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Preface

This report documents the preliminary research and theory outline for the
subsequent master’s thesis which was carried out at the 10th semester of
Informatics at Aalborg University, during the summer and fall of 2008.

The reader is reminded that this is the second of two, where the first one
described preliminary research and theoretic overview of the Geometrically
derived image based lighting (GDIBL) method.

Supervision was provided by Claus B. Madsen from the department of
Computer Vision and Graphics.

Reading guidelines

While equations are kept in coherence with mathematical standard nota-
tion, all algorithms are in C# or C# like pseudo-code in order to document
the actual implementation. It is therefor favorable if the reader is familiar
with the this language, but given the easily accessible nature of the C#
language, the meaning and generic algorithm should be derivable.

References to sources are presented in a Harvard like fashion and through-
out the report marked with author initials and year, e.g. [DM97]. The four
character reference ID can then be found in the actual literature listing at
page 51. Additionally a glossary can be found on page 56.

The enclosed disk

The enclosed disk contains the report at hand in PDF format for hypertext
reading and digital image quality. It also includes source code for the
GDIBL implementation in it’s current state, as well as scene files and hight
dynamic range image (HDRI) versions of the presented renderings.

Author

Kasper Vestergaard
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Chapter 1

Introduction

When the GDIBL method was first outlined [Ves08], the goal was to de-
velop a method for embracing spatial variance in real world lighting for
the use in computer graphics. The method is based on image based light-
ing (IBL) and utilize a rough geometric model of the local environment to
derive correct lighting from multiple, arbitrarily scattered light samples.

As IBL has heightened the standard for realism in synthetic object
rendering, the issue to address is it’s lack of support for spatial diversity
in the lighting conditions.

(a) The car is in the shade which
means a visually uniform lighting en-
vironment from all points on the sur-
face of the car model.

(b) The car moves gradually out of
the shade and is no longer uniformly
illuminated.

Figure 1.1: EDEN Lab have rendered this car for a commercial while also
demonstrating the aspects of spatially variant lighting conditions.

Lighting characteristics may vary little or much depending on the scene.
In some cases it will not be noticeable, but in cases like the one presented
by EDEN Lab, Figure 1.1 the visual difference is very obvious.

The GDIBL method was laid out in theory and promised to derive lo-
cation depending lighting, like the example above, requiring only a sparse
number of light samples and a simple geometric approximation of the envi-
ronment from which the samples are obtained. The work behind the report
at hand is my effort to prove by practical implementation and discussed
examples the validity of the GDIBL method.
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CHAPTER 1. INTRODUCTION

1.1 Basis for implementation

The task of implementing the GDIBL method was chosen for two reasons.
Mainly I had a genuine desire to validate the method and show that it
was able to produce the expected result. In this reason was also included
the curiosity to further investigate the method, it’s theoretical limitations
and practical workings. Secondly I have a B.sc. in informatics and have
thus far only been superficially trained in computer graphics and practical
programming. As a personal competence building project I wanted to focus
on the implementation, on working with both theoretical and practical
aspects of computer graphics and challenge my background to extend to
the field that fascinates me the most.

1.2 Goals

Through this implementation project I wished to gain knowledge about the
practical approach to three dimensional computer graphics and lighting.
This was sought through the implementation and verification of the GDIBL
method, previously described in theory.

Implementation from scratch

As the crucial aspect of the programming exercise was centered around
the actual programming and structuring of a graphics application like the
GDIBL implementation, the use of external libraries are kept at a mini-
mum. This means a practical approach to the basic structure and founda-
tional implementation of concepts, which I have so far only touched on a
theoretical level, such as notions of space, synthetic objects and color.

Verification of the GDIBL method

The programming exercise was to implement, verify and demonstrate the
GDIBL method. In order to properly verify the effect of the method, a
valid implementation must be documented.

This is done through algorithmic documentation as well as actual source
code examples and linking this to the relevant theory of both illumination
in general and the theoretical definition of the GDIBL method.

Additionally the results of the methods treatment of test scenarios must
produce the expected results. Such results can take both graphical and
numerical form as to best describe the validity of the calculations.

1.3 Structure and contents

Initially the theory and a method overview is presented along with a short
walk through of relevant terminology, related technologies and previous
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1.3. STRUCTURE AND CONTENTS

work.
Then follows an overview of the GDIBL method and the algorithms

used in the implementation before a description of the actual application.
The method section also outlines various additional issues which has been
discovered through the work carried out through this project.

Application structures and actual implementation are presented in such
technical detail as is needed to confirm a valid application of the method
previously described only in theory.

Subsequently, results and further discussions provide both visual and
technical confirmation of the effect of the GDIBL method. The discussion
includes a series of suggestions on further development and application
areas are pointed out along with the final conclusion on this second part
of the GDIBL project.
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Chapter 2

Theory

In this chapter the theoretical basis for the subsequent descriptions and
methods is described.

Illumination in computer graphics is described with the purpose of pre-
senting the terminology and illumination models related to real world light
distribution and illumination calculation in 3D computer graphics.

Then IBL is presented focusing on the theoretical foundation and prac-
tical application as well as the limitation sought to be solved through the
GDIBL method.

Lastly the challenge of reconstructing spatial variation in complex light-
ing conditions is discussed. The focus of this section is to point out the
issues and theoretical challenge that lie lighting conditions that vary spa-
tially.

2.1 Illumination

In order to keep the goal of realistic lighting in mind, this section review
some of the relevant theory and notation of modeling real world lighting
and the relevance of those models to global illumination (GI) and IBL
rendering. In the following section light interaction is described with two
purposes; one is to clarify the phenomena the GDIBL method approximates
and secondly to specify exactly which light properties the actual application
implements.

As light source, material and surface geometry properties are all rele-
vant to an illumination model, there are various assumptions that can be
made in order to drastically simplify the implemented model while still
providing sufficient data for validating the effect of the GDIBL method. Il-
lumination models can initially be separated into two categories; local and
global illumination models. While local illumination models only deal with
light arriving directly from the light source, global illumination models also
consider light that is reflected between the surfaces of objects in the scene.

Initially this section describes the basic definitions of lighting and illu-
mination effects. It then turns its focus towards the scattering and distribu-
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CHAPTER 2. THEORY

tion of light as well as models used to describe relevant surface properties.
As this project is based on IBL parameters of classic light sources such

as point and area lights are omitted. However, the use of images as a source
of lighting is described in section 2.2.

2.1.1 Basic definitions

As many different sources of light occur in nature and the world we have
build around us, all these light sources share some characteristics that
enable us to model them for both physics and graphical purposes. Tra-
ditionally computer graphics has been concerned with three types of light
sources; point, spot light and directional.

The point light source emits light uniformly in all directions while a spot
light only emits within a cone in some given direction. While these two
light source types are both based in a single point, directional light emits
parallel rays of light as to imitate light from a source very far away, like
the sun. More recent light source types additions count area lights, light
emissive objects and environment lighting like sky-domes or IBL, described
in section 2.2.

Whether scattered from a single point, orthogonally from an abstract
plane, from a spatial object or purely directional, light has other attributes
of relevance like color and intensity. As color represents the wavelengths
emitted from the light source and intensity defines the power or energy
level of the light, these attributes basically defines the entire light emission
part of the equation. The further traveling, object interaction and behavior
of that emitted light depend among others on the following concepts:

Direct light. This term is used about light that arrives on a surface di-
rectly from the light source. It means that the light is not reflected
off and has not passed through other objects or media (atmosphere
usually not included).

Indirect light. All light in the scene that is not direct light. I.e. all light
that has been reflected, refracted or in other ways has had previous
encounters with objects in the scene. Indirect light is also referred to
as ambient light.

Reflected light. As mentioned above is the light that has arrived at a
surface and has been reflected back into the scene. This is not nec-
essarily all light; most light models take absorbtion into account in
some form or another.

As we cannot see a beam of light itself we are left with observing the
effects of light on object surfaces such as skin, wood, broken down through a
computer screen or, on a microscopic level, through reflection and refraction
in tiny water drops in fog. For this reason it is extremely important how
we model the properties and behavior of those surfaces.
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2.1. ILLUMINATION

Diffuse reflection is where the light is scattered in all directions. A spe-
cial case of diffuse reflection is Lambertian or perfect diffuse where
the light is scattered uniformly in all directions. This type of sur-
face is very easy to implement but does not exist to the theoretical
definition in the real world.

Specular reflection is where light is reflected directly in the opposite
angular direction from which it arrived. This models a mirror like
reflection and does occur in the real world, e.g. in metals.

As most materials behave with qualities of both models, they can be
represented as a combination of the two.

Other phenomena that affect the dispersion of light throughout a scene
is the way the light is affected by the surfaces of the objects.

When the environment can be seen vaguely on the surface of an object,
this less than mirror perfect reflection is called glossy. A glossy reflection
is a combination of diffuse and specular and results in a blurry reflection.
The visual result of a glossy reflection in computer generated imagery (CGI)
depends on the implementation of the physical phenomenon where the rays
reflected in the surface comes from a more or less narrow cone of incoming
angles. This means that in a realistic implementation objects will appear
more distinct the closer they get to the reflecting surface.

In the physical properties of a transparent material the light rays are
affected by the change of density in the media. So when light arrives at a
transparent surface, some of it is reflected back into the scene, some of it is
absorbed and some of it is refracted down into the object. This is usually
demonstrated with glass spheres, prisms or a glass of water. The refracted
angle is determined by the incoming angle and the change in density of
the materials. This also means that if the incoming angle is too small and
the density change is too high, the refracted ray also reflects back into the
scene. This is called Fresnel reflection and also occurs in materials that are
not transparent, such as paper and wood. The general effect of this type
of reflection is that more light is reflected in shallow angles.

When a ray of light is reflected or refracted in a surface, it might be
affected by the color of the surface it interacted with. This is called color
bleeding, and despite the macabre term it defines the effect of colors from
one objects transmitted more or less visibly to another. This effect is often
demonstrated through the Cornell box, Figure 2.1, where the white light
is reflected red and blue from each wall respectively.

Another effect demonstrated in Figure 2.1 is the intense light gathering
under the glass sphere. This effect is called caustics and defines the phe-
nomenon where multiple light rays are reflected or refracted to the same
area, creating a bright shape. All reflective and refractive objects produce
these even though they are not always sufficiently intense for us to observe
them.

The last of the evident effects demonstrated in the Cornell box example
is shadow. Shadows are simply the absence of light but what distinguish
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CHAPTER 2. THEORY

Figure 2.1: The modified Cornell box demonstrates both color bleeding,
caustics and shadow phenomena.

shadows from mere darkness is that shadows are located on a surface and
are defined the occlusion of a light source by an object. This means that
there can be a shadow within a shadow and that shadows can add to each
other if there are more than one light source that is occluded as shown in
Figure 2.2.

The occluding object does not have to be an opaque object as our
perception of a shadow is given by the contrast to a more brightly lit area
or the idea of such an area. This means that even though a piece of frosted
glass does not block all light it still leaves a shadow on the surface below.

Point lights is defined by not having any spatial extent and can an
occluding object can therefor not produce soft shadows. If, on the other
hand the light source does have a spatial extent, like an area light or a
light emitting object, shadows from an occluder consists of two area types;
the umbra, which is the area where all light from the given light source
is completely blocked and the penumbra where only part of the light is
blocked. These areas are illustrated in Figure 2.2 where a, b and c are
placed through the areas of the shadow produced by the cylinder in the
right. As the hard shadow produced by the box occluding a point light
from behind, this shadow does not have any penumbra since light from
this light source can not be partially blocked by an opaque object. The

8



2.1. ILLUMINATION

Figure 2.2: Overlapping shadows also showing the difference of hard and
soft shadows

light coming from the right is emitted from an area light and does therefor
have a spatial extent.

At a the light source is not blocked at all, where as the cylinder begins to
block out the light arriving at point b. And finally the entire light emitting
plane is blocked an no light from that light source arrives in point c.

2.1.2 Lighting terminology

Though a number of physical models of light has been proposed and pub-
lished over the years, the ray optics model seems predominant in the field
of computer graphics. This model does not include all observed behaviors
of light but is far sufficient for simulating most visual effects of light as
well as material interactions. It assumes that light travels in a straight line
as it passes through a uniform media. Ray optics is therefor the basis for
the following descriptions. Radiometry is used to model the radiation and
irradiation of light and is well suited to match the ray notion of ray optics.

As [Jen01] and [Wu08] introduce the concepts and terminology of light
and light modeling, this section is widely a direct reference to these intro-
ductions.

Notation

In ray optics x denotes a location on a surface. ~n is the normal vector at x
while ~ωi is the unit vector representing the incoming direction of light and
~ω is the direction of reflected light.

For sampling the environment off a surface the unit hemisphere covers
2π steradian and is noted as Ω2π. Thus follows that Ω4π is a unit sphere
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CHAPTER 2. THEORY

covering the entire 4π steradian that is all possible angles from one point
in the three dimensional space. In integration over finite solid angles dω
denotes the differential solid angle.

When working with spheres, hemispheres and solid angles spherical
coordinates are handy to use. A direction in spherical coordinates are
defined as ~ω = (θ, φ). A subscribed i and r are logically used to indicate
the incoming and reflected version of the given concept. E.g. the above
becomes ~ωi = (θi, φi) for the incoming direction.

In all the following definitions and equations square brackets [ and ] are
used to encapsulate the unit of the entity or expression.

Radiometry

In radiometry light is seen as electro magnetic energy with a given wave-
length. The basic quantum of this energy is called a photon. A photon
with wavelength λ has an associated energy eλ and thus the spectral radiant
energy of n photons of the same wavelength λ is defined as Qλ = nλeλ; the
radiant energy for a specific wavelength. Symbols, entities and associated
units used in radiometry are listed in Table 2.1.

Symbol Description Unit
Q Radiant energy [J ]
Qλ Spectral radiant energy [J/m]
Φ Radiant flux [W ]
Φλ Spectral radiant flux [W/m]
B(x) Radiosity of surface location x [W/m2]
E(x) Irradiance at surface location x [W/m2]
L(x, ~ω) Radiance at surface location x in direction ~ω [W/(m2 · sr]

Table 2.1: Symbols used in radiometry.

The term, radiant energy defines the quantity of energy arriving at,
moving through or is emitted from a surface of given area in a given period
of time. The radiant energy is in other words the collective amount of
energy of all photons entering or leaving that surface area. We get this
value by integrating the spectral radiant energy for all possible wavelengths:

Q =

∫ ∞

0

Qλdλ [J/m] (2.1)

Flux is a general term to denote the rate of which energy or particles are
transferred across a given surface. The radiant flux is therefor the quantity
of energy transferring through a surface or region of space per time and is
given by;

Φ =
dQ

dt
[W ] (2.2)

10



2.1. ILLUMINATION

Radiosity, B, is the light energy leaving a surface, the emitted radiant
flux, while the incoming radiant flux, E, is called irradiance. If a surface
does not absorb or transmit ligh, like metal, then B = E; the entering
light is beamed away again. While irradiance is given by

E(x) =
dΦ

dA
[W/m2] (2.3)

Figure 2.3: Radiance, L, is the radiant flux per unit solid angle, dω, per
unit projected area, dA.

While radiosity is the energy flow at a given surface, radiance is the
amount of energy, or number of photons arriving at or leaving the surface
in a given direction. In relation to Figure 2.3, radiance is, formally speaking
the radiant flux, Φ, per solid angle, d~ω, per projected area, dA, and is given
by

L(x, ~ω) =
dE(x)

cos θd~ω
=

d2Φ

cos θd~ωdA
[W/m2 · sr] (2.4)

The phenomenon that the same amount of light is spread over a larger
area when more shallow incoming angles are reached (highter θ) is ex-
pressed by the cosine factor in the denominator. Radiometry is focused on
getting pure light behaviors correct and does not approximate to include
observable atmospheric disturbances within the light model itself. An im-
portant property of radiance is that in vacuum, it remains constant along
a line of sight. This means that photons are not dispersed, they do not
loose energy and they never disappear entirely. According to [Jen01] this
is used by all ray tracing algorithms. Atmospheric disturbances and elec-
tromagnetic interference must therefor be separately implemented if such
effects are desired.
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CHAPTER 2. THEORY

2.1.3 Light scattering

With the terms and attributes of light in place follows a description of light-
surface interaction. As the appearance of an object depends on the way
it reflects light into the eye of the beholder, this area is focused around
meaningfully representing and handling the reflection properties of any
given material. In computer graphics the bi-directional surface scatter-
ing reflectance distribution function (BSSRDF) is as the fundamental tool
to describe reflection characteristics. Usually the simplified bi-directional
reflectance distribution function (BRDF) is far sufficient to describe and
reconstruct any surface that is not visually translucent, while BSSRDF can
be utilized to additionally describe the translucent properties of materials
like frosted glass, milk, wax and the like. Physically speaking, only metal
does not to some degree scatter light beneath the surface, but for graphic
reconstruction this property is rarely visible and the BRDF is used for
simplicity and render speed. In this overview, I only focus on the BRDF.

The BRDF is a function for describing how much of the incident light
is reflected from the surface. This fraction of incident light, which is not
absorbed by or transmitted through the material is called the reflectance,
ρ(x). The generic BRDF is based on the notion of wavelengths, but in
most computer graphics implementations this feature is approximated by
using a BRDF for each RGB-component1.

Formally BRDF defines the relationship between differential reflected
radiance and differential irradiance

fr(x, ~ωi, ~ω) =
dLr(x, ~ω)

dE(x, ~ωi)
=

dLr(x, ~ω)

Li(x, ~ωi)(~ωi · ~n)d~ωi
[sr−1] (2.5)

The reflection radiance in all directions can be calculated if the inci-
dent radiance field at a given surface location is known. This is done by
rearranging equation 2.5 and integrating the incident radiance, Li, over the
entire hemisphere;

Lr(x, ~ω) =

∫
Ω2π

fr(x, ~ωi, ~ω)dE(x, ~ωi)

=

∫
Ω2π

fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi · ~n)dωi (2.6)

Helmholtz’s law of reciprocity states that the BRDF is independent of
the direction in which the light flows;

fr(x, ~ωi, ~ω) = fr(x, ~ω, ~ωi) (2.7)

This means that the BRDF enables us to trace light in both directions.
Another important physical property is energy conservation. Due to energy

1Recent development has produced rendering techniques with a more abstract con-
cept of wavelength, usually referred to as spectral rendering[Don06][SFDC01][CPB06]
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2.1. ILLUMINATION

absorbtion and transmission the energy level can drop but never rise, unless
the given surface is emissive in nature. In other words, a surface can not
reflect more light than it receives.

As described in section 3.2.1, the GDIBL method is thought for lighting
rather than providing an environment for specular reflections. For this
reason Lambertian surfaces are used to test and demonstrate the validity
of the method. For a Lambertian surface reflected radiance is constant in
all directions over the hemisphere around the surface normal. This means
that the light reflected off a Lambertian surface is independent of view
direction and thus gives the constant BRDF

fr,d(x) = ρ(x)/π (2.8)

and by substitution in equation 2.6, the radiance is given by

Lr(x) = fr,d(x)

∫
Ω2π

dE(x, ~ωi) = fr,d(x)E(x) (2.9)

In section 5.1 and 5.2 a specular reflective material is used to illustrate
the relative position of objects in the scene. As specular reflections are
outside the scope of this project and since this material simply displays
a maximum level of specularity, a simple vector reflection is used in the
application.

2.1.4 The rendering equation

The rendering equation is the general equation for computing the radiance
at any surface location in the modeled scene.

As stated in section 2.1.3 a surface can not reflect more light than
it receives, unless it is light emissive in nature. Therefor the rendering
equation states that the outgoing radiance, Lo, is the sum of the emitted
radiance, Le and the reflected radiance, Lr, which gives;

Lo(x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) (2.10)

By substituting equation 2.6 for the reflected radiance, we get the ren-
dering equation in the form often used in ray-tracing algorithms.

Lo(x, ~ω) = Le(x, ~ω) +

∫
Ω2π

fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi · ~n)dωi (2.11)

As this projects does not deal with environment interaction in IBL and
also have no other use for emissive surfaces, this first part of the equation
is disregarded. Li(x, ~ω) in the second part of the equation represents the
incoming radiance from other surfaces in the scene, and thus indicate the
recursive nature of this equation.
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CHAPTER 2. THEORY

2.2 Image Based Lighting

Today’s motion picture productions including computer generated imagery
has reached a standard where global illumination is required. The realism
of the composited graphics must be unquestioned and the classic three point
lighting days are over. At the same time the high standards for lighting
in computer graphics have increasingly begun being applied to computer
games and other real-time applications.

GI generically covers all methods that provide both direct and indirect
illumination within a given scene. IBL is not directly categorized with the
other GI methods as the indirect illumination is not necessarily a part of
any IBL implementation. It does however manage to apply the indirect
illumination from the surrounding environment of the scene.

As the name indicate, IBL is a technique where an image based sample
of irradiance at some point in a real or synthetic scene is used to illuminate
any synthetic objects that is rendered into that scene [Deb98]. In order
to capture and reconstruct actual lighting conditions the image is required
to store a high dynamic range of light. Though several formats provide
support for hight dynamic range (HDR), a common property is that they
typically store color information in somewhere from 16 to 48 bits per color
channel as opposed to the traditional 8-bpc. The most common utilization
of HDR images as a means of illuminating synthetic objects, is by having
them represent the radiance from the entire scene. For this we need a
panoramic image that describes the environment in a full 360◦ by 180◦

sphere. Throughout this report, such panoramic irradiation samples are
referred to as light probes.

IBL represent all indirect light from the given environment, but intro-
duce it to the local scene as direct light. As opposed to the classic light
types in computer graphics; point and directional light. Since IBL is based
on the notion of being infinitely far away, it is in fact always locally direc-
tional. I.e. a given direction is surveyed for light information it will always
return the same value independent of the survey location. This does not
classify IBL as a directional light per say, but rather as another model for
irradiance completely.

IBL ensures a close approximation to the actual light in the scene,
but has noticeable limitations in respect to flexibility and range of correct
lighting conditions. If the synthetic objects move to an area with different
lighting conditions than where the light probe recording was made, this will
become very visible as seamless blending is only provided within visually
identical lighting condition.

This issue is due to the fact that the light is ”cast” onto the object from
an infinite distance. This makes the IBL method indifferent to relative
location as far as the object goes. It is sensitive to changes in relative
orientation, but no matter where the object is placed, it will still have
the exact same relative location to the surrounding environment as this
remains at infinite distance ([Gre86], [Deb98]). This restriction in spatial
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variance is the main concern for this project.

2.2.1 Acquisition

For HDRI recording several state-of-the-art devices provide fully auto-
mated HDR photography. On a lower budget the, by Debevec introduced
traditional methods are still in use. As presented in [DM97] a series of low
dynamic range (LDR) photographs of varying exposure can be combined
into an HDR image. This leaves us with the acquisition of the panoramic
aspect.

The mirror ball

A first surface reflective orb can be used to capture a reflection of the envi-
ronment around it. Due to its spherical nature it reflects everything besides
what is directly behind it. As everything usually include the photographer
the orb should be photographed from at least two different angles in or-
der be able to edit distortion and photographers. This method is fairly
straight forward as, among others, both HDRI Shop2 and Adobe Photo-
shop CS23 and newer will take care of automatically merging a series of
LDR photographs into a variety of HDRIformats.

Fish eye lenses

A fish eye lens is a common term for an extreme wide angle lens providing
up to a 180◦ view capture. Usually some dispersion or precision falloff ap-
pears towards the sides of the lens where the extreme angles can influence
various wavelengths differently. As presented by [KB04] and used in the
[Pro07] project, the output of such wide angle photography can be cali-
brated and any color distortion computed out. This is a somewhat more
labor intensive method but pays back in both precision, resolution and
level of detail.

Synthetic scenery

Rendering a full environment panorama can not be done with a classic
pin-hole camera, but an angle-based camera is neither hard to comprehend
nor implement. The commercial state-of-the-art renderers on the market
today, have some variation of dome-camera, spherical rendering option or
at least they provide an easy way to set up their standard camera type to
provide the six different renderings that is needed for a cubic environment
map as described in the following section. Rendering a synthetic scene into
an environment map has numerous applications ([UGY06],[ML03],[Pro07])
and has the advantage that any level of detail can be reached as well as

2http://www.debevec.org/hdrshop/
3This feature has been improved through CS3 and now CS4; http://help.adobe.

com/en_US/Photoshop/11.0/WSfd1234e1c4b69f30ea53e41001031ab64-78e5a.html
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a pipeline without compromising photographers, changing lighting condi-
tions or blind angles.

Regardless of acquisition techniques or initial pipeline, the actual map-
ping of the environment recording should be considered as well.

2.2.2 Environment mapping

In IBL the irradiance map is usually handled in the virtual scene as an
environment map. An environment map is by definition [Gre86] mapped to
an arbitrary, virtual object placed around the entire scene with its normals
facing in towards the scene. This object is for reference rather than relative
interaction and is not regarded as a part the rest of the actual scene. The
environment is virtually at infinite distance from the objects in the scene,
and so Debevec denoted this the difference between the local scene and the
distant environment. This indefeasible distance property remains intact
regardless of the mapping technique used to introduce the environment
map or light probe t

Angular map

The angular mapping technique was introduced by Paul Debevec as the
native format of light probes. The angular map is a circular map with a
uniform differential angle from the center to the edge. This means that if
the 1:1 aspect angular map is oriented towards the sky, the center of the
map represents the direction straight up in the air, the 180◦ circle, located
at exactly r

2
from the center is the horizontal line and the edge of the

circular map, at a full r from the center, represents downward direction.
This mapping is illustrated with a horizontal orientation in Figure 2.4

Figure 2.4: The 2D angular is first extended into a cone and then shrink
wrapped to a sphere.

This mapping leaves us with no seems and only one pole. As this pole
force the distinctive pixels around a far stretch, its singular role makes
it deviate visibly from the detail level of the remaining image, followed
only by the center of the map where the distinctive pixels are packed very
tightly. In these extremes sample quality is either lost to compression or
distorted by smearing. In addition the circular nature of the format also
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makes it hard for the human eye to relate to the content and thus makes
it nearly impossible to manually edit an image of this format.

Spherical coordinates

Spherical coordinates has been adopted from geology where the latitude
and longitude coordinates of e.g. the Earth describe the surface traversal
of all spherical objects. For this reason, an environment map stored in
spherical coordinates are also referred to as latitude-longitude-map. The
spherical map has an aspect of 2:1. Spherical coordinates, in math and
physics notated by (r, φ, θ) are easily derived from any vector representation
and thus makes a spherical map simple to reference. Another positive side
to the spherical map is that the human eye better relates to this visual 2D
representation than e.g. the angular map. On the down side the format
does produce one seem and two poles in which smearing and loss of detail
can occur, see Figure 2.5 for reference.

Figure 2.5: The sphere is opened. The small amount of pixels in the top
and the bottom of the sphere are stretched to match the width of the 2D
map.

The spherical coordinate approach has been supported in both OpenGL4

and DirectX5 for some time now and is thus hardware accelerated by all
complying graphics cards.

Cubic environment

In a cubic map the environment is intuitively projected out onto a cube,
producing six individual sides. When combined on a single 2D image, a
common representation of these six sides is presenting them in a vertical
or horizontal cross. As these six patches are square in nature, the cubic
environment map has an aspect of 3:4 or 4:3 for the vertical and horizontal

4http://www.opengl.org/documentation/specs/version1.1/state.pdf
5http://msdn.microsoft.com/en-us/library/bb147401(VS.85).aspx
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versions respectively. This mapping is very easy to reference as the vec-
tor coordinates directly transfers to the cubic pixel mapping mapping as
illustrated in Figure 2.6.

Figure 2.6: Vector coordinates can be directly transferred to the mapping
of a cubic environment.

This format does provide eight seems but as it is in all aspects cubic,
it has no poles, as illustrated in Figure 2.7. For this reason, in addition to
the easy reference by computers, the individual patches of the cube map is
also practically without distortion. This property makes it equally easy to
view and edit for the human user.

Figure 2.7: The sphere is divided into 6 rectangles, flattened and assembled
to a horizontal or vertical cross.

Box or cube environment mapping has got hardware support through
both OpenGL6 and DirectX7 and thus supported by practically all modern

6http://developer.nvidia.com/object/cube_map_ogl_tutorial.html
7Hardware supported in DirectX 9; http://msdn.microsoft.com/en-us/library/

bb204881(VS.85).aspx
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graphics cards.

2.3 Spatial variation of light

Regardless of the mapping technique used for applying the environment
irradiance map to the scene, the issue regarding spatial invariance is not
solved by native IBL.

Numerous approaches has been made to solve this issue with methods
most of which have to do with densely sampled light fields [UGY06]. This
approach has shown to be impractical for actual implementation and use
and even raise questions regarding recording precision and spatial detail,
as discussed in [Ves08], why also more sparsely populated light fields has
been the subject of some work.

Various approached deal with real-time recording and reconstruction
from HDR video [HSK+05] where the movement of the camera alters the
captured lighting conditions, or [ML03] which focus their efforts on solving
specific subcases such as 2D movement.

Also work has been done in the direction of view dependent environment
maps [HSL01], [BKM07]. Such maps provide varying lighting conditions
for spatial movement and even stave off the need for thousand of individual
samples in the dense light field approach.

As all these approaches provide both advances and limitations in regard
to the spatial, natural lighting issue, none of them seems to solve the issue
in a practically feasible manner, and thus the quest continues.

It has, however, at a late point in the course of this project come to my
attention that [Pro07] describes a fairly equivalent project simply called;
Spatial Image Based Lighting (SIBL), and thus solves this problem in much
the same fashion as proposed in this report. In order to avoid any confusion
it is hereby stated that the [Pro07] project has not been the basis of this
project and is thus explicitly referenced throughout this report whenever
it has been used as a resource.
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Chapter 3

Overview of the GDIBL
method

This chapter presents the GDIBL method in terms of main idea, overall
algorithms and issues still pending to be addressed.

Initially an overview of the GDIBL method is described, including the
general idea, a step-by-step walk-through and a presentation of the main
algorithm.

Subsequently I present a list of known limitations for the method along
with possible solutions or arguments for disregarding these issues.

3.1 Overview

This is the section that presents the method derived and described in the
first report. Pictures, illustrations, fancy words and possible application
and their main concerns for a method like this.

3.1.1 The GDIBL method

As stated in detail in [Ves08], the preliminary research project for this
method proposal, spatial variation under complex lighting conditions is
still an issue that challenge both the motion picture industry and the gam-
ing industry alike. While IBL provides a solid solution to sampling and
reproducing complex lighting conditions, it natively lacks the ability to
provide information about spatial variance in scene lighting.

The GDIBL method introduce a combination of image based lighting
and a geometric reference model to reproduce spatially varying lighting
conditions in a scene. The way this is accomplished is by validating an
arbitrary number of light probes relatively positioned within the scene and
deriving the irradiance at any novel location by interpolation from the
probe data. In the proposed method, a rough geometric model is used to
reference the distance from which the the probe lighting is emitted, but
any depth information could be used. Whether geometric reference, depth
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information embedded in the light probe format or any other method is
utilized, the depth information is used to query valid light probes and
reference the direction in which irradiation data is requested.

As the light probes are mapped to a geometric model, the main light
sources in the HDR maps has an actual extent and location relative to the
object being rendered and thus provide support for hard and soft shadows
in accordance with the scene. This means that light is distributed through-
out the scene largely in the same way as in the real world. But this method
does not rely on heavily precalculated light distribution as this is provided
by simple derivation for each point at runtime. As only a few levels of ray-
tracing is needed at runtime this method is also plausibly implementable
for dynamic real-time applications as well as off-line rendering.

Figure 3.1 illustrates the reference method of the GDIBL method.
While gathering the collective irradiance at the rendered point of the tea
pot, a geometric model is being used to validate and reference light probe
data from probes P1, P2 and P3 respectively.

(a) Both P1 and P3 are blocked in
their line of sight and invalid.

(b) In this case both P1 and P2 hold
valid information about the queried
direction.

Figure 3.1: The point referenced in 3.1(a) return data from P2 only, while
the point referenced in 3.1(b) should be a blend of data from P1 and P2.

In 3.1(b) both P1 and P2 has a line of sight (LOS) to the to the
environment reference point. This means that irradiance information for
the positioned direction, indicated by the red line, should be the blended
irradiance at the positions of light probes P1 and P2 coming from that
particular point:

E(x) =

∫
Ω2π

nvalid∑
i=0

E(pi, ~ωi)kblend (3.1)

Where pi are positions of valid light probes and xe is the intersection
point with the environment geometry by the query direction vector. Fur-
ther more, the irradiance function has been extended to look up irradiance
from one particular direction, and presents as such a mirrored alternative
to L(xe, ~ωi); the radiance at surface location xe in the positioned direc-
tion from that point towards pi. kblend is a generic blending coefficient
determined by the applied blending method, see section 3.1.2.
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Step by step

The GDIBL method is a generic method for querying lighting information
from multiple light probes spatially positioned within a given scene. Even
though distributed ray tracing, real-time rendering or a number of other
frameworks could be used, the method is as proposed based on some level of
ray tracing. The method itself only handle the actual irradiance querying
of which the flow can be described as follows:

The validation of light probe consists of an additional ray intersection
test, namely the environment geometry intersection of a ray from the light
probe position to the intersection point of the initial hemisphere ray. If the
light probe is not blocked in its line to the intersection point, it is said to
have a LOS and is thereby considered valid.

Algorithm 1 describes the process of deriving lighting information for
a single point. Since the algorithm only returns the irradiance on a sin-
gle point, it is equally valid for full off-line ray-tracing and for simplified
shader-based real-time rendering, though the need for recursive ray-tracing
should be handled differently. See Figure 3.2 for illustrated walk-through.
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Input: Set of light probes (E), scene geometry (Gscene),
environment reference geometry (Genv), target point on
object surface (Ptarget)

Output: Irradiance value (I)for the target input point

Create set of rays Rhemi to cover hemisphere from target point1

Ptarget;
foreach ray in Rhemi do2

foreach geo in Gscene do3

if r intersects with geo then4

Trace recursively or return final value;5

. . . /* framework dependent */6

end7

end8

foreach env in Genv do9

if ray intersects with env then10

Pint ← intersectionpoint;11

Evalid ← hasLineOfSight(E , Pint);12

if Evalid is empty then13

return value of nearest/last successful neighbor;14

else15

return interpolation between all probes of Evalid;16

end17

end18

end19

if ray did not intersect Gscene or Genv then20

return interpolated value of probes with LOS in the given21

direction;
end22

end23

Algorithm 1: Pseudo code algorithm for the GDIBL method.

The reason that only intersection with environment geometry should
entail the disqualification of a light probe is that this method queries the
scene as is, while leaving further light interaction within the scene to the
surrounding framework.

3.1.2 Blending

The GDIBL method is based on the derivation of information from mul-
tiple light probes. As these light probes does not cover the entire scene,
interpolation between the accessible samples is needed in order to derive
plausible lighting information for novice positions.

The light probe samples used in the GDIBL method are arbitrarily
positioned to improve flexibility in acquisition and setup. Interpolation of
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(a) A piece of geometry is seen by the
camera.

(b) Rays are sent out in a number of
directions to inspect the environment
lighting.

(c) Intersection with the environ-
ment geometry of GDIBL is used to
validate existing light probes.

(d) Valid light probes are blended ac-
cording to angle. The one to clos-
est approximate the viewing angle is
weighted highest.

Figure 3.2: Illustration of the Algorithm 1 in work.

light probe data must therefore accommodate such arbitrary positioning
and cannot rely on grid based or in other ways uniformly distributed data.

inverse distance weighted (IDW) interpolation is such an interpolation
method. IDW adds importance to samples closer to the interpolated point
than samples far away. The interpolation carried out in Algorithm 1 line
16, returns a novel irradiation value based on all light probes in the scene
considered valid for the reference point in question. While a HDR light
sample is a recording of irradiation from all directions at the location of
the light probe, this is also a recording of radiance from all visible surfaces
towards this one point.

The IDW interpolation is defined as

ŕ =
n∑
i=0

idw(pi, xe)∑n
j=0 idw(pj, xe)

ri (3.2)

where ŕ is the novel light ray, ri is the light ray sample and idw(pi, xe) is
the IDW function of ŕ. As defined the weight is in fact the distance measure
of the individual sample in relation to the collective distance measures of
all samples being considered. This distance measure can be based on any
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property that applies to all samples.
Remembering equation 2.4 and the theory on specular properties in

most real world surfaces, we know that radiance from such surfaces vary
depending on the viewing angle. In this case the location of our light
probes. This leads to conclude that the angle from the reference point to
the query origin is a more significant weight base for this application than
the euclidian distance between the probe and the query origin (qo).

Utilizing angular distance with the IDW interpolation scheme leaves us
with this function for a novel light ray;

ŕ =
n∑
i=0

ang(~pi, ~xe)∑n
j=0 ang(~pj, ~xe)

ri (3.3)

where ang(~pi, ~xe) is the angular distance between the vector ~pi from
probe (pi) to the environment intersection point (xe) and the vector ~xe
from the QO to the intersection point.

Using this sort of interpolation a special case will have to be made only
when there are no valid samples or when all valid samples are in the exact
same direction as the QO.

(a) The interpolation result for equa-
tion 3.3

(b) Interpolation result for equation
3.4 using degrees and an exponent of
k=0.3

Figure 3.3: The distinct difference between the overshooting classic IDW
and the simplified exponent based IDW function.

An even more simple interpolation can be defined as

ŕ =
1

ang(~pi, ~xe)k
ri (3.4)

where k is the angular distance exponent. This interpolation is still
considered an IDW interpolation, but offers a “handle” to adjust the bias
of significance assigned to the participating light samples.
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Using angular distance rather than euclidian distance embrace this spec-
ular reflection variation over a surface as it gives the most significance to
samples that are angle wise closest to the QO.

The IDW interpolation presented in equation 3.3 always produce an in-
terpolated value that is higher than the nearest neighbor and equation 3.4
can be presented with an exponent that displays this same property. How-
ever, none of these interpolation functions are practical in the case where
an interpolated value should be based on more than two samples. In this
case both functions will overshoot the intermediate samples by unsatisfac-
tory high values. Therefore a simple elimination has been implemented to
only take the two angle wise closest samples into account. See section ??
for further discussion of this choice.

3.2 Known limitations

The GDIBL method is proposed as a solution to spatial variance in complex
and sampled lighting conditions without engaging in massive sampling.
Even though this issue is accommodated by the method, there are some
practical limitations to the utility of GDIBL.

3.2.1 Rendering specular reflections

As the GDIBL method is based on depth corrected IBL, this correction can
be done at various levels of detail. The level suggested through this work
does not provide sufficient detail to use the HDR lighting information for
specular reflections. This is due to the fact that the reflected environment
would be projected onto an approximated model, usually with far too little
detail. Especially motion renderings will reveal such insufficient level of
detail.

The GDIBL method thrives on referencing simple geometric environ-
ment models. In order to preserve the light weight idea of the method,
possible solutions for this limitation could therefor lie in either storing
additional depth information in parallax mapping or similar. While this
may introduce a high detail depth reference through intersecting simple
geometric models, it could leave the acquisition of real world depth data
to technologies like Z-Cam or similar depth acquiring devices while depth
maps can be rendered from any 3D production tool on the market.

Lastly it should be mentioned that in simple, synthetic cases where
the geometric model is identical with the actual scene geometry, synthetic
objects with specular surfaces should not trigger this issue.

3.2.2 Highly specular environment

While issues remain regarding the rendering of synthetic objects with spec-
ular reflection properties, specular reflections also present a challenge in
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the environment scene. While light may fall through a window and be
perceived as directional, we still have the option of modeling the window
as a hole in a wall and leaving the sun in the distant environment outside.
This utilize the advantage of the referential environment geometry and thus
pose no problem. If, on the other hand a mirror reflects the sun’s rays in
any arbitrary direction through the room, this present a very limited beam
from a perfectly plane surface.

This issue also include directional light emission from a modeled surface
such as a screened lamp.

The issue with highly specular or directionally light emissive surfaces
in the sampled environment is outside the scope of this project, but can be
solved by denser sampling around that particular light beam. In this case
an alternative interpolation method, to distinctively honor higher resolu-
tion in changing lighting conditions, must be considered.

3.2.3 Semi-transparent environment

A window can be modeled simply as a hole in the wall to accommodate
the property of glass allowing the light to pass through it. In the case of a
night time scene where it is dark out side, the glass is suddenly primarily a
specularly reflecting surface and modeling the window as a hole will simply
not suffice. While the night time window might reflect any light from the
inside, it still allows the light of a distant street light to enter the indoor
scene. This combination of transparent and reflective properties present a
delicate issue that may only increase with even more demanding properties.

While steamy windows and translucent curtains are interesting mate-
rials to study, the issues of embracing such advanced properties currently
lies outside the scope of the GDIBL method.

3.2.4 Distant environment

In addition to the previously known issues regarding modeling and ren-
dering scenes lit by the GDIBL method, new issues have become apparent
through the implementation work with this method.

The illuminating environment is divided into two categories in the
GDIBL method; a local environment that is geometrically represented for
reference and a distant environment that shares the infinite distance prop-
erty of traditional IBL.

As light probes scattered around the local scene may be referenced
by the local environment geometry, this geometry also define a limit for
the information derivable from any one light probe. Such limitation can
lead to environment shadows; areas for which no information is stored. In
Figure 3.4 a scene is well provided for regarding internal light information.
However, the gap in the local environment geometry provides a portal into
the distant environment. While staying behind the outmost light probe,
this distant environment is easily referenced simply by direction of the
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closest light probe with a LOS in the given direction, but when a query is
made into an unmapped area, no lighting information can be found, as seen
in Figure 3.4(a). In such case, Algorithm 1 suggest to use the last or closest
successfully queried direction, but a simple, more correct consideration can
be made.

(a) Unmapped distant environment
is referenced.

(b) Avoiding shadows by extreme
placement of light probes.

Figure 3.4: Avoiding shadow areas in distant environment

As illustrated in Figure 3.4(b), this issue can be addressed by placing
light samples in the extreme boundaries of or even outside the local scene.
These samples, even if nothing else, provide information about the distant
environment that is blocked from probes further inside the scene.

As carefully considering light probe placement will diminish shadowing
in the distant environment, this issue does not affect the technical imple-
mentation of the method.
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Implementation

Now that the method has been presented, this chapter describes the actual
implementation.

The intention of this implementation is to verify the effect of the GDIBL
method in an environment that provides a basic, plain and in all other
aspects simplified framework. The simplicity of the framework is sought
in order to make the effects of the actual method as clear and evident as
possible. The implementation presented through this report is an effort
to demonstrate the validity and results of the GDIBL method thus far
presented in pure theory.

4.0.5 Plug-in vs. stand-alone

Initially I had to decide whether to build an entire rendering system from
scratch or write a plug-in for an existing renderer or other existing 3D tool.
There were several reasons for choosing to build a rendering system myself.

With reference to the personal goals listed in section 1.2 building a
self contained system would grant me insight in the entire process and
the various considerations that can affect both process and outcome. Also
given the task of proofing the validity of the GDIBL method, I had to have
a way of following the rendering process and confirm that all values are
correctly derived in respect to the GDIBL method.

In the following, the implementation is described in terms of relevance
to the method and technical solutions to practical problems.

4.1 Basic raytracer

The ray tracer is a common term for a rendering system based on scattering
rays into the scene and tracing their paths to find and shade the objects
they intersect. A ray tracer provides a simple three dimensional coordinate
system, a camera and various objects which can be rendered to an image
and displayed on screen and/or saved to disk. This basis is described in
the following section with respect to its supportive features and frame work
properties.
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Figure 4.1: The recursive ap-
proach of the Debevec tuto-
rial.

As a basis for the GDIBL method, a
ray tracer provides a more straight forward
approach to IBL as the sampling of envi-
ronment light contributions are intuitively
done using rays. The 2002 IBL tutorial
by Paul Debevec [Deb02] also illustrates
the recursive use of rays to investigate the
scene and surrounding environment.

In this section the foundational ray
tracer is described to establish the frame-
work for the GDIBL extension described in
section 4.2.

4.1.1 Coordinate system

A three dimensional coordinate system, consisting of an X-, a Y- and a Z-
axis was defined and implemented through the Vector class as sets of three
double values. Based on the reasons mentioned in section ??, I chose to im-
plement this class myself instead of utilizing e.g. the System.Direct3D.Vector
class.

Figure 4.2: Right hand co-
ordinate system

The world coordinate system (WCS) is
used throughout the application, and local
coordinate transformations has therefore not
been required. The WCS is a right hand co-
ordinate system, meaning that the internal
orientation of the X-, Y- and Z-axis matches
the schematic in Figure 4.2. In the ab-
stract world of this implementation the Z-
axis points up while the X- and Y-axis de-
fines the horizontal plane. Up, down, right
and left are of course only abstractions but
does support description of scene configura-
tions later on in this report .

4.1.2 Camera

The orientation, position and ray casting of
the camera are likewise based on the WCS.
This means that whenever rays are gener-
ated from the camera, they are natively rep-
resented in world coordinates.

General camera class is inherited by classicCam and angleCam, see
class diagram in Figure 4.7. The getRay() method of the camera-class
provides each new query ray from the camera into the scene.

Figure 4.3 illustrates how a ray is fired from the camera position through
an abstract image plane and thus queries the scene one pixel at the time.
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Figure 4.3: The implemented camera trace rays through the image plane.

�
1 public Ray GetRay(int x, int y){
2 // Distance to the relative right
3 Vector dRight = Right() ∗ HorizontalUnit ∗ x;
4 // Distance to the relative up
5 Vector dUp = Up ∗ VerticalUnit ∗ y;
6 // Distance in the relative direction
7 Vector dDir = FocalLength ∗ Direction;
8 // Assemble to target direction
9 Vector dir = dRight + dUp + dDir;

10

11 return new Ray(this.Position, dir) ;
12 }� �

Listing 4.1: Generate a direction vector from (x,y) screen space coordinates.

In implementation, the getRay() constructs a new direction vector
through multiplication of custom unit-vectors relative to the orientation
of the camera. As seen in listing 4.1, this direction vector is combined with
the position of the camera itself to produce the requested ray.

4.1.3 Ray tracing routine

The ray tracing algorithm has been split up into a basic loop including a
ray generating method and a recursive methods retrieving pixel colors.

getCol(Ray) handles object and environment intersection as well as
shading according to the material of the intersected object.

The class diagram for the basic ray tracer is depicted in Figure 4.4.
Only the most basic features are realized at this point in relation to the
introduction of the GDIBL extension presented in section 4.2.

The ray tracing routine along with most of the additional methods
it needs are included in the frmNT class, which is specialization of a the
System.Windows.Forms.Form and is, as a single file the heart of this im-
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�
1 int imgH = (int)(scene.camera.renderResolution.Height / 2);
2 int imgW = (int)(scene.camera.renderResolution.Width / 2);
3

4 for ( int imgY = −imgH; imgY < imgH; imgY++)
5 {
6 for ( int imgX = −imgW; imgX < imgW; imgX++)
7 {
8 int x = imgW + imgX;
9 int y = imgH − imgY −1;

10 FIRGBF color = Color.Black;
11

12 // Fire ray and do intersection
13 Ray ray = scene.camera.GetRay(imgX, imgY);
14 color = getCol(ray, DEPTH);
15

16 buffer [x, y] = color;
17 }
18 }
19 bitmapImg = drawIt(buffer);� �

Listing 4.2: Traditional basic ray tracing algorithm

plementation.

4.2 GDIBL extension

The GI implementation in this particular application of the GDIBL method
is based on recursive light sampling rather than photon mapping, irradiance
mapping or any other multi pass algorithm. This again does not speak to
the efficiency of the implementation but does apply GI on a practical,
hands-on and uncomplicated basis.

In order to provide the final shader with the light information it needs,
a few support features must be established beforehand.

4.2.1 HDR pipeline

Image based lighting is based on the high dynamic range of light informa-
tion stored in HDR images. To implement a pipeline that embrace such an
extended range of light values one need only to store color values in a 16
or 32 bit per channel floating point color format. However in order to read
the HDR images from which the lighting is to be derived, the FreeImage

library [Fre08] was introduced quite early in the process.
In addition to the traditional LDR formats, the FreeImage library pro-

vides read/write functionality for most HDR file formats, such as Debevec’s
.hdr, the OpenEXR format of Industrial Light & Magic and the 48-bpc
TIFF format. It also provides suitable color formats capable of handling
up to 48 bit per color channel as well as creation of custom channels for
e.g. depth, object ID or what ever might be needed.
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Figure 4.4: A class diagram for the initial ray tracer.

The FreeImage RGB floating point (FIRGBF ) color type chosen for
this implementation since it presents an RGB based floating point format
with no additional channels and features. In other words; it was the most
simple format that met the requirements.

Like all color types provided by the FreeImage library, the FIRGBF
type has implicit conversion from the System.Drawing.Color type and, ac-
cording to the documentation, also from FIRGBF back to System.Drawing.Color.
This implicit conversion, along with it’s explicit alternative, does not in-
clude tone mapping of any sort, and thus cannot handle color channel values
that exceed the LDR roof of 1 (255 in 8-bit integer based formats). Even
though explicit tone mapping is made available through the FreeImage li-
brary, this has not been utilized in the implementation of GDIBL method.
Instead a simple clamping method makes sure that no values are either
above 1 or below 0.

4.2.2 HDR environment map

The HDR file format chosen for this implementation is .hdr. In addition
to choosing a file-format I chose to use latitude-longitude maps as the
spherical coordinates could easily be converted to (x, y, z) based vectors
and vice versa.

The coordinate mapping of spherical maps is illustrated in Figure 4.2.2.
The spherical coordinates (ρ, theta, φ)are derived from an (x, y, z) vector
as follows;
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(a) θ going from −π to π is mapped to 0
and image width respectively.

(b) φ going from −π
2 to π

2
is mapped to 0 and image
height respectively.

ρ =
√
x2 + y2 + z2 (4.1)

θ = arctan y
x

(4.2)

φ = arctan

√
x2+y2

z
(4.3)

and (x, y, z) from spherical (ρ, θ, φ) like this;

x = ρ ∗ sin θ ∗ sinφ (4.4)

y = ρ ∗ sin θ ∗ cosφ (4.5)

z = ρ ∗ cos θ (4.6)

These convenient conversions along with the humanly readable visual
representation of the spherical map, were the main reasons behind this
choice.

4.2.3 Ray distribution

In order to sample the actual hemisphere over a surface point, we must
integrate the incoming radiance over the hemisphere. The common ap-
proximation to integral functions in both physics and computer graphics
are variations of the Monte Carlo method, equation ??. This approximates
the integral function by summing up random samples from the internal
function and calculates a mean value. This obviously means that the more
samples one calculate, the better the final approximation will be.∫

Īs

f(u)du ≈ 1

N

N∑
i=0

f(xi) (4.7)
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where Īs is the s-dimensional unit cube, Īs = [0, 1] × ... × [0, 1] and
each xi is a vector of s elements. In this case three. The two common
variations are the classic Monte Carlo method where the set x1, ..., xN
is a subsequence of pseudo-random numbers, and the quasi-Monte Carlo
method where the set is a subsequence of a low-discrepancy sequence.

Using ray distribution means entering a game of chance in regard to
sampling the significant light sources in the probe data. The chance for
randomly distributed rays to hit all significant light sources in an image
can be very small as massive light emission is rarely seen from large areas
of the image plane.

Methods of calculating a diffuse map of hemisphere radiance have proved
to be highly efficient for diffuse lighting as only the surface normal is needed
to pinpoint the collective irradiance over the entire hemisphere. However,
this method only works for convex objects as there are no native occlusion
detection involved.
Under the general term importance sampling, numerous methods have been
developed to sample, narrow down and target significant light sources in
images for use in IBL. The purpose of such methods is to provide a more
of the significant lighting information while using fewer sample rays. With
reference to section ?? I chose to refrain from the introduction of such
methods, but do recommend them for any future IBL implementation.

Using the Monte Carlo method with a low-discrepancy sequence of sam-
ples provide a uniform distribution over the hemisphere. This will produce
a less noisy result than using random sample directions, but it will need
the same high amount of sample rays to produce an acceptable result. The
reason for this requirement is that a uniform distribution also means us-
ing the same distribution over a plane surface. This means that if the
distributed rays miss a significant light, this light will be missing from all
sample sets based on that hemisphere direction, i.e. a plane surface will be
incorrectly rendered in it’s entirety.

Random distribution

Alternatively random distribution sends out rays randomly scattered over
the hemisphere. These rays are likewise used to sample the irradiation
from the given direction and are conclusively aggregated to derive the col-
lective irradiation in the emission point. But as these rays does not abide
to any restrictive rules of distribution other than to stay within the given
hemisphere, the dice deciding whether they hit a significant light is rerolled
at every sample point. This renders the surface more vibrant due to noise
in the random sample results, but it also heighten the probability that the
general impression of the surface is coherent with the environment from
which the irradiance is derived. And since this particular implementation
was written in C#, it was therefor reasonable to utilize the random num-
ber generator native to this language, and thus base the sampling on the
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pseudo-random Monte Carlo method.
As stated in [Jen01]; Using the relationship in equation 2.9 the diffuse

radiance, rhod can be found to be

ρd =
dΦr(x)

dΦi(x)
=
Lr(x)dA

∫
Ω
d~ω

Ei(x)dA
= πfr,d(x) (4.8)

for a Lambertian surface. This is true since
∫

Ω
d~ωd = π.

The reflected direction is, as mentioned in section 2.1.3, perfectly ran-
dom for a Lambertian surface. Thus given two uniformly distributed ran-
dom numbers ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1] we find that this randomly reflected
direction, ~ωd is distributed as

~ωd = (θ, φ) = (cos−1(
√
ξ1), 2πξ2) (4.9)

here presented in spherical coordinates (θ, φ) for the direction; θ is the
angle from the surface normal and φ is the rotation around this normal
from the x-axis.

This method has been used for creating a set of random directions
which, when coupled with the given point on the surface, presents a set of
rays randomly scattered over the hemisphere, as illustrated in Figure 4.5.

The
√

factor in equation 4.9 bias the θ values to produce angles closer
to the normal, see Figures 4.5(a) and 4.5(c). In order to evenly distribute
the ray directions over the entire hemisphere, the

√
factor has been re-

moved from the construction to produce the results seen in Figures 4.5(b)
and 4.5(d).

�
1 private void populate()
2 {
3 Dirs = new List<Vector>();
4 for ( int i = 0; i < amount; i++)
5 {
6 double rnd1 = rnd.NextDouble();
7 double rnd2 = rnd.NextDouble();
8 double theta = Math.Acos(rnd1);
9 // for normal biased (even 2D) distribution, use this

10 //double theta = Math.Acos(Math.Sqrt(rnd1));
11 double phi = 2 ∗ Math.PI ∗ rnd2;
12 Vector v = Vector.FromAngles(theta, phi);
13 Dirs.Add(v);
14 }
15 }� �

Listing 4.3: The actual implementation for populating a list of random
direction vectors.

Listing 4.3 is the actual C# implementation of the random direction
generation in the GDIBL implementation.

In the getCol(Ray ray, int step) method that handles the actual
object intersection and shading, the getRaysBy(Vector pos, Ray normal)
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returns a set of rays based on the position and a re-populated set of random
direction vectors. These rays are then tested for intersection with all ob-
jects in the scene or only environment geometry if the rays are distributed
from an environment surface, see section 3.1.2.

4.2.4 Shading

For the actual shading of the queried pixel I chose to multiply the diffuse
color of the intersected object with the derived irradiation per color chan-
nel. This provides a simple and transparent shading algorithm that makes
it practicable to deduce the incident radiation by simple division. This also
supports the theory regarding the light absorbtion and transport, since the
reflected light can never become more powerful than the incident. �

1 private FIRGBF getCol(Ray ray, int steps){
2 Intersection intersInfo = scene.ObjIntersection(ray, true) ;
3 FIRGBF color = Color.Black;
4 if (! intersInfo .Hit || intersInfo .Env)
5 {
6 color = blend(ray, intersInfo , BLEND MODE INVERSE DISTANCE);
7 }else{
8 if ( intersInfo .Hit && !intersInfo.ObjectNormal.IsBackFace(ray.dir) &&

steps > 0)
9 {

10 Material mat = intersInfo.IntersectedObject.Material;
11 int mode = mat.Type;
12

13 switch (mode)
14 {
15

16 ...
17

18 case Material.MODE IBL;
19

20 if (!mat.shininess.Equals(1F))
21 {
22 // rayDist = new RayDistribution(IBL COUNT);
23 Ray[] dist = rayDist.GetRaysBy(new Ray(intersInfo.HitPoint,

intersInfo.ObjectNormal));
24 FIRGBF[] buffer = new FIRGBF[dist.Length];
25

26 int rayCount = 0;
27 foreach (Ray dRay in dist)
28 {
29 Intersection dRayHit = scene.ObjIntersection(dRay,true);
30 if (dRayHit.Hit)
31 buffer [rayCount++] = new FIRGBF(Color.Black);
32 else
33 buffer [rayCount++] = getCol(dRay, steps);
34 }
35 color = colMultiply(intersInfo .IntersectedObject.Material.

diffuse , middle(buffer)) ;
36 }
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37 if (mat.shininess > 0)
38 {
39 Vector Refl = ray.dir + 2 ∗ intersInfo .ObjectNormal ∗ −

intersInfo.ObjectNormal.Dot(ray.dir);
40

41 // Take it .1 normal out from the surface, so it won’t hit it
again :)

42 Vector point = intersInfo .HitPoint + (intersInfo .
ObjectNormal ∗ .1);

43 FIRGBF refCol = getCol(new Ray(point, Refl), −−steps);
44

45 color .red += refCol.red ∗ mat.shininess;
46 color .green += refCol.green ∗ mat.shininess;
47 color .blue += refCol.blue ∗ mat.shininess;
48 }
49 break ;
50

51 ...
52

53 }
54 }
55 }
56 return color ;
57 }� �

Listing 4.4: getCol returns the color of the shaded point based on it’s
material type and chosen light probe blending mode.

In implementation the intersInfo object is an Intersection instance
based on the ray for which shading is required. That is, if the ray is an
initial one it shoots from the camera position into the scene, as described
in section 4.1.2. The intersInfo object of class Intersection holds infor-
mation about whether a scene or environment geometric object has been
intersected, and in such case the normal and material of the intersected sur-
face and at which distance from the ray origin the intersection occurred.

As indicated in the introduction of section 4.1, the rendering system is
based on recursive sequencing of ray distribution and ray tracing.

Figure 4.7 shows the most significant additional classes and methods
needed for applying the GDIBL method to the basic ray tracer.

Adding the HDR pipeline, the HDR environment maps, recursive ray
distribution and IBL shading, the system was now ready to take on the
task of rendering synthetic objects with high complexity lighting conditions
derived from a sparse number of light probes and a simple geometric model
of the scene.
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(a) Top view of a normal biased distribu-
tion.

(b) Top view of an unbiased distribution.

(c) Side view of a normal biased distribu-
tion.

(d) Side view of an unbiased distribution.

Figure 4.5: 2D views of a biased and an unbiased random ray distribution
over a hemisphere. All distributions are based on 10000 rays.
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Figure 4.6: The RayDistribution object is queries for a new set of random
rays for a given hemisphere. These are then used to test for intersection
with any scene objects.

Figure 4.7: A class diagram including the GDIBL extension.
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Results

Testing has been a common task through the work associated with this
project. Various features were added to support feature testing, such as
the graphical output of the ray distribution, the AngleCam for testing en-
vironment mapping and multiple logging routines to provide feedback and
tracking rays, colors and intersection tests.

This section focus on the validation test of the GDIBL method and the
results of my implementation.

Initially a suitable test scenario is established, illustrated and described
in terms of the possible and the expected test result. In order to validate
the method, the results must meed the theoretical expectations.

For this the second section of this chapter describe and analyze the
produced results to evaluate the success of the implementation and the
validity of the method.

5.1 Test scenarios

In it’s current state, the GDIBL should be able to take on real world
scenes. Such a task do however require a highly controlled acquisition and
calibration process, as described by Jeremy Pronk in [Pro07]. Instead I
have produced a synthetic scene and rendered three light probes which are
perfectly aligned to the geometry of the scene. In this way, the only thing
being tested is the actual method itself.

5.1.1 The setup

The scene environment consists of a box with a hole in each side, which
leaves two opposing corners, as seen in Figure 5.1. The opposing corners
have been colored red and blue respectively to traditionally demonstrate
effective and variant color bleeding. The whole scene has been illuminated
by the Uffizi light probe of the Debevec Light Probe Image Gallery1. The

1http://www.debevec.org/probes/
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fact that the gallery buildings shield the sky light on two sides produce the
directed inflow of light from the two portals in the box.

Figure 5.1: Wire frame pre-
sentation of the test box
scene.

The light probes were rendered in HDR
to angular maps and transformed to spher-
ical latitude-longitude maps in HDR Shop2

as presented in Figure 5.1.1. The center of
each light probes is pointing in the direc-
tion of the Y-axis, which means that the
left and right edges are -Y while 1

4
from

the left edge is -X, 1
4

from the right edge is
X, the top edge is Z and the lower edge is
-Z.

The local environment geometry is de-
fined by the box model depicted in Figure
5.1. This defines the local environment ge-
ometry of the test scenario. As the ren-
dered light probes store information about
both the inside walls of the box as well as
all of the distant environment that can be seen from inside the box, see
section 3.2.4. The light probes are located exactly in the position from
which they were rendered. In this way all calibration and alignment issues
are avoided.

For this test three white spheres are placed along the center of the
box, from one end to the other. This is done to illustrate the effect of the
significantly different lighting conditions they are located in.

5.1.2 Expected result

As it can be seen in the light probe renderings of the Uffizi box scene, the
outside illumination is scattered in through both holes, reflected on the
colored walls and spread throughout the box. With the GDIBL method
we should be able to avoid repeating the heavy GI calculations while at
the same time benefit from the incident effect of the pre-rendered scenery.
The expected result of the GDIBL method would be to provide the white
spheres with location specific lighting from the environment geometry based
on the three light probes.

Due to issues regarding tone mapping and color spaces that lie out-
side the scope of this project, the areas outside the scene and environment
geometry are rendered white, which should not influence the visual percep-
tion of the rendered objects. As mentioned in section 4.2.1, the resulting
rendering is clamped to an LDR as a legacy gesture to the initial ray tracer
implementation. However, the un-clamped, full HDR versions are located
on the enclosed disk and are also the basis for the following evaluation.

2http://projects.ict.usc.edu/graphics/HDRShop/
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Shading deviations
A B C

0.267 0.266 0.437
0.216 0.185 0.241
0.285 0.226 0.261
0.150 0.198 0.582
0.121 0.156 0.477
0.226 0.230 0.527
0.183 0.197 0.251
0.147 0.142 0.157
0.229 0.196 0.186

5.2 Test results

The results presented in this section both support the effect of the GDIBL
method as well as the relative correctness3 of the implementation.

Figures 5.2(a) and 5.2(b) are rendered from the colored, diagonal cor-
ners of the scene and sufficiently illustrate both the variation of light
throughout the scene but also the methods’ native color bleeding phe-
nomenon.

The resulting renderings in Figure 5.2 were produced with a maximum
depth of recursion of 3 and with 50 rays per sample distribution. Denser
and more concave scenes might need substantially more rays as well as
additional depth in order to indirectly illuminate all parts of the scene.

That the three spheres deviate internally in terms of shading is due
to the fact that they are presented with various lighting conditions all
determined by their location in the scene. This is the

In the setup of Figure 5.2(c) the outer spheres are moved slightly further
towards the open portals to further clarify the effect of the spatial light
variation.

Remember also, that the scene surrounding the spheres is considered
to be and fully handles as environment geometry and is simply having the
blended values of in scene light probes projected onto it, while only the
spheres are treated with the GDIBL method. This embrace both the com-
fort of avoiding additional GI calculations including the local environment
as well as the de facto production methods using separately acquired high
resolution footage of the scene as a backdrop rather than reconstructed
scenery from light probes.

The diversity in shading presented in 5.2 shows us a distinct variation
in both color balance and light intensity through the scene and adds to

3By relative correctness, is meant an implementation that does the job and correctly
implements the mainstay theoretical concepts and mathematical models, but is not
necessarily utilizing the ideal data types for storing and treating key values through the
process.
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support the validation of the GDIBL method. This table of sampled shad-
ing diversity is based on 5 point samples in each geometric extreme of the
spheres. Sphere A is the one located in the blue corner, B is the middle
one and C is the one located in the red corner.

Through this testing scenario and the results hereof, it has been made
clear that the GDIBL method does deliver the promised lighting frame-
work. An effective, image based lighting system that provides spatial
variation in lighting conditions through referencing multiple light probes
through simple geometric intersection.
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(a) Probe 1 - from the opening at the right.

(b) Probe 2 - the center of the box.

(c) Probe 3 - from the opening at the left.
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(a) A view from the blue corner. (b) A view from the red corner.

(c) A diagonal view from the portal by the red corner.

Figure 5.2: Rendered results of the Uffizi box scenario.
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Conclusion

Ultimately this chapter follows the findings, challenges and results through
to a final evaluation of the validity of the proposed method as well touch
on the implementation process itself.

6.1 Production evaluation

The process of developing a complete rendering system while practically
applying a so far purely theoretical method has been both insightful and
challenging. In retrospect the process might have been eased if a more
structured picture of the actual application had been produced in advance.

Letting go of some of the control and allow other software packages do
what they do best (and fastest) might like wise have been desired, and
finding the work of Jeremy Pronk [Pro07] at a late point in the process
only supported that notion.

My personal goal of achieving a better understanding of the practi-
cal application of computer graphics theory has been fulfilled, and have
shown me both distressful and joyous aspects of software production in the
process.

6.2 Meeting the expectations

Given the results presented in section 5.2, it has been demonstrated that the
proposed method is effective in regard to it’s theoretical intention. With a
positive result on both spatial lighting variation based on IBL the method
stands strong as nothing in the method has interfered with the practical
benefits thereof, as cheep environment color bleeding phenomena, etc. It
is in other words a more powerful image based lighting method.
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6.3 Remaining issues

Regarding the use of the GDIBL method in a production pipe lines, this
work provides no guidelines for acquisition, calibration or alignment. It
does however provide documentation for a successful implementation and
an effective lighting method.

What remains to be addressed are the issues regarding specular surfaces
in both the local scene and in the local environment. Semi-transparent ma-
terials and other special cases are already out of the scope for this project,
but an issue that might require some attention larger scale production, is
the interpolation of information from multiple light sources.

When that issue is solved in a fast, seamless manner, this lighting
method will be ready for production.
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References and glossary
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Glossary

FIRGBF
A color format providing a 32-bit floating point value for each color
channel in the RGB set.. 33

BRDF
The Bi-directional Reflectance Distribution Function is a function
that is used to describe the light reflective qualities of a surface. 10,
11

BSSRDF
The full version of BRDF including sub-Surface Scattering properties
for simulating the light scattering behavior that takes place beneath
the immediate surface of an object. 10

CGI
Computer Generated Imagery. Images, whether still or motion, that
are produced entirely on a computer. CG images might be compos-
ited into real footage as also strongly manipulated real footage is
sometimes called CGI as well as CG is also more general acronym for
computer graphics.. 5

distant environment
Scenery that is assumed to be infinitely far away and thereby out of
interest for light interaction. Usually not modeled and textured like
the local scene. 3, 14

environment geometry
The rough geometry used for depth reference in the GDIBL method.
20

GDIBL
Geometrically Derived Image Based Lighting; the proposed method
of this report deriving novel lighting conditions by combining light
information from multiple light probes. iii, 3, 11, 19, 20, 22–24, 29,
33, 36
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GI
Global Illumination is a common name for lighting algorithms that
include both direct and indirect lighting. 3, 12, 33

HDR
High Dynamic Range; a wide range of light intensities and wave
lengths. Given the dynamic asset the representation only needs to
include from the darkest dark to the brightest bright in that partic-
ular case. 12, 13, 17, 22, 23, 33

HDRI
High Dynamic Range Imaging. Images using 16, 32 or 48 bit per
channel to represent a high dynamic range of light. 13

IBL
Image Based Lighting; a common name deriving illumination of syn-
thetic objects in computer graphics from HDR images of real world
lighting. 3, 4, 11–14, 17, 19, 23, 24, 29, 34

IDW
Inverse distance weighted interpolation renders samples further away
less influential than samples closer to the interpolated point.. 22, 23

Lambertian
Also called perfect diffuse; a Lambertian surface reflects incoming
light uniformly in all directions. 11, 35

LDR
Low Dynamic Range; a common term used about a more narrow
range of light than medium or high dynamic range. This term has
also, by the introduction of HDRI been applied to the traditional
8-bpc images. 13, 33

LOS
A line of sight is a straight line between two points that is not blocked
by any objects. 20, 21, 24

QO
A phrase used about the geometric surface point in the scene cur-
rently querying the scene for irradiation information. 22, 23

WCS
The World Coordinate System is a three dimensional right hand co-
ordinate system, in which all locations, orientations and directions
are defined for the implementation described in this report. 30
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4.1 Generate a direction vector from (x,y) screen space coordi-
nates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Traditional basic ray tracing algorithm . . . . . . . . . . . . 34
4.3 The actual implementation for populating a list of random

direction vectors. . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 getCol returns the color of the shaded point based on it’s
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