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Semester: Mat-6
Project Period: February 2nd - June 5th

Supervisor: Morten Nielsen

Abstract: We consider the problem of extending weighted inequalities for a
singular integral operator T to the vector-valued operator ~T defined compo-
nentwise by (~Tf)i = Tfi, for functions f = (f1, . . . , fd) from Rn into Cd. We
introduce the notion of a matrix weight and the associated weighted norm
space Lp(W ). The classic Muckenhoupt Ap condition is extended to matrix
weights and several alternative characterizations of the Ap class is given.
The main result is that ~T is bounded from Lp(W ) into Lp(W ) whenever W
is an Ap matrix weight. We also show that, with one additional assumption
on the kernel of T , the converse holds; if ~T is bounded on Lp(W ), then
necessarily W is an Ap weight. As basic tools in our analysis, we introduce
the notions of maximal functions and interpolation, and show several funda-
mental results concerning these. Also, standard results from the technique
of ”truncating integrals” are covered here.
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Preface

This thesis is the result of my Mat-6 Project at The Department of Mathe-
matical Sciences at Aalborg University. Some of the results here are of fun-
damental type in the theory of singular integrals, while others are of more
recent appearing. In particular, the main theorems are based on the paper
”Matrix Ap Weights Via Maximal Functions”, by Michael Goldberg [1].

The reader is assumed to be familiar with basic measure and integral
theory, basic functional analysis and also some theory of distributions. The
last page of the report contains a list over references, which is referred to by
a number in brackets, [reference number ]. Also, in the back of the report,
there is an index of notation.

Anders G. Aaen
Aalborg, June 2009
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Chapter 1

Introduction

In the present thesis we consider singular integral operators of convolution
type. Formally, these are operators of the form

Tf(x) =
∫

Rn
K(x− y)f(y) dy, (1.1)

defined for suitable complex-valued functions f on Rn. The kernel K is
singular near the origin in the sense that the integral in (1.1) need not
to converge absolutely. The subject of interest concerning such operators
is their boundedness properties as linear operators between (weighted) Lp

spaces. A thorough study of this has had great impact in the theory of partial
differential equations. In what follows, we consider a classical example of a
singular integral operator.

1.1 The Riesz Transform(s)

In Rn there exists n Riesz transforms similarly defined. For 1 ≤ j ≤ n, we
define the function K = K(j) on Rn\{0} by

K(x) = cn
xj
|x|n+1

, x = (x1, . . . , xn),

where | · | denotes The Euclidean norm on Rn and

cn :=
Γ(n+1

2 )

π
n+1

2

is a normalization constant. The j’th Riesz transform R = R(j) is then
given by

Rf(x) = p.v.

∫
K(x− y)f(y) dy := lim

ε→0

∫
|y|≥ε

K(x− y)f(y) dy,
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2 CHAPTER 1. INTRODUCTION

whenever this limit exists. In order to obtain an explicit domain of definition
for R, it is convenient to introduce a tempered distribution (also denoted by
K) by

〈K, f〉 = lim
ε→0

∫
|x|≥ε

K(x)f(x) dx,

defined for Schwartz functions f ∈ S. To see that this indeed is a well-defined
tempered distribution, we first notice that∫
|x|≥ε

K(x)f(x) dx =
∫
ε≤|x|≤1

K(x)(f(x)− f(0)) dx+
∫
|x|>1

K(x)f(x) dx,

since K has integral zero over the set ε ≤ |x| ≤ 1. By The Mean Value
Theorem, we see that

|f(x)− f(0)| ≤ Cf |x|, where Cf :=
n∑
i=1

sup
x∈Rn

|∂if(x)|.

It follows that |K(x)(f(x)− f(0))| ≤ cnCf |x|−n+1 and, by The Dominated
Convergence Theorem, we conclude that∫

ε≤|x|≤1

K(x)(f(x)− f(0)) dx→
∫
|x|≤1

K(x)(f(x)− f(0)) dx as ε→ 0.

For the integral over the set |x| > 1, we simply notice that∫
|x|>1

|K(x)f(x)| dx ≤ cn
∫
|x|>1

|xf(x)|
|x|n+1

dx ≤ nvncnC ′f ,

where C ′f := supx∈Rn |xf(x)| and vn denotes the Lebesgue measure of the
unit ball in Rn. Thus K is well-defined and

|〈K, f〉| ≤ nvncn(Cf + C ′f )→ 0, whenever f → 0 in S,

showing that K is a tempered distribution. We can now express Rf in terms
of the distribution K as

Rf(x) = (K ∗ f)(x) := 〈K, f(x− ·)〉, for f ∈ S.

That is, R is the operator given by convolution with the tempered distribu-
tion K.

Employing the Fourier transform F and the co-Fourier transform F̄ , it
is possible to give an alternative characterization of the Riesz transform,
namely

Rf(x) = F̄
(
− i ξj
|ξ|
Ff(ξ)

)
(x), for f ∈ S.

This is shown in e.g. [2]. By The Plancherel Theorem, we then conclude
that the Riesz transform is bounded on L2(m), i.e.∫

|Rf |2 dm ≤ C
∫
|f |2 dm, for all f ∈ S,
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where m denotes the Lebesgue measure.
The Riesz transforms illustrates perfectly the kind of singular integral

operators we will be considering. In general, we say that T is a singular
integral operator (of convolution type) associated with a regular kernel K if
Tf = K ∗ f , for some tempered distribution K, such that

(i) away from the origin, K agrees with an ordinary function, also de-
noted by K. This means that there exists a measurable function
K : Rn\{0} → C such that

〈K, f〉 =
∫
Kf dm,

whenever f is a compactly supported C∞ function that vanishes near
the origin.

(ii) The function K is C1 and there exists constants B,C > 0 such that

|K(x)| ≤ B|x|−n and |∇K(x)| ≤ C|x|−n−1, for all x 6= 0.

Having introduced the notion of singular integral operators, we now
briefly clarify the aim of this thesis.

1.2 Weighted Inequalities

A weight is a positive measurable function on Rn. Associated to each weight
w and each exponent 1 ≤ p <∞, we define the weighted space Lp(w) as the
set of Borel functions f : Rn → C, for which

‖f‖Lp(w) :=
(∫
|f |pw dm

)1/p

<∞.

Now, assume that T is a singular integral operator associated with a regular
kernel, and assume that∫

|Tf |p dm ≤ C
∫
|f |p dm, for all f ∈ S,

for some 1 < p <∞ and some constant C > 0. It is of interest to characterize
the set of all weights w such that T is bounded from Lp(w) into itself, i.e.

‖Tf‖Lp(w) ≤ C‖f‖Lp(w), for all f ∈ Lp(w). (1.2)

This problem was solved in the 1970’s by Hunt-Muckenhoupt-Weeden [5].
For 1 < p < ∞, we let p′ = p/(p − 1), and we let |E| denote the Lebesgue
measure of any measurable set E.
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4 CHAPTER 1. INTRODUCTION

Theorem 1.1 (Hunt-Muckenhoupt-Weeden). T is bounded on Lp(w) if w
satisfies the Ap condition, i.e. if there exists a constant Ap > 0 such that(

1
|B|

∫
B

w dm

)1/p

·
(

1
|B|

∫
B

w−p
′/p dm

)1/p′

≤ Ap,

for all Euclidean balls B ⊂ Rn.

Furthermore, it was shown that, with one additional assumption on the
kernel (stated in Chapter 6), the converse is also true: if T is bounded from
Lp(w) into itself, then necessarily w satisfies the Ap condition. The main
result of this thesis is a generalization of Theorem 1.1 (and its converse),
showed recently in [1]. Given the operator T , we define a new operator ~T
by

~Tf = (Tf1, . . . , T fd),

for vector functions f = (f1, . . . , fd) from Rn into Cd. The above notion
of a weight generalizes to a matrix-valued function from Rn into the set of
positive definite d× d matrices. Each matrix weight W induces a weighted
space Lp(W ) of vector functions. We state a matrix analogue of the Ap
condition and show that Theorem 1.1 generalizes perfectly to the vector-
valued operator ~T .
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Chapter 2

Interpolation and
Maximal Functions

In this chapter we introduce the notions of interpolation and maximal func-
tions. These are fundamental tools in our analysis of singular integral oper-
ators. The main results are Theorem 2.14, The Marcinkiewicz Interpolation
Theorem, and Theorem 2.17, The Maximal Theorem.

We let 〈·, ·〉 denote the Euclidean inner product on Cd × Cd, i.e.

〈(u1, . . . , ud), (v1, . . . , vd)〉 = u1v̄1 + . . .+ udv̄d,

and | · | denotes the Euclidean norm |v| =
√
〈v, v〉. For any x ∈ Rn and r > 0

we let B(x, r) denote the Euclidean ball in Rn with center x and radius r,
i.e.

B(x, r) = {y ∈ Rn : |y − x| < r}.
The Lebesgue measure on the Borel algebra in Rn is denoted by m and we
will consistently write |E| = m(E), for measurable sets E ⊆ Rn. We also
use dx as a shorthand for dm(x).

2.1 Lp and Weak Lp

Let µ denote a nonnegative σ-finite measure on a sigma-algebra over a
nonempty set X. We are primary interested in the case where µ is the
Lebesgue measure. However, we will keep the general setup in this and the
following section, since it is just as easy. Denote by M(µ) the set of all
µ-measurable functions from X into Cd.

Definition 2.1. For 1 ≤ p < ∞ we define the space Lp(µ) as the set of all
f ∈M(µ) with

‖f‖p := ‖f‖Lp(µ) :=
(∫
|f |pdµ

)1/p

<∞.
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Functions in Lp(µ) are called equal in Lp(µ) if they are equal µ-a.e. in
the usual sense. Notice that any measurable function f defined a.e. on X
can be extended to a function f̃ ∈ M(µ), and we may define ‖f‖p = ‖f̃‖p
independent of the actual extension.

In the scalar case d = 1, it is a well-known fact that (Lp(µ), ‖ · ‖p) is a
Banach space. This is easily extended to the general case, since

|fi| ≤ |f | ≤
√
dmax

i
|fi| ≤

√
d
∑
i

|fi|

and, as a consequence,

‖fi‖p ≤ ‖f‖p ≤
√
d
∑
i

‖fi‖p,

for any function f = (f1, . . . , fd) ∈M(µ).
If f = (f1, . . . , fd) ∈ L1(µ), then we define the µ-integral of f by∫

f dµ =
(∫

f1 dµ, . . . ,

∫
fd dµ

)
.

We still have the property that∣∣ ∫ f dµ
∣∣ ≤ ∫ |f | dµ.

To see this, fix an arbitrary f ∈ L1(µ) with
∫
f dµ 6= 0, and let

u =
∣∣ ∫ f dµ

∣∣−1
∫
f dµ.

Then |u| = 1 and∣∣ ∫ f dµ
∣∣ =

∣∣〈u,∫ f dµ〉
∣∣ ≤ ∫ |〈u, f(x)〉| dµ(x) ≤

∫
|f | dµ.

Definition 2.2. Given any function f ∈ M(µ), we define the distribution
function df on [0,∞) by

df (α) = µ ({x ∈ X : |f(x)| > α}) .

Notice that
df (α) =

∫
X

χG(x, α)dµ(x),

where G := {(x, α) ∈ X × (0,∞) : |f(x)| > α} is a µ⊗m-measurable subset
of X × (0,∞). By Tonelli’s Theorem, this implies in particular that df is
measurable on (0,∞).

Proposition 2.3. The distribution function df is decreasing and right-
continuous.
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Proof. It is clear that df is decreasing. To see that it is right-continuous,
we first assume that αn ↘ α. For each n ∈ N we let

En = {x ∈ X : |f(x)| > αn}.

Then χEn ↗ χE , where E := {x ∈ X : |f(x)| > α} and, by The Monotone
Convergence Theorem, df (αn) = µ(En) ↗ µ(E) = df (α). Now assume
more generally that αn → α+ and fix an arbitrary ε > 0. Since (α+ 1/n)↘
α, the preceding implies that df (α + 1/n) ↗ df (α), and therefore we can
find m ∈ N such that

df (α)− df (α+ 1/m) < ε.

Then choose N ∈ N such that αn ≤ α + 1/m whenever n ≥ N . Since df is
decreasing, this implies that

df (α)− df (αn) ≤ df (α)− df (α+ 1/m) < ε,

whenever n ≥ N .

The following properties are easily verified using the definition of the
distribution function.

Proposition 2.4. For any f, g ∈M(µ) and α, β ≥ 0 we have

(i) df ≤ dg whenever |f | ≤ |g| µ-a.e.,

(ii) dcf (α) = df (α/|c|), for any c ∈ C\{0}, and

(iii) df+g(α+ β) ≤ df (α) + dg(β).

Proposition 2.5. For any f ∈M(µ) and 1 ≤ p <∞, we have

‖f‖pp = p

∫ ∞
0

αp−1df (α)dα. (2.1)

Proof. Let G = {(x, α) ∈ X × (0,∞) : |f(x)| > α}. Then

p

∫ ∞
0

αp−1df (α)dα = p

∫ ∞
0

αp−1

∫
X

χG(x, α)dµ(x)dα

= p

∫
X

∫ |f(x)|

0

αp−1dαdµ(x)

=
∫
X

|f(x)|pdµ(x),

where we have employed Tonelli’s Theorem to interchange the order of in-
tegration.

Definition 2.6. The space L∞(µ) is the set of all f ∈M(µ) with

‖f‖∞ := ‖f‖L∞(µ) := inf{α > 0 : df (α) = 0} <∞.
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Notice that df (‖f‖∞) = 0. We call functions in L∞(µ) equal if they are
equal a.e. in the usual sense. From Proposition 2.4 it readily follows that
L∞(µ) is a normed space. Furthermore, since

dfi(α) ≤ df (α) ≤
∑
i

dfi(α/
√
d),

and consequently,

‖fi‖∞ ≤ ‖f‖∞ ≤
√
d
∑
i

‖fi‖∞,

for any f = (f1, . . . , fd) ∈ M(µ), we easily extend the well-known fact that
(L∞(µ), ‖ · ‖∞) is a Banach space, when d = 1, to the general case.

We now define a space somewhat larger that Lp.

Definition 2.7. For 1 ≤ p < ∞ we define the space Lp,∞(µ) as the set of
all f ∈M(µ) with

‖f‖p,∞ := ‖f‖Lp,∞(µ) := inf{C > 0 : df (α) ≤ Cp/αp for all α > 0} <∞.

For convenience we let L∞,∞(µ) = L∞(µ).

The space Lp,∞(µ) is called weak Lp(µ). Notice that, for p <∞,

df (α) ≤
‖f‖pp,∞
αp

, for all α > 0,

and
‖f‖p,∞ = sup{αdf (α)1/p : α > 0}.

As for Lp(µ), we consider functions equal in Lp,∞(µ) if they are equal a.e.
in the usual sense.

Proposition 2.8. For each 1 ≤ p ≤ ∞, Lp,∞(µ) is a quasi-normed space.

Proof. If ‖f‖p,∞ = 0 then df (0) = df (‖f‖p,∞) = 0 and hence f = 0 µ-a.e.
Combined with Proposition 2.4 (ii), this shows in particular that ‖cf‖p,∞ =
|c|‖f‖p,∞, for any c ∈ C. To verify the quasi-triangle inequality, we apply
Proposition 2.4 (iii) to obtain

αdf+g(α)1/p ≤ 2
(
‖f‖pp,∞ + ‖g‖pp,∞

)1/p ≤ 2
(
‖f‖p,∞ + ‖g‖p,∞

)
,

for all α > 0, and hence

‖f + g‖p,∞ ≤ 2(‖f‖p,∞ + ‖g‖p,∞),

as desired.

Proposition 2.9. For any f ∈ M(µ) and 1 ≤ p ≤ ∞, we have ‖f‖p,∞ ≤
‖f‖p and, as a consequence, Lp(µ) ⊆ Lp,∞(µ).
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Proof. Since
αpχ{x∈X:|f(x)|>α}(x) ≤ |f(x)|p,

for all x ∈ X and α > 0, it follows that αpdf (α) ≤ ‖f‖pp, for all α > 0, and
hence ‖f‖p,∞ ≤ ‖f‖p.

When p < ∞, the space Lp(µ) is in general a proper subset of Lp,∞(µ)
as illustrated by the following example.

Example 2.10. Define f m-a.e. on Rn by f(x) = |x|−n/p. Using polar
coordinates we see that

‖f‖pp =
∫
X

|x|−ndµ(x) =
∫
Sn−1

∫ ∞
0

rn−1

|rξ|n
drdω(ξ) = nvn

∫ ∞
0

1
r
dr =∞,

where ω denotes the surface measure on the unit sphere Sn−1 and vn denotes
the Lebesgue measure of the unit ball in Rn. However, since

df (α) = |{x ∈ Rn : |x|−n/p > α}| = |B(0, α−p/n)| = vn/α
p,

it follows that ‖f‖p,∞ = v
1/p
n <∞.

2.2 Interpolation

The notion of interpolation provides us with a useful tool regarding Lp

norms, for p ranging over some interval: it turns out that a great deal
of information can be extracted just by considering the endpoints of the
interval. As an easy application of Proposition 2.5, we have the following
result.

Proposition 2.11. Let 1 ≤ p < q ≤ ∞ and let f ∈ Lp,∞(µ) ∩ Lq,∞(µ).
Then f ∈ Lr(µ), for any p < r < q.

Proof. If q <∞, then

‖f‖rr = r

∫ 1

0

αr−1df (α) dα+ r

∫ ∞
1

αr−1df (α) dα

≤ r‖f‖pp,∞
∫ 1

0

αr−1−p dα+ r‖f‖qq,∞
∫ ∞

1

αr−1−q dα,

and the integrals are both finite, since r − p > 0 and r − q < 0. If q = ∞,
then df (α) = 0, for all α ≥ ‖f‖∞, and hence

‖f‖rr ≤ r‖f‖pp,∞
∫ ‖f‖∞

0

αr−1−p dα <∞,

as desired.
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Shortly we will present The Marcinkiewicz Interpolation Theorem, but
first we introduce some notation. In addition to the measure µ, we let ν
denote a nonnegative σ-finite measure on a sigma-algebra over a set Y .

Definition 2.12. Let D be a subspace of M(µ). A map T : D →M(ν) is
called sublinear if

|T (αf + βg)| ≤ |α| |T (f)|+ |β| |T (g)|,

for all α, β ∈ C and f, g ∈ D.

Notice that any linear operator is sublinear. Whenever T is a sublinear
operator, we will frequently write Tf instead of T (f).

Definition 2.13. Let D be a subspace of M(µ) and fix exponents 1 ≤ p ≤
∞ and 1 ≤ q ≤ ∞. A sublinear operator T : D →M(ν) is said to be of type
(Lp(µ), Lq(ν)) if there exist a constant A > 0 such that

‖Tf‖Lq(ν) ≤ A‖f‖Lp(µ) for all f ∈ Lp(µ).

T is said to be of weak type (Lp(µ), Lq(ν)) if there exist a constant B > 0
such that

‖Tf‖Lq,∞(ν) ≤ B‖f‖Lp(µ) for all f ∈ Lp(µ).

When no chance of confusion, we shall frequently refer to the two above
types of operators simply as type (p, q) respectively weak type (p, q). As the
name suggests, any operator of type (p, q) is also of weak type (p, q), since
‖Tf‖q,∞ ≤ ‖Tf‖q. If T is of type (p, q) (respectively weak type (p, q)) then
we shall also say that T is bounded from Lp(µ) into Lq(ν) (respectively weak
Lq(ν)).

In the following we let

Lp(µ) + Lq(µ) = {f + g : f ∈ Lp(µ), g ∈ Lq(µ)}.

Theorem 2.14 (The Marcienkiewicz Interpolation Theorem). Let 1 ≤ p <
q ≤ ∞ and assume that T : Lp(µ) + Lq(µ)→M(ν) is sublinear and simul-
taneously of weak type (p, p) and weak type (q, q). Then T is of type (r, r),
for any p < r < q.

Proof. Fix an arbitrary f ∈ Lp(µ). For each α > 0 we let Eα = {x ∈ X :
|f(x)| > δα} and define

fα1 = fχEα and fα2 = fχEcα ,

where δ > 0 is chosen appropriately later. Notice that f = fα1 + fα2 . Since
p− r < 0 we have |f |p−rχEα ≤ (δα)p−r, and hence

‖fα1 ‖pp =
∫
X

|f |r|f |p−rχEα dµ ≤ (δα)p−r‖f‖rp,
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showing that fα1 ∈ Lp(µ). For q < ∞, a similar argument shows that
fα2 ∈ Lq(µ), and clearly fα2 ∈ L∞(µ). By sublinearity of T and Proposition
2.4 we obtain

dTf (α) ≤ dT (fα1 )(α/2) + dT (fα2 )(α/2),

which combined with Proposition 2.5 yields

‖Tf‖rr ≤ r
∫ ∞

0

αr−1dT (fα1 )(α/2)dα+ r

∫ ∞
0

αr−1dT (fα2 )(α/2)dα. (2.2)

Since T is of weak type (p, p),

dT (fα1 )(α/2) ≤
‖T (fα1 )‖pp,∞

(α/2)p

≤ (2A)pα−p‖fα1 ‖pp

= (2A)pα−p
∫
X

|f(x)|pχEα(x)dµ(x),

for some constant A > 0. By Tonelli’s Theorem, the last expression in the
above is a measurable function of α, and therefore the first term on the right
in (2.2) is dominated by

r

∫ ∞
0

αr−1

(
(2A)pα−p

∫
X

|f(x)|pχEα(x)dµ(x)
)
dα,

which, again by Tonelli’s Theorem, equals

r(2A)p
∫
X

|f(x)|p
∫ |f(x)|/δ

0

αr−1−pdαdµ(x) =
r(2A)p

r − p
1

δr−p
‖f‖rr.

For q < ∞, we can estimate the second term in (2.2) in a similar way to
obtain the desired without any restrictions on δ. In the case q = ∞ we
assume that

‖Tf‖∞ ≤ B‖f‖∞, for all f ∈ Lq(µ),

and put δ = (2B)−1. By noting that

‖T (fα2 )‖∞ ≤ B‖fα2 ‖∞ ≤ Bδα = α/2,

for all α > 0, we see that

dT (fα2 )(α/2) ≤ dT (fα2 )(‖T (fα2 )‖∞) = 0,

for all α > 0, and hence the second term on the right in (2.2) vanishes.



i
i

i
i

i
i

i
i

12 CHAPTER 2. INTERPOLATION AND MAXIMAL FUNCTIONS

2.3 The Maximal Function

The maximal function, first introduced by Hardy & Littlewood, is one of the
cornerstones in our analysis of singular integral operators. In Chapter 4 we
will also define the maximal function associated to a weight. We now leave
the general setting from the previous sections and, unless otherwise stated,
the measure under consideration is the Lebesgue measure.

Definition 2.15. Given a measurable function f : Rn → Cd, we define the
maximal function Mf on Rn by

Mf(x) = sup
x∈B

1
|B|

∫
B

|f | dm,

where the supremum is taken over all balls B ⊂ Rn containing x. The map
f 7→Mf is called the maximal operator.

Notice that the maximal operator is sublinear. Also notice that the set
{x ∈ Rn : Mf(x) > α} is open, for each α ≥ 0. In particular, this shows
that Mf is measurable. The fundamental property concerning the maximal
operator is the fact that it is of weak type (1, 1) and of type (p, p), for any
1 < p ≤ ∞. To prove this we employ the following lemma.

Lemma 2.16 (The Vitali Covering Lemma). Any finite collection of balls
{Bj} in Rn has a subcollection {Bj1 , . . . , Bjk} of pairwise disjoint balls such
that ∣∣⋃

j

Bj
∣∣ ≤ 3n

k∑
i=1

|Bji |. (2.3)

Proof. Start by choosing Bj1 to be of maximal radius from {Bj}. If any
of the remaining balls are disjoint from Bj1 , then we choose Bj2 to be of
maximal radius among these. Next, if any of the remaining balls are disjoint
from Bj1 ∪ Bj2 , then we choose Bj3 to be of maximal radius among these.
Proceeding in this way, we obtain a subcollection {Bj1 , . . . , Bjk} which, by
construction, consists of pairwise disjoint balls. If a ball B = B(x, δ) is
not selected, then B intersects some ball Bji = B(y, r) with r > δ, and
hence B ⊆ 3Bji := B(y, 3r). Thus we can cover ∪jBj by the union of
3Bj1 , . . . , 3Bjk , leading to the estimate

∣∣⋃
j

Bj
∣∣ ≤ ∣∣ k⋃

i=1

3Bji
∣∣ ≤ k∑

i=1

|3Bji | = 3n
k∑
i=1

|Bji |,

as claimed.

Theorem 2.17 (The Maximal Theorem). The maximal operator f 7→Mf
is of weak type (1, 1) and of type (p, p), for each 1 < p ≤ ∞.
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Proof. Clearly M is of type (∞,∞) and, by The Marcinkiewicz Interpolation
Theorem, it then suffices to show that M is of weak type (1, 1). Fix an
arbitrary f ∈ L1(m) and an α > 0. Let Eα := {x ∈ Rn : Mf(x) > α}. We
must show that

dMf (α) := |Eα| ≤
C

α
‖f‖1, (2.4)

for some constant C > 0 independent of f and α. By inner regularity of the
Lebesgue measure, it suffices to verify (2.4) with Eα replaced by an arbitrary
(nonempty) compact subset K ⊂ Eα. For each x ∈ K there exists a ball Bx
containing x such that

1
|Bx|

∫
Bx

|f | dm > α. (2.5)

The collection {Bx}x∈K is an open covering of K and, by compactness of
K, we can extract a finite subcover {Bj}. By The Vitali Covering Lemma,
this subcover has a subcollection {Bj1 , . . . , Bjk} of pairwise disjoint balls
satisfying (2.3). Thus

|K| ≤
∣∣⋃
j

Bj
∣∣ ≤ 3n

k∑
i=1

|Bji | ≤
3n

α

k∑
i=1

∫
Bji

|f | dm ≤ 3n

α

∫
|f | dm,

where the last inequality follows from the disjointness of the Bji ’s.

Corollary 2.18. If f ∈ Lp(m), for any 1 ≤ p ≤ ∞, then Mf is finite a.e.

Proof. Let N = {x ∈ Rn : Mf(x) =∞}. Since M is of weak type (p, p),

|N | ≤ dMf (α) ≤
‖Mf‖pp,∞

αp
≤
C‖f‖pp
αp

,

for all α > 0, and consequently |N | = 0.

Remark 2.19. The maximal function is not of type (1, 1). Indeed, any
nonzero compactly supported function is not mapped into L1(m) by M . To
see this, assume that supp(f) ⊂ B(0, R). Then supp(f) ⊆ B(x, |x|+R), for
all x ∈ Rn, and hence

Mf(x) ≥ 1
|B(x, |x|+R)|

∫
B(x,|x|+R)

|f | dm =
‖f‖1

vn(|x|+R)n
,

for all x ∈ Rn. Using polar coordinates we then see that

‖Mf‖1 ≥ ‖f‖1
vn

∫
Sn−1

∫ ∞
0

rn−1

(|rξ|+R)n
drdω(ξ)

= n‖f‖1
∫ ∞

0

rn−1

(r +R)n
dr ≥ n‖f‖1

∫ ∞
R

rn−1

(r +R)n
dr

≥ n‖f‖1
2n

∫ ∞
R

1
r
dr =∞,

as claimed.
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Theorem 2.20 (The Lebesgue Differentiation Theorem). For any locally
integrable function f : Rn → Cd, we have

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y) dy = f(x), for almost all x ∈ Rn.

Proof. For each r > 0 we let

fr(x) =
1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy.

Since

0 ≤
∣∣∣∣ 1
|B(x, r)|

∫
B(x,r)

f(y) dy − f(x)
∣∣∣∣ ≤ fr(x),

it suffices to show that

f∗(x) := lim sup
r→0

fr(x) = 0,

for almost all x ∈ Rn. Notice that fr is measurable. This follows readily
from Tonelli’s Theorem and the continuity of | · |. Also notice that f∗ = 0,
whenever f is continuous. We may assume that f ∈ L1(m), since replacing
f with fχB(0,k), for k ∈ N, and noting that (fχB(0,k))∗ = f∗ on B(0, k),
allows us to conclude that f∗ = 0 a.e. in B(0, k) and consequently that
f∗ = 0 a.e. By right continuity of df∗ , it suffices to show that df∗(α) = 0,
for an arbitrary α > 0. Since 0 ≤ f∗ ≤Mf + |f |, we have

df∗(α) ≤ dMf (α/2) + df (α/2)

≤ 2‖Mf‖1,∞
α

+
2‖f‖1,∞

α

≤ C‖f‖1
α

,

where the last inequality follows from Theorem 2.17. Now fix an arbitrary
ε > 0 and choose g ∈ Cc(Rn; Cd) with ‖f − g‖1 < ε. Since g is continuous
and, since (f + g)∗ ≤ f∗ + g∗, we have (f − g)∗ = f∗. Thus

df∗(α) = d(f−g)∗(α) ≤ C

α
‖f − g‖1 <

C

α
ε,

and we are done.

Corollary 2.21. For any measurable function f , we have |f | ≤Mf a.e.

2.4 The Dyadic Maximal Function

In this section we introduce a variant of the maximal function defined in the
last section. By a cube Q in Rn of side length l(Q) > 0 we mean a set of
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the form Q = [a1, b1]× . . .× [an, bn] where l(Q) = b1 − a1 = . . . = bn − an.
Notice that |Q| = l(Q)n. Also notice that the boundary of any cube has
measure zero. For this reason we use the convention to call cubes disjoint,
whenever their interiors are disjoint. For any nonempty set S ⊆ Rn, we let
diaS denote the diameter of S, i.e.

diaS = sup
x,y∈S

|x− y|.

Cubes and balls in Rn are equivalent in the sense that there exist a constant
c > 1 such that, for any cube Q, we can find balls B,B′ with

B ⊂ Q ⊂ B′ and |B′| ≤ c|B|,

and visa-versa (with a possibly different constant c′ > 1). The following
special family of cubes are of particular interest to us.

Definition 2.22. A dyadic cube in Rn is a cube of the form

[m12−k, (m1 + 1)2−k]× . . .× [mn2−k, (mn + 1)2−k],

where k,m1, . . . ,mn ∈ Z. A dyadic cube in R is called a dyadic interval.

It might be useful to consider a more geometric characterization of dyadic
cubes: Let D0 denote the collection of cubes with vertices at Zn. Then let
D1 denote the collection of cubes obtained by bisecting the sides in each cube
in D0. We construct D2 by bisecting sides in D1 and so on. Starting again
from D0, we let D−1 denote the collection of cubes obtained by gathering
2n neighbor cubes from D0 into single cubes. In a similar way we construct
D−2 from D−1 and so on. If D denotes the collection of all dyadic cubes,
then

D =
⋃
k∈Z
Dk.

Notice that the cubes in Dk have side length 2−k and that a cube in Dk give
rise to 2n cubes in Dk−1.

Let us note an important property of dyadic cubes: Any two dyadic
cubes are either disjoint or one is contained in the other. To see this, we
note that any two dyadic intervals of the same length are either disjoint or
coincide. Given two arbitrary dyadic intervals I and J with, say, l(I) ≤ l(J)
then J is composed of dyadic intervals of length l(I), and hence I ∩ J = ∅
or I ⊆ J . Since the sides in any cube are of equal length, the result is easily
extended to general dyadic cubes.

Definition 2.23. Given a measurable function f : Rn → Cd, we define the
dyadic maximal function Mf on Rn by

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

|f | dm,

where the supremum is taken over all dyadic cubes Q containing x.
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Remark 2.24. Since cubes are closed sets it is not obvious that Mf is
measurable. In fact, we will not attempt to prove it. However, this difficulty
may be avoided by restricting the domain of definition ofMf to points not on
the boundary of any dyadic cube. As seen by inspection of each particular
case, this restriction has no effect in our applications of Mf , since the
discarded set has measure zero.

Since cubes and balls are equivalent, we see that Mf ≤ cMf , for some
constant c > 1. Thus we immediately conclude that The Maximal Theorem
holds for the dyadic maximal operator and in particular thatMf <∞ a.e.,
whenever f ∈ Lp(m), for any 1 ≤ p ≤ ∞. We also have the following variant
of The Lebesgue Differentiation Theorem: For any locally integrable f ,

lim
diaQ→0

1
|Q|

∫
Q

f dm = f(x),

for almost all x ∈ Rn. Here the limit is taken over any sequence of dyadic
cubes containing x with diameters converging to zero.
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Chapter 3

Ap Weights

This chapter is devoted to the notion of Ap weights. We generalize the classic
Muckenhoupt Ap condition of scalar weights to matrix-valued weights. As
in the scalar setting, the crucial property of matrix Ap weights is that they
satisfy ”Reverse Hölder Inequalities”. In fact, these are obtained from the
scalar case, and hence we start by a separate treatment of scalar weights.

For any 1 < p <∞ we let p′ = p/(p− 1) denote the dual exponent of p.

3.1 Scalar Ap Weights

Definition 3.1. A scalar weight is a measurable function on Rn which is
positive almost everywhere.

The property stated next is the classic Muckenhoupt Ap condition.

Definition 3.2. Let 1 < p < ∞. A scalar weight w is called an Ap weight
if there exists a (finite) constant C > 0 such that(

1
|B|

∫
B

w dm

)1/p( 1
|B|

∫
B

w−p
′/p dm

)1/p′

≤ C, for all balls B ⊂ Rn.

The least of such constants is called the Ap bound of w and is denoted by
Ap(w). The set of all Ap weights is called the Ap class and is denoted by
Ap.

Of course, any positive constant function is an Ap weight, for each 1 <
p <∞. Let us consider a less trivial example.

Example 3.3. The function w(x) = |x|a is an Ap weight, for any −n < a <
(p− 1)n. To see this, we fix an arbitrary ball B = B(x0, R) and let

IB =
(

1
|B|

∫
B

|x|a dx
)(

1
|B|

∫
B

|x|−a
p′
p dx

)p/p′
.
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If R < dist (0, B) := infy∈B |y|, then

|x| ≤ |x− y|+ |y| < 2R+ |y| < 2 dist (0, B) + |y| ≤ 3|y|,

for all x, y ∈ B. In particular,

1
3
|x| ≤ |x0| ≤ 3|x|, for all x ∈ B,

and consequently

IB ≤ C|x0|a(|x0|−a
p′
p )p/p

′
= C.

Now assume that R ≥ dist (0, B). Since |x0| − R ≤ |y|, for all y ∈ B, we
have |x0| −R ≤ dist (0, B) and hence

|x| ≤ R+ |x0| ≤ 2R+ dist (0, B) ≤ 3R,

for all x ∈ B. This shows that B ⊆ B′ := B(0, 3R) and hence

IB ≤
(

3n

|B′|

∫
B′
|x|a dx

)(
3n

|B′|

∫
B′
|x|−a

p′
p dx

)p/p′

=
n

Rn

∫ 3R

0

ra+n−1 dr

(
n

Rn

∫ 3R

0

r−a
p′
p +n−1 dr

)p/p′
, (3.1)

where we have used polar coordinates. The assumption that −n < a <
(p − 1)n is equivalent with a + n − 1 > −1 and −ap′/p + n − 1 > −1, and
from this we easily see that the expression in (3.1) is bounded by a constant
independent of R. This shows that w ∈ Ap.

Next we point out some simple properties of Ap. Let w,w1, w2 denote
arbitrary Ap weights and let λ > 0.

(i) Ap is closed under multiplication by positive scalars. In fact, Ap(λw) =
Ap(w), which follows directly from the definition.

(ii) Ap is closed under addition. Indeed, w1 + w2 is in Ap since (w1 +
w2)−p

′/p is dominated by both w
−p′/p
1 and w

−p′/p
2 .

(iii) Ap is closed under translation. In fact, Ap(w(·+ a)) = Ap(w), for any
a ∈ Rn, which is easily verified using the translation invariance of the
Lebesgue measure.

(iv) Ap is closed under dilation by a positive scalar. Again Ap(w(λ·)) =
Ap(w) as can be verified by change of variables.

We consider a few more properties of Ap weights. Given any scalar weight
w and a measurable set E ⊆ Rn, we use the notation w(E) :=

∫
E
w dm.

Notice that E 7→ w(E) is a Borel measure.
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Definition 3.4. A scalar weight w is said to be in the class A∞ if, for each
α ∈ (0, 1), there exists a β ∈ (0, 1) such that

|E| ≥ α|B| =⇒ w(E) ≥ βw(B),

for all balls B ⊂ Rn and for all measurable subsets E ⊆ B.

Lemma 3.5. Ap ⊆ A∞ for each 1 < p <∞.

Proof. If w ∈ Ap then Proposition 3.23 (stated and proved in larger gen-
erality in Section 3.3) shows that there exists a constant C > 0 such that(

1
|B|

∫
B

f dm

)p
≤ C

w(B)

∫
B

fpw dm, (3.2)

for all balls B ⊂ Rn and for all nonnegative measurable functions f on Rn.
Fix an arbitrary ball B ⊂ Rn and a measurable subset E ⊆ B. If |E| ≥ α|B|,
for some α ∈ (0, 1), then the particular choice of f = χE in (3.2) yields

w(E) ≥ w(B)
C

(
|E|
|B|

)p
≥ αp

C
w(B),

and hence w ∈ A∞ (we may assume that C > 1).

Definition 3.6. A Borel measure µ is called a doubling measure if there
exists a constant c > 1 such that

µ(B(x, 2δ)) ≤ cµ(B(x, δ)) for all x ∈ Rn and for all δ > 0.

Remark 3.7. If w ∈ Ap, for some 1 < p < ∞, then E 7→ w(E) is a
doubling measure. Indeed, for an arbitrary x ∈ Rn and δ > 0 we have
|B(x, δ)| = 2−n|B(x, 2δ)| and, since w ∈ Ap ⊆ A∞, there exists a constant
β ∈ (0, 1) such that w(B(x, δ)) ≥ βw(B(x, 2δ)).

3.1.1 The Reverse Hölder Inequality

The Reverse Hölder Inequality, Proposition 3.12, is the crucial property of
scalar Ap weights. To prove it we need some preliminary results. The first
lemma employs dyadic cubes and the dyadic maximal function, defined in
Chapter 2. In the proof of this lemma and several other times throughout
the report, we use the term maximal dyadic cube to mean a dyadic cube of
maximal measure.

Lemma 3.8. Let f : Rn → C be any measurable function and let α ≥ 0. If
the set

Ωα := {x ∈ Rn :Mf(x) > α}
has finite (Lebesgue) measure, then either Ωα = ∅ or Ωα is the union of
disjoint dyadic cubes {Qj} with

α <
1
|Qj |

∫
Qj

|f | dm ≤ 2nα for each j ∈ N. (3.3)
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Proof. For each x ∈ Ωα there exists a maximal dyadic cube Q containing x
such that

1
|Q|

∫
Q

|f | dm > α. (3.4)

The maximality follows from the fact that Q ⊆ Ωα and hence |Q| ≤ |Ωα| <
∞, for any dyadic cube Q satisfying (3.4). Let {Qj} denote the collection of
maximal dyadic cubes for points in Ωα. Clearly these cubes are disjoint and
their union equals Ωα. Thus the first inequality in (3.3) holds by construction
and, by letting Q′j denote the next larger dyadic cube containing Qj , we see
that

1
|Qj |

∫
Qj

|f | dm ≤ 2n

|Q′j |

∫
Q′j

|f | dm ≤ 2nα,

as desired.

There are two useful observations to be made about the decomposition
guaranteed i Lemma 3.8.

Remark 3.9. If Q0 is a dyadic cube containing the support of f and α0 =
|Q0|−1

∫
Q0
|f | dm, then Ωα ⊆ Q0, for any α ≥ α0. To see this, assume that

x /∈ Q0 and fix an arbitrary dyadic cube Q containing x. Since f is supported
in Q0 and, since either Q and Q0 are disjoint or Q0 ⊂ Q, we have

1
|Q|

∫
Q

|f | dm ≤ 1
|Q0|

∫
Q∩Q0

|f | dm ≤ α0,

showing that Mf(x) ≤ α0 ≤ α, and hence x /∈ Ωα.

Remark 3.10. If α1 ≥ α2 then Ωα1 ⊆ Ωα2 and, by maximality, each cube
in the decomposition of Ωα1 is contained in some cube of the decomposition
of Ωα2 .

Lemma 3.11. Let 1 < p < ∞ and let w ∈ Ap. Then there exists, for each
γ ∈ (0, 1), some δ ∈ (0, 1) such that

|E| ≤ γ|Q| =⇒ w(E) ≤ δw(Q),

for all cubes Q ⊂ Rn and for all measurable subsets E ⊆ Q.

Proof. Assume that |E| ≤ γ|Q|. Since cubes and balls in Rn are equivalent,
we can choose balls B,B′ such that B ⊂ Q ⊂ B′ and |B′| ≤ c|B|, for some
constant c > 1 independent of Q. Since

|Q\E| ≥ (1− γ)|Q| ≥ (1− γ)|B| ≥ 1− γ
c
|B′|,

and since w ∈ Ap ⊆ A∞, there exists a β ∈ (0, 1) such that

w(Q\E) ≥ βw(B′) ≥ βw(Q),

or equivalently, w(E) ≤ δw(Q) with δ := 1− β.
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Proposition 3.12 (The Reverse Hölder Inequality). If w ∈ Ap, for some
1 < p <∞, then there exists constants r > 1 and C > 0 such that(

1
|B|

∫
B

wr dm

)1/r

≤ C

|B|

∫
B

w dm, for all balls B ⊂ Rn. (3.5)

Proof. It suffices to show (3.5) with cubes replacing balls. To see this, fix an
arbitrary ball B and choose cubes Q,Q′ with Q ⊂ B ⊂ Q′ and |Q′| ≤ c|Q|,
for some constant c > 1. If (3.5) holds for cubes, then the doubling property
of E 7→ w(E) implies that(

1
|B|

∫
B

wr dm

)1/r

≤
(

c

|Q′|

∫
Q′
wr dm

)1/r

≤ C

|Q′|

∫
Q′
w dm ≤ C ′

|B|

∫
B

w dm.

Since Ap is closed under dilation and translation, we may assume that Q =
Q0 is a dyadic cube with |Q0| = 1. Furthermore, since Ap is closed under
multiplication by positive scalars, we may also assume that w(Q0) = 1. Thus
it suffices to show that ∫

Q0

wr dm ≤ C.

Let f = wχQ0 and define, for each k ∈ N0,

Ek = {x ∈ Rn :Mf(x) > 2Nk},

where N ∈ N is to be chosen appropriately later. Notice that

1
|Q0|

∫
Q0

f dm = w(Q0) = 1 ≤ 2Nk

and hence Ek ⊆ Q0, for all k ∈ N0, by Remark 3.9. Also notice that
Ek ⊆ Ek−1, for all k ∈ N. The crux of the proof is to show that w(Ek) ≤ δk,
for some δ ∈ (0, 1) and, since this is trivial if Ek = ∅, we fix an arbitrary
k ∈ N and assume that Ek 6= ∅. We then apply Lemma 3.8 to write Ek and
Ek−1 as disjoint unions of dyadic cubes,

Ek =
⋃
j

Qj and Ek−1 =
⋃
i

Q′i.

We will show that
|Ek ∩Q| ≤ 2n−N |Q|, (3.6)

for each Q ∈ {Q′i}. Notice that

|Ek ∩Q| =
∣∣⋃
j

(Qj ∩Q)
∣∣ =

∑
j

|Qj ∩Q|.
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By Remark 3.10, each Qj is contained in some Q′i and then, by disjointness,
either Qj ∩Q = ∅ or Qj ⊆ Q. This observation combined with Lemma 3.8
yields

|Ek ∩Q| =
∑

j:Qj⊆Q

|Qj | ≤
∑

j:Qj⊆Q

2−Nk
∫
Qj

f dm

≤ 2−Nk
∫
Q

f dm ≤ 2−Nk · 2n · 2N(k−1)|Q|

= 2n−N |Q|,

as desired. The third inequality above follows also from Lemma 3.8, with
α = 2N(k−1). Now choose any γ ∈ (0, 1) and let δ ∈ (0, 1) be given as in
Lemma 3.11. Choose N such that 2n−N ≤ γ. It follows that w(Ek ∩ Q) ≤
δw(Q) and consequently

w(Ek) = w(Ek ∩ Ek−1) = w

(⋃
i

(Ek ∩Q′i)
)

=
∑
i

w(Ek ∩Q′i) ≤ δ
∑
i

w(Q′i)

= δw(Ek−1),

for each k ∈ N. By induction we conclude that

w(Ek) ≤ δkw(E0) ≤ δkw(Q0) = δk,

for each k ∈ N0 and, as a consequence of The Lebesgue Differentiation
Theorem,∫

Q0

wr dm ≤
∫
Q0

(Mf)r−1w dm

=
∫
Q0∩E0

(Mf)r−1w dm+
∫
Q0∩Ec0

(Mf)r−1w dm.

The last integral on the right in the above is bounded by w(Q0) = 1. To
estimate the first integral, we notice that f ∈ L1(m) and so Mf < ∞ a.e.
This implies that the characteristic function of Q0 ∩ E0 = E0 equals the
characteristic function of

⋃∞
k=0Ek\Ek+1 a.e. and hence∫

Q0∩E0

(Mf)r−1w dm ≤
∞∑
k=0

∫
Ek\Ek+1

(Mf)r−1w dm

≤
∞∑
k=0

2N(k+1)(r−1)w(Ek) ≤
∞∑
k=0

2N(k+1)(r−1)δk

= 2N(r−1)
∞∑
k=0

(
2N(r−1)δ

)k
.



i
i

i
i

i
i

i
i

3.2. THE FUNCTIONAL CALCULUS 23

Since δ < 1, the above series converges whenever r > 1 is sufficiently close
to 1.

Next we wish to generalize the notion of scalar weights to matrix-valued
weights. In order to do so, we will need to make sense out of real powers of
a matrix, and hence we make a short digression into this subject.

3.2 The Functional Calculus

Let Cd×d denote the set of all complex d × d matrices. For any A ∈ Cd×d,
we let

‖A‖ = sup
|v|≤1

|Av| = sup
v 6=0

|Av|
|v|

denote the operator norm of A. If A is self-adjoint, then ‖A‖ equals the
spectral radius of A, i.e.

‖A‖ = max
λ∈σ(A)

|λ|,

where σ(A) denotes the spectrum (the set of eigenvalues) of A. Recall that
A ∈ Cd×d is called positive definite (or just positive) if 〈Av, v〉 > 0 for all v 6=
0. Notice that a positive matrix is invertible, and that its eigenvalues are all
positive. Furthermore, as a consequence of The Polarization Identity, every
positive (complex) matrix is also self-adjoint. Given a positive A ∈ Cd×d
and an exponent r ∈ R, we wish to define a matrix Ar ∈ Cd×d possessing
some nice properties. There are several equivalent ways to do this. Here we
employ the diagonalization approach.

We use the notation D(λ1, . . . λd) for a diagonal matrix with diagonal
elements λ1, . . . , λd. If A = D(λ1, . . . , λd) is positive then we define

Ar = D(λr1, . . . , λ
r
d).

More generally, if A is any positive matrix in Cd×d, then A has d lin-
early independent eigenvectors v1, . . . , vd, with corresponding eigenvalues
λ1, . . . , λd, and hence A = PDP−1, where the columns of P are the vectors
v1, . . . , vd and D = D(λ1, . . . , λd). We then define

Ar = PDrP−1.

The following properties of Ar are easily verified.

Proposition 3.13. Assume that A ∈ Cd×d is positive definite and let r, s ∈
R. Then

(i) ArAs = Ar+s

(ii) A0 = I := D(1, . . . , 1)

(iii) Ar is invertible and (Ar)−1 = A−r
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(iv) Ar is positive definite

(v) ‖Ar‖ = ‖A‖r for all r ≥ 0.

The above definition of Ar is simple, but it has the lack of one impor-
tant property. We will need the fact that Ar may be expressed as a norm
convergent power series. Let A ∈ Cd×d be positive with spectrum contained
in (a, b) ⊂ (0,∞). Let c denote the center point of (a, b). For any r ∈ R, the
function f : (0,∞)→ R given by f(x) = xr has Taylor series expansion,

f(x) =
∞∑
k=0

ak(x− c)k, ak :=
f (k)(c)
k!

,

with radius of convergence R = c. It is then shown in [3] that

Ar =
∞∑
k=0

ak(A− cI)k,

where the convergence is in operator norm.

3.3 Matrix Ap Weights

We begin by some notation. Any two nonnegative functions f and g are
called comparable or equivalent if there exists a constant c > 0 such that
c−1f(x) ≤ g(x) ≤ cf(x) for all x. We use the notation f(x) ∼ g(x) to
indicate that f and g are comparable. The standard basis of Cd is denoted
by {ei} = {e1, . . . , ed}.

Assume that W is a function from Rn into Cd×d. If f is a function from
Rn into Cd, then we let Wf denote the function (Wf)(x) = W (x)f(x). For
any r ∈ R, we let W r denote the function W r(x) = W (x)r. W is called
measurable if the component functions of W , i.e. the functions

x 7→ 〈W (x)ej , ei〉,

are measurable, for 1 ≤ i, j ≤ d. We say that W is locally integrable if ‖W‖
is.

Definition 3.14. A matrix weight is a measurable function W : Rn → Cd×d
such that W (x) is positive definite for almost all x ∈ Rn.

If W is a matrix weight then W r is measurable, for each r ∈ R. To see
this, we employ the fact that W (x)r has a norm convergent power series
expansion, i.e

WN (x) :=
N∑
k=0

ak(W (x)− cI)k →W (x)r
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in operator norm as N → ∞, for some c, ak ∈ R. Since WN is measurable
and, since

|〈W (x)rej , ei〉 − 〈WN (x)ej , ei〉| ≤ ‖W (x)r −WN (x)‖,

for each N ∈ N, it follows that each component function of W r is the
pointwise limit of measurable functions. Hence W r is measurable.

Definition 3.15. Let W be a matrix weight and let 1 ≤ p <∞. The space
Lp(W ) is the set of all measurable functions f : Rn → Cd with

‖f‖Lp(W ) := ‖W 1/pf‖Lp(m) =
(∫
|W 1/pf |p dm

)1/p

<∞.

Notice that Lp(W ) is a normed space.

Definition 3.16. For any norm ρ on Cd we define its dual norm ρ∗ on Cd
by

ρ∗(v) = sup
u 6=0

|〈u, v〉|
ρ(u)

.

Notice that

|〈u, v〉| ≤ ρ(u)ρ∗(v), for all u, v ∈ Cd. (3.7)

Also notice that ρ∗ is a norm and (ρ∗)∗ = ρ. Indeed, (3.7) implies that
(ρ∗)∗ ≤ ρ and, as a consequence of The Hahn-Banach Theorem, there exists,
for each v ∈ Cd, a nonzero u ∈ Cd, such that 〈v, u〉 = ρ∗(u)ρ(v). This shows
that (ρ∗)∗ ≥ ρ. We are particular interested in norms of the following form.

Proposition 3.17. Let A ∈ Cd×d be positive definite and define ρ on Cd by
ρ(v) = |Av|. Then ρ∗(v) = |A−1v|.

Proof. Since

|〈u, v〉|
ρ(u)

=
|〈A−1Au, v〉|
|Au|

=
|〈Au,A−1v〉|
|Au|

≤ |A−1v|,

for all nonzero u ∈ Cd, we have ρ∗(v) ≤ |A−1v|. However, for an arbitrary
v 6= 0, the particular choice of

u =
|Av|
|A−1v|

A−2v

yields
|〈u, v〉|
ρ(u)

= |A−1v|,

and hence ρ∗(v) ≥ |A−1v|.
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Let us fix a matrix weight W , a ball B ⊂ Rn and an exponent 1 < p <∞.
We assume that W and W−p

′/p are locally integrable. Throughout the
report we use the notation

ρp,B(v) := |B|−1/p‖χBv‖Lp(W )

(3.8)

ρ∗p′,B(v) := |B|−1/p′‖χBv‖Lp′ (W−p′/p),

for v ∈ Cd. Notice that ρp,B and ρ∗p′,B are norms. Using (3.7), Proposition
3.17 and Hölders Inequality, we see that

|〈u, v〉| ≤ 1
|B|

∫
B

|W (x)1/pu| ·
(
|W (x)1/pv|

)∗
dx

≤
(

1
|B|

∫
B

|W (x)1/pu|p dx
)1/p

·
(

1
|B|

∫
B

|W (x)−1/pv|p
′
dx

)1/p′

= ρp,B(u) · ρ∗p′,B(v),

and hence we always have (ρp,B)∗ ≤ ρ∗p′,B . When the ”opposite” statement
is also true we call W an Ap weight.

Definition 3.18. Let 1 < p < ∞. A matrix weight W is called an Ap
weight if W and W−p

′/p are locally integrable and if there exists a constant
C > 0 such that

ρ∗p′,B ≤ C(ρp,B)∗ for all balls B ⊂ Rn.

The least of such constants is called the Ap bound of W and is denoted by
Ap(W ). The class Ap is the set of all matrix Ap weights.

Remark 3.19. For any scalar weight w we have

(ρp,B)∗(v) = |v|
(

1
|B|

∫
B

w dm

)−1/p

and

ρ∗p′,B(v) = |v|
(

1
|B|

∫
B

w−p
′/p dm

)1/p′

.

This shows that Definition 3.18 is consistent with the definition of scalar
Ap weights and, in particular, the assumption that w and w−p

′/p are locally
integrable is unnecessary in the scalar case.

It turns out that it is possible to give an alternative characterization
of the class Ap in terms of matrices (Proposition 3.21). This is an easy
consequence of the following lemma, which is a corollary to the famous
Ellipsoid Theorem of Fritz John [4]. By an ellipsoid in Cd, symmetric about
the origin, we mean the image of the closed Euclidean unit ball in Cd, by
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some invertible linear map Φ : Cd → Cd. Of course, Φ(v) = Av, for some
invertible A ∈ Cd×d. In fact, we may assume that A is positive definite. To
see this we use polar decomposition and write A = PU , where P is positive
definite and U is unitary. If B ⊂ Cd denotes the closed unit ball, then
UB = B and hence AB = PUB = PB.

Lemma 3.20. For any norm ρ on Cd there exists a positive definite matrix
V ∈ Cd×d such that

ρ(v) ≤ |V v| ≤
√
dρ(v), for all v ∈ Cd.

Proof. Let Bρ = {v ∈ Cd : ρ(v) ≤ 1}. Clearly Bρ is convex and symmetric
about the origin. Since all norms on Cd are equivalent to the Euclidean
norm, Bρ is compact and has a nonempty interior. By John’s Theorem
there exists an ellipsoid E ⊂ Rn, also symmetric about the origin, such that

E ⊆ Bρ ⊆
√
dE.

By definition there exists a positive definite matrix V ∈ Cd×d such that
V E = B := {v ∈ Cd : |v| ≤ 1}. Now, fix an arbitrary nonzero v ∈ Cd. For
ε > 0 we define vε = (1 + ε)ρ(v)−1v. Since ρ(vε) > 1 and E ⊆ Bρ, we must
have |V vε| > 1, which is equivalent to

ρ(v) < (1 + ε)|V v|.

Taking the limit as ε→ 0 yields ρ(v) ≤ |V v|. However, since v/ρ(v) ∈ Bρ ⊆√
dE, we have v/ρ(v) =

√
dV −1u, for some u ∈ B. Hence∣∣V ( v

ρ(v)
)∣∣ =

√
d|u| ≤

√
d,

or equivalently, |V v| ≤
√
dρ(v).

Let 1 < p <∞ and let W be a matrix weight with W and W−p
′/p locally

integrable. For any ball B ⊂ Rn there exists, by Lemma 3.20, positive
definite complex d× d matrices VB and V ′B such that

|VBv| ∼ ρp,B(v) and |V ′Bv| ∼ ρ∗p′,B(v), (3.9)

uniformly in B. Throughout the report we reserve the notation VB and V ′B
to mean any two matrices satisfying (3.9).

Proposition 3.21. Let 1 < p < ∞ and let W be a matrix weight with W
and W−p

′/p locally integrable. Then W ∈ Ap if and only if there exists a
constant C > 0 such that

‖VBV ′B‖ ≤ C, for all balls B ⊂ Rn. (3.10)
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Proof. Since ρp,B(v) ∼ |VBv| uniformly in B we also have (ρp,B)∗(v) ∼
(|VBv|)∗ = |V −1

B v| uniformly in B. Notice that ‖VBV ′B‖ = ‖V ′BVB‖, since
both VB and V ′B are self-adjoint. Now, if W ∈ Ap then

|V ′BVBv| ∼ ρ∗p′,B(VBv) ≤ C(ρp,B)∗(VBv) ≤ C|V −1
B VBv|,

and hence ‖VBV ′B‖ ≤ C. Conversely, if (3.10) holds then

ρ∗p′,B(v) ∼ |V ′Bv| ≤ ‖V ′BVB‖ · |V −1
B v| ≤ C(ρp,B)∗(v),

showing that W ∈ Ap.

We will need yet another characterization of the class Ap and we employ
the following lemma.

Lemma 3.22. Let W be a matrix weight. For each f ∈ Lp(W ) we have

‖f‖Lp(W ) = sup
∣∣ ∫ 〈g, f〉 dm∣∣, (3.11)

where the supremum is taken over all g with ‖g‖Lp′ (W−p′/p) = 1.

Proof. By Hölders Inequality we have∣∣ ∫ 〈g, f〉 dm∣∣ =
∣∣ ∫ 〈W−1/pg,W 1/pf〉 dm

∣∣ ≤ ‖f‖Lp(W ) · ‖g‖Lp′ (W−p′/p),

and hence the right side in (3.11) is dominated by ‖f‖Lp(W ). However,
except in the trivial case where f = 0, the function

g := ‖f‖1−pLp(W )|W
1/pf |p−2W 2/pf

satisfies ‖g‖Lp′ (W−p′/p) = 1 and∣∣ ∫ 〈g, f〉 dm∣∣ = ‖f‖Lp(W ),

showing the opposite inequality.

Again let 1 < p <∞ and let W be a matrix weight with W and W−p
′/p

locally integrable. Given any ball B ⊂ Rn and a function f = (f1, . . . , fd)
from Rn into Cd, we use the notation

fB :=
1
|B|

∫
B

f dm =
1
|B|

(∫
B

f1 dm, . . . ,

∫
B

fd dm

)
,

whenever the fi’s are locally integrable. Let us point out that fi is in fact
locally integrable when f ∈ Lp(W ). To see this, fix an arbitrary ball B ⊂ Rn.
Then Hölders Inequality implies that∫

B

|fi| dm =
∫
|〈f, χBei〉| dm ≤ ‖f‖Lp(W ) · ‖χBei‖Lp′ (W−p′/p) <∞,

since W−p
′/p is locally integrable. Hence the linear operator f 7→ ψB(f) :=

χBfB is well defined on Lp(W ).



i
i

i
i

i
i

i
i

3.3. MATRIX AP WEIGHTS 29

Proposition 3.23. With the above notation: W ∈ Ap if and only if the
operators ψB are uniformly bounded from Lp(W ) into Lp(W ), i.e. if there
exists a constant C > 0 such that

‖ψB‖ := sup
‖f‖Lp(W )=1

‖ψB(f)‖Lp(W ) ≤ C, for all balls B ⊂ Rn. (3.12)

In fact, Ap(W ) equals the supremum of ‖ψB‖ over all balls B ⊂ Rn.

Proof. Notice that

‖ψB(f)‖Lp(W ) = |B|−1/p′ρp,B

(∫
B

f dm

)
= |B|−1/p′ sup

u 6=0

∣∣〈u, ∫
B
f dm

〉∣∣
(ρp,B)∗(u)

= |B|−1/p′ sup
u 6=0

∣∣ ∫ 〈χBu, f〉 dm∣∣
(ρp,B)∗(u)

,

whenever f ∈ Lp(W ). Taking the supremum over all f ∈ Lp(W ) with
‖f‖Lp(W ) = 1 and employing Lemma 3.22, we see that

‖ψB‖ = sup
u6=0
|B|−1/p′

‖χBu‖Lp′ (W−p′/p)

(ρp,B)∗(u)
= sup

u6=0

ρ∗p′,B(u)
(ρp,B)∗(u)

. (3.13)

Taking the supremum over all balls B ⊂ Rn yields the desired.

Corollary 3.24. If W is a matrix Ap weight, then w(x) := |W (x)1/pv|p is
a scalar Ap weight, for each nonzero v ∈ Cd. In fact, Ap(w) ≤ Ap(W ).

Proof. Notice that ‖φ‖Lp(w) = ‖φv‖Lp(W ), for any measurable scalar func-
tion φ on Rn. Thus, for an arbitrary φ ∈ Lp(w) with ‖φ‖Lp(w) = 1, we
have

‖χBφB‖Lp(w) = ‖χBφBv‖Lp(W ) = ‖χB(φv)B‖Lp(W ) ≤ Ap(W ),

and hence Ap(w) ≤ Ap(W ), by Proposition 3.23.

Corollary 3.25. If W is a matrix Ap weight, then ‖W‖ is a scalar Ap
weight.

Proof. If A ∈ Cd×d is positive definite, then it is easily seen that

‖A‖ ∼ trace(A) :=
d∑
i=1

〈Aei, ei〉.
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Thus we can estimate ‖W (x)‖ pointwise as

‖W (x)‖ = ‖W (x)2/p‖p/2 ∼ trace
(
W (x)2/p

)p/2
=

(
d∑
i=1

|W (x)1/pei|2
)p/2

∼
d∑
i=1

|W (x)1/pei|p, (3.14)

where the last ∼ readily follows by noting that

max
i
ci ≤

∑
i

ci ≤ dmax
i
ci,

for any nonnegative numbers c1, . . . , cd. By Corollary 3.24, each term in
(3.14) is a scalar Ap weight and therefore the sum is as well. Thus ‖W‖ is
an Ap weight, since it is comparable to an Ap weight.

Example 3.26. If w1, . . . , wd are scalar Ap weights, then the function W :
Rn → Cd×d, given by

W (x) = D(w1(x), . . . , wd(x)),

is a matrix Ap weight. To see this, first notice that

〈W (x)v, v〉 =
∑
i

wi(x)|vi|2 > 0,

for all nonzero v = (v1, . . . , vd) ∈ Cd and for almost all x ∈ Rn. Thus W is
a weight. Furthermore, since

‖W (x)‖ = max
i
wi(x) ≤

∑
i

wi(x)

and
‖W (x)−p

′/p‖ = max
i
wi(x)−p

′/p ≤
∑
i

wi(x)−p
′/p,

for almost all x ∈ Rn, we see that W and W−p
′/p are locally integrable. We

now employ Proposition 3.23: Since wi ∈ Ap, there exists constants ci > 0
such that

‖χBφB‖Lp(wi) ≤ ci‖φ‖Lp(wi),

for all φ ∈ Lp(wi) and for all balls B ⊂ Rn. By noting that, for any function
f = (f1, . . . , fd) : Rn → Cd,

|wi(x)1/pfi(x)|p ≤ |W (x)1/pf(x)|p ≤ dp/2 max
i
|wi(x)1/pfi(x)|p,
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for almost all x ∈ Rn, we see that

‖χBfB‖pLp(W ) ≤ dp/2
∫

max
i
|wi(x)(fi)B(x)|p dx

≤ dp/2
∑
i

∫
|wi(x)1/pχB(fi)B(x)|p dx

≤ dp/2
∑
i

cpi ‖fi‖
p
Lp(wi)

≤

(
dp/2

∑
i

cpi

)
‖f‖pLp(W ),

for any f = (f1, . . . , fd) ∈ Lp(W ). This shows that W ∈ Ap.

We close this chapter with some matrix analogies of The Reverse Hölder
Inequality, Proposition 3.12.

Proposition 3.27 (The Reverse Hölder Inequalities). Let W be a matrix
Ap weight. Then there exists a δ > 0 and constants Cq > 0 such that

1
|B|

∫
B

‖W (x)1/pV ′B‖q dx ≤ Cq whenever q < p+ δ (3.15)

1
|B|

∫
B

‖VBW (x)−1/p‖q dx ≤ Cq whenever q < p′ + δ (3.16)

1
|B|

∫
B

‖W (x)1/pV −1
B ‖

q dx ≤ Cq whenever q < p+ δ, (3.17)

for all balls B ⊂ Rn.

Proof. The proofs of these inequalities are similar, so we will show (3.15)
only. By Corollary 3.24, the functions x 7→ |W (x)1/pV ′Bei|p are scalar Ap
weights and by The Reverse Hölder Inequality, Proposition 3.12, there exists
constants ri > 1 and Ci > 0 such that(

1
|B|

∫
B

|W (x)1/pV ′Bei|pri dx
)1/ri

≤ Ci
|B|

∫
B

|W (x)1/pV ′Bei|p dx,

or equivalently,(
1
|B|

∫
B

|W (x)1/pV ′Bei|qi dx
)1/qi

≤ C ′i
(

1
|B|

∫
B

|W (x)1/pV ′Bei|p dx
)1/p

,
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for all balls B ⊂ Rn, where qi := pri. Let q0 = mini qi and let Cq = maxi C ′i.
Let δ = q0 − p and fix an arbitrary 1 ≤ q < p+ δ. Then(

1
|B|

∫
B

|W (x)1/pV ′Bei|q dx
)1/q

≤
(

1
|B|

∫
B

|W (x)1/pV ′Bei|qi dx
)1/qi

≤ C ′i

(
1
|B|

∫
B

|W (x)1/pV ′Bei|p dx
)1/p

≤ Cq

(
1
|B|

∫
B

|W (x)1/pV ′Bei|p dx
)1/p

.

Now, since
‖A‖ ≤ dmax

i
|Aei|,

for any matrix A ∈ Cd×d, we can estimate

1
|B|

∫
B

‖W (x)1/pV ′B‖q dx ≤ 1
|B|

∫
B

(
dmax

i
|W (x)1/pV ′Bei|

)q
dx

≤ dq
∑
i

1
|B|

∫
B

|W (x)1/pV ′Bei|q dx

≤ dqCq
∑
i

(
1
|B|

∫
B

|W (x)1/pV ′Bei|p dm
)q/p

≤ dqCq
∑
i

|VBV ′Bei|q

≤ dq+1Cq‖VBV ′B‖q ≤ C ′q,

as desired.
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Chapter 4

Weighted Maximal
Functions

Boundedness properties of maximal operators and singular integral opera-
tors are intimately connected. In this chapter we define maximal operators
associated with a given matrix weight W and show that these operators are
bounded from Lq(m) into Lq(m), whenever W is an Ap weight and q is
sufficiently close to p.

Throughout this chapter we assume that 1 < p < ∞ is fixed and W
denotes and arbitrary Ap weight. Furthermore, we fix δ > 0 such that The
Reverse Hölder Inequalities (3.15) - (3.17) hold.

Definition 4.1. Given a measurable function f : Rn → Cd, we define the
weighted maximal function MW f on Rn by

MW f(x) = sup
x∈B

1
|B|

∫
B

|W (x)1/pW (y)−1/pf(y)| dy,

where the supremum is taken over all balls B ⊂ Rn containing x.

The objective is to show that MW is of type (q, q), whenever |p− q| < δ.
Our first step is to establish this result for the auxiliary maximal operator
M ′W defined by

M ′W f(x) = sup
x∈B

1
|B|

∫
B

|VBW (y)−1/pf(y)| dy.

However, by employing The Reverse Hölder Inequalities, this turns out to
be more or less a repetition of the proof of The Maximal Theorem, Theorem
2.17.

Lemma 4.2. M ′W is of type (q, q), whenever q > p− δ.
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Proof. Fix an arbitrary p − δ < q < ∞. Then q′ < p′ + δ and, by The
Reverse Hölder Inequality 3.16,

1
|B|

∫
B

|VBW (y)−1/pf(y)| dy ≤ 1
|B|

∫
B

‖VBW (y)−1/p‖ · |f(y)| dy

≤
(

1
|B|

∫
B

‖VBW (y)−1/p‖q
′
dy

)1/q′ ( 1
|B|

∫
B

|f(y)|q dy
)1/q

≤ C
(

1
|B|

∫
B

|f(y)|q dy
)1/q

,

for all measurable f and for all balls B ⊂ Rn. In particular, this shows that
M ′W is of type (∞,∞), and hence it suffices to show that M ′W is of weak
type (q, q). Fix an arbitrary f ∈ Lq(m) and an α > 0. We must show that
|K| ≤ C ′α−q‖f‖qq, for any compact subset

K ⊂ Eα := {x ∈ Rn : M ′W f(x) > α}.

However, K can be covered by balls {Bx} each satisfying

α <
1
|Bx|

∫
Bx

|VBxW (y)−1/pf(y)| dy ≤ C
(

1
|Bx|

∫
Bx

|f |q dm
)1/q

,

and thereby

|Bx| <
C

αq

∫
Bx

|f |q dm.

Thus we may extract a finite subcover from {Bx}, apply The Vitali Covering
Lemma to obtain a disjoint subcollection of the subcover and estimate

|K| ≤ 3nC
αq

∫
|f |q dm,

as desired.

In analogue to the dyadic maximal operator we define the weighted dyadic
maximal operators MW and M′W by taking supremum over dyadic cubes
instead of balls. Since cubes and balls in Rn are equivalent and, since

E 7→
∫
E

|W (x)1/pv|p dx, v ∈ Cd\{0},

is a doubling measure, by Corollary 3.24 and Remark 3.7, it follows that the
Ap class can be characterized by cubes instead of balls. In particular, given
any cube Q ⊂ Rn there exists positive definite complex d × d matrices VQ
and V ′Q such that

|VQv| ∼ ρp,Q(v) and |V ′Qv| ∼ ρ∗p′,Q(v), (4.1)

independent of Q. Also, The Reverse Hölder Inequalities hold with cubes
replacing balls.
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Remark 4.3. Since M′W f ≤ cM ′W f , we immediately conclude that M′W is
of type (q, q) whenever q > p− δ.

Our next step is to show that MW is of type (q, q) whenever q is close
to p. A substantial part of this task is established separately trough Lemma
4.4.

For each dyadic cube Q ⊂ Rn we define the function NQ on Rn by letting

NQ(x) = sup
x∈R⊆Q

‖W (x)1/pV −1
R ‖,

for x ∈ Q and NQ(x) = 0 otherwise. Here the supremum is taken over all
dyadic cubes R ⊆ Q containing x.

Lemma 4.4. For q < p+ δ there exists a constant Cq > 0 such that∫
Q

Nq
Q dm ≤ Cq|Q|, for all dyadic cubes Q ⊂ Rn.

Proof. Fix an arbitrary q < p + δ. Denote by A a positive constant to be
determined appropriately later. Let {Rj} denote the collection of maximal
dyadic cubes R ⊆ Q satisfying ‖VQV −1

R ‖ > A, and let D1 = ∪jRj . We take
into account the possibility that D1 = ∅. Notice that the cubes in {Rj} are
disjoint. For x ∈ Q\D1 we have

‖W (x)1/pV −1
R ‖ ≤ ‖W (x)1/pV −1

Q ‖ · ‖VQV
−1
R ‖ ≤ A‖W (x)1/pV −1

Q ‖,

for all dyadic x ∈ R ⊆ Q, and hence NQ(x) ≤ A‖W (x)1/pV −1
Q ‖. By The

Reverse Hölder Inequality (3.17), we then see that∫
Q

Nq
Q dm ≤ Aq

∫
Q\D1

‖W (x)1/pV −1
Q ‖

q dx+
∫
D1

Nq
Q dm

≤ C

2
|Q|+

∫
D1

Nq
Q dm,

for some C > 0 independent of Q. Of course, if D1 = ∅ then we are done.
Otherwise we continue to estimate∫

D1

Nq
Q dm =

∑
j

∫
Rj

Nq
Q dm.

For each j we let

Fj = {x ∈ Rj : NQ(x) 6= NRj (x)}.

Notice thatNQ(x) ≤ A‖W (x)1/pV −1
Q ‖ whenever x ∈ Fj . Indeed, ifNRj (x) <

NQ(x), then NQ(x) may be approximated by ‖W (x)1/pV −1
R ‖, for some
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dyadic cube R containing Rj as a proper subset and, by maximality of
Rj ,

‖W (x)1/pV −1
R ‖ ≤ A‖W (x)1/pV −1

Q ‖.
It follows that∫

Rj

Nq
Q dm ≤ Aq

∫
Fj

‖W (x)1/pV −1
Q ‖

q dx+
∫
Rj

Nq
Rj
dm,

and consequently∫
Q

Nq
Q dm ≤

C

2
|Q|+ C

2
|Q|+

∑
j

∫
Rj

Nq
Rj
dm ≤ C|Q|+

∫
D1

Nq
Q dm.

Let us show that |D1| ≤ 1/2|Q| if A is sufficiently large. Since

|V −1
Rj
VQv| = |VRj (VQv)|∗ ≤ (ρp,Rj )

∗(VQv)

≤ ρ∗p′,Rj (VQv) ≤ |V ′RjVQv|,

for all v ∈ Cd, we have ‖VQV −1
Rj
‖ = ‖V −1

Rj
VQ‖ ≤ ‖V ′RjVQ‖, and hence

|Rj | · ‖VQV −1
Rj
‖p
′
≤ sup

|v|≤1

|Rj | · |V ′RjVQv|
p′

≤ dp
′/2 sup
|v|≤1

∫
Rj

|W (x)−1/pVQv|p
′
dx

≤ dp
′/2

∫
Rj

‖W (x)−1/pVQ‖p
′
dx.

By disjointness of the Rj ’s we get

Ap
′
|D1| ≤

∑
j

|Rj | · ‖VQV −1
Rj
‖p
′
≤ dp

′/2
∑
j

∫
Rj

‖W (x)−1/pVQ‖p
′
dx

≤ dp
′/2

∫
Q

‖W (x)−1/pVQ‖p
′
dx ≤ C ′|Q|,

by The Reverse Hölder Inequality. Thus we may choose A independently of
Q such that |D1| ≤ 1/2|Q|.

The crux of the proof is now over. Indeed, since Q is an arbitrary dyadic
cube and C is independent Q, we may repeat the above argument to estimate∫

Rj

Nq
Rj
dm ≤ C|Rj |+

∑
i

∫
Sji

Nq

Sji
dm ≤ C|Rj |+

∫
∪iSji

Nq
Q dm,

where {Sji } denotes the collection of maximal dyadic cubes S ⊆ Rj satisfying
‖VRjV −1

S ‖ > A. It follows that∫
Q

Nq
Q dm ≤ C|Q|+

1
2
C|Q|+

∫
D2

Nq
Q dm,
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where D2 := ∪j ∪i Sji and |D2| ≤ 1/4|Q|. This strategy may be employed
into an induction argument to show that∫

Q

Nq
Q dm ≤ C

( m∑
k=0

2−k
)
|Q|+

∫
Dm+1

Nq
Q dm, (4.2)

and |Dm+1| ≤ 2m+1|Q|, for any m ∈ N0. Since |Dm| → 0 as m → ∞ and,
since Q\D1 ⊆ Q\D2 ⊆ . . ., The Monotone Convergence Theorem implies
that χQ\Dm ↗ χQ a.e., and consequently∫

Dm

Nq
Q dm =

∫
Q

Nq
Q dm−

∫
Q\Dm

Nq
Q dm→ 0 as m→∞.

Hence the proof is concluded by taking the limit as m→∞ in (4.2).

Lemma 4.5. The weighted dyadic maximal operator MW is of type (q, q)
whenever |p− q| < δ.

Proof. Fix an arbitrary q ≥ 1 with |p− q| < δ and an arbitrary f ∈ Lq(m).
By virtue of Remark 4.3, it suffices to show that ‖MW f‖q ≤ C‖M′W f‖q.
For each x ∈ Rn we choose a dyadic cube Qx containing x and satisfying

MW f(x) ≤ 2
1
|Qx|

∫
Qx

|W (x)1/pW (y)−1/pf(y)| dy (4.3)

≤ 2‖W (x)1/pV −1
Qx
‖ ·
(

1
|Qx|

∫
Qx

|VQxW (y)−1/pf(y)| dy
)
.

For each j ∈ Z we let Fj denote the set of maximal dyadic cubes Q ∈ {Qx}
for which

2j <
1
|Q|

∫
Q

|VQW (y)−1/pf(y)| dy ≤ 2j+1. (4.4)

We may choose the cubes to be maximal, since any cube Q = Qx satisfying
(4.4) must also satisfy

|Q| ≤ |{x ∈ Rn :M′W f(x) > 2j}| ≤ 2−jq‖M′W f‖qq,∞ ≤ Cq2−jq‖f‖qq,

by Remark 4.3. Now, if MW f(x) > 0, then (4.3) implies that

2j <
1
|Qx|

∫
Qx

‖VQxW (y)−1/pf(y)‖ dy ≤ 2j+1,

for some j ∈ Z and hence Qx is contained in some cube Q ∈ Fj . Combining
this with (4.3) we see that

MW f(x) ≤ 2 · 2j+1‖W (x)1/pV −1
Qx
‖ ≤ 2 · 2j+1NQ(x),

and consequently

MW f(x)q ≤ C2jqNQ(x)q ≤ C
∞∑

j=−∞

∑
Q′∈Fj

2jqNQ′(x)q,
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for all x ∈ Rn. Employing Lemma 4.4 and the fact that the cubes in each
Fj are disjoint, we get

‖MW f‖qq ≤ C

∞∑
j=−∞

2jq
∑
Q′∈Fj

∫
Nq
Q′ dm

≤ C ′
∞∑

j=−∞
2jq

∑
Q′∈Fj

|Q′| = C ′
∞∑

j=−∞
2jq ·

∣∣ ⋃
Q′∈Fj

Q′
∣∣

≤ C ′
∞∑

j=−∞
2jq · |{x ∈ Rn :M′W f > 2j}|

= C ′
∞∑

j=−∞
2jqdM′W f (2j).

However, since the distribution function is decreasing,∫ 2j

2j−1
αq−1dM′W f (α) dα ≥ (2j−1)q−1 · dM′W f (2j)

∫ 2j

2j−1
dα

= 2−q · 2jq · dM′W f (2j),

for each j ∈ Z, and hence

∞∑
j=−∞

2jqdM′W f (2j) ≤ 2q
∞∑

j=−∞

∫ 2j

2j−1
αq−1dM′W f (α) dα

= 2q
∫ ∞

0

αq−1dM′W f (α) dα

≤ q−12q‖M′W f‖qq,

by Proposition 2.5.

The final step is to obtain the Lq boundedness of MW from its dyadic
analogue.

Theorem 4.6. The weighted maximal operator MW is of type (q, q), when-
ever |p− q| < δ.

Proof. Fix an arbitrary q ≥ 1 with |p − q| < δ. Define M̃W as MW , but
with the supremum taken over all cubes in Rn containing x. Since cubes
and balls in Rn are equivalent, it suffices to show that M̃W is of type (q, q).
Furthermore, by The Monotone Convergence Theorem, it suffices to show
that the operator M2k

W , given by

M2k

W f(x) = sup
l(Q)≤2k

1
|Q|

∫
Q

|W (x)1/pW (y)−1/pf(y)| dy,
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is of type (q, q), for each k ∈ Z with bound independent of k. Here the
supremum is taken over all cubes in Rn containing x and with side length
l(Q) ≤ 2k. For each t ∈ Rn we define MW,tf by

MW,tf(x) = sup
x∈Q∈Dt

1
|Q|

∫
Q

|W (x)1/pW (y)−1/pf(y)| dy,

where Dt denotes the set of all cubes Q ⊂ Rn, for which Q − t is a dyadic
cube. The crucial property concerning dyadic cubes is the fact that they
are nested, i.e. any two dyadic cubes are either disjoint or one contains the
other. For each t ∈ Rn, the cubes in Dt sustain this property. Hence we
can imitate the proof of the Lq boundedness of MW to show that MW,t is
also of type (q, q). In fact, the bound can be taken to be independent of t,
as seen by separate inspection of each proof of this chapter.

For each k ∈ Z we let Qk = [−2k+2, 2k+2]n. We will show that there
exists a constant C > 0 such that

M2k

W f(x) ≤ C
∫
Qk

MW,tf(x)
dt

|Qk|
, (4.5)

for all x ∈ Rn and k ∈ Z. Once this is established, the result follows from
Tonelli’s Theorem and the uniform Lq boundedness ofMW,t. To verify (4.5),
we fix an arbitrary x ∈ Rn and k ∈ Z. Choose a cube Q ⊂ Rn containing x
with

1
|Q|

∫
Q

|W (x)1/pW (y)−1/pf(y)| dy > 1
2
M2k

W f(x)

and 2j−1 < l(Q) ≤ 2j , for some integer j ≤ k. Define

Ω =
{
t ∈ Qk : Q ⊆ Qt, for some Qt ∈ Dt with l(Qt) = 2k+1

}
.

We claim that Ω is measurable and |Ω| ≥ 2n(k+1). First consider the case n =
1. By visualizing all intervals of length 2k+1 containing Q, it is geometrically
evident that Ω is the union of two disjoint intervals of length

2k+1 − l(Q) ≥ 2k+1 − 2k = 2k.

For a general n ≥ 1, we project Ω onto the axes and conclude, by the
preceding, that Ω is the union of 2n disjoint cubes of side length at least 2k.
Thus |Ω| ≥ 2n · (2k)n = 2n(k+1). For each t ∈ Ω, |Qt| ≤ 4n|Q|, and hence

MW,tf(x) ≥ 1
|Qt|

∫
Qt

|W (x)1/pW (y)−1/pf(y)| dy (4.6)

≥ 4−n

|Q|

∫
Q

|W (x)1/pW (y)−1/pf(y)| dy ≥ (2 · 4n)−1M2k

W f(x).

Now it follows from (4.6) that

1
|Qk|

∫
Qk

MW,tf(x) dt ≥ 1
|Qk|

∫
Ω

MW,tf(x) dt ≥ (4n · 22n+1)−1M2k

W f(x),

proving (4.5) and the theorem with it.
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Chapter 5

Truncation of Singular
Integrals

Recall from Chapter 1 that the Riesz transform was defined in terms of
”truncated integrals” over sets |y| ≥ ε. This technique turns out to be useful
also when dealing with general singular integral operators. The results in
this chapter play a crucial role in the ”weighted inequalities” in Chapter
6. We consider a singular integral operator T associated with a regular
kernel K, as defined in Chapter 1. Furthermore, we assume that, for some
1 < p <∞, there exists a constant A > 0, such that

‖Tf‖p ≤ A‖f‖p, for all f ∈ S.

It is a fundamental result, shown in e.g. [6], that T has a bounded linear
extension of weak type (1, 1) and of type (q, q), for each 1 < q < ∞. This
extension is also denoted by T . The fact that K is a function away from the
origin implies that

Tf(x) =
∫
K(x− y)f(y) dy, for all x /∈ supp(f), (5.1)

whenever f ∈ C∞c (Rn; C). In fact, (5.1) holds a.e., for any compactly sup-
ported function f ∈ Lp(m). To see this, first note that Hölder’s Inequality
and the estimate |K(x)| ≤ B|x|−n implies that y 7→ K(x − y)f(y) is inte-
grable whenever x /∈ supp(f). Then choose a sequence fk ∈ C∞c (Rn; C) with
supp(fk) ⊆ supp(f) such that fk → f in Lp. By continuity of T , Tfk → Tf
in Lp, and hence∫

K(x− y)fkj (y) dy → Tf(x) as j →∞,

for almost all x /∈ supp(f), for some subsequence fkj . However, we also have∫
K(x− y)fkj (y) dy →

∫
K(x− y)f(y) dy as j →∞,
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provided that x /∈ supp(f).
For each ε > 0 we define the measurable functionKε on Rn\{0} by letting

Kε(x) = K(x) if |x| ≥ ε and Kε(x) = 0 otherwise. By the assumption
|K(x)| ≤ B|x|−n, the function Kε(x − ·) is bounded, for each x ∈ Rn.
Furthermore,

dKε(x−·)(α) ≤ |{y ∈ Rn : B|x− y|−n > α}| = vnB

α
,

for each α > 0, and hence K(x − ·) ∈ L1,∞(m), for each x ∈ Rn. By
Proposition 2.11, we then conclude that Kε(x−·) is in Lr(m), for any r > 1
and, by Hölder’s Inequality, we may therefore define the truncated operator
Tε on Lp(m) by

Tεf(x) =
∫
Kε(x− y)f(y) dy, for x ∈ Rn.

We also define the sublinear operator T∗ on Lp(m) by

T∗f(x) = sup
ε>0
|Tεf(x)|, for x ∈ Rn.

It turns out that Tf in some sense is controlled pointwise by T∗f , and hence
we will elaborate on various estimates concerning T∗. However, our first
step is to show that the truncated operators Tε are of type (p, p) with bound
independent of ε. We need the following preliminary result.

Lemma 5.1. Let B denote the collection of balls in Rn with fixed radius
r > 0. Then B has a countable maximal disjoint subcollection, i.e. there
exists a collection {B(xk, r)}k∈N of pairwise disjoint balls such that, for any
x ∈ Rn, B(x, r) ∩B(xk, r) 6= ∅, for some k ∈ N.

Proof. This is a direct application Zorn’s Lemma. Denote by X the set of
all disjoint collections of balls of radius r. We order X partially by letting
F ≤ F ′ whenever F ,F ′ ∈ X and F ⊆ F ′. Each chain C in X is clearly
bounded above by

⋃
F∈C F ∈ X, and hence X has a maximal element F0.

To see that F0 is countable, we define ϕ : Zn → F0 by letting ϕ(t) = B(x, r)
if t ∈ B(x, r) and ϕ(t) = 0 otherwise. By disjointness of the balls in F0, ϕ
is well-defined and, by density of the rationals, it takes Zn onto F0, showing
that F0 is countable.

Lemma 5.2. Tε is of type (p, p) with bound independent of ε.

Proof. Fix an arbitrary ε > 0 and an f ∈ Lp(m). By employing a density
argument, we may assume that f is compactly supported. It suffices to show
that ∆ε := T − Tε is of type (p, p) with bound independent of ε. Fix an
arbitrary x̄ ∈ Rn. For each δ > 0 we let χδ := χB(x̄,δ). We will show that

‖χaε∆εf‖p ≤ C‖χbεf‖p, (5.2)
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for some constants a, b, C > 0 independent of ε, x̄ and f . First notice that
∆εf(x) = 0 for almost all x with supp(f) ⊆ B(x, ε)c. Also notice that
B(x, ε) ⊆ B(x̄, bε) whenever x ∈ B(x̄, aε) and b ≥ 1 + a. Since

f = fχB(x,ε) + fχB(x,ε)c ,

the linearity of ∆ε and the fact that Tε(fχB(x,ε))(x) = 0, shows that

χaε∆εf = χaε∆εχbεf a.e.

Furthermore, since

χaε∆εχbεf = χaε∆εχdεf + χaε∆ε(χbε − χdε)f,

where d > 0 will be chosen appropriately later, it suffices to show (5.2) with
∆εf replaced by ∆εχdεf respectively ∆ε(χbε − χdε)f . Regarding the first
estimate, we assume that a + d ≤ 1 and d < b. Then B(x̄, dε) ⊆ B(x, ε)
whenever x ∈ B(x̄, aε) and, since Tεχdεf(x) = 0 when B(x̄, dε) ⊆ B(x, ε),
this implies that

χaε∆εχdεf(x) = χaεTχdεf.

Since ‖Tf‖p ≤ A‖f‖, for all f ∈ Lp, we get

‖χaε∆εχdεf‖p = ‖χaεTχdεf‖p ≤ A‖χdεf‖p ≤ A‖χbεf‖p,

as desired.
For the second estimate, we first notice that

∆ε(χbε − χdε)f = ∆ε(χbε − χdε)fχB(x,ε) = TfχE ,

where E := B(x, ε) ∩ B(x̄, bε)\B(x̄, dε). If we assume that a < d, then
B(x̄, aε) ∩ supp(fχE) = ∅, and hence

∆ε(χbε − χdε)f(x) =
∫
E

K(x− y)f(y) dy,

for almost all x ∈ B(x̄, aε). If x ∈ B(x̄, aε) and y ∈ E, then

dε ≤ |x̄− y| ≤ aε+ |x− y|,

and therefore

|K(x− y)| ≤ B

|x− y|n
≤ B′

εn
.

We have now shown that∣∣∣∣ ∫
E

K(x− y)f(y) dy
∣∣∣∣ ≤ B′

εn
‖χbεf‖1 ≤ B′′ε−n/p‖χbεf‖p,

for almost all x ∈ B(x̄, aε), and consequently

‖χaε∆ε(χbε − χdε)f‖pp ≤
B′′

εn
‖χbεf‖pp · |B(x̄, aε)| = C‖χbεf‖pp.
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Thus (5.2) holds provided that a, b, d are chosen appropriately. This can be
done by letting a < d < 1/2 and b ≥ 1 + a.

We may cover Rn with a countable collection of balls {B(x̄k, aε)}. In-
deed, Lemma 5.1 guaranties the existence of a maximal disjoint collection
of balls {B(x̄k, aε/2)} such that, for each y ∈ Rn, we have B(y, aε/2) ∩
B(x̄k, aε/2) 6= ∅, for some k ∈ N, and hence y ∈ B(y, aε/2) ⊆ B(x̄k, aε).
Also, there exists a number N such that no point y ∈ Rn belongs to more
than N of the balls B(x̄k, bε). To see this, assume that

y ∈
N⋂
j=1

B(x̄kj , bε).

Then B(x̄kj , aε/2) ⊆ B(y, rε), for some r > 0 independent of y, and hence

N · |B(y, rε)| =
N∑
j=1

|B(y, rε)| = (2r/a)n
N∑
j=1

|B(x̄kj , aε/2)|

= (2r/a)n
∣∣( N⋃
j=1

B(x̄kj , aε/2
)∣∣ ≤ (2r/a)n|B(y, rε)|,

showing that N ≤ (2r/a)n. Then, finally,∫
|∆εf |p dm ≤

∞∑
k=1

∫
B(x̄k,aε)

|∆εf |p dm ≤ C
∞∑
k=1

∫
B(x̄k,bε)

|f |p dm

≤ CN

∫
|f |p dm,

and we are done.

In what follows we let B(Lp, Lp) denote the set of all bounded linear
operators from Lp(m) into Lp(m).

Definition 5.3. A sequence of operators Tj ∈ B(Lp, Lp) is said to converge
weakly in Lp to T0 ∈ B(Lp, Lp) if∫

(Tjf)h dm→
∫

(T0f)h dm as j →∞,

for all f ∈ Lp and for all h ∈ Lp′ .

As a consequence of the uniform Lp boundedness of Tε and The Banach-
Alaoglu Theorem, we have the following result. For the details see [2].

Lemma 5.4. There exists a sequence εj → 0 such that Tεj converges weakly
in Lp to an operator T0 ∈ B(Lp, Lp).

The crucial role of the operator T0 is stated in the following Lemma.
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Lemma 5.5. There exists a function b ∈ L∞(m) such that

Tf = T0f + bf a.e., for all f ∈ Lp(m).

Proof. For each ε > 0 we let ∆ε = T − Tε. By Lemma 5.4, ∆εj converges
weakly in Lp to ∆ := T − T0, for some sequence εj → 0. For each k ∈ N
we let Bk = B(0, k). We define b a.e. on Bk by b = ∆(χBk). Of course, if
x ∈ Bk, then x ∈ Bk′ , for each k′ ≥ k, so in order for b to be well-defined
a.e., we must show that

∆(χBk) = χBk∆(χBk′ ) a.e. whenever k′ ≥ k.

Assume that g is a bounded and compactly supported function on Rn. First
notice that

∆ε(gχQ) = χQ∆εg a.e., (5.3)

for any cube Q ⊂ Rn and for ε sufficiently small. Indeed, x ∈ Qc implies that
supp(gχQ) ⊆ B(x, ε)c, for small ε, and hence ∆ε(gχQ)(x) = 0. Similarly,
x ∈ Qo (the interior of Q) implies that supp(gχQc) ⊆ B(x, ε)c, for small ε,
and so

∆ε(gχQ)(x) = ∆εg(x)−∆ε(gχQc)(x) = ∆εg(x).

Next we show that (5.3) holds with ∆ε replaced by ∆. For any h ∈ Lp′ we
have∫

∆(gχQ)h dm = lim
j→∞

∫
∆εj (gχQ)h dm = lim

j→∞

∫
(∆εjg)(χQh) dm

=
∫

∆g(χQh) dm =
∫

(χQ∆g)h dm

and, as a consequence of The Hahn-Banach Theorem, we conclude that
∆(gχQ) = χQ∆g a.e. By linearity of ∆, this also holds with χQ replaced
by any linear combination of characteristic functions of cubes. If O ⊂ Rn
is nonempty and open with finite measure, then O = ∪∞j=1Qj , where {Qj}
denotes the collection of (disjoint) maximal dyadic cubes contained in O.
Hence fm :=

∑m
j=1 χQj → χO pointwise and, since both |g|p and |∆g|p are

integrable, The Dominated Convergence Theorem yields

gfm → gχO and fm∆g → χO∆g in Lp.

By continuity of ∆, we conclude that ∆(gχO) = χO∆g a.e. More generally,
if E ⊂ Rn is measurable and of finite measure, then there exists a sequence
Om of open sets of finite measure containing E, such that χOm → χE in Lp.
Hence χOmk → χE a.e., for some subsequence Omk and, by The Dominated
Convergence Theorem and the continuity of ∆, we conclude that

∆(gχE) = χE∆g a.e.
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By the particular choice of g = χBk′ and E = Bk, where k′ ≥ k, we obtain

∆(χBk) = ∆(χBk′χBk) = χBk∆(χBk′ ) a.e.,

and thus b is well-defined.
Let us show that b ∈ L∞. Clearly b is measurable. Notice that if E ⊂ Rn

is of finite measure, then E ⊆ Bk, for some k ∈ N, and hence

∆(χE) = ∆(χBkχE) = χE∆(χBk) = χEb a.e. (5.4)

For each C > 0 we let NC = {x ∈ Rn : |b(x)| > C}. If |NC | > 0 then there
exists a compact subset K ⊆ NC with |K| > 0 and, by the Lp boundedness
of ∆, we get

Cp|K| =
∫
CpχK dm ≤

∫
|bχK |p dm =

∫
|∆(χK)|p dm ≤ Ap|K|,

showing that C ≤ A, for some constant A > 0.
Finally we show that ∆f = bf a.e., for all f ∈ Lp. By (5.4) we know

that this holds for f = χE , where E is bounded and, by linearity of ∆, this
holds if f is any linear combination of characteristic functions of bounded
sets. Since any nonnegative f ∈ Lp may be approximated in Lp norm by a
sequence {fm} of simple nonnegative Lp functions, we conclude that

∆f = lim
m→∞

∆fm = lim
m→∞

(bfm) = bf,

where the last equality follows from the fact that b is bounded a.e. Applying
linearity of ∆ again, we see that ∆f = bf , for all f ∈ Lp.

We will now show that the operator T∗ is of weak type (1, 1). To this
end, we employ three preliminary results, of which the first is a simple
consequence of the gradient condition on K.

Lemma 5.6. Let x, x̄ ∈ Rn with x 6= x̄. If K satisfies |∇K(x)| ≤ C|x|−n−1,
for all x 6= 0, then there exists a constant C ′ > 0 independent of x and x̄
such that

|K(x− y)−K(x̄− y)| ≤ C ′|x− x̄|
|x̄− y|n+1

,

for all y ∈ Rn with 2|x− x̄| ≤ |x̄− y|.

Proof. By splitting K into its real and imaginary parts, we may assume
that K is real-valued. Let δ = |x − x̄| and fix an arbitrary y ∈ B(x̄, 2δ)c.
Define ϕ : [0, 1] → Rn by ϕ(t) = x̄+ t(x− x̄)− y. Notice that the function
t 7→ K(ϕ(t)) is differentiable, since x̄+ t(x− x̄) ∈ B(x̄, 2δ), for all t ∈ [0, 1].
By The Mean Value Theorem there exists a point τ ∈ (0, 1) such that

K(x− y)−K(x̄− y) = 〈∇K(ϕ(τ)), (x− x̄)〉,
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and hence

|K(x− y)−K(x̄− y)| ≤ C|x− x̄|
|ϕ(τ)|n+1

≤ C ′|x− x̄|
|x̄− y|n+1

,

where the last inequality follows by noting that |x̄ − y| ≤ 2|ϕ(t)|, for all
t ∈ [0, 1].

Lemma 5.7. For each 0 < r ≤ 1 there exists a constant Ar > 0 such that

T∗f ≤ Ar
[
M(|Tf |r)1/r +Mf

]
a.e.,

for all f ∈ Lp(m).

Proof. Fix an arbitrary x̄ ∈ Rn and an ε > 0. Let f1 = fχB(x̄,ε) and
f2 = fχB(x̄,ε)c . Notice that Tεf(x̄) = Tf2(x̄). We first show that

|Tf2(x)− Tf2(x̄)| ≤ A′Mf(x̄), whenever x ∈ B(x̄, ε/2),

for some A′ > 0. To see this, fix an x ∈ B(x̄, ε/2) with x 6= x̄. Then

|Tf2(x)− Tf2(x̄)| ≤
∫
B(x̄,ε)c

|K(x− y)−K(x̄− y)| · |f(y)| dy

=
∞∑
k=0

∫
2kε≤|y−x̄|<2k+1ε

|K(x− y)−K(x̄− y)| · |f(y)| dy.

For 2kε ≤ |y − x̄| < 2k+1ε, Lemma 5.6 yields

|K(x− y)−K(x̄− y)| ≤
C ′ ε2

(2kε)n+1
=

2n−1C ′

2k(2k+1ε)n
,

and hence

|Tf2(x)− Tf2(x̄)| ≤ C ′′
∞∑
k=0

2−k

|B(x̄, 2k+1ε)|

∫
B(x̄,2k+1ε)

|f(y)| dy

≤ C ′′Mf(x̄)
∞∑
k=0

2−k = A′Mf(x̄),

as claimed. We can now estimate

|Tεf(x̄)| ≤ |Tf2(x̄)− Tf2(x)|+ |Tf2(x)| (5.5)
≤ |Tf(x)|+ |Tf1(x)|+A′Mf(x̄),

whenever x ∈ B(x̄, ε/2). For each α > 0 we let Eα = {x ∈ B(x̄, ε/2) :
|Tf(x)| > α} and Fα = {x ∈ B(x̄, ε/2) : |Tf1(x)| > α}. Notice that

|Eα| ≤ α−r
∫
B(x̄,ε/2)

|Tf |r dm ≤ α−r|B(x̄, ε/2)|M(|Tf |r)(x̄)



i
i

i
i

i
i

i
i

48 CHAPTER 5. TRUNCATION OF SINGULAR INTEGRALS

and, since T is of weak type (1, 1),

|Fα| ≤
B

α

∫
|f1| dm =

B

α

∫
B(x̄,ε)

|f | dm ≤ B

α
|B(x̄, ε)| ·Mf(x̄),

for some B > 0. Since f ∈ Lp, Mf is finite a.e. Furthermore, since Tf ∈ Lp,
|Tf |r is in Lp/r and hence M(|Tf |r) is also finite a.e. Thus, for almost all
x̄ ∈ Rn, the particular choice of

α = max{41/r[M(|Tf |r)(x̄)]1/r, 4 · 2nB ·Mf(x̄)}

yields

|Eα ∪ Fα| ≤ |Eα|+ |Fα| ≤
1
2
|B(x̄, ε/2)|.

Therefore there exists an x ∈ B(x̄, ε/2) such that |Tf(x)| ≤ α and |Tf1(x)| ≤
α. Substituting in (5.5) yields

|Tε(x̄)| ≤ A
[
M(|Tf |r)1/r +Mf

]
,

for some constant A > 0.

Lemma 5.8. For each 1 < q <∞ there exists a constant Cq > 0 such that

‖Mf‖q,∞ ≤ Cq‖f‖q,∞, for all f ∈ Lq,∞(m).

Proof. Fix an arbitrary f ∈ Lq,∞(m). We first notice that∫
E

|f | dm ≤ q

q − 1
|E|1−1/q‖f‖q,∞, (5.6)

for all measurable subsets E ⊆ Rn. To see this, assume that 0 < |E| < ∞
and let B = |E|−1/q‖f‖q,∞. Since

dfχE (α) ≤ min{|E|, α−q‖f‖qq,∞},

for all α > 0, Proposition 2.5 yields∫
E

|f | dm =
∫ B

0

dfχE (α) dα+
∫ ∞
B

dfχE (α) dα

≤ |E|B +
‖f‖qq,∞
q − 1

B1−q

=
q

q − 1
|E|1−1/q‖f‖q,∞,

as claimed. Now fix an arbitrary α > 0 and let E = {x ∈ Rn : |f(x)| > α/2}.
By sublinearity of M , we have

Mf ≤M(fχE) +M(fχEc) ≤M(fχE) +
α

2
,
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and hence

dMf (α) ≤ dM(fχE)(α/2) ≤ 2‖M(fχE)‖1,∞
α

≤ C

α

∫
E

|f | dm,

by The Maximal Theorem. However, by employing (5.6) and noting that

|E| = df (α/2) ≤
2‖f‖qq,∞
αq

,

we get

dMf (α) ≤ C ′

α

(
2‖f‖qq,∞
αq

)1−1/q

· ‖f‖q,∞ = C ′′
‖f‖qq,∞
αq

,

as desired.

Proposition 5.9. The operator T∗ is of weak type (1, 1).

Proof. Fix and arbitrary f ∈ L1(m) and choose 0 < r < 1. By Lemma 5.7
and The Maximal Theorem, we have

‖T∗f‖1,∞ ≤ C‖M(|Tf |r)1/r‖1,∞ + C ′‖f‖1.

Notice that
‖|g|1/r‖1,∞ = ‖g‖1/r1/r,∞,

for any measurable function g on Rn. By Lemma 5.8, we then have

‖M(|Tf |r)1/r‖1,∞ = ‖M(|Tf |r)‖1/r1/r,∞

≤ C2‖|Tf |r‖1/r1/r,∞

= C2‖Tf‖1,∞

and, since T is of weak type (1, 1), the result follows.

Before we close this chapter, we show one more estimate concerning T∗.

Lemma 5.10. If f ∈ C∞c (Rn; C) then there exists a constant Cf > 0 such
that

T∗f(x) ≤ Cf
(1 + |x|)n

, for almost all x ∈ Rn. (5.7)

Proof. Suppose that supp(f) ⊆ B(0, R). Since the convolution of a tem-
pered distribution with a compactly supported smooth function is smooth,
we conclude that Tf is bounded on the compact set B(0, 2R) and, by Lemma
5.7, it follows that T∗f is bounded a.e. on B(0, 2R). Thus

T∗f(x) ≤ C ≤ CR
(1 + |x|)n

,
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for almost all x with |x| ≤ 2R. For |x| ≥ 2R we employ the assumption
|K(x)| ≤ B|x|−n to estimate

|Tεf(x)| ≤ C
∫
|y|≤R

|x− y|−n dy ≤ C ′|x|−n,

where C ′ is independent of ε. The last inequality in the above follows by
noting that |y| ≤ R implies that

2|x| ≤ 2|x− y|+ 2R ≤ 2|x− y|+ |x|,

and hence |x| ≤ 2|x− y|. However, since |x| ≥ 2R, we have C ′R|x| ≥ 1 + |x|,
where C ′R := 1 + 1/(2R). Thus we conclude that (5.7) holds for |x| ≥ 2R
also.
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Chapter 6

Weighted Inequalities

As in chapter 5, we consider a singular integral operator T associated with
a regular kernel K and assume that T is of type (Lp(m), Lp(m)), for some
1 < p <∞. We then define the vector-valued operator ~T componentwise by
(~Tf)i = Tfi, for vector functions f = (f1, . . . , fd). We will show that ~T is
bounded from Lp(W ) into itself, whenever W is an Ap matrix weight, and
that the converse holds with one additional hypothesis on K.

For each ε > 0 we define the truncated operator ~Tε componentwise by
(~Tεf)i = Tεfi, and we define ~T∗ by

~T∗f(x) = sup
ε>0
|~Tεf(x)|,

for any vector function f ∈ Lr(m) and 1 ≤ r <∞. By noting that

T∗fi ≤ ~T∗f ≤
∑
i

T∗fi, (6.1)

we see that ~T∗ is of weak type (1, 1) and that the estimate

~T∗f(x) ≤ Cf
(1 + |x|)n

, for almost all x ∈ Rn, (6.2)

holds as in the scalar case (see Proposition 5.9 and Lemma 5.10). By Lemma
5.4, the truncated operators Tεj converges weakly in Lp(m) to an operator
T0 ∈ B(Lp, Lp), for some sequence εj → 0. By Lemma 5.5, there exists a
function b ∈ L∞(m) such that Tf = T0f + bf , for all f ∈ Lp(m). We define
~T0 componentwise by (~T0f)i = T0fi, for any vector function f ∈ Lp(m).

Given any matrix-valued function W : Rn → Cd×d, we let W ~T denote
the operator (W ~T )f(x) = W (x)~Tf(x), and similarly for the operators ~Tε
and ~T0. We also let

(W ~T )∗f(x) = sup
ε>0
|W (x)~Tεf(x)|.
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Lemma 6.1. If W is a matrix Ap weight then |W 1/p ~T0f | ≤ (W 1/p ~T )∗f
a.e., for all f ∈ Lp(m).

Proof. From the definition of ~T0, it follows that∫
〈~Tεjf, g〉 dm→

∫
〈~T0f, g〉 dm as j →∞,

for all f ∈ Lp and g ∈ Lp′ . Notice that W p′/p is locally integrable, by The
Reverse Hölder Inequalities. Since W 1/p is self-adjoint a.e., it follows that

∆j :=
∣∣ ∫ 〈W 1/p ~T0f, g〉 dm−

∫
〈W 1/p ~Tεjf, g〉 dm

∣∣→ 0 as j →∞, (6.3)

for all f ∈ Lp and for all bounded, compactly supported functions g. By
The Monotone Convergence Theorem, it suffices to show that the set

Nα := {x ∈ Rn : |W 1/p ~T0f(x)| > (W 1/p ~T )∗f(x) + α}

has measure zero, for each α > 0. If |Nα| > 0 then there exists a compact
subset K ⊆ Nα with |K| > 0. Define the function g on Rn by

g =
[
sgn ◦ (W 1/p ~T0f)

]
χK ,

where sgn(z) := z/|z|, for z ∈ Cd\{0}, and sgn(0) := 0. With this particular
choice of g, we get

∆j =
∣∣ ∫
K

|W 1/p ~T0f | dm−
∫
〈W 1/p ~Tεjf, g〉 dm

∣∣
≥

∫
K

|W 1/p ~T0f | dm−
∣∣ ∫ 〈W 1/p ~Tεjf, g〉 dm

∣∣
≥

∫
K

|W 1/p ~T0f | dm−
∫
K

|W 1/p ~Tεjf | dm

≥
∫
K

(
|W 1/p ~T0f | − (W 1/p ~T )∗f

)
dm ≥ α|K|,

for all j ∈ N, contradicting (6.3).

6.1 The Relative Distributional Inequality

Let us fix a matrix Ap weight W and choose δ > 0 such that The Reverse
Hölder Inequalities (3.15) - (3.17) hold. The objective of this section is to
show that, whenever q < p+ δ, there exists a constant Cq > 0 such that

‖(W 1/p ~T )∗f‖q ≤ Cq‖W 1/pf‖q, for all f ∈ C∞c (Rn; Cd). (6.4)

We establish (6.4) via the so called relative distributional inequality (6.5).
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Lemma 6.2. Assume that F and G are nonnegative measurable functions
on Rn and assume that ‖F‖q < ∞, for some 1 ≤ q < ∞. If there exists
constants b, c > 0 such that

|{x ∈ Rn : F (x) > α ; G(x) ≤ cα}| ≤ 1
2
bq|{x ∈ Rn : F (x) > bα}|, (6.5)

for all α > 0, then ‖F‖q ≤ 2c−q‖G‖q.

Proof. From (6.5) it follows that

dF (α) = |{x : F (x) > α ; G(x) ≤ cα}|+ |{x : F (x) > α ; G(x) > cα}|

≤ 1
2
bqdF (bα) + dG(cα).

Multiplying both sides in the above by qαq−1, integrating in α over (0,∞)
and changing variables, we obtain

‖F‖qq ≤
1
2
‖F‖qq + c−q‖G‖qq.

Since ‖F‖q <∞, the result follows.

Now, fix an arbitrary f ∈ C∞c (Rn; Cd) and q < p+ δ. We will show that
the functions

F := (W 1/p ~T )∗f and G := max
(
M ′W (W 1/pf),MW (W 1/pf)

)
(6.6)

satisfy (6.5), for some c independent of f . Then Lemma 6.2 and the Lq

boundedness of the weighted maximal operators implies (6.4). Of course,
we also have to check that ‖F‖q <∞.

Lemma 6.3. The function F = (W 1/p ~T )∗f is in Lq(m).

Proof. From (6.2) we get

F (x) ≤ C‖W (x)‖1/p

(1 + |x|)n
, for almost all x ∈ Rn.

Choose a nonzero scalar function φ ∈ C∞c (Rn; C). Then

C ′

(1 + |x|)n
≤M(‖W‖−1/pφ)(x), for all x ∈ Rn,

for some constant C ′ > 0 (see Remark 2.19). It follows that

F (x) ≤ C ′′‖W (x)‖1/pM(‖W‖−1/pφ)(x), for almost all x ∈ Rn.

However, since W is a matrix Ap weight, ‖W‖ is a scalar Ap weight and, by
Theorem 4.6, the function

‖W‖1/pM(‖W‖−1/pφ) = M‖W‖(φ)

is in Lq(m).
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To prove the relative distributional inequality (6.5) we employ two pre-
liminary results. Given a cube Q, we denote by 3Q the cube with the same
center as Q and side length 3 · l(Q).

Lemma 6.4. Any measurable set E ⊂ Rn, with 0 < |E| <∞, can be covered
a.e. by a collection of disjoint cubes {Qj} satisfying

(i)
∑
j |Qj | ≤ 2|E| and

(ii) |3Qj ∩ Ec| ≥ Cn|3Qj | ,

for some dimensional constant Cn > 0.

Proof. For almost all x ∈ E there exists, by The Lebesgue Differentiation
Theorem, a dyadic cube Q ⊂ Rn containing x such that

|Q ∩ E|/|Q| ≥ 1/2. (6.7)

Also, |Q| ≤ 2|E| < ∞, for any cube Q satisfying (6.7). Therefore we may
define {Qj} as the set of maximal dyadic cubes satisfying (6.7). Thus E ⊆
∪jQj up to sets of measure zero and, by disjointness of the Qj ’s,∑

j

|Qj | ≤ 2
∑
j

|Qj ∩ E| = 2|E|.

To verify (ii) we fix an arbitrary cube Q ∈ {Qj} and let Q′ denote the next
larger dyadic cube containing Q. Then Q′ ⊂ 3Q and |Q′ ∩E| < 1/2|Q′|, by
maximality of Q. It follows that

|3Q ∩ Ec| ≥ |Q′ ∩ Ec| = |Q′| − |Q′ ∩ E| ≥ 1/2|Q′| = 1/2 · (2/3)n|3Q|,

as desired.

Lemma 6.5. Let f ∈ Lr(m), for some 1 ≤ r < ∞. Assume that Q ⊂ Rn
is a cube and fix arbitrary points ȳ ∈ Q and x̄ ∈ 3Q. Let B = B(x̄, 4 diaQ)
and let f2 = χBcf . Then there exists a constant A > 0 independent of Q
such that

~T∗f2(x) ≤ d · ~T∗f(x̄) +AMf(ȳ), for all x ∈ Q.

Proof. By (6.1) it suffices to consider the scalar case d = 1. Let δ = diaQ.
Figure 6.1 illustrates the present construction. Notice that

|Tεf2(x)− Tεf2(x̄)| ≤
4∑
i=1

∫
Si

|Kε(x− y)−Kε(x̄− y)| · |f(y)| dy,

where we have splitted Bc into four disjoint sets

S1 = Bc ∩B(x, ε) ∩B(x̄, ε)
S2 = Bc ∩B(x, ε)c ∩B(x̄, ε)c

S3 = Bc ∩B(x, ε) ∩B(x̄, ε)c

S4 = Bc ∩B(x, ε)c ∩B(x̄, ε).
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Figure 6.1: The construction from Lemma 6.5.

Clearly, the integral over S1 vanishes. Let us consider the integral over S2.
Since 2|x− x̄| ≤ 4δ and

|y − ȳ| ≤ |y − x̄|+ 2δ ≤ 3/2|y − x̄|,

for all x ∈ Q and y ∈ Bc, Lemma 5.6 yields

|Kε(x− y)−Kε(x̄− y)| ≤ δA

|y − ȳ|n+1
, whenever x ∈ Q and y ∈ S2. (6.8)

Since Bc ⊆ B(ȳ, δ)c, we get∫
S1

≤ δA

∫
B(ȳ,δ)c

|f(y)|
|y − ȳ|n+1

dy

= δA

∞∑
k=0

∫
2kδ≤|y−ȳ|<2k+1δ

|f(y)|
|y − ȳ|n+1

dy (6.9)

≤ 2nA
( ∞∑
k=0

2−k
)
Mf(ȳ),

whenever x ∈ Q. For the integral over S3, we notice that |y− ȳ| ≤ 3/2|y− x̄|
and |y − x̄| ≤ 2|x− y|, for x ∈ Q and y ∈ S3. It follows that S3 ⊆ B(ȳ, 3ε)
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and hence∫
S3

≤
∫
B(ȳ,3ε)

|K(x̄− y)| · |f(y)| dy ≤ C

εn

∫
B(ȳ,3ε)

|f(y)| dy ≤ C ′Mf(ȳ),

where we have employed the bound |K(x)| ≤ B|x|−n to obtain the second
inequality. The integral over S4 yields a similar estimate, and therefore

|Tεf2(x)− Tεf2(x̄)| ≤ AMf(ȳ), whenever x ∈ Q. (6.10)

By noting that Tεf2(x̄) = T4δf(x̄) when ε < 4δ and Tεf2(x̄) = Tεf(x̄) when
ε ≥ 4δ, we see that

|Tεf2(x̄)| ≤ sup
ε≥4δ
|Tεf(x̄)| ≤ T∗f(x̄), for all ε > 0,

and hence the estimate (6.10) implies that

T∗f2(x) ≤ T∗f(x̄) +AMf(ȳ),

whenever x ∈ Q.

Proposition 6.6. With the notation in (6.6): If 1 ≤ q < p + δ then there
exists constants 0 < b < 1 and c > 0, both independent of f , such that

|{x ∈ Rn : F (x) > α ; G(x) ≤ cα}| ≤ 1
2
bq|{x ∈ Rn : F (x) > bα}|, (6.11)

for all α > 0.

Proof. Fix an arbitrary α > 0. By Lemma 6.4 it suffices to show that there
exists constants 0 < b < 1 and c > 0 independent of α such that

|{x ∈ Q : F (x) > α ; G(x) ≤ cα}| ≤ 1
4
bq|Q|, (6.12)

for any cube Q ⊂ Rn with |3Q ∩ Ec| ≥ Cn|3Q|, where

E := {x ∈ Rn : F (x) > bα}.

Indeed, E may be covered a.e. by a collection of disjoint cubes {Qj} satis-
fying (i) and (ii) in Lemma 6.4 and, since

D :=
{
x ∈ Rn : F (x) > α ; G(x) ≤ cα

}
⊆ E,

we obtain
|D| =

∣∣D ∩⋃
j

Qj
∣∣ =

∑
j

|D ∩Qj | ≤
1
2
bq|E|.

Notice that |E| <∞, since F ∈ Lq and (6.12) is trivial if |E| = 0. Thus we
assume that Q is a cube satisfying |3Q ∩ Ec| ≥ Cn|3Q| and we will deduce
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suitable bounds on b and c. In what follows we let C denote a positive generic
constant, which value may vary at different occurrences. Let O denote the
ball with the same center as Q and radius 6 diaQ. Notice that 3Q ⊂ O.
Now, if ‖VOW (x)−1/p‖ > C, for all x ∈ 3Q ∩ Ec, then (ii) in Lemma 6.4
implies that∫

O

‖VOW (x)−1/p‖p
′
dx ≥

∫
3Q∩Ec

‖VOW (x)−1/p‖p
′
dx

≥ Cp
′
|3Q ∩ Ec| ≥ Cp

′
Cn|3Q|

= Cp
′
C ′|O|,

contradicting The Reverse Hölder Inequality (3.16) when C is sufficiently
large. Thus there exists a point x̄ ∈ 3Q such that

F (x̄) ≤ bα and ‖VOW (x̄)−1/p‖ ≤ C. (6.13)

Let g = W 1/pf . We may assume that there exists a point ȳ ∈ Q with
M ′W g(ȳ) ≤ cα; otherwise |{x ∈ Q : M ′W g(x) ≤ cα}| = 0 and (6.12) is trivial.
Let B = B(x̄, 4 diaQ). Notice that Q ⊂ B ⊂ O and that these sets are of
proportional measure. Let f1 = χBf and f2 = χBcf . Then f = f1 +f2 and,
by sublinearity of (W 1/p ~T )∗, it suffices to show that

|{x ∈ Q : Fi(x) > α/2}| ≤ 1
8
bq|Q|, for i = 1, 2,

where Fi := (W 1/p ~T )∗fi.
Estimate with F1: For each R > 0 we let

SR = {x ∈ Q : (VB ~T )∗f1(x) > α/(2R)}

and
NR = {x ∈ Q : ‖W (x)1/pV −1

B ‖ > R}.

Since ~T∗ is of weak type (1, 1) and, since ~T∗(VBf1) = (VB ~T )∗f1, we see that

|SR| ≤
CR

α
‖VBf1‖1.

Furthermore, since

‖VBf1‖1 =
∫
B

|VBf(x)| dx =
∫
B

|VBW (x)−1/pg(x)| dx

≤ |B|M ′W g(ȳ) ≤ Ccα|Q|,

we must have |SR| ≤ CcR|Q|. By The Reverse Hölder Inequality (3.17),

Rp|NR| ≤
∫
NR

‖W (x)1/pV −1
B ‖

p dx ≤
∫
Q

‖W (x)1/pV −1
B ‖

p dx ≤ C ′|Q|,
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and hence |NR| ≤ C ′R−p|Q|. Now, since

F1(x) ≤ ‖W (x)1/pV −1
B ‖ · (VB ~T )∗f1(x), for all x ∈ Rn,

we have

|{x ∈ Q : F1(x) > α/2}| ≤ |SR ∪NR| ≤ (CcR+ C ′R−p)|Q|.

Taking the infimum over all R > 0, we conclude that

|{x ∈ Q : F1(x) > α/2}| ≤ C1c
p/(p+1)|Q|.

Estimate with F2: Since B and O are of proportional measure,

|VBv| ≤
√
dρp,B(v) ≤ Cρp,O(v) ≤ C|VOv|,

and hence |VBV −1
O v| ≤ C|v|, for all v ∈ Cd. It follows that ‖VBV −1

O ‖ ≤ C
and hence

‖VBW (x̄)−1/p‖ ≤ C‖VOW (x̄)−1/p‖.

Combining this with (6.13), we see that

(VB ~T )∗f(x̄) ≤ ‖VBW (x̄)−1/p‖ · F (x̄) ≤ C2bα.

Employing Lemma 6.5 we obtain

(VB ~T )∗f2(x) ≤ d · (VB ~T )∗f(x̄) +AM(VBf)(ȳ)
≤ C ′2bα+AM ′W g(ȳ)
≤ (C ′2b+Ac)α,

for all x ∈ Q. We now repeat the strategy employed in the estimate with
F1: Taking q < r < p + δ, The Reverse Hölder Inequality yields |NR| ≤
C ′′R−r|Q|, and so

|{x ∈ Q : F2(x) > R(C ′2b+Ac)α}| ≤ |NR| ≤ C ′′R−r|Q|.

A particular choice of R = (4bC ′2)−1 yields

|{x ∈ Q : F2(x) > (1/4 + C3b
−1c)α}| ≤ C4b

r|Q|.

Thus the proof may be performed with b = min{1/2, (8C4)−1/(r−q)} and c
so small that

C1c
p/(p+1) ≤ 1/8bq and 1/4 + C3b

−1c ≤ 1/2.

This completes the proof of Proposition 6.6 and with it the estimate (6.4).
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6.2 The Main Theorems

Lemma 6.7. If W is a locally integrable matrix weight, then C∞c (Rn; Cd)
is dense i Lq(W ), for each 1 ≤ q <∞.

Proof. We employ the well-known fact that C∞c (Rn; C) is dense in (the
scalar) Lq(µ), whenever µ is a Radon measure on the Borel algebra in Rn,
i.e. when µ(K) < ∞, for any compact set K ⊂ Rn. Notice that, if w is a
nonnegative locally integrable function on Rn, then the Borel measure w dm,
given by E 7→

∫
E
w dm, is a Radon measure.

Choose an arbitrary f = (f1, . . . , fd) ∈ Lq(W ) and let {ei} denotes the
standard basis of Cd. Then

W 1/q =

 u11 . . . u1d

...
. . .

...
ud1 . . . udd

 ,

where uij := 〈W 1/qej , ei〉 are a.e. positive and q-locally integrable functions
on Rn. Since

|W 1/q(f − g)|q ≤ d3q/2 max
i,j
|uij(fj − gj)|q ≤ d3q/2

∑
i,j

|uij(fj − gj)|q,

for any function g = (g1, . . . , gd), it follows that

‖f − g‖qLq(W ) ≤ d
3q/2

∑
i,j

‖fj − gj‖qLq(uqij dm)
,

for any measurable g and, by choosing an appropriately g ∈ C∞c (Rn; Cd),
we can make each term on the right in the above arbitrary small.

We are now ready to show one of the main results of this thesis. Let
W 1/p ~TW−1/p denote the operator given by

(W 1/p ~TW−1/p)g(x) = W (x)1/p ~T (W−1/pg)(x).

Theorem 6.8. Assume that W is an Ap matrix weight. Then there exists
a δ > 0 such that W 1/p ~TW−1/p is a bounded linear operator from a dense
subset of Lq(m) into Lq(m), whenever |p − q| < δ. In particular, ~T has a
unique linear extension that is bounded from Lp(W ) into Lp(W ).

Proof. Let

D =
{
g ∈ C∞c (Rn; Cd) : (W−1/pg) ∈ C∞c (Rn; Cd)

}
.

By The Reverse Hölder Inequality (3.15), W q/p is locally integrable and
hence C∞c is dense in Lq(W q/p). Notice that the map f 7→ ϕ(f) := W 1/pf
is an invertible isometry from Lq(W q/p) into Lq. Fix an arbitrary h ∈ Lq
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and an ε > 0. Choose f ∈ Lq(W q/p) such that h = ϕ(f) and choose g ∈ C∞c
with ‖f − g‖Lq(W q/p) < ε. Then ϕ(g) ∈ D and

‖h− ϕ(g)‖q = ‖ϕ(f − g)‖q = ‖f − g‖Lq(W q/p) < ε,

showing that D is dense in Lq.
Since ~Tf = ~T0f + bf , for some a.e. bounded scalar function b, Lemma

6.1 yields

|(W 1/p ~TW−1/p)g(x)| = |(W 1/p ~T0W
−1/p)g(x) + b(x)g(x)|

≤ (W 1/p ~T )∗(W−1/pg)(x) + C|g(x)|,

for almost all x ∈ Rn, whenever (W−1/pg) ∈ Lp. By Minkowski’s Inequality
and (6.4) we have, in particular, that

‖(W 1/p ~TW−1/p)g‖q ≤ ‖(W 1/p ~T )∗(W−1/pg)‖q + C‖g‖q ≤ Cq‖g‖q,

for all g ∈ D.
To verify the last assertion of the theorem, we simply notice that, by the

above,∫
|W 1/p ~Tf |p dm =

∫
|(W 1/p ~TW−1/p)(W 1/pf)|p dm ≤ C

∫
|W 1/pf |p dm,

for all f ∈ C∞c (Rn; Cd). Thus ~T admits a unique bounded linear extension
from Lp(W ) into itself.

In order to prove the ”converse” of Theorem 6.8 we employ the following
preliminary result.

Lemma 6.9. Let 1 < p < ∞ and fix an arbitrary ball B ⊂ Rn. Assume
that k : Rn × Rn → C is measurable, supported in B × B and satisfies
|k(x, y)| ≤ |B|−1, for all (x, y) ∈ B×B. Then the linear operator S, defined
by

Sf(x) =
∫
k(x, y)f(y) dy,

is bounded from Lp(W ) into Lp(W ) with operator norm ‖S‖ ≤ Cd‖VBV ′B‖,
for some constant Cd > 0 independent of the particular choice of S. In the
special case where k = |B|−1χB×B we also have ‖S‖ ≥ C−1

d ‖VBV ′B‖.

Proof. Since any f ∈ Lp(W ) is locally integrable, it follows that S is well-
defined on Lp(W ). Fix an arbitrary f ∈ Lp(W ) with ‖f‖Lp(W ) ≤ 1. Then

|W (x)1/pSf(x)| ≤ 1
|B|

∫
B

|W (x)1/pf(y)| dy

≤ 1
|B|

(∫
B

‖W (x)1/pW (y)−1/p‖p
′
dy

)1/p′

,
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by Hölder’s Inequality. Let {ei} denote the standard basis of Cd and let
C > 0 denote a generic constant. Then∫

B

‖W (x)1/pW (y)−1/p‖p
′
dy ≤

∫
B

(
dmax

i
|W (y)−1/pW (x)1/pei|

)p′
dy

≤ C
∑
i

∫
B

|W (y)−1/pW (x)1/pei|p
′
dy

≤ C
∑
i

|B| · |V ′BW (x)1/pei|p
′

≤ C|B| · ‖V ′BW (x)1/p‖p
′
,

and consequently

|W (x)1/pSf(x)| ≤ C|B|−1/p‖V ′BW (x)1/p‖, for all x ∈ Rn.

Repeating the strategy employed above we obtain

‖Sf‖pLp(W ) ≤ C
1
|B|

∫
B

‖V ′BW (x)1/p‖p dx

≤ C
∑
i

1
|B|

∫
B

|W (x)1/pV ′Bei|p

≤ C
∑
i

|VBV ′Bei|p ≤ C‖VBV ′B‖p,

as desired.
Now, for the particular choice of k = |B|−1χB×B we have

‖S‖ = sup
u6=0

ρ∗p′,B(u)
(ρp,B)∗(u)

,

by (3.13) in Section 3.3. However, since (ρp,B)∗(v) ∼ |V −1
B v| and ρ∗p′,B(v) ∼

|V ′Bv|, we get

‖VBV ′B‖ = sup
v 6=0

|V ′BVBv|
|v|

= sup
v 6=0

|V ′Bv|
|V −1
B v|

≤ C‖S‖,

as claimed.

Theorem 6.10. Let W be a matrix weight and assume that the kernel K
has the additional property that there exists a constant a > 0 and a unit
vector u ∈ Rn such that

|K(ru)| ≥ a|r|−n, for all r ∈ R\{0}. (6.14)

If ~T is bounded from Lp(W ) into Lp(W ), then W ∈ Ap.
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Proof. Choose ε > 0 such that ε2+2ε ≤ 1
2C
−2
d , where Cd > 0 is the constant

appearing in Lemma 6.9. Choose A > 0 such that |∇K(x)| ≤ A|x|−n−1, for
all x 6= 0. Let λ = max{4, 2n+2A·(aε)−1}. We claim that, for any r ∈ R\{0},

|K(x)−K(rλu)| ≤ ε|K(rλu)|, whenever x ∈ B(rλu, 2|r|). (6.15)

To see this, define ϕ : [0, 1]→ Rn by ϕ(t) = (x− rλu)t+ rλu. Notice that

λ|r| ≤ |ϕ(t)|+ |(x− rλu)t| ≤ |ϕ(t)|+ 2|r| ≤ |ϕ(t)|+ 1
2
λ|r|,

and hence λ|r| ≤ 2|ϕ(t)|, for all t ∈ [0, 1]. Applying The Mean Value The-
orem to the function t 7→ K(ϕ(t)), we conclude that there exists a number
τ ∈ (0, 1) such that

|K(x)−K(rλu)| ≤ A

|ϕ(τ)|n+1
|x− rλu| ≤ 2n+1A

|λr|n+1
2|r| ≤ ε|K(rλu)|,

where the last inequality follows by the assumption (6.14).
Fix an arbitrary ball B = B(x̄, r) in Rn and let B′ = B(x̄ + rλu, r).

Notice that B and B′ are disjoint. Define the linear operator S on Lp(W )
by

Sf(x) = χB(x)~T (χB′ ~T (χBf))(x) =
∫
k(x, y)f(y) dy,

where
k(x, y) := χB×B(x, y)

∫
B′
K(x− z)K(z − y) dz.

If ~T is bounded on Lp(W ), then so is S and ‖S‖ ≤ ‖T‖2. Notice that

K(x− z)K(z − y) = K(rλu)K(−rλu) +K1(x, y, z),

where

K1(x, y, z) :=
[
K(z − y)−K(rλu)

]
·
[
K(x− z)−K(−rλu)

]
+

[
K(x− z)−K(−rλu)

]
·K(rλu)

+
[
K(z − y)−K(rλu)

]
·K(−rλu).

Thus S = S0 + S1, where

S0f(x) := |B|K(rλu)K(−rλu)
∫
χB×B(x, y)f(y) dy

and

S1f(x) :=
∫ (

χB×B(x, y)
∫
B′
K1(x, y, z) dz

)
f(y) dy.

Since x, y ∈ B and z ∈ B′ implies that

(z − y) ∈ B(rλu, 2r) and (x− z) ∈ B(−rλu, 2r),
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we can apply the estimate (6.15) to obtain

|K1(x, y, z)| ≤ (ε2 + 2ε)|K(rλu)| · |K(−rλu)| ≤ 1
2
C−2
d C0,

whenever x, y ∈ B and z ∈ B′, where C0 := |K(rλu)| · |K(−rλu)|. By
Lemma 6.9 there exists a constant Cd > 0 independent of B such that
‖S0‖ ≥ C‖VBV ′B‖ and ‖S1‖ ≤ 1

2C‖VBV
′
B‖, with

C := C0|B|2C−1
d ≥ a2

|rλ|2n
· (vnrn)2C−1

d =
a2v2

n

λ2nCd
.

It follows that

C‖VBV ′B‖ ≤ ‖S − S1‖ ≤ ‖S‖+
1
2
C‖VBV ′B‖,

and hence

‖VBV ′B‖ ≤ 2C−1‖S‖ ≤ λ2nCd‖T‖2

a2v2
n

<∞,

independent of B. Thus we conclude, by Proposition 3.21, that W ∈ Ap.

Remark 6.11. The kernel of the Riesz transform,

K(j)(x) = cn
xj
|x|n+1

,

satisfies (6.14) with u = ej and any 0 < a ≤ cn.
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Appendix A

Index of Notation

B(x, r) The Euclidean ball in Rn with center x and radius r

χS The characteristic function of a set S

C∞c (Rn; Cd) The set of compactly supported C∞ functions from Rn into Cd

diaS The diameter of S

p′ The dual exponent, p′ = p/(p− 1)

〈·, ·〉 The Euclidean inner product on Cd × Cd

| · | The Euclidean norm on Cd (or Rd)
l(Q) The side length of a cube Q ⊂ Rn

m The Lebesgue measure on the Borel algebra in Rn

|E| The Lebesgue measure of E, i.e. |E| = m(E)

vn The Lebesgue measure of the unit ball in Rn

‖A‖ The operator norm of A ∈ Cd×d

∂if The partial derivative of f w.r.t. the ith variable

S The Schwartz space

{ei} The standard basis of Cd

supp(f) The support of f

Sn−1 The unit sphere in Rn.
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