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Movement disability is one of the most invalidating conditions 
in consequence of a spinal cord injury. Consequences of SCI 
can be wide spread implying variety of complications, and 
several functions may be affected. SCI and can be devastating 
dependent on the level of injury on the spinal cord, causing a 
near total loss of independence in the case of high-level injury. 
Rehabilitation devices that enable paralyzed people to perform 
daily activities or restore even a modest level of independence 
have the potential to generate an enormous impact on the 
quality of life and lower the related costs to society.
In severely motor impaired individuals, only a few modalities 
remain under voluntary control, which complicates the 
opportunity for these individuals to use assistive technology to 
allow them to independently perform movements essential for 
many self-care activities.
Neuroprosthesis operate through a command interface that 
measures some modality over which voluntary control is 
maintained, and translates this to a specific operation of the 
prosthesis via electrical stimulation in case of FES and FET.
A configuration based on a Multi Layer Perceptron Neural 
Network was proposed to predict the users intent based on 
gaze-direction and the muscle activity recorded non-invasively 
from the proximal arm muscles. Additionally, a possibility of 
simplifying the control of electrical stimulation, was 
investigated based on muscle synergies extracted by non-
negative matrix factorization
From 7 subject the users intent was predicted based on surface 
EMG and simulated gaze-direction, indicating a clear 
improvement compared to predictions based on the muscle 
activity only. The Neural Network outperformed the 
predictions achieved with a Kalman filter.
In 1 subject,  the muscle activation level in 9 distal arm 
muscles was predicted continuously using the Neural network 
based on the muscle activity from the Deltoid muscle and 
recorded gaze-direction. 
Further, the muscle activity in 12 muscles could be 
reconstructed based on a low dimensional muscle activation 
pattern, indicating a simplified approach for the stimulation 
control in a FES or FET system.
The data basis of this analysis should in future work be 
extended and additionally it should be demonstrated that 
individuals accurately can control the muscle synergies in a 
real-time FES/FET application.
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Reading instructions 1
The report consist of 5 parts indicated with roman numbers inthe table of contents and as depicted in figure 1.1.

Part I

Introduction

Part II

Methods

Part III

Results

Part IV

Recapitulation 

and future work

Part V

Appendix

Area of interest

Problem statement

Data collection

Data analysis

Preliminary results

Experimental results

Discussion

Elaborated topics

Figure 1.1: Report structure, showing the 5 main parts in which the report is divided. The arrows indicates how the
different parts are linked.

Part I introduces the area of interest in the project, and provides an overview of previous literature within the relevant
research field, together with an results based on preliminary data. Thus Part I formulates the scope of the project, and
is summarized in the problem statement.
Part II describes the methods used both for the data collection of the preliminary data (previously collected by others)
and the conducted experiments, together with methods for the data analysis.
Part III presents the results based on the preliminary data and likewise for the collected data.
Part IV rounds of the main part of the report containing the discussion of the results and an outline of future work.
After the main report follows the appendix in part V, containing chapters that elaborate some of the presented infor-
mation in the report, and additionally new information is introduced. No information is contained in the appendix,
which is not referred to in the main report.
A CD is enclosed containing the application written for the experimental part together with the collected data on which
the data analysis is based.

Selected terms throughout the report are explained in the glossary.
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Glossary

ALS Amyotrophic lateral sclerosis. A progressive and fatal
neurodegenerative disease caused by the degeneration of
motor neurons, the nerve cells in the central nervous sys-
tem that control voluntary muscle movement, with the
result of loosing the ability of the brain and spinal cord to
incite muscular activity and respiration, page 10

ANN Artificial Neural Network is an adaptive, and most often
nonlinear system that learns to estimate a function from
data or associate input vectors with specific output vec-
tors and is based on the operation of biological neural
networks, page 34

ANN Artificial Neural Network is an adaptive, and most often
nonlinear system that learns to estimate a function from
data or associate input vectors with specific output vec-
tors and is based on the operation of biological neural
networks, page 113

BCI Brain computer interface. A direct brain-computer in-
terface is a device that provides the brain with a new,
non-muscular communication and control channel [172],
page 16

Cerebral Palsy Refers to one of a number of neurological disorders
that appear in infancy or early childhood and permanently
affect body movement and muscle coordination without
worsen over time. Cerebral palsy is caused by abnormal-
ities in parts of the brain that control muscle movements
[100], page 11

Co-contraction Muscle co-contraction can be defined as the simulta-
neous activation of agonist and antagonist muscle groups
crossing the same joint and acting in the same plane [83],
page 25

D.O.F Degrees of freedom. Represent the number of indepen-
dent movements an object can make. For a biological
motor system it is the number of dimensions in which the
system can independently vary., page 14

DVT Deep vein thrombosis. The formation of a blood clot,
thrombus, in a deep vein with the most severe compli-
cation being a clot traveling to the lungs causing a pul-
monary embolism, page 11

EEG Electroencephalography. The measurement of the elec-
trical activity generated by the brain, page 16

Endpoint stiffness The relationship between externally imposed hand
displacements and the resultant forces. Hence arm resis-
tance to applied perturbations. The endpoint stiffness de-
termines how strongly external disturbances are rejected
during maintenance of posture or movement, page 14

FES Functional Electrical Stimulation. Electrically elicited
muscle contractions coordinated in a manner that pro-
vides function[122], page 12

FET Functional electrical therapy, page 12

Forward dynamics Dynamics is the study of bodies in motion. For-
ward dynamics is based on determining the movement
based on the forces., page 17

Goal-directed movement Goal-directed movement is a type of move-
ment of high prevalence in our everyday life. Goal-
directed movements are typically directed toward one of a
(possibly large) number of discrete goals available in the
subject’s workspace. These goals may be visual targets
presented on a computer screen or physical objects lo-
cated near the subject. Furthermore repeated movements
to the same goal are not identical. E.g. there may be
variability in movement speed or curvature. Finally the
trajectories generally start at rest, proceed out to the de-
sired goal, and end at rest [178], page 9

Inverse dynamics Is the transformation from a desired motion (input
is position, velocity, and acceleration of each limb seg-
ment together with external forces), to the muscle forces
or activations that are needed to drive the limb according
to the desired motion [10], page 23

Jacobian matrix The Jacobian is the matrix of all first-order partial
derivatives of a vector-valued function, page 38

Kinematics Motion description. E.g. speed, position, or angular ve-
locity., page 9

Lower motor neurons The motor neurons connecting the brainstem
and spinal cord to muscle fibers, bringing the nerve im-
pulses from the upper motor neurons out to the muscles.
The axon’s from the lower motor neurons terminates on
an effector, the muscle. The upper motor neurons origi-
nates from the motor region of the cerebral cortex or the
brain stem and carry motor information down to the final
common pathway (the motor neurons not directly respon-
sible for stimulating the target muscle), page 13

M1 Primary motor cortex mediates voluntary movements of
the limbs and trunk. It is called primary because it con-
tains neurons that project directly to the spinal cord to
activate somatic motor neurons, page 16

MU Motor unit consist of anα-motor neuron (final point
of summation for all descending and reflex input) in
the spinal cord and the muscle fibers it innervates [89],
page 25

MUAP Motor unit action potential is the combination of the mus-
cle fiber action potentials from all the muscle fibers of a
single motor unit, i.e. individual MU action potentials
[171], page 31

Multiple sclerosis Multiple sclerosis, also known as disseminated scle-
rosis, is an autoimmune condition in which the immune
system attacks the central nervous system, leading to de-
myelination [136], page 10

Muscle synergy A set of relative non-negative levels of muscle acti-
vation that recruits a group a muscles in a coordinated
manner, page 26



6 List of Tables

Muscular dystrophies Genetic, hereditary muscle diseases that cause
progressive muscle weakness. Muscular dystrophies are
characterized by progressive skeletal muscle weakness,
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Movement disability is one of the most invalidating conditions in consequence of a spinal cord injury (SCI). Paralysis
often imply loss of independence and good health since the paralyzed individuals loose their abilities to interact with
their surroundings and are unable to complete many activities critical for independent living, such as eating, reaching
and acquiring objects. Tasks, which are considered simple and taken for granted by healthy people.
Paralysis can occur from different causes, among others stroke and fatal accidents resulting in SCI and can be dev-
astating dependent on the level of injury on the spinal cord,causing a near total loss of independence in the case of
high-level injury. Unfortunately, neurons generally exhibit little regenerative capacity, resulting in permanent damage
to the nerves. Hence a lot of focus has been aimed at rehabilitation technologies to restore lost functions.

This chapter introduces upper extremity movements that areessential in our everyday living, different degrees of
paralysis, and the consequences for motor impaired individuals and for the society. Also different rehabilitation tech-
nologies for paralyzed individuals are introduced.

2.1 Upper extremity movements in everyday living

One category of movements are goal-directed, which characterizes most upper limb movements, in the contrary to
cyclic movements, e.g. as seen during gait [20]. Goal-directed movements are an essential part of everyday living
such as reaching, grasping, pointing, throwing, drawing, handwriting, keyboarding, tracking, object manipulating etc.
all being different modalities of goal-directed movements. This kind of movement is a planned change of arm and
hand segments positions, leading to a task, and depends on a balance of initial programming and subsequent correc-
tion. Goal-directed movement is a complex sequence of kinematic events, which can be divided into different phases
[81]. The initial programming is based partly on the visual perception of an object and partly on proprioception [122].
Generating movement requires the nervous system to integrate multi-modal sensory information, make complex trans-
formations between different spatial and intrinsic coordinate systems, and to generate motor commands adequate to
attain the arm movement [122].
Reaching in specific is described as an arm manipulation between two points. It is a complicated multi-joint move-
ment directed to a defined point in space performed by coordinated rotation at the shoulder and elbow joints. Reaching
movements have an initial acceleration phase and a final acceleration phase, resulting in a bell-shaped velocity profile.
The hand follows relatively simple and often straight pathsin space.
The reaching movement comprises several different activities, each having specific characteristics that require differ-
ent feedback mechanisms. E.g. reaching in a tracking activity consists of movement of the hand along a prescribed
trajectory. Visual information during reaching to a targetis used to identify the target and its location in space, and for
corrections of ongoing movement. [122]
Many of the basic movements that a paralyzed individual would desire are simple goal-directed movements, such as
reaching, pointing and grasping, which can be considered tobe the building blocks of more complex actions, such as
eating.

Movement impairment may have devastating consequences forindividuals, who can no longer perform tasks, which
previously were taken for granted. Causes and consequencesof paralysis are the focus of the following section.

2.2 Causes and consequences of movement impairment

The spinal cord consists of spinal nerve fibers that transmitsensory information from the body to the brain and motor
information from the brain to the body. Injury to the spinal cord results in interruption of the transmission of this
information. SCI refers to any injury of the neural elementswithin the vertebral column and can occur from either a
traumatic injury or from a disease to the vertebral column.
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Traumatic injury can e.g. occur from motor vehicle crashes,falls, and acts of violence or sports activities. Often SCI’s
due to traumatic injury lead to the backbone pinching the spinal cord, causing bruising or swelling. The injury can
tear the spinal cord and the nerve fibers. [101] Infectious conditions being infections involving the spinal canal (in-
cluding epidural abscesses (infection in the epidural space), meningitis (infection of the meninges), subdural abscesses
(infections of the subdural space), and intramedullary abscesses (infections within the spinal cord), tumors, multiple
sclerosis, Amyotrophic lateral sclerosis (ALS ), brain stem infarcts are some of the pathological conditions that can
cause SCI. [101, 102, 114]

The neurological level (referring to the location of the vertebral column, numbered and named according to their
location c.f. figure 2.1) and the extent of the lesion determines the consequences of a SCI. The higher the level of
injury, the more extended the paralysis and sensory loss [101]. The highest level of injury is categorized from injuries
at the cervical segments (C1-T1), as tetraplegia, which causes loss of functions in almost every extremity of the body.
Individuals with high-level tetraplegia (defined from the fourth cervical level (C4) and above) would typically have
limited upper extremity movements, retaining voluntary control over head and neck muscles and in some cases have
minimal control of shoulder movement through trapezius activity [2, 101]. C4 tetraplegia is the highest level of paral-
ysis without the individuals being ventilator dependent. In addition tetraplegic individuals with C3-C4 SCI exhibit
extensive denervation of the shoulder and elbow muscles [122]. At a lower level of injury, the paralysis is categorized
from injuries at the thoracic segments (T2-S5) as paraplegia causing paralysis of the lower extremities [101].
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C1 - C4: Neck muscles, deltoid muscles 
C3 - C5: Diaphragma (breathing)
C5 - C6: Deltoid muscles, biceps 

C6: Muscles of lower arm (wrist extensors)
C7 - C8: Triceps
C7 - T1: hand and finger muscles

T2 - T8: Chest and rib muscles

T6 - T12: Abdominal muscles

L1 - L5, S1: Leg muscles

S2 - S5: Bowel, bladder, sexual function

S1: Leg muscles

S2: rectum, pelvic floor

Figure 2.1: The vertebral column and spinal cord can be divided into fourregions, Cervical, Thoracic, Lumbal, and
Sacral based on the regions in which the vertebras are positioned and where the nerves from the spinal
cord leaves the vertebrae. Modified from [46, 2]

SCI’s are classified, as a complete injury when all neurons are cut and no link between the brain and the body periphery
exist, thereby lacking the possibility to recover the functions of the limbs below the level of injury. In a complete injury
there is no motor or sensory function in the S4, S5, or anal area. In an incomplete injury, some control of the body
may still remain and offers possibilities to recover some functions below the level of injury. [8, 101]
All types of paralysis affect the paralyzed individual’s ability to interact with their environment and clearly a complete
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injury resulting in high-level tetraplegia being the most severe case, with no control of either the lower or upper
extremities and often they lack the possibility to breath voluntarily. Consequences of SCI can be wide spread, and
several functions may be affected as well as several complications may occur as listed in the following [8, 127, 145]

• Paralysis with muscle atrophy and spasticity

• Risk of pressure ulcers

• Unable to control bladder and bowel, risk for urinary tract infections

• Changes in sexual function

• Endocrine and metabolic changes due to the physical inactivity

• Bone decalcification with extended risk of fractures, osteoporosis

• Affection of blood vessel and blood pressure (hypotension and severe hypertension (autonomous hyperreflek-
sia), and extended risk of deep vein thrombosis (DVT))

• Depression

• Diabetes mellitus

• Increased body fat mass

• Cardiovascular deconditioning

According to [2] approx. 3000 individuals suffer from para-or tetraplegia in Denmark (the number is uncertain due to
no central registration). Out of 1000 persons each year in Denmark subject to SCI approximately 10% will be cervical
fractures [136]. Approx. 75% of the paralyzed individuals are young males with no cognitive impairment and with a
long life expectancy, approaching 40 years for injuries incurred at the age of 20, after the time of injury [102]. These
individuals are entirely dependent on outside assistance for largely all activities essential for daily living, including
eating, personal hygiene, bladder and bowel care and transferring in and out of bed.
This independence has high economical cost for the society.According to [102] the average lifetime medical cost
(average yearly health care and living expenses) for an individual injured at the age of 25 exceeds $3 million in USA,
excluding indirect costs such as lost wages and the impact onthe individual’s family1.
Other causes of movement impairment can be head injury, cerebral palsy, advanced-stage muscular dystrophies, and
diseases of the neuromuscular junction [114].

The succeeding section provides insight into a range of rehabilitation options for persons suffering from paralysis
focusing mainly on high-level tetraplegia.

2.3 Rehabilitation for movement impaired individuals

Damage to nerves is in most cases permanent, since neural tissue generally exhibit limited regenerative capacity. In
contrast to advances in the care of SCI only little has been achieved clinically to reverse the neurological loss associ-
ated with SCI by protection or regeneration of axons within the spinal cord. [58] The neurological outcome of SCI is
first and foremost determined by the extent of the damage caused at the moment of injury and still today no treatment
can change that outcome [127]. Consequently, persons suffering from SCI must contend with multiple neurological
sequelae of SCI such as paralysis, sensory loss, autonomic dysfunction, loss of bladder and bowel control [127].

Rehabilitation devices that enable paralyzed people to perform daily activities or restore even a modest level of inde-
pendence have the potential to generate an enormous impact on quality of life and in addition lower the related costs
to society [23]. The goal of rehabilitation is to enable movement impaired individuals to regain the highest possible
level of independence.

1These statistics is not available in Denmark or Europe[14]
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Numerous approaches have been taken to develop technologies useful in the area of rehabilitation of paralyzed indi-
viduals to facilitate independent communication and mobility, among these the mouth stick, sensors activated by eye
blinks, respiration or head movement [77, 145]. In severelymotor impaired individuals, only a few modalities remain
under voluntary control, which complicates the opportunity for these individuals to use assistive technology to allow
them to independently perform movements essential for manyself-care activities.

The following subsection focuses on a promising approach toimprove independence of severely movement impaired
individuals, namely neurorehabilitation [145].

Neurorehabilitation

Neurorehabilitation comprises methods and technology formaximizing the efficiency of preserved neuromuscular
structures in individuals suffering from motor disabilities. Thus neurorehabilitation relates to developing new move-
ment strategies based on preserved sensory and motor systems, which without training otherwise would remain unused.
Individuals subject to SCI can have intrinsic resources that may still be available if they are developed appropriately
and used in a functional manner. The effectiveness of neurorehabilitation activities is depended on the degree of dis-
ability and to the specificity of losses of neural connections. [122]
Spontaneous recovery of functions occurs through the process of compensation, substitution, and dynamic reorganiza-
tion through training. Organization of learning within thecerebral cortex results from the repeated activity on the part
of the individual and becomes organized into a functional system of behavior. The repeated activities can also change
the neuronal connections and function at lower levels of thecentral nervous system. These processes lead to new types
of integrated multiple sensory modalities, which directlyaffect the abilities for voluntary motor control.[122]

Functional electrical therapy Neuromuscular stimulation for motion can be applied for both therapeutic and func-
tional purposes. Therapeutic purposes, functional electrical therapy (FET), includes clinical interventions from simple
exercises for muscle conditioning through motor relearning.
FET is one strategy to assist individuals in executing functional movement after SCI. FET is suitable for individuals
who have reduced voluntary control of muscles due to a prolonged fixation of the joint [128]. This approach facilitate
voluntary movement by learning the diminished movement by electrical stimulation allowing regaining of voluntary
control of some muscles [122].
The purpose of FET is to improve tissue health or voluntary function by inducing physiological changes, which re-
main after stimulation [114]. In addition, chronic use of FET has proved to have a positive effect on the bone density
[92]. [58] has recommended regular FET to maintain the optimal physical and psychological condition of individuals
suffering from SCI. Regular sensory stimulation through the skin maintain the retained neurological functions and
returning reflexes closer to the normal physiological state. In addition [49] speculated that the normal neural circuitry
within the spinal cord, necessary for gait and other motor functions, needs continuous maintenance by FES and/or
body weight supported treadmill, training ambulation. Also the patterned neural activity that FET comprises has been
suggested to be important for both development and recoveryof neurological functions [86].
Furthermore, physical exercise both stimulates the productions of endorphins and contributes to the upregulation of
brain derived neurotrophic factor, which may promote synaptic and functional plasticity within the brain and spinal
cord [161].
This suggests that the therapeutically effects of electrical stimulation of paralyzed muscles may have an substantial
effect on both the peripheral system in form of strengthening the muscles, increasing the range of movements, and
decreasing spasticity, and contemporary on the functionalorganization of the CNS.

Functional electrical stimulation Functional electrical stimulation (FES) facilitate directly specific functions in
daily living.
Paralyzed or paretic muscles can be made contract by applying low electrical currents to the intact peripheral motor
nerves innervating them. When electrically elicited muscle contractions are coordinated in a manner that provides
function, it is called FES. It is the application of low electrical currents to excitable (neuromuscular) tissue to supple-
ment or replace function that is lost in neurologically impaired individuals [114].
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The purpose of FES is to enable function by replacing or assisting a person’s voluntary ability. Neuroprosthesis are
FES devices used as a substitution for lost neurological function[114, 122]. Both sensory, e.g. auditory, visual, and
motor function can be restored with FES. However only neuromuscular FES, for restoration of motor function, is
considered in this work.
FES for restoration of motor function has numerous physicaladvantages including preventing DVT [90], preventing
pressure ulcers[22], increasing muscle strength by exercise of muscles post SCI [126, 131], increase muscle mass
[138] thereby being effective in preventing muscle atrophy, rebuilding muscles from an atrophied stage, increase the
range of motion, inhibit spasticity, and reeducate voluntary muscles, increase cardiac output, the peripheral venous
blood return, and muscle oxidative capacity [114].

Neuroprostheses

A neuroprosthesis replaces or augment a function that is lost or diminished because of an injury or disease to the
nervous system. The basic principle of a neuroprosthesis isthe stimulation of neuromuscular tissue.
Neuroprosthesis operate through a command interface that measures some modality over which voluntary control is
maintained, and translates this to a specific operation of the prosthesis [118]. Several control modalities have been
applied such as residual movement, EMG, respiration, voicecommands, and brain activity. FES devices used as a
substitution for lost neurological function are called neuroprosthesis. [114]

After SCI muscles below the level of injury are still connected to the CNS but will no longer be under voluntary
control. Movement restoration can be achieved by the use of these muscles by by-passing the damaged motor struc-
ture, applying electrical currents to lower motor neurons using electrodes placed on or near the innervating nerve fibers
for the specific muscles.
Thus, for FES to be effective, the lower motor neurons must beintact (excitable) from the anterior horns of the spinal
cord to the neuromuscular junctions in the muscles, which are to be activated [114]. This is usually the case with
SCI, stroke, head injuries, cerebral palsy, and multiple sclerosis [114]. Most neuroprosthesis for restoration of motor
function have been primarily targeted toward SCI’s.

Stimulating the innervating axons appropriately can elicit action potentials, and the strength of the muscle contraction
is regulated by modulating stimulus parameters (e.g. amplitude and duration of the stimulus pulses, while the fre-
quency is often kept constant) [122]. Coordination of several electrically activated muscles can produce a functional
limb movement.
A lot of development and progress have been seen in the field ofFES in restoring upper limb functions but the main
part of the studies have been demonstration studies [145]. The objective with upper limb FES is to promote function,
such as reaching and grasping.

Especially upper limb FES applications for control of the hand in individuals with C5-C6 tetraplegia have been in
focus. C5-C6 tetraplegic individuals generally retain enough voluntary control over shoulder and elbow joints to place
the hand in positions below the level of the shoulder, thus retaining basic reaching abilities, which makes the target
joints for FES in this population wrist, fingers, and thumb for grasp and release [96]. E.g. the FreeHand system has
been developed to allow C5 or C6 tetraplegic individuals to restore abilities to grasp, hold, and release objects [61].
The system uses an implanted receiver-stimulator and eight-channel electric stimulation of the grasping muscles of
one arm is controlled by using contra lateral shoulder movements. Results have shown positive effects in form of sig-
nificantly improved pinch force and improvement in grasp-release abilities[66, 113]. [113] presented results showing
that the majority (87% of 34 individuals) were satisfied withthe FreeHand system and stated that it improved their
activities in daily living. Additionally it was reported that the system had a positive impact on their life (88%).
[125] developed an external device, using three channels for stimulating finger flexors, extensors, thumb flexors, with
the a control signal based on wrist position transducer. TheBionic glove FES system was shown in a study applied
on 12 C5-C7 tetraplegic individuals to increase the subject’s power grasp and range of movements[121]. [147] in-
vestigated the functional effects of the NESS Handmaster inC4-C6 tetraplegia individuals. Results showed that the
Handmaster had functional benefit in C5 tetraplegic individuals, though with the requirement of sufficient shoulder
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and biceps function combined with absent or weak wrist extensors. [82] tested the benefit of a transcutaneous FES
system to improve grasp function in 11 C4-C7 tetraplegic individuals. Eight out of a total of nine who used the FES
as neuroprosthesis showed improved grasp function and performance in activities of daily living.

In FES the placement of an electrode on the triceps has becomea common option to improve the control of reach-
ing, promoting elbow extension through triceps stimulation. [21, 42, 13] showed among others, that elbow extension
enhances tetraplegic individuals ability to grasp and manipulate objects. [117] showed that triceps FES improved pos-
tural arm stability evaluated by endpoint stiffness, whichcharacterizes the relationship between externally imposed
hand displacements and the resultant forces (estimated during application of planar, stochastic perturbations).
[87] showed that successfully reaching and moving an objectwere improved and the time required to acquire an object
while reaching was significantly decreased. 11 arms of persons with SCI received a triceps electrode as an addition
to a hand-grasp neuroprosthesis. Triceps stimulation provided a significantly stronger elbow extension moment than
a posterior deltoid to triceps tendon transfer. The elbow extension moment generated through simultaneous activation
of the tendon transfer and triceps electrode was always greater than either method used alone. The elbow extension
resulted in a decreased amount of time required to acquire anobject while reaching and significantly increased the
ability to successfully reach and move an object.
[168] showed that individuals suffering from tetraplegia are more independent in self-care tasks with active control of
elbow extension compared to tetraplegic individuals with functioning wrist extension without active elbow extension.

However restoring of arm reaching in high-level tetraplegic individuals is more complicated due to the very few
movements that remains under voluntary control (such as shoulder elevation, head movement, voice, and respiration)
and to the fact of extensive denervation of shoulder and elbow muscles important for controlling the proximal limb.
In addition FES systems for this population should provide control of the finger, thumb, wrist, elbow, and shoulder
joints[96].
For high-level tetraplegic individuals to achieve the ability to position their hand in the workspace at a desired object,
a simultaneous control of at least two degrees of freedom (D.O.F) (translation and grasping) is required[118]. Only
few have used FES for restoration of arm function in this population, which might be attributable to the difficulties in
determining subjects intent in multiple D.O.F. tasks and toselect the appropriate patterns of muscle coordination for
restoring the intended movements.
Multi-joint neuroprosthesis for high-level tetraplegic individuals have previously combined slings and balanced fore-
arm orthoses with FES [146] allowing individuals to grasp anobject from a horizontal workspace. [53] first demon-
strated that FES could be used for the restoration of reach control in high-level tetraplegic individuals by pre-
programmed control of elbow extension/flexion or hand grasp/release controlled by detection of respiration (inspi-
ration/expiration).
[146] developed a FES system that allowed one complete C4 tetraplegic individual to control the level of stimulation
and choose between two pre-programmed stimulation patterns (both designed to couple hand and arm movements to
allow hand-to-mouth activities) for hand grasp and release, elbow movement, and arm adduction, using contra lateral
shoulder movement and combined the FES with a suspended sling to provide stability of the glenohumeral joint, since
the rotator cuff and deltoid muscles (muscles acting to stabilize the shoulder) could not be stimulated due to denerva-
tion. [99] developed a similar FES system using vocal commands triggering preprogrammed hand prehensions, arm
motion, and other functions.
In these approaches a pre-programmed set of muscle stimulation patterns was used and some also require assistance
to place the object in the user’s hand or at a specific locationin the workspace, which limits the functional use of such
devices.

The following section presents the functional components of a FES system.

2.4 Functional components of a FES system

Figure 2.2 shows a schematic representation of a FES system for restoration of movement.
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Figure 2.2: Schematic representation of the functional components of aFES system. The users intent is decoded and
converted into control commands in the command interface from signals originating from some modality
of which the user has retained voluntary control. The control system sends command signals to the
electronic stimulator, which in turn generates trains of pulses of electrical charge and deliver these to the
excitable tissue via the electrodes. Eventually this creates the movement, and feedback can be returned to
the control system and possibly to the paralyzed individual. Modified from [122, 127]

Two fundamental components of a FES system are the decoder (the command interface in figure 2.2) for inferring the
users intent and the controller (control system in figure 2.2) for controlling the stimulation of the targeted paralyzed
muscles according to users intent. Thus, the decoder is a transducer that monitor signals produced voluntary by the
user.[122]
Subject-controlled FES can be open- or closed-loop. In open-loop controlled FES, the electrical stimulator controls
the output whereas closed-loop FES employs sensors (e.g. potentiometers and goniometers) to facilitate greater re-
sponsiveness to prevent certain conditions such as muscle fatigue, or to irregularities in the environment, e.g. external
perturbations.
Electrodes act as interfaces between the electrical stimulator and the nervous system. Surface electrodes are used
exclusively for routine physical therapy. FES electrodes can be external (surface) or surgically implanted depending
on the application, the device, and the patient’s needs. [122, 127] The interface between the FES system and the user
should allow for simple and intuitive control (decoding), which also allows for compensation of disturbances (control).
Furthermore such interfaces should limit the surgery required for implanting FES systems [137].

Decoding of the users intent has been based on a large range ofdifferent approaches, among which some are in-
troduced in the following subsection.

2.4.1 Decoding the users intent

In a FES system the initial step is decoding, which previously has been based on numerous different approaches. De-
coding of the users intent besides FES is seen in other interfaces for rehabilitation devices including artificial limbs,
wheelchairs, and communication aids.

Amplitude, speed, and direction of arm motions vary betweendifferent upper limb goal-directed movements, which
place demands on both the decoder (command interface) and the controller in a FES system [20]. First of all the basis
for allowing a variety of different movements is to separatethese in the decoding process of the users intent based
on the available signals, of which voluntary control still exists. Contemporary, the controller needs to provide a rich
variety of stimulation patterns.
Interfaces that can be controlled via the subconsciousnessallow the user to be more attentive to the task at hand instead
of being occupied by controlling the neuroprosthesis. Letting the command control be a natural extension of the users
intact motor system will increase the likelihood that the user can achieve some subconscious control [137].
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The following two subsections provide an insight into some of the signals and methods utilized for decoding, and
are divided into invasive and noninvasive approaches respectively.

Invasive approaches

It was observed by [39] that the firing rate of cells in the primary motor cortex (M1) were approximated by a cosine
’tuning function’, i.e. the direction of arm movement during reaching is coded by neurons with a firing rate that varies
as the cosine of the angle between a cell’s preferred direction where it is maximally active and the actual movement
direction.
Later they proposed the population vector hypothesis [40] suggesting that the direction of hand movements could be
predicted by combining data from many neurons, i.e. a population vector constructed from the firing rates of many
cortical neurons tends to point in the direction of the hand movement. Thus, the activity in the primary motor cortex
is believed to be related to the movement of the hand (higher-level features) and not to lower level features of the
individual joints, such as the shoulder and elbow and muscles that makes up the movements as suggested by [156].
This framework of relating the neural activity and the hand motion has since then been subject to much work in the
field of decoding. E.g. [148, 175, 178, 174, 176, 169, 140] have exploited the feasibility of decoding the user intention
based on intra-cortical recordings from populations of neurons by implanted electrodes in motor cortex in non-human
primates and in humans. It is discussed whether the motor cortex explicitly codes for higher task-level parameters
(e.g. direction of hand movement) or for intrinsic parameters (e.g. muscle force)[93, 38].
Beside focusing on prediction of the limb kinematics and dynamics, the accuracy with which the muscle activity of
arm and hand muscles can be predicted based on intra-cortical activity has also been investigated [119].

Noninvasive approaches

Invasive approaches are impeded by the surgical risks of surgical implantation and by the substantial problems in
achieving and maintaining stable long term recordings [135]. Also, it is recommended that the interfaces in FES sys-
tems should limit the surgery required for implanting the systems [137].

Even though noninvasive recordings provide less fidelity compared to invasive methods, they have great potential
for use in FES and FET systems. Several approaches have been taken, e.g. by [53] who demonstrated control of a FES
system by detection of respiration (inspiration/expiration), and by [57] showing that impaired shoulder movements
and proprioception reduce the utility of shoulder movements for higher dimensional control in the C5-C6 popula-
tion. The Electroencephalography (EEG) has likewise been used for decoding, often in brain computer interfaces
(BCI’s), e.g. [12, 143]. The EEG is easily contaminated fromartifacts caused by e.g. eye- or head movement since
the electrical activity is measured on the scalp. Even though it has been shown that this contamination can be re-
duced by signal processing [44], the application of EEG in decoding is often limited to separate classes of movement
and thus is not considered for continuous decoding, such as e.g. the hand trajectory or muscle activity during reaching.

Surface electromyography (sEMG ) is non-invasively recorded from the surface of the skin and the equipment for
recording the signals are relative simple, e.g. there is no need for straps and harnesses [110]. sEMG has been utilized
in many studies, an overview of a fragment of the literature is provided in table 2.12, and has been used for decoding
and discriminating between different movements in FES systems.
It emerges that especially discrimination between movement classes for the control of prosthesis, in particular the
upper limb, has received considerable attention in previous research, e.g. [63, 52, 153, 65, 142, 17, 56]. Many of these
approaches yields simplistic control schemes consisting of a limited number of controllable movements of the upper
limb. Thus movements are selected among a few stored programs of muscle stimulation activated by a control signal
of which the user has voluntary control.
This is an obvious limitation compared to the functionalityof the natural upper limb. The number of controllable
D.O.F is limited to the number of classes that can be distinguished in the EMG by pattern recognition, and thus pre-
determined. In contrast [35] has proposed a method for setting a limited number of reference directions in a defined

2For more details, see table A on page 87
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plane, and from these determine infinitely movement directions based on movement probabilities in those directions.
This approach enabled EMG control of an omnidirectional pointer and it was demonstrated that the system could
provide smooth pointing for an upper limb amputee. Hence they showed that the developed system was capable of
pointing in any direction by expressing infinitely many movement directions based on a combination of a limited
number of reference directions.
A different focus has been to predict kinematics data (e.g. from elbow and shoulder), i.e. angle, angular velocity
and acceleration, hand (endpoint) trajectory e.g. [5, 69, 70, 29, 18, 94] from the sEMG. Kinematic predictions in the
context of FES can be used for shaping the stimulus patterns to paralyzed limbs that are to be controlled and in the
context of prosthetics; dynamics can be used directly for control of the joints.
Others have estimated patterns of muscle activity from joint kinematics e.g. [139, 3, 119], which can be utilized
directly for electrical stimulation. Though in [139, 3] a selection of the desired trajectory should be completed by
the paralyzed individual, which is clearly an obstacle for the target population. [139] suggested that selection of a
desired trajectory by the paralyzed individual could be achieved by providing the user with a menu of selectable stored
movements. An obvious drawback is related to the limited movements available for high-level tetraplegics, preventing
them for using any movements for this selection, thus such aninterface will imply cumbersome control of the FES
system.
[53] have used the EMG from averaged EMG signals obtained from normal subjects to identify patterns of muscle
activity associated with a particular movement, which thenwere applied in tetraplegic subjects for the control of a
FES system. However with this method, the available movements elicited by the control signals showed to be limited
to the motor task, from which the EMG signals were originallyrecorded.

Study Subjects Input Aim Output Application Evaluation

[119] Two male rhe-
sus monkeys

Neural activ-
ity

Linear system with multiple inputs and a single output,
i.e. linear filtering

EMG from arm and hand muscles (Me-
dial deltoid, biceps, triceps, and above the
flexor musculature for the hand)

Prediction for use in FES for
tetraplegics

Magnitude of coefficient of
determinationR2

[5] six able bod-
ied subject
and two C5
tetraplegic

sEMG Time-delayed artificial neural network (TDANN) Shoulder and elbow kinematics (angle,
angular velocity, and angular accelera-
tion) of the four joint angles (elbow
flexion-extension and shoulder horizon-
tal flexion-extension, elevation-depression,
and internal-external rotation)

Prediction for use in FES for
tetraplegics

RMS error

[69] One Macaca
fuscata mon-
key

Neural activ-
ity

Linear summation of the neuron activities and an ANN
model

EMG (predicted from neural activity) and
trajectories of the hand and elbow position
(predicted from the estimated EMG)

BMI Correlation coefficient for
both the EMG prediction
and the trajectory recon-
struction

[3] Five healthy
subjects

sEMG Patterns of muscle activity (EMG) Probabilistic method based on probability
distributions computed from training from
one subject and applied to the remaining
four subjects

Prediction of muscle pat-
terns in a FES system

VAF and RMS error

[63] One subject sEMG Features: discrete Hopfield network, classification: a two
layer perceptron network

Classes of movement Myoelectric signal analysis Correct classification of arm
functions

[94] One subject sEMG ANN (joint torque) and a dynamic hand model (from
joint torque to joint angles)

Joint torque Controlling of a prosthetic
hand by torque control of
each joint

Visual comparison of joint
torque, position (true and es-
timated)

[35] Five healthy
subjects and
one sub-
ject with
the forearm
amputated

sEMG Recurrent Log-Linearized Gaussian Mixture Network
(based on a hidden Markov model) and an impedance
model (inertia and viscosity is included)

Omnidirectional pointing device Error between movement di-
rection of pointing device
and instructed direction

Direction error

[52] – sEMG Multilayer perceptron neural network Discrimination of limb functions Limb function identification Identification rate

[97] Two amputee
subjects and
three healthy
subjects

sEMG Recurrent Neural network based on a hidden Markov
model

Discrimination of motions (wrist flex-
ion/extension, supination/pronation) and
hand grasping/opening))

Human-machine interface
for prosthetic control

Discrimination rate

[70] One healthy
subject

sEMG, veloc-
ity and posi-
tion

Forward dynamics model, artificial neural network Endpointtrajectories (dynamic joint
torques (from ANN) at the elbow and
shoulder was input to forward dynamics
model)

characterization of the rela-
tions between muscle activ-
ity and dynamical kinemat-
ics

Coefficient of determination

[29] Seven healthy
subjects

sEMG Back Propagation Through Time-ANN Movement trajectory (x andy coordinates) Devise a computational
model of how motor activity
of upper-limb functional
movements is controlled in
normal subjects and altered
by different neuromuscular
injuries and diseases

RMS error
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[18] Four healthy
subjects

sEMG Dynamic recurrent neural networks Arm kinematics (x andzcoordinates) Identification of the relation-
ship between EMG activity
and arm kinematic

Visual inspection and ro-
bustness of model in terms
of applying perturbation and
investigate the resulting dif-
ference between the actual
and predicted kinematics.

[153] One healthy
subject

sEMG ANN (Non-linear decoding filters designed using multi-
layer, feed-forward Artificial Neural Networks) for clas-
sification, feature extraction was based on four time-
domain EMG features; Mean of the absolute value, Willi-
son Amplitude, Variance, and Waveform length

Classes of movements EMG based control for
upper-limb prostheses

Discrimination rate

[65] – sEMG Features: time domain (mean absolute value (MAV), zero
crossing (ZC), Wilson amplitude (WAMP), slope sign
changes (SSC) and coefficients of autoregressive model
(AR)), time-frequency (short time Fourier transform
(STFT), wavelets transform (WT), and wavelet packets
transform (WPT)), dimensionality reduction: PCA and
class separability, classification: ANN and fuzzy infer-
ence system

Discrimination of eight hand movements
(hand opening and closing, pinch, thumb
flexion, wrist radial flexion and extension
and wrist flexion and extension)

Control for hand prosthesis Discrimination rate

[142] Three healthy
subjects

Static sEMG Features: RMS of windowed steady state EMG, classifi-
cation: linear support vector machines

Discrimination of eight hand movements EMG control of robotic
Prostheses for amputees and
partially paralyzed

Discrimination rate

[143] One subject EEG and
sEMG

Dynamic Bayesian network Discrimination between left and right hand
movement

BCI Discrimination rate

[17] Eleven
healthy
subjects

sEMG Pattern recognition: HMM Identification of six distinct limb motions
(wrist flexion, wrist extension, supination,
pronation, hand open, and hand close).

Control of upper extremity
prostheses

Discrimination rate

[54] 12 healthy
subjects

sEMG Gaussian mixture models Multiple limb motion classification (wrist
flexion, wrist extension, forearm supina-
tion, forearm pronation, hand open, and
hand close)

EMG control of powered
upper limb prostheses

Classification rate

[56] sEMG Features: Wavelet transform (variance, maximum and
mean absolute value of the wavelet coefficients), classifi-
cation: ANN

Identification of finger movements (middle
finger flexion/ extension, index finger ex-
tension/ flexion, thumb extension/ flexion)

Control of prosthetic hand Classification rate

[64] Four healthy
subjects

sEMG Features: Local extrema and zero crossing of a new
multi-wavelet function

Identification of different hand movements
(hand opening and closing, pinch, thumb
flexion, wrist radial flexion and extension
and wrist flexion and extension)

Identification of hand move-
ments

Classification rate

[53] One C4
tetraplegic
subject

Inspiration
and expiration

Selection of predefined movements, trapezoidal approxi-
mation method of EMG activities

Multichannel stimulation patterns Multichannel FES system
for C4 tetraplegics

Capability of a C4
tetraplegic to conduct
the predefined movements

[67] One subject sEMG Linear multiple regression model Joint angles (multi-finger angles corre-
sponding to the different motions) to dis-
criminate between different motions (grip,
open, and chuck of a hand)

EMG control of upper limb
prosthesis

Tracking error

[139] One healthy
subject

Hand kine-
matics

Probabilistic approach based on Bayes’ theorem Muscle activity and frequency modulated
activity

Restoration of movement
using FES

RMS error between desired
movements and movements
generated by electrical stim-
ulation

[165] Ten nor-
mally limbed
subjects

sEMG optimal wavelet packet method Classification of different hand movements Classification of sEMG Classification rate

[164] Five healthy
subjects

sEMG Features: square mean value, standard deviation and kur-
tosis index, Classification: Nearest neighbor statisticalal-
gorithm

Classification of different EMG patterns Non-invasive HMI Percentage error between
classification and the desired
command

[166] Four healthy
subjects

sEMG Three layer ANN based on a modified Backpropagation
algorithm and AR modeling

Identification of different finger motions EMG based teleoperating a
dexterous robot hand

classification rate

[31] 12 normally
limbed sub-
jects

sEMG Features: time domain statistics, i.e. the number of zero
crossings, the waveform length, the number of slope sign
changes, and the mean absolute value in each analysis
window, classification: linear discriminant analysis

Continuous classification of different hand
movements

EMG control of powered
prostheses.

Classification rate

[115] Four healthy
subjects

sEMG K-nearest neighbor classifier, genetic algorithm for fea-
ture selection

Classification of different movements Operating a robotic hand
prosthesis

Classification error rate

[130] Four subjects
with limb de-
ficiencies

sEMG Classification: approximate maximum likelihood clas-
sifier, hierarchical classifier, fuzzy classifier, multilayer
perceptron

Classification of different switch signals EMG control of hand pros-
theses

Misclassification rates

[107] Three normal
subjects

sEMG Feature extraction: Gabor transform and mean absolute
value to extract information from the EMG, classifica-
tion: Feed- forward neural network

Classification between different type of
movements (wrist motions: supination,
pronation, flexion and extension, hand mo-
tions: 2-5th fingers flexion, 2-5th fingers
extension, thumb flexion, thumb extension,
4-5th fingers flexion, and 2-3rd fingers ex-
tension)

EMG control of prosthetic
hand

Classification rate (Discrim-
inating rates are calculated
by the comparison between
the instructions and the con-
trol commands in an ability
test)

[32] 16 healthy
subjects

sEMG Features: time-frequency representations based on Hud-
gins’ time domain features, the short-time Fourier trans-
form, the wavelet transform, and the wavelet packet
transform, dimensionality reduction: PCA and CS, clas-
sification: Linear discriminant analysis, Multilayer per-
ceptron

Classification of different states Classification of sEMG Classification error

[41] 4 complete
C5/C6 SCI
subjects

sEMG Two layer Neural network Stimulation level FES to employ triceps ex-
tension

Amount of stimulation and
size of the produced force
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Table 2.1: Literature overview of studies using sEMG for decoding.

The control methods in upper extremity neuroprosthesis have relied primarily on external joint angle sensors, ac-
celerometers, or switches. One important area in the applicability of FES/FET systems is control algorithms that
enable intuitive operation of the neuroprosthesis with little conscious attention [47]. As it appears from the outline
above, only few have used the EMG for control in a FES and FET systems and most researchers have focused on
discriminating among classes of movements, hence not providing continuous control.
The use of the sEMG for continuous control of a FES/FET systemrequires identification of appropriate control mus-
cles contemporary with determining how to optimally extract useful information from the sEMG that can serve as
indicator for the users intent [114, 120].
Moreover, extracting sufficient information from the available sources of the paralyzed individuals, e.g. sources of
which voluntary control is maintained, is likewise essential. Especially in cases of the sEMG being somewhat inade-
quate in expressing the intent of the user, additional sources can presumably improve decoding.

2.5 Decoding based on a multi-modal approach

The user intent is in most FES systems decoded from single sources of information [112], e.g. the EMG as outlined
above. Using only a single modality as a source of information may not be sufficient to adequately reduce the uncer-
tainty in the decoded intention of the user [141].
On the contrary natural control of movement is based on multimodal approach, and to achieve accurate reach and
grasp objects, gaze-direction is important since it reflects our attention, intention, and desire [16]. Some of the most
common motor behaviors in everyday life are pointing and tracking objects under visual guidance, hence eye-hand co-
ordination plays an important role in goal-directed reaches in everyday living, since the arm movements are typically
associated with eye-movements toward the same goal in this kind of movement. It has been shown that performance
(such as time and accuracy) improves when eyes and hand movestogether [123, 85, 163, 103, 160, 30].
Thus detection of gaze-direction is believed to contributewith important (and additional) information compared to
the sEMG. During reaching tasks, gaze anticipates the movements of the arms, thus giving useful information about
the intention of the movement [158], and in fact the eye movements usually precede the motor acts they mediate by a
fraction of a second [74]. [151] used gaze direction in combination with detection of the human body motion, which
allowed them to disambiguate possible interpretation of the actions of the human. [116] showed a tight coupling of the
gaze and hand movement during a natural task and furthermore[134] showed that the human brain utilizes continuous
visual feedback from the hand to guide reaching movements throughout their extent.
[7] investigated the improving effect of neural prosthesiswhen gaze direction was accounted for in the operation of
the prosthesis. It was shown that eye-position did improve the performance, defined as the accuracy of the desired
endpoint.The decoding accuracy of the reaching endpoint was improved when eyetracking was included (by the use
of eyetracking glasses) (66%, 59% on average across four start configurations) and when gaze-direction instead esti-
mated from the neural activity (61%, 56%) was compared to a configuration without any eyetracking (45%, 44%).

The effect of including multiple modalities was investigated in a preliminary analysis based on recorded data from
[95].

2.5.1 Analysis of the effect of including gaze-direction

The aim of the following analysis was to achieve insight intothe effect of adding information from an extra modality
to predict the users intent in form of muscle activations andkinematics during single and multi joint reaching move-
ments.
Based on recordings from [95], who recorded sEMG from 12 extensor and flexor muscles of the upper arm and concur-
rently the kinematics from single and multi joint movements, the muscle activity was predicted in the 9 distal muscles
(Brachioradialis, Anconeus, Biceps medial head, Biceps lateral head, Brachialis, Triceps lateral head, Triceps long
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head, Pectoralis, Latissimus) and the position inx andy of the endpoint of the hand, from the three deltoid muscles
(Deltoid anterior, Deltoid medial, Deltoid posterior) andsimulated gaze-direction. The recordings were based on the
protocol outlined in section 5.1.
Since no gaze-direction was recorded during these experiments, this was simulated from the kinematic data represent-
ing the endpoint position of the marker placed most distal onthe arm (corresponding to the endpoint position of the
hand), with noise added.
The predictions were performed utilizing a MLP NN and the Kalman filter (for comparison) and the predictions
were evaluated based on the coefficient of determination,R2. The MLP NN and the Kalman filter is introduced
in chapter 4 on page 29, and the practical implementation in section 5.2 on page 43 andR2 is introduced in chap-
ter 4 on page 29. Further details of the results in this analysis are found in chapter 6 on page 57.

Figure 2.3 and 2.4 shows the predictions of the muscle activity during single and multi joint movement based on
MLP NN and the Kalman filter with (yellow and green respectively) and without (red and blue respectively) the
inclusion of gaze-direction.
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Figure 2.3: Predictions of the muscle activity during single joint movement based on MLP NN and the Kalman
filter with (yellow and green respectively) and without (redand blue respectively) the inclusion of gaze-
direction.
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Figure 2.3 revealed well predicted muscle activity for all muscles with single exceptions, i.e. for the Kalman filter
(both cases) in Pectoralis and Latissimus. Likewise the Kalman filter based on sEMG and gaze-direction showed only
minor accuracy in Brachialis. Also the baseline in e.g. Triceps long head did not capture the baseline well, but was in
the contrary underestimated compared to the other methods and the true signal.

Kalman: eyetrack and sEMG MLP: eyetrack and sEMG Kalman: sEMG MLP: sEMG True

Multi joint movement
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Figure 2.4: Predictions of the muscle activity during multi joint movement based on MLP NN and the Kalman filter
with (yellow and green respectively) and without (red and blue respectively) inclusion of gaze-direction.

From 2.4, it was seen that MLP NN based on sEMG and gaze-direction gave predictions, which very well reconstructed
the true muscle activity, capturing most characteristics.MLP NN based on the sEMG only showed well predicted
results in most cases, though e.g. in Pectoralis the baseline was often over estimated. The configurations based on
the Kalman filter predicted well the activity in Biceps lateral head, Brachialis, and Brachioradialis, whereas excessive
under- and overestimations were seen in Pectoralis and Latissimus.
Figure 2.5 shows the performance of the predictions of the muscle activity during single and multi joint movement
based on MLP NN and the Kalman filter with (yellow and green respectively) and without (red and blue respectively)
the inclusion of gaze-direction.
The predictions of the muscle activity revealed a clear improvement for both the single and multi joint movements by
including the gaze-direction and utilizing the MLP NN for the predictions. In all cases gaze-direction improved the
predictions and furthermore the MLP NN outperformed the Kalman filter in all cases.
The muscle activity predictions were improved on average across all muscles for the single and multi joint movements
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Figure 2.5: Performance of predictions of the muscle activity during single (left) and multi joint (right) movement
based on MLP NN and the Kalman filter with (yellow and green respectively) and without (red and blue
respectively) the inclusion of gaze-direction.

with approx. 24% based on MLP NN, and 5% using the Kalman filter. For the single joint movement the predictions
of the muscle activity were improved by approx. 29% and 9% forthe MLP NN and the Kalman filter respectively.
Figure 2.6 shows the predictions of the kinematics during single and multi joint movement. Predictions based on both
sEMG and gaze-direction is very close to the true signal, which make them hard to identify on the figures.
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Figure 2.6: Predictions of the kinematics during single joint (left) and multi joint (right) movement based on MLP
NN and the Kalman filter with (yellow and green respectively)and without (red and blue respectively) the
inclusion of gaze-direction.

From figure 2.6 it was clear that the inclusion of the predicted gaze-direction substantially improved the predictions,
seen as prediction very close to the true signal what makes them hard to identify on the figure. This was the case
for both the single and multi joint movements. Without the gaze-direction included, the MLP NN outperformed the
Kalman filter by capturing more of the edges in the true signal.
Though, for the single joint movement, the prediction basedon this configuration still showed a lack of capturing
the extremities in the true position. The Kalman filter only followed the trend over large periods, thus not capturing
the peaks seen in the true signal. For the multi joint movement, none of the two configurations captured well the
characteristics of the true position. InY the predictions only hardly followed the variations in the true position. InX,
the Kalman filter showed a very varying prediction substantially different from the true position.
Figure 2.7 shows the performance of the predictions of the kinematics during single and multi joint movement based
on MLP NN and the Kalman filter with (yellow and green respectively) and without (red and blue respectively) the
inclusion of gaze-direction.
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Figure 2.7: Performance predictions of the kinematics during multi (right) and single joint (left) movement based on
MLP NN and the Kalman filter with (yellow and green respectively) and without (red and blue respec-
tively) the inclusion of eyetracking.

For the Kinematics the improvements were substantially higher. For the multi joint movement, the predictions were
improved on average by approx. 84% and 74% using the MLP NN andKalman filter respectively. For the single
joint movement, the predictions were improved by approx. 49% and 65% for the MLP NN and the Kalman filter
respectively.
The preliminary results clearly indicated that adding an extra modality in form of gaze-direction had the potential of
increasing the prediction performance during reaching movements. The outcome of the kinematics predictions were
as expected, since the simulated gaze-direction is almost similar to the true kinematics.

2.5.2 Controller

The controller of a FES or FET system provides the required muscle stimulation level (i.e. specification of tempo-
ral patterns of muscle stimulation to provide the desired movement), based on the commands from the user, i.e. the
decoded intent of the user. For upper limb neuroprosthesis,the appropriate shoulder and arm muscles needs to be
stimulated to enable coordinated arm movements [20]. Not only should the controller provide muscle stimulation but
also regulation of these patterns to correct for unanticipated changes in either the stimulated muscles (e.g. fatigue)or
the environment (e.g. external perturbations).
The complexity of the musculoskeletal systems complicatesthe temporal specification of the control, for the upper
limb neuroprosthesis. The stimulation patterns must account for the nonlinear nature of the muscles, between muscle
output and limb output, contemporary with the varying load encountered during interaction with the environment [20].
Different approaches can be undertaken to access the muscleactivation needed for the stimulation and the relationship
between muscle activity and various dynamics and kinematics of movement have been investigated widely in the lit-
erature.
One approach is an inverse musculoskeletal model, a mathematical description of the musculoskeletal system, with
the kinematics, i.e. motions, as input to compute the required forces or muscle activations [109, 60, 51, 11].
The inverse dynamic problem involves the transformation from a desired motion to the forces or muscle activations
that are needed to drive the forearm and hand during reachingmovement, which is a hard computational challenge
because several limb segments must be combined, and the continuous changes in the mechanical properties of the
limbs and the environment must be taken into account [10].
Another approach is by predicting the muscle activation levels directly from the signals recorded from the modalities
that are remained under voluntary control. Continuously prediction of the muscle activity pattern during execution of
a desired movement trajectory, can serve as control signal directly, e.g. by conversion into frequency-modulated trains
of constant current pulses. Previously stimulus frequencyhas been linearly related to the amplitude of the average
muscle activity in some specified time period [139]. [41] used the activity from the proximal muscles under voluntary
control (shoulder muscles and elbow flexor muscles) in C5-C6tetraplegics to estimate the stimulation level in Triceps
to produce elbow extension. The muscle activation level in the shoulder and elbow flexors were associated to a prede-
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fined set of endpoint force load during training, which wouldalso occur during validation.

Proportional control consists of commands which yields a system response with a magnitude proportional with the
command provided [137]. Examples are observation of wrist joint angle, and EMG of the wrist extensor muscles [47].
[137] Static control in the contrary is based on on/off control, such as button switches [98], wrist mounted switches
[125], and sip-puff switches[45].

2.6 Reduction of the complexity for movement control

Human movements involves activation of a large number of motor units (MUs) and the movements can span multiple
muscles. Coordination of a large number of D.O.F in the musculoskeletal system is necessary to produce movement.
The number of available D.O.F of the body is typically greater than that required to reach a behavioral goal and the
number of muscles per one D.O.F is much greater than two. Thisredundancy is exploited by the nervous system to
control actions in a flexible way, i.e. the same behavioral goal can be accomplished in differently depending on inten-
tion, external environment, or intrinsic constraints. [6]Thus the many D.O.F of the musculoskeletal system provide
great flexibility, but at the same time it increases the complexity of the control problem.
Even simple tasks, such as moving the hand to a target location, implies an infinite number of possible paths that the
hand can move along. For each of these paths the hand can follow an infinite number of trajectories, i.e. velocity
profiles, and each location of the hand along the path could beachieved by multiple combinations of joint angles
[173]. Each arm configuration can be achieved by many different muscle activations, due to the overlapping actions
of the muscles and their ability to co-contract [173].
This redundancy is characteristic in most everyday tasks [157] and introduces the redundancy problem in control,
where the number of available independently controlled variables available for a controller, is greater than the number
of independent parameters describing a motor task. Of all the possible solutions, one must be chosen. The essence of
motor control has been formulated to be the elimination of the redundant D.O.F.[76]

Any ordinary human activity requires the cooperation amonghuge number of structurally diverse elements (e.g.
joints and muscles). It has been hypothesized for such complex living systems that the elements are organized into
synergies defined as functional groupings of structural elements (e.g. neurons, muscles, or joints), temporarily con-
strained to act as a single unit [72]. The synergy hypothesisconsidered in this work is related to muscle synergies
[79, 10, 159, 25, 27, 1].
Thus, the neural control of movement has been studied on the assumption that the CNS simplify the complexity in the
control of movements by producing movements in a simplified manner. One strategy of the production of movement
is believed to be spinally organized muscle groupings, in which the activation level is specified together [159]. Thus
synchronous muscle synergies is a set of relative non-negative levels of muscle activation that recruits a group of
muscles in a coordinated manner, i.e. coherent activationsof a group of muscles[68, 26, 25, 27]. This simplifies the
control by the CNS since groups of muscles can be controlled as units, which has been indicated in previous studies
including leg movements in frogs [27, 26], forearm movements of monkeys [108],and humans [55].
Further it has been suggested that the CNS constructs complex muscle activation patterns for a wide range of motor
behaviors based on flexible combinations of only a few musclesynergies [154, 95]. Hence the produced movements
are based on a coordinated activation of muscle synergies.[154] The set of relative non-negative levels of muscle ac-
tivation (the muscle synergy) is scaled by a non-negative motor command (neural command signal) and the global
muscle activation level (muscle activation pattern) of each muscle is constructed by the summation of the contribu-
tions from all synergies, weighted by the motor commands, i.e. summing the muscle activation patterns generated by
different synergies [154, 95].
Hence the movement tasks are executed by translating neuraltask-level commands into muscle activation patterns by
synchronous muscle synergies[154, 95]. Thus muscle synergies are basic building blocks from which many different
movements can be derived. [34]



Problem statement 3
Movement disability is one of the most invalidating injuries that can follow an SCI, which imply loss of independence
and good health. Paralyzed individuals loses their abilities to interact with their surroundings and cannot complete
many daily activities critical for independent living. High-level SCI is devastating causing a near total loss of in-
dependence. This independence has high economical cost forthe society in form of medical cost for the paralyzed
individuals who have a long life expectancy.
Damage to nerves are in the far most cases permanent and therefore rehabilitation technology for the SCI population
for performing daily activities or for restoring even a modest level of independence has a great potential to generate
an enormous impact on quality of life and to lower the relatedcosts to society. Especially active control of elbow
extension has shown to be very important for ensuring independence in individuals who are subject to tetraplegia.

FES is a promising technology for restoring motor function for improving the overall health of SCI individuals through
enhanced use of the cardiovascular and musculoskeletal systems. FES systems have been in focus in much research,
particularly for the restoration of arm reaching. This includes the multi joint system consisting of the shoulder and
elbow during planar movements, which is especially relevant in a wide range of functional tasks. Regain useful arm
movement is regarded as one of the most important factors forregaining functional independence.
Individuals suffering from C4 tetraplegia have only very few muscles under voluntary control limiting the type of
movements they can generate and furthermore they are subject to extensive denervation of shoulder and elbow mus-
cles important for controlling the proximal limb. These factors complicates the restoration of arm reaching in this
population and consequently only few have used FES for this purpose.

Many approaches in development of FES systems have utilizedpre-programmedset of muscle stimulation patterns and
in some systems assistance is required to place the object inthe user’s hand or at a specific location in the workspace,
which limits the functional use of these devices. Also the classification of different classes of movement have been
the aim in many studies. More flexible control of a FES system is therefore believed to expand the repertoire of motor
functions available to paralyzed individuals. Restoration of flexible arm control through FES presents challenges to
both decoding of the users intent and controlling the stimulation of the respective muscles to realize that intent through
movements of the paralyzed limb.

Several studies have focused on decoding the users intent through intracortical recordings of neural activity, while
only a few have utilized noninvasive methods based on sEMG signals [41]. Such a noninvasive approach would be-
sides FES also be clinical applicable for FET.
Only few have estimated the muscle stimulation level directly [3, 119, 139], in the contrary to an inverse modeling
approach based predictions of Kinematics. Especially the use of sEMG as control signal in such an approach has been
subject for limited investigation, i.e. that by [41] was limited to a predefined set of associations between an endpoint
force and stimulation level.

These facts motivated the focus in this study to be aimed at improving the decoding of the users intent and create
the basis for extending the possible muscle stimulation patterns in a FES and FET system. The preliminary results
presented and the results outlined from [7] underlined the rationality in pursuing the approach of decoding the users
intent from the muscle activity in the distal muscles in the upper limb or the kinematics based on the muscle activity
in the proximal Deltoid muscle in combination with gaze-direction.
The believe in muscle synergies appeared as a sound foundation for the simplified control of movements by the CNS
in which spinally organized muscle groupings can be controlled as units, and seemed as an engaging strategy for
application for electrical stimulation of paralyzed limbs. This approach would allow construction of complex muscle
activation patterns for a range of motor behaviors based on flexible combinations of a few muscle synergies. A direct
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implication of this could be the simplification of stimulation control.

It was hypothesized that non-invasively decoding of the users intent during planar arm
reaching could be obtained from a multimodal approach basedon sEMG and gaze-
direction.
In addition a simplified representation of the users intent was investigated to serve as
control in electrical stimulation.

The project aim is illustrated in figure 3.1
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Figure 3.1: Top: The first aim was to decode the users intent from proximalrecorded sEMG combined with gaze-
direction of the user recorded with eyetracking to determine whether enough information could be ex-
tracted from the selected modalities to predict this intention (muscle activity or kinematics). Bottom:
Second aim was to investigate whether the decoded intent of the user in form of muscle activity could be
simplified for the control of stimulation.

The overall objective of this work was to develop the foundation to a clinical applicable system using electrical stimu-
lation both for functional and therapeutic use. In a closed loop FES, the approach taking targets individuals suffering
from high tetraplegia and should enable them to perform goaldirected planar movement. In FET control, the founda-
tion is for therapeutic control for e.g. hemiplegic individuals and for rehabilitation of individuals who have suffered
from stroke.

The project was a proof of concept of the suggested methods.
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Decoding of the users intent 4
Decoding of the users intent is founded on signals generatedfrom modalities that are remained under the users vol-
untary control. Two relevant types of signals during a reaching task is believed to be the myoelectrical signal and
gaze-direction, which will be apparent from the succeedingsections.

The myoelectrical signal provides access to the physiological processes that cause the muscles to generate force,
produce movement and accomplish the countless functions, which allow us to interact with the surrounding world.
It represents electrical currents generated in the musclesduring contraction, depicting the neuromuscular activities
[64]. Voluntary limb movement is a result of the brain generating a spike train of action potentials that is transmitted
through the efferent nerve to a presynaptic membrane, causing the neurotransmitter in this membrane to release and
diffuse to the postsynaptic muscle membrane. This causes a depolarization and an initiation of an action potential,
which propagates across the length of the muscle’s surface via a ion transfer, causing the muscle to contract. The
waveform traveling along the muscle fibers is known as a motorunit action potential (MUAP). The sEMG records the
composite of the voltage changes generated by these individual active MUAPs, i.e. the sum of the electrical contribu-
tions made by the active motor units as detected by electrodes placed on the skin overlying the muscle[171, 88, 33].
The gaze-direction recorded from eyetracking, is tight coupled to the hand movement during natural reaching move-
ments [134]. Evidence has suggested that humans plan upper limb activity in three-dimensional Cartesian coordinates
[9], and that this target activity is transformed into the muscle activity required to produce the desired limb dynamics
[149].

The aim was to decode the users intent, which was expressed interms of the following
1. Arm kinematics

2. The muscle activation pattern in the distal primary extensors and flexors of the arm

3. Low dimensional motor commands

The muscle activity can be used directly in the stimulation process of FES and FET systems, e.g. by converting the
activity into frequency-modulated trains of constant current pulses [139]. Hence, expressing the intent of the user in
terms of muscle activity, can at the same time serve as control signal for the electrical stimulation in the construction
of specific movements.
The predictions should be based on the muscle activity in theproximal flexion/extension muscles of the shoulder and
from the gaze-direction of the user as depicted in figure 4.1

4.1 Extraction of muscle activation level from the EMG

The raw EMG signal is a complex spiky signal that can be difficult to interpret. The linear envelope is a rectified and
smoothed version of the EMG, which result in a slowly varyingtrend, representing the muscle activity.
The raw EMG signal is transformed into a linear envelope by full-wave rectification followed by a low-pass filtering.
The characteristics of the low-pass filter determines the smoothness and duration of the bursts of activity [4, 50, 89].
A cutt-off frequency of 1 Hz was chosen [95, 50, 15, 144, 119].Figure 4.2 illustrates the process of extracting the
linear envelope.
Two methods were investigated for the predictions, namely the Kalman filter and the Multi layer perceptron neural
network (MLP) NN, which are introduced in the following together with the extraction and reconstruction method for
the low dimensional control. Finally the evaluation measure used for quantification of the accuracy of the predictions
is presented.
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Figure 4.1: Decoding the users intent in terms of kinematics, muscle activity in the primary extensors and flexors,
and low dimensional motor commands, based on the combination of the recorded muscle activity in the
proximal flexion/extension muscles of the shoulder and gazedirection. Two decoders were compared on
their prediction performances.
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Figure 4.2: Generation of the linear envelope of the sEMG.

4.2 Decoding based on the Kalman filter

The Kalman filter can estimate the state of a linear dynamic system from a series of noisy measurements together with
a model of the dynamics of the system. Thus although the stateof a system is not directly available, it is possible
to estimate the state indirectly. The Kalman filter has been used for prediction of the kinematics (e.g. hand endpoint
position and velocity) [173], the hand trajectory (position, velocity, and acceleration) based on intracortical recordings
representing the neural firings in the motor cortex [178, 177, 175].

The Kalman filter uses knowledge about the dynamics of the system to estimate the system state, i.e. the muscle
activity or the endpoint position of the hand. The state froma previous time instance (x(k−1)) is converted into a
state in a future point in time (x(k)) [167]. The generative model underlying the Kalman filter isillustrated in figure
4.3
z representing the observations, i.e. the eyetracking and muscle activity in the proximal muscles,x representing the
muscle activity, kinematics, or the motor commands depending on the representation of the intent of the user.
The Kalman filter is an estimator, that minimizes the estimated error covariance and estimates the statex ∈ ℜn of a
discrete-time controlled process,n denoting the number of states as expressed in equation 4.1 [167]

xk = Axk−1 +wk (4.1)

The observationszk ∈ℜn can be expressed as in equation 4.2

zk = Hxk +qk (4.2)

wk andqk are random variables representing the process and measurement noise respectively [167]. These are in-
dependent of each other, have white noise properties, and normal probability distributions as expressed in equation
4.3.
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Figure 4.3: Underlying model of the Kalman filter. Only the outputz, is observable, while the underlying parameters
w, q represents process and measurement noise respectively, and the underlying true state are hidden.A
is a linear coefficient matrix that relates the system statex, at a previous time instant (x(k−1)) to the state
at the current time step (x(k)). H relates the states to the measurementszk.

p(w) ∼ N (0,W) (4.3)

p(q) ∼ N (0,Q)

In practice, the process noise covarianceW and measurement noise covarianceQ might change with each time step,
i.e. each measurement, but are assumed constant, and can therefore be determined prior from training [167].
The matrixA ∈ℜn×n relates the state at the previous time step,k−1, to the state at the current step,k. This is a linear
coefficient matrix, which perform state prediction withoutconsidering any measurements. In practiceA might change
with each time step, but is often assumed constant [167]. ThematrixH ∈ℜm×n relates the states to the measurements
zk with m denoting the number of input channels.H might also change with each time step, but is often assumed
constant [167].
The Kalman filter algorithm is depicted in figure 4.4
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State correction

1) 2)
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Figure 4.4: Kalman filter algorithm. Initially estimates are provided for the states and the error covariance. The state
and error covariance is predicted in (1) and updated in (2). Modified from [167]

The Kalman filter estimates the states by the use of feedback control. The first main step estimates the process state at
one particular time, and updates the process state with obtained feedback in form of a noisy measurement, within the
second main step.
The equations for the Kalman filter can be divided into the following [167]

1. Time update/ state predictor equations

Responsible for predicting the current states based on previous states, and error covariance estimates to
obtain ana priori estimate for the current time step

2. Measurement update equations/ state corrector equations

Responsible for the feedback and incorporation of new a measurement into the a priori estimate, with the
aim of obtaining an improveda posteriorestimate
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In the Kalman filter cycle, the time prediction projects the current state estimate ahead in time, before the measurement
update corrects the projected estimate with an actual measurement at that specific time.
The a priori and a posteriori estimate errors (e) can be defined as in equation 4.4 withx̂−k ∈ ℜn being defined as the
a priori state estimate at timek giving knowledge about the process prior tok and x̂k ∈ ℜn being defined as the a
posteriori state estimate at timek given measurementzk.

a priori estimate error= true state−a priori estimate ⇔ e−k ≡ xk− x̂−k (4.4)

a posterior estimate error= true state−a posteriori estimate⇔ ek ≡ xk− x̂k

The a priori estimate error covariance is expressed in equation 4.5, since the errors are zero mean.

P−k = E
[
e−k e−T

k

]
(4.5)

and the a posteriori estimate error covariance is describedin equation 4.6

Pk = E
[
ekeT

k

]
(4.6)

The a posteriori state estimatex̂k can be expressed as a linear combination of the a priori estimatex̂−k , and the weighted
difference between an actual measurementzk and the measurement predictionHx̂−k as expressed in equation 4.7

x̂k = x̂−k +K
(
zk−Hx̂−k

)
(4.7)

When the measurementresidual,
(
zk−Hx̂−k

)
in equation 4.7 approximates zero, the predicted and actualmeasurement

are in close agreement.
The matrixK ∈ ℜn×m in equation 4.7 is the Kalman gain, which minimizes the a posterior error covariancePk from
equation 4.6. [167]
Implementation of the Kalman filter was done in MatlabR© based on [178]. For a more detailed description of the
Kalman filter, please refer to [167, 59].

4.3 Decoding based on a multi layer perceptron network

Neural networks have been applied in a wide variety of engineering problems involving pattern recognition, pattern
classification, adaptive filtering, and control [20, 162, 106, 71, 41]. The successes presented in [20, 162, 106, 71, 41],
indicates the usefulness of neural networks in different components of a variety of FES control systems.

An artificial neural network (ANN) is an array of processors that is linked by connections that can be weakened
or strengthened and the concept is based on inspiration fromthe interconnected neurons of the brain[152]. Thus the
functional model of the biological neuron contains three basic components, namely the synapses of the neuron (mod-
eled as weights), and the components representing the activity within the neuron cell, which consists of an adder (sums
up all inputs modified by their weights), and an activation function. In this fashion the neuron receives an input and
produces a response as output [152].
The ANN is an adaptive, and most often a nonlinear system, which estimate a function (or the relationship between
input and output vectors) without requiring a mathematicaldescription of how the output functionally depends on
the input, i.e. the network learn from input/output data samples [152]. The capability of learning complex nonlinear
input-output mappings is one of the characteristics that make neural networks an attractive option in many biomedical
problems. The adaptive capabilities of neural networks makes them particularly attractive for rehabilitation applica-
tions in which the system is often customized for particularindividuals.[20, 106]
The network is adaptive in the sense that the system parameters are changed during operation, i.e. during training.
After the training phase the ANN parameters are fixed and the system can be deployed, i.e. during validation.
The input/output training data are fundamental in ANN sinceit conveys the necessary information to find the optimal
parameters of the network. According to the success of estimating a specific function based on the series of examples
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of correct responses, the connections between the processors are strengthened or weakened. Hence instead of working
based on an explicit set of rules to follow, the network operates based on the weights of the links within it. The non-
linear nature of the neurons (the processing elements) provides the system with a high level of flexibility to achieve
the desired input/output relation. [152]

One of the most widely used types of neural networks is the MLPNN (also denoted a multilayer feed-forward neural
network). An elaborated description of the neural network is found in appendix chapter F on page 109.

Introduction to the MLP network

An MLP NN consists of a network of perceptrons (neurons), in which the data flow strictly feedforward from input
to output units, and the data processing can extend over multiple layers of units, without feedback connections. The
MLP NN consists of the following elements [132]

Input layer is a layer of neurons that receives information from external sources (in a biological neuron the input
corresponds to sensory nerves), and passes this information to the network for processing

Hidden layer is a layer of neurons that receives information from the input layer and processes them in a hidden way,
i.e. it has no direct connections to the outside world. All connections from the hidden layer are to other layers
within the system

Output Layer is a layer of neurons that receives processed information and sends output signals out of the neural
network (corresponding to motor nerves in a biological neuron)

Bias is an offset or threshold value in the neurons. The function of the bias is to provide a threshold for the activation
of neurons. The bias input is connected to each of the hidden and output neurons in a network

A typical MLP NN consists of a set of source nodes forming the input layer, one or more hidden layers of compu-
tation nodes, and an output layer of nodes. A single layer neural network has severe restrictions limiting the type of
tasks such a network can solve. A two layered feed-forward neural network with biases, a non-linear sigmoid layer,
and a linear output layer is capable of approximating any function with a finite number of discontinuities to arbitrary
precision [36, 48, 24].
If linear output neurons are used, the network outputs can take on any value instead of being limited to a small range
as is the case with the sigmoid functions.[91]
Each perceptron computes a single output from multiple real-valued inputs by forming a linear combination according
to its input weights, the synaptic efficacy in a biological neuron, the bias, forming the post-synaptic potential of a
neuron, and transforming the output through the nonlinear activation function. The strength of the connection between
an input and a perceptron is determined by the value of the weight, i.e. negative weight values reflect inhibitory con-
nections, while positive values designate excitatory connections.
The actual activity within the neuron cell is determined by linear combining the input and the weights together with
the bias. Lastly the activation function (ϕ) maps the output into the range 0 to 1 in the case of the Sigmoidactivation
function, such as the simple logistic Sigmoid function. This function allows MLP networks to model both mildly and
strongly nonlinear mappings, since the function is linear near the origin and saturating rather quickly away from the
origin. [152] This transfer function is often used in back-propagation networks, e.g. [69, 63, 70]. The capability of
MLP NN stems from the non-linearities used within the nodes.

A two layer network with one hidden layer can be represented as shown in figure 4.5
x represents the input units (N× 1), W1 (S×N) the weights between each input unit and each of the units in the
hidden layer (S× 1), y1 (S× 1) is the output vector of the hidden layer,W2 (Q×S) being the weights between the
hidden layer and the output layer (Q×1). b1 andb2 are the biases for each of the units in the hidden and the output
layer respectively. The input signal propagates through the network layer-by-layer and all neurons from one layer are
connected to the neurons in the next layer.
The network shown is a full-connected (output from each input and hidden neuron is distributed to all of the neurons
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Figure 4.5: Two layer MLP neural network with one hidden layer consisting of Sunits with the logistic Sigmoid as
transfer function, and one output layer consisting ofQ units with linear transfer functions.x (N× 1)
representing the inputs,W1 (S×N) being the weights between each input and each of the units inthe
hidden layer (S×1),y1 (S×1) being the output vector of the hidden layer,W2 (Q×S) being the weights
between the hidden layer and the output layer (Q×1). b1 andb2 are the biases for each of the units in the
hidden and the output layer respectively.

in the following layer), two layer, feed-forward (the values only move from input to hidden to output layers, no values
are fed back to earlier layers), perceptron neural network.The number of input neurons corresponds to the number of
input variables (e.g. the number muscle activations), and the number of output neurons is the same as the number of
desired output variables (e.g. muscle activation, low dimensional motor commands, kinematics).
The process of the neural network can be expressed in equation 4.8

ym =
Q

∑
q=1

wmq

︸ ︷︷ ︸

Output layer

·ϕ

(
N

∑
n=1

wkn ·xn

)

︸ ︷︷ ︸

1st
hidden layer

(4.8)

xn being thenth input, wkn being the weight from inputn to nodek, wmq being the weight from nodeq to outputm,
andym being outputm.
The network is an implementation of a composite function from input to output space, which is called the network
function [132].

Learning of the neural network

A neural network has to be trained, such that the network produces the desired output given a set of inputs. I.e. the
strength of the connection weights have to be adjusted adequate to achieve the desired behavior, which allow the
characteristics of the input training data to be inferred. This requires a learning algorithm, to which a set of desired
input-output mappings are presented, and in response executes correction steps iteratively until the network learns to
produce the desired response. As seen in figure 4.6, the learning algorithm is a closed-loop presentation of input-
output mappings (training data) and of corrections to the network parameters to minimize the prediction error.[132]
During the training process, the outputs can likewise be specified as targets.
The error of a particular configuration of a network, can be determined by applying the network on training data
set and compare the predictions with the true outputs, thus forming the error function. The error surface is aN + 1
dimensional surface, each weight and threshold being a dimension in the space. Hence the goal of the training process
is to find the optimal combination of weights, i.e. the lowestpoint in the many dimensional error surface, so that the
network function approximates a given function described implicitly through some training samples [132, 152].
From an initially configuration of weights and thresholds, the objective of the training algorithm is to seek for the
global minimum. The gradient of the error surface is typically calculated in each point and the search continues along
the steepest descent.
The back propagation algorithm is a popular learning method, which looks for the minimum of the error function in
weight/bias space using the method of gradient descent. This method requires the computation of the gradient vector
of the error surface at each iteration step.
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Figure 4.6: Closed loop learning algorithm. The learning algorithm adapts the network parameters according to
previous experience until a solution is found. For each input, the network produces an output (1) and
the error between the predicted and desired output is calculated (2). The weights are adjusted to reduce
the error according to some learning algorithm. (1) - (3) arerepeated for every sample in the case of
incremental training until the errors are minimized. Modified from [132]

The sigmoid function always have a positive derivative, so the slope of the error function provides a greater or lesser
descent direction, which can be followed. The gradient vector points along the line of steepest descent from the current
point, thus by moving along by some step size the vector the error will decrease.
The learning algorithm progresses iteratively through a number of epochs. For each epoch the training data set is
applied to the network, from which the prediction error can be computed and the weights can be adjusted according to
the error surface gradient and process can be repeated. The process continues until some criteria have been reach, e.g.
a certain number of epochs have evolved, the error has reached an appropriate level or when it stops improving.
In the back-propagation learning algorithm the forward pass predicts the outputs from the given inputs evaluated and
in the backward pass, the partial derivatives of the cost function with respect to the different weight parameters are
propagated back through the network where the weights then can be adapted. Using the back propagation algorithm,
the output errors are propagated back to the previous layer using the output element weights [132]. The following
summarizes the steps and equations involved in the backpropagation algorithm [132].

1. Set initial weights

2. Feed forward computation

3. Backpropagation to output layer

4. Backpropagation to hidden layer

5. Weight update

The algorithm is stopped according to a defined stop criterion. A feed forward computation stores both the evaluation
of the primitive function and the derivatives. In the back propagation the constant 1 is fed into the output layer and the
network is run backwards. The incoming information to a nodeis added and the result is multiplied by the derivative
stored in that unit. The result is transmitted to the left in the unit and the result collected at the input unit is the deriva-
tive of the network function with respect to the input to the network.
Please refer to appendix section F.3 on page 112 for a more detailed description of the back propagation algorithm.

The backpropagation method suffers from various convergence problems [129]. These problems can be solved by
using second order derivatives, which is applied in the Levenberg-Marquardt (LM) algorithm, one of the most widely
used optimization algorithms and is suggested for moderate-sized feedforward neural networks (up to several hundred
weights) [43, 84, 28]. In the following, the LM algorithm [80, 133] is introduced to an extent which explains the
parameters, which are configured in practice. For a detaileddescription of the LM algorithm please refer to [62, 124],
since this is beyond the scope of this report.

The Levenberg-Marquardt algorithm

The LM algorithm relies on both the first and second order derivative of the error in the search for the optimal weights.
The LM algorithm provides a faster solution due to the incorporation of the second derivative of the error information
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and automatic incorporates adjustments of the learning parameters. [80]
The idea of the LM algorithm is to minimize the squared distanceεt ε, ε = x− x̂, i.e. ε is the vector of network errors.
Letting f being an assumed functional relation which maps a parametervectorp ∈ Rm to an estimated measurement
vector x̂ = f (p), x̂ ∈ Rn. The basis of the LM algorithm is a linear approximation tof in the neighborhood ofp.
[133, 80]
For a small||∆p||, a Taylor series expansion lead to the approximation in equation 4.9

f (p+ ∆p)≈ f (p)+J∆p (4.9)

J being the Jacobian matrix∂ f (p)
∂p , containing the first order derivatives of the network errors with respect to the weights

and biases. At each step in the iterative algorithm is to find the∆p that minimizes the quantity given in equation 4.10

||x− f (p+ ∆p)|| ≈ ||x− f (p−J∆p)||= ||ε−J∆p|| (4.10)

The minimum is attained whenJ∆p− ε is orthogonal to the column space ofJ, yielding JT(J∆p− ε) = 0, ∆p being
the solution to the normal equations in 4.11

JTJ∆p = JTε (4.11)

The matrixJTJ in the left side in equation 4.11 is the approximate Hessian,i.e. an approximation to the matrix of
second order derivatives. The LM algorithm solves a slight variation of equation 4.11 as seen in equation 4.12, called
the augmented normal equations

N∆p = JTε (4.12)

The off-diagonal elements ofN are identical to the corresponding elements ofJTJ and the diagonal elements are given
in equation 4.13

Nii = µ+[JTJ]ii , µ> 0 (4.13)

The diagonal elements ofJTJ is altered by damping, whereµ is the damping term. If the updated parameter vector
p + ∆p, ∆p computed from equation 4.12, leads to an reduction in the error ε, the update is accepted and the process
repeats with a decreased damping term. Otherwise equation 4.12 is solved again, and the process iterates until a value
of ∆p is found (corresponding to one iteration of the LM algorithm). The damping term is adjusted at each iteration
to assure a reduction in the errorε, thus the damping is raised if a step fails to reduceε and otherwise the damping is
reduced. [73]
The steps of the LM algorithm is the following [150]

1. Inputs are presented to the network and the correspondingoutputs and errors are computed. The mean square
error over all inputs is computed

2. The Jacobian matrixJ with respect top is computed,p representing the weights and biases of the network

3. The Levenberg-Marquardt weight update equation 4.12 is solved to obtain∆p

4. The error is recomputed usingp + ∆p. In case the new error is smaller than the one computed in step1, the
training parameterµ is reduced byµ−, andp = p+ ∆p is computed and the algorithm returns back to step 1. If
the error is not reduced, thenµ is increased byµ+ and returns to step 3

5. The algorithm is terminated when at least one of the following conditions is met

Magnitude of gradient (εεt , i.e. JTε) drops below some thresholdε1

The relative change in the magnitude ofδp drops below a thresholdε2

The errorεT ε drops below a thresholdε3

A maximum number of iterationskmax is completed

µ+ andµ− are predefined values, typically initiated to 10 and 0.1 respectively.[150]
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4.4 Extraction of muscle synergies and motor commands

The muscle activation pattern can be expressed as in equation 4.14 as the relationship between muscle synergies and
motor commands [95, 1]

X = S·P(k) (4.14)

SandP being

S=

N synergies
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


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N commands

for N < M. P(k) = [p1(k), p2(k), . . . , pN(k)] being a vector of motor commands,pn(k) being then’th motor command
at timek, i.e. P(N×K). The activity levels of theM involved muscles are described by the muscle activation vector
X(k) = [x1(k),x2(k), . . . ,xM(k)], xm(k) being the level of activation for them’th muscle. S (M×N) is the muscle
synergies (each column representing a synergy) representing the gain by which then’th motor command is transferred
to them’th muscle activation signal. Thus, the muscle activityX can be represented by a linear combination of thep
motor commands.

Non-negative Matrix Factorization (NMF) method, is among the most widely used in the literature, e.g. [95, 1],
to estimateSandP, as seen in equation 4.14 knowing onlyX(k) and constrainingSandP(k) to be non-negative.
A positive driving signal for generating the activity is in correspondence with a positive muscle activity.
The procedure for extraction and reconstruction is illustrated in figure 4.7.

Muscle 

activation level

Extraction 
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Low dimensional 

motor commands

Extraction of Muscle synergies and motor commands

Figure 4.7: Extraction of synergies (ST) and motor commands (PT), extracted from training data (XT ), denoted by
subscriptT using the NMF method.

4.4.1 Extraction of synergies and motor commands

Based on [78] the NMF implies finding a set of non-negative matrix factorsS (M×N) andP (N×K), such that
X = SP, as expressed in equation 4.15

NMF(X)→ SP (4.15)
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X (M×K) being a non-negative matrix.
Equation 4.16 expresses the NMF algorithm based on the multiplicative update rules [78] ensuring the Euclidean
distance between the true matrixX and SP, ||X−SP|| (cost function used for quantification of the quality of the
approximation) is non-increasing and invariant ifSandP are at a stationary point of the distance.

Pnk← Pnk
(STX)nk

(STSP)nk
Smn← Smn

(XPT)mn

(SPPT)mn
(4.16)

Thus, the synergy matrixS and motor commandsP(k) are updated iteratively during a number of iterations, from
which the muscle activation to some degree can be reconstructed depending on the dimensionality of the factorization.
For further details of the NMF algorithm, please refer to [78].

4.4.2 Reconstruction of the muscle activation from synergies and motor commands

[95] showed that the muscle activation can be reconstructedfrom ST andXV using a modified version NMF by fixing
the set of synergies and hence only updating the motor commands in the reconstruction of the muscle activation as
depicted in figure 4.8

Muscle 

activation level
Reconstruction 

method

Muscle 

activation level

Synergy matrix

Reconstruction of muscle activation level

Modified

Figure 4.8: Reconstruction of muscle activity from a fixed set of muscle synergies (ST ) extracted from the training
and the muscle activation (PV) from the validation data using the modified NMF.

4.4.3 A simplified approach for stimulation control

In the context of a FES/FET system the reduction of the complexity in the control of movement implies that the
number of control signals from the controller, can be reduced as illustrated in figure 4.9

Simplified control of movements

Figure 4.9: Simplified approach for stimulation control.M muscles can be controlled by the synergy matrixST

extracted once from training data and theN < M decoded motor commandsPV(k) at each time instancek
from online recordings.

In practice this can be achieved by estimating the muscle synergy matrix once from training data, and decode the
motor commands at each time instance online.
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4.5 Evaluation of predictions

The prediction of the kinematics and muscle activity was evaluated by the coefficient of determination (R2) as illus-
trated in figure 4.10

Paralyzed user

sEMG

Muscle activity

Eyes

Proximal muscles

under voluntary control

Gaze-direction

Decoder

Evaluation of predictions

Users intent

Prediction

True intent

Figure 4.10:Evaluation of predictions byR2.

R2 is presented in equation 5.2.4, which expresses the percentexplained variability in the true value explained by the
predicted value [104].R2 is in linear regression equal to the square of the correlation coefficient between two variables
[104].

R2 = r2 =

(
cov(x,y)

σx,σy

)2

=

N
∑

n=1
(xn−µx)(yn−µy)

N−1
(4.17)

xn andyn being the observed values,µ their samples mean, andσ being the standard deviations (see equation 4.18) of
the two variables.

σ =

√
√
√
√
√

N
∑

n=1
(xn−µx)

2

N−1
(4.18)

R2 has been used by several other authors [119, 95, 170, 26, 140,169] for evaluating the performance of the recon-
struction and prediction of signals.
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5.1 Preliminary data

This section contains an outline of the protocol described in detail in [95]. The aim of the data collected based on this
protocol was to achieve some preliminary insight of the effect of including multiple modalities in the prediction of the
users intent in form of arm kinematics or muscle activity.

Data was collected from 7 subjects during multi joint and single joint (elbow joint) movements in the horizontal
plane with the subjects sitting in front of a table with the dominant right arm supported by a custom designed mechan-
ical apparatus allowing flexion and extension of shoulder and elbow. Audible cues were provided to indicate the start
and end of a movement to ensure correct speed of the movements. Each movement was of 1 s duration and between
each movement, there was a pause of 5 s.
The starting position for the single joint task was with the elbow flexed, i.e.Vel = 60◦ as illustrated on figure 5.1, and
the shoulder angle at 90◦ (EL1), 135◦ (EL2) or 180◦ (EL3) depending on the variation.

 = 90 o

= 150 o

= 60 o

 = 135 o

= 150 o

= 60 o

 = 180 o

= 60 o

= 150 o

Figure 5.1: Elbow movements (extension of the elbow from 60◦ to 150◦) at three different fixed shoulder angles.Vsh

being the shoulder angle, andVel being the elbow angle. Modified from [95]

The subject was asked to extend the elbow to the angle 150◦. After a pause the subject was asked to do the reverse
movement, returning to the starting position. This was repeated additional 4 times, so that a total of 5 extensions and
5 flexions were obtained in 60 seconds. Two repetitions of each variation were made.
The multi joint reaching task is shown in figure 5.2 where the subject was asked to reach targets in 12 directions, using
both the shoulder and elbow. The start position of the elbow was 90◦ and start position the shoulder was varied in
three variations fromVsh = 100◦, 110◦, and 120◦.

12

39

6

Figure 5.2: Multi joint movement. The subject was asked to reach targetsin 12 directions marked on a target board,
using both the shoulder and elbow. The start position of the elbow was 90◦ and start position the shoulder
was varied in three variations from 100◦, 110◦, and 120◦. Modified from [95]

Surface EMG signals were recorded synchronously in a bipolar configuration from 12 muscles of the right arm and
upper trunk (Brachioradialis, Anconeus, Biceps medial head, Biceps lateral head, Brachialis, Triceps lateral head,
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Triceps long head, Deltoid medial, Pectoralis, Deltoid anterior, Deltoid posterior, Latissimus).
A motion tracking with 8 infrared digital video cameras system recorded the position of reflective markers placed
at four superficial locations of the shoulder and arm of the subject, specifically left acromion (LAC), right acromion
(RAC), lateral epicondyle of humerus (LEP) and posterior midpoint between styloid processes of radius and ulna
(MST) as depicted in figure 5.3.

LAC RAC
LEP

MST

Figure 5.3: Position of reflective markers at left acromion (LAC), rightacromion (RAC), lateral epicondyle of
humerus (LEP) and posterior midpoint between styloid processes of radius and ulna (MST). Modified
from [95]

The EMG envelope was obtained by full wave rectification and low pass filtering and the 3D positions of the reflective
markers were projected to the horizontal plane.

The analysis based on this preliminary data is described in the following.

Post processing

The position of the endpoint of the hand and the muscle activity in the 9 distal muscles (Brachioradialis, Anconeus,
Biceps medial head, Biceps lateral head, Brachialis, Triceps lateral head, Triceps long head, Pectoralis) were predicted
based on the muscle activity in the three parts of the proximal deltoid muscle as outlined in figure 5.4.
The predictions were based on two different decoders, namely the Kalman filter and a MLP NN as introduced in
section 4.2 on page 30 and 4.3 on page 32 respectively.

Kinematics

Decoding muscle activity

Muscle activity in 
proximal muscles

Decoder
Muscle activity in 

Distal muscles

Decoding kinematics

Muscle activity in 
proximal muscles

Decoder

Figure 5.4: Outline of the approach for predicting the muscle activity and kinematics based on either Kalman filtering
or MLP NN as decoding method.

Eyetracking was simulated as the recorded position of marker 4 (corresponding to the endpoint of the hand) with noise
added (zero-mean and SD of 4).
The evaluation of the predictions was based on theR2 introduced in section 5.2.4 on page 53. All predictions were
based on 80% training data and 20% validation data.
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5.2 Conducted experiments

The aim of conducting these experiments was to collect data to investigate whether the muscle activity in primary
extensors and flexors of the arm, as described in appendix chapter B.1 on page 93, in combination with gaze-direction
contained sufficient information for prediction of the users intent. The protocol was modified from [95].

5.2.1 Experimental setup

The experiment consisted of planar multijoint arm movementwith the dominant arm of 1 subject (age 26, weight
78 kg, height 1.79 m). The subject provided written informedconsent before participation and the procedures were
approved by the local ethic committee.
During movement in the horizontal plane the subject sat in front of a table with the lower arm supported against a
horizontal surface and the subject was instructed to relax the unrestrained hand during recordings. The experimental
setup is illustrated in figure 5.5. Pictures of the entire setup are located in appendix chapter C on page 95.

Figure 5.5: Experimental setup illustrated with the motion capture system, eyetracking, EMG amplifier, and hand
load.

Audible cues were given to indicate the start and end of a movement as illustrated on figure 5.6 with a warning cue
before each ’start movement’ signal to indicated start of movement, and an ’end movement’ signal to indicate when
target should be reached. Thus each movement had a duration of 1 s and the interval between each movement was 5 s.
During the reaching movements, the subject moved a load (200g, 19 cm high, radius 2 cm) in the dominant hand to
improve the signal to noise ratio of the EMG and likewise, theload served as a focus point for the gaze during the
movement, ensuring that the head was in an angle making the eyes detectable for the eyetracker. Previously it has
been shown that synergies are invariant for speed and load interms of muscle activation [37].
Before the reaching task, the subject was asked to train the reaching movement, to learn the position of the targets and
to maintain the correct speed of the movements. The positionof the targets corresponding to that of a clock had to be
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Figure 5.6: Audible movement cues indicating when the subject should start and stop the movement, and hence the
speed of the movement. One warning cue was provided before each ’start-movement’ cue.

memorized, since the subject was asked to keep the gaze at thefocus point on the moving load. This dissociated from
the natural focus point during movement, i.e. the endpoint target, due to a limitation of the specific eyetracker, which
was not attached to the head of the subject.
Between each trial (3 in total), consisting of one repetition of reaching to each of the 12 randomized targets, the subject
rested for 2 minutes. The subject did not report any fatigue during the experiment.

5.2.2 Task description

The subject was asked to perform planar goal directed movements of 1 second duration. The goal directed movements
are illustrated on figure 5.7

12

39

6

Figure 5.7: Goal directed movements to 12 targets marked with a target board positioned with respect to the eye-
tracker, such that target 6 still allowed the eyetracker to track the gaze.

The reaching movements were performed at a target board with12 evenly spaced targets placed on a circle. In the
starting position the target board marking the 12 targets was positioned in front of the eyetracking, such that target 6
still allowed the eyetracker to track the gaze and the hand was placed in the midpoint of the target board.
Targets were reached in randomized order (each target occurred 1 time in each trial) and every other movement was
reaching back to the midpoint. This yielded a total of 36 reaching-out and 36 reaching-back movements during a
period of 2 seconds (1 in each direction). During the tasks, the subject was instructed to carefully follow the reaching
focus point on the load hand with the eyes.
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5.2.3 Data recording

Three types of signals were recorded during the experiment

1. Surface EMG

2. Motion capture

3. Gaze-direction

Surface EMG

Surface EMG signals were recorded synchronously in a bipolar configuration from 12 muscles of the right arm and
upper trunk. Self-adhesive gel-filled Ag/AgCl electrodes (Ambu R©Neuroline 720 01-K/12, Ambu A/S, Ballerup,
Denmark) placed with an inter-electrode distance of 22 mm (centre to centre).
Signals were recorded with a sample frequency of 2048 Hz and amplified with a gain of 2000 (EMG-USB, LISiN
- OT Bioelettronica, Rivarolo, Torino, Italy), band pass filtered (8th order Bessel filter, bandwidth 10-750 Hz) and
A/D-converted with a 12-bit resolution (Acquisition v. 1.70 for EMG128 USB2, Sirio Automazione S.R.L, Rivoli,
Italy).
Prior to electrode placement hair was removed and the skin surface was prepared by gentle abrasion (Every conductive
abrasive paste, Meditec, Parma, Italy). The skin was then cleaned with water and finally dried with paper.
The reference electrode was a conductive wrist band soaked in water prior to the experiment to increase conductivity.
Bipolar electrode pairs were placed in the following 12 muscle sites

1. Brachioradialis (BIO, 1/6 of the distance ranging from the midpoint between the cubit fossa and the lateral
epicondyle to the styloid process of ulna)

2. Anconeus (ANC, 2 cm distal to the midpoint between the lateral epicondyle and the olecranon process)

3. Biceps brachii medial head (BME)

4. Biceps brachii lateral head (BLA)

5. Brachialis (BIA, 4 cm in the direction towards the acromion, from the midpoint between the fossa cubit and the
lateral epicondyle)

6. Triceps lateral head (TLA)

7. Triceps long head (TLO)

8. Deltoid medial part (DME)

9. Pectoralis major (PEC, 1/3 of the distance ranging from the glenohumeral joint to the lowest point of the ster-
num)

10. Deltoid anterior part (DAN)

11. Deltoid posterior part (DPO)

12. Latissimus dorsi (LAT, 4 cm below the inferior border of the scapula, half the distance between the spine and
the lateral edge of the body)

For muscles where no specific electrode placement is mentioned, the electrodes were placed according to SENIAM
recommendations [50]. A pair of electrodes was placed over the left Pectoralis major and served as a ECG reference.
The electrode placements are illustrated in figure 5.8.

Motion capture

High speed cameras tracked the changing positions and orientations of the upper limb segments via reflective ball
shaped markers (diameter 18 mm) placed superficial at the shoulder and arm of the subject, i.e. at the left acromion



46 Protocols

Figure 5.8: Electrode placement. BIO (brachioradialis), ANC (anconeus), BME (biceps brachii medial head ), BLA
(biceps brachii lateral head), BIA (brachialis), TLA (triceps lateral head), TLO (triceps long head), DME
(deltoid medial part), PEC (pectoralis major), DAN (deltoid anterior part), DPO (deltoid posterior part),
LAT (latissimus dorsi).
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LAC RAC
LEP

MST

Figure 5.9: Placement of the four reflective markers at left acromion (LAC), right acromion (RAC), lateral epicondyle
of humerus (LEP) and at the posterior midpoint between styloid processes of radius and ulna (MST). The
position was recorded using the eight shown high-speed infrared digital cameras.

(LAC), right acromion (RAC), lateral epicondyle of humerus(LEP) and posterior midpoint between styloid processes
of radius and ulna (MST) as illustrated in figure 5.9
The position of the markers were recorded using a motion tracking system (Qualisys Track Manager, Qualisys AB,
Gothenburg, Sweden) with 8 infrared digital video cameras (ProReflex MCU, Qualisys AB, Gothenburg, Sweden).
Data was recorded with a sampling frequency of 240 Hz.

Gaze-direction

Gaze-direction was recorded using an eyetracker (Tobii X120 Eye-Tracker, firmware 1.1.14) sampled at 120 Hz, and
acquired using Tobii Studio v.1.3.23 running on Windows XP.The eye tracker communicated with the computer via a
standard network cable [155]. Figure 5.10 shows the eyetracking setup.

12 cm

70 cm

Virtual screen

12 cm

59 cm

8 cm

Configuration of eyetracker setup

90

Figure 5.10: Relevant measures for the eyetracking setup. The subject was placed approximately 70 cm. from the
eye-tracker in an upright position (90◦ with the horizontal plane).
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The distance from the eye-tracker to the subject was approximately 70 cm, adjusted to achieve the optimal configu-
ration. The placement of the eye-tracker ensured that the gaze angle did not exceed 35◦ to any point on the virtual
screen.

Distance to calibration grid 59 cm, measured from the back edge of the eye-tracker to the front end of the virtual
screen

Horizontal eyetracker angle Adjusted with respect to each subject, such that the eyes areplaced in the center of the
status track window when the subject is placed 70 cm from the eye-tracker. Approx. 15◦

Height from table to virtual screen 8 cm

Height from table to eyetracker foot Approx. 12 cm, adjusted to the individual subject, so ensureoptimal tracking
of the eyes

Initially the eyetracker was calibrated, to learn the characteristics of the subject’s eye movement to achieve accurate
estimation of the gaze points, and to associate a position ofthe eye to a specific location in the working space. During
calibration, the subject concentrated on focusing the eyeson five calibration points, depicting the extremity points and
the center of the workspace.
An elaborated description of the configuration of the specific eyetracker is located in appendix chapter G.

5.2.4 Post processing

The post processing methods used for prediction and evaluation are based on the methods presented in chap-
ter 4 on page 29.

Extracting the muscle activation

The EMG signals were band pass filtered (4th order zero-lag Butterworth digital filter, pass band 20-400Hz) to atten-
uate DC offset, motion artifacts and high frequency noise [50].
The filtered signal was full wave rectified and low pass filtered (4th order zero-lag (the data was processed in both for-
ward and reverse direction) Butterworth digital filter, cut-off frequency 1 Hz) to obtain the muscle activation patterns.
See also section 4.1.

Projection of markers to the horizontal plane

The 3D positions of the reflective markers were projected to the horizontal plane by discarding theZ-coordinate since
the subject performed planar arm movement, i.e. the positions were projected to the horizontal plane.

Synchronization of signals

The EMG, motion capture, and eyetracking were synchronizedas illustrated on figure 5.11.
An external application was developed to start the Eyetracker, log events and at an event send a signal to the other
recording system via the PCs parallel port. The logged eventand signal sent to the other recording systems were used
as synchronization signal.
The signal from the trigger-application was initiated whenthe recordings were already started on the EMG, the mo-
tion capture, and eyetracking systems. All samples recorded from the three recording systems before and after the
synchronization signal indicating start and stop of recordings were discarded.
The development of the synchronization configuration is explained in detail in appendix H on page 123.

Resampling to a common sampling frequency

To reduce the computation time, the EMG envelopes (sample freq. 2048 Hz), motion capture recordings (sample
freq. 240 Hz), and the eyetracking (sample freq. 120 Hz) wereresampled to a common sampling frequency of 40 Hz
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Figure 5.11: Synchronization of the sEMG, motion capture and eyetracking recordings.

by interpolation. The resampling induced no significant loss of information in the EMG envelopes since frequency
content above 20 Hz was highly attenuated. A 40 Hz sampling frequency for the motion capture and eyetracking was
also sufficient since no human movements are expected to havecomponents faster than 10 Hz.

Reduction of ECG artifact in the EMG recordings

Due to EMG recordings near the heart, such as electrode locations at the Pectoralis major, and Latissimus as shown
by [95], a ECG reference channel was recorded simultaneously with the sEMG and used for removal of the ECG
contamination by a Least Mean Squares (LMS) adaptive transversal (50 taps) filter with a step size of 5·10−8 [95].

Prediction of the users intent

The predictions were based on a MLP NN as presented in section4.3.
The network consisted of 1 hidden layer with 10 neurons, for the prediction of both the muscle activity, motor com-
mands, and the kinematics, using the sigmoid transfer function in all units. The transfer function for the output layer
was a linear function returning the input passed to it. Learning of the neural network was based on the Levenberg-
Marquardt back-propagation.
The number of neurons was based on the analysis of theR2 as a function of number of neurons in the hidden layer as
outlined in figure 5.12, and elaborated in appendix chapter 6on page 57.
Initially the relation between input and output patterns was learned by the network in a training session. The training
stopped if the maximum number of repetitions were reached, or the validation performance increased more than 6
times since the last time it decreased [28].
Following the training session was the validation session,which reconstructed the output signal. The inputs for this
session were not part of the training data.
The feedforward neural network was implemented in MatlabR© using the Neural Network Toolbox MatlabR© [28] using
newff[training input, training target, hidden layer size(s), transfer function(s) from hidden
and output layer] (creates the feed-forward network object),train[network object, training input,
training target] (trains the neural network), andsim[input, network object] (simulates the network). The
newff automatically initializes the weights with the Nguyen-Widrow layer initialization function, which initializes a
layer’s weights and biases according to the Nguyen-Widrow initialization algorithm [105, 111]. The algorithm chooses
values in order to distribute the active region of each neuron (determined by the transfer function) in the layer approx-
imately evenly across the layer’s input space. Due to a degree of randomness in the values, they are not initialized to
the same value each time the function is called.
The initialization of the weights can influence the performance of the neural network, thus each predictions was per-
formed 3 times to ensure that the network solution was not trapped in any local minimum.
Levenberg-Marquardt algorithm was used for training, which also was part of the neural network toolbox for Matlab.
In Matlab it is implemented in MatlabR© via a standard backpropagation technique [43]. The weight and the biases of
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Figure 5.12: Prediction performance of the muscle activity as a functionof number of neurons depicted from the
concatenated data (light grey) and for mean across all muscles.

the network were iteratively adjusted to minimize the network performance function chosen as the mean square error
between the estimated and true outputs.
To make the training more efficient, the inputs and outputs tothe NN was preprocessed, per default in the implemen-
tation in Matlab. Network-input processing functions transform the input into a better form for the network, i.e. the
inputs and outputs were scaled to fall within a specified range [-1, 1] and processing functions associated with the
network output transformed targets into a better form for network training, and reverse transformed outputs back to
the characteristics of the original target data. [28]

Summary of parameters in neural network The feed-forward neural network was configured with the following
settings [28]

Number of hidden layers 1

Number of neurons in hidden layer 10 for both the prediction of kinematics and muscle activity

Transfer functions ’log-sig’ and ’purelin’ function for the hidden and output layer respectively

Learning algorithm Levenberg-Marquardt back-propagation using the standardconfiguration in Matlab (forµ, µ+,
µ−, µmax) [28]

Maximum number of repetitions 150

Initialization algorithm Nguyen-Widrow

Performance function Mean square error

Maximum validation failures 6

The following subsections describe the predictions depending on the type of signal to be predicted, and on which data
basis. The first 80% of the data was used for training, and the last 20% which was not included in the training, was
used for validation.
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Prediction configurations

The different variations of the predictions are summarizedin table 5.1 and are named according to the prediction
variation, and colored. For each configuration, the inputs is displayed and so is each of the outputs that is predicted by
the use of the individual configurations.

Conf. Input Output

sEMGp True gaze Sim. gaze sEMGd Motor commands Kinematics

SEM X X X

SSE X X X X

STE X X X X

TET X X X

SSP X X X

Table 5.1: Variations of the input and output for the different prediction configurations. sEMGp being the muscle ac-
tivity in the proximal Deltoid muscle, true gaze being the recorded gaze-direction, sEMGd being the muscle
activity in the distal muscles, motor commands being the lowdimensional motor commands, kinematics
being the position of the endpoint of the hand.

The colors and abbreviation of the variations follows throughout the rest of the report. Figure 5.13 depicts an overview
of the different configurations
The muscle activity in the SSP configuration was reconstructed from the predicted motor commands and the four
synergies, c.f. appendix section E on page 103 extracted from the training data.
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Figure 5.13: Overview of the prediction configurations. Shown only for the muscle activity as output. SEM (red) is
based on the muscle activity in the Deltoid muscle as input, and are used for prediction of muscle activity
in the distal muscles and kinematics. SSE (blue) is based on the muscle activity in the Deltoid muscle,
and simulated gaze-direction for the prediction of muscle activity in the distal muscles and kinematics.
STE (green) is based on the muscle activity in the Deltoid muscle and recorded gaze-direction, and used
for the prediction of the muscle activity in the distal muscles and kinematics. TET (purple) is based
on the recorded gaze-direction, and used for the predictionof the muscle activity in the distal muscles
and also the kinematics. Finally, SSP (orange) is based on the muscle activity in the Deltoid muscle
and recorded gaze-direction, and used for the prediction ofthe low dimensional motor commands. The
muscle activation level is reconstructed by use of the synergy matrix extracted from the training data and
the predicted motor commands.



5.2 Conducted experiments 53

Extraction of synergies and motor commands

The motor commands and muscle synergies were extracted fromthe muscle activation level from all muscles, both
proximal and distal muscles, from the training data. The extracted motor commands (training target), the muscle
activity (from the proximal muscles), and recorded gaze-direction served as basis for predicting the motor commands.
The muscle synergies and motor commands were extracted based on NMF as described in section 4.4.3 on page 38.
Figure 5.14 depicts the reconstruction performance as a function of number of synergies.
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Figure 5.14: Reconstruction performance of predicting the motor commands in the individual muscles (black, mean±
SD across the number of muscles) and for the concatenated data for all muscles (grey, mean± SD across
the three trials) as a function of number of synergies.

Since the aim was to predict the muscle activity in the individual muscles, 4 synergies were chosen to be extracted
based. Further details of this analysis is founs in appendix, chapter E.

Prediction performance

The predictions of the kinematics and muscle activations, and the reconstruction of the muscle activations from the
synergies and motor commands, were evaluated byR2, introduced in equation 4.17 on page 39. For both the prediction
of the muscle activation and the kinematics,R2 was both computed for the individual muscles and across all muscles,
i.e. for the muscle activations these were concatenated forall muscles and for the kinematics the position inx andy
was concatenated.
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Preliminary decoding results 6
The analysis in this chapter is the basis for the results outlined in the introduction in section 2.5 on page 19, and

served as basis for indicating whether the muscle activity from the proximal shoulder muscles in the Deltoid contained
sufficient information, to allow decoding of the muscle activity in the distal muscles of the forearm and the kinematics
of the hand (hand endpoint position).
In addition it was the aim to investigate the effect of addingeyetracking to the prediction basis. Hence these results
was the foundation for the evolvement of the main focus of this project.
Finally two methods of predictions were compared, namely one based on the Kalman filter and one based on the MLP
neural network.
The results obtained was based on data obtained by [95] as outlined in chapter 5.1 on page 41.

6.1 Prediction of kinematics and muscle activity

Figure 6.1 and 6.2 shows the evaluation (in means ofR2) of the predictions of the kinematics and the muscle activity
respectively utilizing both the Kalman filter and the MLP NN with and without simulated eyetracking. The results are
represented as mean across all seven subjects± SD. The MLP NN was configured according to the protocol in chapter
5.2 and was optimized with respect to both the kinematic and the muscle activity predictions.
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Figure 6.1: Comparison of predictions using the Kalman filter and the MLPNN of the kinematics in the single joint
movement based on the muscle activity in the three proximal deltoid muscles with (green and yellow
respectively) and without simulated eyetracking (blue andred respectively).

Prediction of the muscle activity seen on figure 6.1 (left) based on the single joint movement revealed that the MLP NN
using sEMG combined with eyetracking yielded the best prediction performance with anR2 up to 83% for Triceps long
head. This combination produced on average across all muscles an prediction performance of approx. 62% compared
to 33% for the prediction based on MLP using only sEMG. The Kalman filter yielded on average a prediction of the
muscle activity based on the sEMG only of approx. 21%, and with eyetracking included approx. 29%.
The prediction of the kinematics seen on figure 6.1 (right) was at approx. 100% on average across the two directions
for both of the prediction methods and with eyetracking included. Based on the sEMG only, the prediction using the
MLP NN gave a prediction performance of approx. 51% and the Kalman filter a prediction of 34%. The outcome of
the kinematics predictions were as expected, since the simulated eyetracking is almost similar to the true kinematics.
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Predictions of the muscle activity and kinematics for the multi joint movements seen on figure 6.2 (left and right
respectively) showed similar characteristics as the predictions during the single joint movement.
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Figure 6.2: Comparison of predictions using the Kalman filter and the MLPNN of the kinematics in the multi joint
movement based on the muscle activity in the three proximal deltoid muscles with (green and yellow
respectively) and without simulated eyetracking (blue andred respectively).

The muscle activity was on average across all muscles using the MLP NN based on sEMG only predicted with a
performance of approx. 33%, and combining the sEMG with the eyetracking yielded a performance of approx. 48%.
Predictions of the muscle activity based on the Kalman filterbased on the sEMG and sEMG and eyetracking yielded
on average approx. 20% and 25% respectively. The eyetracking also improved the prediction of the kinematics to
the multi joint movement yielding a performance of approx. 99% and 97% for the MLP NN and the Kalman filter
respectively.
From the predictions seen in figure 6.1 and 6.2 it was concluded that the MLP NN yielded the best predictions of both
the kinematics and the muscle activity. Furthermore it appeared clearly that the simulated eyetracking improved all
predictions compared to using only the sEMG.
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This chapter contains the results achieved from the conducted experiments.

7.1 Recorded data

The trials performed by subject 1 followed the experimentalprotocol in section 5.2.
Figure 7.1 depicts the recorded muscle activity for subject1 for all 12 muscles shown from in the time interval 200-400
s.
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Figure 7.1: Recorded muscle activity from trial 1.

From figure 7.1 the movements was seen as clear peaks in the muscle activity. Not all 12 muscles participated in the
different movements, e.g. as seen for Pectoralis. It was besides noted that the muscle activity did not reach the baseline
before a new movement was started seen in all cases, e.g. as was seen in the peaks for Triceps long head and in Biceps
medial head after approx. 225 s.
Figure 7.2 shows the recorded eyetrack from trial 1.
From figure 7.2 it was seen that the subject followed the hand endpoint very precise, since the 12 targets were clearly
identified from the eyetracking. The dense areas in the figurewere due to the 5 s pauses between each reaching
movement, and thus more fixation points were recorded duringthese periods.
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Figure 7.2: Recorded gaze-direction from trial 1.

7.2 Prediction of muscle activity

This subsection presents the predictions of the muscle activity in the nine distal muscles based on the different config-
urations introduced in the protocol in chapter 5.2 on page 43.
The evaluation of the predictions is depicted in figure 7.3 onthe facing page based on the different configurations
summarized in table 7.1. The evaluations were provided as mean± SD across the three trials.

Conf. Input Output

sEMGp True gaze Sim. gaze sEMGd Motor commands Kinematics

SEM X X X

SSE X X X X

STE X X X X

TET X X X

SSP X X X

Table 7.1: Variations of the input and output for the different prediction configurations. sEMGp being the muscle ac-
tivity in the proximal Deltoid muscle, true gaze being the recorded gaze-direction, sEMGd being the muscle
activity in the distal muscles, motor commands being the lowdimensional motor commands, kinematics
being the position of the endpoint of the hand.

STE based on the sEMG and the recorded gaze-direction variesfrom approximate 45.0%±4.8% in Brachioradialis
up to approx. 73.1%± 9.2% in Triceps long head with an overall prediction average of61.3%± 7.0% (average
of evaluations shown across all muscles ). Concatenation ofthe predictions across all muscles yielded anR2 of
83.5%±1.2.
SSE based on the simulated gaze-direction and the sEMG followed trend of the predictions based on the sEMG and
recorded gaze-direction. Predictions from 41.3%±7.8% (Brachioradialis) up to 81.3%±8.6% (Triceps long head)
was achieved. On average the muscle activity was predicted with an R2 of approx. 59.9%± 7.0%. Concatenation
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Figure 7.3: Evaluation of the predictions of the muscle activation in the 9 distal muscles. TheR2 is shown for all the
three trials (mean± SD) for each individual muscle for the predictions using thedifferent configurations.
SEM (red) was based on the muscle activity in the Deltoid muscle as input. SSE (blue) was based on the
muscle activity in the Deltoid muscle, and simulated gaze-direction. STE (green) was based on the muscle
activity in the Deltoid muscle and recorded gaze-direction. TET (purple) was based on the recorded gaze-
direction. Finally, SSP (orange) was based on the muscle activity in the Deltoid muscle and recorded gaze-
direction, and used for the prediction of the low dimensional motor commands. The muscle activation
level was reconstructed by use of the synergy matrix extracted from the training data (from all 12 muscles)
and the predicted motor commands.

resulted in an evaluation on 80.6%±3.6%.
SEM based on the muscle activation yielded predictions fromapprox. 8.8%±5.0% (Triceps long head) up to 59.2%
(Latissimus) and on average across all the muscles the muscle activity was predicted with anR2 of 38.4%± 7.0.
Predictions on the concatenated muscle activity yielded anR2 on 71.5%±2.2%.
TET based on gaze-direction revealed predictions from 13.2%±5.8% (Anconeus) up to 76.9%±6.9% (Triceps long
head). The average predictions gave anR2 of 35.5%±10.5% and predictions on the concatenated data resulted in an
R2 on 66.0%±3.6%.
SSP predicting the motor commands based on sEMG and eyetracking. Prediction results yieldedR2 values of 20.6%±
8.9% (Pectoralis) and up to 69.6%±12.9% (Triceps long head) and average across all muscles of 50.7%±7.1%. The
prediction of the concatenated data yielded anR2 of 84.7%±2.0%.
The evaluations revealed that the predictions using STE yielded the highest predictions in all muscles. SSP showed
a good performance in many cases, similar to the performanceof the STE. In Pectoralis, the SEM showed a better
performance than the SSP.
Only SSE showed close to a similar prediction performance inthe predictions, but since this was based on simulated
gaze-direction, this served as a comparison with the recorded gaze-direction. It was indicated from the simulated
gaze-direction, which was almost similar to the true endpoint position of the hand, that it was of crucial influence on
the predictions, in correspondence with the recorded gaze-direction.
Especially the predictions of the muscle activity in Triceps long head and Triceps lateral head based on STE, SSP,
and TET showed a highR2 and in the contrary showed a low performance fore SEM indicating that the predictions
of the muscle activity in these muscles were highly dependent on the gaze-direction and concurrently, the sEMG did
not contain much information about the reaching tasks, i.e.the muscles were active for all targets but contained not
enough information about the movements to be able to predictthe muscle activation. STE and SSP improved the
predictions with almost 36% for Triceps lateral head, and approx. 61% for Triceps long head.
In all cases it was seen that the sEMG and the gaze-direction yielded higher predictions when combined (STE and
SSP) than individually (SEM and TET).
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From these results it was indicated that the optimal configuration for predicting the muscle activity was based on the
sEMG and gaze-direction, and even suggested that the the muscle activity could be reconstructed satisfactory in many
cases based on the predictions of the motor commands.
Figure 7.4 depicts the predictions of all 9 distal muscles
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Prediction of muscle activity in 9 distal muscles

Figure 7.4: Prediction of muscle activity in all 9 distal muscles using STE (green) based on the muscle activity in the
Deltoid muscle and recorded gaze-direction. SSP (orange) was based on the muscle activity in the Deltoid
muscle and recorded gaze-direction, and used for the prediction of the low dimensional motor commands.
The muscle activation level was reconstructed by use of the synergy matrix extracted from the training
data (based on all 12 muscles) and the predicted motor commands. The predictions were compared to the
true muscle activity (grey).

From figure 7.4 it was seen that the muscle activity in all muscles were predicted quite well throughout the entire
period. The predictions captured most aspects of the muscleactivity. Both configurations tended to have some char-
acteristics prediction errors, including not capturing the extreme peaks of the muscle activity, e.g. in the Biceps lateral
head, Biceps medial head and Latissimus there are cases of underestimation and for Brachioradialis, and Pectoralis
overestimation was seen in some cases for the SSP configuration especially. This was noticeable for all cases where
the muscle activity did not reach the baseline before the onset of a new movement. During the quiescent periods, the
SSP configuration seemed to underestimate the activity, e.g. in Brachioradialis and Pectoralis.
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7.3 Prediction of motor commands

This subsection presents the results from the predictions based configurationSSP, implying the prediction of the motor
commands and reconstruction of the muscle activity. The extracted synergies from the training data and the predicted
motor commands are shown in figure 7.5-7.7 for trial 1-3 respectively.
7.5 showed the synergies and motor commands from trial 1. It was seen that the muscles were maximally active in
only one synergy at the time. E.g. Anconeus was active only inthe first synergy, responsible for the extension of the
forearm. Deltoid anterior was primarily active in the second synergy responsible for flexion of the shoulder. Deltoid
medial was active in the third synergy responsible for abduction of the shoulder.
Synergy 4 consisted of the primary extensor muscles TricepsLateral head, and Triceps long head.
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Figure 7.5: Extracted synergies and predicted motor commands normalized, corresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoid muscle and recorded gaze-direction, and used
for the prediction of the low dimensional motor commands. The muscle activation level was reconstructed
by use of the synergy matrix extracted from the training data(all 12 muscles) and the predicted motor
commands. Shown for trial 1.
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Trial two, depicted in figure 7.6, showed a similar pattern for the synergies as in trial 1. Synergy one with the Deltoid
anterior being mainly active. Synergy 2 with Deltoid posterior and medial being most active. Anconeus was mainly
active in the third synergy and synergy 4 consisted primarily of the active extensor muscles Triceps lateral and long
head.
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Figure 7.6: Extracted synergies and predicted motor commands normalized, corresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoid muscle and recorded gaze-direction, and used
for the prediction of the low dimensional motor commands. The muscle activation level was reconstructed
by use of the synergy matrix extracted from the training data(all 12 muscles) and the predicted motor
commands. Shown for trial 2.
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Trial three, shown in figure 7.7 showed similar characteristics to the first two trials, showing synergy 1 with Deltoid
medial and anterior being mainly active, synergy 2 with Anconeus being mainly active, and synergy 3 with the Deltoid
medial and anterior being most active, and synergy 4 with Triceps lateral head and long head being mainly active.
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Figure 7.7: Extracted synergies and predicted motor commands normalized, corresponding to predictions using con-
figuration SSP based on the muscle activity in the Deltoid muscle and recorded gaze-direction, and used
for the prediction of the low dimensional motor commands. The muscle activation level was reconstructed
by use of the synergy matrix extracted from the training data(all 12 muscles) and the predicted motor
commands. Shown for trial 3.

7.3.1 Summary

The synergies from the three trials revealed very similar patterns and it appeared as if the synergies could be attributed
to separation of movements, e.g. flexion, extension, or abduction as suggested by e.g. [95].
Furthermore it was indicated that one synergy was active during quiescent segments, e.g. synergy 2 in trial 2 with the
Deltoid posterior and medial being most active, since theseare primarily responsible for abduction of the shoulder.
From the synergies it was revealed that the primarily activemuscles were Anconeus, medial, anterior and posterior
part of the Deltoid, Triceps long head and Triceps lateral head, and the Pectoralis.

7.4 Prediction of kinematics

This subsection presents the prediction of kinematics corresponding to the endpoint of the hand (x- andy-coordinate
for marker 4).
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The evaluation of the predictions is depicted in figure 7.8 based on STE (green), SSE (blue), SEM (red), TET (purple)
as mean± SD across the three trials.
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Figure 7.8: Evaluation of kinematics predictions. TheR2 is shown for all the three trials (mean± SD) for each
movement direction. SEM (red) was based on the muscle activity in the Deltoid muscle as input. SSE
(blue) was based on the muscle activity in the Deltoid muscle, and simulated gaze-direction. STE (green)
was based on the muscle activity in the Deltoid muscle and recorded gaze-direction. TET (purple) was
based on the recorded gaze-direction.

SEM showed anR2 of 83.4%±4.9 in x and 79.4%±4.1 in y, and TET showed an prediction performance of 83.4%±
4.7 in x and 61.0%± 14.9 in y, whereas STE yielded an prediction of 83.4%± 4.9 in x and 79.4%± 4.1 in y. As
expected, SSE yielded a very good prediction (99.7%±0.0 in x and 99.6%±0.1 in y), since this basically equals the
true kinematics, though with noise added.
gaze-direction alone did show a prediction of 55% better inx and 30% better iny compared to the predictions achieved
with the sEMG alone.
It was seen that the combination of gaze-direction and sEMG (STE) outperformed the predictions based on the signals
individually. Additionally the standard deviation was decreased compared to the SEM in bothx andy and than TET
in y.
Figure 7.9 shows the predicted position (inx andy respectively) for trial 1 utilizing SEM, STE, and the true position.
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Figure 7.9: Prediction of position inx (left), andy-direction (right). SEM (red) was based on the muscle activity in
the Deltoid muscle as input. STE (green) was based on the muscle activity in the Deltoid muscle and
recorded gaze-direction. TET (purple) was based on the recorded gaze-direction. The configurations was
compared to the true position (grey).

Left shows for SEM that the prediction follows the trend of the true position, but throughout the period, the estimate
appeared noisy.
STE in the contrary showed a better performance, e.g. all peaks were identified, though in some cases the position
was predicting excessive noisy in the negative decreasing peaks, which also characterized some periods with the TET
configuration. Both STE an TET follows the overall trend of the true signal, and especially the rising peaks and the
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first falling peak were well predicted. From figure 7.9 (right), the position based on SEM was followed somewhat the
true position, not reaching the peaks of the positions and showed sporadically peaks in the prediction. The predictions
based on STE showed a trend close to the true position, but in some cases the position was predicting excessive noisy.

7.5 Summary

From the above observations it was clear that the muscle activity could be predicted very well based on the muscle
activity from the deltoid muscle in combination with eyetracking. Clearly it was revealed that the inclusion of an extra
modality, i.e. using both sEMG and eyetracking, indeed improved the prediction performance of the muscle activity,
compared to using only one modality, i.e. sEMG or eyetracking separately. Likewise, predictions of the motor com-
mands (SSP) and reconstruction of the muscle activity yielded in many cases a similar performance as achieved using
both modalities (STE).
In general the predictions showed that the overall trend of the true muscle activity was followed well for all muscles.
It was seen that the EMG did not reach the baseline in multiplemuscles before a new movement is started and in these
intervals the muscle activity was often under estimated.
Similar for the prediction of the kinematics, adding an additional modality, clearly improved the prediction perfor-
mance compared to predictions based on sEMG only and minor compared to predictions based on the eyetracking
only.
The predictions of the kinematics revealed somewhat noisy estimates both based on the sEMG or eyetracking individ-
ually.
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Discussion 8
The overall objective of this work was to contribute to the development of an upper-limb FES and a FET system
applicable for clinical use. The systems should be able to restore abilities regarded critical for independent living,
aiming to provide the possibility to improve living for high-level tetraplegic in case of FES, and for individuals with
reduced voluntary control of muscles, e.g. due to a prolonged fixation of the joint, in case of FET.
Specifically, a configuration was proposed to predict the users intent based on signals recorded non-invasively. In
addition the possibility of simplifying the control of electrical stimulation was investigated, applicable for stimulation
in FES and FET as depicted in figure 8.1

Paralyzed user

Muscle activity
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Gaze-direction
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commands
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Muscle 
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Figure 8.1: The users intent expressed as the muscle activity in the distal muscles was decoded based on the muscle
activity in the proximal muscles, and the control of movement was simplified by muscle synergies.

The users intent was from preliminary data in 7 subjects predicted based on surface EMG and simulated gaze-direction,
which indicated a clear improvement compared to predictions based on the muscle activity only. A Multi Layer Per-
ceptron neural network using the Levenberg-Marquardt algorithm for training outperformed the predictions achieved
with a Kalman filter.
Based on non-invasively recorded EMG from the Deltoid muscle in combination with gaze-direction, it was shown,
that the muscle activation level in 9 distal muscles in the arm, could be predicted continuously from one subject. Fur-
ther it was shown, that the muscle activity in the 9 muscles could be reconstructed based on a low dimensional muscle
activation pattern, indicating a simplified approach for the stimulation control in FES or FET. This low dimensional
approach was based on muscle synergies, extracted by non-negative matrix factorization. Muscle synergies have been
defined as being sets of muscles whose relative activations are believed to be neurally predetermined.
The accuracy of the predictions in the main part of the muscles was comparable to what others previously have shown
for the prediction of the muscle activity based on intracortical recordings [119], and for prediction of kinematic signals
[140, 169]. Though it should be noted that in [119] the EMG envelopes had a bandwidth of 10 Hz compared to 1 Hz
in this work, which was approx. similar to that of the kinematic studies.
TheR2 reported for the concatenated data across all muscles yielded substantially higher performance, letting the most
active muscles influence the performance measure mostly.
The hand endpoint position was likewise predicted in one subject yielding a clear improvement by combining the mus-
cle activity and gaze-direction compared to the predictions based on the individual signals. The predictions showed a
performance in the range of what previous has been reported based on intracortical recordings.

Selecting the appropriate muscle activation levels to achieve a given task is extremely complex. [41] have previ-
ously selected the set of muscles based on the MSE that shouldserve as controller input for stimulation. The approach
taken in this work was related to a physiological strategy for the control of movements of the arm, which is believed
to be the natural approach of the CNS to simplify the complexity in the control of movements, namely by spinally
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organized muscle groupings, which can be controlled as units [159, 25, 27].
The approach of specifying a low-dimensional approach has the advantage of being able to control individual D.O.F
compared to e.g. predetermined trajectories based on limb kinematics, in which fixed trajectories are based on kine-
matic a coupling between D.O.F, i.e. where at least one jointfollows another joint in some predetermined manner
[89].
In addition, direct prediction of muscle activity allows a more extensively range of movements, due to the substantial
challenge associated with the identification of the muscle stimulation pattern to elicit specific movements [3] from arm
kinematics, e.g. [109, 60, 51, 11, 29]. In endpoint control strategy, the kinematic control relies on the assignment of
resolving joint positions corresponding to the endpoint trajectory. Dynamical control relies on finding the joint torques
that will cause the arm to follow a specified trajectory [89].

Several studies in the area of muscle synergies have reported, that a set of basis synergies was capable of describ-
ing the observed data sets. Only a few have reported, that theextracted synergies formed a predictive framework,
i.e. being able to describe movement tasks others than from which the synergies were extracted [95, 1]. This work
indicates that the extracted synergies were capable of reconstructing the muscle activity during a variety of multi joint
reaching movements, similar to those from which the synergies were extracted.
An attractive approach would be to investigate to what extend muscle synergies extracted from healthy subjects could
be applied for control in paralyzed subjects, and even to what extent synergies extracted from one side of a subject
could reconstruct the muscle activity in the opposite site.This would first and foremost shed light on the generality
and robustness of the synergies for the predictions of muscle activation patterns of new movements, and secondly it is
believed to find its usefulness in FES and FET applications.

The current work investigated the prediction of the muscle activity, which was accomplished by computing the map-
ping between multiple muscle activation patterns in the proximal shoulder muscle and those in the distal arm muscles.
This mapping was utilized in a decoder applied on offline data, which was not part of the mapping construction, and
validation was evaluated by the coefficient of determination. A similar prediction in real time could serve as basis for
electrical stimulation.
Such a system would thus utilize what is believed to be natural muscle synergies and integrate remaining voluntary
control with FES. Hence the user should simply attempt to move their hand and let the gaze-direction follow a given
trajectory to a location, to which the controller should respond with the appropriate stimulation levels to the paralyzed
muscles, grouped as muscle synergies.
The results presented in this work did not state exactly how the prediction and low-dimensional control of stimulation
are implemented in a FES and FET system. However, the potential of the methods has been indicated.

In general the results should be considered with a note of caution, due to the fact that this was a proof of concept,
based on 1 subject only. The robustness of the presented methods should be tested, i.e. validation should be based on
a more substantial data foundation both for inter- and intra-subject signal variability.
Also, in this work the performance of the methods was evaluated based on data from one healthy subject, with an
implicit assumption that the characteristics will carry over to a fundamental different population. It is expected that
differences exists in the muscle activation patterns between healthy and movement-impaired subjects. Furthermore,
the predictions were based on the muscle activity recorded from the proximal Deltoid muscles, which could be affected
in high-level tetraplegics yielding a poorer range of motion [57]. Hence decoding based on the specific target group is
a necessity.
Additionally the performance of the predictions should be applied as control signal for the stimulation in a FES and
FET and resulting kinematics should be evaluated. Initially this could be performed on a musculoskeletal model of
the upper extremity. A model as developed by e.g. [11] could facilitate testing the electrical stimulation based on the
predicted intend of the user. This model can simulate different degrees of SCI and can take muscle denervation, disuse
atrophy, and limited muscle activation due to electrode placement into account. This testing could provide insight into
the effect on the kinematics caused by the electrical stimulation based on the decoded intent.
Future work should additionally demonstrate the capability of individuals to accurately control the muscle synergies
in a real-time FES/FET application.
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Any increase in the reconstruction accuracy can be of importance when the signal has to be used for control. Even
modest improvement can show up to have disproportionate importance for a control application. Hence it is suggested
that further improvements of the decoding should be pursuedboth for the decoding method and recordings.
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Literature overview A
This chapter contains an overview of the literature, which deals with different decoding methods based on single and
multiple disparate sources for non-invasively estimationof the human motor intention. This chapter constituted the
point of departure for selecting the methods and signals fordecoding of the users intent.
This is not a complete overview of the literature within thisarea, since decoding is used in a variety of fields, e.g.
prediction of discrete classes of movement, continuous movement, level of muscle activity, finger movements, arm
movements, joint torque etc.

English-language articles were identified in a search of Google Scholar and PubMed for the following key words
• Inference of hand movements

• Decoding arm movement EMG

• Decoding arm trajectory

• Decoding arm kinematics

• Decoding hand trajectory

• Decoding hand kinematics

• Decoding hand trajectory EMG

• Classification of movements from EMG

• Multimodal decoding kinematics

• Multimodal decoding kinematics EMG

• Decoding arm kinematics eye-tracking

• FES eye tracking

• Hand kinematics eye tracking

• Hand kinematics eye tracking FES

• Motor intention Eye tracking FES

• Decoding motor intention Eye tracking FES

• Eye-tracking hand trajectory

Articles based on sEMG were selected.

[119] have predicted the EMG signals recorded from four arm and hand muscles (Medial deltoid, biceps, triceps,
and above the flexor musculature for the hand) from 32 channelintra-cortical recordings from individual neurons
(from M1) in two male rhesus monkeys during button pressing (required the monkey to reach with its left arm from a
hold position at its side to one of four buttons) and prehension movements (relatively unrestricted reaching movements
to grasp small food rewards, prehension tasks. The reaches were made within a workspace in front of the monkey
subtending 80-90◦ and limited by the length of the monkey’s reach. The surface EMG were predicted with anR2 of
75-80% based on linear filtering.
[5] have based predictions of shoulder and elbow kinematics(angle, angular velocity, and angular acceleration) of
all four joint angles (elbow flexion-extension and shoulderhorizontal flexion-extension, elevation-depression, and
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internal-external rotation) on the sEMG (six shoulder and elbow muscles) from anterior deltoid, middle deltoid, poste-
rior deltoid, biceps, triceps, and the clavicular portion of the pectoralis from six able-bodied, and in the C5 paralyzed
the paralyzed triceps and clavicular pectoralis were replaced by the upper trapezius and middle trapezius muscles, with
an RMS error of less than 20◦ during drawing, reaching and serial single joint movements. The decoding was based
on a developed time-delayed artificial neural network (TDANN).
[69] have reconstructed EMG signals from six muscles corresponding to four muscles performing flexion/extension,
abduction/adduction of the shoulder joint (deltoid-clavicular part, pectoralis major, trapezius, latissimus dorsi) and
from two muscles responsible for flexion/extension of the elbow joint (biceps long head and triceps long head) from
neuron activity recorded from a stainless steel recording chamber (42 points of microelectrode entry resulting in ap-
plying recordings from 18 neurons) M1 by the use of linear summation of the neuron activities during button pressing
(reach its arm to correct target buttons on a front panel. Theanimal always performed the task with its left arm.
From the reconstructed EMG they reconstructed the joint angles based on an three layer ANN model (The units in the
first and third layer were linear functions, and the second layer units were nonlinear sigmoid functions) trained with
trained with a back-propagation algorithm. The correlation coefficients for the elbow (TRL and BIL) and shoulder
(PMJ, TPZ, DLC and LTD) were about 0.934 and 0.986, respectively. The reconstructed trajectories of the hand and
elbow position showed a correlation with the actual arm movement on average about 84% (correlation coefficient).
[3] have estimated the levels of muscle activity (EMG) during a wide range of free movements based on kinematic
information of the upper limb (EMG). The method is based on conditional distributions based on hand kinematics
from free arm movement and associated sEMG from 12 muscles used for the control of arm movement (serratus
anterior, anterior deltoid, posterior deltoid, pectoralis major, latissimus dorsi, teres major, biceps brachii, brachialis,
brachioradialis, triceps brachii, extensor carpi radialis longus, and flexor carpi radialis) from one subject. From these
conditional probability distributions the patterns of muscle activity was estimated during eight different movement
tasks in five subjects. On average approx. 40% of the variancein the actual sEMG signals could be accounted for in
the predicted EMG signals.
[139] predicted patterns of muscle activity (EMG) needed toproduce various types of desired finger movements (re-
peated tapping motions similar to key presses, pushing movements involving simultaneous extension and flexion of
finger joints). sEMG was recorded from from main muscles thatcontrol flexion and extension of the third digit, i.e.
the digit 3 compartments of the flexor digitorum profundus, flexor digitorum superficialus, and extensor digitorum
for training. Profiles of the predicted activity were used todrive frequency modulated muscle stimulators to evoke
multi-joint finger movements. A probabilistic approach wastaken based on Bayes’ theorem. Movements generated
by electrical stimulation and desired movements yielded RMS errors between 18-26%.
[63] have extracted four different classes of patterns fromsEMG signals based on a discrete Hopfield network used to
extract features (the first time-series parameter and the signal power) from the EMG and a multilayer perceptron net-
work was used to classify the feature set. The movements wereelbow extension, elbow flexion, wrist pronation, and
wrist supination. A two-layer perceptron neural network was capable of classifying all the sets of features correctly.
[94] estimated the joint torque from sEMG based on an ANN (learning system based on feedback error learning
schema) and used this as an input to a dynamic hand model to reconstruct the joint angles based on four channels of
sEMG recorded from the forearm (radial side, dorsal side, ulnar side, and palmar side). The joint angles and the sEMG
signal was applied in a prosthetic hand to enable grasping/opening, wrist flexion/extension, pronation/supination. The
accuracy is not quantified but from the position figure comparing the estimated position [rad] to the real measure po-
sition it is seen that the estimate follows the original movement.
[35] have developed a EMG-controlled omnidirectional device that is based on a Recurrent Log-Linearized Gaussian
Mixture Network using EMG signals. The neural net is based ona hidden Markov model. The idea is to express
infinitely many movement directions of a pointer as combinations of probabilities of movement in preset reference di-
rections. They apply an impedance model (inertia and viscosity is included) to make the pointer operate in accordance
with the physical laws that humans experience on a daily basis. sEMG was recorded from 7 channels (6 channels
from the right forearm at extensor carpi radialis muscle, extensor carpi radialis muscle, extensor carpi ulnaris muscle,
extensor carpi ulnaris muscle, flexor digitorum superficialis muscle, and proper extensor indicis muscle and 1 channel
from the left arm at (extensor carpi radialis muscle. The neural net was trained by associating the movement direction
of the pointer with the bending direction of the right wrist.
The error (in rad.) between the movement direction of the pointer estimated from the EMG signals measured and the
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direction instructed to the operator were calculated as theevaluation index (the effect of the length of the time-series
during training and validation was evaluated as well). The developed method showed the best accuracy of the esti-
mated direction (average error as low as 0.072 rad.).
[52] discriminated between elbow flexion and extension based on one channel of sEMG signal and the application
of multilayer perceptron neural network (two-layer Time-Delay neural network for predictor modules in network).
The identification rate for flexion and extension signals varied from 82%-100%. It was concluded that the modular
neural network could identify limb functions when presented with a single channel surface EMG signal. Moreover the
identification rate exceeded 96% when the length of signal was at least 150 sampling points.
[53] developed a respiration-controlled multichannel FESsystem for controlling upper extremities in high cervical
cord injury, C4 tetraplegics. Based on inspiration and expiration using two respiratory sensors predefined movements
were elicited and the pattern of muscle activity associatedwith a particular movement were obtained from normal
subjects to identify patterns of muscle activity associated with a particular movement. The multichannel stimulation
patterns for control of the multi-joint hand-wrist-elbow system were created by trapezoidal approximation method of
the EMG activities. It was shown that a C4 patient could achieve versatile control of the upper extremities.
[97] presented a pattern discrimination method based on sixchannels of six channels sEMG recorded from electrodes
attached at the forearm and upper arm (Flexor Carpi Radialis(FCR), Extensor Carpi Ulnaris (ECU), Flexor Carpi Ul-
naris (FCU), Biceps Brachii (BB), Triceps Brachii (TB)) in five subjects (three healthy and two amputees). They used
a recurrent Neural network based on a hidden Markov model. Six different motions of the wrist (flexion, extension,
supination, pronation) and hand grasping and opening) werediscriminated continuously. A discrimination rate of up
to 99.06% were shown.
[70] reconstructed human arm movement from sEMG (deltoid-clavicular part, deltoid-acromial part, deltoid-scapular
part, pectoralis major, and teres major, for double-joint muscles: biceps-long head and triceps-long head, for flex-
ion/extension of elbow joint: brachialis, triceps-medialhead, and triceps-lateral head) using a forward dynamics
model acquired by an artificial neural network within a modular architecture. Specifically, the dynamic joint torques
at the elbow and shoulder were estimated for movements in thehorizontal plane. The aim was to construct a com-
plete forward dynamics model of the human arm, which affordsaccurate estimation of movement trajectories from
the input of physiological signals (sEMG). The method was based on artificial neural network that learned the non-
linear functions relating physiological recordings of theEMG signals to the simultaneous measurement of two-joint
planar movement trajectories. The EMG signal was input and end-point trajectories was the output. They treated the
EMG signals as a record of the motor commands to the muscles, since the motor neuron activity could not be directly
measured. Thus, the EMG activity was considered a reasonable reflection of the firing rate of a motor neuron. The
trajectory was computed at each time step by predicting the dynamic torque by the neural network model from the
position and velocity values at the current time step and thepast 500 ms of EMG data. The predicted torque was used
as control input to the forward dynamics equation. Coefficient of determination for position data was 0.948.
[29] investigated the mapping between arm kinematic variables and spatiotemporal patterns of EMG activity recorded
from pectoralis major, anterior deltoid, posterior deltoid, biceps brachii and triceps brachii while the subject performed
a three-dimensional movement. More specifically they looked at ’reach-to-grasp-with-return’, at the wrist trajectories
in the horizontal plane. They showed that the Back Propagation Through Time-ANN was able to learn the non-linear,
complex mapping between EMG signals from selected muscles at the shoulder and elbow joints and the corresponding
trajectory patterns. The BPTT-ANN was able to reproduce movement trajectories well based on the corresponding
EMG patterns. Mean RMS was 0.092± 0.016. This meant that EMG signals from the shoulder and arm contain a
significant, maybe redundant, amount of information about wrist movement kinematics.
[18] have proposed an approach based on dynamic recurrent neural networks to identify the relationship between
sEMG recorded from seven muscles (posterior deltoid external and internal, anterior deltoid, median deltoid, pec-
toralis major superior and inferior, and latissimus dorsi)and the arm kinematics (x and z coordinates) during the
drawing of the figure eight with the right arm extended. The method was based on artificial dynamic recurrent neural
networks to map the raw sEMG data of the figure eight movement onto the corresponding kinematics of the arm. It is
concluded that the method performance is good and the simulated curve reproduced all the particularities of the human
complex movements, whatever the initial direction of the movement. In addition the robustness of the method was
tested by applying perturbations in the range of 20% to the EMG signals. This resulted in a difference in the position
on less than 6%. The results showed that DRN’s are successfulin identifying the complex mapping between full-wave



90 Literature overview

rectified EMG signals and upper-limb trajectory.
[153] presents preliminary work where 12 individuated flexion and extension movements were decoded with an accu-
racy higher than 98% based on sEMG signals (collected from 32bipolar electrodes placed mainly on an able-bodied
individual’s forearm performing) from natural hand and finger movements. The method was based on ANN (Non-
linear decoding filters were designed using multilayer, feed-forward Artificial Neural Networks). Feature extraction
was based on four time-domain EMG features; Mean of the absolute value, Willison Amplitude, Variance, and Wave-
form length.
[65] has developed an approach to differentiate between eight different hand movements (hand opening and closing,
pinch, thumb flexion, wrist radial flexion and extension and wrist flexion and extension) from recorded sEMG signals
(extensor digitorum, extensor carpi radialis, the palmaris longus and the flexor carpi ulnaris). Feature extraction is
based on three types of feature representations; time domain (mean absolute value (MAV), zero crossing (ZC), Wilson
amplitude (WAMP), slope sign changes (SSC) and coefficientsof autoregressive model (AR)), time-frequency (short
time Fourier transform (STFT), wavelets transform (WT), and wavelet packets transform (WPT)) domain and their
combination. Dimensionality reduction technique was applied to simplify the task of the classifier (class separability
(CS) and principle component analysis (PCA)). Classifiers were based on ANN and fuzzy inference system. Combined
features with PCA dimensionality reduction and FIS as classifier provided the best results (83% correct classification
on average).
[142] presents results from a pilot study. Initially they showed offline classification accuracy of 92-98% for a eight-
class classification problem from static sEMG signals recorded from the forearm muscles (brachioradialis, extensor
carpi ulnaris, promnator teres, extensor communis digitorum, flexor carpi radialis, anconeus, pronator quadratus).
They used simple features (rms values over windows) and continuously classify windows of data while the subject
maintain a static hand gesture. In addition they used linearsupport vector machines (SVM) for classification.
[143] show how a dynamic Bayesian network can be used to inferprobability distributions over brain- and body-states
during planning and execution of actions. This approach allowed continuous tracking and prediction of internal states
over time, and to generate control signals based on entire probability distributions over states. They modeled the dy-
namics of hidden brain- and body-states using a Dynamic Bayesian Network that was learned directly from EEG and
EMG data. [143] analyzed left versus right hand movement task and presents preliminary results showing supervised
learning and Bayesian inference of hidden state for a dataset containing simultaneous EEG and EMG recordings. 8
EEG channels were recorded around the motor area of cortex (C3, Cz, C4, FC1, FC2, CP1, CP2, Pz). An error of 15%
was achieved by the use of the EEG to discriminate between left and right hand movement.
[17] presents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the four
channels of EMG during six distinct limb motions (wrist flexion, wrist extension, supination, pronation, hand open,
and hand close). The sEMG was recorded with four channels placed equidistant from the wrist and elbow, with an
equal spacing around the forearm. They used a hidden Markov model to process four channels of EMG, with the
task of discriminating six classes of limb movement. The method allow a continuous stream of class decisions to be
delivered to a prosthetic device. The method based on HMM provided greater accuracy than a multilayer perceptron
neural network. The classification of continuous sEMG signals resulted in an average accuracy of 94.63% using the
HMM method compared to the MLP method which had an accuracy of93.27%, both on average.
[54] introduced and evaluated the use of Gaussian mixture models (GMMs) for multiple limb motion classification
using continuous myoelectric signals (recorded over the wrist flexors and extensors equidistant from the elbow and
wrist). The GMM was compared to three commonly used classifiers; a linear discriminant analysis, a linear percep-
tron network, and a multilayer perceptron neural network. Six limb motions (wrist flexion, wrist extension, forearm
supination, forearm pronation, hand open, and hand close) were performed and the sEMG were recorded by electrodes
placed on the forearm above the wrist flexors and extensors, and on each side of the forearm. The GMM showed an
average (across the 12 subjects) classification error of 3.72%.
[56] presented an identification method of finger motions (middlefinger flexion/ extension, indexfinger extension/ flex-
ion, thumb extension/ flexion) using the wavelet transform of multi-channel EMG signals. The sEMG (recorded from
16 channels from surface electrodes attached at the upper arm and fore arm, corresponding to the flexor muscles in-
cluding flexor carpi ulnari and flexor digitorum superficialis, the extension muscles including extensor digitorum and
extensor pollicis brevis) was analyzed based on the wavelettransform with features computed as the variance, maxi-
mum and mean absolute value of the wavelet coefficients. Classification was based on ANN to identify finger motion.
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Correct classification of finger movement above 80% was achieved.
[64] introduced a new multiwavelet function for sEMG signal(2 channels, electrodes positioned at the forearm under
the elbow) intended for tasks that involve hand movement recognition. Eight unique classes of hand motions (hand
opening and closing, pinch, thumb flexion, wrist radial flexion and extension and wrist flexion and extension) were
classified based on 2 channels of sEMG recordings from electrodes positioned at the forearm under the elbow. Local
extrema and zero crossing was used as DWT features. Average classification accuracy of up to 87% was achieved by
the proposed multi-wavelet function.
[165] presented an optimal wavelet packet method based on Davies-Bouldin criterion and relative energy representa-
tion of wavelet packet, which is applied to sEMG signals classification. Two channels of sEMG were recorded (above
flexor carpi radialis and over the extensor carpi radialis longus) from ten normally limbed subjects. Different move-
ments were classified (forearm pronation, forearm supination, hand close and hand open) by the used of the optimal
wavelet packet for feature extraction and a neural network based on error backpropagation rule for classification. PCA
was used for dimensionality reduction. A classification of 93.75% was achieved.
[164] developed a finite state algorithm used to operate a mobile robot and applied to EMG-based control. Two chan-
nels of sEMG were recorded, one from each biceps from five healthy subjects. Nearest Neighbor statistical algorithm
were used to classify The four states, "stop", "forward", "left turn" and "right turn" based on the features square mean
value, standard deviation and kurtosis index. An average classification error of 3.5% was achieved.
[166] presented a sEMG based classification system based on an three layer ANN based on a modified Backprop-
agation algorithm and AR modeling for teleoperating a dexterous robot hand. Six different finger motions (thumb
extension, thumb flexion, index finger extension, index finger flexion, middle finger extension, and middle finger flex-
ion) were classified from the sEMG. Four channels of sEMG wererecorded from extensor digitorum, extensor pollicis
brevis, flexor carpi ulnaris, flexor digitorum superficialisfrom four healthy subjects. A classification rate above 77%
were achieved by all subjects.
[31] presented an ongoing investigation of dexterous and natural control of upper extremity prostheses based on sEMG.
A continuous classifier was constructed and applied in a four-class problem in hand and wrist control (wrist flexion,
wrist extension, radial deviation and ulnar deviation) based on recordings from four channels of sEMG from the fore-
arm above the wrist flexors and extensors, and on each side of the forearm, roughly equidistant from the elbow and
wrist from 12 normally limbed subjects. The different classes were classified from a feature set consisting of time
domain statistics, i.e. the number of zero crossings, the waveform length, the number of slope sign changes, and the
mean absolute value in each analysis window. Classificationwas based on linear discriminant analysis. Classification
error around 7% was achieved.
[115] used a combination of a K-nearest neighbor classifier and a genetic algorithm for feature selection from sEMG
signals recorded from two channels at the flexor muscles of the right forearm in four healthy subjects. Average classi-
fication error rate of approximately 2% was achieved.
[130] proposed a control scheme for a multifunctional EMG control of hand prostheses. A transformation matrix was
used to reduce the feature dimension by linear aggregation.Two channels of sEMG were recorded from two subjects
with lower limb deficiencies and two channels were recorded from two subjects with upper limb deficiency (recorded
from forearm flexors in the first group and from biceps and triceps in second group) and two subjects with upper
limb deficiency (recorded from biceps and triceps). Different classifiers (approximate maximum likelihood classifier,
hierarchical classifier, fuzzy classifier, multilayer perceptron, ) were evaluated based on misclassification rates.
[107] proposed a real-time learning method for a EMG prosthetic hand controller for discrimination between 10 dif-
ferent hand motions (wrist motions: supination, pronation, flexion and extension, hand motions: 2-5th fingers flexion,
2-5th fingers extension, thumb flexion, thumb extension, 4-5th fingers flexion, and 2-3rd fingers extension).Two chan-
nels of sEMG were recorded, one from each of the forearms. They use the Gabor transform and mean absolute value to
extract information from the EMG. Feed- forward neural network was used as the nonlinear function for the adaption
unit (to learn the characteristics of the operators), i.e. the classifier. Two channels of sEMG were recorded from three
normal subjects. An average (for all subjects for the last three trials) classification rate of 91.5% was achieved.
[32] explored the efficacy of feature sets derived from time-frequency representations based on Hudgins’ time domain
features, and those derived from short-time Fourier transform, the wavelet transform, and the wavelet packet trans-
form. Four classes of myoelectric signal patterns were collected from the biceps and triceps (flexion and extension
of the elbow, and pronation and supination of the forearm) from 16 healthy subjects. The sEMG was recorded from
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four channels from the forearm above the wrist flexors and extensors, and on each side of the forearm. Dimensionality
reduction was performed by PCA and CS. An average classification error of 6.25% was achieved.
[67] performed signal processing of four channels sEMG signals (four channels placed on the forearm without fol-
lowing any strict pattern) using a linear multiple regression model top predict the joint angles (multi-finger angles
corresponding to the different motions) to discriminate between different motions (grip, open, and chuck of a hand). It
was shown that the discrimination of grip, open, and chuck motions was possible. The average tracking error between
estimated and measured joint angles was within less than 2◦ for a dynamic target angle and within less than 5◦ with a
dynamic target angle.
[41] trained an NN controller to output an appropriate levelof triceps stimulation based on the remaining voluntary
controlled upper extremity muscles, i.e. shoulder musclesand elbow flexor, in C5/C6 SCI subjects. The aim was to
allow subjects to generate and control endpoint force vectors unachievable without stimulation of the triceps. Elbow
extension moments were computed based on a biomechanical model (position of humerus and girdle and external load
on humerus was input, muscle forces were output) for a specific subject and goal isometric endpoint force vector that
the subject encountered during data collection. The elbow moments were converted to stimulation levels by experi-
mentally measuring elbow moment as a function of stimulus level using an elbow moment transducer.
The NN was trained with the EMG signals as input and the triceps stimulation levels used to obtain the goal force
vector as output. The NN consisted of one hidden layer (5 neurons with tansig transfer function) and one output layer.
It was concluded that the synergistic controller produced larger forces compared to no stimulation for endpoint force
directions predicted to require triceps stimulation. The subject tracked isometric force vectors equally well with each
control method (synergistic and constant stimulation), but used 35, 20, and 36% less stimulation over the x, y, and
z-axes respectively with synergistic control compared to constant stimulation.



Upper limb movement B
B.1 Muscles responsible for arm reaching

This section describes the shoulder and elbow muscles (large superficial flexor and extensor muscles of the upper
limb) responsible for reaching movements in the horizontalplane. The muscles are listed in table B.1 with indication
of name and function. Figure B.1 shows the relevant anatomy for these muscles.
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Figure B.1: Flexor and extensor muscles of the right arm responsible forreaching movements. Left: posterior view,
center: lateral, right: anterior view. Modified from [19]

Name Function

Shoulder

Deltoid medial Abduction of shoulder
Deltoid posterior Abduction, extension (and transverse extension), and lateral ro-

tation at shoulder (rotary movement around the longitudinal axis
of the bone away from the center of the body; turning the upper
arm outward)

Deltoid anterior Abduction, flexion (and transverse flexion), and medial rotation
at shoulder (rotary movement around the longitudinal axis of the
bone toward the center of the body; turning the upper arm in-
ward)

Chest

Pectoralis flexion and extension at shoulder, transverse adduction and flex-
ion, adduction and extension

Back

Latissimus dorsi shoulder adduction, extension, transverse extension, medial ro-
tation
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Upper arm

Biceps brachii, long head (lateral) Flexion at elbow and shoulder, supination
Biceps brachii, short head (medial) Flexion at elbow and shoulder, supination
Brachialis Flexion at elbow
Triceps brachii, long head Extension at elbow, extension and adduction at shoulder
Triceps brachii, medial head Extension at elbow
Triceps brachii, lateral head Extension at elbow

Forearm

Anconeus extension of forearm at elbow
Brachioradialis flexion of the forearm at elbow (when forearm is semi-pronated)

Table B.1: Primary muscles for reaching movements in the horizontal plane.

B.2 Remaining movement abilities under different levels ofinjury

Table B.2 provides an overview of the abilities that remainsunder different levels of injury (included from C3-C6) .

Level of injury Abilities

C1-C3 C3-limited movement of head and neck

C3-C4 Usually has head and neck control. Individuals at C4 level may
shrug their shoulders

C5 Typically has head and neck control, can shrug shoulder and has
shoulder control. Can bend his/her elbows and turn palms face
up

C6 Has movement in head, neck, shoulders, arms and wrists. Can
shrug shoulders, bend elbows, turn palms up and down and ex-
tend wrists

Table B.2: Remaining movement abilities under different levels of injury



Photos of experimental setup C
This chapters contains pictures of the conducted experiment.

C.1 Equipment

The equipment used in the experimental setup is shown on figure C.1

Figure C.1: Experimental equipment. Hand load, EMG amplifier, high speed cameras and eye-tracker
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C.2 Montage of sEMG electrodes

The montage of the sEMG electrodes is shown in figure C.2

Figure C.2: Montage of the sEMG electrodes.

C.3 Placement of reflective markers for motion capture

The placement of the reflective ball markers is shown in figureC.3
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Figure C.3: Placement of the reflective markers for motion capture for a left handed subject. Markers placed between
the stylus processes at Radius and Ulna, at the left lateral epicondyle, and at the right and left acromion.
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Optimization of the neural
network D
This chapter contains the optimization results of the neural network with respect to the data recorded from subject 1
as described in the protocol in section 5.2 on page 43. The optimization is based on eyetracking and muscle activity
as input.
The neural network were configured with one hidden layer witha nonlinear transfer function and one output layer
with a linear transfer function together with the training algorithm as described in subsection 5.2.4 on page 49. The
parameters that are determined based on the following results, are the number of neurons in the hidden layer. The
number of neurons were varied from 1-20 neurons with a maximum number of epochs sat to 150.
All evaluations are based on the average across the three trials recorded. Depictions of the muscle activity and kine-
matics are from trial one in all cases.

D.1 Prediction of muscle activity

This sections contains the basis for the selection of the number of neurons in the hidden layer for the prediction of
muscle activity.

D.1.1 Prediction performance as a function of neurons

The prediction performance as a number of neurons in the hidden layer is illustrated for the muscle activity in figure
D.1
From figure D.1 (top), it was seen that the predictions of the concatenated data yielded anR2 value above 80% based
on one hidden layer with at least 2 neurons. Figure D.1 (bottom) showed a clear difference between 1 hidden neuron
compared to 2 and up to 20 neurons in the hidden layer.
For the prediction of the muscle activity in Brachioradialis, 1-3 neurons in the hidden layer showed a clear lower
prediction compared to 4-20 neurons. For Biceps medial and lateral head, the predictions were clearly improved for 5
and more neurons. In Pectoralis the predictions were improved from 9-10 neurons in the hidden layer. 10 neurons in
the hidden layer were the least number of neurons that yielded the high prediction performance for all muscles.
The predictions of the muscle activity for the Pectoralis muscle is shown on figure D.2 using 3 (green), 10 (blue), and
20 (red) neurons in the hidden layer, compared to the true (bold grey) muscle activity. This muscle was selected, since
the muscle activity clearly indicated the effect of increasing the number of neurons.
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Figure D.1: Prediction performance of the muscle activity as a functionof number of neurons. Top:R2 from the
predictions of the concatenated data across all muscles (dark grey) and mean across all muscles (light
grey). Bottom:R2 from the predictions of the muscle activity based on the individual muscles (number
of neurons appears consecutive for each muscle)
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Figure D.2: Prediction of the muscle activity in Pectoralis using 3 (green), 10 (blue), and 20 (red) neurons in the
hidden layer, compared to the true activity (bold grey).

From figure D.2 it was clearly revealed that 3 neurons performed worst compared to 10 and 20 neurons. It was seen
that the prediction did not follow the characteristics of the true signal especially in the extreme peaks, and is in general
smoother.
The predictions based on 10, and 20 neurons had many similarities, and both followed in general the overall trend
of the true muscle activity. The difference between the two was seen in the high peaks during movement, where the
configuration based on 10 neurons achieved higher values, where 20 neurons in the hidden layer tended to overestimate
the activity. Overall 10 neurons in the hidden layer achieved a very accurate prediction in the peaks indicating a
movement.
Based on the above observations 10 neurons were selected forthe hidden layer.

D.2 Prediction of kinematics

This sections contains the basis for the selection of the number of neurons in the hidden layer for the prediction of the
kinematics.

D.2.1 Prediction performance as a function of neurons

The prediction performance as a number of neurons in the hidden layer is illustrated for the kinematics in figure D.3
From figure D.3 it was seen that the predictions were very stable in bothx andy-direction using more than 2 neurons
in the hidden layer, with only minor variations in the predictions for the varying number
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Figure D.4 shows the prediction of the position inx (left) andy (right) using 1 (green), 10 (blue), and 20 (red) neurons
in the hidden layer, compared to the true position (bold darkgrey).
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Figure D.4: Prediction of the kinematics using 1 (green), 10 (blue), and20 (red) neurons in the hidden layer, compared
to the true kinematics (bold grey).

The predictions in thex-direction revealed a poorer prediction based on 1 neurons in the hidden layer, where the
position was flat during the entire period compared to the true position. All movements tended to be underestimated
underestimated.
The predicted position using 10 and 20 neurons had similar characteristics and in some parts of the period, the trend
of the true position was followed well by both configurations. Though, the predictions were noisy in some transient
segments.
Similar for the predictions in they-direction yielded 1 neuron the worst results, with a quite noisy signal throughout
the entire period and with both under- and overestimation ofthe true position in some cases. The predictions based on
10 and 20 neurons followed the true signal quite well in largeparts of the period.
Based on these observations, 10 neurons were selected for the hidden layer.



Selection of number of
synergies E
This chapter contains the results from which the optimal number of synergies were selected for the extraction of syn-
ergies and motor commands. The number of synergies and motorcommands to extract were determined by evaluating
the reconstruction performance with a varying number extracted synergies and motor commands.

The results were based on the muscle activity from three trials recorded from subject 1 as depicted in figure E.1 -
E.3.
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Figure E.1: Recorded muscle activity from trial 1.
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Figure E.2: Recorded muscle activity from trial 2.
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Figure E.3: Recorded muscle activity from trial 3.

E.1 Reconstruction performance as a function of number of synergies

The muscle activity was reconstructed from a varying number(N) of synergies (S) and motor commands (P). The
sizes ofSandP are illustrated below

S=

N synergies
︷ ︸︸ ︷





s11 s12 . . . s1N
...

...
...

...
sM1 sM2 . . . sMN






}

M muscles

P =

K samples
︷ ︸︸ ︷





p1(1) p1(2) . . . p1(K)
...

...
...

...
pN(1) pN(2) . . . pN(K)






}

N commands

Figure E.4 and E.5 depicts the performance of the reconstruction of the muscle activity with a varying number of
extracted synergies and motor commands shown for the individual muscles and for the concatenated muscles.
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Figure E.4: Reconstruction performance of predicting the motor commands in the individual muscles (black, mean±
SD across the number of muscles (in all three trials)) and forthe concatenated data for all muscles (grey,
mean± SD across the three trials) as a function of number of synergies.

From figure E.5 it appeared that one synergy was capable of reconstructing approx. 87% of the variability in the
original muscle activity based in the Deltoid anterior. Especially the muscle activity in the three parts of the Deltoid
were well estimated and so was the Anconeus using only one synergy. At four synergies, the activity in the Triceps
long head was substantially improved compared to three synergies. Also Triceps lateral head, Brachialis, and Biceps
lateral head. Pectoralis yielded in general a poor reconstruction.
It was seen that the prediction performance was improved formore than half the muscles up to 4 synergies, where-
after the performance flattened. Triceps long head and Lateral head especially showed an improvement from 3 to 4
synergies.
Based on the above observations, 4 was chosen as the number ofsynergies and motor commands for the predictions
during reaching using configuration SSP (based on the muscleactivity in the Deltoid muscle and gaze-direction for
the extraction of the motor commands) as described in section 5.2 on page 43.
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Introduction to neural networks F
Neural networks have been applied in a wide variety of engineering problems involving pattern recognition, pattern
classification, adaptive filtering, and control [20, 162, 106, 71, 41]. The successes presented in [20, 162, 106, 71, 41],
indicates the usefulness of neural networks in different components of a variety of FES control systems.

An artificial neural network (ANN) is an array of processors that is linked by connections that can be weakened
or strengthened and the concept is based on inspiration fromthe interconnected neurons of the brain[152]. The ANN
is based on the operation of biological neural networks, i.e. each neuron generates an output based on the inputs it
receives from other neurons. Thus the functional model of the biological neuron contains three basic components,
namely the synapses of the neuron (modeled as weights), and the components representing the activity within the
neuron cell, which consists of an adder (sums up all inputs modified by their weights), and an activation function. In
this fashion the neuron receives an input and produces a response as output [152].

The ANN is an adaptive, and most often a nonlinear system, which estimate a function (or the relationship between
input and output vectors) without requiring a mathematicaldescription of how the output functionally depends on
the input, i.e. the network learn from input/output data samples [152]. The capability of learning complex nonlinear
input-output mappings is one of the characteristics that make neural networks an attractive option in many biomedical
problems. The adaptive capabilities of neural networks makes them particularly attractive for rehabilitation applica-
tions in which the system is often customized for particularindividuals.[20, 106]
The network is adaptive in the sense that the system parameters are changed during operation, i.e. during training.
After the training phase the ANN parameters are fixed and the system can be deployed, i.e. during validation.
The input/output training data are fundamental in ANN sinceit conveys the necessary information to find the optimal
parameters of the network. According to the success of estimating a specific function based on the series of examples
of correct responses, the connections between the processors are strengthened or weakened. Hence instead of working
based on an explicit set of rules to follow, the network operates based on the weights of the links within it. The non-
linear nature of the neurons (the processing elements) provides the system with a high level of flexibility to achieve
the desired input/output relation. [152]
One of the most widely used types of neural networks is the MLPNN (also denoted a multilayer feed-forward neural
network).

F.1 Multilayer perceptron neural network

An MLP NN consists of a network of perceptrons (neurons), in which the data flow strictly feedforward from input
to output units, and the data processing can extend over multiple layers of units, without feedback connections. The
MLP NN consists of the following elements [132]

Input layer is a layer of neurons that receives information from external sources (in a biological neuron the input
corresponds to sensory nerves and output to motor nerves), and passes this information to the network for
processing

Hidden layer is a layer of neurons that receives information from the input layer and processes them in a hidden way,
i.e. it has no direct connections to the outside world. All connections from the hidden layer are to other layers
within the system

Output Layer is a layer of neurons that receives processed information and sends output signals out of the neural
network

Bias is an offset or threshold value in the neurons. The function of the bias is to provide a threshold for the activation
of neurons. The bias input is connected to each of the hidden and output neurons in a network
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A typical neuron from a MLP network is illustrated in figure F.1. A larger neural network is constructed from several
interconnecting neurons.

Input General neuron

Figure F.1: Typical neuron of a MLP network consists of an inputx (with N elements), the weightsW, the biasb, and
an activation functionϕ. Modified from [152]

The outputyk of the network is obtained by successively forming the linear combination of the inputxk, the weight

wk, and the biasbk (i.e. vk =
N

∑
j=1

wk j · xk j + bk, N being the number of inputs), and nonlinearly transform thisby a

nonlinear activation function, e.g. theS-shaped sigmoidal function, i.e. the output becomesϕ(vk).[152] Thus the
activation function relates the weighted sum plus a threshold of the synaptic inputs to the output.

Thus, each perceptron computes a single output from multiple real-valued inputs by forming a linear combination
according to its input weights (the synaptic efficacy in a biological neuron), the bias (forming the post-synaptic poten-
tial of a neuron), and transforming the output through the nonlinear activation function. The strength of the connection
between an input and a perceptron is determined by the value of the weight, i.e. negative weight values reflect in-
hibitory connections, while positive values designate excitatory connections.
Next the actual activity within the neuron cell is modeled bylinear combining the input and the weights together with
the bias. Lastly the activation function (ϕ) maps the output into the range 0 to 1 in the case of the Sigmoidactivation
function, such as the simple logistic Sigmoid function defined in equation F.1. The function is bounded and mono-
tonically increasing tending to 0 as the linearly combined input tends to−∞ and approaches 1 as the input tends to
∞. This function allows MLP networks to model both mildly and strongly nonlinear mappings, since the function is
linear near the origin and saturating rather quickly away from the origin. [152] The capability of MLP NN stems from
the non-linearities used within the nodes.

ϕ(x) =
1

1+exp−vk
∈ (0,1) (F.1)

This transfer function is often used in backpropagation networks, e.g. [69, 63, 70]. The derivative of equation F.1 can
be expressed in terms of the function itself.

F.2 Structure of MLP NN

Typical MLP NN consists of a set of source nodes forming the input layer, one or more hidden layers of computation
nodes, and an output layer of nodes. A single layer neural network has severe restrictions limiting the type of tasks
such a network can solve. A two layered feed-forward neural network with biases, a non-linear sigmoid layer, and
a linear output layer is capable of approximating any function with a finite number of discontinuities to arbitrary
precision [36, 48, 24].
If linear output neurons are used, the network outputs can take on any value instead of being limited to a small range
as is the case with the sigmoid functions [91].
Figure F.2 shows a single layer network withN number of input elements andSnumber of neurons.
In figure F.2x (N×1) represents the input units,W (S×N) the weights between each input and the unit in the following
layer, andb (S×1) the bias added to each of the weighted sums from each of the neurons in the current layer,y (S×1)
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Input Layer of neurons

Figure F.2: Single layer MLP NN withN input units,S units in the hidden layer, andS units in the output layer.
Modified from [152]

the output of the current layer, and finally the activation functionϕ for each of the units.
Thus, a two layer network with one hidden layer can be represented as shown in figure F.3 where the input signal
propagates through the network layer-by-layer and all neurons from one layer are connected to the neurons in the next
layer.
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Figure F.3: Two layer MLP neural network with one hidden layer consisting of S units with the logistic Sigmoid as
transfer function, and one output layer consisting ofQ units with linear transfer functions.

In figure F.3x represents the input units (N×1),W1 (S×N) the weights between each input unit and each of the units
in the hidden layer (S×1), y1 (S×1) is the output vector of the hidden layer,W2 (Q×S) being the weights between
the hidden layer and the output layer (Q×1). b1 andb2 are the biases for each of the units in the hidden and the output
layer respectively.
The network shown is a full-connected (output from each input and hidden neuron is distributed to all of the neurons
in the following layer), two layer, feed-forward (the values only move from input to hidden to output layers, no values
are fed back to earlier layers), perceptron neural network.The number of input neurons corresponds to the number of
input variables (e.g. the number muscle activations), and the number of output neurons is the same as the number of
desired output variables (e.g. muscle activation, low dimensional motor commands, kinematics).
The process of the neural network can be expressed in equation F.2

ym =
Q

∑
q=1

wmq

︸ ︷︷ ︸

Output layer

·ϕ

(
N

∑
n=1

wkn ·xn

)

︸ ︷︷ ︸

1st
hidden layer

(F.2)

xn being thenth input, wkn being the weight from inputn to nodek, wmq being the weight from nodeq to outputm,
andym being outputm.
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The feed-forward neural network is also defined as a computational graph, whose nodes are computing units with
directed edges that transmit numerical information from node to node. Each computing unit is capable of evaluating
a single primitive function of its input. Hence, the networkis a implementation of a composite function from input to
output space, which is called the network function.[132]

F.3 Learning of a neural network

A neural network has to be trained, such that the network produces the desired output given a set of inputs, i.e. the
strength of the connection weights have to be adjusted adequately to achieve the desired behavior, which allow the
characteristics of the input training data to be inferred. This requires a learning algorithm, to which a set of desired
input-output mappings are presented, and in response executes correction steps iteratively until the network learns to
produce the desired response. [132]
As seen in figure F.4, the learning algorithm is a closed-looppresentation of input-output mappings (training data) and
corrections to the network parameters to minimize the prediction error [132]. In the training process the outputs is
often specified as targets.

Network

Compute errorTraining input/target data

Adjust network 

weights according to

learning algorithm

1 2

3

(true vs. predicted output)

Figure F.4: Closed loop learning algorithm. The learning algorithm adapts the network parameters according to
previous experience until a solution is found. For each input, the network produces an output (1) and the
error between the predicted and desired output is calculated (2). The weights are adjusted to reduce the
error according to some learning algorithm. (1) - (3) are repeated for every sample until the errors are
minimized in the case of incremental training. Modified from[132]

Applying the network on the training data and comparing the predictions with the true outputs (the targets), forming
the error function, can determine the error of a particular configuration of the network. Hence the goal of the training
process is to find the optimal combination of weights, i.e. the lowest point in the many dimensional error surface each
weight and threshold being a dimension in space, so that the network function approximates a given function described
implicitly through the training samples [132, 152].

From an initial configuration of weights and thresholds, theobjective of the training algorithm is to seek for the
global minimum. The gradient of the error surface is typically calculated in each point and the search continues along
the steepest descent[132].
The backpropagation algorithm is a popular learning method, which looks for the minimum of the error function in the
weight/bias space using the method of gradient descent. This method requires the computation of the gradient vector
of the error surface at each iteration step; hence differentiability of the error function is guaranteed by the choice of
activation function, e.g. the sigmoid function. A differentiable activation function makes the function computed by a
neural network differentiable (assuming that the integration function at each node is just the sum of the inputs), since
the network itself only computes function compositions; hence the error function also becomes differentiable. [132]
The sigmoid function always have a positive derivative, so the slope of the error function (mean square error) provides
a greater or lesser descent direction, which can be followed. The gradient vector points along the line of steepest
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descent from the current point, thus by moving along by some step size the error will decrease.
The learning algorithm progresses iteratively through a number of epochs. For each epoch the training data set is
applied to the network, from which the prediction error can be computed and the weights can be adjusted according
to the error surface gradient and process can be repeated. The process continues until some a criterion has been reach,
e.g. a certain number of epochs have evolved, the error has reached an appropriate level or when the network stops
improving.
In the backpropagation learning algorithm the forward passpredicts the outputs from the given inputs and in the back-
ward pass, the partial derivatives of the cost function withrespect to the different weight parameters are propagated
back through the network where the weights then can be adapted. Thus only the errors in the output are known and
the output errors are propagated back to the previous layer using the output element weights [132]. The following
summarizes the steps and equations involved in the backpropagation algorithm [132], here in a two layer network with
a single hidden layer with a sigmoid transfer function as illustrated in figure F.3

1. Feed forward computation

2. Backpropagation to output layer

3. Backpropagation to hidden layer

4. Weight update

The algorithm is stopped according to a defined stop criteria.

In the description of the backpropagation algorithm, the the weights between the input and the hidden layer are

denotedw(1)
i j , for thei’th input unit and thej ’th hidden layer unit, the weights between the hidden layer and the output

layer are denotedw(2)
i j , for the i’th hidden layer unit and thej ’th output layer unit.Y(1) is the output from the hidden

layer, andY(2) is the output from the output layer.
The bias of each of the computing units is implemented as the weight of an additional edge by extending the input
vector and output vector of the hidden unit with a 1-component (not shown on the figure). Thus the weights between

the constant 1 and the hidden unit is denotedw(1)
N+1,S and between the hidden unit and the output unitj is denoted

w(2)
S+1,Q. This leads to(N+1)×Sweights between the input sites and the hidden units and(S+1)×Q (=1) between

the hidden and output units. The weight matrices with the last row corresponding to the bias of the computing units are
denotedW1 andW2. The input vectorx is likewise extended tox = (x1, . . . ,xN,1). The outputy j of the j ’th hidden
unit is given by equation F.3

y(1)
j = ϕ

(
N+1

∑
i=1

w(1)
i j xi

)

(F.3)

since the excitation of thej ’th hidden layer isw(1)
i j xi andϕ being the sigmoid activation function. Hence the out-

put vectory(1) with its components being the outputs of the hidden layer units can be written as the vector-matrix
multiplication in equation F.4

y(1) = ϕ

(

xW1

)

(F.4)

and by applying each sigmoidϕ to each component of the argument vector.
The excitation of the units in the output layer can be computed by using the extended vectory(1) as seen in equation
F.5

y(2) = ϕ

(

y(1)W2

)

(F.5)

The total error of a training set can be computed by addition of the errors computed for each of the training input-output
sample. This error computation is based on an extended network as the one shown in figure F.5
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Output layerHidden layer Additional layer

Figure F.5: Extended multilayer network for the computation of the network error. y(1)
i being thei’th output of the

hidden layer units,w(2)
i j being the weight between this unit (i) and the output unit (j), ϕ being the activation

function, andϕ′ the derivative of the activation function, andy(2) being the outputs of the output layer.
Modified from [132]

In figure F.5 The network has been extended with an additionallayer of units, in which the error functione is computed

for the i’th component of the output vector. Additionally the error (y(2)
i − ti), t being the true output, is computed and

store. Still, each output uniti in the original network computes the sigmoidϕ and produces the outputy(2)
i . It is seen

how the addition of the error functions for each output unit yields the network errorε.
For p input-output samples in the training set, the total error function can be computed by creatingp networks like the
one shown in figure F.5 and adding the individual error functions.
After setting the initial weights, the algorithm follows the steps listed above. Initially the input vectorx is presented
to the network, and the vectorsy(1) andy(2) are computed and stored in each unit, and likewise is the derivative of the
activation function.

After the feed-forward step follows the backpropagation step, in which the partial derivative
∂E

∂w(2)
i j

is computed. The

backpropagation path from the network output to the output unit j is illustrated in figure F.6

Output layerHidden layer

1

Additional layer

Figure F.6: Backpropagation path to output unitj. The constant 1 is fed into the output unit and the network is run
backwards. Incoming information to a node is added and the result is multiplied by the value stored in the

left part of the unit.y(2)
j being the output of output neuronj, t j being the true output of unitj, eS being

the error function for unitj. Modified from [132]

Thus, the backpropagated errorδ j can be written in equation F.6

δ(2)
j = y(2)

j (1−y(2)
j )(y(2)

j − t j) (F.6)

Hence the partial derivative can be written in equation F.7

∂E

∂w(2)
i j

= δ(2)
j x(1)

i (F.7)

by considering the weightw(2)
i j to be a variable and the inputx(1)

i to be a constant (originating from the previous layer).
The backpropagation to the hidden layer can now be computed as illustrated in figure F.7.
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Input Hidden layer
Backpropagated 

error

Figure F.7: Backpropagation path from the output to the hidden layer.w(1)
i j being the weight from hidden unitj to

input i, y(1)
j being the output of the hidden unitj, w(2)

jk being the weight from output unitk to hidden unit

j, δ(2)
k being the backpropagated error from output unitk. Modified from [132]

The partial derivative of interest is now
∂E

∂w(1)
i j

. Each unitj in the hidden layer is connected to each unitq = 1, . . . ,Q

in the output layer with the weightw(2)
jq . The error is computed by taking into account all possible backwards paths as

expressed in equation F.8

δ(1)
j = y(1)

j (1−y(1)
j )

Q

∑
q=1

w(2)
jq δ(2)

q (F.8)

And the partial derivative becomes as expressed in equationF.9

∂E

∂w(1)
i j

= δ(1)
j xi (F.9)

xi being the input vector.
Finally, after computing all the partial derivatives, the last step in the algorithm is to update the weights in the negative
gradient direction. A learning stepγ defines the step length of the correction. The corrections are expressed in equation
F.10

∆w(2)
i j = −γx(1)

1 δ(2)
j , for i = 1, . . . ,S+1; j = 1, . . . ,Q (F.10)

∆w(1)
i j = −γxiδ

(1)
j , for i = 1, . . . ,N+1; j = 1, . . . ,S (F.11)

(F.12)

Remembering thatxN+1 = y1
S+1 = 1. Thus the corrections to the weights are made after the backpropagated error

has been computed for all units in the network. The case with number of training samplesp > 1, the weight cor-

rections are computed for each pattern∆1w(1)
i j , ∆2w(1)

i j , . . ., ∆pw(1)
i j and the update in the gradient direction becomes

∆w(1)
i j = ∆1w(1)

i j +∆2w(1)
i j + . . .+∆pw(1)

i j for learning in batch mode, in which weights and biases are only updated after
all the inputs and targets are presented.

In summary, the feed forward computation stores both the evaluation of the primitive function and the derivative.
In the backpropagation the constant 1 is fed into the output layer and the network is run backwards. The incoming
information to a node is added and the result is multiplied bythe derivative stored in that unit. The result is transmitted
to the left in the of the unit and the result collected at the input unit is the derivative of the network function with
respect to the input to the network.
This method suffers from various convergence problems [129]. These problems can be solved by using second order
derivatives, which is applied in the Levenberg-Marquardt (LM) algorithm one the most widely used optimization algo-
rithm and is suggested for moderate-sized feedforward neural networks (up to several hundred weights) [43, 84, 28].
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In the following, the LM algorithm [80, 133] is introduced toan extent which explains the parameters, which are
configured in practice. For a detailed description of the LM algorithm please refer to [62, 124], since this is beyond
the scope of this report.

The Levenberg-Marquardt algorithm

The LM algorithm relies on both the first and second order derivative of the error in the search for the optimal weights.
The LM algorithm provides a faster solution due to the incorporation of the second derivative of the error information
and automatic incorporates adjustments of the learning parameters. [80]
The idea of the LM algorithm is to minimize the squared distanceεtε, ε = x− x̂. Letting f being an assumed functional
relation which maps a parameter vectorp ∈ Rm to an estimated measurement vectorx̂ = f (p), x̂ ∈ Rn. The basis of
the LM algorithm is a linear approximation tof in the neighborhood ofp. [133, 80]
For a small||∆p||, a Taylor series expansion lead to the approximation in equation F.13

f (p+ ∆p)≈ f (p)+J∆p (F.13)

J being the Jacobian matrix∂ f (p)
∂p . At each step in the iterative algorithm is to find the∆p that minimizes the quantity

given in equation F.14

||x− f (p+ ∆p)|| ≈ ||x− f (p−J∆p)||= ||ε−J∆p|| (F.14)

The minimum is attained whenJ∆p− ε is orthogonal to the column space ofJ, yielding JT(J∆p− ε) = 0, ∆p being
the solution to the normal equations in F.15

JTJ∆p = JTε (F.15)

The matrixJTJ in the left side in equation F.15 is the approximate Hessian,i.e. an approximation to the matrix of
second order derivatives. The LM algorithm solves a slight variation of equation F.15 as seen in equation F.16, called
the augmented normal equations

N∆p = JTε (F.16)

The off-diagonal elements ofN are identical to the corresponding elements ofJTJ and the diagonal elements are given
in equation F.17

Nii = µ+[JTJ]ii , µ> 0 (F.17)

The diagonal elements ofJTJ is altered by damping, whereµ is the damping term. If the updated parameter vector
p + ∆p, ∆p computed from equation F.16, leads to an reduction in the error ε, the update is accepted and the process
repeats with a decreased damping term. Otherwise equation F.16 is solved again, and the process iterates until a value
of ∆p is found (corresponding to one iteration of the LM algorithm). The damping term is adjusted at each iteration
to assure a reduction in the errorε, thus the damping is raised if a step fails to reduceε and otherwise the damping is
reduced. [73]
The steps of the LM algorithm is the following [150]

1. Inputs are presented to the network and the correspondingoutputs and errors are computed. The mean square
error over all inputs is computed

2. The Jacobian matrixJ with respect top is computed,p representing the weights and biases of the network

3. The Levenberg-Marquardt weight update equation F.16 is solved to obtain∆p

4. The error is recomputed usingp + ∆p. In case the new error is smaller than the one computed in step1, the
training parameterµ is reduced byµ−, andp = p+ ∆p is computed and the algorithm returns back to step 1. If
the error is not reduced, thenµ is increased byµ+ and returns to step 3
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5. The algorithm is terminated when at least one of the following conditions is met

Magnitude of gradient (εεt , i.e. JTε) drops below some thresholdε1

The relative change in the magnitude ofδp drops below a thresholdε2

The errorεTε drops below a thresholdε3

A maximum number of iterationskmax is completed

µ+ andµ− are predefined values, typically initiated to 10 and 0.1 respectively.[150]
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Configuration of applied
eyetracker G
This chapter contains an elaborated description of the configuration of the specific eyetracker.

G.1 Eyetracker Tobii X120

Eye-tracking was recorded using Tobii X120 Eye-Tracker (firmware 1.1.14) (sampling frequency 120 Hz), and Tobii
Studio v.1.3.23 eye-tracker software running on Windows XP. The eye tracker communicated with the computer via a
standard network cable.[155] Figure G.1 shows the eyetracking setup.

Virtual screen

Tobii 120

Max 35˚ Max 35˚

Max 35˚

12 cm

70 cm

Virtual screen

12 cm

59 cm

8 cm

Calibration grid / virtual screen

Horizontal surface

a)

b) c)

Position settins for Tobii Studio

Relevant measures Eye-tracker limits

Figure G.1: Eye-tracking setup. a) Position parameters set in Tobii Studio b) Relevant measures for the eyetracking
setup. The subject was placed approximately 70 cm. from the eye-tracker in an upright position (90◦

with the horizontal plane). c) Limits of the eye-tracker. Itwas ensured that gaze angle did not exceed 35◦

to any point on the virtual screen.

Distance to calibration grid, calibdist -59 cm, the minus indicates that the eye-tracker is located behind the virtual
screen measured from the back edge of the eye-tracker to the front end of the virtual screen

Horizontal eye-tracker angle, Hangle Adjusted with respect to each subject, such that the eyes areplaced in the
center of the status track window when the subject is placed 70 cm from the eye-tracker. Approx. 15◦

Vertical eye-tracker angle 90◦ (0◦ indicates completely vertical)

Active display area 40 cm× 30 cm set as illustrated in figure G.2

Height difference between display and eye-tracker, Hdiff 15 cm. The height from the bottom of the eye-tracker
foot and the bottom of the active display area.
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Side offset, Soff 0 cm, as illustrated in figure G.3

Rotation, Rang 0◦ as illustrated in figure G.3

5 point calibration grid Virtual screen 25% larger

Figure G.2: The height and width of the virtual screen set 25% Larger thanthe calibration area

Eye-tracker

a)

Calibration grid

b)

Eye-tracker

Figure G.3: a) Side offset measured from the center of the eye-tracker tothe center of the active area b) Rotation
measured between the back of the eye-tracker and the active display

The distance from the eye-tracker to the subject was approximately 70 cm, adjusted to achieve the optimal configu-
ration according to the track status window, i.e. two dots representing the eyes should be seen in the middle of track
status window and the status color on the bottom of the windowshould show green as seen in figure G.4

Figure G.4: Track status meter of eye-tracker. An optimal configurationwith to white dots representing the eyes and
the status color being green, the black box represents the field of view of the eyetracking.

The placement of the eye-tracker ensured that the gaze angledid not exceed 35◦ to any point on the virtual screen.
Initially the eye-tracker was calibrated, to learn the characteristics of the subject’s eye movement to achieve accurate
estimation of the gaze points. Thus when the eyes were detected the eye tracker tracker was trained to associate a
position of the eye to a specific location on the object. During calibration, the subject concentrated on focusing the
eyes on the calibration points. Relaxed movement improved the calibration quality.

The setup was configured as a ’Screen recording’ configured inTobii Studio and performed with a perspective cali-
bration. This was performed by placing a calibration grid (white paperboard with 5 calibration points marked, one in
each corner and one in the middle as seen on figure G.5) on the surface to be tracked and with the subject placed in
the center of the calibration grid. The calibration grid wasattached to the surface below the virtual screen.
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2
4

 cm

32 cm

Figure G.5: Perspective 5 point calibration grid

Manual calibration mode was selected in Tobii Studio and wasevaluated according to calibration plot showing error
vectors as seen on figure G.6, thus in case of great errors (long lines indicates insufficient calibration) (a), recalibration
was performed until sufficient calibration was achieved (b).

Figure G.6: Calibration plot from the eye-tracker. a) Calibration plotof the eye-tracker shows great error, implying
that recalibration is needed. b) Calibration of the eye-tracker shows only small error vectors, thus no
recalibration is needed.

The following settings were configured in Tobii Studio

Fixation filter ClearView fixation filter

Fixation radius 100

Min duration 50

The following parameters was exported from Tobii Studio after the recordings

DateTimeStamp Recalculate d and shown in minutes, seconds and milliseconds (mm:ss:ms)

Event Automatic events (start and stop, key presses), logged events (TriggerData)

Descriptor Description of the event (’Starts’, ’Stop’), the synchronization signals

GazePointX The horizontal grid position based on the average of both eyes

GazePointY The vertical grid position based on the average of both eyes

Separated in three files, on containingDateTimeStamp, Event, Descriptor, another containingGazePointX and
GazePointY, and the last file containingEvent. The above configuration was saved in expSetup (Export/TextExport/)
and selected for all recordings. The data points between thelogged events ’Start’ and ’Stop’ were used for the data
analysis.
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Trigger application H
This chapter describes how the synchronization was initiated by the eyetracking software. Additionally this chapter

documents i detail how the trigger application was programmed via the API.

The synchronization setup is shown in figure H.1

EMG Motion tracking

Tobii Eye-trackerTobii studio
Trigger application 

programmed via 

SDK in C

Component API Protocol API
I/O access Driver

Sync. signal TCP/IP

Parallel

 port

TCP/IP

Synchronization of signals

Figure H.1: Synchronization of the recording systems. Via an application programmed in C++ utilizing the Tobii
SDK, a signal was send to via the parallel port to initiate theother recording systems and at the same
time, the eyetracking was initiated.

H.1 Required software

The following software was used for the development of the application to trigger Tobii Studio.

• Windows XP (operating system)

• Tobii Studio v. 1.3.23 (Eye-tracking software)

• Tobii Studio SDK v. 2.4.3 (Software development kit for Tobii Studio)

• cv.dll, cv.lib, andcv.h (Makes the Tobii Trigger Low Level API available to the compiler)

• Microsoft Visual Studio 2008 (compiler)

• UserPort.sys (kernel driver for Windows NT/2000, which enables usermodeprograms to I/O ports, hence it
becomes possible to access hardware directly from a normal executable as in previous Windows versions and
DOS)

It appears from the description below how the different elements listed above was used.

H.2 Interfacing the parallel port

This section describes in detail how the interfacing with the parallel port was conducted to be able to use an external
trigger signal for synchronization of the eye-tracker withthe EMG and motion capture system. Initially the parallel
port is introduced.
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H.2.1 The parallel port

Initially it is needed to interface with the parallel port toacquire the analog input signal which serves as the external
trigger. Initially the parallel port is introduced followed by a description on how to interface it. The parallel port is
a 25 pin female connector as seen in figure H.2. The primary useof the parallel port in the computer is to connect
printers and is specifically designed for this purpose.

Figure H.2: Parallel port.

The lines in DB25 connector are divided in to three groups

• Data lines (data bus)

• Control lines

• Status lines

Thus data is transferred via the data lines (8 lines), control lines (4 lines) controls the peripheral devices and they
returns status signals back to the computer through the status lines (5 lines). These three categories of lines are
connected to Data, Control And Status registers internallyin the computer, i.e. by manipulating these registers it is
possible to read and write to the parallel port. The registers are virtually connected to the corresponding lines, hence
what is written to the registers appears in corresponding lines as voltages. E.g. if ’0x01’ is written to pin 0 in the Data
register, the lineData0 will be driven to a high voltage, ’0xFF’ will drive all pins inthe Data register to a high voltage.
The parallel port is TTL-compatible, implying ’high’ is between +2.4 and +5v and a ’low’ is between 0 and 0.8v.

H.2.2 The address of the parallel port

In a typical PC the base address of LPT1 is0x378. The data register then resides at this base address, the status register
at base address +1 (0x379) and the control register is at base address +2 (0x37a).

H.2.3 Reading from and writing to the parallel port

UserPort.sys was installed by copying it toWindows/system32 and runUserPort.exe. select the addresses that
should be open and click start. The parallel port was tested by a simple analog circuit consisting of a LED and a
resistor andlpt.exe, which allows you to write and read from the parallel port viaa GUI, i.e. turning the LED on
and off.
The kernel driverUserPort.sys was started by usingUserPort.exe, which allowed access to the parallel port
directly from a Win32 application written in C. The driver made it possible to read from and write to the parallel port
by pre-configured functions.

H.3 Tobii Studio

Triggered events defined what parts of the data that was to be analyzed. The application developed to trigger the Tobii
Studio interfaced also with the parallel port . This was achieved by using the Tobii SDK, and specifically the Tobii
Studio Trigger Low Level API, which is an API accessible fromWindows 32-bit environments including Windows
XP. The API is implemented as a traditional WindowsDLL by cv.dll and can be used by any language that supports
DLL calls such as C. This API is a set of function calls that handles the connection to and the communication with
Tobii Studio. Two steps were initially performed as described below
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• Tobii SDK was installed (movedCVTrigComp.dlll andcv.dll to a directory accessible to the computer and
registering the components)

• cv.dll, cv.lib, andcv.h was moved from the folders inC:/Program Files/Tobii/SDK to the directory in
which the project was located

The following functions is accessible by using the API declared in the header filecv.h

CV_Init(ipAddress, CLEARVIEW_SERVER_PORT_NUMBER, NULL) Connect to ClearView and performs
internal initializations, creates a connection to ClearView and sets up necessary internal states

CV_StartWithName("My first recording") Start a named recording

CV_LogEvent("MyEventText") Add a text data record to an ongoing recording, which is logged

CV_GetLastError Get error details if any function call returned error. Whenever aCV_ERROR is returned from
anyCV_XXX function a call to this function will return the specific lasterror

CV_Stop() Stop an ongoing recording, Disconnects ClearView and performs necessary cleanups

CV_Close() Disconnect from ClearView and perform internal cleanups

H.4 Synchronization via software

The data recording systems, i.e. EMG, motion capture, and eyetracking were synchronized via a signal send from
the developed application to the eyetracking acquisition software, at the time of an event, created at the start of the
recordings of the eyetracker. This synchronization signalwas sent to the EMG and motion capture system. Figure H.3
depicts the synchronization process and the possible delaythis imposes between the signals.

Create and log event

Write to parallel port
Receive sync. signal Call .dll

Send sync. signal

∆t

t = k t = k + ∆t 

Eyetracking 

acquisition software

EMG  and Motion capture 

acquisition systems

Operating system

Figure H.3: Possible synchronization delay of the data recording systems. The synchronization signal sent from the
application to the EMG and motion capture system are delayedwith ∆t with respect to the logged event.

As depicted on figure H.1 the developed application communicates with eyetracker acquisition software via an API. At
the time of the event being logged in the eyetracking acquisition software, a.dll was called before the synchronization
signal was sent. This implied a delay between the recording of the eyetracking and the other recording systems. The
delay was depended on the operating system, i.e. the number of processes running at the time. Having only the
eyetracking acquisition software launched minimized thisdelay but theoretically, it could have an effect upon the
predictions.
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