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Abstract: We consider the problem of extending weighted inequalities for a
singular integral operator T' to the vector-valued operator T defined compo-
nentwise by (T'f); = T'f;, for functions f = (f1, ..., f4) from R™ into C?. We
introduce the notion of a matrix weight and the associated weighted norm
space LP(W). The classic Muckenhoupt A, condition is extended to matrix
weights and several alternative characterizations of the A, class is given.
The main result is that 7T is bounded from LP(W) into LP(W) whenever W
is an A, matrix weight. We also show that, with one additional assumption
on the kernel of T', the converse holds; if T is bounded on LP(W), then
necessarily W is an A, weight. As basic tools in our analysis, we introduce
the notions of maximal functions and interpolation, and show several funda-
mental results concerning these. Also, standard results from the technique
of "truncating integrals” are covered here.



Preface

This thesis is the result of my Mat-6 Project at The Department of Mathe-
matical Sciences at Aalborg University. Some of the results here are of fun-
damental type in the theory of singular integrals, while others are of more
recent appearing. In particular, the main theorems are based on the paper
"Matrix A, Weights Via Maximal Functions”, by Michael Goldberg [1].

The reader is assumed to be familiar with basic measure and integral
theory, basic functional analysis and also some theory of distributions. The
last page of the report contains a list over references, which is referred to by
a number in brackets, [reference number]. Also, in the back of the report,
there is an index of notation.
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Chapter 1

Introduction

In the present thesis we consider singular integral operators of convolution
type. Formally, these are operators of the form

Tf(x) = o K(z —y)f(y)dy, (1.1)
defined for suitable complex-valued functions f on R™. The kernel K is
singular near the origin in the sense that the integral in (1.1) need not
to converge absolutely. The subject of interest concerning such operators
is their boundedness properties as linear operators between (weighted) LP
spaces. A thorough study of this has had great impact in the theory of partial
differential equations. In what follows, we consider a classical example of a
singular integral operator.

1.1 The Riesz Transform(s)

In R™ there exists n Riesz transforms similarly defined. For 1 < j < n, we
define the function K = KU) on R™\{0} by

T

K(x):ch‘n]H, x=(T1,...,Tn),
where | - | denotes The Euclidean norm on R™ and
F(L""l)
Cn =
T2

is a normalization constant. The j’th Riesz transform R = RU) is then
given by

Rf(x) = pv. / K@—y)f@)dy:=lm [ K- y)f(y)dy,

e=0|yl>e
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whenever this limit exists. In order to obtain an explicit domain of definition
for R, it is convenient to introduce a tempered distribution (also denoted by
K) by
(K, f) = lim K(z)f(z) dz,
70 jef2e

defined for Schwartz functions f € S. To see that this indeed is a well-defined
tempered distribution, we first notice that

K () () do = / K@) (f(@) - fO)de+ [ K@) f()de,

|z|>e e<|z|<1 |z|>1

since K has integral zero over the set ¢ < |z| < 1. By The Mean Value
Theorem, we see that

|f(z) — f(0)| < Cflz|, where Cy:= Z seu]%) |0 f ()]
i=1 TER?

It follows that |K(z)(f(z) — f(0))] < ¢,Cf|z|~™"! and, by The Dominated
Convergence Theorem, we conclude that

/< |<1K(33)(f(33)—f(0))dx—> | |<1K(x)(f($)_f(0))dx as £ — 0.

For the integral over the set |z| > 1, we simply notice that

zf(x
/z>1 \K(x)f(a:)| dx S Cn /|I>1 ||{I?|TE+3| du S nvncnc}v

where C := sup,cpn |2f(2)| and v, denotes the Lebesgue measure of the
unit ball in R®. Thus K is well-defined and

(K, f)] < nvpen(Cr +C%) — 0, whenever f — 0in S,

showing that K is a tempered distribution. We can now express Rf in terms
of the distribution K as

Rf(z) = (K« f)(z) := (K, f(x =), for f€S.

That is, R is the operator given by convolution with the tempered distribu-
tion K.

Employing the Fourier transform F and the co-Fourier transform F, it
is possible to give an alternative characterization of the Riesz transform,
namely

&

Rf(x) :ﬁ(—zm}"f(f))(x), for f € S.

This is shown in e.g. [2]. By The Plancherel Theorem, we then conclude
that the Riesz transform is bounded on L?(m), i.e.

/|Rf|2dmSC'/|f|2dm7 for all f € S,
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where m denotes the Lebesgue measure.

The Riesz transforms illustrates perfectly the kind of singular integral
operators we will be considering. In general, we say that T is a singular
integral operator (of convolution type) associated with a regular kernel K if
Tf = K x f, for some tempered distribution K, such that

(i) away from the origin, K agrees with an ordinary function, also de-
noted by K. This means that there exists a measurable function
K : R™\{0} — C such that

(#.1) = [ Kidm

whenever f is a compactly supported C'* function that vanishes near
the origin.

(ii) The function K is C! and there exists constants B,C > 0 such that

|K(z)| < Blz|™ and |VK(z)| < Clz|™" !, for all z # 0.

Having introduced the notion of singular integral operators, we now
briefly clarify the aim of this thesis.

1.2 Weighted Inequalities

A weight is a positive measurable function on R™. Associated to each weight
w and each exponent 1 < p < oo, we define the weighted space LP(w) as the
set of Borel functions f : R™ — C, for which

1/p
T ( / |f|pwdm> .

Now, assume that T is a singular integral operator associated with a regular
kernel, and assume that

/|Tf|pdm§0/\f|pdm, for all f €S,

for some 1 < p < oo and some constant C' > 0. It is of interest to characterize
the set of all weights w such that T is bounded from L?(w) into itself, i.e.

ITfllrw) < CllfllLrw), for all f e LP(w). (1.2)

This problem was solved in the 1970’s by Hunt-Muckenhoupt-Weeden [5].
For 1 < p < oo, we let p’ = p/(p — 1), and we let |E| denote the Lebesgue
measure of any measurable set E.



4 CHAPTER 1. INTRODUCTION

Theorem 1.1 (Hunt-Muckenhoupt-Weeden). T is bounded on LP(w) if w
satisfies the A, condition, i.e. if there exists a constant A, > 0 such that

1 1/1’ 1 // 1/10/
R D — —pr/p <
<B /B“”’m) (|B| /Bw dm) <A

for all Euclidean balls B C R™.

Furthermore, it was shown that, with one additional assumption on the
kernel (stated in Chapter 6), the converse is also true: if T is bounded from
LP(w) into itself, then necessarily w satisfies the A, condition. The main
result of this thesis is a generalization of Theorem 1.1 (and its converse),
showed recently in [1]. Given the operator T, we define a new operator T
by B

Tf = (Tfla"'and)v
for vector functions f = (fi,..., fq) from R™ into C%. The above notion
of a weight generalizes to a matrix-valued function from R™ into the set of
positive definite d X d matrices. Each matrix weight W induces a weighted
space LP(W) of vector functions. We state a matrix analogue of the A,
condition and show that Theorem 1.1 generalizes perfectly to the vector-

valued operator T.



Chapter 2

Interpolation and
Maximal Functions

In this chapter we introduce the notions of interpolation and maximal func-
tions. These are fundamental tools in our analysis of singular integral oper-
ators. The main results are Theorem 2.14, The Marcinkiewicz Interpolation
Theorem, and Theorem 2.17, The Maximal Theorem.

We let {-,-) denote the Euclidean inner product on C? x C%, i.e.

((ugy... uq), (V1,...,0q)) = w101 + ... + uqlq,

and |-| denotes the Euclidean norm |v| = 1/ (v, v). For any € R™ and r > 0
we let B(z,r) denote the Euclidean ball in R™ with center  and radius r,
ie.

B(x,r)={yeR": ly —z| < r}.
The Lebesgue measure on the Borel algebra in R™ is denoted by m and we
will consistently write |E| = m(FE), for measurable sets E C R™. We also
use dx as a shorthand for dm(x).

2.1 LP? and Weak [P

Let p denote a nonnegative o-finite measure on a sigma-algebra over a
nonempty set X. We are primary interested in the case where p is the
Lebesgue measure. However, we will keep the general setup in this and the
following section, since it is just as easy. Denote by M(u) the set of all
p-measurable functions from X into C9.

Definition 2.1. For 1 < p < co we define the space LP(p) as the set of all

f € M(u) with
1/p
17y = 11l 2o = ( / flpdu) .
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Functions in LP(u) are called equal in LP(u) if they are equal p-a.e. in
the usual sense. Notice that any measurable function f defined a.e. on X
can be extended to a function f € M(u), and we may define |||, = || f]l,
independent of the actual extension.

In the scalar case d = 1, it is a well-known fact that (LP(u),| - ||p) is a
Banach space. This is easily extended to the general case, since

il <[fI < \/amiaX|fi\ < \/&Z|fi|

and, as a consequence,

1 filly < [[f1lp < \/EZ 1fillp,

for any function f = (fi,..., fa) € M(p).
If f=(f1,...,fq) € L'(u), then we define the u-integral of f by

/fdu: (/fldu,...,/fddu).

We still have the property that

\/fdulé/lf\du-

To see this, fix an arbitrary f € L'(x) with [ fdu # 0, and let

u:|/fdu|’1/fdu.

| [ faul = ltu. [ £a)] < [l f@) dute) < [ 151

Then |u| =1 and

Definition 2.2. Given any function f € M(u), we define the distribution
function dy on [0, c0) by
df(a) =p({z € X :[f(z)| > a}).
Notice that

Mw:Ammmww,

where G := {(z,a) € X x (0,00) : | f(z)| > a} is a 4 ® m-measurable subset
of X x (0,00). By Tonelli’'s Theorem, this implies in particular that d is
measurable on (0, co).

Proposition 2.3. The distribution function dy is decreasing and right-
continuous.
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Proof. 1t is clear that d; is decreasing. To see that it is right-continuous,
we first assume that «,, \, a. For each n € N we let

E,={zeX:|f(x)>an}

Then xg, /" Xg, where E := {z € X : |f(z)| > a} and, by The Monotone
Convergence Theorem, dy(c,) = pw(E,) / p(E) = ds(a). Now assume
more generally that o, — o™ and fix an arbitrary € > 0. Since (a+1/n) \
a, the preceding implies that d¢(a + 1/n) /" ds(a), and therefore we can
find m € N such that

di(o) —dy(a+1/m) <e.

Then choose N € N such that «,, < o+ 1/m whenever n > N. Since dy is
decreasing, this implies that

dy(a) —dg(on) < dp(a) —ds(a+1/m) <e,
whenever n > N. O

The following properties are easily verified using the definition of the
distribution function.

Proposition 2.4. For any f,g € M(u) and o, 8 > 0 we have
(1) dy < dg whenever |f| <|g| p-a.e.,
(i1) def(a) = ds(a/|c|), for any c € C\{0}, and

(i) dy syt B) < dy() + do(B).

Proposition 2.5. For any f € M(p) and 1 < p < oo, we have

1712 = p / a~1ds(a)da. (2.1)

Proof. Let G = {(z,a) € X x (0,00) : |f(z)| > a}. Then

p[ @ lds@da = p [ @t [ va(ea)du)da
0 0 X

[f(2)]
p// o dadu(x)
x Jo

/ (@) Pdp(),
X

where we have employed Tonelli’s Theorem to interchange the order of in-
tegration. O

Definition 2.6. The space L>(u) is the set of all f € M(u) with
[flloo := lfll oo (uy 7= nf{a > 0: dy(a) = 0} < oo
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Notice that dy (|| f]lco) = 0. We call functions in L*(u) equal if they are
equal a.e. in the usual sense. From Proposition 2.4 it readily follows that
L (p) is a normed space. Furthermore, since

dfi(a) < df(a) < del(a/\/g)a

and consequently,

[ fillso < NIfllee < \/EZ [ filloos

for any f = (f1,..., fa) € M(u), we easily extend the well-known fact that
(L (), || - |loo) is & Banach space, when d = 1, to the general case.
We now define a space somewhat larger that LP.

Definition 2.7. For 1 < p < oo we define the space LP>*°(u) as the set of
all f € M(p) with

1 fllp,o0 := | fllLp.oo () := inf{C > 0: ds(a) < CP/aP for all @ > 0} < oc.
For convenience we let L% (u) = L (p).

The space LP*°(u) is called weak LP (). Notice that, for p < oo,
111500

df(a) < o for all o > 0,

and
1 llp,00 = sup{adf(a)l/P s> 0}

As for LP(u), we consider functions equal in LP*°(u) if they are equal a.e.
in the usual sense.

Proposition 2.8. For each 1 < p < oo, LP*°(u) is a quasi-normed space.

Proof. It || f|lp,cc = 0 then d¢(0) = df(||fllp,0o) = 0 and hence f = 0 p-a.e.
Combined with Proposition 2.4 (ii), this shows in particular that ||cf]|p.co =
lell| f]lp,00s for any ¢ € C. To verify the quasi-triangle inequality, we apply
Proposition 2.4 (iii) to obtain

1/
adyyg(@)? <2(IIFI8 w0 + 19015 00) " < 201 llpise + 19]lp.00)

for all a > 0, and hence

poo);

I1f + gllpoo < 2([1 fllp.0 + ll9]
as desired. m

Proposition 2.9. For any f € M(p) and 1 < p < oo, we have || flp,c0 <
I fll, and, as a consequence, LP(u) C LP*° ().
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Proof. Since
APX(wex:|f(a)>a} (T) < [f(2)]P,
<

for all z € X and a > 0, it follows that a?dy(a) < || f|b, for all « > 0, and
hence [ f{lp,co < [Iflp- -

When p < oo, the space LP(u) is in general a proper subset of LP*°(u)
as illustrated by the following example.

Example 2.10. Define f m-a.e. on R™ by f(z) = |z|~"/?. Using polar
coordinates we see that

n oo Tn—l 00 1
I £115 = / |z| " du(z) = / / —drdw(§) = nvn/ Zdr = oo,
X sn-1Jo  |7E] o T

where w denotes the surface measure on the unit sphere S*~! and v,, denotes
the Lebesgue measure of the unit ball in R™. However, since

df(a) = {z € R" : |a| 7 > a}| = |B(0,a™ /") = v, fa?,

it follows that || f/p,c0 = 0i/? < 0.

2.2 Interpolation

The notion of interpolation provides us with a useful tool regarding LP
norms, for p ranging over some interval: it turns out that a great deal
of information can be extracted just by considering the endpoints of the
interval. As an easy application of Proposition 2.5, we have the following
result.

Proposition 2.11. Let 1 < p < ¢ < oo and let f € LP>°(u) N L(u).
Then f € L™(u), for any p <r <q.

Proof. If ¢ < oo, then

1 [e’e)
il = T/O ozr_ldf(oz)da+r/1 ozr_ldf(oz)da

1
FIFIE / " P da |10 / & da,
0 1

IA

and the integrals are both finite, since r —p > 0 and r — ¢ < 0. If ¢ = o0,
then dy(a) = 0, for all & > || f||, and hence

[1f1loo
1717 < rlFIE o / a1 do < oo,
0

as desired. O
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Shortly we will present The Marcinkiewicz Interpolation Theorem, but
first we introduce some notation. In addition to the measure u, we let v
denote a nonnegative o-finite measure on a sigma-algebra over a set Y.

Definition 2.12. Let D be a subspace of M(u). A map T : D — M(v) is
called sublinear if

T (af + Bg)l < lalIT(f) +[8lT(9)],
for all o, 8 € C and f,g € D.

Notice that any linear operator is sublinear. Whenever T is a sublinear
operator, we will frequently write T'f instead of T'(f).

Definition 2.13. Let D be a subspace of M(u) and fix exponents 1 < p <
oo and 1 < g < co. A sublinear operator T': D — M (v) is said to be of type
(LP(w), L(v)) if there exist a constant A > 0 such that

ITfllLay < Al fllzruy for all fe LP(u).

T is said to be of weak type (LP(u), L(v)) if there exist a constant B > 0
such that
ITfllLaew) < Bllfllr forall fe LP(u).

When no chance of confusion, we shall frequently refer to the two above
types of operators simply as type (p, ¢) respectively weak type (p,q). As the
name suggests, any operator of type (p,q) is also of weak type (p,q), since
1T fllgc0 < NITflq- If T is of type (p, q) (respectively weak type (p,q)) then
we shall also say that T is bounded from LP(u) into L9(v) (respectively weak
Li(v)).

In the following we let

LP(p) + L) ={f +g: f € LP(n), g€ LI(n)}

Theorem 2.14 (The Marcienkiewicz Interpolation Theorem). Let 1 < p <
q < oo and assume that T : LP(u) + L () — M(v) is sublinear and simul-
taneously of weak type (p,p) and weak type (q,q). Then T is of type (r,r),
for any p <r <q.

Proof. Fix an arbitrary f € LP(u). For each a > 0 we let E, = {z € X :
|f(x)] > da} and define

T =[fxe, and f5 = fxge,

where § > 0 is chosen appropriately later. Notice that f = f{* + f5'. Since
p—1r <0 we have |f|P""xg, < (0a)P~", and hence

L2 = /X PP X, dyt < Ga)P |
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showing that f{* € LP(u). For ¢ < oo, a similar argument shows that
f& e Li(u), and clearly f§ € L*°(u). By sublinearity of T' and Proposition
2.4 we obtain

dry(a) < dpisey(@/2) + drse)(a/2),
which combined with Proposition 2.5 yields

o0

Tl §7’/ arfldT(fla)(oz/Z)doz+r/ ofﬁldT(f;)(oz/Z)da. (2.2)
0 0

Since T is of weak type (p,p),

17D, o
dr(pey(a/2) < W
< (24P

— (24)ar /X F@)Pxs, (0)du(o),

for some constant A > 0. By Tonelli’s Theorem, the last expression in the
above is a measurable function of «, and therefore the first term on the right
in (2.2) is dominated by

r[Ca (@are [ 5@, @duo) ) do.
0 b's
which, again by Tonelli’s Theorem, equals

r(2A)P 1
r—p 0"7P

[f(x)|/6
r(2AY /X @) / o VP dadp(z) =

For ¢ < oo, we can estimate the second term in (2.2) in a similar way to
obtain the desired without any restrictions on 4. In the case ¢ = oo we
assume that

ITflloo < Bllflloo, for all f e LI(u),
and put 6 = (2B)~!. By noting that

IT(f5) ][0 < Bllf]loc < Bda = /2,
for all a > 0, we see that

dr(pg)(a/2) < drgpg)(IT(f3)lloe) = 0,

for all @ > 0, and hence the second term on the right in (2.2) vanishes. [
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2.3 The Maximal Function

The maximal function, first introduced by Hardy & Littlewood, is one of the
cornerstones in our analysis of singular integral operators. In Chapter 4 we
will also define the maximal function associated to a weight. We now leave
the general setting from the previous sections and, unless otherwise stated,
the measure under consideration is the Lebesgue measure.

Definition 2.15. Given a measurable function f : R® — C?, we define the
mazimal function M f on R™ by

M (x) = sup ﬁ /B \fldm,

z€B

where the supremum is taken over all balls B C R™ containing . The map
f— Mf is called the maximal operator.

Notice that the maximal operator is sublinear. Also notice that the set
{x € R" : Mf(x) > a} is open, for each « > 0. In particular, this shows
that M f is measurable. The fundamental property concerning the maximal
operator is the fact that it is of weak type (1,1) and of type (p,p), for any
1 < p < o0. To prove this we employ the following lemma.

Lemma 2.16 (The Vitali Covering Lemma). Any finite collection of balls
{B;} in R™ has a subcollection {Bj,,...,B,,} of pairwise disjoint balls such

that
k

Us <o Y15, 239

i=1

Proof. Start by choosing Bj, to be of maximal radius from {B;}. If any
of the remaining balls are disjoint from Bj,, then we choose Bj, to be of
maximal radius among these. Next, if any of the remaining balls are disjoint
from Bj, U Bj,, then we choose Bj, to be of maximal radius among these.
Proceeding in this way, we obtain a subcollection {Bj,, ..., B;, } which, by
construction, consists of pairwise disjoint balls. If a ball B = B(z,J) is
not selected, then B intersects some ball B;, = B(y,r) with » > §, and
hence B C 3Bj, := B(y,3r). Thus we can cover U;B; by the union of

3Bj,,...,3B;,, leading to the estimate
k k k
|UBil < [U3Bi| <> 13Bil=3")_IBl,
j i=1 i=1 i=1
as claimed. O

Theorem 2.17 (The Maximal Theorem). The mazimal operator f — M f
is of weak type (1,1) and of type (p,p), for each 1 < p < co.
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Proof. Clearly M is of type (00, 00) and, by The Marcinkiewicz Interpolation
Theorem, it then suffices to show that M is of weak type (1,1). Fix an
arbitrary f € L'(m) and an o > 0. Let E, := {z € R" : M f(z) > a}. We
must show that

duis(0) = 1Bal < £l (24)

for some constant C' > 0 independent of f and «. By inner regularity of the
Lebesgue measure, it suffices to verify (2.4) with E,, replaced by an arbitrary
(nonempty) compact subset K C E,. For each z € K there exists a ball B,
containing x such that

),
—_ |f] dm > a. (2.5)
|Bz| JB,
The collection {B,}.ck is an open covering of K and, by compactness of
K, we can extract a finite subcover {B;}. By The Vitali Covering Lemma,

this subcover has a subcollection {Bj,,...,B;,} of pairwise disjoint balls
satisfying (2.3). Thus

k k
371 377/
K< |UBl <3318l < =Y [ irldm < [if1am.
j i=1 i=1" Bi;

where the last inequality follows from the disjointness of the Bj,’s. O

Corollary 2.18. If f € LP(m), for any 1 < p < oo, then M f is finite a.e.
Proof. Let N = {x € R": M f(x) = co}. Since M is of weak type (p,p),
1l _ CISIE

aP - aP

IN| < dumg(a) <

for all @ > 0, and consequently |N| = 0. O

Remark 2.19. The mazimal function is not of type (1,1). Indeed, any
nonzero compactly supported function is not mapped into L*(m) by M. To
see this, assume that supp(f) C B(0, R). Then supp(f) C B(z, |z| + R), for
all x € R™, and hence

1 (| dm = | f1l1
|B(x, |z| + R)| JB(a,|zl+R) v (|2 + R)™’

for all x € R™. Using polar coordinates we then see that
n—1

IMflli > ”le /Sn ]/ |r§\+R drdw()
r

= ””le/O Wdr>n|‘f”1/l{ mdr
n|l fll _
on /R ;dr = 00,

Mf(z) =

\%

as claimed.
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Theorem 2.20 (The Lebesgue Differentiation Theorem). For any locally
integrable function f : R™ — C?, we have

1
lim ———— fy)dy = f(x), for almost all x € R™.
r—0 |B(£B7 T)| B(z,r)

Proof. For each r > 0 we let

1
£48) = o /B W = Sy

Since

fy)dy — f(z)| < fr(z),

1
0< ’
|B($7T)| B(z,r)

it suffices to show that

1 (@) += limsup f,(z) = 0,
r—0

for almost all z € R™. Notice that f,. is measurable. This follows readily
from Tonelli’s Theorem and the continuity of | - |. Also notice that f* = 0,
whenever f is continuous. We may assume that f € L'(m), since replacing
J with fxpo,k), for k& € N, and noting that (fxp.x)" = f* on B(0,k),
allows us to conclude that f* = 0 a.e. in B(0,k) and consequently that
[* =0 a.e. By right continuity of d-, it suffices to show that ds-(a) = 0,
for an arbitrary a > 0. Since 0 < f* < M f + | f|, we have

dp-(a) < dug(a/2) +ds(a/2)
. 2AM [lloo 2000
o (6%
< Cllfllx

)

«

where the last inequality follows from Theorem 2.17. Now fix an arbitrary
e > 0 and choose g € C.(R"; C%) with ||f — g||1 < e. Since g is continuous
and, since (f + ¢)* < f*+ g*, we have (f — g)* = f*. Thus

C C
dy-(@) = d(j—g)- (@) < —|If =gl < e,
and we are done. O

Corollary 2.21. For any measurable function f, we have |f| < M f a.e.

2.4 The Dyadic Maximal Function

In this section we introduce a variant of the maximal function defined in the
last section. By a cube Q in R™ of side length 1(Q) > 0 we mean a set of
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the form @ = [a1,b1] X ... X [ay, b,] where (Q) =b; —ay = ... = b, — an.
Notice that |@Q] = I[(Q)™. Also notice that the boundary of any cube has
measure zero. For this reason we use the convention to call cubes disjoint,
whenever their interiors are disjoint. For any nonempty set S C R", we let
dia S denote the diameter of S, i.e.

dia S = sup |z —y|.
z,yes
Cubes and balls in R™ are equivalent in the sense that there exist a constant
¢ > 1 such that, for any cube @, we can find balls B, B’ with

BcQcB and |B'|<¢B|

and visa-versa (with a possibly different constant ¢’ > 1). The following
special family of cubes are of particular interest to us.

Definition 2.22. A dyadic cube in R™ is a cube of the form
[m127%, (m1 +1)27%] x ... x [m,27%, (m,, +1)27%],
where k,mq,...,m, € Z. A dyadic cube in R is called a dyadic interval.

It might be useful to consider a more geometric characterization of dyadic
cubes: Let Dy denote the collection of cubes with vertices at Z™. Then let
D; denote the collection of cubes obtained by bisecting the sides in each cube
in Dy. We construct Dy by bisecting sides in D; and so on. Starting again
from Dgy, we let D_; denote the collection of cubes obtained by gathering
2™ neighbor cubes from Dy into single cubes. In a similar way we construct
D_5 from D_; and so on. If D denotes the collection of all dyadic cubes,

then
D= U Ds.
keZ

Notice that the cubes in Dy, have side length 2% and that a cube in Dy, give
rise to 2™ cubes in Dy _;.

Let us note an important property of dyadic cubes: Any two dyadic
cubes are either disjoint or one is contained in the other. To see this, we
note that any two dyadic intervals of the same length are either disjoint or
coincide. Given two arbitrary dyadic intervals I and J with, say, (1) < I(J)
then J is composed of dyadic intervals of length [(I), and hence TNJ =0
or I C J. Since the sides in any cube are of equal length, the result is easily
extended to general dyadic cubes.

Definition 2.23. Given a measurable function f : R® — C¢, we define the
dyadic mazximal function Mf on R™ by
1
My (@) = sup = [ 7] dm.
T€EQ |Q‘ Q

where the supremum is taken over all dyadic cubes ) containing x.
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Remark 2.24. Since cubes are closed sets it is not obvious that Mf is
measurable. In fact, we will not attempt to prove it. Howewver, this difficulty
may be avoided by restricting the domain of definition of M f to points not on
the boundary of any dyadic cube. As seen by inspection of each particular
case, this restriction has mo effect in our applications of M f, since the
discarded set has measure zero.

Since cubes and balls are equivalent, we see that M f < cM f, for some
constant ¢ > 1. Thus we immediately conclude that The Maximal Theorem
holds for the dyadic maximal operator and in particular that M f < oo a.e.,
whenever f € LP(m), for any 1 < p < co. We also have the following variant
of The Lebesgue Differentiation Theorem: For any locally integrable f,

o -
S /Q fdm = f(z),

for almost all z € R™. Here the limit is taken over any sequence of dyadic
cubes containing  with diameters converging to zero.



Chapter 3

A, Weights

This chapter is devoted to the notion of A, weights. We generalize the classic
Muckenhoupt A, condition of scalar weights to matrix-valued weights. As
in the scalar setting, the crucial property of matrix A, weights is that they
satisfy ”Reverse Holder Inequalities”. In fact, these are obtained from the
scalar case, and hence we start by a separate treatment of scalar weights.
For any 1 < p < oo we let p’ = p/(p — 1) denote the dual exponent of p.

3.1 Scalar A, Weights

Definition 3.1. A scalar weight is a measurable function on R™ which is
positive almost everywhere.

The property stated next is the classic Muckenhoupt A, condition.

Definition 3.2. Let 1 < p < oco. A scalar weight w is called an A, weight
if there exists a (finite) constant C' > 0 such that

1 Ve g , 1/p'
<m / wdm) <B / w P/ dm> < (C, for all balls B C R™.
B B

The least of such constants is called the A, bound of w and is denoted by
Ap(w). The set of all A, weights is called the A, class and is denoted by

A,.
Of course, any positive constant function is an A, weight, for each 1 <
p < 0o. Let us consider a less trivial example.

Example 3.3. The function w(x) = |z|* is an A, weight, for any —n < a <
(p — 1)n. To see this, we fix an arbitrary ball B = B(xg, R) and let

1 1 ' p/p’
Ip = (/ |x|“dx> (/ |x| 7% dx> .
1B| Jp 1Bl J5
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If R < dist (0, B) := infyep |y, then
lz| < |z —y| + |y| < 2R+ |y| < 2dist (0, B) + |y| < 3|y,

for all z,y € B. In particular,
1
§|33| < |zo| < 3|z|, forall z € B,

and consequently
I < Clao|*(Jzo|~*F )P/P = C.

Now assume that R > dist (0, B). Since |zo| — R < |y|, for all y € B, we
have |zg| — R < dist (0, B) and hence

|z] < R+ |xo] < 2R+ dist (0, B) < 3R,

for all z € B. This shows that B C B’ := B(0,3R) and hence

R 3n » p/p’
Ig < ( / x%lx)( / J;“de)
5 o) 1B S

3R 3R , p/p'
= % ; ratn=1 dr <1§n/0 r_az;)"'"_ldr) ;o (3)

where we have used polar coordinates. The assumption that —n < a <
(p — 1)n is equivalent with a +n —1 > —1 and —ap’/p+n —1> —1, and
from this we easily see that the expression in (3.1) is bounded by a constant
independent of R. This shows that w € A,.

Next we point out some simple properties of A,. Let w,w;, w2 denote
arbitrary A, weights and let A > 0.

(1) A, is closed under multiplication by positive scalars. In fact, A,(Aw) =
Ap(w), which follows directly from the definition.

(ii) A, is closed under addition. Indeed, wy 4+ wq is in A, since (w; +

wy)"P'/P is dominated by both wl_p//p and w;pl/p.

(iii) A, is closed under translation. In fact, A,(w(-+a)) = A,(w), for any
a € R™, which is easily verified using the translation invariance of the
Lebesgue measure.

(iv) A, is closed under dilation by a positive scalar. Again A,(w(\-)) =
Ap(w) as can be verified by change of variables.

We consider a few more properties of A, weights. Given any scalar weight
w and a measurable set £ C R™, we use the notation w(E) := [, wdm.
Notice that E — w(F) is a Borel measure.
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Definition 3.4. A scalar weight w is said to be in the class A if, for each
a € (0,1), there exists a 8 € (0,1) such that

|E| 2 a|B] = w(E) = pw(B),
for all balls B C R™ and for all measurable subsets E C B.
Lemma 3.5. A, C A for each 1 <p < o0.

Proof. If w € A, then Proposition 3.23 (stated and proved in larger gen-
erality in Section 3.3) shows that there exists a constant C' > 0 such that

(i) < oo

for all balls B C R™ and for all nonnegative measurable functions f on R™.
Fix an arbitrary ball B C R™ and a measurable subset £ C B. If |E| > «o|B],
for some « € (0,1), then the particular choice of f = xg in (3.2) yields

w(B) (EI\? _ o
w(E)ZC’<|m) > Cu(B),

and hence w € A, (we may assume that C' > 1). O

Definition 3.6. A Borel measure p is called a doubling measure if there
exists a constant ¢ > 1 such that

w(B(x,20)) < cu(B(x,0)) for all z € R™ and for all § > 0.

Remark 3.7. If w € Ay, for some 1 < p < oo, then E — w(E) is a
doubling measure. Indeed, for an arbitrary x € R™ and 6 > 0 we have
|B(z,6)| = 27"|B(z,20)| and, since w € A, C A, there exists a constant
B € (0,1) such that w(B(z,9)) > fw(B(z,29)).

3.1.1 The Reverse Holder Inequality

The Reverse Holder Inequality, Proposition 3.12, is the crucial property of
scalar A, weights. To prove it we need some preliminary results. The first
lemma employs dyadic cubes and the dyadic maximal function, defined in
Chapter 2. In the proof of this lemma and several other times throughout
the report, we use the term maximal dyadic cube to mean a dyadic cube of
maximal measure.

Lemma 3.8. Let f: R"™ — C be any measurable function and let o > 0. If
the set
Qo ={z eR": Mf(z) > a}

has finite (Lebesgue) measure, then either Qo = 0 or Qg is the union of
disjoint dyadic cubes {Q;} with

1
a < 7/ |f|dm < 2"« for each j € N. (3.3)
Q51 Jo,
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Proof. For each x € €1, there exists a maximal dyadic cube ) containing z
such that

1
Q|/Q|f|dm>a. (3.4)

The maximality follows from the fact that @ C Q, and hence |Q| < Q4] <
00, for any dyadic cube @ satisfying (3.4). Let {Q;} denote the collection of
maximal dyadic cubes for points in . Clearly these cubes are disjoint and
their union equals . Thus the first inequality in (3.3) holds by construction
and, by letting Q;- denote the next larger dyadic cube containing @);, we see

that
1

27’L

2 fdm < 7/ ] dm < 2"a,

Q51 Jo, Q51 o,

as desired. 0
There are two useful observations to be made about the decomposition

guaranteed i Lemma 3.8.

Remark 3.9. If Qq is a dyadic cube containing the support of f and ag =
|Qo| fQo |f|dm, then Q4 C Qo, for any a > ag. To see this, assume that

x & Qo and fix an arbitrary dyadic cube @Q containing x. Since f is supported
in Qo and, since either Q and Qq are disjoint or Qy C Q, we have

1 / 1
— [ 1fldm < = Ifldm < ao,
QI Jo 1Qol Jono, ’

showing that M f(z) < ap < o, and hence x ¢ Q.

Remark 3.10. If oy > ag then Q,, C Q., and, by maximality, each cube
in the decomposition of Qq, is contained in some cube of the decomposition
of Qq,-

Lemma 3.11. Let 1 < p < oo and let w € A,. Then there exists, for each
v €(0,1), some ¢ € (0,1) such that

E|<HQ = w(E)<éw(Q),
for all cubes Q@ C R™ and for all measurable subsets £ C Q.

Proof. Assume that |E| < |Q|. Since cubes and balls in R™ are equivalent,
we can choose balls B, B’ such that B C Q@ C B’ and |B’| < ¢|B|, for some
constant ¢ > 1 independent of (). Since

|
[Q\E] = (1 =7)IQI = (1 =B = —— B,
and since w € A, C A, there exists a 5 € (0,1) such that

w(Q\E) = pw(B') = fw(Q),
or equivalently, w(F) < dw(Q) with § := 1 — . O
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Proposition 3.12 (The Reverse Holder Inequality). If w € Ay, for some
1 < p < o0, then there exists constants r > 1 and C' > 0 such that

1 e
<|B|/ w” dm> < Bl wdm, for all balls B C R™. (3.5)
B B

Proof. Tt suffices to show (3.5) with cubes replacing balls. To see this, fix an
arbitrary ball B and choose cubes Q, Q" with Q@ C B C Q" and |Q’| < ¢|Q],
for some constant ¢ > 1. If (3.5) holds for cubes, then the doubling property
of E +— w(FE) implies that

1 1/r ¢ 1/r
- w" dm S 7/ wrdm)
<|B|/B > (IQ’l Q

< Q wdm<g’/wdm
- Q| Jy ~ Bl /B '

Since A, is closed under dilation and translation, we may assume that ) =
Qo is a dyadic cube with |Qo| = 1. Furthermore, since A, is closed under
multiplication by positive scalars, we may also assume that w(Qo) = 1. Thus
it suffices to show that

w"dm < C.
Qo

Let f = wxg, and define, for each £ € Np,
B = {z € R" : Mf(x) > 2NF},
where N € N is to be chosen appropriately later. Notice that

1
_ dm — — Nk
Qo] o, fdm=w(Qy)=1<2

and hence Ep C @, for all k& € Ny, by Remark 3.9. Also notice that
E) C Ej,_1, for all k € N. The crux of the proof is to show that w(FEy) < 6%,
for some § € (0,1) and, since this is trivial if Ey = (), we fix an arbitrary
k € N and assume that Ej # (). We then apply Lemma 3.8 to write Fj, and
FE_1 as disjoint unions of dyadic cubes,

E), = UQj and FEjy_; = UQ;.
7 1

We will show that
B, N Q| <2 NQ), (3.6)

for each @ € {Q}}. Notice that

|y N Q| = |U(QaﬂQ)\ :Z|QaﬂQ|~
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By Remark 3.10, each ); is contained in some @)} and then, by disjointness,
either Q; NQ =0 or Q; C Q. This observation combined with Lemma 3.8
yields

ExnQl = > 1@< > 2-“/ fdm
5:Q,CQ 5:Q,CQ Qj
é 2—Nk/ fdmg2—Nk2n2N(k—l)|Q‘
Q

_ 2?17N|Q‘7

as desired. The third inequality above follows also from Lemma 3.8, with
a = 2Nk Now choose any v € (0,1) and let § € (0,1) be given as in
Lemma 3.11. Choose N such that 2=~ < 5. Tt follows that w(FEy N Q) <
dw(Q) and consequently

w(Ey) = w(ExNEg_1)= w(U(Ek N Qg))

= Y wENQ) <5y w@)
= 6w(Ek—1)a
for each k € N. By induction we conclude that
w(Ey) < 8*w(Ey) < 6*w(Qo) = 0¥,

for each £ € Ny and, as a consequence of The Lebesgue Differentiation
Theorem,

/Uw’”dm < /(Mf)’ulwdm

0

/ (Mf)T_lwdm—l—/ (Mf)" w dm.
QoNEo QoNES

The last integral on the right in the above is bounded by w(Qq) = 1. To
estimate the first integral, we notice that f € L'(m) and so Mf < oo a.e.
This implies that the characteristic function of Q¢ N Ey = Ey equals the
characteristic function of | Ji—, Ex\Ek+1 a.e. and hence

o0

/ (Mftwdm < Z/ (MY wdm
QDQEO k=0 Ek\ElH»l
< Z QN (D=1 () < Z oN(k+1)(r=1) gk
k=0 k=0

— 9N(r-1) i (2N(r71)5)k'
k=0
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Since & < 1, the above series converges whenever r > 1 is sufficiently close
to 1. O

Next we wish to generalize the notion of scalar weights to matrix-valued
weights. In order to do so, we will need to make sense out of real powers of
a matrix, and hence we make a short digression into this subject.

3.2 The Functional Calculus

Let C%*? denote the set of all complex d x d matrices. For any A € C4*9,
we let

4] = sup |40] = sup 2%
|v|<1 v#£0 |U|
denote the operator norm of A. If A is self-adjoint, then ||A| equals the
spectral radius of A, i.e.
[A]l = max [A],
Xeo(A)
where g(A) denotes the spectrum (the set of eigenvalues) of A. Recall that
A € C%%4 s called positive definite (or just positive) if (Av,v) > 0 for all v #
0. Notice that a positive matrix is invertible, and that its eigenvalues are all
positive. Furthermore, as a consequence of The Polarization Identity, every
positive (complex) matrix is also self-adjoint. Given a positive A € C3*4
and an exponent r € R, we wish to define a matrix A” € C?*? possessing
some nice properties. There are several equivalent ways to do this. Here we
employ the diagonalization approach.
We use the notation D(Aq,...Aq) for a diagonal matrix with diagonal
elements A1, ..., Ag. If A= D(Aq,...,\q) is positive then we define

A" =D\, D).

More generally, if A is any positive matrix in C?*? then A has d lin-
early independent eigenvectors vy, ...,vq, with corresponding eigenvalues
Al,...,Aq, and hence A = PDP~!, where the columns of P are the vectors
v1,...,0g and D = D(Aq,...,A\g). We then define

A" =PD"PL.
The following properties of A™ are easily verified.

Proposition 3.13. Assume that A € C™*? is positive definite and let r,s €
R. Then

(i) ATAS = Ar+s
(ii) A® =1 :=D(1,...,1)
(iii) A" is invertible and (A")"! = A~"
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(iv) A" is positive definite
(v) |A"|| = |A]|" for all r > 0.

The above definition of A" is simple, but it has the lack of one impor-
tant property. We will need the fact that A” may be expressed as a norm
convergent power series. Let A € C%*? be positive with spectrum contained
in (a,b) C (0,00). Let ¢ denote the center point of (a,b). For any r € R, the
function f : (0,00) — R given by f(z) = 2" has Taylor series expansion,

RS _ 1
o) =3 oula =t o=

with radius of convergence R = c¢. It is then shown in [3] that

A" = Zak(A — ¥,

k=0

where the convergence is in operator norm.

3.3 Matrix A, Weights

We begin by some notation. Any two nonnegative functions f and g are
called comparable or equivalent if there exists a constant ¢ > 0 such that
clf(x) < g(x) < ef(x) for all z. We use the notation f(x) ~ g(z) to
indicate that f and g are comparable. The standard basis of C? is denoted
by {62} = {ela ceey ed}'

Assume that W is a function from R™ into C#*?. If f is a function from
R™ into C?, then we let W f denote the function (W f)(z) = W (x)f(x). For
any 7 € R, we let W" denote the function W"(z) = W(x)". W is called
measurable if the component functions of W, i.e. the functions

z = (W(x)ej, e,

are measurable, for 1 <i,j < d. We say that W is locally integrable if ||W ||
is.

Definition 3.14. A matriz weight is a measurable function W : R™ — C4*4
such that W(z) is positive definite for almost all x € R™.

If W is a matrix weight then W" is measurable, for each r € R. To see
this, we employ the fact that W (z)" has a norm convergent power series
expansion, i.e
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in operator norm as N — oo, for some ¢, a; € R. Since Wy is measurable
and, since

(W () ej, e0) — (W (@)ej, eq)| < [W(x)" = Wi ()],

for each N € N, it follows that each component function of W7 is the
pointwise limit of measurable functions. Hence W is measurable.

Definition 3.15. Let W be a matrix weight and let 1 < p < co. The space
LP(W) is the set of all measurable functions f : R® — C¢ with

1/p
1o twy 2= (W2 F ] oy = ( / wl/mpdm) o,

Notice that LP(W) is a normed space.

Definition 3.16. For any norm p on C? we define its dual norm p* on C?

by
* [(u, )]
v) = sup .
pr(v) uz£0 p(u)
Notice that
|(u,v)| < p(u)p*(v), for all u,v € C% (3.7)

Also notice that p* is a norm and (p*)* = p. Indeed, (3.7) implies that
(p*)* < p and, as a consequence of The Hahn-Banach Theorem, there exists,
for each v € C?, a nonzero u € C?, such that (v,u) = p*(u)p(v). This shows
that (p*)* > p. We are particular interested in norms of the following form.

Proposition 3.17. Let A € C¥*? be positive definite and define p on C? by
p(v) = |Av|. Then p*(v) = |[A" 0|

Proof. Since

—1 —1
.0 _ 1A ) (A AN
p(u) | Aul | Aul

for all nonzero u € C¢, we have p*(v) < |A~'v|. However, for an arbitrary
v # 0, the particular choice of

A

| U| A72U
[A= |

yields

and hence p*(v) > |A~ 1. O
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Let us fix a matrix weight W, a ball B C R™ and an exponent 1 < p < 0.
We assume that W and W—P/P are locally integrable. Throughout the
report we use the notation

pp.s(v) = |BI7VP|xp0| Loow)
(3.8)

Py B(V) |BI7YP IxB0| o (w-s'/2);

for v € C?. Notice that pp, and p;, p are norms. Using (3.7), Proposition
3.17 and Holders Inequality, we see that

(w,v) < ﬁ /B W (@)V7ul - (W () /7)) da

1 1/ 1/p 1 _1y , 1/p’
Bl |W (x) Pul?P dx \ 75 |[W(x)™/PulP dx
B B

= pp,B(U) 'p;’,B(’U)v

and hence we always have (p, 5)* < Py - When the "opposite” statement
is also true we call W an A, weight.

Definition 3.18. Let 1 < p < oco. A matrix weight W is called an A,

weight if W and WP/ are locally integrable and if there exists a constant
C > 0 such that

pp.5 < Clppp)" for all balls B C R".

The least of such constants is called the A, bound of W and is denoted by
A,(W). The class A, is the set of all matrix A, weights.

Remark 3.19. For any scalar weight w we have

(pp,B)" (V) = |v| (;/dem) ~1/p

1 , 1/10,
i 5(v) = vl (IM/BMP /pdm) .

This shows that Definition 3.18 is consistent with the definition of scalar
A, weights and, in particular, the assumption that w and w™? /P are locally
integrable is unnecessary in the scalar case.

and

It turns out that it is possible to give an alternative characterization
of the class A, in terms of matrices (Proposition 3.21). This is an easy
consequence of the following lemma, which is a corollary to the famous
Ellipsoid Theorem of Fritz John [4]. By an ellipsoid in C?, symmetric about
the origin, we mean the image of the closed Euclidean unit ball in C%, by
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some invertible linear map ® : C¢ — C9. Of course, ®(v) = Av, for some
invertible A € C%*?, In fact, we may assume that A is positive definite. To
see this we use polar decomposition and write A = PU, where P is positive
definite and U is unitary. If B C C? denotes the closed unit ball, then
UB = B and hence AB = PUB = PB.

Lemma 3.20. For any norm p on C? there exists a positive definite matrix
V € C™? such that

p(v) < [Vo| < Vdp(v), for allv e CY

Proof. Let B, = {v € C?: p(v) < 1}. Clearly B, is convex and symmetric
about the origin. Since all norms on C¢ are equivalent to the Euclidean
norm, B, is compact and has a nonempty interior. By John’s Theorem
there exists an ellipsoid £ C R", also symmetric about the origin, such that

EC B, C VdE.

By definition there exists a positive definite matrix V' € C%*¢ such that
VE =B :={v e C?: |v| <1}. Now, fix an arbitrary nonzero v € C¢. For
e > 0 we define v. = (1 +¢)p(v)~'v. Since p(v.) > 1 and E C B,, we must
have |Vv| > 1, which is equivalent to

p(v) < (1+¢)[Vol.

Taking the limit as ¢ — 0 yields p(v) < |Vv|. However, since v/p(v) € B, C
VAE, we have v/p(v) = vV/dV ~'u, for some u € B. Hence

V()| = Vil < Vi

or equivalently, |Vo| < Vdp(v). O

Let 1 < p < oo and let W be a matrix weight with W and w—r'/p locally
integrable. For any ball B C R™ there exists, by Lemma 3.20, positive
definite complex d x d matrices Vg and V}; such that

VBv| ~ pp.p(v) and  [Vgu|~ pp p(v), (3.9)

uniformly in B. Throughout the report we reserve the notation Vg and V5
to mean any two matrices satisfying (3.9).

Proposition 3.21. Let 1 < p < co and let W be a matriz weight with W
and W=P'/? Jocally integrable. Then W & Ay if and only if there exists a
constant C' > 0 such that

|VeVEl < C,  for all balls B C R™. (3.10)
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Proof. Since pp p(v) ~ |Vpv| uniformly in B we also have (p, )*(v) ~
(|[Vgv|)* = |V 'v| uniformly in B. Notice that ||[VV3|| = |[V5Va], since
both Vg and V} are self-adjoint. Now, if W € A, then

Vvl ~ piy (Vi) < Clop)* (Vi) < CIVi WVigel,
and hence ||[VgV}| < C. Conversely, if (3.10) holds then
Py (V) ~ VEol < [VEVa] - [V o] < Clpp,p)* (v),
showing that W € A,,. O

We will need yet another characterization of the class A, and we employ
the following lemma.

Lemma 3.22. Let W be a matriz weight. For each f € LP(W) we have

1 ey = sup| / (g, 1) dm), (3.11)

where the supremum is taken over all g with ||g||pw (v /vy = 1.

Proof. By Holders Inequality we have

’/<gvf> dm’ = |/<W_1/png1/pf> dm| < ||fHLP(W) ! ||g||LP/(W7p’/p)v

and hence the right side in (3.11) is dominated by || f||rw). However,
except in the trivial case where f = 0, the function
9= ot WP FP72W2P f

satisfies ||g][ u (y—p'/p) = 1 and

| [t ydm| =17l zou,
showing the opposite inequality. O

Again let 1 < p < 0o and let W be a matrix weight with W and wr'/p
locally integrable. Given any ball B C R™ and a function f = (f1,..., f4)
from R™ into C%, we use the notation

fB::“;/dem:;(/Bfldmy...,/dedm)

whenever the f;’s are locally integrable. Let us point out that f; is in fact
locally integrable when f € L?(W). To see this, fix an arbitrary ball B C R™.
Then Hélders Inequality implies that

/B [fil dm = / [(F xmen) dm < (| Fllow) - 1XBEl o sy < 09,

since W—P'/P is locally integrable. Hence the linear operator f — ¥p(f) :=
xB[fB is well defined on LP(W).
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Proposition 3.23. With the above notation: W € A, if and only if the
operators Y are uniformly bounded from LP(W) into LP(W), i.e. if there
exists a constant C > 0 such that

lvsll = sup  |¥B(f)lleew)y < C, for all balls B CR™.  (3.12)

flle(wy=1

In fact, A,(W) equals the supremum of |||l over all balls B C R™.

|B|_1/p/pp,B(/ fdm)
B

— |B|~VP w
B s e @)

B/ g | [{xBu, f) dm|
B e ) ()

Proof. Notice that

%8 (f)llLew)

whenever f € LP(W). Taking the supremum over all f € LP(W) with
|fllL»(wy = 1 and employing Lemma 3.22, we see that

”XBUHLP'(W*P'/P) _ P;QB(U)
(Pp,B)* (1) w0 (Pp,B)* (1)’

I\wBII—S b |BI” v (3.13)

Taking the supremum over all balls B C R" yields the desired. O

Corollary 3.24. If W is a matriz A, weight, then w(x) := |W(x)/Pv[P is
a scalar A, weight, for each nonzero v € C. In fact, Ap(w) < A,(W).

Proof. Notice that |||l zr(w) = [|¢v|[Lr(w), for any measurable scalar func-
tion ¢ on R". Thus, for an arbitrary ¢ € LP(w) with ||@||r@y = 1, we
have

IXxB®BI Lr (w) = IXBOBYI|Lr (W) = IXB(IV) B Lr (W) < Ap(W),

and hence A,(w) < A,(W), by Proposition 3.23. O

Corollary 3.25. If W is a matriz A, weight, then ||W|| is a scalar A,
weight.

Proof. If A € C?™*4 is positive definite, then it is easily seen that

d

||| ~ trace(A) :="> (Ae;, e;).

i=1
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Thus we can estimate ||[WW(x)| pointwise as

W@ = [W(@)?7|? ~ trace(W (2)2/%)"?
d p/2
(wa%@

d
~ YW (@) e, (3.14)
=1

where the last ~ readily follows by noting that
mlaxci < Z G < dmlaxci,
1

for any nonnegative numbers ci,...,cq. By Corollary 3.24, each term in
(3.14) is a scalar A, weight and therefore the sum is as well. Thus ||| is
an A, weight, since it is comparable to an A, weight. O

Example 3.26. If wy,...,wy are scalar A, weights, then the function W :
R" — C9%4  given by

W(z) = D(wy(z),...,wq(x)),

is a matrix A, weight. To see this, first notice that
(W(z)v,v) =Y wi(@)|uil* >0,
i

for all nonzero v = (v1,...,v4) € C¢ and for almost all x € R®. Thus W is
a weight. Furthermore, since

IW (@) = mawi(z) < 3 wila)

and
W (z)"7"/?|| = max w; (z)7/? < Zwi(x)_p’/p,
¢ .

for almost all x € R™, we see that W and W—P'/P are locally integrable. We
now employ Proposition 3.23: Since w; € A, there exists constants ¢; > 0
such that

||XB¢B||LP(UJ,L~) < Ci||¢HLP(w,-)>

for all ¢ € LP(w;) and for all balls B C R™. By noting that, for any function
f=(f1, .., fa) : R* — C,

jwil@) P fi(@)[? < [W(@)P f(2)]P < &P max jwi(2) VP fi(2) P,
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for almost all x € R™, we see that

Xafall, < @ [ maxlu@)(f) o) da

< @Y [ w0 (st d
< @Y il
<

(dp/2 Z Czp> ||fH§,p(W)a

for any f = (f1,..., fa) € LP(W). This shows that W € A,,.

We close this chapter with some matrix analogies of The Reverse Holder
Inequality, Proposition 3.12.

Proposition 3.27 (The Reverse Holder Inequalities). Let W be a matriz
Ay, weight. Then there exists a 6 > 0 and constants Cq > 0 such that

1
|B|/ |W (2)YPV||9de < C, whenever ¢ < p+ 6 (3.15)
B
1
E/ VW (z)~VP||9dz < C, whenever ¢ < p' 4§ (3.16)
B
1
E/ |W (2)YPV5 |9de < C, whenever ¢ < p+ 6, (3.17)
B

for all balls B C R™.

Proof. The proofs of these inequalities are similar, so we will show (3.15)
only. By Corollary 3.24, the functions = + |W (2)Y/PV}e;|P are scalar A,
weights and by The Reverse Holder Inequality, Proposition 3.12, there exists
constants r; > 1 and C; > 0 such that

1/T’i .
(i1 [ W@ ovserras) < G [ 1w evperras,
B B

or equivalently,

(3 e
B

1/p

1/q:
% dg < L/ W (2)/PVhe;|P da ,
1Bl /5
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for all balls B C R™, where g; := pr;. Let go = min, ¢; and let C;y = max; C/.
Let 6 = go — p and fix an arbitrary 1 < ¢ < p+J. Then

1 1/ , 1/‘1 1 1 , 1/%
ﬁ |W (z)/PVge;|? dx < ﬁ |W (z)/PVge;|% dx
B B

(L 1/py! o |P v
C; B |[W(x) "PVge;|P dx
B

1 1/p
C, —/ W () /PVie;|P da .
1Bl /5

A

Now, since
4]l < dmax |Ae;],
K3

(Cdxd

for any matrix A € , we can estimate

1 1
7/ W (2)Y/PVE||9de < 7/ (dmax |W (2)"/PVe;|)? do
|B| Jg |B| Jg i
1
< quW/BW(x)l/PVéeMdI
1 q/p
< dchZ(m/B|W(x)1/PV/3ei|pdm)
i
< d'C, Y |VVge!
< dTTC | VBVE|T < Cy,

as desired. O



Chapter 4

Weighted Maximal
Functions

Boundedness properties of maximal operators and singular integral opera-
tors are intimately connected. In this chapter we define maximal operators
associated with a given matrix weight W and show that these operators are
bounded from L9(m) into L7(m), whenever W is an A, weight and ¢ is
sufficiently close to p.

Throughout this chapter we assume that 1 < p < oo is fixed and W
denotes and arbitrary A, weight. Furthermore, we fix § > 0 such that The
Reverse Holder Inequalities (3.15) - (3.17) hold.

Definition 4.1. Given a measurable function f : R* — C¢, we define the
weighted mazimal function My f on R™ by

R ppy (o) —1/p
My f(x) EEE\B\/B‘W(QJ) W(y)~'?f(y)| dy,

where the supremum is taken over all balls B C R™ containing x.

The objective is to show that My, is of type (g, q), whenever |p —q| < 4.
Our first step is to establish this result for the auxiliary maximal operator
My, defined by

/ _ 1 -1/
Miy (@) = sup /B VW ()~ /7 £(4)] dy.

However, by employing The Reverse Holder Inequalities, this turns out to
be more or less a repetition of the proof of The Maximal Theorem, Theorem
2.17.

Lemma 4.2. My, is of type (q,q), whenever ¢ > p — 9.
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Proof. Fix an arbitrary p — § < ¢ < oo. Then ¢’ < p’ + § and, by The
Reverse Holder Inequality 3.16,

1 ~1/p 1 “1/p
@/BWBW(ZI) /f(y)|dy§®/3||VBW(y) 120 1£ ()| dy

L ny , >1/q/ <1 >1/q
< (g Lveww o a) (o [ 1rwray

<C (Ill?l/B If(y)lqdy>1/q7

for all measurable f and for all balls B C R™. In particular, this shows that
M, is of type (00, 00), and hence it suffices to show that My, is of weak
type (¢, q). Fix an arbitrary f € L%(m) and an « > 0. We must show that
|K| < C'a™ | f[|, for any compact subset

K C E, :={x e R": My, f(z) > a}.

However, K can be covered by balls {B,} each satisfying

1 _ 1 l/q
a</‘wmww>“w@wwsc(/|ﬂwm) ,
|Bz| B. |BI| By

and thereby
C
Bal < o [ 1fram.
(6% B.

Thus we may extract a finite subcover from { B, }, apply The Vitali Covering
Lemma to obtain a disjoint subcollection of the subcover and estimate

|Ms30/mwm
aq

as desired. O

In analogue to the dyadic maximal operator we define the weighted dyadic
mazimal operators My and My, by taking supremum over dyadic cubes
instead of balls. Since cubes and balls in R™ are equivalent and, since

EH/ W ()PP dz, v e CA{0},
E

is a doubling measure, by Corollary 3.24 and Remark 3.7, it follows that the
A, class can be characterized by cubes instead of balls. In particular, given
any cube Q C R" there exists positive definite complex d x d matrices Vg
and V) such that

[Vou| ~ pp.g(v) and  [VHu| ~ pr o(v), (4.1)

independent of ). Also, The Reverse Holder Inequalities hold with cubes
replacing balls.
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Remark 4.3. Since MYy, f < cMjy, f, we immediately conclude that My, is
of type (q,q) whenever ¢ > p — 4.

Our next step is to show that My is of type (q,q) whenever ¢ is close
to p. A substantial part of this task is established separately trough Lemma
4.4.

For each dyadic cube @ C R™ we define the function Ng on R"™ by letting

Ng(z) = esgnglW(w)”pVﬁlH,

for x € Q and Ng(x) = 0 otherwise. Here the supremum is taken over all
dyadic cubes R C ) containing z.

Lemma 4.4. For g < p+ 6 there exists a constant Cy > 0 such that

/QNg2 dm < Cg|Q|,  for all dyadic cubes Q C R™.

Proof. Fix an arbitrary ¢ < p + §. Denote by A a positive constant to be
determined appropriately later. Let {R;} denote the collection of maximal
dyadic cubes R C @ satisfying ||[VoVy '|| > A, and let Dy = U;R;. We take
into account the possibility that D; = (). Notice that the cubes in {R;} are
disjoint. For € Q\D; we have

W (@) PV < W (@) PV - VRVl < AW ()P Vg,

for all dyadic € R C @, and hence Ng(z) < AW (x)'/?V;"||. By The
Reverse Holder Inequality (3.17), we then see that

N2 dm
IR

IN

Aq/ W () PV | de + [ NEdm
Q\D1 Dy

C
S 7|Q| + Nq dmv
2 b, ©

for some C' > 0 independent of Q). Of course, if D; = () then we are done.
Otherwise we continue to estimate

NédmzZ/R‘Ngzdm.
J J

D,
For each j we let
Fj ={z € R; : No(x) # Ng, (x)}.

Notice that Ng(z) < A||W(x)1/pV61|| whenever z € F}j. Indeed, if Ny, (z) <
Ng(z), then Ng(z) may be approximated by |[W(x)Y/PV;!||, for some
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dyadic cube R containing R; as a proper subset and, by maximality of
R;

W (@) PVt < AW () PV .
It follows that

/ Ngdm < Aq/ HW(:c)l/”VC;lqua:—&—/ N dm,
Rj Fj Rj
and consequently

C C
/szgzdm<2|Q|+2Q|+§j:/RjN§jdm<0Q|+/DlNggdm.

Let us show that |D;| < 1/2|Q)| if A is sufficiently large. Since

Vi, Vaul = [Va,(Vou)[* < (pp,r,)" (Vou)
< pp.r,(Vou) < [Vg, Voul,

for all v € C%, we have ||VQV§]1|| = ||V}gj1VQH < |[Vg,Vall, and hence

IR| - VoV, IP < sup |B;] - [VR, Vool
v|<

IN

ar'/? sup/ |W(x)*1/pVQv\p/ dz
lv[<1JR;

IN

av'/? / W (@) PV |)? da.

R;

By disjointness of the R;’s we get

WD < SR VeV I < @Y [ W) Vel da
J j 7]

IN

IN

dp’/z/ W ()" VP dx < C'|Q,

Q

by The Reverse Holder Inequality. Thus we may choose A independently of
@ such that |Dq| < 1/2|Q)|.

The crux of the proof is now over. Indeed, since @ is an arbitrary dyadic
cube and C' is independent ), we may repeat the above argument to estimate

NE dm < C|Rj| + /qudeC\RvPr/ N dm,
/RJ- o IAPSYFRE T s ¢

where {Sf } denotes the collection of maximal dyadic cubes S C R; satisfying
VR, Vg | > A. Tt follows that

1
/QN(qum<CQ|—|—QCQ|+/D N§ dm,
2
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where Dy := U; U; S/ and |Ds| < 1/4|Q|. This strategy may be employed
into an induction argument to show that

/ N§ dm < c(sz) Q) +/ N§ dm, (4.2)
Q k=0 D1

and |Dy,41] < 2™+ Q), for any m € Ny. Since |D,,| — 0 as m — oo and,
since Q\D1 C Q\Dz C ..., The Monotone Convergence Theorem implies
that xo\p,, /" X a-e., and consequently

qum:/qumf Nidm — 0 asm — oo.
x/Dm @ Q @ Q\Dm, N

Hence the proof is concluded by taking the limit as m — oo in (4.2). O
Lemma 4.5. The weighted dyadic maximal operator My, is of type (q,q)
whenever |p — q| < 9.

Proof. Fix an arbitrary ¢ > 1 with |p — ¢| < ¢ and an arbitrary f € LI(m).
By virtue of Remark 4.3, it suffices to show that |[My f|l, < C||Miy fll4-
For each x € R™ we choose a dyadic cube @), containing x and satisfying

1
22—
|Qz| Qux

2 W () 7V - (@ /Q |VQEW<y>-1/Pf<y>|dy) .

Mwf(z) < (W (2)YPW ()~ £ (y)| dy (4.3)

IN

For each j € Z we let F; denote the set of maximal dyadic cubes Q € {Q,}
for which

J i -1/p d J+1
Y < /Q VoW ()7 f(y)) dy < 27+, (4.4)

We may choose the cubes to be maximal, since any cube @) = @, satisfying
(4.4) must also satisfy

Q < {z e R™ : My, f(a) > 27} < 2779 My fIIE oo < Co2799| fI12,
by Remark 4.3. Now, if My f(z) > 0, then (4.3) implies that

27 < Vo, W(y) P f(y)| dy < 272,

1
|Qz| Qax

for some j € Z and hence @), is contained in some cube @ € F;. Combining
this with (4.3) we see that

My f(x) <227 W (2) PV | < 2- 27 N (),
and consequently

My f(2)? < C279Ng(2)1 < C i Z 299 Ng (z)1,

j=—00 Q'EF;
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for all x € R™. Employing Lemma 4.4 and the fact that the cubes in each
F; are disjoint, we get

IMwfli < C Z 279 %" /Nq,dm

j=—o0  QEF;

c’ Z 20 N Q=0 Y 2| | Q]

<
j=—00  QeF; j=—o00 Q'eF;
< Y 2z eR: My, f > 27}
Jj=—00
= O Yy g (20).
j=—00

However, since the distribution function is decreasing,

\%

27 27
/2 0T Vdpy s(0)do > (21—1)q—1.dM,Wf(21)/2 do

j—1 j—1

2-9.9J9. dM’Wf(Qj),

for each j € Z, and hence

S 2ty () < 20y / g, 5(0) da

j=—o0 j=—o0
= 2¢ /00 aq_ldM(/Vf(a) do
0
< g 29 My fIIE,
by Proposition 2.5. O

The final step is to obtain the L? boundedness of My, from its dyadic
analogue.

Theorem 4.6. The weighted mazximal operator My is of type (¢, q), when-
ever |p — q| < 4.

Proof. Fix an arbitrary ¢ > 1 with [p — g| < §. Define My, as My, but
with the supremum taken over all cubes in R™ containing x. Since cubes
and balls in R™ are equivalent, it suffices to show that My is of type (q,q).
Furthermore, by The Monotone Convergence Theorem, it suffices to show
that the operator Ma),c , given by

Fiw= s / W (@) PW ()~ f ()] ds,

Q) <2k
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is of type (q,q), for each k € Z with bound independent of k. Here the
supremum is taken over all cubes in R™ containing = and with side length
1(Q) < 2. For each t € R™ we define My, f by

Muafa) = swp o [ WE@PW) ()] dy
z€QED; |Q‘ Q

where D, denotes the set of all cubes @ C R"”, for which @ — ¢ is a dyadic
cube. The crucial property concerning dyadic cubes is the fact that they
are nested, i.e. any two dyadic cubes are either disjoint or one contains the
other. For each t € R", the cubes in D; sustain this property. Hence we
can imitate the proof of the L? boundedness of My to show that My, is
also of type (g, q). In fact, the bound can be taken to be independent of ¢,
as seen by separate inspection of each proof of this chapter.

For each k € Z we let Q) = [—2F*2 242" We will show that there
exists a constant C' > 0 such that

MEf@) <0 [ Muwofa) 2 (4.5)
On |Qk|

for all z € R™ and k € Z. Once this is established, the result follows from
Tonelli’s Theorem and the uniform L? boundedness of Myy . To verify (4.5),
we fix an arbitrary x € R™ and k € Z. Choose a cube Q C R™ containing x
with

1 _ 1 K
o [ W @YW ) ) dy > M f(a)
Q| Q 2
and 2771 < [(Q) < 27, for some integer j < k. Define
Q= {t € Qi : Q C Qy, for some Q; € Dy with I[(Qy) = 2k+1}.
We claim that  is measurable and || > 2"(5*1) | First consider the case n =

1. By visualizing all intervals of length 2**! containing @, it is geometrically
evident that 2 is the union of two disjoint intervals of length

2k:+1 _ Z(Q) 2 2k+1 o 2k _ 21@
For a general n > 1, we project 2 onto the axes and conclude, by the

preceding, that  is the union of 2" disjoint cubes of side length at least 2*.
Thus [Q| > 2" - (2F)" = 27+ For each t € Q, |Q;| < 4"|Q|, and hence

1

Mwf(x) > = [ [W(@)YPW(y) "7 f(y)| dy (4.6)
Q¢ Jo,
> / W (@)W ()P ) dy > (2 47) M f ().
Ql Jo
Now it follows from (4.6) that
1 1

@ o MW,tf(l‘) dt > m/QMW’tf(x) dt > (4n . 22n+1)_1M3‘J; (w),

proving (4.5) and the theorem with it. O






Chapter 5

Truncation of Singular
Integrals

Recall from Chapter 1 that the Riesz transform was defined in terms of
"truncated integrals” over sets |y| > €. This technique turns out to be useful
also when dealing with general singular integral operators. The results in
this chapter play a crucial role in the ”weighted inequalities” in Chapter
6. We consider a singular integral operator T associated with a regular
kernel K, as defined in Chapter 1. Furthermore, we assume that, for some
1 < p < oo, there exists a constant A > 0, such that

HTpr < AHprv for all f € 8.

It is a fundamental result, shown in e.g. [6], that T" has a bounded linear
extension of weak type (1,1) and of type (g, q), for each 1 < ¢ < oo. This
extension is also denoted by T'. The fact that K is a function away from the
origin implies that

Tf(z) = / K(x—y)f()dy, forallz¢supp(f),  (5.1)

whenever f € C°(R";C). In fact, (5.1) holds a.e., for any compactly sup-
ported function f € LP(m). To see this, first note that Holder’s Inequality
and the estimate |K(z)| < Blz|~™ implies that y — K(z — y)f(y) is inte-
grable whenever ¢ supp(f). Then choose a sequence f;, € C°(R™; C) with
supp(fx) C supp(f) such that fr — f in LP. By continuity of T, T'f), — T'f
in P, and hence

/ K(x— ) fu, () dy — Tf(z) asj — oo,

for almost all = ¢ supp(f), for some subsequence fi,. However, we also have

/K(w—y)fkj(y)dyﬁ/K(:r—y)f(y)dy as j — o0,
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provided that x ¢ supp(f).

For each € > 0 we define the measurable function K. on R™\{0} by letting
K. (z) = K(z) if || > € and K.(z) = 0 otherwise. By the assumption
|K(z)] < Blz|™™, the function K.(x — -) is bounded, for each z € R™.
Furthermore,

n —n UnB
dKE(mf-)(OZ)S Hy e R": Bla —y|™" > a}| = —

for each a > 0, and hence K(z —-) € L»*®(m), for each z € R". By
Proposition 2.11, we then conclude that K (z —-) is in L"(m), for any r > 1
and, by Hoélder’s Inequality, we may therefore define the truncated operator
T. on LP(m) by

L.5@)= [ Ko~ )fw)dy. forz e R

We also define the sublinear operator T, on L?(m) by

T.f(x) =sup|T.f(z)|, forzeR™
e>0

It turns out that T f in some sense is controlled pointwise by T f, and hence
we will elaborate on various estimates concerning T,. However, our first
step is to show that the truncated operators T, are of type (p, p) with bound
independent of £. We need the following preliminary result.

Lemma 5.1. Let B denote the collection of balls in R™ with fized radius
r > 0. Then B has a countable mazimal disjoint subcollection, i.e. there

exists a collection {B(xk, ) }ken of pairwise disjoint balls such that, for any
x € R", B(xz,r) N B(zg,r) # 0, for some k € N.

Proof. This is a direct application Zorn’s Lemma. Denote by X the set of
all disjoint collections of balls of radius r. We order X partially by letting
F < F' whenever F,F' € X and F C F’'. Each chain C in X is clearly
bounded above by |Jz. F € X, and hence X has a maximal element Fj.
To see that Fy is countable, we define ¢ : Z™ — Fy by letting p(t) = B(x,r)
if t € B(x,r) and ¢(t) = 0 otherwise. By disjointness of the balls in Fy, ¢
is well-defined and, by density of the rationals, it takes Z™ onto Fy, showing
that Fy is countable. O

Lemma 5.2. T; is of type (p,p) with bound independent of .

Proof. Fix an arbitrary € > 0 and an f € LP(m). By employing a density
argument, we may assume that f is compactly supported. It suffices to show
that A, := T — T, is of type (p,p) with bound independent of . Fix an
arbitrary z € R". For each § > 0 we let x5 := xB(z,5)- We will show that

IXac A fllp < Cllxve flps (5.2)
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for some constants a,b, C > 0 independent of ¢, % and f. First notice that
A f(x) = 0 for almost all x with supp(f) C B(z,e)°. Also notice that
B(z,e) C B(z,be) whenever € B(Z,ac) and b > 1+ a. Since

f = fXB(ac,s) + fXB(gc,e)“»
the linearity of A. and the fact that T.(fXp(s,c))(z) = 0, shows that

XasAsf :XasAgxbgf a.e.

Furthermore, since

XaeAstsf = X(LEAEXdEf + XasAs(Xbe - de)f,

where d > 0 will be chosen appropriately later, it suffices to show (5.2) with
A, f replaced by Acxqef respectively Ac(xpe — Xde)f. Regarding the first
estimate, we assume that a +d < 1 and d < b. Then B(Z,ds) C B(z,¢)
whenever © € B(Z,ae) and, since T:xq-f(x) = 0 when B(Z,de) C B(x,¢),
this implies that

XaeAeXde f(¥) = XaeT Xde f-

Since [|T'f|l, < A| f]|, for all f € LP, we get

IXacAeXaz fllp = [XaeTXae fllp < Allxaz fllp < Allxve £l

as desired.
For the second estimate, we first notice that

Ac(Xbe = Xde)f = Dc(Xpe — Xda)fXB(a;,a) =TfxE,

where E := B(x,¢) N B(Z,be)\B(Z,de). If we assume that a < d, then
B(z,ae) Nsupp(fxg) = 0, and hence

Au(xoe — xa) () = /E Kz —y)f(y) dy,

for almost all x € B(Z,ae). If z € B(z,ae) and y € E, then
de < |z —y| <ae+ |z —y,

and therefore B B
K@—y)|< 2 <5
lz —y[™ ~ ¢

We have now shown that

\ [ K= 05wds] < Zihaesls < B sl
E

B/
e
for almost all x € B(Z,ae), and consequently

1"

B _
IXacAexve = Xae) Fllp < - IIxee fllp - [B(Z; ag)l = Clixae fII5-
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Thus (5.2) holds provided that a, b, d are chosen appropriately. This can be
done by letting a <d < 1/2 and b > 1+ a.

We may cover R™ with a countable collection of balls {B(zZ*,as)}. In-
deed, Lemma 5.1 guaranties the existence of a maximal disjoint collection
of balls {B(z*,as/2)} such that, for each y € R", we have B(y,as/2) N
B(z*, as/2) # 0, for some k € N, and hence y € B(y,ac/2) C B(z*,ae).
Also, there exists a number N such that no point y € R™ belongs to more
than N of the balls B(z",be). To see this, assume that

N

Y€ ﬂ B(z"% , be).

J=1

Then B(z*i,as/2) C B(y,re), for some 7 > 0 independent of 3, and hence
N -|B(y,re)| Z\B y,re)| = (2r/a)" Z|B ki ae/2)]

N
= (2r/a)" U ki ,ag/2)| < (2r/a)"|B(y,re)|,

showing that N < (2r/a)™. Then, finally,

AfPdm < / ALfP dm < C / P dm
/ ,; B(z*,ae) kZ:l B(z* be)
< o [ispam,
and we are done. O

In what follows we let B(LP, LP) denote the set of all bounded linear
operators from LP(m) into LP(m).

Definition 5.3. A sequence of operators T; € B(LP, L?) is said to converge
weakly in LP to Ty € B(LP, LP) if
/(ij)hdm — /(Tof)hdm as j — o0,

for all f € L? and for all h € L¥'.

As a consequence of the uniform LP boundedness of T, and The Banach-
Alaoglu Theorem, we have the following result. For the details see [2].

Lemma 5.4. There exists a sequence €; — 0 such that T, converges weakly
in LP to an operator Ty € B(LP, L?).

The crucial role of the operator Tj is stated in the following Lemma.
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Lemma 5.5. There ezists a function b € L (m) such that
Tf=Tof +bf a.e., foral feLP(m).

Proof. For each € > 0 we let A, =T —T.. By Lemma 5.4, A, converges
weakly in LP to A := T — Ty, for some sequence €; — 0. For each k € N
we let By, = B(0,k). We define b a.e. on By by b = A(xp,). Of course, if
x € By, then © € By, for each k' > k, so in order for b to be well-defined
a.e., we must show that

A(xs,) = xB,A(xs,,) ae. whenever k' > k.

Assume that g is a bounded and compactly supported function on R™. First
notice that

Ac(9xqQ) = XAy a.e., (5.3)

for any cube Q C R™ and for ¢ sufficiently small. Indeed, x € Q€ implies that
supp(gxq) € B(x,¢e)¢, for small ¢, and hence A.(gxg)(x) = 0. Similarly,
x € Q° (the interior of Q) implies that supp(gxg<) C B(x,¢)°, for small e,
and so

Ac(gx@)(w) = Acg(z) — A(gxqe)(w) = Acg(x).

Next we show that (5.3) holds with A, replaced by A. For any h € L we
have

[ Aromdn = Jin [ A gohdn = lim [(A9)(xoh) dm
= /Ag(mh) dm:/(XQAg)hdm

and, as a consequence of The Hahn-Banach Theorem, we conclude that
A(gxq) = xQAg a.e. By linearity of A, this also holds with x¢g replaced
by any linear combination of characteristic functions of cubes. If O C R"
is nonempty and open with finite measure, then O = U32,Q;, where {Q;}
denotes the collection of (disjoint) maximal dyadic cubes contained in O.
Hence fn, := 37| X@, — Xo pointwise and, since both [g|” and [Ag|? are
integrable, The Dominated Convergence Theorem yields

9fm — gxo and  fnAg— xoAg in LP.

By continuity of A, we conclude that A(gxo) = xoAg a.e. More generally,
if £ C R™ is measurable and of finite measure, then there exists a sequence
O,, of open sets of finite measure containing F, such that xo,, — xg in LP.
Hence X0, — XE &.€., for some subsequence O,,, and, by The Dominated
Convergence Theorem and the continuity of A, we conclude that

A(gxe) = xpAg a.e.
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By the particular choice of g = xp,, and E = By, where k' > k, we obtain

A(XBk) = A(XBk/XBk) = XBkA(XBk/) a.e.,

and thus b is well-defined.
Let us show that b € L*°. Clearly b is measurable. Notice that if £ C R™
is of finite measure, then E C By, for some k£ € N, and hence

A(xe) = A(xB.xE) = XEA(XB,) = xEb a.e. (5.4)

For each C > 0 we let No = {z € R™ : |b(z)| > C}. If [Ng| > 0 then there
exists a compact subset K C N with |K| > 0 and, by the L? boundedness
of A, we get

C?|K| = / CPxxc dm < / bl dm = / A(xx)IP dm < A7|K],

showing that C < A, for some constant A > 0.

Finally we show that Af = bf a.e., for all f € LP. By (5.4) we know
that this holds for f = xg, where E' is bounded and, by linearity of A, this
holds if f is any linear combination of characteristic functions of bounded
sets. Since any nonnegative f € LP may be approximated in LP norm by a
sequence {f,} of simple nonnegative L? functions, we conclude that

Af = lim Af, = lim (bfy)=bf,

where the last equality follows from the fact that b is bounded a.e. Applying
linearity of A again, we see that Af = bf, for all f € LP. O

We will now show that the operator T, is of weak type (1,1). To this
end, we employ three preliminary results, of which the first is a simple
consequence of the gradient condition on K.

Lemma 5.6. Let x,7 € R™ with x # %. If K satisfies |VK(z)] < Clz|™"71,
for all x # 0, then there exists a constant C' > 0 independent of x and T
such that

C'Ne — 7|

|K(z—y) - K@@ -y)| < E— gl

for all y € R™ with 2|z — z| < |T — y|.

Proof. By splitting K into its real and imaginary parts, we may assume
that K is real-valued. Let § = |z — Z| and fix an arbitrary y € B(Z,20)°.
Define ¢ : [0,1] — R™ by ¢(t) = & + t(x — Z) — y. Notice that the function
t — K(¢(t)) is differentiable, since Z + t(z — Z) € B(Z, 20), for all ¢ € [0, 1].
By The Mean Value Theorem there exists a point 7 € (0, 1) such that

K(z—y) - K(z —y) = (VK(p(7)), (z — 7)),
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and hence

Clz — Z| C'x — Z|
K(x—y < < = )
Ko=) = K@=l o < 5y

where the last inequality follows by noting that |z — y| < 2|p(t)], for all
t e [0,1]. O

Lemma 5.7. For each 0 < r <1 there exists a constant A, > 0 such that
T.f <A M(TFY"+Mf] ae.,
for all f € LP(m).

Proof. Fix an arbitrary # € R™ and an ¢ > 0. Let fi = fxpa,.) and
f2 = [XB(z,)e- Notice that T_ f(Z) = T f2(z). We first show that

T fa(z) — Tfo(z)| < A’M f(Z), whenever z € B(7,£/2),

for some A’ > 0. To see this, fix an x € B(Z,e/2) with x # Z. Then

) = TR@I S [ K —) = K =)l )y

oo

- / K(z—y) - K@ - )| /()] dy.
E—0 2ke<|y—z|<2k+1

For 2ke < |y — z| < 2¥*1e, Lemma 5.6 yields

Cl [ 2n—1C/

|K(z—y) — K(z—y)| < (2Fe )n+1 = oR(2kHIg)n’

and hence

IN

T f2(x) = Tf2(7)]

1!
¢ Z|B 2k+1 / y)ldy

(z 2"+1E)

IA

C"Mf(z Zz— = AMf(z),

as claimed. We can now estimate

Tef (@) < |Tfa(z) = Tf(z)] +[TfA(z)] (5:5)
< |Tf(@)|+|Tfi(x)]+ AMf(2),

whenever x € B(Z,e/2). For each a@ > 0 we let E, = {z € B(Z,e/2) :
|Tf(z)| > a} and F, = {x € B(Z,¢/2) : |Tfi(x)| > a}. Notice that

|Ea| < OFT/ ITf|"dm < o™ "[B(z,e/2)|M(|T f[]")(Z)
B(z,¢/2)
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and, since T is of weak type (1,1),
B B B, _ _
Fal <2 [1flam=2 [ |flam < Z1B(.2)] Mf@),
(&% (&% (Z,¢) «
for some B > 0. Since f € LP, M f is finite a.e. Furthermore, since Tf € L?,
|Tf|" is in LP/" and hence M(|T'f|") is also finite a.e. Thus, for almost all
Z € R™, the particular choice of
a = max{4"/"[M(|Tf|")(@)]'/",4-2"B - M f(z)}
yields
1
|Ba U Fal < |Eol +|Fa| < 5|B(2,2/2)]-
Therefore there exists an € B(Z,e/2) such that |Tf(z)| < aand [T f1(z)| <
«. Substituting in (5.5) yields
T.(@)] < A[M(T )7 + M),
for some constant A > 0. O
Lemma 5.8. For each 1 < g < oo there exists a constant Cq > 0 such that
M [fllg,0 < Cqllfllgo0,  for all f € LT>(m).
Proof. Fix an arbitrary f € L?°°(m). We first notice that
q _
[ 11 < B (5:6)
E q—1
for all measurable subsets F C R™. To see this, assume that 0 < |E| < oo
and let B = |E|7'4||f||4.00- Since
dfyp () < min{|E[, a™ ([ f[|7 oo},
for all a > 0, Proposition 2.5 yields
B [eS)
/ fldm = / Ay (@) da +/ dpx, (o) da
E 0 B
q
S 1
q—1
q _
a1/ Nl
as claimed. Now fix an arbitrary a > 0 and let £ = {x € R™ : | f(z)| > «/2}.
By sublinearity of M, we have
!
Mf < M(fxe) +M(fxee) = M(fxe) + 3,
—®
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and hence
2|| M oo
(@) < dargragaf2) < AT < 8 i1,

by The Maximal Theorem. However, by employing (5.6) and noting that

2([£11g,00
B| = dsa/2) < =0,
we get
O’ (2 11 e
de(a)ﬁg (oﬂ N fllgo =C T
as desired. O

Proposition 5.9. The operator T, is of weak type (1,1).

Proof. Fix and arbitrary f € L'(m) and choose 0 < r < 1. By Lemma 5.7
and The Maximal Theorem, we have

1T fllee < CIMATFI)Y 1,00 + ClIf -

Notice that
1/r

Y7o = g3 e

9]

for any measurable function g on R”. By Lemma 5.8, we then have

IM(TSI) Y e = IMATAIY
< GlITA I
= Co|Tfl1,00
and, since T is of weak type (1,1), the result follows. O

Before we close this chapter, we show one more estimate concerning 7.

Lemma 5.10. If f € C°(R™;C) then there exists a constant Cy > 0 such
that

T.f(z) < for almost all z € R™. (5.7)

(L+ |2))™
Proof. Suppose that supp(f) C B(0, R). Since the convolution of a tem-
pered distribution with a compactly supported smooth function is smooth,

we conclude that T'f is bounded on the compact set B(0,2R) and, by Lemma
5.7, it follows that T f is bounded a.e. on B(0,2R). Thus

Cr

T.f(x) <C < A+ )
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for almost all x with |z| < 2R. For |z|] > 2R we employ the assumption
|K ()| < Blz|™™ to estimate

IT-f(z)| < C [z —y|™"dy < C'a| 7T,
ly|<R

where C’ is independent of €. The last inequality in the above follows by
noting that |y| < R implies that

2|z| < 2|z —y| + 2R < 2|z — y| + |z,

and hence |z| < 2|z — y|. However, since |z| > 2R, we have C'|z| > 1+ |z,
where C; := 1+ 1/(2R). Thus we conclude that (5.7) holds for |z| > 2R
also. O



Chapter 6

Weighted Inequalities

As in chapter 5, we consider a singular integral operator T" associated with
a regular kernel K and assume that T is of type (LP(m), L?(m)), for some
1 < p < oo. We then define the vector-valued operator T componentwise by
(Tf); = Tf;, for vector functions f = (f1,...,fs). We will show that T is
bounded from LP(W) into itself, whenever W is an A, matrix weight, and
that the converse holds with one additional hypothesis on K.

For each € > 0 we define the truncated operator TE componentwise by
(T;f)i =T.f;, and we define T. by

T, f(x) = sup |T- f (z)],
e>0

for any vector function f € L"(m) and 1 <r < co. By noting that

we see that T, is of weak type (1,1) and that the estimate
T.f(z) < _Cr for almost all z € R™ (6.2)
S = e | |

holds as in the scalar case (see Proposition 5.9 and Lemma 5.10). By Lemma
5.4, the truncated operators 7., converges weakly in LP(m) to an operator
To € B(LP,L?), for some sequence €; — 0. By Lemma 5.5, there exists a
function b € L>°(m) such that Tf = Ty f +bf, for all f € LP(m). We define
fo componentwise by (fof)i = To fi, for any vector function f € LP(m).

Given any matrix-valued function W : R® — C%?, we let WT denote
the operator (WT)f(x) = W (x)Tf(z), and similarly for the operators T.
and fo. We also let

(WT).f(z) = sup W (2)T% f ()]
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Lemma 6.1. If W is a matriz A, weight then WYPTyf| < (WYPT), f
a.e., for all f € LP(m).

Proof. From the definition of fg, it follows that
[t sgydm — [(Gof.g)dm asj— o,

for all f € LP and g € L¥'. Notice that W?'/P is locally integrable, by The
Reverse Holder Inequalities. Since W'/? is self-adjoint a.e., it follows that

Aj = ‘/(Wl/pfof,g> dm — /(Wl/pﬁjf,w dm‘ —0 asj— oo, (6.3)

for all f € L? and for all bounded, compactly supported functions g. By
The Monotone Convergence Theorem, it suffices to show that the set

Ny = {z e R" : [WPT, f(z)| > (W'PT), f(z) + a}

has measure zero, for each oo > 0. If |N,| > 0 then there exists a compact
subset K C N, with |K| > 0. Define the function g on R™ by

g = [sgno (WYPTyf)] xxk,

where sgn(z) := z/|z|, for z € C4\{0}, and sgn(0) := 0. With this particular
choice of g, we get

8y = | [ W Tpidm— [T g g)dm

K

> [ W Tfldn | [(WT, £,g)dn
K

> / \WAPT, f| dm — / WP f|dm
K K

> [ (WPTyf = WT). f) dm > K]
K

for all j € N, contradicting (6.3). O

6.1 The Relative Distributional Inequality

Let us fix a matrix A, weight W and choose § > 0 such that The Reverse
Holder Inequalities (3.15) - (3.17) hold. The objective of this section is to
show that, whenever ¢ < p + 0, there exists a constant C; > 0 such that

[(WYPTY, fllqg < ColWYPf|l,,  for all f e C(R™;CY). (6.4)

We establish (6.4) via the so called relative distributional inequality (6.5).



6.1. THE RELATIVE DISTRIBUTIONAL INEQUALITY 53

Lemma 6.2. Assume that F' and G are nonnegative measurable functions
on R™ and assume that | F||; < oo, for some 1 < g < oco. If there exists
constants b,c > 0 such that

{z e R": F(z) > a; G(z) < ca}| < %bq|{x eR™: F(z) > ba}|, (6.5)
for all o > 0, then | F||, < 2¢79||Gl4-
Proof. From (6.5) it follows that
dr(a) = |{z:F@)>a;G)<ca)| + |[{z: F(z) > a; Gz) > ca)]
< %qup(ba) + dg(ca).

Multiplying both sides in the above by ga?~!, integrating in a over (0, 00)
and changing variables, we obtain

1 _
1E1G < SIEIG + e NGIIZ.
Since || F||q < o0, the result follows. O

Now, fix an arbitrary f € C2°(R™;C%) and ¢ < p+ . We will show that
the functions

F = (WYPT).f and G :=max (M (WYPf), My (WY?f))  (6.6)

satisfy (6.5), for some ¢ independent of f. Then Lemma 6.2 and the L?
boundedness of the weighted maximal operators implies (6.4). Of course,
we also have to check that || F||, < oco.

Lemma 6.3. The function F = (WY/PT), f is in L9(m).
Proof. From (6.2) we get

Pl < CIW @I

< , for almost all z € R™.
(L4 |z)m

Choose a nonzero scalar function ¢ € C°(R™; C). Then

C/
— < M(|W|~YP¢)(x), forall z € R",
(L+ [a])m

for some constant C’ > 0 (see Remark 2.19). It follows that
F(z) < C"||W(2)||MPM(||[W|~YP¢)(x), for almost all z € R™.

However, since W is a matrix A, weight, ||W]| is a scalar A, weight and, by
Theorem 4.6, the function

IWMP MW~ 2) = Myw) ()
is in LI(m). O
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To prove the relative distributional inequality (6.5) we employ two pre-
liminary results. Given a cube @, we denote by 3@ the cube with the same
center as @ and side length 3 - [(Q).

Lemma 6.4. Any measurable set E C R™, with 0 < |E| < 0o, can be covered
a.e. by a collection of disjoint cubes {Q;} satisfying

(i) >2;1Q;1 < 2|E| and
(i) 13Q; N E°| = Cn|3Q;] ,
for some dimensional constant C,, > 0.

Proof. For almost all x € E there exists, by The Lebesgue Differentiation
Theorem, a dyadic cube @@ C R™ containing z such that

QN E[/|Q = 1/2. (6.7)

Also, |Q| < 2|E| < oo, for any cube @ satisfying (6.7). Therefore we may
define {Q;} as the set of maximal dyadic cubes satisfying (6.7). Thus E C
U;Q; up to sets of measure zero and, by disjointness of the Q;’s,

1R <2 1Q; N E| =2|E].
i i

To verify (ii) we fix an arbitrary cube @ € {Q,} and let Q" denote the next
larger dyadic cube containing @. Then Q' C 3Q and |Q' N E| < 1/2|Q’|, by
maximality of Q. It follows that

BQNE| > |Q NE| = Q- 1Q NE| >1/2|Q"| =1/2-(2/3)"[3Q],
as desired. m
Lemma 6.5. Let f € L"(m), for some 1 < r < co. Assume that Q C R
is a cube and fix arbitrary points y € Q and T € 3Q. Let B = B(z,4dia @)

and let fo = xpef. Then there exists a constant A > 0 independent of Q
such that

T fo(x) <d-T.f(z)+ AMf(§), foralzeQ.

Proof. By (6.1) it suffices to consider the scalar case d = 1. Let § = dia Q.
Figure 6.1 illustrates the present construction. Notice that

T.ole) = Too(@) € 3 [ 1Kela =) = Kol@ =)l 1) d,

where we have splitted B¢ into four disjoint sets
S1 = B°NB(x,e)NB(z,¢)
Sy = B°NB(x,e)°NB(Z,e)°
S3 = B°NB(x,e)NB(Z,e)°
Sq4 = B°NB(z,e)°NB(Z,e).
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Y

Figure 6.1: The construction from Lemma 6.5.

Clearly, the integral over S vanishes. Let us consider the integral over Ss.
Since 2|z — Z| < 46 and

ly =yl <ly—2|+25 <3/2y — 7],
for all x € Q and y € B¢, Lemma 5.6 yields

0A

K (x—y)—-K(Z—y)| £ 7—=,
|Ke(z—y) (Z—y)l P

whenever x € @ and y € So. (6.8)

Since B¢ C B(§,0)¢, we get

/ = JA/ Mdy
51 B(7,6)¢ ly — g|*t
3 /()
- / 0 d 6.9
kz—:*o ors<|y—gl<zitis [y — Yl Y (6.9)
< 2A(3_ 2 MIE),

k=0

whenever z € Q. For the integral over S3, we notice that |y — 7| < 3/2|y — Z|
and |y — Z| < 2|z —y|, for x € Q and y € S5. It follows that Ss C B(g, 3¢)
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and hence

/ < / K@) 1f)ldy< S / F)ldy < C'M(),
S3 B(y,3¢) B(y,3¢)

E’ﬂ

where we have employed the bound |K(z)| < Blz|™ to obtain the second
inequality. The integral over Sy yields a similar estimate, and therefore

|T: fo(z) — Te f2(T)] < AM f(§), whenever z € Q. (6.10)

By noting that T fo(Z) = Tys f(Z) when € < 46 and T; f2(Z) = T f(Z) when
€ > 46, we see that

(T (@) < sup [T (2)| < T.f(@), for all e >0,
e>4

and hence the estimate (6.10) implies that

whenever x € Q. O

Proposition 6.6. With the notation in (6.6): If 1 < q < p+ ¢ then there
exists constants 0 < b < 1 and ¢ > 0, both independent of f, such that

{x e R": F(z) > a; G(z) < ca}| < %b‘ﬂ{m eR": F(z) > ba}|, (6.11)

for all a > 0.

Proof. Fix an arbitrary a > 0. By Lemma 6.4 it suffices to show that there
exists constants 0 < b < 1 and ¢ > 0 independent of « such that

1
{xeQ:F(z)>a; G(x) <ca}| < qu\QL (6.12)
for any cube Q C R™ with [3Q N E¢| > C,|3Q)|, where
E:={z e€R": F(zx) > ba}.

Indeed, E may be covered a.e. by a collection of disjoint cubes {Q;} satis-
fying (i) and (ii) in Lemma 6.4 and, since

D:={zeR": F(z)>a;Gx) <ca} CE,
we obtain

J

1
DI =|Dn{J@,|=>_IDnQ;| < 5zﬂ|E|.
J

Notice that |E| < oo, since F' € L7 and (6.12) is trivial if |E| = 0. Thus we
assume that @ is a cube satisfying |3Q N E¢| > C,|3Q| and we will deduce
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suitable bounds on b and c. In what follows we let C denote a positive generic
constant, which value may vary at different occurrences. Let O denote the
ball with the same center as () and radius 6dia ). Notice that 3Q C O.
Now, if |[VoW (z)~¥?|| > C, for all z € 3Q N E°, then (ii) in Lemma 6.4
implies that

Y

/ VoW (2) 7|17 da / VoW (2)~ V7|7 dz
O 3QNE*°

CP[3Q N E°| > C7 C, |3Q)
= cr'col,

v

contradicting The Reverse Holder Inequality (3.16) when C' is sufficiently
large. Thus there exists a point & € 3@ such that

F(z)<ba and |VoW(z)"V?| <C. (6.13)

Let ¢ = WYPf. We may assume that there exists a point § € @Q with
My 9(9) < coy; otherwise [{z € Q : M{,g(x) < ca}| =0 and (6.12) is trivial.
Let B = B(z,4dia@). Notice that @ C B C O and that these sets are of
proportional measure. Let fi = xpf and fo = xpef. Then f = fi + f> and,
by sublinearity of (W/PT),, it suffices to show that

1
{x e Q: Fi(z) >a/2} < ébq|Q|, fori=1,2,

where F; := (WY/?T), f.
Estimate with F: For each R > 0 we let

Sp={zr€Q: (VsT).fi(z) > a/(2R)}

and
Np={zeQ:|W()"/"V;'| > R}.

Since T, is of weak type (1,1) and, since T, (Vi f1) = (V5T)s f1, we see that
CR
ISkl < THVBﬁHl‘

Furthermore, since

Vs il /B Vi ()] de = /B VW ()~ VPg(z)| de

< [BIMyg(y) < CealQ),

we must have |Sg| < CcR|Q|. By The Reverse Holder Inequality (3.17),

RP|Ng| < /

W (@) PV P da < / W (@) PVt P de < C'1Q),
Ng Q
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and hence |[Ngr| < C'R7P|Q|. Now, since
Fi(z) < |[W(@)Y?V3 - (VBT). fi(z), for all z € R”,
we have
Hz € Q: Fi(z) > a/2}| < |SrUNg| < (CcR+ C'R7P)|Q).

Taking the infimum over all R > 0, we conclude that

Hz e Q: Fi(z) > a/2}| < Cic?/ PHD|Q).

Estimate with F5: Since B and O are of proportional measure,
Vol < Vdp,,p(v) < Cpyo(v) < CVoul,

and hence |VzV5 'v| < Cv|, for all v € C. Tt follows that |[VsV, | < C
and hence
[VEW (2)~ 17| < C|[VoW ()77

Combining this with (6.13), we see that
(VBT).f(z) < |[VaW(z)~V/7| - F(z) < Coba.
Employing Lemma 6.5 we obtain

< d-(VBT).f(Z)+ AM(Vsf) (%)
< Chba + AMy,g(y)
< (Cyb+ Ac)a,

(VBT fa(w)

for all x € Q. We now repeat the strategy employed in the estimate with
Fy: Taking ¢ < r < p + §, The Reverse Holder Inequality yields |[Ng| <
C"R™"|Q|, and so

{z € Q: Fa(z) > R(C3b+ Ac)a}| < [Ng| < C"R™"|Q).
A particular choice of R = (4bC%)~! yields
{z € Q: Faz) > (1/4+ Csb™ c)a}] < Cad"[Q)-

Thus the proof may be performed with b = min{1/2, (8C4)~% (=9} and ¢
so small that

Cic?/P+) <1/80% and  1/4+ Csb~'e < 1/2.

This completes the proof of Proposition 6.6 and with it the estimate (6.4).
O
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6.2 The Main Theorems

Lemma 6.7. If W is a locally integrable matriz weight, then C°(R"; C%)
is dense i LI(W), for each 1 < g < 0.

Proof. We employ the well-known fact that C°(R™;C) is dense in (the
scalar) L(u), whenever p is a Radon measure on the Borel algebra in R”,
i.e. when pu(K) < oo, for any compact set K C R™. Notice that, if w is a
nonnegative locally integrable function on R™, then the Borel measure w dm,
given by E — f g wdm, is a Radon measure.

Choose an arbitrary f = (f1,...,fs) € LYW) and let {e;} denotes the
standard basis of C?. Then

U1l ... Ulg
wh/a =

Ugr ... Udd

where u;; 1= (Wl/qej, e;) are a.e. positive and g-locally integrable functions
on R™. Since

(WYa(f - g)|* < d®? max [ui; (f; = g5)|* < d* 2N gy (f; = 9511,
| )
for any function g = (¢1,...,94), it follows that
||f - 9”%(1(1/1/) < d3q/2 Z ”fJ - g]'HqLQ(u;?j dm)’
0.

for any measurable g and, by choosing an appropriately g € C°(R"; C%),
we can make each term on the right in the above arbitrary small. O

We are now ready to show one of the main results of this thesis. Let
WY/PTW—1/? denote the operator given by

(WYPTW =Y P)g () = W (2) /PT(W2g) ().

Theorem 6.8. Assume that W is an A, matriz weight. Then there exists

a6 > 0 such that WYPTW =P is a bounded linear operator from a dense
subset of LY(m) into LI(m), whenever |p — q| < . In particular, T has a
unique linear extension that is bounded from LP(W) into LP(W).

Proof. Let
D = {ge CXR";CY : (W Pg) € C=(R™ CY)}.

By The Reverse Holder Inequality (3.15), W9/P is locally integrable and
hence C° is dense in L9(W9/P). Notice that the map f — @(f) := W/ f
is an invertible isometry from L(W%/?) into L?. Fix an arbitrary h € L4
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and an € > 0. Choose f € LI(W%/?) such that h = ¢(f) and choose g € C°
with [|f — gl Le(wasry < &. Then ¢(g) € D and

Ih = e(9)llg = le(f = 9llq = IIf = gllLaqwarny <,

showing tllat D is dense in L9.
Since T'f = Tof + bf, for some a.e. bounded scalar function b, Lemma
6.1 yields
(WYPTW = P)g(a)| = [(WHYPToW—P)g(x) + b(w)g(x)]
(WYPT) (W 1Pg)(x) + Clg(=),

IN

for almost all z € R™, whenever (W~1/Pg) € LP. By Minkowski’s Inequality
and (6.4) we have, in particular, that

IWYPTW = P)glly < IWHPT). (WP g)lly + Cliglly < Callglla,

for all g € D.
To verify the last assertion of the theorem, we simply notice that, by the
above,

/ ‘Wl/pff‘P dm = / |(W1/hW—1/p)(W1/pf)|p dm < O/ |W1/pf|p dm,

for all f € C°(R";C%). Thus T admits a unique bounded linear extension
from LP(W) into itself. O

In order to prove the ”converse” of Theorem 6.8 we employ the following
preliminary result.

Lemma 6.9. Let 1 < p < oo and fix an arbitrary ball B C R™. Assume
that k : R™ x R®™ — C is measurable, supported in B x B and satisfies
|k(z,y)| < |B|7Y, for all (z,y) € B x B. Then the linear operator S, defined

by
Sf(x) = / ko, y) ) dy,

is bounded from LP(W) into LP(W) with operator norm ||S| < Cql|VeVE|,
for some constant Cy > 0 independent of the particular choice of S. In the
special case where k = |B|~Yxpxp we also have ||S|| > C; ' |VEVE]|.

Proof. Since any f € LP(W) is locally integrable, it follows that S is well-
defined on LP(W). Fix an arbitrary f € LP(W) with || f| z»w) < 1. Then

(W (2)/7Sf(z)]

IN

|7§| /B W ()7 £ ()] dy

! 1/p —1/p|p’ v
Bl BIIW(w) W(y)~/"|I” dy ;

IN
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by Hélder’s Inequality. Let {e;} denote the standard basis of C? and let
C' > 0 denote a generic constant. Then

L@@ g <[ ama W) @) ) dy
B B v

< O3 [ W) Wy el dy
/B

< CYIBI-|VEW (@) rel

< CIBI- VAW (@)/7|,

and consequently
(W (2)Y/?PSf(x)| < C|B|~Y?|VEW (2)/7||, for all 2 € R™.

Repeating the strategy employed above we obtain
1
1550wy < gy [ IVEW @)1 da

i 1/py! o |P
O3 1 [, W Ve

O IVaViel” < ClIVaV]?,

IN

as desired.
Now, for the particular choice of k = |B|~'xpxp we have

Py B(U)
[|S]| = sup —F2=—,
| w0 (Pp,B)* (1)

by (3.13) in Section 3.3. However, since (p, p)*(v) ~ |V 'v| and Py (V) ~
[Vhvl, we get

V’VBU V’v
VeVl = sup VBB _ g, W50
vto Y] w20 |Vg v

< sl

as claimed. O

Theorem 6.10. Let W be a matriz weight and assume that the kernel K
has the additional property that there exists a constant a > 0 and a unit
vector u € R™ such that

|K(ru)| > a|r|™™, for all r € R\{0}. (6.14)

If T is bounded from LP(W) into LP(W), then W € A,,.
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Proof. Choose € > 0 such that £24+2¢ < %C’;Q, where Cy > 0 is the constant
appearing in Lemma 6.9. Choose A > 0 such that |[VK (z)| < Alz|~""!, for
allz # 0. Let A = max{4,2""2A-(ae)~1}. We claim that, for any r € R\{0},

|K(x) — K(rAu)| < e|K(rAu)|, whenever z € B(rAu,2|r|). (6.15)
To see this, define ¢ : [0,1] — R™ by ¢(t) = (z — rAu)t + rAu. Notice that

1
Alrl < le@)] + (@ = rau)t] < ()] + 2] < [p)] + FAlr,

and hence A|r| < 2|p(t)], for all ¢ € [0,1]. Applying The Mean Value The-
orem to the function ¢t — K (p(t)), we conclude that there exists a number
7 € (0,1) such that

n+1

2ntiA
rAul € S 0lr| < e K (rha)),

- <
K () — K (rhu)| < S

EoI Gl

where the last inequality follows by the assumption (6.14).

Fix an arbitrary ball B = B(Z,r) in R"™ and let B’ = B(Z + ru,r).
Notice that B and B’ are disjoint. Define the linear operator S on LP(W)
by

59 = xp(@) T T N)e) = [ b)) do
where
k(z,y) = xBxB(2,Y) » K(z — 2)K(z —y) dz.
If T is bounded on LP(W), then so is S and ||S| < ||T']|?. Notice that
K(z—2)K(z —y) = K(rauw)K(—rXu) + K1 (2,9, 2),

where

Ki(z,y,2) = [K(z—y)—K(r\)]-[K(z—z)— K(—riu)]
+  [K(z—2)— K(-r\u)] - K(rAu)
+ [K(z—y) - K(rau)] - K(—ru).

Thus S = Sy + 51, where
Sof (x) := | BIK (rAu)K (—ru) / s (@) () dy

and
$1@) = [ (o) [ Kooz az ) £
Since z,y € B and z € B’ implies that

(z—y) € B(r\u,2r) and (x—z)€ B(—rl\u,2r),
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we can apply the estimate (6.15) to obtain
1
K (2,9, 2)] < (€2 + 28)[K (ru)| - [ K (=rdu)| < 5CCo,

whenever x,y € B and z € B’, where Cy := |K(rAu)| - |K(—rAu)|. By
Lemma 6.9 there exists a constant Cy; > 0 independent of B such that
1Soll = CIVEVE] and [|S1]| < 5C|[VEV]l, with

2 a202

C = CO'B‘QC(Zl > = )\QnCd.

a
— |7"/\|2"

. (Unrn)200?1
It follows that
1
ClVeVgl < IS = Sill < ||S]l + §CIIVBV1’3H,

and hence
A2 C||T||?
a?v?

independent of B. Thus we conclude, by Proposition 3.21, that W € 4,. O

IVaVg] <20718|| <

< 00,

Remark 6.11. The kernel of the Riesz transform,

Ly
Cn |x|n+1’

K(j)(z) -

satisfies (6.14) with u =e; and any 0 < a < ¢,.



Appendix A

Index of Notation

B(x,r)

XS

C(R™; CY)
dia S

The Euclidean ball in R™ with center  and radius r
The characteristic function of a set S

The set of compactly supported C> functions from R" into C%
The diameter of S

The dual exponent, p' = p/(p — 1)

The Euclidean inner product on C¢ x C¢

The Euclidean norm on C? (or R?)

The side length of a cube @ C R™

The Lebesgue measure on the Borel algebra in R™
The Lebesgue measure of E, i.e. |E| = m(E)

The Lebesgue measure of the unit ball in R™

The operator norm of A € C¢*4

The partial derivative of f w.r.t. the ith variable
The Schwartz space

The standard basis of C?

The support of f

The unit sphere in R”.
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