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Abstract:

This project we improve mini max

search by prediciting which move the

opponent is most likely to take. This

prediction is performed by using a

dynamic bayesian network. This

network has nodes that represents

a number of abstract features ex-

tracted from the game. The network

is trained using EM-learning based

on data from a number of comptuter

players playing against each other.

These computer players are defined

as the weighted sum of the features

mentioned before. These weights are

found using a genetic approach. The

system is able to improve perfor-

mance of the worst strategies with-

out increasing the search space.
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Chapter 1

Introduction

In game theory the minimax algorithm can be considered the corner stone of
zero-sum games. Assuming unlimited computing resources it can solve a game
simply by exploring all possibilities until a terminal state is found. In practice
the exponential nature of minimax leads to the need of optimizations and less
than optimal results. The solution is often to define heuristic value functions
which act as an approximation of the true value function.

A heuristic value function can be seen as the strategy of a player. If we
assume there is only a number of different value functions which works in
practice we can define a hypothesis space consisting of these value functions.
The challenge is to map the observed moves of the opponent into this hypothesis
space. If we know enough about the hypothesis space we can hopefully gain
some knowledge about the next move of the opponent.

When the computer plays against an opponent it observes the board, but it
has no information about the strategy of the opponent. We call the different
strategies for the game the hypothesis space of strategies. We are interested
in a mapping from the observations to the hypothesis. By observing a number
of games played out by simple strategies, we can train bayesian networks to
recognize the different strategies. When the past is inserted as evidence, the
future can also be predicted. We use such a prediction as a guide line as to
which paths of a game tree should be explored to a greater depth.

What we are trying to develop is a function to tell us which children of a
given board position are most likely for the opponent to choose. With data from
simulated tournaments, we train a dynamic bayesian network with expectation
maximation learning based on this data. Later, we use the dynamic bayesian
network as a function that will tell us which moves are most likely, and explore
the descendants of those board positions to a greater depth.

The prediction of the hypothesis space is not bullet proof, so a backup plan
might be a good idea. Say we have a prediction of the opponent choosing a
given state but the prediction is wrong. The solution to this problem is to not
simply prune the branch starting at that point, but to explore a small depth
down this path.

As a test bed for this system we use a game we refer to as Pawns first
introduced by Dimitris Kalles in [Kal07] The rules are explained in Chapter 4.
The purpose is to bring one of four pawns from one corner of a chess board to
the opposite before the opponent does the same. Our course of action in this
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P(e)

Figure 1.1: Purpose of the Project. Take the Moves and Try to predict the
Next

project is to create a number of AI-players for this game. These AI-players are
implemented using the MiniMax algorithm with a number of heuristic value
functions. We refer to such a heuristic value function as a strategy of a player.

We want to create a hypothesis space of these strategies. In to learn more
about how these strategies interact with each other we let them play a number
of tournaments against each other. The results of these tournaments are saved,
and we refer to these results as game data.

The ultimate goal of this project is to improve the performance of some of
the strategies. We do that by creating an asymmetric game tree based on the
prediction of a given node in the tree. To create an asymmetric game tree we
must know more about which moves an opponent is likely to take. In order
to get a prediction of the next move of the opponent we use use a Dynamic
Bayesian network(DBN). This asymmetric game tree can be used to improve
the performance of some of the strategies by allowing them to search the game
tree to a greater depth without increasing the search space significantly.

We need to input the current state of the game into to the DBN. Using an
exact representation of the board would probably not yield very good results
since the likelihood of encountering the exact same position is small. So instead
of using an exact representation we choose a number of features from the board
used as input. An example of an abstract feature is the sum of moves to the
opponent base.

To learn the conditional probabilities of the DBN, we use the previously
described game data, and train the DBN to give us a relative probability of a
board configuration given the configurations that led to it.

The purpose of the game data is to learn a model based on this data which
can accurately predict the next move of the opponent. In order to do that
we implement the Pawns game in a Windows Forms GUI and implement the
minimax algorithm along with a number of value functions. A tournament
structure is set up to show which heuristics has the best performance.

In Figure 1.1 we see the crucial part of this project, which is finding a
relative probability of a given node in a game tree. This relative probability
is denoted P (e) and it is found by extracting the feature scores from a node
in the game tree, and inserting those into the DBN, which given us relative
probability of the given node.

Now we know what we need to complete the project we should get started
on the the background theory.
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Chapter 2

Bayesian Networks

In this project we use a dynamic bayesian network(DBN) to model the op-
ponent’s move in a board game. A dynamic bayesian network is a bayesian
network(BN) where certain parts are repeated a number of times. First we
introduce bayesian networks [Yud].

A BN is a graphical model capable of performing probabilistic reasoning
based on predefined conditional probabilities combined with a causality graph.

In Figure 2.1 we see an example of a simple BN. The figure represents this
scenario: A large barrel is filled with eggs. The eggs can contain a pearl. The
color of the egg can be observed. It can not be observed if an egg contains a
pearl. We know that 40% of the eggs contains pearls. We know that 30% of
the eggs containing pearls are painted blue. 10% of the eggs not containing
pearls are painted blue. The bayesian network tells us about the causality of
the problem, but to figure out the likelyhood of a blue egg containing a pearl
we need Bayes rule.

Definition 2.0.1. Let A and B be probability distributions. Then the proba-
bility of A given B is defined as:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

If we apply Bayes rule to our example we can calculate the probability of
a blue egg containing a pearl. First we formalize the example in the same
notatation as Definition 2.0.1.

P (pearl) = 40% (2.2)
P (blue|pearl) = 30% (2.3)

P (blue|∼pearl) = 10% (2.4)

Pearl Color

Figure 2.1: Simple Bayesian Network
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Now it is time to explain Bayes rule. It finds the probability of A given B.
From our example this is P (pearl|blue). We can observe the color of the egg,
so we need to calculate the probability of it containing a pearl.

P (pearl|blue) =
P (blue|pearl)P (pearl)

P (blue)
(2.5)

Now we applied Bayes rule on our example. The only problem is P (blue) is
not given in the example so we have to calculate this.

The probability of the egg containing a pearl is .4% so the probability of
the egg not containing a pearl is .6%. We need this number for calculat-
ing P (blue). We can find this by saying P (blue) = P (blue|pearl)P (pearl) +
P (blue|∼pearl)P (∼pearl)

This technique is called marginalization and can be generally described as

P (A) =
∑
B

P (A, B) (2.6)

Where P (A, B) is the probability of A and B.
Inserting the numbers we get

P (pearl|blue) =
.3 · .4

.3 · .4 + .6 · .1
=

2
3

(2.7)

2.1 Expectation Maximation Algorithm

In the example above it was given that the chance of egg containing a pearl was
60%. In the real world these priors are not always given. When they are not
given we can calculate them from data. If the data does not contain missing
values we can simply let the priors be the frequencies of a given state occouring
for a variable. If there are missing values we iterate towards approximate
parameters. This process is known as the expection maximation algorithm.

Say we have a database with variables A,B,C. To get the maximum likeli-
hood of P (A = a|B = b, C = c) we count the number of times this occurrence
has been observed in the data. This example is from [JN07].

N(A = a, B = b, C = c)
N(B = b, C = c)

(2.8)

The notation N is the number of times a given value assignment occurs
in the database. The priors are found by repeating this calculation for each
combination of parameters.

When the data contains missing values we perform an estimation of the
missing values by using the current expectation.

Example
In Table 2.1 we see an example of a pregnancy test performed on cows.

Some values are missing. The number of cases where P (Pr = yes) can now
be calculated by counting the non-missing values and adding the chance of the

12



Cases Pr Bt Ut
1 ? pos pos
2 yes neg pos
3 yes pos ?
4 yes pos neg
5 ? neg ?

Table 2.1: An example of a pregnancy test for cattle. We see 5 cases. A variable
for pregnancy(Pr), A blood test(Bt), and an urine test(Ut).

missing values where P (Pr = yes). The non-missing values are 3× yes = 3. If
we assume an even distribution in the first iteration of the algorithm, missing
values contribute to P (Pr = yes) with .5 So to sum up we have the expected
number of counts of Pr = yes denoted by E[N(Pr = yes)]

E[N(Pr = yes)] = P (Pr = yes|Bt = pos, Ut = pos)
+3 · 1 + P (Pr = yes|Bt = neg)

= .5 + 3 + .5
= 4

Similarly

E[N(Pr = no)] = P (Pr = yes|Bt = pos, Ut = pos)
+3 · 0 + P (Pr = yes|Bt = neg)

= .5 + .5
= 1

In the first iteration of the algorithm the conditional probability of P (Pr =
yes) is

P (Pr = yes) =
4
5

= .8

In general for P (Pr = yes) this looks like

E[N(Pr = yes)] =
∑
d∈D

P0(Pr = yes|d)

Where E is the expectation of a variable. D is the dataset and P0 is the
initial conditional probability.

This is done for all parameters. The procedure is repeated until a stopping
criteria is met.

2.2 Dynamic Networks

We have now shown how to model causality, but for a domain that evolves over
time, our previous models are not strong enough. To model temporal properties
in a bayesian network, we introduce dynamic bayesian networks [JN07].

13
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Figure 2.2: Example of a Dynamic Bayesian Network with Seven Time Slices

A dynamic bayesian network is a bayesian network, where a certain part of
the network is repeated a number of times. Such a part of the network is known
as a time slice. In Figure 2.2 we see an example of such a network[JN07]. The
model is a classifier for infected milk, where the nodes Infi is an infection at
day i, and Testi is the test result at day i. The logic behind such a network is
that the past affects the future.

2.3 Object Oriented Bayesian Networks

Now that we have introduced a way of modelling temporal properties in a
bayesian network, we can go on to a more modelling trick employed for mak-
ing more logical model, where we hide information much like object oriented
programming(OOP). This technique is called object oriented bayesian net-
works(OOBN).

In OOBNs[JN07] we can abstract away from internal representation by only
exposing the input, and output nodes of a domain. When building oobns we
have the option of marking a node as input, or output(or no marking which is
what we do when not building OOBNs).

When we mark a node as input, the node acts as a placeholder of a node in
another instance, just like a reference in most OOP languages. We can describe
the input node as the formal parameter, and the node connecting to it the
actual parameter.

Nodes can be marked as output nodes. When a node is marked as output,
we can use the node as the actual parameter of input nodes. When connection
an output node to an input node, we require that the nodes are of the same
type, and have the same states.

In Figure 2.3 we see a bayesian network of the the driving characteristics of
a car. The example is from [JN07]. The interesting part is the three nodes in
the square. That part handles the grip of the car. The three nodes in the square
speficies the interface of a separate network. Such a separate network can be
seen in Figure 2.4, which is the implementation of the interface. One advantage
of this approach is any implementation can be used as long as it satisfies the
interface. Also note how the network in Figure 2.4 contains additional nodes
not part of the interface, which allows for arbitrarily complex implementations
of an interface.
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Car Type
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Steering

Safety

Brakes

Tire Mileage Tire Type
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Power

Tire Mileage Tire Type

Grip

Maintenance

Figure 2.3: Example of an oobn

Tire Mileage Tire Type

Grip

Back Grip Front Grip

Figure 2.4: Implementation of the interface from Figure 2.3
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Chapter 3

Minimax Algorithm

The Minimax algorithm can be considered the corner stone of zero sum two
player games, where what is good for one play is bad for the other. In this
chapter we review game trees, minimax and some optimization.

In a tree, let the nodes be legal board configurations, and let the children
be the possible moves in a given configuration. Such a tree is called a game tree
[Jun].

A game tree grows exponentially, meaning the search of a game tree usually
requires a heuristic value function to be useful. In Figure 3.1 we see an example
of a game tree with a cut-off depth of four plies. A heuristic value function has
been applied at level 4.

With the concept of game trees in place we can move on to the minimax
algorithm. The algorithm works by iterating the possible moves of a board
configuration and backing the found values up to the root.

Lets start by looking at Figure 3.2 as an example. Of the two players, min
and max, in Figure 3.1 it is now max’s turn to move.

The minimax algorithm works by taking the maximum(minimum) value of
each child if it is max’s (min’s) turn. In Figure 3.2 we see the values in the
game tree after minimax have backed the values up to the root. When the
algorithm reaches the cutoff depth, the node is evaluated using the heuristic
evaluation function. The parent of a given node chooses then the best value.
This is repeated until the root is reached.

Listing 3.1: Minimax Algorithm
func t i on minimax ( board , l i m i t ){

Max

Min

Max

56 40 12 15 18 40 -12 12 12 10 -13 50 Min15

Figure 3.1: Example of an Initial Game Tree with Values at Level 4
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15

15

1856 15 -12 1215

-12 12

50

Max

Min

Max

56 40 12 15 18 40 -12 12 12 10 -13 50 Min15

Figure 3.2: Game Tree where Values are Now Backed up to the Root

15

15

1856 15 -12 12

-12 12

Max

Min

Max

56 40 12 15 18 -12 12 10 Min

Figure 3.3: Example of Minimax Search using Alpha Beta Pruning

i f ( l i m i t = 0 or winner ( board ) <> none )
va lue <− eva luate ( board )

e l s e i f ( board . turn = min )
va lue = i n f i n i t y
f o r each ( c h i l d in c h i l d r e n ( board ) )

min ( value , minimax ( ch i ld , l im i t −1))
e l s e

va lue = − i n f i n i t y
f o r each ( c h i l d in c h i l d r e n ( board ) )

max( value , minimax ( ch i ld , l im i t −1))

re turn value
}

3.1 Alpha-Beta Pruning

Because minimax search has an exponential runtime, any optimization is wel-
come. One such optimization is alpha beta pruning. The intuition behind alpha
beta pruning can be described as not putting one self in a situation, which is
worse than what we already know we can archive [Lin]. In the examples chil-
dren are evaluated left to right. Color traces are added s.t. it is easier to see
which child a value is coming from.

In Figure 3.3 we have extended the previous example and implemented
alpha beta pruning. The grayed out nodes are never evaluated.

Consider the left-most grayed out node in Figure 3.3. It does not have to be
evaluated because the min player never will choose the node with 18 because it

17



is guaranteed to get 15.
The next cluster of grayed out nodes from the left does not need be eval-

uated because the max player knows it can get a 15. But by going down the
middle branch from the root, it gives away a -12 to the min-player. The last
cluster follows the same concept as the middle. We know we can get a 15, which
is why we can ignore any nodes where we are only guarenteen a 12.

With the intuition in place, we can now define the algorithm.

Listing 3.2: Minimax algorithm with alpha beta pruning
func t i on minimaxab ( board , l im i t , alpha , beta ){

i f ( l i m i t = 0 or winner ( board ) <> none )
va lue <− eva luate ( board )

e l s e i f ( board . turn = min )
fo r each ( c h i l d in c h i l d r e n ( board ) )

va lue <− minimaxab ( ch i ld , l im i t −1, alpha , beta )
i f ( va lue < beta )

beta <− value
i f alpha >= beta

break

e l s e
f o r each ( c h i l d in c h i l d r e n ( board ) )

va lue <− minimaxab ( ch i ld , l im i t −1, alpha , beta )
i f ( va lue > alpha )

beta <− value
i f alpha >= beta

break

return value
}

In listing 3.2 we see we have extended the minimax algorithm with two
extra parameters: alpha and beta. The alpha(beta) represents the best value
so far for the max(min) player. If alpha gets larger than beta we can stop the
search at a given branch.

Notice also the order of the children is important for the number of pruned
nodes.

18



Chapter 4

Introducing Pawns

We need a game that we can use as a test bed. For this we choose the game
Pawns, first introduced by Dimitris Kalles in [Kal07]. It is a two-player board
game played on a chess board. Each player has n pieces and one base.

In Figure 4.1 we see the board for the Pawns game. The bases are located
in upper right corner and lower left. The size of each base is 2x2.

The game is over when one player moves a piece in to the opponents base
or one player has no more pieces. If at any point a piece don’t have any valid
moves it will be removed from the board. A such piece will be refereed to as
dead.

At any turn in the game a player can move one piece to an adjacent field at
same or greater distance from it’s base. The distance to the base is defined as
the maximum of vertical and horizontal distance from the base.

Figure 4.1: Pawns Board with 4 Pieces for Both Players
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Chapter 5

Creating Strategies

A common approach when experimenting with new approaches in machine
learning is to obtain data from human experts playing the game. This is
practical in Go or Chess where tournaments are held. In Pawns not many
tournaments(none!) are held, so we have to simulate some data by letting a
number of different strategies play against each other.

5.1 Harmony Search

We could just create some strategies based on random assignment of a weight
vector of a number of features. This chapter describes a general way of searching
for a vector given some score function. This approach is a genetic algorithm
known as harmony search[Gee]. In this project we will use harmony search for
finding the strategies we will try to recognize and predict. For now, we can just
think of a strategy as a vector of integers.

The algorithm can be expressed like this[Gee]:

1. Initialize memory, pick k random vectors: x1...xk

2. Make a new vector x′ for each component x′i

• With probability phmcr pick the component from memory: x′i =
x

rand(k)
i

• With probability 1 - phmcr pick a new random value in the allowed
range.

3. Pitch adjustment: For each component x′i:

• with probability ppar change x′i by a small amount, where x′i can
take the a valid value bw indexes from the current value.

4. If x′ is better than the worst xi in the memory, then replace xi by x′

5. Repeat from step 2 until a maximum number of iterations has been per-
formed

Where k, phmcr, ppar, and bw are constants, and k is the size of memory.
Typical values of phmcr is .95, and ppar is in the range .3 : .99. The function
rand(k) gives a random non-negative integer less than k.
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Chapter 6

Overview

With the background theory in place it is about time we provide an overview
of this project.

Lets start by looking at Figure 6.1 which provides all the building blocks of
this project. The first component is Harmony* search. We call it Harmony*
because it is slightly altered from standard Harmony. The scoring function
which we use is a relative measure of the memory, whereas standard harmony
is an absolute measure. Read the definition of Harmony in Chapter 5.1 and the
test setup in Chapter 10.

The purpose of Harmony* search is finding a number of vectors, that work
as the weights for the weighted sum that defines a strategy. The strategies
found by Harmony* are the strategies which we try to identify later.

The next point in Figure 6.1 is strategy. We want to be able to identify the
next move given the past. For that purpose we have a latent variable in our
network. This latent variable is the strategy of the opponent. We define the
strategy as a heuristic value function, which we use in minimax search.

The next point is data. We can use the strategies to generate data. This
data consists of all the board positions in a number of tournaments. A tour-
nament consists of all strategies playing against all strategies. As randomness
is involved in the implementation of the strategies, we play a large number of
tournaments. Randomness is involved when two board positions have the same

Harmony*

Strategy

Data

EM

Making heuristic value functions for 

minimax search by searching for 

the vector that defines the weighted 

sum of a number of features from a 

given board position.
Using the result from Harmony* to create a strategy. The 

strategy is a minimax search with the weighted sum of a 

number of features:

used as a value function. The value function the weighted 

sum of the difference for each team for each feature. 
Letting the different strategies 

playing against each other, to 

generate data Using the generated data to use 

expectation maximation learning to 

train one slice. The nodes in one 

slice are the same specified in the 

value function. The values are the 

difference between two teams like 

the value function.

Figure 6.1: How to Create the System
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t-2
t-3

t-4
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t+
1

Figure 6.2: How to Use the System

value. We choose between them be always adding a small random number in
the range ] − .5 : .5[ to the value function when evaluating the board during
minimax search.

When the data is generated we can use this as input for EM learning. The
features are extracted, and saved in a file, ready to by used by hugin for EM
learning. Each line in the file consists of the feature scores of the current board
configuration, and the previous. The EM learning is used for training a slice
for the DBN.

The core of the system is the DBN. The DBN consists of a number of slices.
Each slice is an oobn consisting of the same features as the value functions,
trained using EM learning. We will describe this more fully in Chapter 8, and
refer to it simply as the DBN. The DBN is supposed to work with the game
tree. This can be seen in Figure 6.2 where the parents of a node in the game
tree is inserted into the DBN. This gives us P (e) for a given node. This is
repeated for all siblings. We can now compare P (e) to get an estimate of which
siblings are most likely.

The notion P (e) is the probability of evidence. Evidence in this context is
the feature scores from a number of board configurations up to and including
the currect board.

The final point is improving the performance of a strategy, by choosing
which branches in a game tree should be explored more, based on the result
of the DBN. This is also described in Chapter 9.1 and is referred to as an
asymmetric game tree

23



6.1 Board Games

Now that we have described how to build and use the DBN to improve perfor-
mance. It is time to describe when this technique is useful.

The technique we describe here, referred to as an asymmetric game tree is
useful when ever one wants to imprive an AI for a board game.

Lets say we have a board game GB and a heuristic value function GBv. We
also have a set of games played between two players. Each element of the set
consists of a sequence of legal board positions representing the moves made by
the players. These games could be human experts playing against each other,
or human experts playing against an AI, or like in this project: AIs playing
against AIs.

The last element in the construction of the system is selecting a number of
features from the representation of a board. The big question now is: which
features should be selected. It is not an easy question, but we will try to
answer. We want features that distinguish the different strategies. We then try
to match the features to something that can distinguish the different strategies
of the game. This could be how far from initial or goal position the pieces are.
This can be combined with min(), max(), avg() and sum(). Anything that can
be quantified can be used as a feature.

Say the game in question is chess: Example features are:

• Number of pawns not in initial position.

• Each type of piece: the distance to initial position.

• Distance to the king

• (Weighted) Sum of pieces.

These are just some of the features one could choose. All the distances can
of course be combined with min/max/avg/sum.

We now proceed to define the features that we use in the pawns game.
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Chapter 7

Features

We now define the features used in the pawns game. These are used for pre-
dicting the next move, as well as defining strategies as the weighted sum of the
features scores. In this project, black is always the max player, and white is
always the min player.

Definition 7.0.1. Let p be a set of pieces of the same team. Then we define
a feature as a function f that returns a number n ∈ N with p as a parameter:
f(p)

A feature can be anything we can measure by the positions of the pieces.
An example is the number of pieces.

Definition 7.0.2. Let b be a set of black pieces, and w be a set of white pieces.
A feature score of a feature f is defined as:

f(b)− f(w) (7.1)

An example of a feature is the number of pieces. e.g. we prefer an AI not
to lose it’s pieces. Now that feature scores are defined, we can define the value
of a board as the weighted sum of a number of feature scores. Defining an AI
is now reduced to choosing the weighted sum we want to use in a given AI.

The features we choose are:

Definition 7.0.3. Let board be a representation of a board and board.Black
be a list of black pieces and board.White be a set of white pieces, we define the
feature score Player Diff(PD) as:

PlayerDiff(board) {
return board.Black.Count() - board.White.Count();

}

The logic behind PlayerDiff (PD) is to give a reward if a player has more
pieces than the opponent, and by the same logic punish a player for being in a
situation with fewer pieces than the opponent.

Definition 7.0.4. Let board be a representation of a board and board.Black
be a set of black pieces and board.White be a set of white pieces, we define the
feature score DistSum (DS) as:
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DistSum(board)
{
return
(from b in board.Black

from b2 in board.Black
select b.Distance(b2)).Sum()

-
(from b in board.White
from b2 in board.White
select b.Distance(b2)).Sum();

}

The purpose of DistSum (DSum) is to measure the sum of the distance of
all the pieces of a player. DistSum is not necessarily a bad thing. Having pieces
close together can help trap opponent pieces. On the other hand having pieces
far away can be harder to defend against for the opponent.

Last, we have four feature scores based on the distance to the base, or
distance to the opponent base.

• Opponent Base Min (OBMin, drive one piece to the opponent base)

• Opponent Base Sum (OBSum, drive all pieces to the opponent base)

• Base Max (BMax, drive one piece away from home base)

• Base Sum (BSum, driver all pieces away from home base)

These should be self-explanatory. The purpose is summarized in parenthe-
sis)

7.1 Usage

Now the definitions have been defined we can talk about the usage. There are
two usage scenarios for the abstract properties.

In the first case the feature scores are used as a value function in a minimax
search. A strategy is defined as a vector of weights.

Definition 7.1.1. Let Vf be a vector where the elements are the chosen feature
scores. Let Vs be a vector of integers. We then then define the value of a board
as

Vf · Vs

Vs is the strategy and when we refer to a strategy we are talking about a vector
Vs

The second use case is where we are observing the moves of the opponent,
and set evidence in our model. The model can then tell us how likely a given
board position is, and we can choose to ignore some of the most unlikely moves
from the opponent when searching the game tree.
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Chapter 8

DBN

In order to be able to predict what the opponent is doing we build a DBN which
can tell us what the opponent is most likely to do next. This DBN is valuable
when performing minimax search s.t. our search space is reduced. For doing
that we need some data. The data which we use comes from a tournament
played out between the different strategies. This chapter describes how we can
turn this data into a classifier that can say how likely a given sequence of moves
is.

The slice in Figure 8.1 represents one board configuration. It has a number
of features (F1...Fn) and two strategy nodes. Nodes with a dotted line are
input nodes, meaning they are not real nodes in the sense that they are to be
replaced with a real node when the network is compiled. For all slices except
the first, it holds that slice t is connected with slice t− 1 meaning the previous
slice representing the previous move from the same player.

8.1 Connecting

In the previous section we saw how we used simulated data to learn one slice of
our DBN. In this section, we will show how the slices are connected.

In Figure 8.2 we see the structure of the network. It is the slice from Figure
8.1 repeated a number of times. The variable t is the time of the current slice.
The value in each node is the feature scores. Since feature scores are defined as
the difference between features from black and white it makes sense to use the

Sb

Sw

F1

F2

F3

F4

F1

F2

F3

F4

Figure 8.1: One slice from the network
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Figure 8.2: Connecting the slices

same slice for both black and white moves. We also have two strategy nodes:
Sb, and Sw. A slice represents the feature scores after a given move. The
slice with time t is always white who is about to move. Slices before and after
represents the moves that led to the configuration and slices after represents a
descendant of time t.

The slices for the two players are identical. Even though one slice represents
a move from one player, we choose to include the data from both players in
one slice. Remember that the input to the DBN is the feature scores from the
board. Since feature scores are defined as the difference of a given function of
the black player’s pieces minus the white player’s pieces, this means that the
values between two slices are almost identical, since one player can only move
one piece to an adjacent field. Another approach would be to train a slice only
for the black moves, and another for the white moves. We do not adopt that
approach since this is a much simpler solution which we can expect to have
equal or better performance than the two-slice approach.

When designing bayesian networks it is important the model makes sense.
When playing both players react to each other. This results in a given board
position. This board position is abstracted and inserted as evidence in the
network. This can hopefully help predicting the next move of the opponent. If
we assume both players are rational the position of the white player will depend
on the moves of the black player. The moves of the black player depends on
the strategy of the black player. The strategy of the black player is inserted
as evidence in the network. The states corrosponding to the moves which have
been seen most often during training will have a higher prior probability. Since
the states have a higher probability, they can help predict the moves of the
opponent.

Recall that we built the network using oobn’s, this allows for a more flexible
approach when experimenting with the number of slices appropriate for making
a prediction.

8.2 Learning

We use EM learning described in Section 2.1 to learn one slice in our dynamic
bayesian network. One slice represents one move.

28



F1,(t−2) F2,(t−2) F3,(t−2) F1,t F2,t F3,t Sb Sw

V1,1 V2,1 V3,1 V1,3 V2,3 V3,3 sid ?
V1,3 V2,3 V3,3 V1,5 V2,5 V3,5 sid ?

Table 8.1: Data for EM learning

P(e)

tt-1t-2t-3t-4t-5 t+1

Figure 8.3: The Slice at t+1 is a child of the slice at Time t

In the process of EM learning we are interested in learning one slice at a
time. For that we create input in the form of a .dat file. This file is created
from the tournament data.

The slice has two strategy nodes. One for us, and one for the opponent.
We know our own strategy, and the slice has been trained with evidence in
that node. In most real world scenarious we don’t know anything about the
opponent’s strategy, so we treat that as a latent variable.

The format of the .dat(for features (F1...F3) and strategy S with values
(V1...V3) for time (1...5) can be seen in Table 8.1. We use the notation Vi,t for
the value corresponding with Fi at time t. The field Sb is the strategy id of the
black player. The field Sw is a symbol representing a missing value.

8.3 Predicting Next Move

We would like to be able to predict the next move of an opponent. We use the
DBN for predicting such a move, and this section describes how we make such
a prediction. The notion "‘predicting next move"’ is slightly incorrect. We are
not really predicting the next move, but more predicting the probability of the
feature scores of the available moves in the given context. This is due to the
decision of not making an exact representation of the board in order to increase
the likelihood of getting a reasonable answer even though the exact board
position never showed up during training. This approach has the consequence
that we are likely to have multiple nodes with the same P (e) value, so it is not
completely trivial to figure out how to choose which nodes to pursue. This we
will investigate further in the results part of the report.

Recall the introduction, where we have a figure much like Figure 8.3. We
have now extended the figure s.t. a slice with t + 1 is now present. The slice
with time t + 1 is a child of the t slice.

In Figure 8.3 we also see the notion P (e) which means probability of ev-
idence. We insert evidence in all slices, and we get the number P (e). This
number is crucial in determining which child we should focus the search on.
Predicting the next move is now reduced to a matter of comparing the P (e)
corresponding to each child.
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Chapter 9

Search Heuristic

We have the DBN which can give us a number P (e) ∈ R. This number is a
positive number close to zero. The higher the number, the more likely a given
sequence is.

We use this property in a modified minimax search. We call this an asym-
metric game tree.

9.1 Asymmetric Game Tree

We assume we are the black player as always. Say it is now black’s turn to move
and we have a list of all previous moves. We now insert this list as evidence
in the classifier along with one child of the current node. This is done for all
children. We can now assign a value of P (e) to all the children. We use this
value to assign a maximum search depth for the children. Normally in minimax
search we have a constant search depth, e.g. 8. In the asymmetric game tree
we assign the maximum search depth based on P (e) s.t. the branch under the
children with the highest value will have a higher limit.

In Figure 9.1 we see an example of an asymmetric game tree. The solid
painted nodes represent the nodes the DBN deemed as most likely, and thus
their descendants are investigated further. In the example given we assume a
default search depth of 4, which is the depth which would be searched if no
search heuristic is applied. With the search heuristic we can hopefully continue
the search beneath this limit with a linear increase in the nodes searched.

9.1.1 Example

We now create an example to show how the asymmetric game tree works.
In Figure 9.1 we see an asymmetric game tree where the square boxes

symbolize a prediction. The value in the prediction box is P (e) of the past and
current nodes. The number in the nodes is the limit of the minimax search for
descendants of the given node.

Let’s explain Figure 9.1 from the top. We use standard minimax search. In
right side a label explains if the nodes at a given level is a min or max node. As
always we take the perspective of the max node. We try to predict the move of
the opponent. The first time the opponent has to move is in level 2. We use
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Figure 9.1: Game Tree with Search Heuristic Applied. Black Nodes are the
Most Likely

the DBN to give the probability of a node. A black node represents a node we
have predicted as most likely. In this example we use the simple heuristic of
choosing the best P (e) and setting that as the most likely. This is not a good
approach and it is only used in this example for sake of simplicity.

In this example we see a number of values in a square box. These are a rel-
ative propability of the opponent choosing that particular node. In the middle
is a node colored black. This indicates the node has a higher probability than
all it’s siblings. Because of that we increase the search depth of descendants of
that node.

9.1.2 Algorithm

It now time to write the algorithm for asymmetric game trees than previously
described. We use a pseudo code inspired by C# and java.

next ( board )
{

re turn search ( board , 0 , −INFINITY , INFINITY)
}

search ( board , depth , alpha , beta ){
// c r e a t e s an asymmetric game t r e e by u t i l i z i n g
//a DBN to p r e d i c t which moves are most l i k e l y
// t h i s i s a mod i f i c a t i on o f the minimax algor i thm
// with alpha beta pruning

i f ( depth >= board . depth ){
// board . depth i s dependent o f how l i k e l y
// the a nc e s t o r s are

board . va lue = h e u r i s t i c . eva luate ( board ) ;
board . be s tva lue = board . va lue ;
r e turn board ;
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}

i f ( board . turn == white && board . t r y p r e d i c t ){
// a l l the a nc e s t o r s are deemed most l i k e l y by the DBN
moves = c h i l d r e n o f board where each c h i l d has been as s i gned P( e )
f o r each (move in moves ){

i f ( m o s t l i k e l y (move ) ){
// i n c r e a s e the search depth f o r descendants o f t h i s node
move . depth = MAXDEPTH + 2
move . t r y p r e d i c t = true

}
e l s e {

move . depth = MAXDEPTH
move . t r y p r e d i c t = f a l s e

}
} e l s e {

moves = c h i l d r e n o f board
fo r each (move in moves ){

//we e i t h e r have a black node or a white node
// which i s not l i k e l y
move . t r y p r e d i c t = board . t r y p r e d i c t
move . depth = board . depth

}

f o r each (move in moves ){ // standard minimax
Board tmp = search (move , depth+1, alpha , beta )
i f (tmp . turn == white && tmp . be s tva lue < beta )

beta = tmp . be s tva lue
best = tmp

}
i f ( tmp . turn black && tmp . be s tva lue > alpha ){

alpha = va l . be s tva lue
best = tmp

}
i f ( alpha >= beta )

break
}

i f ( tmp . turn == white )
board . be s tva lue = beta

e l s e
board . be s tva lue = alpha

return best ;
}

abs t r a c t m o s t l i k e l y ( node ){
// see r e s u l t s part o f the r epor t f o r t h i s method

}
}
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The code is explained in the comments. See Section 11.1.1 for more infor-
mation of the mostlikely() method.

33



Part IV

Results
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Chapter 10

Harmony Search

In Chapter 5.1 we described how harmony search can be used in order to find a
vector that minimizes some cost function. In Chapter 7.1 we defined a strategy
for the game as a weighted sum of the feature scores described in Chapter 7.1.
This chapter describes in detail how we found the strategies that we re trying
to recognize.

The purpose of this search is finding a number of strategies which are not
too similar. Very similar strategies could prove hard for the DBN to recognize.
We will search for strategies which perform well.

First a harmony search with 4 random vectors were set to play against
each other. Using the cost function described earlier, where all strategies play
against each other, we count the number of wins, loses and draws. The cost is
NW −W (not win and win respectively).

We use a modification of Harmony search. We want a relative measure of
performance, because we want strategies which performs well, and a good way
to find such strategies is to let them play against each other. Because this cost
function is a relative measure we refer to the algorithm as Harmony*.

This algorithm can be described as this:

1. Initialize memory, pick k random vectors: x1...xk

2. Make a new vector x′ for each component x′i

• With probability phmcr pick the component from memory: x′i =
x

rand(k)
i

• With probability 1 - phmcr pick a new random value in the allowed
range.

3. Pitch adjustment: For each component x′i:

• with probability ppar change x′i by a small amount, where x′i can
take the a valid value bw indexes from the current value.

4. Let all the strategies represented by the vectors play a tournament, and
find the score: NW −W (specific to Harmony*).

5. If x′ is better than the worst xi in the memory according to NW −W ,
then replace xi by x′
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Strategy ID BMax BSum DSum OBMin OBSum PD
1 0 10000 0 -1000 -10 0
2 10 100 0 -10000 -100 0
3 0 10 0 -10000 0 0
4 100 1000 0 -10000 0 10

Table 10.1: Chosen Strategies

White

B
la

ck

1 2 3 4
1 67% 0% 67% 0%
2 67% 33%(67%) 33% 0%
3 67% 33%(33%) 33% 33%
4 100% 100% 67% 100%

Table 10.2: Balance of Power Between Chosen Strategies

6. Repeat from step 2 until a maximum number of iterations has been per-
formed

After each iteration of the Harmony* search we remove the worst performing
vector from memory. The size of the memory(k) is 4. incidentally we also search
for 4 different strategies so we perform the search 4 times. These numbers are
unrelated and the similarity is completely incidental. The algorithm has 4
parameters. In this setup we use phmcr = .95, ppar = .5, bw = 2 and k = 4

The strategies in memory tend to be quite similar, so just taking the memory
of one search and using those for the project is not feasible. The solution is to
perform 4 searches, and take the best from each search, then see if the power is
balanced, s.t. they all are able to win against some other strategy.

We are now ready to run the search. We let it run for 100 iterations. The
strategies found are seen in Table 10.1

These four chosen strategies are what we try to recognize. The power
of balance between these can be described as the chance of a given strategy
winner. This is seen in Table 10.2, where the number represents the ratio of
won games for the black player. The data is from 144 games(9 tournaments).
The number in parenthesises is the percentage of games ending in a draw. In
this sample a game is declared a draw if no winner is found within 200 moves.

The setup is as follows: Each strategy plays against all other strategies(including
itself). Table 10.2 shows the black player on the vertical direction. The black
player always starts first. We use minimax with a search depth of 6 for this
experiment.

From the data it can be concluded that all of the strategies can beat at least
two of the other strategies, but two strategies perform very poorly against one
specific opponent.
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Chapter 11

Performance

In this chapter we show how the strategies benefit from using an asymmetric
game tree.

11.1 Asymmetric Game Tree

This section describes if the asymmetric game tree improves performance to
an AI due to increased look-ahead in the same number of nodes. The black
player is using an asymmetric game tree which can predict the next move of
the opponent to a certain degree.

11.1.1 Pessimistic Ratio

We need some measure to determine if the prediction can be considered one
of the most likely moves at a certain point. One important criteria to have in
mind is the case when all children have the same P (e). Lets say we have a
set of P (e) of the siblings, and sort these descending we could get a list like
[10−6, 10−8, 10−10]. That might be a reasonable approach unless all siblings
have the same P (e). We need a more pessimistic approach so to say. A solution
to this problem is something which we call the pessimistic ratio.

Definition 11.1.1. Let L be a multi set which represents P (e) for all the
siblings at a given point in time, eg. P (ei) = Li where Li ∈ R and represents
the P (e) of sibling i. The pessimistic ratio, pr(L, Li) of a number Li is then

pr(L, Li) = | {p | p ∈ L ∧ p >= Li} |/|L| (11.1)

We use pr for determining which children can be considered for further
exploration. The number pr is well suited for this purpose because the case
where all siblings are deemed equally likely, they will have a pr of 1, if a single
child is the only one with the highest P (e) it will have a low number: e.g: 1

10
in the case of 10 children. During the search in the asymmetric game, we need
to find a constant MAX PR which pr must be less than to have their search
depth increased.
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Figure 11.1: Histogram of the Number of Times a Certain pr has been Played
by the Opponent

Using Pessimistic Ratio

A naive approach to using the pessimistic ratio is to require the ratio is below a
certain constant pmlimit to be considered most likely. Comparing this with an
approach where P (e) from the DBN is substituted for a random number shows
that the DBN performs worse when comparing the move actually chosen from
the opponent. This shows that a more dynamic approach is needed.

In search of a more dynamic approach we observe the pr of the move actually
chosen from the opponent. In Figure 11.1 we see a histogram where the count
of each pr value is plotted. Excluded from the chart is the value 1, which have a
count of 75 in this test run, recall a pr value of 1 means all nodes have the same
P (e), which means the feature scores of the board all belong in the same state
in the DBN. We see that some values are much more frequent than others. A
reasonable approach is to assume the opponent is going to choose a move which
have a pr value already seen before.

By keeping track of which values have been selected previously by the op-
ponent we can create a heuristic to use for determining whether a node can
be deemed as most likely. We refer to this as the "‘seen before heuristic"’ as
a function seen before(pr), where pr ∈ {p | p ∈ R ∧ p > 0 ∧ p <= 1} that re-
turns true if pr has been selected by the opponent at least one time before, and
pr is smaller than 1. This is the implementation of the mostlikely() method
described in the asymmetric game tree algorithm.

Tests show that using seen before() have about 50% that the chance of
prediction is the correct move and on average approximately 5 nodes satisify
seen before() when the prediction was correct. In this game the branching
factor is usually in the range 10 : 11, so eliminating the descendants of 5 nodes
from the search space is a significant reduction.

11.2 Improving Performance

Now we put all the pieces together and test the performance of the asymmetric
game tree. We make the same tournament as described in Table 10.2, but now
the black player is using the asymmetric game tree. The asymmetric game
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White

B
la

ck

1 2 3 4
1 67% 67%(33%) 0% 0%
2 33% 0%(67%) 0% 33%
3 67% 100% 33% 67%
4 100% 100% 0% 67%

Table 11.1: Balance of Power Between Chosen Strategies

black white black wins (minimax) black wins (asym)
1 2 0% 67%(33%)
2 4 0% 33%
3 1 67% 100%
3 2 33%(33%) 100%

Table 11.2: Strategies which have Improved Performance by using Asymmetric
Game Tree

tree is tuned s.t. the number of nodes searched is roughly the same as the
vanilla minimax algorithm. Also recall from Section 3.1 that the order or the
nodes is very important for minimax search. To eliminate the arbitrary nature
of the ordering of the children of a given node we choose to sort the children
according the to value of a board according to the heuristic value function
before proceeding to another depth in the search tree. This sort greatly reduces
the search space.

The DBN in this test has 4 slices, because initial tests have shown that
the number of slices has almost no effect on the number of correct predictions.
Some of the values from the feature scores have many different values in our
test data. DSum e.g has over 100 different values. We chose to specify the node
representing DSum, OBSum, and BSum as interval nodes instead of numbered
nodes as the rest. For the tests we have chosen a number close to 16 as the
number of states for the interval nodes.

In Figure 11.1 we see the results after the asymmetric game tree has been
applied. This can be compared with Table 10.2. What is interesting to see is
some of the strategies with really poor performance has improved quite a lot.
Unfortunately some of the really good has decreased in performance.

The strategies which have increased performance can be seen in Table 11.2.
What we measure is the percentage of black wins, with draws in parenthesis
as usual. The third column was when playing the tournament with minimax.

black white black wins (minimax) black wins (asym)
1 3 67% 0%
2 1 67% 33%
2 2 33%(67%) 0%(67%)
2 3 33% 0%
4 3 67% 0%
4 4 100% 67%

Table 11.3: Strategies which have Worse Performance by using Asymmetric
Game Tree
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In the fourth column we have applied the asymmetric game tree for the black
player.

The first interesting result is for black=1, white=2 which went from a 0%
wins to now a 67% win(33% draw). Which meant it didn’t lose a single match
against the strategy which consistently won over it. The next line also improves
an 100% losing match, to a win by a 33% chance. The results pretty much speak
for them selves.

Additional Stats

From the same data set from extract some additional interesting statistics.
Lets start by looking at how many nodes was in the search space when using

the asymmetric minimax. Surprisingly the counts were really close. Using a
default depth of 6: The minimax with alpha beta pruning had an average of
2670 nodes for one search. The asymmetric game tree also with alpha beta
pruning used slightly less, that is 2673. This was a surprising result given we
newer search below the default depth, unless alpha beta pruning prunes some
branches.

When looking at the time used the results are less encouraging. Minimax
with alpha beta pruning used on average 0.197 seconds to search to depth 6.
The asymmetric version used on average 0.873.

The number of correct predictions was 2007 out of a total 5520 predictions.
Sometimes the algorithm is not able to make a prediction. This happens when
all children has the same relative probability, and in the beginning of the game,
where no pr values are seen.
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Chapter 12

Conclusion

In this project we have worked with AI players in a simple board game. We
wanted to see if we were able to predict some of the moves made by the oppo-
nent. We used the minimax search and a weighted sum of a number of feature
scores to implement the AI players.

We wanted to recognize the strategies played by the opponent. To have
some strategies we first searched for those using a genetic algorithm which was
able to find us four different strategies which we try to predict the next move in
an online game, based on observations of the behavior of these strategies from
a number of offline games. Of the four found strategies, none of them are total
losers, although strategy four seems stronger than the rest.

We tried predicting a move from the opponent. Roughly 50% of the times,
the prediction was correct, and often we were able to search to depth 8 in an
asymmetric game tree as opposed to depth 6 in a normal game tree. The nodes
to search in depth 8 was determined by predictions based on observations from
offline games.

The number of nodes searched using asymmetric game tree were smaller
than regular game tree on average, even though we also searched to depth 8
on occasions and never explicitly decreased the search depth. If there is no
prediction available for a given set of siblings or they all have the same relative
likelihood, we don’t even try to predict. This means it can’t be the explanation
of the smaller search space. What is likely to happen is that a node found at
depth 8 has a value s.t. alpha beta pruning is able to prune some more branches
it would not have been able to otherwise.

We saw how the asymmetric game tree improved performance for 2 out of
3 of the players which had an opponent over which a win was unlikely. We
also saw how the some strategies suffered from worse performance when using
the asymmetric game tree. This is especially true for strategy 4, which is
really strong. Even though we never explicitly reduce the search depth of the
game tree, we assume that the move of the opponent is in a given set. If this
assumption is false, we would likely have taken a different move. Over all the
asymmetric game tree improves performance significantly for poor performing
strategies.
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Chapter 13

Future Work

In this project we chose the slice of the oobn to be identical for both black and
white player. A different approach is to use a different slice for both players.
Two slices with the same structure, but trained with different values during
EM-learning. Such an approach could possibly improve performance.

A comparison of the following approaches would also be interesting.

• One-slice-histogram. The approach we used in this project.

• Two-slice-histogram. Like one-slice histogram, but with different proba-
bilities for the slice representing black and white player.

• One-slice-threshold. Using the same slice for black and white, but requir-
ing pr to be below some constant MAX PR

• Two-slice-threashold. Like above, but using two slices.

• Random. Instead of using P (e), use a random number.

In theory the most likely board configurations will also have a higher fre-
quency of high pr values. A direct comparison of the five methods listed, and
the pr actually selected by the opponent is also interesting.
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