
METAMOC
Modular Execution Time Analysis using Model Checking

Master's thesis by

Andreas Engelbredt Dalsgaard

Mads Christian Olesen

Martin Toft

June 2, 2009

Department of Computer Science Aalborg University

Title:
Modular Execution Time Anal-
ysis using Model Checking
(METAMOC)

Project period:
DAT6, the 2nd of February to
the 2nd of June, 2009

Project group:
Computer Science, d601a

Members:
Andreas Engelbredt Dalsgaard
Mads Christian Olesen
Martin Toft

Supervisors:
Kim Guldstrand Larsen
René Rydhof Hansen

Copies:
6

Pages in the report:
100

Pages including appendices:
105

Abstract:

The ability to determine safe

and sharp worst-case execution

time (WCET) for processes is

very important when scheduling

real-time systems, as it in�uences

the reliability and e�ciency of

the resulting systems. This thesis

presents METAMOC, a �exible

WCET analysis method based on

model checking and static analysis

that determines safe and sharp

WCETs for processes running

on hardware platforms featuring

caching and pipelining.

The method is divided into

four loosely coupled sub-analyses.

To demonstrate and evaluate

the method, it is implemented

for the ARM920T processor and

tested successfully on most of the

WCET benchmark programs from

Mälardalen Real-Time Research

Center. The �exibilty of the

method allows for easy replacement

and reuse of parts of the implemen-

tation, in order to add support for

additional hardware platforms.

Experiments with the implemen-

tation show that the principles

used in the method work very well,

and that taking especially caching

into account is worth the e�ort.

The content of this report is freely available, but publication (with source reference) may only

be made with the approval of the authors.

4

Preface

The present report is our master's thesis, which documents the results of our
work during the spring semester of 2009. The thesis is on the topic of formal
systems and marks the completion of a specialisation year in the Distributed
and Embedded Systems (DES) research unit at the Department of Computer
Science at Aalborg University, Denmark.

The presented results build upon preliminary work documented in the report
Worst-Case Execution Time Analysis for Real-Time Systems [7], which was
written by yours truly during the autumn semester of 2008. Some parts of
this thesis are derived from the autumn report, and, even though all the parts
have been improved, they deserve to be mentioned. In this thesis, the parts are
Sections 2.1�2.3, and Chapter 3.

We have aimed at making the thesis self-contained for fellow students and
researchers in the domain of formal systems, which means that we assume basic
knowledge of real-time systems, timed automata and veri�cation of properties of
timed automata. Furthermore, mathematical skills corresponding to a bachelor
level in computer science are advantageous.

In addition to presenting our work in this thesis, we have engaged in a
number of research preparatory activities during the specialisation year. They
have been a part of the elite student programme in embedded systems o�ered
by Aalborg University, which we enrolled in. On March 12-13 we gave an in-
vited talk on the topic of �cache and pipeline analysis using model checking�
at the Danish Network for Intelligent Embedded Systems (DaNES) Mini Case
Event [1]. On April 23 we did a presentation at the National Natural Science
Foundation of China and Danish National Research Foundation's joint sympo-
sium on Information- and Communication Technology. On June 22-24 we will
present our work in Aachen, Germany, as our extended abstract [15] for the
SSV 2009 Doctoral Symposium [3] has been accepted. The event, which is held
during the 4th International Workshop on Systems Software Veri�cation (SSV
09), consists of a number of technical sessions and is dedicated to presentations
by Ph.D. students and young, upcoming researchers.

The source code for the implementation of the developed METAMOCmethod
is available at

http://metamoc.martintoft.dk

Acknowledgements. We would like to thank our supervisors, professor Kim
Guldstrand Larsen and associate professor René Rydhof Hansen, for providing
valuable input and references, and for always being able to �nd time for us in
their busy schedules. Additionally, we would like to thank associate professor

5

http://metamoc.martintoft.dk

Bent Thomsen from the Database and Programming Technologies (DPT) re-
search unit, who was censor on our autumn project exam and in that connection
gave a number of valuable pieces of advice on project direction and applicability
of the developed method. Finally, we would like to thank F-klubben, the social
club in the department, for hosting many enjoyable events that helped us escape
from our keyboards once in a while.

Andreas Engelbredt Dalsgaard Mads Christian Olesen

Martin Toft

Aalborg, June 2, 2009

6

Contents

1 Introduction 9

2 Prerequisites 13
2.1 Real-Time Systems and Scheduling 13
2.2 Worst-Case Execution Time Analysis 14
2.3 Model Checking using UPPAAL 15
2.4 Weighted Push-Down Systems 17

3 Optimisation Techniques in Modern Processors 23
3.1 Caching . 23
3.2 Pipelining . 28
3.3 Timing Anomalies . 34
3.4 Abstract Representations . 36

4 Hardware Platform 41
4.1 ARM Assembly Language . 43
4.2 Pipeline Stalls . 48

5 The METAMOC Method 51
5.1 Cache Analysis . 54
5.2 Value Analysis . 57
5.3 Pipeline Analysis . 64
5.4 Path Analysis . 74
5.5 METAMOC Graphical User Interface 78

6 Experiments 81

7 Related Work 87

8 Conclusion 91

9 Future Work 93

Bibliography 100

A Cache Functions 101

B Timed Automaton Modelling Main Memory 105

7

8

Chapter 1

Introduction

Through the use of trains, planes, food production plants, hospital equipment,
nuclear reactors, etc., the modern world has become increasingly dependent
on advanced technology. The technologies are often constructed as real-time
systems (RTSs) and thus contain components in which time plays a signi�cant
role. For example, guidance systems in planes and rockets must sample a set
of sensors within precise intervals to be able to control the �ight actuators
correctly. Another example is X-ray machines, which must ensure that patients
are only exposed to certain volumes of X-rays during scans for fractures [24].
In both examples, bad timing in software might cause loss of human lives or
destruction of expensive equipment, which emphasise why scheduling of RTSs
deserve attention.

A RTS is a concurrent software system with a number of processes, each
marked with a deadline. The deadline of a process speci�es that its execution
must be completed within a certain amount of time [13]. RTSs are divided into
two classes: soft and hard. Systems in the former class tolerate that processes
miss their deadline and respond with lower quality of service, whereas systems
in the latter class consider deadline misses to be critical failures [13]. Although
most important to hard RTSs, systems in both classes share the need to schedule
the execution of processes in a way such that all processes are completed before
their deadline, ensuring that the associated physical system behaves as intended.

In order to schedule the processes in a RTS, the worst-case execution time
(WCET) of each process in the system is needed [13]. The WCET depends on
the hardware platform executing the processes and is determined by performing
a WCET analysis. The analysis is a daunting task, since both the behaviour of
processes and of the hardware platform executing the processes can be arbitrar-
ily complex. Limiting the behaviour that processes are allowed to exhibit and
abstracting away complex hardware components is a common way to obtain
usable overestimates of WCETs. The challenge faced by developers of WCET
analysis methods is to have very few behaviour limitations and to model the
hardware platform as accurately as possible, while still providing a safe yet
usable approximation.

Traditionally, research on WCET analysis has focused on ensuring reliable
operation of RTSs, while the potentially low e�ciency of the resulting systems
has been mostly ignored and overcome by using more powerful hardware. Com-
plex hardware features, such as caching and pipelining, have typically been

9

Figure 1.1: Overview of the METAMOC WCET analysis method.

abstracted away to simplify the analysis. The method presented in this thesis
uses a combination of model checking and static analysis to perform a WCET
analysis that takes the e�ects of caching and pipelining into account. Compared
to other WCET analysis methods that do not consider caching and pipelining,
this method gives rise to more e�cient RTSs, which require less expensive and
less energy consuming hardware. It also follows that existing hardware can be
reused for bigger systems.

An overview of the Modular Execution Time Analysis using Model Checking
(METAMOC) method is provided in Figure 1.1. It takes as input a binary
executable of a process, typically obtained by compiling high-level source code,
and an abstract model of a hardware platform and determines the WCET of
executing the process on the platform. The formalism used for the abstract
models is networks of timed automata (NTAs). The method determines the
WCET in a number of steps. Initially, a disassembled version of the executable
is translated into an abstract process model. Next, value analysis is performed
on the assembler code to establish register contents at as many locations in
the code as possible. The result of the value analysis is subsequently added
to the process model. Finally, model checking is used to carry out an abstract
simulation of the interactions between the two models and determine the longest
path through the simulation. The time of the longest path is the WCET.

To evaluate the method, we have implemented it for the ARM920T processor
from ARM Ltd. [28], which is a typical processor for embedded systems. The
implementation is evaluated through a series of experiments that are conducted
using realistic WCET analysis benchmark programs from the WCET Analysis
Project by Mälardalen Real-Time Research Center (MRTC) [4].

Thesis outline. Chapter 2 presents theory on RTSs, scheduling of RTSs,
WCET analysis, UPPAAL-speci�c model checking, and weighted push-down
systems (WPDSs). The theory is a prerequisite for understanding the subse-

10

quent chapters. In Chapter 3, optimisation techniques found in modern proces-
sors, such as caching and pipelining, are explained in detail. In addition, the
chapter explains timing anomalies and abstract representations of the optimisa-
tion techniques. Chapter 4 introduces the ARM920T processor, the associated
ARM assembly language and the situations in which the processor's pipeline
stalls. This is necessary knowledge for modelling the hardware and translating
the assembly code to UPPAAL models. In Chapter 5, the METAMOC method
is presented in full detail using a concrete implementation for the ARM920T
as an ongoing example. Chapter 6 presents and discusses the results of the
experiments conducted using the Mälardalen benchmark programs. Chapter
7 goes through related work in the area of WCET analysis and compares it
to the METAMOC method. Chapter 8 and 9 conclude the thesis and present
possibilities for future work, respectively.

11

12

Chapter 2

Prerequisites

This chapter introduces the various prerequisites that are needed for under-
standing the rest of the thesis: RTSs, WCET analysis, UPPAAL-speci�c model
checking and weighted push-down systems (WPDSs). The section about hard
RTSs is based on Chapter 1 and 13 in [13], while the section about WCET and
methods for �nding WCETs is based on [44]. The third section is about model
checking using UPPAAL and is based on [10]. The chapter's �nal section pro-
vides a theoretical, and to some extent practical, introduction to the formalism
of WPDSs, which we use for doing static analysis on programs, speci�cally value
analysis.

2.1 Real-Time Systems and Scheduling

RTSs are systems that must perform an action within a speci�ed time interval.
Examples of such systems are airbags, missile systems and advanced hospital
equipment. A RTS consist of software processes that are executed concurrently
to produce an output. Each process has, among other properties, a priority
and a deadline. The priority of a process is a measure of how important the
process is compared to the other processes in the system. The deadline speci�es
the amount of time units that are allowed to elapse from the process is started
(�released�) until it must have completed. If the process has not completed
when the deadline is reached, it is said to have missed its deadline. RTSs where
processes are allowed to miss deadlines are called soft RTSs, whereas RTSs that
do not allow deadlines to be missed are called hard RTSs. Only hard RTSs are
considered in this thesis.

The planning of process execution is called scheduling. In the domain of
scheduling, processes are either periodic or sporadic. A periodic process is
released repeatedly with a �xed time interval. A sporadic process can be released
at any time, e.g. they can be triggered by external events. The most widely used
scheduling approach, Fixed-Priority Scheduling (FPS), works by assigning static
priorities to processes pre-runtime, and on runtime the process with the highest
priority is running, while the other processes are waiting. When allowing both
periodic and sporadic processes, however, a process with a low priority might be
allowed to continue execution, even though a high priority sporadic process has
been released. This is due to the fact that FPS is a non-preemptive scheduling

13

scheme, which do not stop (�preempt�) the running process, i.e. the running
process is always allowed to �nish.

For FPS, a simple, optimal priority assignment scheme called rate monotonic
priority assignment exists. This scheme needs the WCET of all processes in the
system that are about to be scheduled. The task of �nding WCETs of processes
is done by a WCET analysis.

2.2 Worst-Case Execution Time Analysis

We start by introducing the concept WCET and subsequently introduce two
classes of methods for �nding WCETs.

2.2.1 Worst-Case Execution Time

The WCET of a process is the longest execution time of all possible execution
times of the process. This is illustrated in Figure 2.1. The �gure shows an
example of distributions of execution times of a process. All execution times
in the �SAFE� area are safe, i.e. not underapproximated, WCETs. In general
the approximated WCETs should be as close to the real WCET as possible, i.e.
as close to the bound as possible. WCETs that satisfy this property are called
sharp WCETs. If the WCETs are not sharp, the utilisation of the system will
not be high. Generally, a high utilisation is desired, as this might allow the
use of a cheaper processor for a particular system or facilitate the execution of
bigger systems on existing processors.

To be able to �nd the WCET of a process, the process must terminate at
some point, and the input to the process must be bounded, i.e. in�nite input
is not allowed. In addition, it is often required that the programmer provides
loop bounds and other forms of annotations.

Figure 2.1: Distribution of execution times of a process.

14

2.2.2 Classes of WCET Analysis Methods

In this section we discuss two classes of methods for �nding the WCET of a
process. One way to approximate the WCET of a process is to run the process a
number of times and observe the execution time and select the maximal observed
execution time. This will usually not be the true WCET, as the true WCET
might not be observed. Even though this approach is unsafe, it is the principle
of measurement-based methods for �nding WCETs. Contrary to measurement-
based methods, static methods are able to determine safe upper bounds for the
WCET.

Measurement-Based Methods

Measurement-based methods �nd the WCET by executing the process and mea-
suring the time required for the process to complete. The advantage of this
approach is that it is relatively simple to implement � the code just needs to
be run and its execution time measured. Furthermore, the approach does not
need any considerable adaption to be applied to new hardware architectures.

The main disadvantage is that the methods based on the approach typically
only �nd a maximal observed execution time, which can be less than the actual
WCET, as can be seen in Figure 2.1 on the preceding page. Another disad-
vantage is that the process needs to be executed several times, which can be
time-consuming if the process itself is time-consuming. To �nd more precise
estimates, more advanced methods have been developed. One method is to
measure the time of all basic blocks of a process. Basic blocks are sequential
blocks of code that do not contain branching, i.e. they contain no if-statements
or loops. The WCET of each basic block together with the time required for
branches is summed up to �nd the WCET of the entire process.

Static Methods

Static methods do not execute the process but is instead based on analysis of the
process' code and some model of the system on which the process is planned to
be executed. The methods are typically used to �nd an upper bound on the exe-
cution time of a process, which is strictly greater than the WCET of the process.
They are often based on data �ow analysis, which is a well-known technique in
the domain of compilers. The class is divided in two groups: one using static
analysis and one using model checking. The METAMOC method presented in
this thesis combines static analysis and model checking and therefore lies in the
intersection of the two groups.

2.3 Model Checking using UPPAAL

UPPAAL is a model checker for real-time systems [10]. It has been developed
since 1995 by researchers at Aalborg University, Denmark, and Uppsala Uni-
versity, Sweden. In this section we introduce the features in UPPAAL that are
relevant to the modelling done in Chapter 5 starting on page 51. The primary
source for this section is [10].

To model interactions in the real world accurately, UPPAAL uses network
of timed automatas (NTAs). The automata interact by synchronising with each

15

other through synchronisation channels. Compared to ordinary timed automata
de�ned in e.g. [8], the timed automata in UPPAAL have only one initial state
and are extended with the following features:

• Automata templates, which make it possible to have several instances
of the same automaton de�ned with di�erent parameters.

• Constants, which are declared as const name value. Constants must
have integer values.

• Bounded integer variables, which are declared as int[min,max] name.
If [min,max] is omitted, the default range is [−32768, 32767]. Expressions
involving integers may be used in guards (constraints on constants, inte-
gers and clocks), invariants and assignments. The bounds are checked on
veri�cation time, where states with bound violations are discarded.

• Binary synchronisation channels, which are declared as chan name.
An edge labelled with name! synchronises with an edge labelled with
name?. If several synchronisation pairs are possible, UPPAAL chooses a
pair non-deterministically.

• Broadcast channels, which are declared as broadcast chan name. This
enables a single sender, which has name! on an edge, to synchronise with
an arbitrary number of receivers, which have name? on an edge. Broadcast
sending does not block the sender, as the sender can take the name! action
even though there are no receivers.

• Urgent synchronisation channels, which are declared by pre�xing a
channel declaration with urgent. If a synchronisation transition on an
urgent channel is enabled, delays must not occur. No clock guards are
allowed on edges that use urgent synchronisation channels.

• Urgent locations, which are semantically equivalent to locations with
an added clock x and an added invariant x<=0, where x is set to zero on
all incoming edges. Consequently, delays are not allowed in an urgent
location.

• Committed locations, which are even stricter than urgent locations. A
state in the state space of a NTA is committed if any of the locations in
the state is committed. A committed state cannot delay and the next
transition must involve an outgoing edge of at least one of the committed
locations.

• Arrays of clocks, channels, constants and integers. Arrays are declared
by appending a size to the variable name, e.g. clock a[2];, chan c[3];,
or int[0,100] i[5];.

• Initialisers, which makes it possible to initialise integer variables and
arrays of integers, e.g. int i := 10;, or int ia[3] := {0, 42, 60};.

Expressions in UPPAAL can involve clocks, constants and integer variables.
Four types of expression labels exist: guards, synchronisations, assignments
and invariants. Guards, synchronisations and assignments are used on edges,

16

x == 2

B

A x <= 2

D

C

c!

F

E

c?

H

G

Figure 2.2: Some of the automata elements in UPPAAL.

whereas invariants are used in locations. The precise behaviour of a NTA in
UPPAAL is de�ned by the semantics in [10, De�nition 3].

Figure 2.2 shows some of the automata elements in UPPAAL. Locations A
and B form a timed automaton, where A is the initial location, B is the terminal
location, A has an outgoing edge to B, A has the invariant x ≤ 2, and the
edge connecting A and B has the guard x = 2. The invariant and the guard
both involve the clock x, and the semantics is that the automaton must stay
in location A for two time units and then move to B. Locations C and D form a
timed automaton, in which the edge is able to synchronise through a channel c
with the edge in the automaton formed by locations E and F. Location G is an
urgent location, and location H is a committed location.

In UPPAAL, the properties that make up system speci�cations are called
queries. UPPAAL's query language is a derived version of timed computation
tree logic (TCTL). Compared to TCTL, or at least the version of TCTL pre-
sented in [8], the query language in UPPAAL includes the modal operators �
(globally, G) and ♦ (�nally, F) but does not allow nesting of path formulae.
We end this chapter with three examples of queries in UPPAAL, where the last
example is used by the METAMOC method:

• E<> Train1.Crossing and Train2.Crossing: A path exists in which we
eventually end up in a state, where the automata Train1 and Train2 are
in the location Crossing at the same time. Without further information
about the system, this is probably not a desirable property to satisfy.

• A[] not deadlock: The system never deadlocks (�for all paths it holds
on the entire subsequent path that the system does not deadlock�).

• sup: cyclecounter: This is a recent addition to the query language
found in the development version of UPPAAL. To help us avoid running
UPPAAL's veri�cation engine several times to obtain a WCET using our
method, the UPPAAL developer Alexandre David added the query type
during March 2009. The query makes UPPAAL output the maximum
possible value for the clock cyclecounter.

2.4 Weighted Push-Down Systems

WPDSs are a way to perform inter-procedural, control-�ow sensitive, and pos-
sibly data-sensitive, program analysis. In this project we use WPDSs for our
value analysis, estimating the value contained in registers at a point of execu-
tion. We have chosen to use the framework of WPDSs, because it is a quite

17

general framework, and it is possible to create a new analysis with relatively
modest e�ort. It is at the same time very powerful and easily extendable, e.g.
with more context for the analysis. It is also very good for representing pro-
cedural imperative programs, because a program's call stack can be precisely
represented. Queries can even be quali�ed with regards to the stack.

The theory on WPDSs presented here is based on [36]. A WPDS is a gen-
eralisation of a push-down system (PDS), with �weights� added to each edge.
Weights are a general black-box abstraction for program data, which conform
to the mathematical model of a semi-ring, and can thus record many important
properties about a program's behaviour. In the following, we give a de�nition of
a PDS, a de�nition of a regular set of con�gurations in a PDS, a result regarding
computing pre∗ and post∗, a de�nition of a bounded idempotent semi-ring (a
weight domain), and �nally a de�nition of a WPDS. We will then present a
classical example of a WPDS instantiation.

De�nition 1 (Push-Down System). A PDS is a triple P = (P,Γ,∆), where
P is a �nite set of control states, Γ is a �nite set of stack symbols and ∆ ⊆
P × Γ × P × Γ∗ is a �nite set of rules detailing how transitions in the system
can happen.

A con�guration is a control state combined with a string of stack symbols,
e.g. 〈p, u〉, where p ∈ P and u ∈ Γ∗.

A rule r ∈ ∆ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P, γ ∈ Γ and
u ∈ Γ∗.

The rules de�ne a transition relation ⇒ on con�gurations of P as follows:
If r = 〈p, γ〉 ↪→ 〈p′, u′〉 then 〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ∗.

Given a PDS P and a set of con�gurations C, we de�ne:

• The set of con�gurations that can lead to a con�guration in C:
pre∗(C) = {c′|∃c ∈ C : c′ ⇒∗ c}.

• The set of con�gurations that can follow from a con�guration in C:
post∗(C) = {c′|∃c ∈ C : c⇒∗ c′}.

where ⇒∗ is the re�exive and transitive closure of ⇒.
In the framework of WPDSs, one restricts the sets of con�gurations consid-

ered to only the regular sets of con�guration. Regular sets of con�gurations
(even in�nite) can be described in a �nite manner using P-automata. This is
done using �nite automata describing con�gurations of a PDS P.

De�nition 2 (Regular Sets of Con�gurations). Given a PDS P = (P,Γ,∆),
we de�ne a P-automaton to be a 5-tuple (Q,Γ,→, P, F), where Q ⊇ P is a
�nite set of states, Γ is the �nite alphabet (the stack symbols from the PDS P),
→⊆ Q× Γ×Q is a transition relation, P is the set of initial states (the states
from the PDS P) and F ⊆ Q is the set of �nal states.

A con�guration of P, 〈p, u〉, is said to be accepted by a P-automaton, if the
automaton can accept the word u = u1 . . . un when started in the state p (that

is p
u1−→ · · · un−−→ q, with some q ∈ F).

A set of con�gurations, C, is said to be regular if it is accepted by a P-
automaton.

In the following we will assume, without loss of generality, that all rules in
a PDS push at most two symbols on the stack. We note that rules pushing

18

more than two symbols can be rewritten into a number of rules using additional
states.

Having now de�ned a model for regular sets of con�gurations, we now show
how pre∗ and post∗ can be computed for such sets, when they are represented
as P-automata.

Theorem 1 (Decidability and Complexity of Deciding pre∗ and post∗). Given
a regular set of con�gurations C, both pre∗(C) and post∗(C) can be computed
in polynomial time.

Proof outline. This proof outline is based closely on [36, p. 9]. Given a PDS
P and a P-automaton A recognising the set C, P-automata Apre∗ and Apost∗
can be constructed, such that Apre∗ recognises the set of con�gurations pre∗(C)
and Apost∗ recognises the set of con�gurations post∗(C).
Apre∗ is constructed as follows:

If 〈p, γ〉 ↪→ 〈p′, w〉 in P, where w = w1 . . . wn, and p
′ w1−−→ · · · wn−−→ q in the

current automaton, then add a transition p
γ−→ q to the current automaton.

Repeat until no more transitions can be added.
Apost∗ is constructed as follows:

1. For each rule of the form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 add a new state p′γ′ .

2. Add transitions using the following three rules, until saturation:

• If 〈p, γ〉 ↪→ 〈p′, ε〉 in P and p(ε−→)∗
γ−→ (ε−→)∗q in the current automaton,

then add a transition p′
ε−→ q.

• If 〈p, γ〉 ↪→ 〈p′, γ′〉 in P and p(
γ′−→)∗

γ−→ (ε−→)∗q in the current automa-

ton, then add a transition p′
γ′−→ q.

• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 in P and p(
γ′−→)∗

γ−→ (ε−→)∗q in the current au-

tomaton, then add the two transitions p′
γ′−→ p′γ′ and p

′
γ′

γ′′−−→ q.

For details that the described algorithms are correct and of polynomial time
complexity, see [39].

Before we can de�ne a WPDS we will need to de�ne which kinds of weights
can be associated with the edges, and how these weights can interact. This is
de�ned using the general framework of a bounded idempotent semi-ring, which
has many useful instantiations. We now give the formal de�nition of a bounded
idempotent semi-ring and show an instantiation, to exemplify the many new
concepts.

De�nition 3 (Bounded Idempotent Semi-Ring (Weight Domain)). A bounded
idempotent semi-ring1 is a 5-tuple: (D,⊕,⊗, 0̄, 1̄), where

D is a set of weights (the elements in the semi-ring),

⊕ is the combine operation for the weight domain (�combine� two elements of
the semi-ring),

1A semi-ring is a ring without the requirement of inverse elements.

19

⊗ is the extend operation for the weight domain (�extend� an element with an-
other element), and

0̄ and 1̄ are the zero- and one-element, respectively.

In addition, the following must hold:

1. (D,⊕) must be a commutative monoid 2 with 0̄ as its neutral element, and
where ⊕ is idempotent. In particular this implies the following properties:

Closure: ∀a, b ∈ D : a⊕ b ∈ D.

Associativity: ∀a, b, c ∈ D : (a⊕ b)⊕ c = a⊕ (b⊕ c).
Commutativity: ∀a, b ∈ D : a⊕ b = b⊕ a.
Identity element: ∀a ∈ D : 0̄⊕ a = a⊕ 0̄ = a.

Idempotency: ∀a ∈ D : a⊕ a = a.

2. (D,⊗) must be a monoid with 1̄ as its neutral element. This implies the
following properties:

Closure: ∀a, b ∈ D : a⊗ b ∈ D.

Associativity: ∀a, b, c ∈ D : (a⊗ b)⊗ c = a⊗ (b⊗ c).
Identity element: ∀a ∈ D : 1̄⊗ a = a⊗ 1̄ = a.

3. ⊗ distributes over ⊕: ∀a, b, c ∈ D : a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

4. 0̄ is an annihilator with respect to ⊗, i.e. ∀a ∈ D : a⊗ 0̄ = 0̄ = 0̄⊗ a.

5. In the partial order v de�ned as a v b ⇐⇒ a ⊕ b = a, there are no
in�nite descending chains.

An example of a weight domain is the weight domain MINPATH = (N0 ∪
{∞},min,+,∞, 0). In MINPATH the elements are the natural numbers
{0, 1, 2, . . .} and ∞. The combine operation is the min-operation, that is de-

�ned by min(a, b) =
{
a if a < b ∨ b =∞
b otherwise

.

The extend operation is simply addition on the natural numbers (also allowing
∞, such that ∀a ∈ N0 : a+∞ =∞).

We will now de�ne a WPDS and show how the MINPATH weight domain
can be used to �nd the minimal path length from one WPDS con�guration to
another.

De�nition 4 (Weighted Push-Down System). A WPDS is a triple W = (P,S,
f), where P = (P,Γ,∆) is a PDS, S = (D,⊕,⊗, 0̄, 1̄) is a weight domain and
f : ∆ → D is a mapping function, mapping the PDS's transitions to elements
in the weight domain.

Given a sequence of rules σ ∈ ∆∗ (which can be seen as a path in the as-
sociated push-down automata), we associate a value from the weight domain
using the extend operation as follows: If σ = [r1, . . . rk], the associated weight is
v(σ) = f(r1)⊗ . . .⊗ f(rk).

2A monoid is a group without the requirement of inverse elements.

20

For any two con�gurations c and c′ we let path(c, c′) denote the set of all
rule sequences that transforms c into c′.

For regular sets of con�gurations S and T , we de�ne the meet-over-all-

valid-paths value as MOVP(S, T) =
⊕
{v(σ)|∃s ∈ S, t ∈ T : σ ∈ path(s, t)}

An example program and a corresponding WPDS are provided in Figure 2.3.
The WPDS demonstrates how the stack can be used to accurately model the
inter-procedural control �ow.

1 main () {
2 x = 5 ;
3 y = 7 ;
4 x = f (x , y) ;
5 i f (x > 5) {
6 y = 8 ;
7 }
8 }
9
10 f (a , b) {
11 i f (a + b < 10) {
12 return 7 ;
13 } else {
14 return 9 ;
15 }
16 }

〈p, nmain〉 ↪→ 〈p, n2〉
〈p, n2〉 ↪→ 〈p, n3〉
〈p, n3〉 ↪→ 〈p, n4〉
〈p, n4〉 ↪→ 〈p, nfn5〉
〈p, n5〉 ↪→ 〈p, n6〉 〈p, n5〉 ↪→ 〈p, n7〉
〈p, n6〉 ↪→ 〈p, n7〉
〈p, n7〉 ↪→ 〈p, ε〉

〈p, nf 〉 ↪→ 〈p, n11〉
〈p, n11〉 ↪→ 〈p, n12〉 〈p, n11〉 ↪→ 〈p, n14〉
〈p, n12〉 ↪→ 〈p, ε〉

〈p, n14〉 ↪→ 〈p, ε〉

Figure 2.3: An example program, in a C-like syntax, and a WPDS accurately
modelling the (data-insensitive) control �ow.

Using the MINPATH weight domain we can �nd the minimal path length,
from one con�guration to another. If we assign the weight 1 (not to be confused
with the one-element 1̄) to every rule in the WPDS, we can use MOVP(S, T)
to determine the shortest path length from one set of con�gurations to another.
For example:

MOVP({〈p, nmain〉}, {〈p, ε〉}) =⊕
{v([〈p, nmain〉 ↪→ 〈p, n2〉, 〈p, n2〉 ↪→ 〈p, n3〉, 〈p, n3〉 ↪→ 〈p, n4〉,

〈p, n4〉 ↪→ 〈p, nfn5〉, 〈p, nf 〉 ↪→ 〈p, n11〉, 〈p, n11〉 ↪→ 〈p, n12〉,
〈p, n12〉 ↪→ 〈p, nε〉, 〈p, n5〉 ↪→ 〈p, n7〉, 〈p, n7〉 ↪→ 〈p, nε〉,]), v(. . .), · · · } =⊕

{1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1, · · · } =⊕
{9, · · · } =

min(9,min(· · ·)) = 9.

Of course, in an implementation it would be intractable to calculate directly
on the de�nitions as done here, due to the enumeration of all possible paths
from one regular set to another. Indeed e�cient algorithms exist for computing
the MOVP over regular sets, in much the same way as pre∗ and post∗ works
for PDSs [36, sec. 3.3].

21

22

Chapter 3

Optimisation Techniques in

Modern Processors

Modern processors use a number of optimisation techniques to speed up average
performance. Many of these techniques will, however, make the worst-case
performance much harder to predict, because they introduce an element of non-
determinism or a very high dependence on the previous state (which might be
unknown or hard to predict).

In this chapter some of these techniques will be described. The descriptions
are based on [42, 34]. Other sources are referenced when used.

This chapter is organised into four sections. The �rst two sections cover
caching and pipelining, which are advantageous to consider when �nding the
WCET of a process on a speci�c platform [13, p. 647]. The third section covers
timing anomalies, a phenomenon that might appear with some of the optimi-
sation techniques or combinations thereof. The �nal section covers abstract
representations of caches and pipelines.

3.1 Caching

Caching is an optimisation technique used to bridge the large speed di�erence
between the processor and the main memory. The speed up is achieved by
placing a smaller but much faster memory chip, called a cache, between the
main memory and the processor. Caching takes advantage of the principle
of locality. More explicitly there are two types of locality: temporal locality,
stating that if a data item has just been used it will probably be used again
soon after, and spatial locality, stating that if a data item has just been used
data items nearby will probably be needed soon after. The cache holds a copy
of recently used parts from main memory. If a part of memory is not in the
cache and needs to be fetched from main memory into the cache, it is called a
cache miss. The opposite is called a cache hit.

A cache has a number of important parameters, a�ecting its performance
and predictability:

The capacity of the cache is the number of bytes that can be stored in the
cache. The capacity is of course very important, since it limits the amount

23

of main memory that can be cached, and thus given quick access to. The
smaller the cache, the slower the execution, in general.

The cache line size is the number of bytes that are transfered from or to main
memory in one transfer. The cache consist of k = capacity

cache line size cache lines.
Main memory M is split into memory blocks m1,m2, . . . ,mn ∈M for the
purpose of caching. Given a memory block mi the address of the memory
block can be found by the function adr(mi) = i − 1. For instance, the
address of adr(m1) = 0. For simplicity, we assume that the size of memory
blocks and cache lines is the same.

The associativity of the cache determines in which cache lines a memory
block can reside. �Fully associative� means that a memory block can
reside in any cache line. The opposite, �direct mapped�, means that a
memory block can reside in precisely one cache line. A trade-o� is A-way
set associative caches, which partition the cache into k/A disjunct sets,
called cache sets, and maps each memory block to exactly one set. Cache
sets is denoted s1, s2, . . . , sk/A. The n'th cache line in a cache set is called
�way n�. Common A-way set associative caches are for A ∈ {2, 4, 8}. The
associativity is a trade-o� between quick lookup (direct mapped being
the fastest) and e�ectiveness of the cache in achieving more hits. Fully
associative and direct mapped are special cases of an A-way set associative
cache with A = k or A = 1, respectively.

An example of a 2-way set associative cache can be seen in Figure 3.1.
The cache lines, in which a memory block can reside, can be calculated by
cacheSet(m) = {li | i =

(
adr(m) mod k

A

)
· A + j}, where m is a memory

block and j ∈ {1, . . . , A}.

Cache

Memory

Main

Memory

l1, way 1

l2, way 2

l3, way 1

l4, way 2

l5, way 1

l6, way 2

l7, way 1

l8, way 2

m1

m2

m3

m4

m5

m6

} Cache set 1

Cache set 2

Cache set 3

Cache set 4

}
}
}

Figure 3.1: Illustration of which memory blocks can reside in which cache lines
in a 2-way set associative cache. The arrows represent which cache lines a
memory block can be cached in.

The replacement policy determines which memory block to evict, when a
new memory block needs to enter the cache, and the cache is already full.
The policy has a very large impact on the predictability of the cache. Some
common policies are: �rst-in �rst-out (FIFO), least-recently used (LRU),
pseudo round-robin (PRR) and pseudo least-recently used (PLRU).

24

Write Back Write Through
Write Allocate Write to cache now, Write to cache now,

write to memory later write to memory now
No Write Allocate N/A Only write to memory,

update cache if needed

Table 3.1: Summary of the di�erent ways of handling writes. Write allo-
cate/write back and no write allocate/write through are the most commonly
used policies.

Handling writes is an important aspect of designing a cache, which can have
a huge impact on the overall performance [34, p. 483]. The problem can
be divided into two cases: what to do on write hits and what to do on
write misses. Write hits occur when a data item in a memory block has to
be modi�ed and the memory block is in the cache. Write misses happen
when the memory block is not in the cache. For write hits the simplest
approach is to modify the memory block in the cache and write the change
directly to main memory. This approach is called write through. The
drawback is that this a�ects performance as every write will cause a write
to main memory. Another more complicated approach is to only modify
the memory block in the cache and only write the memory block to main
memory when it is evicted from the cache. This means we now need to keep
track of which memory blocks have to be written back to memory when
they are evicted from the cache. This is usually done by using a �dirty�
bit for each cache line to indicate whether the memory block has been
modi�ed or not. For write misses, the simplest approach is to only write
the change to main memory. This method is called �no write allocate�.
A more complex approach is �write allocate�, where the memory block is
fetched into the cache on writes. By the temporal locality principle, the
memory block will probably soon be used again. Often hardware using
write back uses write allocate and hardware using write through uses no
write allocate to avoid complicating the hardware design. The di�erent
options are summarised in Table 3.1.

The notation of caches and cache replacement policies have been inspired by
[6, 20, 11, 19]. There are generally two types of cache designs: a uni�ed cache
or separate instruction and data caches. In a uni�ed cache, the space used
for data versus the space used for instructions is balanced without additional
work. Separate instruction and data caches can provide faster access times
since they can be accessed simultaneously. Furthermore, it is possible to adjust
the parameters of the caches for di�erent needs. For instance, it is uncommon
to modify instructions and therefore they need not be written back to main
memory. Due to the di�erent advantages, it is common to have both separate
instruction and data caches and a uni�ed cache, where the latter stores both
instructions and data memory blocks. This is done by having multiple levels of
caches. For instance, processors often have separate level 1(L1) caches and then
have one or more uni�ed larger and slower L2/L3/... caches. If more than one
level of caches are used, another property becomes important: are the caches
exclusive or inclusive? An inclusive cache means that e.g. the L2 cache contains
everything the L1 cache contains, plus some more. An exclusive cache means

25

that the content of the caches are totally disjunct.

3.1.1 Cache Replacement Policies

Cache replacement policies are used for choosing which memory block in the
cache to evict. Making an optimal decision for this can be hard as this requires
knowledge of which memory blocks will be used in the future execution. Based
on the temporal locality principle, an ideal policy keeps recently used memory
blocks in the cache and evicts the least recently used memory block. This
is exactly what the LRU replacement policy does. A nice property of this
policy is that unused memory blocks will eventually be removed from the cache.
This property also holds for the FIFO policy. It does, however, not hold for
replacements policies as PRR and PLRU, which makes these harder to predict.

An example demonstrating the LRU and FIFO replacement policies will
be given along with formal de�nitions. In the de�nitions of the replacement
policies, a cache is considered a set L = {l1, l2, . . . , lk} of cache lines, and M =
{m1,m2, . . . ,mn} is the set of all memory blocks. We extendM with the empty
element I, which represents a cache line that does not contain any memory block:
M ′ = M ∪ {I}. The element is also called an invalid cache line. The capacity
k and associativity A is usually a power of two and will in the following be
assumed to be so. Initially, a concrete cache state is de�ned:

De�nition 5 (Concrete Cache State). A concrete cache state is a mapping
c : L→M ′, and Cc is the set of all concrete cache states.

For each of the replacement policies a concrete update function is de�ned
which describes the e�ect of a memory access to the memory block m with the
concrete cache state c.

The order of the cache lines is used to model the age of memory blocks in the
concrete cache state. The least recently used memory block is placed in cache
line l1. The policies are described for a fully associative cache. The interested
reader can �nd a formal de�nition of an A-way set associative LRU policy in [6].

LRU is often considered the ideal policy, and other replacement policies are
usually compared to LRU. The LRU replacement policy can be divided
into two cases: cache hits and cache misses. In case of a cache hit the
memory block accessed should be marked as the most recently used mem-
ory block. In the second case the memory block that is accessed is not
in the cache and the least recently used memory block should be evicted.
An example of the �rst case that demonstrates the concrete LRU update
function can be seen in Figure 3.2 on the next page.

The �gure shows a concrete cache state c, which is updated to a new
concrete cache state c′ when the memory block m2 is accessed. It should
be noted thatm2 is the second oldest memory block in c. Asm2 is accessed
again, it should be the youngest memory block in c′. Another consequence
is that the memory blocks that are younger than m2 in c should have their
age increased by one in c′. The age of memory blocks that are older than
m2 in c keep their age in c′.

The second case can be seen in Figure 3.3 on the facing page. The �gure
shows how a concrete cache state c is updated when the memory block

26

⇒

m3

m1

m2

m4

m3

m1

m4

m2

Concrete cache state c Concrete cache state c′

ULRU (c,m2)

l1

l2

l3

l4

l1

l2

l3

l4

Figure 3.2: Update of concrete cache state c to c′ in the case of a cache hit.
The LRU replacement policy is used to update the ages of memory blocks in
the cache.

⇒

m3

m1

m2

m4

m3

m1

m2

m5

Concrete cache state c Concrete cache state c′

ULRU (c,m5)

l1

l2

l3

l4

l1

l2

l3

l4

Figure 3.3: Update of concrete cache state c to c′ in the case of a cache miss.
The LRU replacement policy is used to choose which memory block to evict.

m5, that is not in c, is accessed: a cache miss. In c, m3 is the youngest
memory block and m4 is the oldest. Since m5 is not already in the cache,
and m4 is the oldest, m4 will be evicted from the cache and m5 will be
the youngest memory block in c′.

De�nition 6 (Concrete LRU Cache Update Function). The update func-
tion ULRU : Cc×M → Cc takes a concrete cache state and a memory block
as input and produces a concrete cache state as output. ULRU (c,m) = c′,
where c′ is de�ned as:

c′ =


[l1 7→ m,
li 7→ c(li−1) | i ∈ {2, . . . , h},
li 7→ c(li) | i ∈ {h+ 1, . . . , A}] if ∃lh : c(lh) = m

[l1 7→ m,
li 7→ c(li−1) | i ∈ {2, . . . , A}] otherwise.

FIFO is a simpler replacement policy than LRU. Therefore, the main advan-
tage of FIFO is that the update logic is cheaper to implement. The update
logic can be implemented with a round-robin counter for each cache set
that points to the oldest memory block. That said, FIFO is quite similar
to LRU. It can also be divided into two similar cases: one for cache hits
and one for cache misses. An example of the �rst case, where a memory
block in the cache is accessed, can be seen in Figure 3.4 on the next page.
Since FIFO only uses a counter to represent the oldest memory block, c
and c′ are equal on cache hits.

The second case for cache misses of a memory block m is equivalent to

27

⇒

m3

m1

m2

m4

m1

m2

m4

m3

Concrete cache state c Concrete cache state c′

UFIFO(c,m5)

l1

l2

l3

l4

l1

l2

l3

l4

Figure 3.4: Update of concrete cache state c to c′ in the case of a cache hit.
The FIFO replacement policy is used to update the ages of memory blocks in
the cache, i.e. do nothing in this case.

that of LRU. The oldest memory block will be evicted from the cache,
and m will become the youngest memory block.

De�nition 7 (Concrete FIFO Cache Update Function). The update func-
tion UFIFO : Cc×M → Cc takes a concrete cache state and a memory block
as input and produces a concrete cache state as output. UFIFO(c,m) = c′,
where c′ is de�ned as:

c′ =

 c if ∃lh : c(lh) = m
[l1 7→ m,
li 7→ c(li−1) | i ∈ {2, . . . , A}] otherwise.

3.2 Pipelining

This section is based on [42, 34] and we assume basic knowledge of processor
architectures.

Pipelining is a well-known concept for instance in the car industry, where
cars are assembled on a pipeline with specialised workers or robots carrying
out the same action repeatedly. To understand how this can be applied to a
simple processor, it should be realised that executing a single instruction can
easily take more than one cycle. For instance, executing an instruction with two
operands, on the simple processor modelled in Figure 3.5 on the facing page, is
done by setting the instruction type on the ALU operation line and waiting for
the operands to be made available in Data register1 and Data register2. When
the operands are available, the instruction is executed. After the instruction
has been executed, and as soon as any previous result in the write register has
been written to cache or main memory, the result is stored in the write register.
Assuming that fetching an instruction from the cache takes one cycle, fetching
an operand from the cache takes one cycle, executing the instruction takes one
or two cycles depending on the instruction type, and writing the result takes
one cycle. In total this is �ve to six cycles for executing a single instruction.

Applying the concept of pipelining to processors means that the tasks of
the processor are divided into stages which are then carried out consecutively.
An example this division into stages could be: �Instruction Fetch�, �Instruction
Decode�, �Operand Fetch�, �Instruction Execution�, and �Write Back�. All stages
are performed in parallel and are designed with the intention to work on an
instruction during each cycle. In Figure 3.6 on the next page such a �ve stage

28

Figure 3.5: Simpli�ed processor model

pipeline is shown. More complex pipelines might have more than one unit in
a stage, e.g. the �Instruction Execution� stage might consist of an integer unit
and a �oating point unit.

Figure 3.6: Five stage pipeline.

The advantage of using pipelining is an overall increase of the number of
instructions executed per time unit. The time taken by an instruction to �ow
through a non-pipelined data path limits the cycle frequency of the processor,
while the shorter data paths in the stages allow the cycle frequency to be in-
creased dramatically. Conceptually, if a processor's data path is not pipelined,
each instruction must �ow through all the �stages� before allowing the next
instruction to enter. Using a �ve stage pipeline, ideally an instruction can be
completed each cycle. This can be seen in Table 3.2 on the following page.

At this point it might seem tempting to increase the number of stages in a
pipeline, however, this will usually not yield a much better performance. The
reason is that in practice instruction prefetching might not work as planned and
instead introduce pipeline stalls. A pipeline stall is a situation where the pipeline
cannot perform useful work but instead performs NOPs (No OPerations).

The code in Figure 3.7 on the next page introduces a pipeline stall. Table 3.3
shows what happens in the pipeline for each cycle. In the two �rst cycles

29

Cycle Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
1 Instr. 1
2 Instr. 2 Instr. 1
3 Instr. 3 Instr. 2 Instr. 1
4 Instr. 4 Instr. 3 Instr. 2 Instr. 1
5 Instr. 5 Instr. 4 Instr. 3 Instr. 2 Instr. 1
6 Instr. 6 Instr. 5 Instr. 4 Instr. 3 Instr. 2
...

...
...

...
...

...

Table 3.2: The �rst six cycles of a �ve stage pipeline.

1 while (i != 42) {
2 i f (j == 1) {
3 j = 42 ;
4 }
5 i++;
6 }

(a)

1 While: CMP i, 42

2 BNE Next

3 NOP

4 CMP j, 1

5 BNE Ncon

6 NOP

7 Con: MOV j, 42

8 Ncon: NOP

9 ADD i, i, 1

10 BR While

11 NOP

12 Next: ...

(b)

Figure 3.7: Prefetching example.

everything is �ne, but in cycle three a NOP is fetched in the Instruction Fetch
stage. The reason to have NOPs in the assembly code is to keep the program
correct. The problem is that the pipeline fetches the NOP before it decodes the
BNE (Branch if Not Equal) instruction, and then realises that it might actually
need to fetch the instruction at line 12 of part (b) of Figure 3.7 instead. Rather
than always performing NOPs after branches, a better idea is to perform useful
work. This technique is called a delay slot. A delay slot is an instruction that is
placed after branches, and the instruction is executed regardless of the branch.
It is then the task of the compiler to try to place a useful instruction in the
delay slot, or a NOP in case no useful instruction can be placed there. In case
of conditional branches such as BNE, delay slots are not the only problem, since
the pipeline has to stall and wait for the result of executing the CMP instruction
in the Instruction Execution stage. Before CMP can be executed, the operands
(in this case i) need to be fetched from the cache or main memory. In Table 3.3
on the facing page i is assumed to be in the cache. Even though there is a
cache hit, the Instruction Fetch stage does not know the result of executing
the CMP instruction in cycle four, which means it stalls and has to insert a NOP

instruction. If the pipeline had even more stages this would result in stalling
for even more cycles. One technique to decrease the number of pipeline stalls is
branch prediction.

30

Cycle Instr. Instr. Operand Instr. Write
Fetch Decode Fetch Execution Back

1 CMP i, 42

2 BNE Next CMP i, 42

3 NOP BNE Next CMP i, 42

4 NOP NOP BNE Next CMP i, 42

.

Table 3.3: Example of pipeline stall as a result of branching.

3.2.1 Branch Prediction

Branch prediction is an optimisation technique which can be used to reduce
the amount of pipeline stalls. We introduce it through a small example. In
Figure 3.8 a code snippet and the corresponding assembly code can be seen. If
this code is executed on a pipelined processor, and the variable i is not cached,
the pipeline has to stall until i is fetched from memory, since the processor does
not know whether to prefetch the instruction in either line three or �ve in part
(b).

1 . . .
2 i f (i == 0) {
3 j = 42 ;
4 } else {
5 k = 42 ;
6 }
7 . . .

(a)

1 CMP i, 0

2 BNE Ncon

3 Con: MOV j, 42

4 BR Next

5 Ncon: MOV k, 42

6 Next: ...

(b)

Figure 3.8: Code snippet and corresponding assembly code.

Another way of handling branches in a pipelined processor is to let the fetch
stage continue fetching, rather than stalling, and �ushing the preceding stages,
when it is realised that the branch is to be taken. This might be costly if the
branch is taken, because the �ushing of stages means that the pipeline will be
idle for several cycles.

If the value of i in line one could somehow be predicted, it would be possible
to prefetch the instructions of line three or �ve. This is, however, not possible
in general. Instead of giving up, this has given rise to a number of di�erent
branch prediction techniques.

One idea is to statically predict that branches are never taken. This only
causes problems when branches are indeed taken, and in this case the computa-
tion would have to be �undone�. Two common rule exist. Firstly, if the target of
a conditional branch is backward, then the branch is taken. The reason is that
this indicates a loop and loops are generally iterated several times. Secondly, if
the target of a conditional branch is forward the branch is not taken. The reason
for this is that forward branches are sometimes used in error checking and errors
rarely happen. This prediction is not as good as the one for backward branches,
as many forward conditional branches are not related to error checking.

31

Address Prediction bit(s)
0xDEAD taken

0xBEEF not taken

.

Table 3.4: Example of a history table.

Since conditional branches are often inside loops, a noticeable performance
decrease can result if branches are repeatedly mispredicted. To avoid this, dy-
namic branch prediction has been designed to learn from past experiences. A
common technique for learning is to use a history table as seen in Table 3.4.

The history table is used similarly to a cache. Some history tables use a
single bit to represent if the branch was taken last time, or not. This leads to
a common, unfortunate behaviour with nested loops, as the last iteration over
the inner loop will �ip the prediction bit. This means that the next time the
inner loop is entered, the loop will most likely be mispredicted. Consequently,
branch prediction can give very good results but entails some challenges.

3.2.2 Out-of-Order Execution

Another technique to reduce the number of pipeline stalls is to execute in-
structions out-of-order. In e�ect, the constraint that instructions should be be
executed in sequential order is no longer valid, although the sequential seman-
tics must be maintained. For instance, in the code snippet in Figure 3.9, line
one might lead to a pipeline stall if the memory block containing i is not in
the cache. If the memory block containing j is in the cache, it would be more
e�cient to execute line two before line one.

1 DIV R5, i, 3

2 MUL R3, j, 2

3 ADD R1, R3, R2

4 ADD R2, R4, 3

5 ADD R1, R2, 4

Figure 3.9: Assembly code snippet demonstrating out-of-order execution where
Rx is a register.

Out-of-order execution requires the pipeline to be redesigned. An overview
of an idea for a new design can be seen in Figure 3.10 on the next page, where the
Instruction Fetch and Instruction Decode stages have been collapsed. Another
change is that the Instruction Execution stage usually has two or more units that
perform parallel out-of-order execution. The collapsed stage works in-order and
makes a �pool� of instructions available to the units in the Instruction Execution
stage. After instructions have been executed, the results are committed back
to the cache or main memory. This is done in the commit stage, which is in-
order. The Operand Fetch stage has been renamed to Reservation Station. The
Reservation Station is responsible for making operands available and resolving
con�icts.

Executing instructions out-of-order and in parallel gives rise to three types of

32

Figure 3.10: Overview of a processor design with out-of-order execution.

data dependencies, resulting in con�icts on an out-of-order execution processor.
The data dependencies are demonstrated in the code in Figure 3.9 on the facing
page:

• Read after write (RAW) can be seen in line two and three, where R3 will
be written to in line two and the result is read in line three. The RAW
dependency blocks out-of-order execution of line three before line two.

• Write after read (WAR) can be seen in line three and four, where R2 needs
to be read in line three, before it can be written in line four.

• Write after write (WAW) can be seen in line three and �ve, as both line
three and �ve write their result to register R1, but the result of line �ve
must be the last to be written to R1.

The reader might have noticed that both WAR and WAW could be overcome
by having additional, so-called �secret� registers to store the result in. For
instance, the WAR example could be solved by �rst copying the value of R2
to another register, that would be used by the instruction in line three. This
would allow both instructions to be executed out of order. This technique is
generally known as register renaming and is performed by the Instruction Fetch
and Decode stage, Reservation Stations, and the Commit stage. The technique
is able to eliminate many WAR and WAW dependencies [42, p. 280].

3.2.3 Speculative Execution

Branch prediction and out-of-order execution are not su�cient for avoiding all
pipeline stalls. For instance, out-of-order execution does not work well if there
are many branches and the basic blocks are small. Branch prediction does not
always help enough, if, for instance, a memory block needs to be fetched from
main memory or a long �oating point operation has to complete before the
result of a conditional branch is known.

Speculative execution can improve the average performance of execution.
This is done by executing instructions without knowing if they are actually

33

Label Dispatch cycle Instruction
A 1 LDR R4, [R3]

B 2 ADD R5, R4, R4

C 3 ADD R11, R10, R10

D 4 MUL R12, R11, R11

E 5 MUL R13, R12, R12

Table 3.5: Instructions for timing anomaly example [31].

going to be executed. This might, however, also result in slowdowns. For
instance, if speculation results in execution of instructions that require memory
blocks that are not in the cache, thereby causing a cache miss, as the memory
blocks have to be fetched from main memory. To prevent this scenario, some
modern processors have special speculative instructions which only use cached
memory blocks.

Another problem with speculative execution is that executing instructions
without strictly obeying checks in conditional branches might cause over�ows or
exceptions that would not otherwise happen. This is an undesirable situation,
and it needs to be resolved in hardware. A way to do this is to add a �poison�
bit to each register, set the bit when a register stores speculative results and
only raise exceptions when it is con�rmed that an exception truly will happen.

3.3 Timing Anomalies

A processor exhibits timing anomalies when the local execution time of a single
instruction has a counter-intuitive in�uence on the global execution time of a
program [16]. For instance, a cache hit rather than a cache miss at a particular
point of execution might yield a longer, rather than a shorter, overall program
execution time. Timing anomalies are of crucial relevance to WCET analysis,
as it is in general more simple and e�cient to assume that local worst-case
decisions produce the global WCET.

We introduce timing anomalies through a concrete example [31], where a
cache hit triggers an overall longer execution time than a cache miss. The
execution takes place on a simpli�ed processor model with three parallel re-
sources: a load-store unit (LSU), an integer unit (IU) and a multi-cycle integer
unit (MCIU). Table 3.5 contains an instruction sequence that will be executed
on the model. The second column shows in which cycles the instructions are
dispatched. The LDR (load to register) instruction uses the LSU, ADD uses the
IU, and MUL uses the MCIU. The IU permits out-of-order execution, whereas
the LSU and the MCIU do not. For each instruction, the leftmost register is
the destination register, while the other registers are source registers.

The instructions' use of registers makes them dependent. For example, the
LDR instruction must have loaded a value into register R4, before the subsequent
ADD is able to use the register as a source for addition. Using labels, it is
clear that B depends on A, D depends on C, and E depends on D. All the
dependencies are RAW dependencies as explained in Section 3.2.2 on page 32.
The LDR instruction executes for two cycles if there is a cache hit and ten
cycles otherwise. The ADD and MUL instructions execute for one and four cycles,

34

Figure 3.11: Timing anomaly example [16, 31].

Figure 3.12: Speculation anomaly example [35].

respectively.

Figure 3.11 shows the execution of the instruction sequence, with and with-
out a cache hit for the LDR instruction. Consider the upper half of the �gure.
Instruction B is dispatched at cycle two, but due to its dependency on A, execu-
tion of B has to wait until cycle three, where A is done executing. At cycle three,
C is dispatched, but the processor's policy causes B to be executed �rst, as it
has been waiting and therefore is older. In the �gure's lower half, instruction A
experiences a cache miss and delays the execution of B until cycle 11. As the IU
permits out-of-order execution, C is executed in cycle three, immediately after
having been dispatched. The instruction sequence exposes a timing anomaly
for the processor model, as the execution with a cache hit has a longer overall
execution time than the execution with a cache miss.

Consequently, on this processor a WCET analysis that assumes local worst-
case behaviour, i.e. cache miss, for each instruction possibly underapproximates
the WCET.

The example illustrated in Table 3.5 on the facing page and Figure 3.11
is called a scheduling anomaly. Another example is a speculation anomaly,
which occurs with branch prediction [35]. A mispredicted branch can cause
unnecessary instruction fetching, polluting the cache. If the �rst instruction in
the mispredicted branch is a cache miss, then the branch condition might be
evaluated before the mispredicted branch can cause more harmful fetches. This
anomaly is illustrated in Figure 3.12.

35

A third type of timing anomalies, also mentioned in [35], is cache timing
anomalies. Contrary to the other two types, these are anomalies caused entirely
by strange cache behaviour, i.e. there is no out-of-order execution, branch
prediction or other optimisation techniques involved. It is notable that some in-
order architectures, such as the Motorola ColdFire 5307, do exhibit speculation
and cache timing anomalies, thus to avoid anomalies it is not enough to avoid
out-of-order execution [35, 43].

Timing anomalies had only been informally de�ned until 2006, where Becker
et al. put forward a de�nition in [35]. The de�nition is inspired by a series of
observations with regards to the underlying hardware model, the desired degree
of abstraction and the necessary code level to inspect. Because the de�nition
takes all these elements into account, it has the advantage that it covers all
types of timing anomalies, even possibly future types. The obvious drawback
is that it is not a single de�nition, it is a framework of complex de�nitions
and is therefore not simple to apply. Also, the de�nitions have not yet, to our
knowledge, been the basis for any published studies on timing anomalies.

Since timing anomalies makes it unsafe to �nd the WCET of an instruction
sequence by assuming local worst-case behaviour for each instruction, WCET
analyses relying solely on that approach are not able to cope with timing anoma-
lies. In [31], Lundquist and Stenström present two methods for dealing with
timing anomalies, called �the pessimistic serial-execution method� and �the pro-
gram modi�cation method�. The former method assumes that all instructions
are executed one at a time and sum up all individual instruction WCETs to-
gether with a cache miss penalty for each instruction. Because main memory
is substantially slower than cache, all these extra cache miss penalties lead to
a very overapproximated WCET. The latter method modi�es the instruction
sequence in a hardware dependent way, such that its execution on the particu-
lar hardware does not exhibit timing anomalies. The modi�cation includes the
insertion of special instructions to force the processor to do in-order execution
in problematic parts of the instruction sequence.

3.4 Abstract Representations

Contrary to representing the behaviour of caches and pipelines concretely, ab-
stract representations are an e�cient, yet relatively precise, way of representing
sets of concrete states. In this section we present the research on cache and
pipeline abstraction that we have studied.

3.4.1 Abstraction of Caches

In Section 3.1 on page 23, we presented a way of representing caches in a concrete
manner. In this section we will describe how to represent sets of concrete caches
in a space-e�cient, abstract manner. This is useful for analyses that try to
predict cache behaviour at di�erent execution points in a program. The analyses
work on the control �ow graph (CFG) of a process. Each node in the CFG
is assigned an abstract cache state, which is a representation of the various
concrete cache states that the processor might be in at that execution point.
In this section we present a de�nition of an abstract cache state, along with
may and must analyses for the LRU and FIFO cache replacement policies. The

36

de�nition of LRU and examples are based on [6, 19, 20]. In this section we
assume fully associative caches, but note that the de�nitions could easily be
extended to A-way set-associative caches.

De�nition 8 (Abstract Cache State). An abstract cache state is a function
ĉ : L → 2M , where L = {l1, . . . , lk} is the set of cache lines, and M is the set
of memory blocks. The mapping indicates the maximal age of an item in the
cache. Ĉc denotes the set of all abstract cache states. We use k to denote the
number of cache lines, |L|.

For example, assuming two cache lines, l1 and l2, and two memory blocks,
m1 andm2, the abstract cache state {l1 → ∅, l2 → {m1,m2}} is a representation
of the concrete cache states {l1 → m1, l2 → m2} and {l1 → m2, l2 → m1}.

When a CFG node has more than one incoming transition, a join function
is used to determine a sound approximation of the cache contents at this CFG
node.

De�nition 9 (Join Function). A join function is a mapping from two abstract
cache states to single abstract cache state:

JOIN : Ĉc × Ĉc → Ĉc.

As mentioned before, a cache analysis is usually divided into two separate
analyses: a must analysis, used to predict which memory blocks are de�nitely
in the cache, and a may analysis, used to predict which memory blocks are
de�nitely not in the cache. Join functions will be de�ned for both analyses.

Must Analysis

The must analysis is fundamental to cache analysis, as it provides information
on which memory blocks are in the cache at a given execution point. This
improves the results of a WCET analysis by predicting de�nite cache hits.

Before presenting abstract update functions, we present a join function which
is used for both LRU and FIFO replacement policies.

De�nition 10 (LRU/FIFO Must Join Function). For LRU and FIFO replace-
ment polices the join function is de�ned as

JOIN(ĉ1, ĉ2) = {li → X|y ∈ X ⇔ ∃j, k : y ∈ ĉ1(lj)∧y ∈ ĉ2(lk)∧ i = max(j, k)}

I.e. the age that a memory block in the cache can have at a node is the maximal
age that the item has in its predecessors.

In the following we present abstract update functions for the replacement
policies.

LRU's abstract must update function is almost similar to the concrete update
function for LRU. The di�erence is that cache lines can contain sets of
memory blocks. It must therefore be determined how cache hits a�ect
other memory blocks in the same cache line containing the memory block
being accessed � for the must analysis the ages are upper bounds, mean-
ing that it is safe to let the other memory blocks stay. In Figure 3.13

37

⇒

{m1}

{}

{m2,m3}

{m4}

{m1}

{m2}

{m4}

{m3}

Abstract cache state ĉ Abstract cache state ĉ′

Û∩LRU (ĉ,m3)

l1

l2

l3

l4

l1

l2

l3

l4

Figure 3.13: An example of the abstract must update function for LRU in use.

an example demonstrating the abstract must update function for LRU is
shown.

A formal de�nition of the abstract must LRU cache update function is
given below.

De�nition 11 (Abstract Must LRU Cache Update Function). The update
function, Û∩LRU : Ĉc × M → Ĉc, takes an abstract cache state and a
memory block as input and produces an abstract cache state as output.
Û∩LRU (ĉ,m) = ĉ′, where ĉ′ is de�ned as:

ĉ′ =



[l1 7→ {m}
li 7→ ĉ(li−1)|i ∈ {2, . . . , h− 1},
lh 7→ ĉ(lh−1) ∪ (ĉ(lh) \ {m}),
li 7→ ĉ(li)|i ∈ {h+ 1, . . . , A}] if ∃lh : m ∈ ĉ(lh)

[l1 7→ {m},
li 7→ ĉ(li−1)|i ∈ {2, . . . , A}] otherwise.

The update function has two cases: cache hit and cache miss. On a cache
miss the memory block accessed is moved to the �rst cache line, and the
remaining cache lines are moved down one line (with the last cache line
dropping out). On a cache hit, the memory block accessed is moved to
the �rst cache line, and the cache lines from the �rst to the one where the
hit was are moved one down.

FIFO's update logic is a bit more simple than that of LRU and the abstract
update function is therefore even more similar to the concrete update
function. The di�erence between the concrete and the abstract update
function is that the latter uses abstract cache states. A de�nition of the
abstract must FIFO cache update function is given below.

De�nition 12 (Abstract Must FIFO Cache Update Function). The up-
date function Û∩FIFO : Ĉc ×M → Ĉc takes an abstract cache state and
a memory block as input and produces an abstract cache state as output.
Û∩FIFO(ĉ,m) = ĉ′ where ĉ′ is de�ned as:

ĉ′ =

 ĉ if ∃lh : m ∈ ĉ(lh)
[l1 7→ {m},
li 7→ ĉ(li−1)|i ∈ {2, . . . , A}] otherwise.

Again the update function has two cases: cache hit and cache miss. On
a cache hit the cache is not altered. On a cache miss the memory block

38

is moved to the �rst cache line, and the remaining cache lines are moved
one down, with the last falling out.

May Analysis

The may analysis is used to �nd all memory blocks that could possibly be in
the cache at a given point. This can be used to predict if a memory block is
de�nitely not in the cache.

For the may analysis the following join function is used:

De�nition 13 (LRU/FIFO May Join Function). For the LRU and FIFO re-
placement policies the may join function is de�ned as

JOIN(ĉ1, ĉ2) = {li → X|y ∈ X ⇔ ∃j, k : y ∈ ĉ1(lj)∧y ∈ ĉ2(lk)∧ i = min(j, k)}

I.e. the age that a memory block in the cache can have at a node is the minimal
age the item has in its predecessors.

The replacement policies are presented below.

LRU's abstract may update function is di�erent from the abstract LRU must
update function. In Figure 3.14 an example is presented which demon-
strates the abstract may update function.

⇒

{m1}

{}

{m2,m3}

{m4}

{m1}

{m2}

{m4}

{m3}

Abstract cache state ĉ Abstract cache state ĉ′

Û∪LRU (ĉ,m3)

l1

l2

l3

l4

l1

l2

l3

l4

Figure 3.14: An example of the abstract may update function for LRU in use.

A formal de�nition of the abstract may LRU cache update function is
given below.

De�nition 14 (Abstract May LRU Cache Update Function). The up-
date function Û∪LRU : Ĉc × M → Ĉc takes an abstract cache state and
a memory block as input and produces an abstract cache state as output.
Û∪LRU (ĉ,m) = ĉ′ where ĉ′ is de�ned as:

ĉ′ =



[l1 7→ {m},
li 7→ ĉ(li−1)|i ∈ {2, . . . , h},
lh+1 7→ ĉ(lh+1) ∪

(
ĉ(lh) \ {m}

)
,

li 7→ ĉ(li)|i ∈ {h+ 2, . . . , A}] if ∃lh : m ∈ ĉ(lh)
[l1 7→ {m},
li 7→ ĉ(li−1)|i ∈ {2, . . . , A}] otherwise.

FIFO's abstract may cache update function is the same as for the abstract
must cache update function. In case of cache hits both the may and the

39

must FIFO update functions do not change the abstract cache state. In
case of cache misses, the accessed memory block is inserted as the �rst
and the age of all other memory blocks are increased by one. A formal
de�nition of Û∪FIFO is therefore omitted.

3.4.2 Abstraction of Pipelines

Due to the complexity of the stages in a pipeline and the interdependencies
between the stages, it is di�cult to make a useful pipeline abstraction. For
example, in [38] Ferdinand et al. de�ne an abstract pipeline state simply as a
set of concrete pipeline states.

40

Chapter 4

Hardware Platform

The WCET of a process depends highly on the hardware platform it is exe-
cuted on. The hardware platform is also known as the execution environment,
although this in some instances also covers more than just the hardware, e.g.
the operating system as well [13, p. 635].

As mentioned in Chapter 3, there are two primary optimisation techniques of
modern processors, which are advantageous to consider when �nding the WCET
of a process on a speci�c hardware platform: caching and pipelining. In practice
there might be more elements to consider, e.g. it might be necessary to take
the misalignment of busses into account. Misalignment occurs, since the speed
of the main memory bus often is slower than the bus between the processor and
caches. This can be safely approximated by using a larger constant on each
memory access, however, to get sharper WCETs this must in some cases be
modelled more precisely [23].

Due to the dependence of WCET analysis on a hardware platform, we have
chosen a speci�c processor as a basis for the implementation of METAMOC.
We have chosen a processor from the well-known ARM9 family from ARM
Ltd.: the ARM920T 32 bit processor. The ARM920T has been chosen due to
its widespread use in embedded systems. For example, it powers the Sun SPOT
Wireless Sensor Network node, the FIC Neo FreeRunner mobile phone, and is
used in many custom embedded systems. Even though we have chosen to im-
plement the method for a speci�c hardware platform, the method's applicability
is not limited. For instance, the method is designed to be easily extendable to
other cache types, or other pipelines.

For the ARM families the relation between System-on-Chip, processor and
processor core is illustrated in Figure 4.1. The �gure shows that a System-
on-Chip, or microcontroller, contains among other things a processor and some
amount of RAM. The relevant parts of a processor, in the context of this report,
are the processor core and caches.

The processor core in the ARM920T processor is the ARM9TDMI. This core
is used in all processors in the ARM9 family, which, besides the ARM920T,
includes the ARM922T and ARM940T processors [25, 40]. It features a �ve-
stage pipeline, divided in the stages: Fetch, Decode, Execute, Memory, and
Writeback [40]. The pipeline is illustrated in Figure 4.2.

The processor has separate 16 KB instruction and 16 KB data caches [28].
Each cache is 64-way set associative and has 8 words (32 bytes) per cache line.

41

Figure 4.1: The relation between System-on-Chip, processor and processor core.

Fetch

Fetch instruction

from instruction cache

or main memory

ARM decode

Thumb decode

Reg. address

decode

Reg. address

decode

Register

read

Register

read

Decode

Writeback

Memory

Memory data access

Execute

ALUShifter

load data writeback

ALU result and/or

Figure 4.2: The �ve-stage pipeline in the ARM9TDMI processor core [40].

42

Both caches feature a choice between FIFO or pseudo random as replacement
policy.

Both 32 bit ARM instructions and 16 bit Thumb instructions are handled
by the ARM9TDMI processor core [27]. The Thumb instruction set improves
the code density at the cost of being more limited than ARM instructions with
regard to possible instruction operands. The decode stage is divided into two
parts: one for ARM and one for Thumb. Only one of them is active at a time.
We currently only handle ARM instructions, but support for the Thumb instruc-
tion set can easily be added. The following section gives a brief introduction to
the ARM assembly language.

4.1 ARM Assembly Language

WCET analysis must be done on the machine code level of a process, since this is
the only level with enough information [20]. At the machine code level, compiler
optimisations have been performed and the memory addresses for static data
is speci�ed directly. Machine code can be represented either in binary form or
as assembly language, where the latter is typically chosen such that the code
can be inspected by humans. Since the machine code level is unavoidable when
doing WCET analysis, it is necessary to be acquainted with the ARM assembly
language when creating an analysis method for ARM processors.

The language has instructions for branching, data processing, status register
transferring, loading, storing, co-processing and exception generation [29, 22].
In addition, the language supports conditional execution of all instructions.
Table 4.1 shows the subset of ARM instruction mnemonics we have encoun-
tered while compiling the Mälerdalen WCET benchmark programs [4] to the
ARM920T processor using GCC.

We will now explain in some detail the most common ARM assembly lan-
guage constructs we have encountered: function calls, function returns, condi-
tional instructions, data operations and memory operations.

Function calls are usually carried out using the BL instruction, which saves
the address of the next instruction to register LR and then jumps to the static
address given as argument:

BL 832C

The called functions usually returns using the BX instruction, which jumps
to the address stored in the register given as argument:

BX LR

In functions which use register LR, its value is typically stored on the stack
and later restored by POP {LR} just before BX LR.

Conditional instructions are preceded by instructions, such as CMN, CMP and
TST, which set condition �ags for the instructions to react on. Arithmetic,
logical, shifting and rotating instructions can be su�xed with an �S�, e.g. ASRS,
EORS or MULS, and will then also set the condition �ags. For instance, the
following two instructions compare the value in register R0 to the decimal value
100 and jump to the static, hexadecimal address 8428 if the compared values
are equal:

43

Mne. Meaning Mne. Meaning
ADC Add with Carry LSRS Logical Shift Right and
ADD Add set condition �ags
AND Logical AND MLA Multiply Accumulate
ASR Arithmetic Shift Right MLS Multiply and Substract
ASRS Arithmetic Shift Right MOV Move

and set condition �ags MUL Multiply
B〈cc〉 Branch on Condition MULS Multiply and set
B Unconditional Branch condition �ags
BIC Bit Clear MVN Logical NOT
BL〈cc〉 Conditional Branch with ORR Logical OR

Link ORRS Logical OR and set
BL Unconditional Branch with condition �ags

Link POP Pop from the stack
BX Unconditional Branch and PUSH Push on the stack

Exchange RSB Reverse Subtract
CMN Compare (Negative) RSBS Reverse Subtract and
CMP Compare set condition �ags
EOR Exclusive OR SMLAL Mult. Accum. Signed Long
EORS Exclusive OR and set SMULL Multiply Signed Long

condition �ags STM Store Multiple
LDM Load Multiple STR Store Register (Word)
LDR Load Register (Word) STRB Store Register (Byte)
LDRB Load Register (Byte) STRH Store Register (Halfword)
LDRH Load Register (Halfword) STRSH Store Register (Halfword)
LDRSH Load Register (Halfword) and set condition �ags

and set condition �ags SUB Subtract
LSL Logical Shift Left TST Test
LSLS Logical Shift Left and UMLAL Mult. Accum. Unsigned

set condition �ags Long
LSR Logical Shift Right UMULL Multiply Unsigned Long

Table 4.1: The ARM instruction mnemonics relevant to our work [29, 22].

44

CMP R0, #100

BEQ 8428

Branching to dynamic addresses can be carried out by either using the BX

instruction with a register as argument (like when returning from functions) or
by writing to the program counter PC.

The ADD and AND instructions serve well as general examples of the arithmetic
and bitwise instructions, respectively. The �rst of the following two instructions
stores the sum of the values in R0 and R1 in R2, whereas the next instruction
performs a bitwise AND of the values in R3 and R4 and saves the result in R5:

ADD R2, R0, R1

AND R5, R3, R4

The MOV instruction copies values between registers. For instance, the fol-
lowing two instructions load R0 with the decimal value 100 and copy the value
of R1 into R2:

MOV R0, #100

MOV R2, R1

Loading and storing of registers can be performed for bytes, halfwords (two
bytes), words (four bytes) and multiple words (a multiple of four bytes). The
following instruction loads R0 with the contents of memory pointed to by the
address stored in R1:

LDR R0, [R1]

The POP and PUSH instructions are aliases for load multiple and store mul-
tiple, respectively. The POP <reglist> instruction is the canonical form of
LDM SP!, <reglist>, whereas PUSH <reglist> is the canonical form of STMDB
SP!, <reglist> [29]. The <reglist> argument is a list of registers separated
by commas and enclosed in curly brackets. The STMDB instruction is a STM

post�xed by DB, meaning that the stack pointer SP is decremented before the
store is carried out. The LDM and STM instructions can also be post�xed by IA

(increase after), IB (increase before) and DA (decrease after). The default is IA,
which does not need to be speci�ed.

The following instruction is a variation of the previous load instruction,
where the value in R1 is used as base address and the value in R2 is used as
o�set, i.e. the memory address is the sum of values in the two registers:

LDR R0, [R1, R2]

It is also possible to bitwise shift or rotate the value of a register before
using it. The ARM instruction set o�ers logical shift left (LSL), logical shift
right (LSR), arithmetic shift right (ASR), rotate right (ROR) and rotate right
extended (RRX) [22]. Contrary to the logical shifts, ASR maintains the sign of
the value. The RRX modi�er takes no argument and rotates a value through
the Carry �ag (one of the processor's status �ags) by one bit, i.e. the Carry
�ag is moved into the most signi�cant bit, and the least signi�cant bit is moved
into the Carry �ag. Compared to the previous LDR instruction, the following
instruction shifts the value of R2 left by two bits before using it to calculate the
memory address:

45

Mne. Meaning Mne. Meaning
AL Always (normally omitted) LE Signed less than or equal
CC/LO Carry Clear/Unsigned lower LS Unsigned lower or same
CS/HS Carry Set/Unsigned higher or LT Signed less than

same MI Negative
EQ Equal NE Not equal
GE Signed greater than or equal PL Positive or zero
GT Signed greater than VC No over�ow
HI Unsigned higher VS Over�ow

Table 4.2: Mnemonics for conditional execution of ARM instructions [29].

LDR R0, [R1, R2, LSL #2]

Despite the complexity of the expression, only the value of R0 is changed.
Table 4.2 shows the mnemonics for conditional execution of instructions.

The mnemonics can be used with B and BL, as explicitly indicated in Table 4.1,
but they can actually be used with all instructions by su�xing the condition
mnemonic. For instance, the conditional subtraction (SUBGT) in the following
instruction sequence is not executed, since 5 is not greater than 10, and thus
the value of R2 remains the decimal value 20:

MOV R0, #5

MOV R1, #10

MOV R2, #20

CMP R0, R1

SUBGT R2, R0, R1

The instructions in the ARM instruction set takes a di�erent number of
cycles to execute and are handled in di�erent stages of the pipeline [27, Chap-
ter 7]. In other words, all instructions �ow through the entire pipeline, and
the instruction type decides in which stage most cycles are spent. Even if a
stage is not relevant to an instruction, it always spends at least one cycle in the
stage before moving on. Data operations, such as addition and bitwise AND,
are executed in the execute stage, where they remain for a number of cycles
depending on whether PC is the destination and whether there is any shifting
or rotation involved. Multiplication is a special data operation, where the num-
ber of spent cycles in the execute stage depends on the operands. Load and
store instructions are executed in the memory stage and their required number
of cycles depend on the amount of data to load and the varying access time
to cache or main memory. Table 4.3 shows the instruction cycle times for the
instructions relevant to our work.

From Table 4.3 it is clear that the cycle time for the multiplication instruc-
tions depend on the value of m. This value is determined by the multiplier
operand (MO), which is the source register marked by Rs in the Multiply in-
structions list in [29, page 2]. For example, for MUL the MO is the rightmost
source register, but this is not a general pattern. For MLA, MUL, SMLAL and SMULL,
the value of m is

• 1 if bits [31:8] of the MO are all zero or one,

46

Instruction Cycles Comment
Data oper. 1 Normal case, PC not destination
Data oper. 2 With register controlled shift, PC not destination
Data oper. 3 PC destination register
Data oper. 4 With register controlled shift, PC destination
LDR 1 Normal case, not loading PC

LDR 2 Not loading PC and following instruction
uses loaded word (1 cycle stall)

LDR 3 Loaded byte, half-word, or unaligned word used
by following instruction (2 cycle stall)

LDR 5 PC is destination register
STR 1 All cases
LDM 2 Loading one register, not PC
LDM n Loading n registers, n > 1, not including PC

LDM n+ 4 Loading n registers, n > 0, including PC

STM 2 Storing one register
STM n Storing n registers, n > 1
B, BL, BLX 3 All cases
MLA, MUL 2 +m All cases
SMLAL, SMULL, 3 +m All cases
UMLAL, UMULL

Table 4.3: The number of cycles required to execute some of the most commonly
used instructions in the ARM instruction set on the ARM9TDMI processor
core. The data operations (including the di�erent types of multiplication) are
executed in the execute stage of the core's pipeline, whereas the load and store
operations are executed in the memory stage. [27, Section 7.1]

47

• 2 if bits [31:16] of the MO are all zero or one,

• 3 if bits [31:24] of the MO are all zero or all one, or

• 4 otherwise.

For UMLAL and UMULL, the value of m is

• 1 if bits [31:8] of the MO are all zero,

• 2 if bits [31:16] of the MO are all zero,

• 3 if bits [31:24] of the MO are all zero, or

• 4 otherwise.

Since the worst-case value of m is 4 in both cases, it follows from Table 4.3 that
six cycles is a safe overapproximation for MLA and MUL, while seven cycles covers
SMLAL, SMULL, UMLAL and UMULL.

4.2 Pipeline Stalls

As commented for the LDR instruction in Table 4.3, the pipeline in the ARM9TD-
MI processor core stalls in certain situations, where registers are loaded with
contents from memory. The stalls give rise to extra cycles that are spent wait-
ing for data to become available, and their e�ects must therefore be captured
in order to determine safe WCETs. The stall situations are not exhaustively
documented by ARM Ltd., but [27, Section 7.2] provides four examples. In this
section we go over the details of these examples. The examples assume that the
fetch and memory stages are able to load an instruction and a data element,
respectively, in one cycle.

The �rst example consists of the following code sequence, which loads register
R0 with the contents of the memory cell pointed to by R1 and subsequently saves
the sum of R0 and R1 in R2:

LDR R0, [R1]

ADD R2, R0, R1

Since the ADD instruction cannot proceed to the execute stage before R0 has
been loaded by LDR in the memory stage, ADD stalls in the decode stage for one
cycle. The �ow of the code sequence through the pipeline stages is illustrated
in Table 4.4.

The second example loads register R0 with the one byte memory contents at
the address determined by adding one to value of R1:

LDRB R0, [R1, #1]

ADD R2, R0, R1

After the load, the same addition instruction as in the previous example
is carried out. Because the load instruction in this example requires a bitwise
rotation, which happens in the writeback stage, ADD stalls for two cycles in the
decode stage. The situation is illustrated in Table 4.5.

The third example loads registers R1, R2 and R3 with the three continuous
words of memory contents pointed to by R12:

48

Cycle Fetch Decode Execute Memory Writeback
1 LDR

2 ADD LDR

3 ADD LDR

4 ADD LDR

5 ADD LDR

6 ADD

7 ADD

Table 4.4: The �ow of the code sequence LDR R0, [R1]; ADD R2, R0, R1

through the pipeline stages. The ADD instruction stalls for one cycle in the
decode stage, which is marked on the right side of the table.

Cycle Fetch Decode Execute Memory Writeback
1 LDRB

2 ADD LDRB

3 ADD LDRB

4 ADD LDRB

5 ADD LDRB

6 ADD

7 ADD

8 ADD

Table 4.5: The �ow of the code sequence LDRB R0, [R1, #1]; ADD R2, R0,

R1 through the pipeline stages. The ADD instruction stalls for two cycles in the
decode stage.

Cycle Fetch Decode Execute Memory Writeback
1 LDM

2 ADD LDM

3 ADD LDM

4 ADD LDM

5 ADD LDM

6 ADD LDM

7 ADD LDM

8 ADD

Table 4.6: The �ow of the code sequence LDM R12, {R1-R3}; ADD R2, R2,

R1 through the pipeline stages. The ADD instruction stalls for two cycles in the
decode stage.

49

Cycle Fetch Decode Execute Memory Writeback
1 LDM

2 ADD LDM

3 ADD LDM

4 ADD LDM

5 ADD LDM

6 ADD LDM

7 ADD LDM

8 ADD

9 ADD

Table 4.7: The �ow of the code sequence LDM R12, {R1-R3}; ADD R4, R3, R1

through the pipeline stages. The ADD instruction stalls for three cycles in the
decode stage.

LDM R12, {R1-R3}

ADD R2, R2, R1

After the load, the sum of R2 and R1 is saved in R2. The LDM instruction
stays in the memory stage for three cycles, because it needs to load three words.
The loads are performed in ascending order according to the register numbers,
i.e. in the order R1, R2, R3. The ADD instruction only reads R2 and R1 and are
therefore allowed to enter the execute stage when LDM starts its �nal load in the
memory stage. In other words, ADD stalls for two cycles in the decode stage.
Table 4.6 illustrates the situation.

The fourth, �nal example is a variation of the third:

LDM R12, {R1-R3}

ADD R4, R3, R1

Since ADD now reads R3 instead of R2, it must stall in the decode stage for
three cycles instead of two. Table 4.7 illustrates the situation.

50

Chapter 5

The METAMOC Method

The purpose of this chapter is to present the METAMOC method � the Mod-
ular Execution Time Analysis using Model Checking method. An overview of
the method is provided in Figure 5.1 on the following page. The information
in the top row are the necessary inputs to the method. Typically, the only
user-provided input is a binary executable, as the three other inputs are made
available by researchers, hardware vendors or advanced users. A binary ex-
ecutable in this case is a �le containing data that are ready to be executed
directly on the intended hardware platform. If annotated source code is avail-
able, the method can extract loop bounds from it, however, loop bounds can
also be input to the method manually.

The other inputs for the method are a model for the hardware's pipeline,
a speci�cation for the hardware's caches, and a model for the hardware's main
memory. If the hardware platform is changed, these inputs might need adapta-
tion. The box in the bottom of the �gure represents the output in the form of
a WCET of the executable given as input.

Cache and main memory in most hardware platforms can be parameterised in
a common way, as they work according to the same principles. For most systems
� especially embedded systems, as they often use simple main memories �
the cache di�ers only in the parameters associativity, size, policies and speed,
while the main memory di�ers only in size and speed. The method utilises
these circumstances by taking cache parameters as input rather than concrete
UPPAAL models. Using the parameters, the method adapts general UPPAAL
models for the caches automatically.

The control �ow of the process is reconstructed from the assembler code
and a path model is created based on the control �ow. A CFG is constructed
for each function in the process. Many types of models can be used for the
CFGs, however, the type considered by the METAMOC method are UPPAAL
timed automata, as introduced in Section 2.3 on page 15. Each transition in the
automata performs an abstract execution of an assembler instruction by feeding
it to the automata that resemble the hardware's pipeline. Function calls and
returns are accomplished by having the automata �transfer� control between
each other using synchronisation channels.

Since the contents of processor registers are not tracked, the memory ad-
dresses accessed by the majority of the assembler code's load and store instruc-
tions are not known. It is essential to deal with this problem, as the performance

51

Figure 5.1: Overview of the METAMOC method. Rounded boxes represent
utilities, squared boxes represent information, and edges represent transfer of
information.

speed-up from caches cannot be guaranteed without knowledge of the concrete
addresses. The method attempts to determine the memory addresses by con-
ducting a value analysis on the assembler code. Using the formalism of WPDS,
the value analysis �nds an overapproximation of the possible register values
at each execution point by evaluating the e�ects of the process' instructions.
The results from the value analysis are added to the automata for the process'
functions.

The automata for the process' functions are combined with automata for
pipeline stages, caches and main memory, resulting in a NTA. Each automaton
contributes a set of local and a set of global declarations, where the latter sets
are combined with the sets from the other automata. Also, all automata are
instantiated in the NTA's system declaration. The global clock cyclecounter is
added in order to measure the number of processor cycles that passes during the
abstract execution done by exploring the NTA. The �nal step of the method
performs a full state space exploration of the NTA, determining the largest
possible value for cyclecounter. The determined value is an overapproximation
of the WCET of the process when executed on the chosen hardware.

Using NTAs as the modelling formalism allows for a loosely coupled model,
which yields a �exible method where parts can easily be replaced or reused. For
instance, the model of the hardware platform can be separated from the model
of the process, and a process model can be combined with models of di�erent
hardware platforms.

The task of �nding WCETs is often composed of four analyses: cache anal-
ysis, value analysis, pipeline analysis and path analysis [20]. We have followed
this pattern for METAMOC, since it provides a modular separation. The char-
acteristics of the analyses are explained below:

52

The cache analysis is responsible for taking the cache into account when per-
forming WCET analysis. It does so by �nding the set of memory blocks
that are in the cache, or not, at all execution points of a process. As a
process normally takes some form of input, it might be impossible to know
whether or not a memory block is in the cache or not. The typical ap-
proach is therefore to make an underapproximation of the set of memory
blocks which must be in the cache at some point. This approach is safe
as long as the hardware platform does not exhibit timing anomalies. To
�nd a safe underapproximation of the set of memory blocks in the cache,
a description of the behaviour of the cache is needed. Often the hard-
ware platform contains both instruction and data caches and might even
have several levels of caches. In order to provide sharp WCETs, the cache
analysis should model this.

The value analysis determines information about the value of registers and
variables which are otherwise only available through an execution of the
process. Not all values can be determined by a value analysis � for in-
stance, input to the process introduces an element of uncertainty. A basic
example is dereferencing a pointer: to know which memory address is
accessed, the value of the pointer must be known. Value analyses ap-
proximate this information by giving a potential superset of the values
the pointer can have. A value analysis can also be used to determine
bounds on loops. In some cases loop bounds cannot be detected due to
e.g. complex logic expressions and must be annotated manually by the
programmer.

The pipeline analysis models the behaviour of the processor core's data path.
This includes modelling processor features such as pipelining, delay slots,
branch prediction, out-of-order execution and speculative execution. In
case of missing information from other analyses or as a consequence of
input, a precise model of the processor core might include some degree of
non-determinism. The non-determinism, however, might make the state
space exploration done by model checking intractable. One way to solve
this problem is to abstract the non-determinism away by making safe
assumptions about the hardware behaviour. This is not possible if the
processor exhibits timing anomalies. In addition, making these assump-
tions of course con�icts with the desire for obtaining as sharp as possible
WCETs.

The path analysis is used to �nd the worst execution path (in terms of time
usage) through the control �ow of the process. This requires the control
�ow of the process to be reconstructed from the machine code. This in-
volves a number of challenges, on both high- and low-level representations
of the process. This includes recovering enough �ow information that has
been lost during compilation, handling function calls, recursive functions,
jumps to static addresses, conditional static jumps, jumps to addresses
determined dynamically at runtime, etc.

The following four sections explain how the four analyses are handled in
the METAMOC method. In the �fth, �nal section, the implementation of a
graphical front-end to easily perform the analyses in a user-friendly manner.

53

5.1 Cache Analysis

The purpose of the cache analysis is to take the e�ects of caching into account
in a safe, and as accurate as possible, way. This is done by determining cache
hits in as many execution points in a process as possible, such that the penalty
of accessing main memory is paid in as few execution points as possible.

The cache analysis for the ARM920T has been divided into two analyses:
an instruction cache analysis and a data cache analysis. The analyses should
model the impact of the respective cache on the WCET of the process in a
safe way. In other words, the impact must be modelled pessimistically. The
simplest and most pessimistic model is a cache model which always assumes
that an access to a memory block results in a cache miss. The analyses are
performed by modelling each cache as a timed automaton which communicates
with a timed automaton modelling the main memory. In this way, if both the
instruction and the data cache tries to access main memory, the �rst access will
block the other.

Two di�erent cache models have been made. In the �rst model, every mem-
ory access results in a cache miss, whereas in the second model, a concrete cache
is imitated. The second model stores the addresses of the memory blocks that
are currently in the cache. Modelling-wise, the �rst model is a special case of
the second with some functionality removed. Therefore only the second cache
model, depicted in Figure 5.2 on the facing page, is explained in detail. The ad-
vantage of the �rst model is that it will result in a much smaller state, meaning
a larger state space can be explored by the model checker. It will, however, also
result in WCETs which are not as sharp as those found using the other cache
model. A combination of the two models � where the second model is used
for the instruction cache and the �rst model is used for the data cache � might
provide a good trade-o� between the size of the state space and the sharpness
of the WCETs.

A third approach could be to precompute the cache behaviour, given some
context, and input this as a simple model, with no state. For example, the
behaviour could be precomputed using abstract interpretation on abstract cache
states, as described in Section 3.4.1 on page 36.

The model in Figure 5.2 on the facing page shows a timed automaton mod-
elling the instruction cache. The UPPAAL declarations for the used functions
are available in Appendix A on page 101. A similar timed automaton exists
for the data cache. The exact di�erences will be listed after a detailed explana-
tion of the automaton in Figure 5.2. The automaton can be divided into three
parts: initialisation of the cache, cache writes, and cache reads. The initialisa-
tion starts in the initial location and is forced to take the outgoing transition
by the synchronisation on the urgent broadcast channel initCaches. This way
the initialisation can only happen once and it will end up in location A. In
location A, the cache model is able to synchronise on either of the urgent chan-
nels instructionCacheWrite or instructionCacheRead, each representing the
write and read part, respectively. This will imitate a write or read to the address
passed to the model in the variable instrAdr. In both parts, three functions
are used: cache_contents, insert and update. The function cache_contents

is used to check if the instruction, with the address instrAdr, is in the cache.
It returns minus one if the instruction is not in the cache, otherwise it returns
the number of the cache line containing the instruction. If an instruction is not

54

instructionCacheRead?

x <= CACHEFETCH

instructionCacheWrite! instructionCacheWrite?

x <= CACHEFETCH

initCaches?

instructionCacheMainMemory?

x == CACHEFETCH

instructionCacheRead!

instructionCacheMainMemory!

instructionCacheMainMemory!

instructionCacheMainMemory?

write_hit_wait == 0

write_hit_wait −= 1

write_hit_wait −= 1

initialiseDataCache()

update(instrAdr, 1), x = 0

update(instrAdr, 0), x = 0insert(instrAdr, 0)

insert(instrAdr,1)

write_hit_wait != 0 ||
x == CACHEFETCH

write_hit_wait == 0 &&
x < CACHEFETCH

write_hit_wait >= 1

A

write_hit_wait == 0 &&
x < CACHEFETCH

x == CACHEFETCH

cache_contents(instrAdr) == −1

write_hit_wait == 0

cache_contents(instrAdr) != −1

write_hit_wait >= 1

write_hit_wait != 0 ||
x == CACHEFETCH

cache_contents(instrAdr) == −1 cache_contents(instrAdr) != −1

Figure 5.2: The timed automaton modelling the instruction cache.

55

in the cache, a cache miss is imitated. This is done using the insert function.
If the instruction is already in the cache, a cache hit is imitated. This is done
using the function update.

Both insert and update set the variable write_hit_wait to the number of
memory accesses that the cache miss/hit will result in. For instance, a write to
an unknown memory block might cause two memory accesses, if the cache has
a write back/write allocate policy. Firstly, the memory block will be allocated,
causing one memory access, and secondly, the memory block that is evicted
might be dirty, causing a second memory access.

Since caches are slower than registers, even in case of a cache hit which does
not result in a memory access, it will take some constant amount of time to
access the cache. This is modelled by forcing both the read and the write part
of the model to delay this amount of time. The amount of time is speci�ed
by the constant CACHEFETCH. If the variable write_hit_wait is equal to zero,
which it is in case of a cache hit, the access does not result in a memory access.

The last steps of both the read and the write part imitate the correct num-
ber of memory accesses and �nally synchronise back using the urgent channel
instructionCacheWrite and instructionCacheRead, respectively. The syn-
chronisation transition returns back to location A.

The value of write_hit_wait, when the insert or update function is called,
is determined by the cache replacement policy, as the replacement policy is re-
sponsible for choosing which memory block to evict. Therefore, the replacement
policies presented in Section 3.1 on page 23 have been implemented. The im-
plementation is divided into two parts like the de�nition of the replacement
policies: one handling cache hits and one handling cache misses. Each part is
implemented as a function. For FIFO, the two relevant functions are named
cacheHitFIFO and cacheMissFIFO. The functions for LRU follow the same
naming scheme. Depending on the replacement policy of the cache, insert and
update call cacheMissFIFO or cacheMissLRU.

The data cache analysis is similar to the instruction cache analysis. In
the model used for the data cache analysis, the names of the synchronisation
channels instructionCacheWrite and instructionCacheRead are renamed to
dataCacheWrite and dataCacheRead, respectively. Also, the channel instruc-
tionCacheMainMemory, which is used to synchronise with the main memory
model, is renamed to dataCacheMainMemory.

The timed automaton for main memory only delays for a constant amount
of time on each access. The automaton is available in Appendix B on page 105.
One could imagine memory models more complicated, such as a model of
SDRAM, where the access time is not constant but depends on the internal
state of the memory.

As described in Section 3.1 on page 23, there are several parameters for the
caches. To ease the creation of cache models, a tool has been developed to
generate cache models. The tool takes a speci�cation of the cache and a general
cache model as input. The speci�cation contains the following information:

• The cache type (data or instruction).

• The number of cache lines.

• The number of cache sets.

56

• The write policies (�write allocate� or �no write allocate�, and �write
through� or �write back�).

• The replacement policy (one of the replacement policies mentioned in Sec-
tion 3.1 on page 23).

The cache generation tool does not currently support multiple levels of caches
as well as uni�ed caches and combinations thereof. In the future, support for
such hardware could be added, along with support for more replacement policies.

As mentioned in Chapter 4 on page 41, the ARM920T processor supports
two replacement policies: FIFO and pseudo-random [28, p. 44]. We have only
implemented support for the FIFO replacement policy.

The reason for not implementing the pseudo-random replacement policy is
the fact that after a single access to an unknown memory block, all information
about the cache is lost. To illustrate this, an example is given in Figure 5.3 on
the next page, showing an unknown memory block being accessed, and because
of the pseudo-random replacement policy, the memory block can be placed in
any of the cache lines. This means that the analysis must assume an empty
cache from this point.

According to [20], to be able to make precise statements about timing be-
haviour, an important processor property is that the cache replacement policy
should be immune to �chaos�. For instance, if the value analysis is not able to
give precise information about which memory block will be accessed, this can
cause the replacement policy to lose information. If the replacement policy can
recover information, it is immune to �chaos�.

The pseudo-random replacement policy is not immune to �chaos�. In Fig-
ure 5.3 an example is given, where the Pseudo-random replacement policy is not
able to recover knowledge. The �gure shows two abstract cache states. In the
state ĉ, four memory blocks are known to be in the cache and the last memory
access was m4. The abstract cache state ĉ′ shows the state after a memory
access to an unknown memory block. This entails that it is unknown whether
the memory access will result in a cache hit or a cache miss on the abstract
cache state ĉ. What can be seen in part (b) of Figure 5.3, is that we have to
assume the worst, which means a cache miss. Since the memory address is not
known, it cannot be safely determined which of the four cache sets or which of
the two ways the memory block should be placed in. Based on this knowledge,
we have choosen not to implement the pseudo-random replacement policy.

5.2 Value Analysis

The value analysis is responsible for �nding an overapproximation of the values
each register can have at a given execution point in the process (possibly given
some context), for use in determining which memory address is accessed at a
certain point in the execution.

We have chosen to base our value analysis on the framework of WPDSs as
described in Section 2.4 on page 17. We have chosen WPDSs, even though our
analysis is quite naïve and simple, because it allows us to bene�t from advances
within the WPDS framework, and it allows us to increase the precision of the
analysis later on, e.g. by adding more context-sensitivity.

57

Abstract cache state ĉ s1 s2 s3 s4
(a) way 1 {m1} {m4}

way 2 {m6} {m7}ww� access to unknown memory block

Abstract cache state ĉ′ s1 s2 s3 s4
(b) way 1

way 2

Figure 5.3: Abstract cache states for a 2-way set associative cache with pseudo-
random as replacement policy, showing the replacement policy is not immune
to �chaos�.

We have desined and implemented a relatively simple value analysis. The
analysis is �rst and foremost an sound1, easy to implement (implementable
within the timeframe of the project), and �nally, as precise and fast as possible.
We have made a couple of choices to satisfy these requirements:

• Our intra-procedural analysis is �ow-sensitive, and we unroll loops ac-
cording to their loop bound. Our inter-procedural analysis is also �ow-
sensitive, and as precise as allowed by the WPDS formalism, i.e. function
calls return to their call site.

• We are totally data-insensitive, with regards to the control �ow. An ex-
ample is if a conditional branch exists, as in this program fragment:

1 i f (x > 5) {
2 a () ;
3 } else {
4 b () ;
5 }

In this case, when the execution reaches line one, we assume it can �ow
to either line two or line four, regardless of what the value analysis might
have infered about the value of x at line one.

• We only track values in registers, not values in main memory. This was
primarily chosen to simplify the implementation. This loses quite a lot of
precision, as any load from memory results in an unknown value. Note
that just tracking the contents of the stack should result in quite an im-
provement of the precision.

• A register can have a single, known value, otherwise the value is unknown.
This means if there are two paths to a combine-point, and the two paths
have di�erent values for a register, the combined result has that register
as unknown.

• To simplify the analysis implementation greatly, the implementation traces
syntactic values only. The implementation does not interpret any of the

1That is, the analysis never underapproximates the set of values.

58

values; this is done by post-processing the results and interpreting the
formulae.

The advantage of this approach is that the implementation only needs to
implement a single operation: syntactic substitution. The disadvantage
is that the formulae can become quite large2, so to be e�cient, a limit
to the length of the formulae must be set, such that if a formula grows
beyond that limit, the register's content is assumed to be unknown. This
is sound, as all values is a very coarse overapproximation of the one value
the formula described.

In our case we estimate the lost precision to be negligible, as we are only
concerned with values used as pointers to memory, and these tend to not
be used in calculations continuously.

There are two major components to our use of WPDSs: the weight domain
and the construction of the PDS. We �rst describe our weight domain, and then
describe how we construct the PDS.

5.2.1 Weight Domain

Our weight domain basically describes the e�ects that instructions, and se-
quences of instructions, can have on the registers' values.

We will actually describe two weight domains. Firstly, a more abstract
weight domain, which conveys the underlying principles very well, but would re-
quire an implementation to interpret values semantically. Secondly, we describe
a less abstract weight domain, i.e. one that uses only syntactic substitution.
The latter weight domain is the one we have actually implemented. We prove
no relationship between the two weight domains, but note that they are closely
related.

De�nition 15. The weight domain REGEFFECT = (D,⊕,⊗, 0̄, 1̄) is de�ned
as:

D = ((N∪{>,⊥})|REGS | → (N∪{>,⊥})|REGS |), where REGS = {r0, . . . rn} is
the set of registers in the architecture. Thus, our domain is the set of en-
vironment transformers that transform an environment (a vector of values
assigned to each register) into another environment. A special value, which
a register can have, is the value >, indicating that the register can have any
value � its value is unknown. Another special value is ⊥, which means
that no information is known about this register � it is unde�ned. An
example of a weight could be the weight representing the e�ect r1 = r0 +2:

f


r0
r1
r2
...
rn

 =


r0

r0 + 2
r2
...
rn

 ,

2During development we encountered an example that calculated the 30th Fibonacci num-

ber by addition, leading to the calculations F3 = 1 + 1, F4 = (1 + 1) + (1 + 1), F5 =
((1 + 1) + (1 + 1)) + Continued syntactic substitution of these terms leads to a for-

mula with length proportional to the value of the number, in this case 832040, leading to

strings with lengths of a couple of megabytes.

59

signifying that r1's value is changed, and all the other registers values
remain unchanged. Notice that we use vector notation to better emphasise
the changes done to individual registers. For a weight f(r0, . . . , rn) =
(e0, . . . , en) we denote a component of f as fi(r0, . . . , rn) = ei, where
i ∈ {0, . . . , n}.

⊕ (combine) is de�ned by:

∀a, b ∈ D,∀i ∈ {0, . . . , n} : (a⊕ b)i(x) =


ai(x) if bi(x) = ⊥
bi(x) if ai(x) = ⊥
ai(x) if ai(x) = bi(x)
> otherwise.

⊗ (extend) is reverse function application, such that:
∀a, b ∈ D,∀i ∈ {0, . . . , n} : (a⊗ b)i(x) ={

⊥ if ai(x) = ⊥ ∨ bi(x) = ⊥
bi(ai(x)) otherwise.

0̄ is the bottom element, that is

0̄ =

r0...
rn

 =

⊥...
⊥

.

1̄ is the identity relation, that is

1̄

r0...
rn

 =

r0...
rn

.

To give an example of the weight domain, we use it to analyse the e�ect of
the program fragment in Figure 5.4.

1 r0 = 5
2 r1 = r0 + 2

Figure 5.4: An example program fragment.

The weights associated with each line, assuming REGS = {r0, r1} for brevity,

would be: v

(
r0
r1

)
=
(

5
r1

)
and w

(
r0
r1

)
=
(

r0
r0 + 2

)
, respectively.

Using the extend operation we can compute the e�ect of the entire program
fragment, assuming the registers have the inital value of 0:

(v ⊗ w)
(

0
0

)
= w

(
v

(
0
0

))
=
(

5
5 + 2

)
=
(

5
7

)
.

The combine operation can be demonstrated as follows. If

v

(
r0
r1

)
=
(

5
7

)
and w

(
r0
r1

)
=
(

3
7

)
,

then

(v ⊕ w)
(
r0
r1

)
=
(
>
7

)
.

60

De�nition 16. The weight domain REGEFFECTSYNTAX = (D,⊕,⊗, 0̄, 1̄) is
de�ned as:

D = ((form(REGS)∪{>,⊥, id})→ (form(REGS)∪{>,⊥, id})), where REGS
is the set of registers in the architecture, and form(REGS) is the set of
all formulae involving natural numbers, variables from the set REGS and
the normal arithmetic operations (such as plus, minus, times, . . .). Spe-
cial values are the values >, ⊥ and id, which respectively indicate an
unknown value, an unde�ned value and an unchanged value. The syntax
for form(REGS) can be seen in Figure 5.5.

1 form (REGS) := r | n |
2 form (REGS) OPERATOR form (REGS) |
3 ` (' form (REGS) `) '
4 where r ∈ REGS and n ∈ N
5
6 OPERATOR := + | − | ∗ | / | >> | <<

Figure 5.5: The syntax for formulae in the REGEFFECTSYNTAX weight do-
main.

⊕ is de�ned by:

∀a, b ∈ D,∀i ∈ {0, . . . , n} : (a⊕ b)i(x) =


ai(x) if bi(x) = ⊥
bi(x) if ai(x) = ⊥
ai(x) if ai(x) == bi(x)
> otherwise

where == is syntactic equality.

⊗ is syntactic substitution, with a few special cases, de�ned as
∀a, b ∈ D,∀i ∈ {0, . . . , n} : (a⊗ b)i(x) =

⊥ if ai(x) = ⊥ ∨ bi(x) = ⊥∨
∃j ∈ {0, . . . , n} : (aj(x) = ⊥ ∧
j ∈ uses(bi(x)))

> if bi(x) = > ∨ ∃j ∈ {0, . . . , n} :
(aj(x) = > ∧ j ∈ uses(bi(x)))

ai(x) if bi(x) = id
bi(x)[∀j ∈ {0, . . . , n} : if bi(x) 6∈ {>,⊥, id} ∧
rj/“(” ◦ aj(x) ◦ “)”] ∀j ∈ uses(bi(x)) : aj(x) 6∈ {>,⊥}

where uses(e) is a set containing the numbers of the registers used in
formula e, ◦ is string concatenation, and s[x/x′, y/y′, . . .] is string substi-
tution such that s[x/x′, y/y′, . . .] is equal to s, but with all occurrences of
x replaced by x′, occurrences of y replaced by y′, and so forth. An im-
portant distinction is that the replacement happens in parallel, such that
“r0”[“r0”/“r1”, “r1”/“r2”] = “r1”, and not “r2” as it would have been if
the replacement was sequential.

The �rst case ensures that 0̄ is an annihilator with regards to the ⊗ op-
erator, as required by the de�nition of a weight domain � that is, if a
formula uses an unde�ned value, it itself becomes unde�ned.

The second case ensures that if an unknown value is used in a formula,
the result is also unknown.

61

The third case handles the case that register x's value is unchanged by the
right-hand side (b).

The fourth case is the syntactic substitution, such that if the right-hand
side (b) has a formula for register x, the register names used in that for-
mula are replaced with their values from the left-hand side (a) enclosed
within parenthesis (to ensure that operator precedence is preserved).

0̄ is de�ned as:

0̄

r0...
rn

 =

⊥...
⊥

.

1̄ is de�ned as:

1̄

r0...
rn

 =

id
...
id

.

Again, the usage of the weight domain REGEFFECTSYNTAX is demon-
strated on the program fragment from Figure 5.4 on page 60.

The weights associated with each line, assuming REGS = {r0, r1} for brevity,

would be: v

(
r0
r1

)
=
(

“5”
id

)
and w

(
r0
r1

)
=
(

id
“r0 + 2”

)
, respectively.

Using the extend operation we can compute the e�ect of the entire program
fragment, assuming the registers have the inital value of 0:

(v ⊗ w)
(

0
0

)
=
(

“5”
“r0 + 2”[r0/“(” ◦ “5” ◦ “)”, r1/id]

)
=
(

“5”
“(5) + 2”

)
.

The combine operation can be demonstrated as follows. If

v

(
r0
r1

)
=
(

“(3) + 2”
“7”

)
and w

(
r0
r1

)
=
(

“(3) + 2”
“(5) + 2”

)
,

then

(v ⊕ w)
(
r0
r1

)
=
(

“(3) + 2”
>

)
.

Note that even though �7� is equal to �(5) + 2� semantically, this information
is lost because this weight domain is purely syntactical. The use of syntactic
equality in this context is still safe, even though we lose precision in the cases
where the same value is calculated in two di�erent ways. The reason this is safe,
is that the combine operation gives the value >, which, while unprecise, is still
an overapproximation of a single value.

We omit a number of things in our use of WPDSs: we do not prove that
our weight domains actually obey the restrictions set forth for weight domains.
We do not prove that the weight domains give sound results, given the formal
semantics of the ARM assembly language. The reason for this omission is pri-
marily one of practicality; we have focused our e�ort on value analysis on getting
a working implementation, that proves the concept. The value analysis is, seen
in the bigger picture of METAMOC, an utility that is certainly necessary, but
not at the core of the METAMOC method.

62

5.2.2 Construction of the Weighted Push-Down System

The WPDS is basically constructed as described in [36], i.e. using one con-
trol state and using the stack to keep track of the current state of execution.
We make the assumption that the control �ow is statically derivable, that is:
�function calls� and �function returns� are easily identi�able.

There are basically three forms of transitions in the WPDS:

Sequential transitions: Sequential �ow from one instruction to the next.
Handled by a WPDS rule of the form 〈p, j〉 ↪→ 〈p, k〉 where j is the instruc-
tion address control can �ow from, and k the instruction address control
can �ow to.

Function calls: Function calls are handled by pushing the call site on the
stack, such that when the function returns, the execution will continue
from there. The WPDS rule corresponding to a function call at instruction
address j which is followed sequentially by instruction address k, to the
function identi�ed by funcname, is: 〈p, j〉 ↪→ 〈p, ffuncname k〉. Rules for
each function exist, such that 〈p, ffuncname〉
↪→ 〈p, i〉, where i is the address of the �rst instruction in the funcname
function.

Function returns: Function returns are handled by a return rule that simply
pops from the stack. If the address of the return is j, the rule is: 〈p, j〉 ↪→
〈p, ε〉.

In this way the analysis is inter-procedurally �ow-sensitive, as function calls
return precisely to their call-site.

To improve the precision of the analysis, loops are unrolled such that the
body of a loop is copied and appended sequentially as many times as the loop
bound indicates. Loop unrolling is a technique originally used in compiler opti-
misation, which basically replaces the backward jump by duplicating the body
of the loop. An example of loop unrolling can be seen in Figure 5.6. Loop
unrolling provides additional precision in our analysis, because each instruction
in the loop will then be tracked in the context of the loop counter.

1 for (i = 0 ; i < 5 ; i++) {
2 r0 = r0 + 1 ;
3 }

1 r0 = r0 + 1
2 r0 = r0 + 1
3 r0 = r0 + 1
4 r0 = r0 + 1
5 r0 = r0 + 1

Figure 5.6: An example of loop unrolling.

Each transition in the WPDS is assigned a weight according to the e�ect of
the instruction that the transition is from. A table of some example instruction
types, and their associated weights, can be seen in Table 5.1 on the next page.

5.2.3 Implementation

Our implementation has been created using the open source WPDS library
WALi [21]. WALi is written in C++, has a number of example weight domains,

63

Instruction type Associated weight
MOV R0, x r0 = x
MOV R0, R1 r0 = r1
ADD R0, R1, x r0 = r1 + x
ADD R0, R1, R2 r0 = r1 + r2
SUB R0, R1, x r0 = r1 − x
SUB R0, R1, R2 r0 = r1 − r2
LSL R0, R1, x r0 = r1 << x
ASR R0, R1, x r0 = r1 >> x
PUSH R0,...,Rn sp = sp− n · 4
POP R0,...,Rn r0 = >; . . . ; rn = >; sp = sp+ n · 4

Table 5.1: The weights associated with di�erent instruction types. The variable
x is a constant integer value, while r0, . . . , rn can be any register names.
The separator �;� implies that the value of more than one register is to be set.
Registers, which are not mentioned in the weight, are implicitly assigned the
value id.

and is easily extensible with new ones. We have implemented the weight domain
REGEFFECTSYNTAX in C++.

Since most of our tools are written in Python, we would like to write as much
as possible of the value analysis in Python. We have therefore developed Python
bindings for the WALi library, allowing us to create WPDSs, including creating
transitions and assigning weights. The bindings allow for a good performance/-
functionality trade-o�, as the performance sensitive parts (the weight domain
operations and the WPDS algorithm) can be implemented in the performance
optimised language C++, while the less performance-critical parts (construct-
ing the WPDS) can be implemented in Python. In addition we gain the ability
to reuse code, originally written for other purposes.

When WALi has computed an answer, the weights will have to be semanti-
cally evaluated. Fortunately3, our weights are all syntactically correct Python
expressions. We have therefore simply used the Python interpreter to evaluate
the expressions and calculate the concrete values.

5.3 Pipeline Analysis

The purpose of the pipeline analysis is to take the pipeline's impact on the
WCET into account. We imitate the parallel nature of the pipeline by mod-
elling the pipeline stages as individual timed automata. The �ow of instructions
through the stages is achieved by having the automata synchronise with each
other as illustrated in Figure 5.7 on the facing page. For each automaton in-
formation is stored about the instruction occupying it, and this information is
passed on when the automaton synchronises with the next automaton. The in-
formation is stored globally, enabling the automata for the process functions to
feed the fetch stage with instructions. In addition, the information also enables
transitions in a stage to depend on instructions in the other stages, which is

3Actually, this is by design.

64

Figure 5.7: Overview of the synchronisation between the automata for process
functions and the automata for pipeline stages.

necessary for implementing pipeline stalls. The information stored is the in-
struction address, the instruction type, the address of data accessed in main
memory by the instruction, a bit mask for registers read and a bit mask for
registers written.

As is clear from Figure 5.7, all stage automata are cyclic, as all of them
end up in their initial location. This enables the pipeline to continue executing
instructions as long as the function automata for the process being analysed are
not done. Progress with limited or no time delay is obtained using invariants,
committed locations and urgent channels.

Non-determinism is removed by having priorities on the stage automata,
entailing that a transition in an automaton is enabled only if no transitions are
enabled in higher priority automata. The priorities are assigned in increasing
order, from the fetch stage automaton to the writeback stage automaton, such
that the former has lowest priority and the latter has highest priority. The
purpose of removing the non-deterministic interleaving of the pipeline stages is
to reduce the state space and thereby reduce memory and time consumption of
the state space exploration.

Recall from Section 2.3 on page 15 that the WCET is found by verifying the
property sup: cyclecounter, which determines the supremum for the global
clock cyclecounter during a full state space exploration. This approach re-
quires that time must not pass when the NTA has reached its deliberate, ending
deadlock. If time was allowed to pass, the clock would not be bounded, and
UPPAAL would give the trivial guarantee cyclecounter < infinity.

The required time-bounding can be achieved by having at least one of the
automata deadlock in a committed location or by having all automata deadlock
in urgent locations [10]. The former scheme makes it easy to model the fact
that the pipeline must be empty for the execution to be done. Figure 5.8

65

Figure 5.8: The chain of synchronisations ensuring that the NTA deadlocks in
a committed state, thereby bounding the global clock cyclecounter.

illustrates how the scheme is implemented through cooperation between the
automaton for the process' main function and the automata for the pipeline
stages. A chain of synchronisations is initiated when the last transition in the
main automaton is taken. Ultimately, the NTA deadlocks when the memory
and writeback automata synchronise over the urgent channel memory_done and
the committed location in the writeback automaton is entered.

Below the stages of the pipeline is presented in detail.

The fetch stage is the part of the pipeline where instructions are fetched from
the instruction cache or main memory. The automaton for the stage is depicted
in Figure 5.9. Using the channel instructionCacheRead, the automaton syn-
chronises with the instruction cache automaton, which again synchronises with
main memory if the requested instruction is not in the cache. The fetch automa-
ton does not use any local clocks, as it is the responsibility of the instruction
cache automaton and the main memory automaton to delay the appropriate
number of cycles.

Since instructions are not evaluated before the execute or memory stages of
the pipeline, the fetch and decode stages will contain two wrong instructions in
the event that a branch is taken. The problem only exists in hardware, since
the method presented here evaluates branch instructions using loop bounds in
the CFG automata, i.e. before the instructions are fed to the pipeline. In
hardware, the problem is solved by �ushing the fetch and decode stages when
a branch is taken. Even though the two �ushed instructions will no longer be
evaluated, they have been loaded into the instruction cache, and to get safe
WCETs this side-e�ect must be modelled. As illustrated in Figure 5.10 on
page 68, the fetch stage is able to distinguish the two possible outcomes of a
conditional branch instruction, as the two outgoing transitions from a location
have di�erent instruction types. The event that a branch is taken has the
type INSTR_BRANCH, while the opposite has the type INSTR_OTHER. Since the
two �ushed instructions always directly succeed the branch instruction in the

66

instrAdr += 4instrAdr += 4

move(THIS, NEXT)
instrAdr =
instradr[THIS]

instructionCacheRead!

instrtype[THIS] ==
INSTR_BRANCH

fetch?

instrtype[THIS] !=
INSTR_BRANCH

main_done?

instructionCacheRead!

instructionCacheRead?

instructionCacheRead?

fetch_done!

decode!

instructionCacheRead!

instructionCacheRead?

instructionCacheRead?

Figure 5.9: UPPAAL automaton for the pipeline's fetch stage.

instruction stream, the fetch automaton performs two extra fetches from o�sets
four and eight, relative to the address of the branch instruction. This special
handling is done in the lower part of Figure 5.9. The chosen o�sets come from
the fact that each 32 bit ARM instruction takes up four bytes of memory.

Contrary to conditional branching, unconditional branch instructions have
only a single outgoing transition, which is always marked with the INSTR_BRANCH
instruction type. The reason being that these instructions almost always change
the program counter more radically than sequential progression. In the code
generated by GCC from the benchmark programs published by Mälerdalens
WCET Research Group, unconditional branches are typically function calls,
function returns, or jumps in connection with the C language switch construct.

The last transition in the fetch automaton's loop moves the instruction data
to the decode stage and synchronises with the decode automaton. The function
call move(THIS, NEXT) accomplishes the move, where THIS and NEXT are two
constants for indexing the global information array. For example, in the fetch
automaton the values are declared with the following values:

THIS = PIPELINE_FETCH_STAGE

NEXT = PIPELINE_DECODE_STAGE

In Figure 5.11, the automaton for the decode stage is depicted together
with a small helper automaton. Contrary to real hardware, actual decoding
of instructions in the decode automaton is not necessary, since the method is
data insensitive. Instruction decoding is instead thought to happen while the

67

Address Instruction

...

0x8370 MOV R1, R0

0x8374 BNE 834C

... i0x8374_bne_834c

i0x834c_...

i0x8378_...

i0x8370_mov_r1_r0

fetch!

fetch!

fetch!

instradr[PFS] = 33648,
instrtype[PFS] = INSTR_OTHER,
...

instradr[PFS] = 33652,
instrtype[PFS] = INSTR_BRANCH,
...
loop_counter_33652++

loop_counter_33652 ==
loop_bound_33652

instradr[PFS] = 33652,
instrtype[PFS] = INSTR_OTHER,
...
loop_counter_33652 = 0

loop_counter_33652 < loop_bound_33652

Figure 5.10: ARM assembly and the corresponding UPPAAL automaton. To
make the model �t on this page, PIPELINE_FETCH_STAGE has been abbreviated
as PFS. Due to the distinct instruction types on the outgoing transitions from
the i0x8374_bne_834c location, the fetch stage is able to provoke additional
instruction fetches in the event that the branch is taken.

68

x = 0

x <= 1

stall

happen_now!

move(THIS, NEXT)

decode?

execute!

!must_stall() must_stall()

!must_stall()

x == 1

fetch_done?

decode_done!

happen_now?

Figure 5.11: UPPAAL automaton for the pipeline's decode stage together with
a small helper automaton to force progress in the decode automaton when it
does not need to stall any longer.

automaton delays for one cycle in the upper left location. After the initial delay,
the automaton determines whether it must stall or not. Recall that stalling
means that the decode automaton must delay before synchronising with the
execute automaton, because the instruction in the decode stage depends on the
instruction in the memory or writeback stages. The function must_stall checks
for this dependency:

1 bool must_stal l ()
2 {
3 /∗ Check i f we must wai t f o r one or more r e g i s t e r s
4 ∗ to be loaded in the memory s t a g e . ∗/
5 i f ((i n s t r t yp e [PIPELINE_MEMORY_STAGE] == INSTR_POP | |
6 i n s t r t yp e [PIPELINE_MEMORY_STAGE] == INSTR_LOAD | |
7 i n s t r t yp e [PIPELINE_MEMORY_STAGE] ==
8 INSTR_LOADROTATE) && (regread [THIS] &
9 r egwr i t e [PIPELINE_MEMORY_STAGE]) > 0)
10 return t rue ;
11
12 /∗ Check i f we must wai t f o r a va lue to be ro t a t ed
13 ∗ in the wr i t e back s t a g e . ∗/
14 i f (i n s t r t yp e [PIPELINE_WRITEBACK_STAGE] ==
15 INSTR_LOADROTATE && (regread [THIS] &
16 r egwr i t e [PIPELINE_WRITEBACK_STAGE]) > 0)
17 return t rue ;
18
19 return f a l s e ;
20 }

Using binary AND (&) on register masks, must_stall determines whether
the instruction currently in the memory stage is a load instruction, writing to

69

set_wait(),
x = 0

x <= wait

move(THIS, NEXT)

execute?

x == waitmemory!

decode_done?

execute_done!

Figure 5.12: UPPAAL automaton for the pipeline's execute stage.

any registers that the instruction in the decode stage reads from. Similarly, if
there is a rotation-requiring load instruction in the writeback stage, the function
checks whether there is an overlap between the registers written by the load
instruction and the registers read by the instruction in the decode stage. The
reason for the second check is that the rotation is carried out in the writeback
stage, and the result of the load is not ready before the rotation has been
performed.

Since the memory automaton clears the bits in its register write mask conti-
nously as loads are performed, the decode automaton only stalls for a minimum
amount of time. For example, if a LDM (load multiple) instruction in the memory
stage loads the registers R1, R2 and R3 with values, and an ADD instruction in
the decode stage needs the values in registers R1 and R2, the decode automaton
will stop stalling immediately when registers R1 and R2 � but not yet R3 �
have been loaded. This is similar to the third example in Section 4.2 on page 48.

The small helper automaton forces progress in the decode automaton, as
it enables the automaton to have a synchronisation over the urgent channel
happen_now. The e�ect is that the synchronisation transition is taken imme-
diately when must_stall evaluates to false. Our �rst approach to achieve this
was to stall for one cycle at a time, cycling around in a loop continously check-
ing the stall condition. The approach did not need a helper automaton and
worked in the sense that it made the model stall the correct number of cycles.
Unfortunately, it created a greater state space than the current approach due to
the many transitions, thereby lowering the size and complexity of the programs
that the method was able to analyse. It was attempted to make the helper
automaton in the current approach super�uous by removing the happen_now!

synchronisation and adding the invariant must_stall() to the stall location.
This change, however, causes UPPAAL to deadlock in an unde�ned state, as
the instruction processing in the memory and writeback automata, which causes
must_stall() to become false, leads to a violation of the invariant and is there-
fore not allowed. That was the reason for applying this little modelling trick.

Shifts and arithmetic operations are performed in the execute stage of the

70

data path, which is depicted in Figure 5.12. Compared to the previous two
stage automata, the execute automaton is quite simple. Since the method is data
insensitive, the automaton only needs to delay for a number cycles corresponding
to executing the instruction. To keep the automaton's contribution to the overall
state space as small as possible, the function set_wait is used to set the integer
wait to the appropriate number of cycles:

1 void set_wait ()
2 {
3 i f (i n s t r t yp e [THIS] == INSTR_MUL1)
4 wait = CYCLES_MUL1;
5 else i f (i n s t r t yp e [THIS] == INSTR_MUL2)
6 wait = CYCLES_MUL2;
7 else

8 wait = CYCLES_OTHER;
9 }

The instruction type INSTR_MUL1 covers the multiplication intructions MLA
and MUL, whereas INSTR_MUL2 covers SMLAL, SMULL, UMLAL and UMULL. The num-
ber of cycles needed to execute any of the multiplication instructions on the
ARM9TDMI processor core depends on the operands [27, Section 7.1], and to
handle this as simple as possible we have chosen two safe upper bounds for the
constants CYCLES_MUL1 and CYCLES_MUL2. The upper bounds are six and seven
cycles, respectively. All other instructions are delayed for one cycle, since this
is the number of cycles needed to do addition, subtraction, shifting, etc., and
it is also the minimum number of cycles that any instruction must stay in the
execute stage.

Figure 5.13 shows the automaton for the memory stage. Instructions for
loading and storing data are handled in the memory stage. The automaton
has three main paths: one for handling loads (stack popping, general loading
from memory, and loading that requires rotation), one for handling stores (stack
pushing and general storing to memory), and one for handling all other types
of instructions. Instructions not relevant to the memory stage are handled by
delaying for one cycle.

For load instructions, the memory automaton must issue a load from the
data cache automaton for each destination register speci�ed by the instruc-
tion, whereas for store instructions, it must issue a store for each source regis-
ter. The load and store operations are initiated by having the two automata
synchronise over the urgent channels dataCacheRead and dataCacheWrite, re-
spectively. Recall that registers read by an instruction are marked in the reg-
ister mask regread[THIS], whereas registers that are written to are marked in
regwrite[THIS]. The handling of a load or store instruction reduces to loop-
ing through the 16 bits in the relevant mask and synchronising with the data
cache automaton for each set bit. The function is_set determines whether a
particular bit is set:

71

memory?

execute_done?

writeback!

bit <= 15 &&
is_set(bit)dataCacheWrite?

memory_done!

dataCacheRead?
dataCacheRead!

dataCacheWrite!

instrtype[THIS] == INSTR_POP ||
instrtype[THIS] == INSTR_LOAD ||
instrtype[THIS] == INSTR_LOADROTATE

bit <= 15 && !is_set(bit)

x == 1

!(instrtype[THIS] == INSTR_POP ||
instrtype[THIS] == INSTR_LOAD ||
instrtype[THIS] == INSTR_LOADROTATE ||
instrtype[THIS] == INSTR_PUSH ||
instrtype[THIS] == INSTR_STORE)

bit == 16

bit <= 15 &&
!is_set(bit)

bit <= 15 &&
is_set(bit)

instrtype[THIS] == INSTR_PUSH ||
instrtype[THIS] == INSTR_STORE

bit == 16

x <= 1

restore_regmasks(),
move(THIS, NEXT)

bit++

clear_sp_bit_on_pushpop(), bit = 0,
cacheDataAdr = dataadr[THIS]

bit++, increase_data_address()

backup_regmasks()

x = 0

clear_regwrite_bit(bit), bit++,
increase_data_address()

clear_sp_bit_on_pushpop(), bit = 0,
cacheDataAdr = dataadr[THIS]

bit++

Figure 5.13: UPPAAL automaton for the pipeline's memory stage.

72

1 bool i s_se t (int b i t)
2 {
3 register_mask regmask = 1 << b i t ;
4
5 i f (i n s t r t yp e [THIS] == INSTR_POP | |
6 i n s t r t yp e [THIS] == INSTR_LOAD)
7 return ((r e gwr i t e [THIS] & regmask) > 0) ; // Load
8 else

9 return ((regread [THIS] & regmask) > 0) ; // Store
10 }

Since it is possible that the memory address accessed by a load or store
instruction is set to INVALID_ADDRESS by the value analysis, the address must
only be increased between every load or store if it is di�erent from this special
value. The function increase_data_address ensures that behaviour:

1 void increase_data_address ()
2 {
3 i f (cacheDataAdr != INVALID_ADDRESS)
4 cacheDataAdr += 4 ;
5 }

The e�ect of the increase_data_address function could easily be imple-
mented using an extra transition in the memory automaton, but the applied
approach has the advantage that it does not increase the state space.

To make a stalling decode automaton move on, bits in the register mask
regwrite[THIS] must be cleared for every issued load operation when handling
a load instruction. The function clear_regwrite_bit takes care of this:

1 void c l ea r_regwr i t e_bi t (int b i t)
2 {
3 r egwr i t e [THIS] &= bitwise_neg (1 << b i t) ;
4 }

In case of POP and PUSH instructions, the SP (stack pointer) register is al-
ways set in both regread[THIS] and regwrite[THIS], since these instructions
manipulate the stack. When executing a POP or PUSH instruction in hardware,
the SP register is used as a start address and is continuously updated such that
it always points to the top of the stack, however, it is not one of the registers
being loaded or stored and thus should not trigger a load or store operation.
The function clear_sp_bit_on_pushpop ensures this by clearing the SP bit if
the instruction is a POP or PUSH:

1 void clear_sp_bit_on_pushpop ()
2 {
3 i f (i n s t r t yp e [THIS] == INSTR_POP)
4 r egwr i t e [THIS] &= bitwise_neg (REG_SP) ;
5 i f (i n s t r t yp e [THIS] == INSTR_PUSH)
6 regread [THIS] &= bitwise_neg (REG_SP) ;
7 }

The backup_regmasks and restore_regmasks functions, called by the mem-
ory automaton before and after handling an instruction, back up and restore
the register masks, respectively. The masks are changed by the functions

73

x <= 1

x = 0

clear(THIS)
x == 1

writeback?

memory_done?

Figure 5.14: UPPAAL automaton for the pipeline's writeback stage.

clear_sp_bit_on_pushpop and clear_regwrite_bit, and the regmasks func-
tions enable the memory automaton to forward unaltered masks to the writeback
automaton.

Figure 5.14 depicts the automaton for the writeback stage. Regardless of
the instruction type, the automaton delays for one cycle and then clears its
instruction data using the function clear. Clearing of the instruction data is
necessary in order to make the decode automaton move on in case it is stalling
due to a dependency on the instruction in the writeback stage.

5.4 Path Analysis

The objective of the path analysis is to �nd a path through the process' con-
trol �ow that leads to the WCET. The path analysis presented here is data-
insensitive. The analysis is done by reconstructing the CFG of the process and
modelling it as a NTA. The automata simulate an abstract execution of the
instructions of the process by interacting with the pipeline automata. The CFG
is reconstructed by the ARM-to-UPPAAL compiler, which is given the process
in an executable form. The compiler uses Dissy, a graphical frontend to the
objdump disassembler, to recover information about branches. Branches can ei-
ther be unconditional or conditional and are either forward or backward jumps.
Furthermore, branches can be static or dynamic, where only the former type of
branches are currently supported by the ARM-to-UPPAAL compiler. Another
�ow construct is to write directly to the PC (program counter) register, with
a possibly dynamically computed value, which makes the control �ow hard to
determine. In this case the ARM-to-UPPAAL compiler, currently, returns an
error message. The construct could be handled by using non-determinism to
jump to each of the possible address values the PC register can assume, as de-
termined by the value analysis. However, our value analysis returns unknown
if more than one value is possible, meaning the non-determinism would have to
be that any instruction in the program can be the next, leading to enormous
state space explosion. With a better value analysis, this could be handled more
elegantly, but currently even a single unknown value would give rise to problems.

Static branches might also result in non-determinism. For instance, a con-
ditional branch gives rise to non-determinism. To decrease the amount of
non-determinism, the ARM-to-UPPAAL compiler attempts to force conditional
branches to only consider the path leading to the highest WCET. An example

74

of this can be seen in Figure 5.15.

i0x4c_pop_lr_

i0x24_cmp_r2_30

i0x20_add_r2_r2_1

i0x1c_mov_ip_0

fetch!

fetch!

fetch!

fetch!

fetch!

LOOP BODY

instradr[PFS] = 68,
instrtype[PFS] = INSTR_OTHER,
...

instradr[PFS] = 72,
instrtype[PFS] = INSTR_OTHER,
...
loop_counter_1 = 0

instradr[PFS] = 32,
instrtype[PFS] = INSTR_OTHER,
...

instradr[PFS] = 28,
instrtype[PFS] = INSTR_OTHER,
...

i0x44_mov_r1_r0

i0x48_bne_20_

instradr[PFS] = 72,
instrtype[PFS] = INSTR_BRANCH,
...
loop_counter_1++

loop_counter_1 < loop_bound_1

loop_counter_1 == loop_bound_1

Figure 5.15: A conditional branch is forced to only take the path leading to the
highest WCET. PFS is an abbreviation for PIPELINE_FETCH_STAGE.

Figure 5.15 shows the result generated by the compiler on the assembly code
in Figure 5.16 on the next page. The compiler reconstructs the control �ow,
and in this context an important part of the reconstruction is to detect loops to
model the behaviour of the process correctly. As data is abstracted away, loop
bounds are used to avoid in�nite loops. The loop bounds are annotated in the
source code, and the executable is compiled with debug information which can
identify relevant lines in the source code. The loop bounds are retrieved by the
compiler from the source code using the debug information in the executable.
This approach can potentially be unsafe in cases where the compiler unrolls a
loop.

As can be seen in Figure 5.15, it is only possible to take the sequential tran-
sition from location i0x48_bne_20_ and leave the loop, when loop_counter_1

is equal to the loop bound. The reader might notice that instradr[PFS] = 72

on both outgoing transitions of location i0x48_bne_20_. These are added to
ensure that the execution of the branch instruction is simulated regardless of

75

Address Instruction

...

0x0020 ADD R2, R2, #1

0x0024 CMP R2, #30

...

LOOP BODY

...

0x0044 MOV R1, R0

0x0048 BNE 0x20

...

Figure 5.16: Assembly code for a loop.

which transition is taken. It would be unsafe if the branch instruction was not
simulated on the sequential transition. This gives an idea of how handling jumps
in an e�cient and correct manner can be complicated. The ARM-to-UPPAAL
compiler does not handle arbitrary jumps and produce unsafe WCETs if the
executable of the process contains nested loops where the inner loop has a jump
to the outer loop. Control �ow analysis could be added to the method in order
to handle this.

The total determinism in loops, as shown in Figure 5.15, is only possible as
long as the hardware platform does not exhibit timing anomalies. Otherwise, it
might be unsafe to eliminate the non-determinism. A safe way to eliminate non-
determinism is to make the path analysis data-sensitive. This could be done by
extracting data �ow information from the process and annotate the generated
NTA.

The modelling of the CFG as a NTA is done by modelling each function
as a timed automaton and modelling function calls as synchronisation between
them. In functions, almost every transition simulates an abstract execution of an
instruction. The abstract simulation of an instruction is done by synchronising
with the timed automaton modelling the pipeline's fetch stage. Organising
functions in this way disallows jumps from the body of one function to the body
of another function. This is, however, considered bad practice and an error will
be produced by the ARM-to-UPPAAL compiler if encountered.

In the following, the transitions that do not simulate an abstract execution of
an instruction will be described. These transitions can be divided into: the tran-
sition that handles initialisation, transitions that synchronise to realise function
calls, and the last transition in a function. The transition used in the process'
main function to initialise the entire NTA is shown in Figure 5.17 on the facing
page. When the transition is taken, the urgent broadcast channel initCaches
is synchronised over, which will initialise the cache models. Furthermore, the
initialise function is called which initialises the pipeline stages.

As mentioned above, function calls in the assembly code are found and then
modelled as synchronisation between timed automata. An example of a function
call is shown in Figure 5.18 on the next page. The �gure has three transitions:
the �rst going from location i0x60_bl_0_ to location call_fib_0, the second
from location call_fib_0 to location return_fib_0, and an outgoing transi-

76

initialise()

i0x54_push_lr_

initCaches!

Figure 5.17: Initialisation done by the timed automaton modelling the process'
main function.

tion from return_fib_0. The �rst transition simulates the branch instruction
entering the pipeline. To pass arguments to the function, the arguments should
be pushed on the stack or put into registers. This is already done by the instruc-
tions leading up to the branch instruction. The second transition synchronises
with the fib function using the urgent channel fib_branch.

fib_branch?

i0x60_bl_0_

fib_branch!

fetch!

i0x64_mov_r0_30

call_fib_0

return_fib_0

instradr[PFS] = 96,
instrtype[PFS] = INSTR_BRANCH,
dataadr[PFS] = INVALID_ADDRESS,
regread[PFS] = REG_NONE,
regwrite[PFS] = REG_PC | REG_LR

Figure 5.18: Example of a function call.

The relevent part of the fib function is shown in Figure 5.19. The syn-
chronisation transfers control to the i0x0_cmp_r0_1 location of the fib func-
tion. Besides transfering control, the synchronisation resets the loop counter
loop_counter_1. The outgoing transition of location i0x0_cmp_r0_1 starts
the abstract simulation of the instructions in fib. The remaining function
body, connecting location i0x4_push_lr_ and i0x50_bx_lr has been removed
for brevity. The ingoing transition to the inital location in Figure 5.19 on the fol-
lowing page transfers control back to location i0x64_mov_r0_30. There might
be more than one ingoing transition to the initial location in a function, as it
might be possible to return from the function in several places. Currently, it is

77

assumed that every bx lr instruction in a function is a return. This assump-
tion might give rise to problems in handwritten assembly, since this does not
necessarily follow the patterns used by GCC. Furthermore, the current imple-
mentation of function calls does not support assembly-level recursion, which is
in fact unsafe in the current implementation. This limitation is not really a
problem, as recursion is normally not used in RTSs.

fib_branch!

FUNCTION BODY

fib_branch?

fetch!fetch!
instradr[PFS] = 80,
instrtype[PFS] = INSTR_BRANCH,
dataadr[PFS] = INVALID_ADDRESS,
regread[PFS] = REG_LR,
regwrite[PFS] = REG_PC

instradr[PFS] = 0,
instrtype[PFS] = INSTR_OTHER,
dataadr[PFS] = INVALID_ADDRESS,
regread[PFS] = REG_R0,
regwrite[PFS] = REG_NONE

i0x4_push_lr_

i0x0_cmp_r0_1

i0x50_bx_lr

loop_counter_1 = 0

Figure 5.19: Example of the beginning of a function automaton.

5.5 METAMOC Graphical User Interface

A graphical user interface (GUI), which connects the di�erent implementation
components, has been developed to make the implementation accessible for end-
users. The main window of the tool is shown in Figure 5.20 on the next page.
The �gure shows the main window after the object �le fibcall.o, a benchmark
from the WCET Challenge 2006 [4], has been analysed. After a click on the
�OK� button, the WCET Analyser displays the WCET of the selected object
�le, which in this case is 605 cycles. Since the WCET depends on the hardware
platform, the GUI enables the user to select di�erent platforms for the analysis.
In the demonstrated setting, the chosen platform is the ARM920T.

By clicking the �Preferences� button in the top of the interface, it is possible
to make modi�cations to the platform. The click opens the window displayed in
Figure 5.21 on the facing page. The window allows the user to tryout variations
of the platform, e.g. it is possible to vary the delay induced by the main memory.
It is also possible to try out various settings for caches. This is done by clicking
the icons next to the caches.

Clicking these buttons brings up a window as displayed in Figure 5.22. In
this window it is possible to change the replacement policy of the cache and the
other settings listed in the window.

78

Figure 5.20: The main window of WCET Analyser.

Figure 5.21: The hardware platform editor window of WCET Analyser.

79

Figure 5.22: The cache settings window of WCET Analyser.

80

Chapter 6

Experiments

In this chapter we document a series of experiments conducted on the concrete
implementation that served as an ongoing example in Chapter 5. The purpose
of the experiments is to derive properties of the METAMOC method, which will
reveal how well the method works in practice and disclose weak points that can
serve as basis for future development. Three qualities are examined: how big
and how complex programs the method is able to analyse, how much sharper
WCETs the method is able to determine when taking caching into account, and
how fast the method is able to analyse processes.

The experiments are conducted using a number of WCET analysis bench-
mark programs made available in the WCET Analysis Project by Mälardalen
Real-Time Research Center (MRTC) [4]. The programs implement a wide se-
lection of tasks that are typical for embedded software systems, such as signal
�ltering, data compression, sorting, matrix calculation, and numerical calcu-
lation. In addition, the programs let us test the method's strength against
di�erent types of control �ow, as they cover loops, nested loops, recursion and
even unstructured code.

Unfortunately, no reference WCETs for running the benchmark programs on
an ARM920T processor are available. These numbers would have been useful
for assessing whether the WCETs determined by our implementation are safe
and to which degree they are sharp. Other researchers and research companies
in the �eld of WCET analysis, such as Daniel Sandell [37], who has had his
results published as an advertisement for the AbsInt aiT tool [5], use WCETs
from the emulator ARMulator by ARM Ltd. This approach does not give rise
to sound comparisons, as ARM Ltd. does not give any guarantees regarding the
cycle-accuracy of ARMulator [26, Section 2.1.1]. Because not all cycle relevant
information about ARM processors is deducible from the o�cial, technical refer-
ence manuals, and because measurements of execution time cannot be trusted,
the only options for obtaining usable numbers might be to persuade ARM Ltd.
into releasing detailed hardware descriptions or to reverse engineer the hard-
ware.

Our experiments have been conducted in the following manner: We �rst
manually annotate loop bounds in the C programs that are not already anno-
tated by their original authors. This is done using overestimates in some cases,
because some bounds are di�cult to determine, and we want to ensure that the
bounds do not give rise to underapproximations. Each benchmark program is

81

compiled using a version of GCC from one of the OpenMoko cross-compilation
toolchains [2] at three di�erent optimisation levels: -O2, -O1 and -O0. For all
levels we have used the additional switches -g, for including debugging informa-
tion, and -fno-builtin, for only using functions directly de�ned in the source
code. The resulting binaries are then fed into our implementation, and the total
time from invocation to the time a result is presented to the user is measured.
The UPPAAL model checking is done on a di�erent host than the rest of the
analysis, so a slight, negligible, network overhead for transferring the resulting
UPPAAL model to another host is included in the timings. The primary host
is a Lenovo SL500 laptop with a 2 GHz Intel Core 2 Duo processor and 4 GB of
RAM running a 32 bit Ubuntu operating system, while the model checking host
is a Dell PowerEdge 2950 with two 2.5 GHz Intel Quad Core Xeon processors
and 32 GB of RAM running a 64 bit Red Hat operating system. The model
checking is run on the more powerful system in order for UPPAAL to be able
to utilise the entire 4 GB of RAM that UPPAAL is able to use.

We have tried seven di�erent combinations of the optimisation levels together
with three di�erent settings for the caches and the value analysis:

• Instruction cache is always miss, data cache is always miss.

• Instruction cache is modelled concretely, data cache is always miss.

• Instruction cache is modelled concretely, data cache is modelled concretely,
and the value analysis is used.

The results of our experiments are presented in Tables 6.1 and 6.2, starting
at page 84. The three most interesting �ndings are:

Taking the instruction cache into account yields WCETs that are up
to 97% smaller. For example, the janne_complex example goes from a
WCET of 8908387 to 270083. The average decrease in WCET is 78% at
the optimisation level -O2.

Using a concrete data cache gives up to 68% smaller WCETs. At the
optimisation level -O2, the average decrease in WCET is 31%. The gain
from taking the data cache into account is very dependent on the value
analysis being able to determine values for memory accesses. The cnt

program goes from a WCET of 52481 to 16828 when taking the data
cache into account. For cnt, the value analysis is able to determine values
for about half of all memory accesses1.

Almost all results are obtained within �ve minutes. Only four of the re-
sults are obtained after �ve minutes, and the longest analysis time is less
than 25 minutes. This is disregarding the analyses that run out of mem-
ory, as these have not been timed. We have, however, observed timings of
more than four hours, before UPPAAL ran out of memory.

The remaining �ndings, which point out some surprising facts and uncover
some limitations of the current state of the implementation, are:

1The cnt program sums up all elements in a two-dimensional array. The value analysis

loses the value of the pointer to the array, as it is stored on the stack and later retrieved,

between the initialisation of the array and the summation of the array.

82

The most optimised level is not necessarily the one resulting in the smallest
WCET, among the analysis results. Looking at the jfdctint program,
the smallest WCET, 32043, is found at the optimisation level -O1 and,
unsurprisingly, using a concrete instruction and data cache. The WCET
is 53% smaller than the WCET found with -O2, 68740. The example
program expint is unanalysable at -O1 but analysable at -O0.

Seven programs cannot be analysed, as the model checking runs out of
memory due to state space explosion. The most common cause of state
space explosion, that we have identi�ed, is related to the path analysis
failing to recover enough �ow information. Since we only unroll loops in
the value analysis � not in the path analysis � a typical example is a
loop with a conditional forward branch for escaping the loop. In this case
the path analysis uses non-determinism at each loop iteration, leading to
an exponential blow-up.

Two programs write to the program counter, leading to a dynamic con-
trol �ow. One of the cases is a switch statement, which is compiled into a
lookup table, the other is the well-known, not completely well-structured
program �Du�'s device�.

Six programs use �oating point operations, and two programs use �oat-
ing point operations at lower optimisation levels. Our implementation
currently does not handle �oating point operations, as these are imple-
mented as library calls in the ARM architecture. It would be simple to
support these, provided that good loop bounds could be deduced from the
very optimised assembler code for these procedures.

The value analysis is able to analyse all but four examples. The imple-
mentation fails with a Python exception, but we have not looked into why.

83

-O2, -O2, -O2,
miss DC, miss DC, concrete DC,
miss IC, concrete IC, concrete IC,
no value no value value analysis
analysis analysis

adpcm out of memory
bs 3666 964 640

00:01.06 00:01.19 00:01.36
bsort100 out of memory
cnt 188466 52481 16828

00:01.99 00:02.63 00:04.34
compress out of memory
cover out of memory
crc 2043591 328310 value

00:46.84 01:15.65 analysis fails
du� write to PC
edn 2093178 686447 out of

00:14.46 00:22.03 memory
expint 658716 26417 value

00:04.65 00:06.21 analysis fails
fac 11553 1266 907

00:01.15 00:01.25 00:01.54
fdct out of memory
�t1 uses �oating point
�bcall 13731 734 605

00:01.01 00:01.05 00:01.32
�r 131508 20824 out of

01:00.26 13:53.00 memory
insertsort 75078 43888 36275

00:01.15 00:01.45 00:02.76
janne_complex 8908387 270083 out of

00:38.72 01:09.74 memory
jfdctint 294957 133059 68740

00:05.32 00:06.17 05:15.00
lcdnum write to PC
lms uses �oating point
ludcmp out of memory

Table 6.1: WCETs and analysis times for the benchmark programs from
Mälardalen WCET Research Group compiled with -O2. DC and IC are ab-
breviations for �data cache� and �instruction cache�, respectively. The time
format is �mm:ss.jj�, where mm is minutes, ss is seconds, and jj is centiseconds.

84

-O2, -O2, -O2,
miss DC, miss DC, concrete DC,
miss IC, concrete IC, concrete IC,
no value no value value analysis
analysis analysis

matmult 5836449 2636715 out of
00:22.75 00:38.31 memory

minver uses �oating point
ndes out of memory
ns 279579 29060 28572

00:04.28 00:07.41 00:19.41
nsichneu out of memory
prime 33231 4532 value

00:02.48 00:03.41 analysis fails
qsort-exam uses �oating point
qurt uses �oating point
select uses �oating point
statemate uses �oating point
ud out of memory

Table 6.1 continued.

-O1, -O1, -O1, -O0,
miss DC, miss DC, conc. DC, miss DC,
miss IC, conc. IC, conc. IC, miss IC,
no value no value value no value
analysis analysis analysis analysis

adpcm out of memory
bs 3864 906 679 8979

00:01.15 00:01.18 00:01.38 00:01.47
bsort100 out of memory
cnt 174474 47810 32597 uses �oating

00:03.96 00:05.77 00:08.61 point
compress out of memory
cover out of memory
crc 2043670 329322 out of out of

00:45.04 01:16.49 memory memory
du� write to PC
edn 1822726 out of out of 8501103

03:39.94 memory memory 00:47.68

Table 6.2: WCETs and analysis times for the benchmark programs from
Mälardalen WCET Research Group compiled with -O1 and -O0. DC and IC
are abbreviations for �data cache�, �instruction cache�, respectively. The time
format is �mm:ss.jj�, where mm is minutes, ss is seconds, and jj is centiseconds.

85

-O1, -O1, -O1, -O0

miss DC, miss DC, conc. DC, miss DC,
miss IC, conc. IC, conc. IC, miss IC,
no value no value value no value
analysis analysis analysis analysis

expint out of out of out of 2661123
memory memory memory 24:47.44

fac 18483 6323 out of 30627
00:11.21 00:18.78 memory 00:13.35

fdct out of memory
�t1 uses �oating point
�bcall 14424 661 628 44520

00:01.01 00:01.18 00:01.31 00:01.27
�r 144048 20932 out of 342180

01:04.22 05:04.35 memory 00:35.01
insertsort 74946 43878 40439 175366

00:01.10 00:01.43 00:02.39 00:01.64
janne_complex out of memory
jfdctint 150978 36159 32043 370923

00:02.90 00:03.63 00:35.53 00:04.62
lcdnum write to PC
lms uses �oating point
ludcmp uses �oating point
matmult out of memory
minver uses �oating point
ndes out of memory
ns 12741 1885 1655 482463

00:01.75 00:02.46 00:03.65 00:06.19
nsichneu out of memory
prime 32904 4612 value out of

00:02.38 00:03.51 analysis fails memory
qsort-exam uses �oating point
qurt uses �oating point
select uses �oating point
statemate uses �oating point
ud out of memory

Table 6.2 continued.

86

Chapter 7

Related Work

A large amount of literature exists which treats WCET analysis. As mentioned
in Section 2.2 on page 14 there are two classes of methods for �nding WCETs:
measurement-based methods and static methods. Several tools exist, which are
based on measurement-based methods. Such tools are, however, not suitable
for hard real-time systems, as they do not guarantee safe WCETs, and we
therefore do not look further into measurement-based methods. For hard real-
time systems, tools based on static methods should be used. In [6, 19, 20,
23, 46, 45], the authors present a number of complementary static methods
used in the state-of-the-art, static WCET analysis tool aiT. The underlying
techniques used in aiT are abstract interpretation and implicit path enumeration
technique (IPET).

Abstract interpretation is a well-known technique from the area of static
program analysis that allows for formal correctness proofs of analyses. To ease
the development of analysers, the tool PAG [32] has been developed. PAG
allows generating an implementation of an analysis based on a speci�cation of
the analysis. The aiT tool uses this to develop analysers. IPET is used to
�nd the longest execution path of a process. It requires safe execution times of
basic blocks together with execution counts of the basic blocks to �nd a WCET.
The IPET calculation often uses integer linear programming (ILP) by making
an ILP formulation of the problem. The ILP consists of two elements: a cost
function and constraints on the variables in the cost function. The cost function
represents the number of cycles, and to �nd the WCET of a process, the cost
function is maximised. The constraints on the variables represent the number
of times the basic blocks can be executed.

A WCET analysis is often separated in, more or less, the following four anal-
yses: cache, value, pipeline and path analysis. In the context of cache analyses
they can generally be sorted into abstract and concrete cache analyses. The ab-
stract cache analyses are based on similar methods as described in Section 3.4.1
on page 36 and have been implemented in [19] using PAG and a NTA with stop
watches [7]. Abstract caches have the advantage of being space e�cient. The
trade-o� is a loss in the precision of the WCET results. With concrete caches
as implemented in [33], more precise results can be achieved. An advantage
of a more precise result of the cache analysis might also decrease the amount
of non-determinism for processors with timing anomalies. It should be noted
that both concrete and abstract cache analyses must handle unknown memory

87

addresses, since the value analysis might not be able to determine all adresses.
The pipeline analysis typically uses an abstract model of the pipeline to take

its impact on the execution into account [33, 19, 20, 23]. There are, however,
exceptions such as the approach presented in [17]. In [17], an unmodi�ed pro-
cessor simulator is used together with IPET. The approach has a number of
limitations, e.g. the simulator must be cycle-accurate and it must be possible
to control the state of the simulator. Furthermore, the processor must not have
timing anomalies [44]. The pipeline analysis should, like the cache analysis, be
able to handle unknown memory values. Unknown memory values might lead
to non-determinism, as it might be impossible to make a reasonable overapprox-
imation. For this reason, abstract pipeline states are traditionally represented
as a set of concrete pipeline states [38]. Recent work has looked into using bi-
nary decision diagrams (BDDs) to represent abstract pipeline states combined
with model checking [46, 45]. The work presented in this thesis is conceptually
similar, although instead of using BDDs, the standard techniques implemented
in UPPAAL are used for state space reduction. Another interesting perspective
is the work presented in [18], where the authors try to bound the distance of the
e�ect of instructions. That is, they try to determine a bound on the number of
subsequent instructions following an instruction, that the instruction can a�ect
the timing of. This is only initial work in this area. They do, however, show that
many pipelines allow arbitrary long sequences to be a�ected by an instruction,
leaving little or no hope for the approach.

Value analysis is used to determine addresses of memory blocks, which are
accessed dynamically using registers and variables [44, p. 12]. Furthermore, it
is used to �nd loop bounds and thereby also to �nd infeasible paths. A type
of value analysis is value set analysis, which �nds supersets of possible values.
To get improved results, value set analysis should be used in combination with
an a�ne-relations analysis. In [9], a value set analysis with a�ne relations for
x86 code has been implemented. In the aiT tool, the value analysis has been
implemented using PAG. The value analysis in this thesis is currently based on
constant propagation using WPDSs [36]. WPDSs have the advantage, compared
to PAG, of supporting a broader range of data �ow analysis queries [36, p. 4].
We do, however, not exploit this in the current implementation.

For the path analysis, IPET and ILP have been combined in several tools [44,
p. 42]. In [41], a so-called path-based method is presented and has been imple-
mented as an alternative to IPET in the SWEET tool. The method is more
e�ective than previous path based methods. Comparing to IPET, it should be
noted that �nding the solution to an ILP problem is NP-hard. Furthermore,
path based methods explore the path explicitly. In contrast to IPET, this could
make debugging of models easier. The path analysis presented in this thesis is
simple exploration of the CFG of the process. Not much optimisation has been
done, and this is a limiting factor of the implemented METAMOC method.

In [20] it is claimed that it is impossible to make the four analyses as sepa-
rate, modular analyses and at the same time get su�cient precision. They de�ne
a separate and modular analysis to be an analysis, where sub-analyses can be
run independently or as a sequence of subtasks. The paper is based on experi-
ences from enabling the aiT tool to �nd WCETs for the two rather advanced
processors: ColdFire 5307 and PowerPC 755. Our analysis is not separate in
the same sense as in [20], but it is modular to a great extent nonetheless.

It also seems that the statement in [20] does not cover the value analysis.

88

In the aiT tool, the value analysis is executed by itself and the output is given
as input to the other analyses. The advantage of separating the value analysis
from the rest of the analyses is that the other analyses can be data-insensitive
and thus require less memory compared to the method in [30], where a symbolic
simulation, that can handle unknown input using non-determinism, is used.

The method presented in this thesis separates the four analyses by running
the value analysis prior to the other analyses, like the aiT tool. The cache,
pipeline and path analyses are then carried out by separate models that com-
municate. Unlike the tools Bound-T, aiT and SWEET, all three analyses are
performed simultaneously. Even though the models are separate, time elapses
globally. To reduce the amount of memory used by state space exploration, we
use a number of modelling tricks: the state space is explored in depth-�rst order,
the models have as little non-determinism as possible, and the stored state space
is reduced as much as possible. Currently, the caches are modelled concretely.
We have, however, experimented with implementing an abstract cache analysis,
as in [6], using real-time model checking, which is covered in [7].

89

90

Chapter 8

Conclusion

Modern processors have a number of features for increasing the average case
performance, which unfortunately make it hard to determine a safe and sharp
WCET. Among the possible features of modern processors, especially caching
and pipelining are central to performance improvement, and it is therefore vital
to take them into account. In this thesis we have developed the modular WCET
analysis method METAMOC, which accomplishes exactly that, and we have
furthermore conducted a series of experiments on an implementation of the
method. The implementation is for the ARM920T processor, which is a typical
processor for embedded systems. The experiments suggest that WCET analysis
methods based on model checking can be a successful solution to the problem
of �nding safe and sharp WCETs for processes running on processors featuring
caching and pipelining. Firm baseline numbers are, however, still required in
order to obtain solid evidence.

The method is composed of the four common WCET sub-analyses and the
interaction between them. The sub-analyses are cache, value, pipeline and path
analysis. We have designed a modular, general and � to some degree � scalable
method for performing WCET analysis. The method is modular in that the
sub-analyses are done in an integrated but loosely coupled manner. Besides
being the basis for experiments, the implementation of the method serves as a
successful demonstration.

The experiments show a noticeable improvement in WCETs caused by the
instruction and data cache analyses. The concrete instruction cache analysis
gives an average of 78% smaller WCETs, and the concrete data cache analysis
gives an average of 31% smaller WCETs. The decrease in WCETs caused by the
data cache analysis depends on the result of the value analysis. Since the value
analysis is relatively simple, a more advanced value analysis, which determines
register contents in more execution points, is expected to further decrease the
WCETs. Taking into consideration that the value analysis is relatively simple,
the analysis is still able to produce results that give rise to noticeable smaller
WCETs, and it seems to be a good starting point for improvements of the
implementation.

Additionally, the experiments show that all the benchmark programs, which
the method are able to analyse, can be analysed within �ve minutes. There
are, however, limiting factors. For example, �oating point operations are cur-
rently not handled, which makes the method fail on six programs. Furthermore,

91

seven of the programs makes the model checking part of the analysis run out of
memory. This seems to be caused by not preventing non-determinism of con-
ditional forward branches, which lead to state space explosion. To overcome
these limitations, an improved path and value analysis should be designed and
implemented.

92

Chapter 9

Future Work

The work done in this thesis gives rise to a number directions for future work.
The overall goal of the future work is to improve the developed METAMOC
method and associated implementation, make the method practically usable
by combining it with scheduling of RTSs in a ready-to-use, user-friendly tool,
and study whether the ideas behind the method can be applied to software
veri�cation in general. In the following paragraphs we introduce some of the
directions, many of which have enough substance to give rise to one or more
papers in the domain of software veri�cation.

Firstly, the concrete cache models limit the scalability of the developed
method, as they increase the size of the state space considerably. An improve-
ment would be to invent space-saving, abstract cache models, which we have
already studied to some degree in [7]. The challenge is to devise an abstraction
that utilises the time aspect of timed automata and thus takes advantage of ex-
isting optimisation techniques for verifying properties of this type of automata.
The studied approach is, however, not modular. New, specialised data types in
the UPPAAL model checker might help solve this problem. Another strategy
could be to decrease the size of the concrete caches. Each cell in the instruction
cache only stores a limited number of the combinations possible with 32 bit,
implying that the number of bits used for each cell could be decreased. As we
have noticed that most of the WCET benchmark programs do not �ll the entire
data cache, the number of cells in each set in the cache could be decreased.

Compared to the other sub-analyses utilised by the METAMOC method
developed in this thesis, not much consideration has been given to the path
analysis. Since the method takes a binary executable as input in order to cap-
ture the e�ects of compiler optimisations, the result of path analysis depends
on how well the control �ow can be reconstructed. Moreover, the addition of
safe, limiting guards, which eliminate infeasible and unnecessary paths from the
CFGs, will improve the scalability of the path analysis and thus of the entire
WCET analysis. An interesting approach is path-based path analysis, as pre-
sented in [41]. The applied value analysis is another sub-analysis that can be
improved by integrating more sophisticated methods. For example, value anal-
ysis methods already developed, such as the value set analysis in [9], could be
desirable candidates.

The way hardware components and process functions currently are modelled
places some restrictions on the possible control �ow. For example, recursion is

93

not supported in a scalable way, and jumps from one function to arbitrary places
in another function are impossible. Even though the latter example is considered
bad practice, all sorts of jumps are possible at the assembler code level. It is
possible that arbitrary static jumps, similar to the one mentioned, are inserted
by optimising compilers, which makes it necessary for WCET analyses to handle
them. By representing the instruction sequence of a process as a constant array
in UPPAAL and adding a driver automaton that acts as an instruction pointer
and manages a call stack, it would be possible to handle all types of jumps.

Another direction for future research is to combine the work done in this
thesis with the work done by Bøgholm et al., in connection with the tool Schedu-
lability Analyzer for Real-Time Systems (SARTS) [12]. In SARTS, automata
for the processes in a RTS are combined with an automaton for a scheduler
to form a NTA, for which UPPAAL is used to verify the schedulability of the
RTS. Inspired by SARTS, the method presented in this thesis could be further
developed to support a real-time scheduler and multiple processes, resulting
in a method for schedulability analysis with support for hardware platforms
featuring caching and pipelining.

Even though NTAs and UPPAAL work reasonably well for the method at
this stage, it might prove rewarding to experiment with other types of models
and other model checkers. A nuisance with the current approach, which causes
problems that are documented in Chapter 6 starting on page 81, is that UP-
PAAL � in its current incarnation � lacks support for more than 4 GB of
memory. With regard to other types of models, two fellow students at Depart-
ment of Computer Science, Aalborg University, Joakim Byg and Kenneth Yrke
Jørgensen, have created the tool TAPAAL [14], which makes it possible to verify
properties of Petri nets using UPPAAL.

A way to overcome UPPAAL's memory limitation, and in general decrease
the METAMOC method's memory usage, could be to extend UPPAAL with
an aggressive, specialised reachability optimisation technique. The technique
should utilise that UPPAAL does not need to store visited states in memory,
since the NTAs generated by the method always deadlock at some point, and
visited states are therefore never revisited.

In order to evaluate the results of our experiments more thoroughly, the real
WCETs for running the benchmark programs on the ARM920T are needed.
Establishing the WCETs theoretically using the information published in the
manuals from ARM Ltd. is of no value, as this information was also used for the
presented implementation, and the results would therefore not di�er. Obtain-
ing WCETs using the emulator ARMulator is not enough either, since ARM
Ltd. does not guarantee that the emulator is cycle-accurate [26, Section 2.1.1].
The results from ARMulator might be good enough for approximate compar-
isons, but determining the associated uncertainty will require more detailed
information about the emulator's accuracy than currently available. Running
the benchmark programs on actual hardware featuring the ARM920T, such as
the OpenMoko FreeRunner mobile phone [2], might be useful for �nding lower
bounds on the WCETs, for comparison.

From the experience gained by developing the presented method, we believe
that the behaviour of hardware platforms with timing anomalies can be imitated
by adding extra non-determinism to the hardware models. By modelling the
hardware's functional units, such as LSUs, IUs and MCIUs (see Section 3.3 on
page 34), as individual, timed automata and not limiting the execution order

94

using process priorities or similar, the model checker will try out all possible
execution orders and determine the worst-case order. The interesting part is
to study whether the added non-determinism results in a state space explosion,
and, if that is the case, investigate other ways to model timing anomalies.

Since it is essential that implementations of the presented METAMOCmethod
work correctly, i.e. they imitate the hardware platforms in a safe and accurate
way, an important direction for future work is to prove this property. For a par-
ticular hardware platform, that requires a detailed hardware speci�cation from
the manufacturer and an automated, guaranteed correct method for verifying
that the handcrafted hardware models implement the speci�cation correctly. If
such detailed speci�cations are available, however, it might be more rewarding
to study how speci�cations written in hardware description languages, such as
VHSIC Hardware Description Language (VHDL), can be automatically trans-
lated into models usable for WCET analysis.

Currently, the method uses static analysis to perform value analysis and
model checking to perform cache, pipeline and path analysis. It should be in-
vestigated whether other boundaries between static analysis and model checking
could lead to better WCET analyses in terms of speed, capability and precision.
Combining static analysis and model checking is a relatively new approach, and
a promising direction for future work could be to apply the experience gained
from combining them for WCET analysis to software veri�cation in general.

Support for more ARM processors than the ARM920T can easily be added
to the presented implementation, as these processors, to a great extent, share
a common instruction set. On the other hand, adding support for a hardware
platform which uses another instruction set is a sizeable task, since it requires
the ARM-to-UPPAAL compiler to be mostly rewritten. Also, some additions
to the Dissy disassembler front-end might be needed. If the implementation's
codebase is refactored to become more general with regard to dealing with dif-
ferent hardware platforms and is reorganised to become simpler to understand,
the job of adding support for more platforms is made substantially easier. This
in turn raises the value of the implementation and makes it likely that other
researchers in the �eld of WCET analysis might contribute with support for
more hardware platforms and use the software as a basis for future work.

The method could be extended to also check for software problems such as
race conditions and resource depletion. The former extension is of course only
relevant if a scheduler and more processes are introduced into the method as
mentioned above. These extra checks �t in well, since the method is already
doing a full exploration of a process' control �ow. Similarly, the method could
be used on arbitrary parts of the control �ow and provide advanced pro�ling
data. For example, software engineers could study the execution of their code
and learn how to best utilise caching and pipelining.

Finally, other parameters than WCET could be determined. Engineers and
scientists in the world of embedded systems have always been concerned with
limiting the energy consumption of electric equipment. Also, people's growing
concerns for the environment, together with the e�ects of the economy crisis that
began in late 2008, make the topic of limiting resource usage interesting. With
enough information available from hardware manufacturers, the METAMOC
method could be altered to estimate the worst-case energy consumption of ex-
ecuting a particular software process.

95

96

Bibliography

[1] Homepage of the Danish Network for Intelligent Embedded Systems
(DaNES). http://www.danes.aau.dk.

[2] Homepage of the OpenMoko mobile phone. http://openmoko.org.

[3] Homepage of the SSV 2009 Doctoral Symposium held during the 4th In-
ternational Workshop on Systems Software Veri�cation (SSV 09). http:

//www.embedded.rwth-aachen.de/ssv09/doku.php?id=doctoral.

[4] The WCET Analysis Project by Mälardalen Real-Time Research Center
(MRTC). http://www.mrtc.mdh.se/projects/wcet/home.html.

[5] AbsInt. aiT for ARM7 vs ARMulator. http://www.absint.com/ait/

precision.htm#armulator.

[6] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
Cache Behavior Prediction by Abstract Interpretation. In SAS '96: Pro-
ceedings of the Third International Symposium on Static Analysis, pages
52�66, London, UK, 1996. Springer-Verlag.

[7] Mads Christian Olesen Andreas Engelbredt Dalsgaard and Martin Toft.
Worst-Case Execution Time Analysis for Real-Time Systems. DAT5 report,
http://martintoft.dk/projects/dat5.pdf, December 2008.

[8] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, �rst edition, 2008.

[9] Gogul Balakrishnan and Thomas W. Reps. Analyzing Memory Accesses in
x86 Executables. In Proc. Compiler Construction LNCS 2985, pages 5�23.
Springer, 2004.

[10] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Up-
paal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems: 4th International School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200�236. Springer�
Verlag, September 2004.

[11] Christoph Berg. PLRU Cache Domino E�ects. In Frank Mueller, editor,
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis. In-
ternationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006.

97

http://www.danes.aau.dk
http://openmoko.org
http://www.embedded.rwth-aachen.de/ssv09/doku.php?id=doctoral
http://www.embedded.rwth-aachen.de/ssv09/doku.php?id=doctoral
http://www.mrtc.mdh.se/projects/wcet/home.html
http://www.absint.com/ait/precision.htm#armulator
http://www.absint.com/ait/precision.htm#armulator
http://martintoft.dk/projects/dat5.pdf

[12] Thomas Bøgholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and
Kim G. Larsen. Model-Based Schedulability Analysis of Safety Critical
Hard Real-Time Java Programs. In JTRES '08: Proceedings of the 6th
international workshop on Java technologies for real-time and embedded
systems, pages 106�114, New York, NY, USA, 2008. ACM.

[13] Alan Burns and Andy Wellings. Real-Time Systems and Programming
Languages. Pearson Education Limited, third edition, 2001.

[14] Joakim Byg and Kenneth Yrke Jørgensen. Homepage for TAPAAL. http:
//tapaal.net.

[15] Andreas Engelbredt Dalsgaard, Mads Christian Olesen, and Martin Toft.
WCET Analysis of ARM Processors using Real-Time Model Checking. Ex-
tended abstract accepted for the SSV 2009 Doctoral Symposium held dur-
ing the 4th International Workshop on Systems Software Veri�cation (SSV
09). http://martintoft.dk/projects/dsssv09.pdf.

[16] Jochen Eisinger, Ilia Polian, Bernd Becker, Stephan Thesing, ReinhardWil-
helm, and Alexander Metzner. Automatic Identi�cation of Timing Anoma-
lies for Cycle-Accurate Worst-Case Execution Time Analysis. In DDECS
'06: Proceedings of the 2006 IEEE Design and Diagnostics of Electronic
Circuits and systems, pages 13�18, Washington, DC, USA, 2006. IEEE
Computer Society.

[17] Jakob Engblom and Andreas Ermedahl. Pipeline Timing Analysis using
a Trace-Driven Simulator. In Proceedings Sixth International Conference
on Real-Time Computing Systems and Applications (RTCSA 99, Cat No
PR00306), pages 88�95, 1999.

[18] Jakob Engblom and Bengt Jonsson. Processor Pipelines and Their Prop-
erties for Static WCET Analysis. In Proceedings of EMSOFT 02: Second
International Conference on Embedded Software, volume 2491 of Lecture
Notes in Computer Science, pages 334�348. Springer-Verlag, 2002.

[19] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying
Compiler Techniques to Cache Behavior Prediction. 1997.

[20] Reinhold Hechmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The In�uence of Processor Architecture on the Design and the
Results of WCET Tools. Proceedings of the IEEE, 91(7):1038, 2003.

[21] Nicholas Kidd, Akash Lal, and Thomas W. Reps. Weighted Automata
Library. http://www.cs.wisc.edu/wpis/wpds/download.php.

[22] Peter Knaggs and Stephen Welsh. ARM Assembly Language Programming.
http://www.arm.com/miscPDFs/9658.pdf, 2004.

[23] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline
Modeling for Timing Analysis, volume 2477 of Lecture Notes in Computer
Science, pages 294�309. Springer Berlin / Heidelberg, 2002.

[24] Nancy G. Leveson and Clark S. Turner. An Investigation of the Therac-25
Accidents, volume 26 of Computer, pages 18�41. IEEE, July 1993.

98

http://tapaal.net
http://tapaal.net
http://martintoft.dk/projects/dsssv09.pdf
http://www.cs.wisc.edu/wpis/wpds/download.php
http://www.arm.com/miscPDFs/9658.pdf

[25] ARM Ltd. ARM9 - ARM Processor Family. http://www.arm.com/

products/CPUs/families/ARM9Family.html.

[26] ARM Ltd. ARM Developer Suite � Debug Target Guide.
http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/

DUI0058.pdf, 1999.

[27] ARM Ltd. ARM9TDMI Technical Reference Manual. http:

//infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.

pdf, 2000.

[28] ARM Ltd. ARM920T Technical Reference Manual. http://infocenter.
arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf,
2001.

[29] ARM Ltd. ARM and Thumb-2 Instruction Set Quick Refer-
ence Card. http://infocenter.arm.com/help/topic/com.arm.doc.

qrc0001l/QRC0001_UAL.pdf, March 2007.

[30] Thomas Lundqvist. A WCET Analysis Method for Pipelined Microproces-
sors with Cache Memories. PhD thesis, Department of Computer Engi-
neering, Chalmers University of Technology, Göteborg, Sweden, 2002.

[31] Thomas Lundqvist and Per Stenström. Timing Anomalies in Dynamically
Scheduled Microprocessors. In RTSS '99: Proceedings of the 20th IEEE
Real-Time Systems Symposium, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[32] Florian Martin. PAG � An E�cient Program Analyzer Generator. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 2(1):46,
1998.

[33] Alexander Metzner. Why Model Checking Can Improve WCET Analysis.
In Proceedings of Computer Aided Veri�cation, pages 334�347. Springer
Berlin / Heidelberg, 2004.

[34] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign. The Morgan Kaufmann Series in Computer Architecture and Design.
Elsevier Science & Technology, third edition, 2004.

[35] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia
Polian, Jochen Eisinger, and Bernd Becker. A De�nition and Classi�cation
of Timing Anomalies. In 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, 2006.

[36] Thomas W. Reps, Akash Lal, and Nick Kidd. Program Analysis using
Weighted Push-Down Systems, volume 4855 of Lecture Notes in Computer
Science, pages 23�51. Springer Berlin / Heidelberg, 2007.

[37] Daniel Sandell. Evaluating Static Worst-Case Execution-Time Analysis for
a Commercial Real-Time Operating System. Master's thesis, Department
of Computer Science, Mälardalen University, Sweden, July 2004. http:

//www.mrtc.mdh.se/publications/0738.pdf.

99

http://www.arm.com/products/CPUs/families/ARM9Family.html
http://www.arm.com/products/CPUs/families/ARM9Family.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://www.mrtc.mdh.se/publications/0738.pdf
http://www.mrtc.mdh.se/publications/0738.pdf

[38] Jörn Schneider and Christian Ferdinand. Pipeline Behavior Prediction for
Superscalar Processors by Abstract Interpretation. In LCTES '99: Pro-
ceedings of the ACM SIGPLAN 1999 workshop on Languages, compilers,
and tools for embedded systems, pages 35�44, New York, NY, USA, 1999.
ACM.

[39] Stefan Schwoon. Model-Checking Push-Down Systems. PhD thesis,
Fakultät für Informatik, Technische Universität München, Germany, 2002.

[40] Simon Segars. The ARM9 Family � High Performance Microprocessors for
Embedded Applications. In ICCD '98: Proceedings of the International
Conference on Computer Design, pages 230�235, Austin, TX, USA, 1998.
IEEE Computer Society.

[41] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. E�cient
Longest Executable Path Search for Programs with Complex Flows and
Pipeline E�ects. In Proceedings of the International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems (CASES 01), pages
132�140, New York, NY, USA, 2001. ACM.

[42] Andrew S. Tanenbaum. Structured Computer Organization. Pearson Edu-
cation, fourth edition, 1998.

[43] Stephan Thesing. Safe and Precise WCET Determination by Abstract In-
terpretation of Pipeline Models. PhD thesis, Department of Computer Sci-
ence, Saarland University, Germany, July 2004.

[44] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P.
Puschner, Jan Staschulat, and Per Stenström. The Worst-Case Execution
Time Problem �� Overview of Methods and Survey of Tools. Trans. on
Embedded Computing Sys., 7(3):1�53, 2008.

[45] Stephan Wilhelm. E�cient Analysis of Pipeline Models for WCET Compu-
tation. In Proceedings of the 5th Intl. Workshop on Worst-Case Execution
Time Analysis, 2005.

[46] StephanWilhelm and Björn Wachter. Towards Symbolic State Traversal for
E�cient WCET Analysis of Abstract Pipeline and Cache Models. In Chris-
tine Rochange, editor, 7th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, Dagstuhl, Germany, 2007. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

100

Appendix A

Cache Functions

The implementation of the declarations and functions used in the cache analysis
can be seen below. The code is modi�ed by the cache-gen tool depending on the
cache speci�cation. For instance the function insert is modi�ed to call either
cacheMissFIFO or cacheMissLRU and similarly for the update function. It
should be noted that the function used for cache misses by the FIFO replacement
policy is the same as used for LRU.

1 clock x ;
2 address cache [CACHESETS] [CACHELINES/CACHESETS] ;
3 bool d i r t y [CACHESETS] [CACHELINES/CACHESETS] ;
4 int [0 , 2] write_hit_wait ;

1 int cache_contents (address adr)
2 {
3 int i ;
4 address mem_block_offset = adr/BLOCKSIZE∗BLOCKSIZE;
5 int block_set = mem_block_offset/BLOCKSIZE%CACHESETS;
6
7 i f (adr == INVALID_ADDRESS)
8 return 1 ;
9
10 for (i = 0 ; i < CACHELINES/CACHESETS; i++)
11 {
12 i f (cache [block_set] [i] == mem_block_offset)
13 return i ;
14 }
15
16 return 1 ;
17 }

101

1 void i n i t i a l i s eDa t aCache ()
2 {
3 int i , j ;
4
5 for (j = 0 ; j < CACHESETS; j++)
6 {
7 for (i = 0 ; i < CACHELINES/CACHESETS; i++)
8 {
9 cache [j] [i] = 1 ;
10 }
11 }
12 }

1 void cacheHitFIFO (address adr , bool wr i t e)
2 {
3 i f (wr i t e == 1 && write_hit == WRITE_THROUGH)
4 {
5 write_hit_wait = 1 ;
6 }
7 }

1 void cacheHitLRU (address adr , bool wr i t e)
2 {
3 address mem_block_offset = adr/BLOCKSIZE∗BLOCKSIZE;
4 int block_set = mem_block_offset/BLOCKSIZE%CACHESETS;
5 int l i n e = cache_contents (adr) ;
6 int i ;
7 address tempVal = cache [block_set] [l i n e] ;
8 int tempDirty ;
9
10 i f (wr i te_hit == WRITE_BACK) // d i r t y
11 tempDirty = d i r t y [block_set] [l i n e] ;
12
13 for (i = l i n e ; i > 0 ; i)
14 {
15 cache [block_set] [i] = cache [block_set] [i 1] ;
16 i f (wr i te_hit == WRITE_BACK) // d i r t y
17 d i r t y [block_set] [i] = d i r t y [block_set] [i 1] ;
18 }
19
20 cache [block_set] [0] = tempVal ;
21
22 i f (wr i t e == 1)
23 {
24 d i r t y [block_set] [0] = 1 ;
25
26 i f (wr i te_hit == WRITE_THROUGH)
27 write_hit_wait = 1 ;
28 }
29 }

102

1 void cacheMissLRU(address adr , bool wr i t e)
2 {
3 int i , j ;
4 address mem_block_offset = adr/BLOCKSIZE∗BLOCKSIZE;
5 int block_set = mem_block_offset/BLOCKSIZE%CACHESETS;
6
7 write_hit_wait = 1 ;
8
9 i f (wr i te_hit == WRITE_BACK and

10 d i r t y [block_set] [CACHELINES/CACHESETS 1] == 1)
11 write_hit_wait += 1 ; // d i r t y
12
13 i f (adr != INVALID_ADDRESS)
14 {
15 for (i = CACHELINES/CACHESETS 1 ; i > 0 ; i)
16 {
17 cache [block_set] [i] = cache [block_set] [i 1] ;
18 d i r t y [block_set] [i] = d i r t y [block_set] [i 1] ;
19 }
20
21 cache [block_set] [0] = mem_block_offset ;
22 d i r t y [block_set] [0] = wr i t e ;
23 } else

24 {
25 for (i = CACHESETS 1 ; i >= 0 ; i)
26 {
27 for (j = CACHELINES/CACHESETS 1 ; j > 0 ; j)
28 {
29 cache [i] [j] = cache [i] [j 1] ;
30 d i r t y [i] [j] = d i r t y [i] [j 1] ;
31 }
32
33 cache [i] [0] = INVALID_ADDRESS;
34 d i r t y [i] [0] = wr i t e ;
35 }
36 }
37 }

1 void update (address adr , bool wr i t e)
2 {
3 cacheHitFIFO (adr , wr i t e)
4 }

1 void i n s e r t (address adr , bool wr i t e)
2 {
3 cacheMissFIFO (adr , wr i t e) ;
4 }

103

104

Appendix B

Timed Automaton Modelling

Main Memory

memorywait == MEMFETCH

instructionCacheMainMemory!

memorywait == MEMFETCH

memorywait = 0

memorywait = 0

memorywait <= MEMFETCH

instructionCacheMainMemory?

dataCacheMainMemory?dataCacheMainMemory!

memorywait <= MEMFETCH

105

Thesis Summary

In modern society, use of advanced embedded systems gives rise to the use of
real-time systems (RTSs). A RTS typically needs careful scheduling of software
processes, which are responsible for providing the intended service of the system.
For e�cient and careful scheduling of RTSs, safe and sharp worst-case execution
times (WCETs) of the involved processes are needed.

To �nd safe and sharp WCETs, a static WCET analysis of the processes
is needed. To be able to �nd safe and sharp WCETs, analyses need a deep
knowledge of the target hardware platform the processes will be executed on.
It has, however, proven hard to design modular and e�cient WCET analyses
which still provides sharpWCETs.

Some of the hardware features that make WCET analysis hard is caching
and pipelining. We have studied these features, and ways of incorporating them
into a WCET analysis. We have chosen a typical modern RTS processor as the
target platform of our prototype, the ARM920T 32 bit processor.

In this thesis the modular WCET analysis method, Modular Execution Time
Analysis using Model Checking (METAMOC), is presented based on combining
model checking and static analysis. The analysis is divided in four sub-analyses:
value analysis, cache analysis, pipeline analysis and path analysis. The value
analysis is based on static program analysis, using the formalism of weighted
push-down systems (WPDSs). The other analyses all produce models, which
separately simulate each part of the hardware platform. These models are then
combined, and the combined model is model checked using the UPPAAL model
checker.

The METAMOC method takes as input: a binary executable of the program
to be analysed (typically from the end-user), and a speci�cation of the cache
and a model of the pipeline (from the hardware vendor or researchers). The
method produces a model of the process' control �ow graph (CFG) from the
binary executable, and this CFG is then annotated with the e�ect of individual
instructions, as well as information derived by the value analysis. The model
checking of the combined model simulates an abstract execution of the process,
given the models of the hardware platform. The model checker �nds the longest
time-wise path through the process by exploring all paths, and states, as de�ned
by the sub-analyses. This value is an overapproximation of the WCET.

The modularity of the METAMOC method enables us to have di�erent
e�ciency/sharpness trade-o�s, e.g. by having di�erent cache models. The user
can experiment with how the process would behave, given a di�erent hardware
platform.

Experiments, on WCET benchmark programs from the Mälardalen Real-
Time Research Center, have been performed using the prototype implemen-

tation. The experiments show that the METAMOC method gives noticeable
improvements compared to traditional, overly pessimistic WCET analyses. Fur-
thermore the benchmarks show that most of the benchmark programs can be
veri�ed in less than �ve minutes. We have found that integrating cache analysis
gives up to 97% sharper WCETs, and is thus very worth-while.

	Introduction
	Prerequisites
	Real-Time Systems and Scheduling
	Worst-Case Execution Time Analysis
	Model Checking using UPPAAL
	Weighted Push-Down Systems

	Optimisation Techniques in Modern Processors
	Caching
	Pipelining
	Timing Anomalies
	Abstract Representations

	Hardware Platform
	ARM Assembly Language
	Pipeline Stalls

	The METAMOC Method
	Cache Analysis
	Value Analysis
	Pipeline Analysis
	Path Analysis
	METAMOC Graphical User Interface

	Experiments
	Related Work
	Conclusion
	Future Work
	Bibliography
	Cache Functions
	Timed Automaton Modelling Main Memory

