve living for highvel tetraplegic in case of FES, and for individuals with

reduced voluntary control of muscles, e.g. due to a proldfigation of the joint, in case of FET.

Specifically, a configuration was proposed to predict thesusgent based on signals recorded non-invasively. In
addition the possibility of simplifying the control of eleical stimulation was investigated, applicable for stiation

in FES and FET as depicted in figlire]s.1

Decoding of the users intent
and simplified control of movements

Paralyzed user

Proximal muscles
under voluntary control Distal paralyzed

Low dimensional muscles

Muscle activity

Motor > Muscle
commands activity

Eyes
Gaze-direction Muscle | |

synergies

—p-| MLPNN |—P

Figure 8.1: The users intent expressed as the muscle activity in thal disiscles was decoded based on the muscle
activity in the proximal muscles, and the control of movemeas simplified by muscle synergies.

The users intent was from preliminary data in 7 subjectsipted based on surface EMG and simulated gaze-direction,
which indicated a clear improvement compared to predistlmased on the muscle activity only. A Multi Layer Per-
ceptron neural network using the Levenberg-Marquardtrélga for training outperformed the predictions achieved
with a Kalman filter.

Based on non-invasively recorded EMG from the Deltoid meigelcombination with gaze-direction, it was shown,
that the muscle activation level in 9 distal muscles in the,aould be predicted continuously from one subject. Fur-
ther it was shown, that the muscle activity in the 9 musclesdtbe reconstructed based on a low dimensional muscle
activation pattern, indicating a simplified approach fa gtimulation control in FES or FET. This low dimensional
approach was based on muscle synergies, extracted by igativeamatrix factorization. Muscle synergies have been
defined as being sets of muscles whose relative activatiensadieved to be neurally predetermined.

The accuracy of the predictions in the main part of the msseks comparable to what others previously have shown
for the prediction of the muscle activity based on intraicaitrecordings[119], and for prediction of kinematic s
[140,[169]. Though it should be noted thatlin [119] the EMGedapes had a bandwidth of 10 Hz compared to 1 Hz
in this work, which was approx. similar to that of the kinematudies.

TheR? reported for the concatenated data across all musclesyislabstantially higher performance, letting the most
active muscles influence the performance measure mostly.

The hand endpoint position was likewise predicted in ongestilyielding a clear improvement by combining the mus-
cle activity and gaze-direction compared to the predicioased on the individual signals. The predictions showed a
performance in the range of what previous has been repoatsetion intracortical recordings.

Selecting the appropriate muscle activation levels toeasgha given task is extremely compleX. [41] have previ-
ously selected the set of muscles based on the MSE that skenviel as controller input for stimulation. The approach
taken in this work was related to a physiological strategyttie control of movements of the arm, which is believed
to be the natural approach of the CNS to simplify the compyexi the control of movements, namely by spinally
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organized muscle groupings, which can be controlled as (#0925 217].

The approach of specifying a low-dimensional approach lhasitivantage of being able to control individual D.O.F
compared to e.g. predetermined trajectories based on lingwiatics, in which fixed trajectories are based on kine-
matic a coupling between D.O.F, i.e. where at least one joitdws another joint in some predetermined manner
[89).

In addition, direct prediction of muscle activity allows ama extensively range of movements, due to the substantial
challenge associated with the identification of the musatewsation pattern to elicit specific movemerits [3] from arm
kinematics, e.g.[[109, 60, 51,111.129]. In endpoint conth@tegy, the kinematic control relies on the assignment of
resolving joint positions corresponding to the endpoietctory. Dynamical control relies on finding the joint toes

that will cause the arm to follow a specified trajectaryi[89].

Several studies in the area of muscle synergies have repointet a set of basis synergies was capable of describ-
ing the observed data sets. Only a few have reported, thaixtnacted synergies formed a predictive framework,
i.e. being able to describe movement tasks others than froichwhe synergies were extractéd|[85, 1]. This work
indicates that the extracted synergies were capable ofiséreting the muscle activity during a variety of multifjoi
reaching movements, similar to those from which the syesrgiere extracted.

An attractive approach would be to investigate to what ektanscle synergies extracted from healthy subjects could
be applied for control in paralyzed subjects, and even totwkient synergies extracted from one side of a subject
could reconstruct the muscle activity in the opposite sltieis would first and foremost shed light on the generality
and robustness of the synergies for the predictions of rausttivation patterns of new movements, and secondly it is
believed to find its usefulness in FES and FET applications.

The current work investigated the prediction of the muscle/dy, which was accomplished by computing the map-
ping between multiple muscle activation patterns in thejmnal shoulder muscle and those in the distal arm muscles.
This mapping was utilized in a decoder applied on offline datdch was not part of the mapping construction, and
validation was evaluated by the coefficient of determimati®d similar prediction in real time could serve as basis for
electrical stimulation.

Such a system would thus utilize what is believed to be nhtowscle synergies and integrate remaining voluntary
control with FES. Hence the user should simply attempt toertbeir hand and let the gaze-direction follow a given
trajectory to a location, to which the controller shoulda@sd with the appropriate stimulation levels to the paratyz
muscles, grouped as muscle synergies.

The results presented in this work did not state exactly th@nptrediction and low-dimensional control of stimulation
are implemented in a FES and FET system. However, the patefthe methods has been indicated.

In general the results should be considered with a note dfargwdue to the fact that this was a proof of concept,
based on 1 subject only. The robustness of the presenteddsethould be tested, i.e. validation should be based on
a more substantial data foundation both for inter- and istfaject signal variability.

Also, in this work the performance of the methods was evallitased on data from one healthy subject, with an
implicit assumption that the characteristics will carreoto a fundamental different population. It is expected tha
differences exists in the muscle activation patterns betweealthy and movement-impaired subjects. Furthermore,
the predictions were based on the muscle activity reconaded the proximal Deltoid muscles, which could be affected
in high-level tetraplegics yielding a poorer range of motf{67]. Hence decoding based on the specific target group is
a necessity.

Additionally the performance of the predictions should peleed as control signal for the stimulation in a FES and
FET and resulting kinematics should be evaluated. Injtitidls could be performed on a musculoskeletal model of
the upper extremity. A model as developed by €.gl [11] coadilifate testing the electrical stimulation based on the
predicted intend of the user. This model can simulate diffedegrees of SCI and can take muscle denervation, disuse
atrophy, and limited muscle activation due to electrodega@ent into account. This testing could provide insigtd int
the effect on the kinematics caused by the electrical sttiar based on the decoded intent.

Future work should additionally demonstrate the capabilftindividuals to accurately control the muscle synergies
in a real-time FES/FET application.
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Any increase in the reconstruction accuracy can be of inapeg when the signal has to be used for control. Even
modest improvement can show up to have disproportionateritapce for a control application. Hence it is suggested
that further improvements of the decoding should be purbogi for the decoding method and recordings.
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Literature overview

This chapter contains an overview of the literature, whiebld with different decoding methods based on single and
multiple disparate sources for non-invasively estimatibthe human motor intention. This chapter constituted the
point of departure for selecting the methods and signaldéanding of the users intent.

This is not a complete overview of the literature within thiga, since decoding is used in a variety of fields, e.g.
prediction of discrete classes of movement, continuousamant, level of muscle activity, finger movements, arm

movements, joint torque etc.

English-language articles were identified in a search ofgko8cholar and PubMed for the following key words
e Inference of hand movements

e Decoding arm movement EMG

e Decoding arm trajectory

e Decoding arm kinematics

e Decoding hand trajectory

e Decoding hand kinematics

e Decoding hand trajectory EMG

¢ Classification of movements from EMG
e Multimodal decoding kinematics

e Multimodal decoding kinematics EMG
e Decoding arm kinematics eye-tracking
e FES eye tracking

e Hand kinematics eye tracking

e Hand kinematics eye tracking FES

e Motor intention Eye tracking FES

e Decoding motor intention Eye tracking FES

e Eye-tracking hand trajectory

Avrticles based on sEMG were selected.

[119] have predicted the EMG signals recorded from four anat hand muscles (Medial deltoid, biceps, triceps,
and above the flexor musculature for the hand) from 32 chantal-cortical recordings from individual neurons
(from M1) in two male rhesus monkeys during button pressiagired the monkey to reach with its left arm from a
hold position at its side to one of four buttons) and pretmmsiovements (relatively unrestricted reaching movements
to grasp small food rewards, prehension tasks. The reachesmade within a workspace in front of the monkey
subtending 80-90and limited by the length of the monkey’s reach. The surfagkSEvere predicted with aR? of
75-80% based on linear filtering.

[5] have based predictions of shoulder and elbow kinemdéingle, angular velocity, and angular acceleration) of
all four joint angles (elbow flexion-extension and shoultlerizontal flexion-extension, elevation-depression, and
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internal-external rotation) on the SEMG (six shoulder albdw muscles) from anterior deltoid, middle deltoid, peste
rior deltoid, biceps, triceps, and the clavicular portidniee pectoralis from six able-bodied, and in the C5 paralyze
the paralyzed triceps and clavicular pectoralis were muldy the upper trapezius and middle trapezius musclds, wit
an RMS error of less than 2@uring drawing, reaching and serial single joint movememte decoding was based
on a developed time-delayed artificial neural network (TIMN

[69] have reconstructed EMG signals from six muscles cpoeding to four muscles performing flexion/extension,
abduction/adduction of the shoulder joint (deltoid-ctaNar part, pectoralis major, trapezius, latissimus Jasd
from two muscles responsible for flexion/extension of th®oel joint (biceps long head and triceps long head) from
neuron activity recorded from a stainless steel recordivagriber (42 points of microelectrode entry resulting in ap-
plying recordings from 18 neurons) M1 by the use of linear suation of the neuron activities during button pressing
(reach its arm to correct target buttons on a front panel. diimal always performed the task with its left arm.
From the reconstructed EMG they reconstructed the jointesrzased on an three layer ANN model (The units in the
first and third layer were linear functions, and the secogéddanits were nonlinear sigmoid functions) trained with
trained with a back-propagation algorithm. The correlatoefficients for the elbow (TRL and BIL) and shoulder
(PMJ, TPZ, DLC and LTD) were about 0.934 and 0.986, respelgti he reconstructed trajectories of the hand and
elbow position showed a correlation with the actual arm muoset on average about 84% (correlation coefficient).

[3] have estimated the levels of muscle activity (EMG) dgranwide range of free movements based on kinematic
information of the upper limb (EMG). The method is based onditional distributions based on hand kinematics
from free arm movement and associated sEMG from 12 muscks fes the control of arm movement (serratus
anterior, anterior deltoid, posterior deltoid, pectaratiajor, latissimus dorsi, teres major, biceps brachiichiedis,
brachioradialis, triceps brachii, extensor carpi radiedngus, and flexor carpi radialis) from one subject. Froes¢h
conditional probability distributions the patterns of rolgsactivity was estimated during eight different movement
tasks in five subjects. On average approx. 40% of the variantte actual SEMG signals could be accounted for in
the predicted EMG signals.

[139] predicted patterns of muscle activity (EMG) needegrmduce various types of desired finger movements (re-
peated tapping motions similar to key presses, pushing memts involving simultaneous extension and flexion of
finger joints). SEMG was recorded from from main muscles toaitrol flexion and extension of the third digit, i.e.
the digit 3 compartments of the flexor digitorum profundusxdir digitorum superficialus, and extensor digitorum
for training. Profiles of the predicted activity were useditive frequency modulated muscle stimulators to evoke
multi-joint finger movements. A probabilistic approach viaken based on Bayes’ theorem. Movements generated
by electrical stimulation and desired movements yieldedSRNrors between 18-26%.

[63] have extracted four different classes of patterns fsfG signals based on a discrete Hopfield network used to
extract features (the first time-series parameter and gmakpower) from the EMG and a multilayer perceptron net-
work was used to classify the feature set. The movementseleosy extension, elbow flexion, wrist pronation, and
wrist supination. A two-layer perceptron neural networlswapable of classifying all the sets of features correctly.
[94] estimated the joint torque from sEMG based on an ANNr(lea system based on feedback error learning
schema) and used this as an input to a dynamic hand modeldnsteact the joint angles based on four channels of
SEMG recorded from the forearm (radial side, dorsal sidenside, and palmar side). The joint angles and the SEMG
signal was applied in a prosthetic hand to enable graspgiegiag, wrist flexion/extension, pronation/supinatioheT
accuracy is not quantified but from the position figure conmggthe estimated position [rad] to the real measure po-
sition it is seen that the estimate follows the original nmoeat.

[35] have developed a EMG-controlled omnidirectional dewthat is based on a Recurrent Log-Linearized Gaussian
Mixture Network using EMG signals. The neural net is basedadndden Markov model. The idea is to express
infinitely many movement directions of a pointer as combaret of probabilities of movementin preset reference di-
rections. They apply an impedance model (inertia and vigcizssincluded) to make the pointer operate in accordance
with the physical laws that humans experience on a dailysbastMG was recorded from 7 channels (6 channels
from the right forearm at extensor carpi radialis musclégesor carpi radialis muscle, extensor carpi ulnaris nayscl
extensor carpi ulnaris muscle, flexor digitorum superfisialuscle, and proper extensor indicis muscle and 1 channel
from the left arm at (extensor carpi radialis muscle. Theralnet was trained by associating the movement direction
of the pointer with the bending direction of the right wrist.

The error (in rad.) between the movement direction of thateoiestimated from the EMG signals measured and the
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direction instructed to the operator were calculated agtaduation index (the effect of the length of the time-serie
during training and validation was evaluated as well). Theetbped method showed the best accuracy of the esti-
mated direction (average error as low as 0.072 rad.).

[52] discriminated between elbow flexion and extension Baseone channel of SEMG signal and the application
of multilayer perceptron neural network (two-layer TimelBy neural network for predictor modules in network).
The identification rate for flexion and extension signalsedifrom 82%-100%. It was concluded that the modular
neural network could identify limb functions when presehtéth a single channel surface EMG signal. Moreover the
identification rate exceeded 96% when the length of signalatéeast 150 sampling points.

[53] developed a respiration-controlled multichannel FStem for controlling upper extremities in high cervical
cord injury, C4 tetraplegics. Based on inspiration and matjmn using two respiratory sensors predefined movements
were elicited and the pattern of muscle activity associat#ld a particular movement were obtained from normal
subjects to identify patterns of muscle activity assodatéh a particular movement. The multichannel stimulation
patterns for control of the multi-joint hand-wrist-elboyssem were created by trapezoidal approximation method of
the EMG activities. It was shown that a C4 patient could aghigersatile control of the upper extremities.

[97] presented a pattern discrimination method based ochgirnels of six channels SEMG recorded from electrodes
attached at the forearm and upper arm (Flexor Carpi RaqRUiR), Extensor Carpi Ulnaris (ECU), Flexor Carpi Ul-
naris (FCU), Biceps Brachii (BB), Triceps Brachii (TB)) indi subjects (three healthy and two amputees). They used
a recurrent Neural network based on a hidden Markov modgldiferent motions of the wrist (flexion, extension,
supination, pronation) and hand grasping and opening) discgiminated continuously. A discrimination rate of up
to 99.06% were shown.

[70] reconstructed human arm movement from sEMG (delttagticular part, deltoid-acromial part, deltoid-scapular
part, pectoralis major, and teres major, for double-jointsnoies: biceps-long head and triceps-long head, for flex-
ion/extension of elbow joint: brachialis, triceps-mediaad, and triceps-lateral head) using a forward dynamics
model acquired by an artificial neural network within a maddrchitecture. Specifically, the dynamic joint torques
at the elbow and shoulder were estimated for movements ihdhieontal plane. The aim was to construct a com-
plete forward dynamics model of the human arm, which affarcisurate estimation of movement trajectories from
the input of physiological signals (SEMG). The method waselieon artificial neural network that learned the non-
linear functions relating physiological recordings of tBEIG signals to the simultaneous measurement of two-joint
planar movement trajectories. The EMG signal was input anpoint trajectories was the output. They treated the
EMG signals as a record of the motor commands to the musabes, the motor neuron activity could not be directly
measured. Thus, the EMG activity was considered a reasenediéction of the firing rate of a motor neuron. The
trajectory was computed at each time step by predicting y#imamhic torque by the neural network model from the
position and velocity values at the current time step anghétse 500 ms of EMG data. The predicted torque was used
as control input to the forward dynamics equation. Coefficgd determination for position data was 0.948.

[29] investigated the mapping between arm kinematic véeghnd spatiotemporal patterns of EMG activity recorded
from pectoralis major, anterior deltoid, posterior dedtdiiceps brachii and triceps brachii while the subjectqened

a three-dimensional movement. More specifically they ldakdereach-to-grasp-with-return’, at the wrist trajeoésr

in the horizontal plane. They showed that the Back Propagdthrough Time-ANN was able to learn the non-linear,
complex mapping between EMG signals from selected mustths ahoulder and elbow joints and the corresponding
trajectory patterns. The BPTT-ANN was able to reproduceenmnt trajectories well based on the corresponding
EMG patterns. Mean RMS was@®2+ 0.016. This meant that EMG signals from the shoulder and arntegoa
significant, maybe redundant, amount of information abaigtwmovement kinematics.

[18] have proposed an approach based on dynamic recurrerdalmetworks to identify the relationship between
SEMG recorded from seven muscles (posterior deltoid eateand internal, anterior deltoid, median deltoid, pec-
toralis major superior and inferior, and latissimus doegsijl the arm kinematicx (@nd z coordinates) during the
drawing of the figure eight with the right arm extended. Thehnod was based on artificial dynamic recurrent neural
networks to map the raw SEMG data of the figure eight movemetotthe corresponding kinematics of the arm. It is
concluded that the method performance is good and the dieditarve reproduced all the particularities of the human
complex movements, whatever the initial direction of thevemaent. In addition the robustness of the method was
tested by applying perturbations in the range of 20% to th&Eignals. This resulted in a difference in the position
on less than 6%. The results showed that DRN'’s are succas#ientifying the complex mapping between full-wave
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rectified EMG signals and upper-limb trajectory.

[153] presents preliminary work where 12 individuated ftexand extension movements were decoded with an accu-
racy higher than 98% based on sEMG signals (collected frotmf3&ar electrodes placed mainly on an able-bodied
individual's forearm performing) from natural hand and #ngnovements. The method was based on ANN (Non-
linear decoding filters were designed using multilayerdfémward Artificial Neural Networks). Feature extraction
was based on four time-domain EMG features; Mean of the ateswalue, Willison Amplitude, Variance, and Wave-
form length.

[65] has developed an approach to differentiate betwedrt different hand movements (hand opening and closing,
pinch, thumb flexion, wrist radial flexion and extension arrétflexion and extension) from recorded SEMG signals
(extensor digitorum, extensor carpi radialis, the palslongus and the flexor carpi ulnaris). Feature extraction is
based on three types of feature representations; time dqmaian absolute value (MAV), zero crossing (ZC), Wilson
amplitude (WAMP), slope sign changes (SSC) and coefficiehdsitoregressive model (AR)), time-frequency (short
time Fourier transform (STFT), wavelets transform (WT)d avavelet packets transform (WPT)) domain and their
combination. Dimensionality reduction technique was sgajpio simplify the task of the classifier (class separapilit
(CS) and principle component analysis (PCA)). Classifiemsabased on ANN and fuzzy inference system. Combined
features with PCA dimensionality reduction and FIS as di@sprovided the best results (83% correct classification
on average).

[142] presents results from a pilot study. Initially theyosled offline classification accuracy of 92-98% for a eight-
class classification problem from static SEMG signals réedirfrom the forearm muscles (brachioradialis, extensor
carpi ulnaris, promnator teres, extensor communis digitgrflexor carpi radialis, anconeus, pronator quadratus).
They used simple features (rms values over windows) andreanisly classify windows of data while the subject
maintain a static hand gesture. In addition they used lisepport vector machines (SVM) for classification.

[L43] show how a dynamic Bayesian network can be used to imtdrability distributions over brain- and body-states
during planning and execution of actions. This approaawat continuous tracking and prediction of internal states
over time, and to generate control signals based on entitgapility distributions over states. They modeled the dy-
namics of hidden brain- and body-states using a Dynamic 8ageNetwork that was learned directly from EEG and
EMG data. [143] analyzed left versus right hand movemettaasl presents preliminary results showing supervised
learning and Bayesian inference of hidden state for a datasgaining simultaneous EEG and EMG recordings. 8
EEG channels were recorded around the motor area of cor&Xq&; C4, FC1, FC2, CP1, CP2, Pz). An error of 15%
was achieved by the use of the EEG to discriminate betwetarefright hand movement.

[17] presents an ongoing investigation of dexterous andrab¢ontrol of upper extremity prostheses using the four
channels of EMG during six distinct limb motions (wrist fleri wrist extension, supination, pronation, hand open,
and hand close). The sEMG was recorded with four channeteg@laquidistant from the wrist and elbow, with an
equal spacing around the forearm. They used a hidden Markaehto process four channels of EMG, with the
task of discriminating six classes of limb movement. Thehudtallow a continuous stream of class decisions to be
delivered to a prosthetic device. The method based on HMMigeal greater accuracy than a multilayer perceptron
neural network. The classification of continuous SEMG dgnasulted in an average accuracy of 94.63% using the
HMM method compared to the MLP method which had an accura@®3 7%, both on average.

[54] introduced and evaluated the use of Gaussian mixturdelsdGMMs) for multiple limb motion classification
using continuous myoelectric signals (recorded over thistilexors and extensors equidistant from the elbow and
wrist). The GMM was compared to three commonly used classjfeelinear discriminant analysis, a linear percep-
tron network, and a multilayer perceptron neural networik. li&ib motions (wrist flexion, wrist extension, forearm
supination, forearm pronation, hand open, and hand close performed and the SEMG were recorded by electrodes
placed on the forearm above the wrist flexors and extensodspa each side of the forearm. The GMM showed an
average (across the 12 subjects) classification error @8.7

[56] presented an identification method of finger motiongi@tefinger flexion/ extension, indexfinger extension/ flex-
ion, thumb extension/ flexion) using the wavelet transfofmmalti-channel EMG signals. The sEMG (recorded from
16 channels from surface electrodes attached at the uppearadt fore arm, corresponding to the flexor muscles in-
cluding flexor carpi ulnari and flexor digitorum superficilihe extension muscles including extensor digitorum and
extensor pollicis brevis) was analyzed based on the watralesform with features computed as the variance, maxi-
mum and mean absolute value of the wavelet coefficientssilizegion was based on ANN to identify finger motion.
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Correct classification of finger movement above 80% was sebie

[64] introduced a new multiwavelet function for SEMG sig2lchannels, electrodes positioned at the forearm under
the elbow) intended for tasks that involve hand movemerdgaition. Eight unique classes of hand motions (hand
opening and closing, pinch, thumb flexion, wrist radial ftexand extension and wrist flexion and extension) were
classified based on 2 channels of SEMG recordings from eléesrpositioned at the forearm under the elbow. Local
extrema and zero crossing was used as DWT features. Avelaggification accuracy of up to 87% was achieved by
the proposed multi-wavelet function.

[165] presented an optimal wavelet packet method based vie®8ouldin criterion and relative energy representa-
tion of wavelet packet, which is applied to SEMG signals sifisation. Two channels of SEMG were recorded (above
flexor carpi radialis and over the extensor carpi radialigles) from ten normally limbed subjects. Different move-
ments were classified (forearm pronation, forearm supminatiand close and hand open) by the used of the optimal
wavelet packet for feature extraction and a neural netwaset on error backpropagation rule for classification. PCA
was used for dimensionality reduction. A classification 87 %% was achieved.

[164] developed a finite state algorithm used to operate dlewaibot and applied to EMG-based control. Two chan-
nels of SEMG were recorded, one from each biceps from fivelinealibjects. Nearest Neighbor statistical algorithm
were used to classify The four states, "stop", "forwardft"turn" and "right turn" based on the features square mean
value, standard deviation and kurtosis index. An averaggsdication error of 3.5% was achieved.

[166] presented a SEMG based classification system based thwee layer ANN based on a modified Backprop-
agation algorithm and AR modeling for teleoperating a dexts robot hand. Six different finger motions (thumb
extension, thumb flexion, index finger extension, index firflgxion, middle finger extension, and middle finger flex-
ion) were classified from the SEMG. Four channels of SEMG weterded from extensor digitorum, extensor pollicis
brevis, flexor carpi ulnaris, flexor digitorum superficidlism four healthy subjects. A classification rate above 77%
were achieved by all subjects.

[31] presented an ongoing investigation of dexterous atarakcontrol of upper extremity prostheses based on sSEMG.
A continuous classifier was constructed and applied in aétass problem in hand and wrist control (wrist flexion,
wrist extension, radial deviation and ulnar deviation)dshsn recordings from four channels of SEMG from the fore-
arm above the wrist flexors and extensors, and on each side dbtearm, roughly equidistant from the elbow and
wrist from 12 normally limbed subjects. The different classvere classified from a feature set consisting of time
domain statistics, i.e. the number of zero crossings, theefeam length, the number of slope sign changes, and the
mean absolute value in each analysis window. Classificateimbased on linear discriminant analysis. Classification
error around 7% was achieved.

[115] used a combination of a K-nearest neighbor classifidraagenetic algorithm for feature selection from sEMG
signals recorded from two channels at the flexor musclesaofigiht forearm in four healthy subjects. Average classi-
fication error rate of approximately 2% was achieved.

[130] proposed a control scheme for a multifunctional EM@teol of hand prostheses. A transformation matrix was
used to reduce the feature dimension by linear aggregafioo channels of SEMG were recorded from two subjects
with lower limb deficiencies and two channels were recordenhftwo subjects with upper limb deficiency (recorded
from forearm flexors in the first group and from biceps andep&in second group) and two subjects with upper
limb deficiency (recorded from biceps and triceps). Différeassifiers (approximate maximum likelihood classifier,
hierarchical classifier, fuzzy classifier, multilayer pgwtron, ) were evaluated based on misclassification rates.

[107] proposed a real-time learning method for a EMG prdathieand controller for discrimination between 10 dif-
ferent hand motions (wrist motions: supination, prongtfaxion and extension, hand motions: 2-5th fingers flexion,
2-5th fingers extension, thumb flexion, thumb extensiontdfiBgers flexion, and 2-3rd fingers extension).Two chan-
nels of SEMG were recorded, one from each of the forearmsy ibethe Gabor transform and mean absolute value to
extract information from the EMG. Feed- forward neural ratewas used as the nonlinear function for the adaption
unit (to learn the characteristics of the operators), he.dassifier. Two channels of SEMG were recorded from three
normal subjects. An average (for all subjects for the lastdttrials) classification rate of 91.5% was achieved.

[32] explored the efficacy of feature sets derived from tiiregruency representations based on Hudgins’ time domain
features, and those derived from short-time Fourier tansf the wavelet transform, and the wavelet packet trans-
form. Four classes of myoelectric signal patterns weresctdld from the biceps and triceps (flexion and extension
of the elbow, and pronation and supination of the forearmnfid6 healthy subjects. The SEMG was recorded from
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four channels from the forearm above the wrist flexors aneresdrs, and on each side of the forearm. Dimensionality
reduction was performed by PCA and CS. An average classifiicatror of 6.25% was achieved.

[67] performed signal processing of four channels sSEMG a@gfour channels placed on the forearm without fol-
lowing any strict pattern) using a linear multiple regressimnodel top predict the joint angles (multi-finger angles
corresponding to the different motions) to discriminatensen different motions (grip, open, and chuck of a hand). It
was shown that the discrimination of grip, open, and chuckans was possible. The average tracking error between
estimated and measured joint angles was within less théor 2 dynamic target angle and within less thamsth a
dynamic target angle.

[47] trained an NN controller to output an appropriate lesefriceps stimulation based on the remaining voluntary
controlled upper extremity muscles, i.e. shoulder musateselbow flexor, in C5/C6 SCI subjects. The aim was to
allow subjects to generate and control endpoint force vecetnachievable without stimulation of the triceps. Elbow
extension moments were computed based on a biomechanidal (position of humerus and girdle and external load
on humerus was input, muscle forces were output) for a spetifiject and goal isometric endpoint force vector that
the subject encountered during data collection. The elbomeants were converted to stimulation levels by experi-
mentally measuring elbow moment as a function of stimulusllasing an elbow moment transducer.

The NN was trained with the EMG signals as input and the tscgpnulation levels used to obtain the goal force
vector as output. The NN consisted of one hidden layer (5areuwvith tansig transfer function) and one output layer.
It was concluded that the synergistic controller produeeddr forces compared to no stimulation for endpoint force
directions predicted to require triceps stimulation. Thbjsct tracked isometric force vectors equally well witlclea
control method (synergistic and constant stimulation},used 35, 20, and 36% less stimulation over the x, y, and
z-axes respectively with synergistic control compareddtastant stimulation.
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B.1 Muscles responsible for arm reaching

This section describes the shoulder and elbow musclese(gugerficial flexor and extensor muscles of the upper
limb) responsible for reaching movements in the horizopl@he. The muscles are listed in tablelB.1 with indication
of name and function. Figufe B.1 shows the relevant anat@mthEse muscles.

Deltoid .
¢ do~ll Deltoid ]
media i Deltoid
Deltoid Deltoid anterior
posterior posterior 2 (1§
issi Triceps long | = | .
Latissimus J d & | Biceps .
dorsi 13l Triceps lateral head i lateral head Biceps

: "l medial head
R \ ‘ o Triceps — b\
Triceps long § Brachioradialis {yteral head”

head

Anconeus

.o lateral head
Latissimus

dorsi Brachialis Brachioradialis

’ Brachioradialis
Anconeus |

Figure B.1: Flexor and extensor muscles of the right arm responsiblesfiching movements. Left: posterior view,
center: lateral, right: anterior view. Modified from [19]

Name Function

Shoulder

Deltoid medial Abduction of shoulder

Deltoid posterior Abduction, extension (and transvergergsion), and lateral ro-

tation at shoulder (rotary movement around the longitudiris
of the bone away from the center of the body; turning the upper
arm outward)

Deltoid anterior Abduction, flexion (and transverse flejiand medial rotation
at shoulder (rotary movement around the longitudinal akib®
bone toward the center of the body; turning the upper arm in-

ward)

Chest

Pectoralis flexion and extension at shoulder, transverdedciodn and flex-
ion, adduction and extension

Back

Latissimus dorsi shoulder adduction, extension, trarsgvektension, medial ro-

tation
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Upper arm

Biceps brachii, long head (lateral)  Flexion at elbow andusther, supination
Biceps brachii, short head (medial) Flexion at elbow andikter, supination

Brachialis Flexion at elbow

Triceps brachii, long head Extension at elbow, extensiaheatduction at shoulder
Triceps brachii, medial head Extension at elbow

Triceps brachii, lateral head Extension at elbow

Forearm

Anconeus extension of forearm at elbow

Brachioradialis flexion of the forearm at elbow (when foreas semi-pronated)

Table B.1: Primary muscles for reaching movements in the horizontaigl

B.2 Remaining movement abilities under different levels oinjury

Table[B.2 provides an overview of the abilities that remainder different levels of injury (included from C3-C6) .

Level of injury  Abilities

C1-C3 C3-limited movement of head and neck

C3-C4 Usually has head and neck control. Individuals at @dl lmay
shrug their shoulders

C5 Typically has head and neck control, can shrug shouldehas
shoulder control. Can bend his/her elbows and turn palnes fac
up

C6 Has movement in head, neck, shoulders, arms and wrists. Ca
shrug shoulders, bend elbows, turn palms up and down and ex-
tend wrists

Table B.2: Remaining movement abilities under different levels ofirgj



Photos of experimental setup

This chapters contains pictures of the conducted expetimen

C.1 Equipment

The equipment used in the experimental setup is shown oreffgir

CL N RO R N 110

Figure C.1: Experimental equipment. Hand load, EMG amplifier, high siemeras and eye-tracker
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Photos of experimental setup

C.2 Montage of SEMG electrodes

The montage of the SEMG electrodes is shown in figuré C.2

- [

P

f Deltoid am%‘ior |

Péctoralis Pectoralis Biceps

| medial head

Brachioradialis

— o J .,
> A conats Tifedial hgad

Figure C.2: Montage of the SEMG electrodes.

C.3 Placement of reflective markers for motion capture

The placement of the reflective ball markers is shown in fifli@
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( ' Left laterél )
cpiconciyid |

Stylus processes

Figure C.3: Placement of the reflective markers for motion capture fefthlanded subject. Markers placed between
the stylus processes at Radius and Ulna, at the left latei@edyle, and at the right and left acromion.






Optimization of the neural
network

This chapter contains the optimization results of the nengwork with respect to the data recorded from subject 1

as described in the protocol in sect[on 5.2 on page 43. Thimizattion is based on eyetracking and muscle activity

as input.

The neural network were configured with one hidden layer w&itionlinear transfer function and one output layer

with a linear transfer function together with the trainingaithm as described in subsectjon 5.2.4 on page 49. The
parameters that are determined based on the followingtsesuk the number of neurons in the hidden layer. The
number of neurons were varied from 1-20 neurons with a maximumber of epochs sat to 150.

All evaluations are based on the average across the tha¢erecorded. Depictions of the muscle activity and kine-

matics are from trial one in all cases.

D.1 Prediction of muscle activity

This sections contains the basis for the selection of thebauraf neurons in the hidden layer for the prediction of
muscle activity.

D.1.1 Prediction performance as a function of neurons

The prediction performance as a number of neurons in theshitid/er is illustrated for the muscle activity in figure
0.1

From figurd D.1 (top), it was seen that the predictions of thecatenated data yielded RA value above 80% based
on one hidden layer with at least 2 neurons. Figuré D.1 (bgtshowed a clear difference between 1 hidden neuron
compared to 2 and up to 20 neurons in the hidden layer.

For the prediction of the muscle activity in Brachioradiali-3 neurons in the hidden layer showed a clear lower
prediction compared to 4-20 neurons. For Biceps medial atiedd| head, the predictions were clearly improved for 5
and more neurons. In Pectoralis the predictions were ingaténom 9-10 neurons in the hidden layer. 10 neurons in
the hidden layer were the least number of neurons that ydehteehigh prediction performance for all muscles.

The predictions of the muscle activity for the Pectoralissoie is shown on figufe D.2 using 3 (green), 10 (blue), and
20 (red) neurons in the hidden layer, compared to the true @rey) muscle activity. This muscle was selected, since
the muscle activity clearly indicated the effect of inciegshe number of neurons.
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Prediction performance as a function of number of neurons

~" Concatenated across all muscles ~*~Mean across all muscles
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Figure D.1: Prediction performance of the muscle activity as a funcibmumber of neurons. TopR? from the
predictions of the concatenated data across all musclek ¢day) and mean across all muscles (light
grey). Bottom:R? from the predictions of the muscle activity based on thevigial muscles (number
of neurons appears consecutive for each muscle)
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Muscle activity in Pectoralis
3 neurons — 10 neurons — 20 neurons — True muscle activity

Muscle activity [LV]

b

Figure D.2: Prediction of the muscle activity in Pectoralis using 3 &g 10 (blue), and 20 (red) neurons in the
hidden layer, compared to the true activity (bold grey).

From figurd D.? it was clearly revealed that 3 neurons peréafmorst compared to 10 and 20 neurons. It was seen
that the prediction did not follow the characteristics a thue signal especially in the extreme peaks, and is in géner
smoother.

The predictions based on 10, and 20 neurons had many stie#arand both followed in general the overall trend
of the true muscle activity. The difference between the tves ween in the high peaks during movement, where the
configuration based on 10 neurons achieved higher valuesgv@® neurons in the hidden layer tended to overestimate
the activity. Overall 10 neurons in the hidden layer achiesevery accurate prediction in the peaks indicating a
movement.

Based on the above observations 10 neurons were selectiae foidden layer.

D.2 Prediction of kinematics

This sections contains the basis for the selection of thebaumwf neurons in the hidden layer for the prediction of the
kinematics.

D.2.1 Prediction performance as a function of neurons

The prediction performance as a number of neurons in theehitiyer is illustrated for the kinematics in figlire D.3
From figurd D.B it was seen that the predictions were veryeiakbothx andy-direction using more than 2 neurons
in the hidden layer, with only minor variations in the preatias for the varying number
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Performance prediction as a function of number of
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Figure D.3: Prediction performance of the kinematic as a function of benof neurons irx-(dark grey) andy-
direction (light grey).

Figure[D.4 shows the prediction of the positiorxitieft) andy (right) using 1 (green), 10 (blue), and 20 (red) neurons
in the hidden layer, compared to the true position (bold daely).

Kinematics
1 neuron —10 neurons — 20 neurons —True kinematics
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Figure D.4: Prediction of the kinematics using 1 (green), 10 (blue),2M(fed) neurons in the hidden layer, compared
to the true kinematics (bold grey).

The predictions in the-direction revealed a poorer prediction based on 1 neunotisd hidden layer, where the
position was flat during the entire period compared to the position. All movements tended to be underestimated
underestimated.

The predicted position using 10 and 20 neurons had similaradheristics and in some parts of the period, the trend
of the true position was followed well by both configuratiom$fiough, the predictions were noisy in some transient
segments.

Similar for the predictions in thg-direction yielded 1 neuron the worst results, with a quitésy signal throughout
the entire period and with both under- and overestimatiach®true position in some cases. The predictions based on
10 and 20 neurons followed the true signal quite well in lgrges of the period.

Based on these observations, 10 neurons were selectec foiditen layer.



Selection of number of
synergies

This chapter contains the results from which the optimal benof synergies were selected for the extraction of syn-
ergies and motor commands. The number of synergies and omtonands to extract were determined by evaluating
the reconstruction performance with a varying number etisynergies and motor commands.

The results were based on the muscle activity from threks trexorded from subject 1 as depicted in figure E.1 -

E3.

Trial 1
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Figure E.1: Recorded muscle activity from trial 1.
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Trial 2
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Figure E.2: Recorded muscle activity from trial 2.
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Trial 3
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Figure E.3: Recorded muscle activity from trial 3.

E.1 Reconstruction performance as a function of number of syergies

The muscle activity was reconstructed from a varying nunghgrof synergies $) and motor command$§. The

sizes ofSandP are illustrated below

N synergies
S11 S12 SIN
S=| : : : }M muscles
Sm1  Sw2 SVIN
K samples
p1(1)  p1(2) p1(K)
P= : : : } N commands
pn(l)  pn(2) pn(K)

Figure[E:4 andE]5 depicts the performance of the recon&truof the muscle activity with a varying number of
extracted synergies and motor commands shown for the adhdiVimuscles and for the concatenated muscles.
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R? as a function of number of synergies
Mean R? across muscles  —e—Mean concatenated R? across trials
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Figure E.4: Reconstruction performance of predicting the motor conusam the individual muscles (black, mean
SD across the number of muscles (in all three trials)) anthimconcatenated data for all muscles (grey,
mean+ SD across the three trials) as a function of number of syasrgi

From figure[E.b it appeared that one synergy was capable ohsaeicting approx. 87% of the variability in the
original muscle activity based in the Deltoid anterior. &splly the muscle activity in the three parts of the Deltoid
were well estimated and so was the Anconeus using only orergynAt four synergies, the activity in the Triceps
long head was substantially improved compared to threergigse Also Triceps lateral head, Brachialis, and Biceps
lateral head. Pectoralis yielded in general a poor recoctin.

It was seen that the prediction performance was improvedifme than half the muscles up to 4 synergies, where-
after the performance flattened. Triceps long head and &latead especially showed an improvement from 3 to 4
synergies.

Based on the above observations, 4 was chosen as the nungyereofiies and motor commands for the predictions
during reaching using configuration SSP (based on the mastiaty in the Deltoid muscle and gaze-direction for

the extraction of the motor commands) as described in sgbton page 43.
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R? as a function of number of synergies
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Figure E.5: Reconstruction performance of predicting the motor conusan the individual muscles (me&nSD
across all trials), as a function of number of synergies.






Introduction to neural networks

Neural networks have been applied in a wide variety of ergging problems involving pattern recognition, pattern
classification, adaptive filtering, and contriol [20, 1/626,191,41]. The successes presented in([20][162,106, 71, 41],
indicates the usefulness of neural networks in differemponents of a variety of FES control systems.

An artificial neural network (ANN) is an array of processadnaitis linked by connections that can be weakened
or strengthened and the concept is based on inspirationtfrenimterconnected neurons of the briain[152]. The ANN
is based on the operation of biological neural networks,éach neuron generates an output based on the inputs it
receives from other neurons. Thus the functional model efttiological neuron contains three basic components,
namely the synapses of the neuron (modeled as weights)hancbimponents representing the activity within the
neuron cell, which consists of an adder (sums up all inputdifiedl by their weights), and an activation function. In
this fashion the neuron receives an input and produces amssms outpul [152].

The ANN is an adaptive, and most often a nonlinear systemghwistimate a function (or the relationship between
input and output vectors) without requiring a mathemata=gcription of how the output functionally depends on
the input, i.e. the network learn from input/output data pke® [152]. The capability of learning complex nonlinear
input-output mappings is one of the characteristics thaemeural networks an attractive option in many biomedical
problems. The adaptive capabilities of neural networkseadkem particularly attractive for rehabilitation applic
tions in which the system is often customized for particindividuals.[20[ 106]

The network is adaptive in the sense that the system paresraete changed during operation, i.e. during training.
After the training phase the ANN parameters are fixed andytbes can be deployed, i.e. during validation.

The input/output training data are fundamental in ANN sil@®nveys the necessary information to find the optimal
parameters of the network. According to the success of asitigma specific function based on the series of examples
of correct responses, the connections between the prosesscstrengthened or weakened. Hence instead of working
based on an explicit set of rules to follow, the network opesdased on the weights of the links within it. The non-
linear nature of the neurons (the processing elements)dasthe system with a high level of flexibility to achieve
the desired input/output relation. [152]

One of the most widely used types of neural networks is the MNA(also denoted a multilayer feed-forward neural
network).

F.1 Multilayer perceptron neural network

An MLP NN consists of a network of perceptrons (neurons), imcl the data flow strictly feedforward from input
to output units, and the data processing can extend oveipheukayers of units, without feedback connections. The
MLP NN consists of the following elemeni{s [132]

Input layer is a layer of neurons that receives information from extesoarces (in a biological neuron the input
corresponds to sensory nerves and output to motor nerved)passes this information to the network for
processing

Hidden layer is a layer of neurons that receives information from the trigyer and processes them in a hidden way,
i.e. it has no direct connections to the outside world. Alrections from the hidden layer are to other layers
within the system

Output Layer is a layer of neurons that receives processed informatidnsands output signals out of the neural
network

Bias is an offset or threshold value in the neurons. The functidh@bias is to provide a threshold for the activation
of neurons. The bias input is connected to each of the hiddeématput neurons in a network
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A typical neuron from a MLP network is illustrated in figuréllFA larger neural network is constructed from several
interconnecting neurons.

Input General neuron

y1 = p(Wx +b;)

Figure F.1: Typical neuron of a MLP network consists of an ingutvith N elements), the weighi&/, the biash, and
an activation functiorp. Modified from [152]

The outputyy of the network is obtained by successively forming the lirm@anbination of the inpuxy, the weight
N

Wy, and the biady (i.e. v = Z Wi - Xcj + bk, N being the number of inputs), and nonlinearly transform Hyisa
=1

nonlinear activation function, e.g. ttf®shaped sigmoidal function, i.e. the output becomés).[152] Thus the

activation function relates the weighted sum plus a thriesbiothe synaptic inputs to the output.

Thus, each perceptron computes a single output from meiltigdl-valued inputs by forming a linear combination
according to its input weights (the synaptic efficacy in ddmocal neuron), the bias (forming the post-synaptic peten
tial of a neuron), and transforming the output through thelinear activation function. The strength of the connettio
between an input and a perceptron is determined by the véltie aveight, i.e. negative weight values reflect in-
hibitory connections, while positive values designatatakary connections.

Next the actual activity within the neuron cell is modeledibgar combining the input and the weights together with
the bias. Lastly the activation functioth)(maps the output into the range 0 to 1 in the case of the Sigautidation
function, such as the simple logistic Sigmoid function dedinn equatiofi F]1. The function is bounded and mono-
tonically increasing tending to O as the linearly combingglit tends to—c and approaches 1 as the input tends to
oo, This function allows MLP networks to model both mildly artdosigly nonlinear mappings, since the function is
linear near the origin and saturating rather quickly awayrfihe origin.[152] The capability of MLP NN stems from
the non-linearities used within the nodes.

1
o) = 1+exp Y <

This transfer function is often used in backpropagatiomwnekts, e.g.[[69, 63, 70]. The derivative of equafiond F.1 can
be expressed in terms of the function itself.

(0,1) (F.1)

F.2 Structure of MLP NN

Typical MLP NN consists of a set of source nodes forming thpeitdayer, one or more hidden layers of computation
nodes, and an output layer of nodes. A single layer neuralatkthas severe restrictions limiting the type of tasks
such a network can solve. A two layered feed-forward neuslark with biases, a non-linear sigmoid layer, and
a linear output layer is capable of approximating any fuorctivith a finite number of discontinuities to arbitrary
precision[36[ 48, 24].

If linear output neurons are used, the network outputs deda any value instead of being limited to a small range
as is the case with the sigmoid functions|[91].

Figure[E.2 shows a single layer network withhumber of input elements arf®humber of neurons.

In figurelE22x (N x 1) represents the input unitg/ (Sx N) the weights between each input and the unit in the following
layer, andb (Sx 1) the bias added to each of the weighted sums from each oétivens in the current layer(Sx 1)
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Figure F.2: Single layer MLP NN withN input units,S units in the hidden layer, an8l units in the output layer.
Modified from [152]

the output of the current layer, and finally the activationdtion¢ for each of the units.

Thus, a two layer network with one hidden layer can be reprteseas shown in figule F.3 where the input signal
propagates through the network layer-by-layer and alloresifrom one layer are connected to the neurons in the next
layer.

Input Hidden layer of logsig neurons Output layer
-W2
1
Q x S\ U2 @
Q X 1
1 —} b2 N
S Q x 1
/
= logsig(w1x + by) y = lin(way; + b2)

Figure F.3: Two layer MLP neural network with one hidden layer consigtid S units with the logistic Sigmoid as
transfer function, and one output layer consistin@afnits with linear transfer functions.

In figure[E3x represents the input unitsl (x 1), W1 (Sx N) the weights between each input unit and each of the units
in the hidden layer$x 1),y1 (Sx 1) is the output vector of the hidden lay®,, (Q x S) being the weights between
the hidden layer and the output lay€rx 1). b1 andb; are the biases for each of the units in the hidden and the butpu
layer respectively.

The network shown is a full-connected (output from each irgma hidden neuron is distributed to all of the neurons
in the following layer), two layer, feed-forward (the vatuenly move from input to hidden to output layers, no values
are fed back to earlier layers), perceptron neural netwbhnk. number of input neurons corresponds to the number of
input variables (e.g. the number muscle activations), hechtimber of output neurons is the same as the number of
desired output variables (e.g. muscle activation, low disi@nal motor commands, kinematics).

The process of the neural network can be expressed in eg[i28o

Q N
Ym= Z Wmq -0 (Z Wkn'xn> (F.2)
g=1 n=1

N——
Output layer o 1st
hidden layer

X, being then™ input, wi, being the weight from input to nodek, Wmqg being the weight from nodeg to outputm,
andym, being outputn.
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The feed-forward neural network is also defined as a computltgraph, whose nodes are computing units with
directed edges that transmit numerical information frordento node. Each computing unit is capable of evaluating
a single primitive function of its input. Hence, the netwdsla implementation of a composite function from input to

output space, which is called the network function.[132]

F.3 Learning of a neural network

A neural network has to be trained, such that the networkyres the desired output given a set of inputs, i.e. the
strength of the connection weights have to be adjusted adelguo achieve the desired behavior, which allow the
characteristics of the input training data to be inferretlisTrequires a learning algorithm, to which a set of desired
input-output mappings are presented, and in response tesamorrection steps iteratively until the network leams t
produce the desired response, [132]

As seen in figureFl4, the learning algorithm is a closed-jm@sentation of input-output mappings (training data) and
corrections to the network parameters to minimize the tih error [132]. In the training process the outputs is
often specified as targets.

@ Network @

Training input/target data Compute error
(true vs. predicted output)

Adjust network J(@

weights according to
learning algorithm

Figure F.4: Closed loop learning algorithm. The learning algorithm @dahe network parameters according to
previous experience until a solution is found. For eachtinime network produces an output (1) and the
error between the predicted and desired output is calau(@)e The weights are adjusted to reduce the
error according to some learning algorithm. (1) - (3) arecegpd for every sample until the errors are
minimized in the case of incremental training. Modified fr{fi82]

Applying the network on the training data and comparing tregljztions with the true outputs (the targets), forming
the error function, can determine the error of a particutenfiguration of the network. Hence the goal of the training
process is to find the optimal combination of weights, i.e.ltdwest point in the many dimensional error surface each
weight and threshold being a dimension in space, so thatttweonk function approximates a given function described
implicitly through the training samples [132, 152].

From an initial configuration of weights and thresholds, tiiigective of the training algorithm is to seek for the
global minimum. The gradient of the error surface is tydicahlculated in each point and the search continues along
the steepest descent[132].

The backpropagation algorithm is a popular learning metiwitch looks for the minimum of the error function in the
weight/bias space using the method of gradient descens.rméihod requires the computation of the gradient vector
of the error surface at each iteration step; hence diffabitity of the error function is guaranteed by the choice of
activation function, e.g. the sigmoid function. A diffetile activation function makes the function computed by a
neural network differentiable (assuming that the integratunction at each node is just the sum of the inputs), since
the network itself only computes function compositionsyt¢eethe error function also becomes differentialble. [132]
The sigmoid function always have a positive derivative feodlope of the error function (mean square error) provides
a greater or lesser descent direction, which can be followldte gradient vector points along the line of steepest
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descent from the current point, thus by moving along by saee size the error will decrease.

The learning algorithm progresses iteratively through miper of epochs. For each epoch the training data set is
applied to the network, from which the prediction error cancomputed and the weights can be adjusted according
to the error surface gradient and process can be repeateghrdbess continues until some a criterion has been reach,
e.g. a certain number of epochs have evolved, the error aabed an appropriate level or when the network stops
improving.

In the backpropagation learning algorithm the forward gaeslicts the outputs from the given inputs and in the back-
ward pass, the partial derivatives of the cost function wétpect to the different weight parameters are propagated
back through the network where the weights then can be adlaptais only the errors in the output are known and
the output errors are propagated back to the previous lagieg uhe output element weights [132]. The following
summarizes the steps and equations involved in the bac&gabipn algorithm[132], here in a two layer network with

a single hidden layer with a sigmoid transfer function assiitated in figure H 3

1. Feed forward computation

2. Backpropagation to output layer
3. Backpropagation to hidden layer
4. Weight update

The algorithm is stopped according to a defined stop criteria

In the description of the backpropagation algorithm, the Weights between the input and the hidden layer are
denoted/vfjl), for thei’th input unit and the'th hidden layer unit, the weights between the hidden layerthe output
layer are denotewi(jz), for thei’th hidden layer unit and th¢th output layer unit.Y ¥ is the output from the hidden
layer, andY @ is the output from the output layer.

The bias of each of the computing units is implemented as #ight of an additional edge by extending the input
vector and output vector of the hidden unit with a 1-compaieot shown on the figure). Thus the weights between

the constant 1 and the hidden unit is denc»tm#ilS and between the hidden unit and the output yrig denoted
w(szﬁl’Q. This leads tqN + 1) x Sweights between the input sites and the hidden units(8rdl) x Q (=1) between
the hidden and output units. The weight matrices with thiertag corresponding to the bias of the computing units are
denotedV; andW,. The input vectok is likewise extended t& = (x1,...,%n,1). The outputy; of the j’'th hidden
unit is given by equation H.3

o Fi)

since the excitation of th¢'th hidden layer iswi(jl>>_(i and ¢ being the sigmoid activation function. Hence the out-

put vectoryM with its components being the outputs of the hidden layetsuran be written as the vector-matrix
multiplication in equatiof Fl4

y@—¢<ﬂm> (F.4)

and by applying each sigmoidto each component of the argument vector.
The excitation of the units in the output layer can be compbteusing the extended veci?) as seen in equation

[ES

y®—¢G®W% (F.5)

The total error of a training set can be computed by additfaheoerrors computed for each of the training input-output
sample. This error computation is based on an extended reagdhe one shown in figure F.5
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Figure F.5: Extended multilayer network for the computation of the reataerror. yi(l> being thei'th output of the
hidden layer unitstjz) being the weight between this uni} &nd the output unitj{, ¢ being the activation

function, andg’ the derivative of the activation function, agt?) being the outputs of the output layer.
Modified from [132]

In figure[E5 The network has been extended with an additlagat of units, in which the error functiaris computed
for thei’th component of the output vector. Additionally the errsq(tzt—ti), t being the true output, is computed and

store. Still, each output unitin the original network computes the sigmdicand produces the outpyg@. Itis seen
how the addition of the error functions for each output uretds the network errce.

For p input-output samples in the training set, the total erraction can be computed by creatipgetworks like the
one shown in figure B5 and adding the individual error fuorcdi

After setting the initial weights, the algorithm followselsteps listed above. Initially the input vectois presented
to the network, and the vectoy§ andy(® are computed and stored in each unit, and likewise is theates of the
activation function.

After the feed-forward step follows the backpropagati@pstn which the partial derivative‘% is computed. The
oW

1]

backpropagation path from the network output to the outpittjuis illustrated in figuré El6

Hidden layer Output layer Additional layer
N 4 A

@)
w; 2
y L Py y? | — (" =) ] s |1

/ . B

Figure F.6: Backpropagation path to output unit The constant 1 is fed into the output unit and the networkas r
backwards. Incoming information to a node is added and thdtris multiplied by the value stored in the

left part of the unit.yﬁ2> being the output of output neurgnt; being the true output of unit, es being
the error function for unif. Modified from [132]

Thus, the backpropagated erfgrcan be written in equatidn .6

57 =y?(1-y?) P ) (F.6)

Hence the partial derivative can be written in equalfioh F.7

oE (2) (1)
e B (F.7)
awi(jz) i

by considering the weigrwi(jz) to be a variable and the inprtl) to be a constant (originating from the previous layer).
The backpropagation to the hidden layer can now be compstéldstrated in figur€Fl7.
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Figure F.7: Backpropagation path from the output to the hidden Iayéj}.) being the weight from hidden unjtto
inputi, ygl) being the output of the hidden urji,twgﬁ> being the weight from output unitto hidden unit
i 6i(<z> being the backpropagated error from output knivodified from [132]

The partial derivative of interest is nowal(z—l). Each unitj in the hidden layer is connected to each unit 1,...,Q
ow;:

i

in the output layer with the weiglwﬁé). The error is computed by taking into account all possiblekineards paths as

expressed in equatienF.8

L _ (
6j (1- yJ 2 WJq (F.8)
And the partial derivative becomes as expressed in eql@)n

E _ 50
— =95 Xi
o

(F.9)

X being the input vector.
Finally, after computing all the partial derivatives, tlhst step in the algorithm is to update the weights in the negat
gradientdirection. A learning stgplefines the step length of the correction. The correctiomexpressed in equation

[E10

aff = P8P, fori=1,...,5+1;j=1...,Q (F.10)
Y = Y, fori=1,...,N+1:j=1,....S (F.11)

J
(F.12)

Remembering thaty 1 = y§+1 = 1. Thus the corrections to the weights are made after thephbaplgated error
has been computed for all units in the network. The case withler of training samplep > 1, the weight cor-

rections are computed for each pattérlr\vv,(J ), A2W|<J ), . pr<1) and the update in the gradient direction becomes

At = A1W< )+A2W< )—i— +A w'Y for learning in batch mode, in which weights and biases al ated after
i p g g

1]
all the |nputs and targets are presented.

In summary, the feed forward computation stores both théuatian of the primitive function and the derivative.
In the backpropagation the constant 1 is fed into the outpydrland the network is run backwards. The incoming
information to a node is added and the result is multiplietheyderivative stored in that unit. The resultis transrditte
to the left in the of the unit and the result collected at theuinunit is the derivative of the network function with
respect to the input to the network.

This method suffers from various convergence probléms][1R®ese problems can be solved by using second order
derivatives, which is applied in the Levenberg-Marqualttit) algorithm one the most widely used optimization algo-
rithm and is suggested for moderate-sized feedforwardaheetworks (up to several hundred weights) [43,[84, 28].



116 Introduction to neural networks

In the following, the LM algorithm[[80["133] is introduced &m extent which explains the parameters, which are
configured in practice. For a detailed description of the Liybeithm please refer td [62, 124], since this is beyond
the scope of this report.

The Levenberg-Marquardt algorithm

The LM algorithm relies on both the first and second ordenaditie of the error in the search for the optimal weights.
The LM algorithm provides a faster solution due to the incogpion of the second derivative of the error information
and automatic incorporates adjustments of the learningnpeaiers.[[80]

The idea of the LM algorithm is to minimize the squared distshe, € = x — X. Letting f being an assumed functional
relation which maps a parameter vegooe R™ to an estimated measurement vectet f(p), X € R". The basis of
the LM algorithm is a linear approximation foin the neighborhood gf. [133,[80]

For a small|Ap||, a Taylor series expansion lead to the approximation in op&13

f(p+24p) ~ f(p) +I0p (F.13)

J being the Jacobian matr%. At each step in the iterative algorithm is to find #hgthat minimizes the quantity
given in equation E14

X = f(p+2p)[| =[x f(p—Jbp)|| = [[e = IAp]| (F.14)

The minimum is attained whei\, — € is orthogonal to the column space dfyielding J7 (JA, — €) = 0, A, being
the solution to the normal equationdin B.15

JNn, =3 (F.15)

The matrixJTJ in the left side in equation F.15 is the approximate Hessian,an approximation to the matrix of
second order derivatives. The LM algorithm solves a sligintation of equation E15 as seen in equaffionlF.16, called
the augmented normal equations

NAap =J"e (F.16)

The off-diagonal elements of are identical to the corresponding elementd'af and the diagonal elements are given

in equation E1I7

Nii = p+[37 i, 1> 0 (F.17)

The diagonal elements df J is altered by damping, whegeis the damping term. If the updated parameter vector
p+ Ap, Ap computed from equatidn EIL6, leads to an reduction in ther erthe update is accepted and the process
repeats with a decreased damping term. Otherwise eqliafifirissolved again, and the process iterates until a value
of A, is found (corresponding to one iteration of the LM algori)hrfihe damping term is adjusted at each iteration
to assure a reduction in the erigrthus the damping is raised if a step fails to redeiemd otherwise the damping is
reduced.[[78]

The steps of the LM algorithm is the following [150]

1. Inputs are presented to the network and the correspowdipgits and errors are computed. The mean square
error over all inputs is computed

2. The Jacobian matrixwith respect t@ is computedp representing the weights and biases of the network

3. The Levenberg-Marquardt weight update equdtion F.16Ned to obtaim\,

4. The error is recomputed usimpgt+ Ap. In case the new error is smaller than the one computed inlstdpe
training parametaun is reduced by, andp = p + Ap is computed and the algorithm returns back to step 1. If
the error is not reduced, theris increased by~ and returns to step 3
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5. The algorithm is terminated when at least one of the faligveonditions is met
Magpnitude of gradientsg!, i.e. J"€) drops below some threshodd
The relative change in the magnitudedgfdrops below a threshok
The errore" e drops below a thresholk
A maximum number of iterationgy,axis completed

ut andy™ are predefined values, typically initiated to 10 and 0.1e&etpely.[150]






Configuration of applied
eyetracker

This chapter contains an elaborated description of the gorgtion of the specific eyetracker.

G.1 Eyetracker Tobii X120

Eye-tracking was recorded using Tobii X120 Eye-Tracken(fiare 1.1.14) (sampling frequency 120 Hz), and Tobii
Studio v.1.3.23 eye-tracker software running on Windows ™ eye tracker communicated with the computer via a
standard network cablg.[155] Figlire 5.1 shows the eydtrgaetup.

a) Position settins for Tobii Studio

Calibration grid / virtual screen
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Figure G.1: Eye-tracking setup. a) Position parameters set in TobiliSth) Relevant measures for the eyetracking
setup. The subject was placed approximately 70 cm. fromybkeracker in an upright position (90
with the horizontal plane). c) Limits of the eye-trackemwhs ensured that gaze angle did not exceéd 35
to any point on the virtual screen.

Distance to calibration grid, calibgis; -59 cm, the minus indicates that the eye-tracker is locagddnil the virtual
screen measured from the back edge of the eye-tracker toothieseihd of the virtual screen

Horizontal eye-tracker angle, Hingie Adjusted with respect to each subject, such that the eyeplaced in the
center of the status track window when the subject is plaGezhYfrom the eye-tracker. Approx. 15

Vertical eye-tracker angle 90° (0° indicates completely vertical)
Active display area 40 cmx 30 cm set as illustrated in figure .2

Height difference between display and eye-tracker, i 15 cm. The height from the bottom of the eye-tracker
foot and the bottom of the active display area.
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Side offset, 3 0 cm, as illustrated in figufe G.3
Rotation, Rang 0° as illustrated in figure Gl 3

w W =w-1.25

,,,,,,,,,,,,

5 point calibration grid Virtual screen 25% larger

Figure G.2: The height and width of the virtual screen set 25% Larger tharcalibration area

Eye-tracker

Calibration grid

Figure G.3: a) Side offset measured from the center of the eye-trackdérei@enter of the active area b) Rotation
measured between the back of the eye-tracker and the actplayl

The distance from the eye-tracker to the subject was apmiately 70 cm, adjusted to achieve the optimal configu-
ration according to the track status window, i.e. two dopsesenting the eyes should be seen in the middle of track
status window and the status color on the bottom of the winsloould show green as seen in figurelG.4

Figure G.4: Track status meter of eye-tracker. An optimal configuratidth to white dots representing the eyes and
the status color being green, the black box represents fdeofigiew of the eyetracking.

The placement of the eye-tracker ensured that the gaze ditbiet exceed 35to any point on the virtual screen.
Initially the eye-tracker was calibrated, to learn the eleteristics of the subject’s eye movement to achieve ateura
estimation of the gaze points. Thus when the eyes were dététte eye tracker tracker was trained to associate a
position of the eye to a specific location on the object. Dyigalibration, the subject concentrated on focusing the
eyes on the calibration points. Relaxed movement impravedalibration quality.

The setup was configured as a 'Screen recording’ configur&dbii Studio and performed with a perspective cali-
bration. This was performed by placing a calibration grithife paperboard with 5 calibration points marked, one in
each corner and one in the middle as seen on figure G.5) on tfaeeiio be tracked and with the subject placed in
the center of the calibration grid. The calibration grid va#isiched to the surface below the virtual screen.
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Figure G.5: Perspective 5 point calibration grid
Manual calibration mode was selected in Tobii Studio and ex@buated according to calibration plot showing error

vectors as seen on figure 6.6, thus in case of great erroisl{tws indicates insufficient calibration) (a), recaliva
was performed until sufficient calibration was achieved (b)

a) b)
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Figure G.6: Calibration plot from the eye-tracker. a) Calibration pdbthe eye-tracker shows great error, implying
that recalibration is needed. b) Calibration of the eyekea shows only small error vectors, thus no
recalibration is needed.

The following settings were configured in Tobii Studio

Fixation filter ClearView fixation filter
Fixation radius 100
Min duration 50

The following parameters was exported from Tobii Studieitihe recordings

DateTimeStamp Recalculate d and shown in minutes, seconds and millisesc@noh:ss:ms)

Event Automatic events (start and stop, key presses), logged®(enggerData)

Descriptor Description of the event ('Starts’, 'Stop’), the synchrzation signals

GazePointX The horizontal grid position based on the average of botk eye

GazePointY The vertical grid position based on the average of both eyes

Separated in three files, on containibgteTimeStamp Event, Descriptor, another containingsazePointX and
GazePointY, and the last file containingvent. The above configuration was saved in expSetup (ExportExgxort/)

and selected for all recordings. The data points betweetotged events 'Start’ and 'Stop’ were used for the data
analysis.






Trigger application

This chapter describes how the synchronization was iadiaty the eyetracking software. Additionally this chapter
documents i detail how the trigger application was prograainia the API.

The synchronization setup is shown in figlirelH.1

Synchronization of signals

[Trigger application TCP/IP
programmed Via gy, gional TCp/p | Tobii studio | Tobii Eye-tracker
SDK in C - - >
Parallel
Component API port Protocol API
1/0 access Driver
‘ EMG ‘ Motion tracking

Figure H.1: Synchronization of the recording systems. Via an applbcagirogrammed in C++ utilizing the Tobii
SDK, a signal was send to via the parallel port to initiate atfeer recording systems and at the same
time, the eyetracking was initiated.

H.1 Required software

The following software was used for the development of th@iagtion to trigger Tobii Studio.

e Windows XP (operating system)

e Tobii Studio v. 1.3.23 (Eye-tracking software)

e Tobii Studio SDK v. 2.4.3 (Software development kit for TidBiudio)

e cv.dll,cv.lib,andcv. h (Makes the Tobii Trigger Low Level APl available to the cotep)
e Microsoft Visual Studio 2008 (compiler)

e UserPort. sys (kernel driver for Windows NT/2000, which enables usermpamrams to 1/O ports, hence it
becomes possible to access hardware directly from a nommal&able as in previous Windows versions and
DOS)

It appears from the description below how the different elata listed above was used.

H.2 Interfacing the parallel port

This section describes in detail how the interfacing with plarallel port was conducted to be able to use an external
trigger signal for synchronization of the eye-tracker vitile EMG and motion capture system. Initially the parallel
port is introduced.
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H.2.1 The parallel port

Initially it is needed to interface with the parallel portaoquire the analog input signal which serves as the external
trigger. Initially the parallel port is introduced followéby a description on how to interface it. The parallel port is
a 25 pin female connector as seen in figurel H.2. The primanpfifee parallel port in the computer is to connect
printers and is specifically designed for this purpose.

Figure H.2: Parallel port.

The lines in DB25 connector are divided in to three groups

e Data lines (data bus)
e Control lines

e Status lines

Thus data is transferred via the data lines (8 lines), cofitres (4 lines) controls the peripheral devices and they
returns status signals back to the computer through thesstames (5 lines). These three categories of lines are
connected to Data, Control And Status registers internalthe computer, i.e. by manipulating these registers it is
possible to read and write to the parallel port. The regsstee virtually connected to the corresponding lines, hence
what is written to the registers appears in correspondigslas voltages. E.g. if '0x01’ is written to pin 0 in the Data
register, the lin®at a0 will be driven to a high voltage, 'OxFF’ will drive all pins ithe Data register to a high voltage.
The parallel port is TTL-compatible, implying 'high’ is be¢en +2.4 and +5v and a 'low’ is between 0 and 0.8v.

H.2.2 The address of the parallel port

In atypical PC the base address of LPT®i878. The data register then resides at this base address, tire retgister
at base address +0x379) and the control register is at base address0x231a).

H.2.3 Reading from and writing to the parallel port

User Port . sys was installed by copying it t#/ ndows/ syst en82 and runUser Port . exe. select the addresses that
should be open and click start. The parallel port was tesyed Simple analog circuit consisting of a LED and a
resistor and pt . exe, which allows you to write and read from the parallel port ai&Ul, i.e. turning the LED on
and off.

The kernel drivetUser Port . sys was started by usintfser Port . exe, which allowed access to the parallel port
directly from a Win32 application written in C. The driver d®it possible to read from and write to the parallel port
by pre-configured functions.

H.3 Tobii Studio

Triggered events defined what parts of the data that was toddgzed. The application developed to trigger the Tobii
Studio interfaced also with the parallel port . This was actd by using the Tobii SDK, and specifically the Tobii
Studio Trigger Low Level API, which is an API accessible frikfindows 32-bit environments including Windows
XP. The APl is implemented as a traditional Windobg by cv. dl | and can be used by any language that supports
DLL calls such as C. This APl is a set of function calls that hasthe connection to and the communication with
Tobii Studio. Two steps were initially performed as desedlbelow
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e Tobii SDK was installed (move@VTri gConp. dl || andcv. dl | to a directory accessible to the computer and
registering the components)

e cv.dll,cv.lib, andcv. h was moved from the folders i@ / Program Fi | es/ Tobi i / SDK to the directory in
which the project was located

The following functions is accessible by using the API demdiin the header filev. h

CV_ I nit (i pAddress, CLEARVI EW SERVER PORT_NUMBER, NULL) Connectto ClearView and performs
internal initializations, creates a connection to Cleaw/and sets up necessary internal states

CVv_StartWthNanme("My first recordi ng") Startanamed recording
CV_LogEvent ("MyEvent Text ") Add a text data record to an ongoing recording, which is laigge

CV_Cet Last Error Get error details if any function call returned error. WhereaCV_ERRCR is returned from
anyCV_XXX function a call to this function will return the specific lastor

CV_Stop() Stop an ongoing recording, Disconnects ClearView and pagmecessary cleanups

CV_d ose() Disconnect from ClearView and perform internal cleanups

H.4 Synchronization via software

The data recording systems, i.e. EMG, motion capture, astragking were synchronized via a signal send from

the developed application to the eyetracking acquisitmftware, at the time of an event, created at the start of the
recordings of the eyetracker. This synchronization sigrea sent to the EMG and motion capture system. Figure H.3
depicts the synchronization process and the possible tidkiymposes between the signals.

At
N
t=k - A t=k+ At

Create and log event Call .dll Recei .

— . —pp| Receive sync. signal
Write to parallel port Send sync. signal Y £

Eyetracking Operating system EMG and Motion capture

acquisition software acquisition systems

Figure H.3: Possible synchronization delay of the data recording syst& he synchronization signal sent from the
application to the EMG and motion capture system are deleydAt with respect to the logged event.

As depicted on figurle Hl 1 the developed application comnataegwith eyetracker acquisition software via an API. At
the time of the event being logged in the eyetracking actipiissoftware, adl | was called before the synchronization
signal was sent. This implied a delay between the recorditigeoeyetracking and the other recording systems. The
delay was depended on the operating system, i.e. the nurfilpgo@esses running at the time. Having only the
eyetracking acquisition software launched minimized thetay but theoretically, it could have an effect upon the
predictions.
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