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Abstract

A comprehensive evaluation of sampling systems and sampling efficiencies of lab-scale
applied biotechnology systems has been performed. A planned evaluation of ACABS’
bioreactor system was completely defaulted due to Force Majeure; the international
TENIRS system could however be evaluated in full.
Surprising results ensued: the TENIRS sampling devise is inaccurate and highly sensi-
tive to operating conditions – while showing an almost constant reproducibility. This
sampler is in point of fact precisely wrong.
The evaluation comprised three kinds of model-systems composed by polymer/water:
light particles, heavy particles, and a mixture of both, concluding with a synthetic
manure, all spanning realistic dry matter concentrations.
The bias increases with complexity of the multi-phase system, but decreases with re-
spect to the circulation speed in the TENIRS measuring loop. Composite samples
of synthetic manure – the most realistic model-systems evaluated – composed of 10
increments extracted at low speed (20% of the top circulation speed) can present a
bias as high as 320% whereas composite samples of light pellets extracted in the same
conditions reaches some 85%.
At higher speed (60% of the top circulation speed), the bias observed for the synthetic
manure was 15% while being significantly negative, -70% for model-systems based on
the heavy model system particles. These findings have severe implications regarding
the necessity of redesigning the TENIRS reference sampling system completely.
Acoustic chemometrics was used to model the dry matter concentration of these lots.
All models were test set validated. Promising results were obtained: synthetic manure
displays a prediction vs. reference slope of 0.89 and a correlation coefficient, r2 of 0.89
– demonstrating acoustic chemometrics as a powerful potential PAT modality concern-
ing physical Y-variables. Much work on acoustic chemometrics on this type of applied
biotechnological systems remains.
A review of PAT modalities is also given with special focus on applied biotechnological
system.

Keywords: Process Analytical Technology, PAT, Process Analytical Chemomet-
rics, PAC, Theory of Sampling, Process sampling, Representative sampling, ACABS’
recurrent sampling loop, Acoustic chemometrics, TENIRS system.
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Foreword

The present thesis documents the work done in partial fulfilment of the requirements
for obtaining the degree Master of Science in Engineering in Industrial Biotechnology
and Bioenergy at Aalborg University, Esbjerg Institute of Technology, Denmark.

It is divided into five parts:

The first part starts on page 7 and gives a literature review of the Process Analytical
Technology approach, the Theory of Sampling – TOS and some sensors technologies
as Acoustic Chemometrics and Near Infrared Spectroscopy.

The second part starts on page 73 and concerns practical work done regarding
the representativeness evaluation of the Applikonr standard sampling system v.s. the
ACABS’ recurrent sampling loop. The study was carried out on a laboratory scale
reactor.

The third part starts on page 101 and concerns the practical work done regarding the
representativeness evaluation of the TENIRS sampling valve facility and the application
of acoustic chemometrics in order to quantify the dry mater content of the flow.

The fourth part starts on page 145 and concerns the overall perspectives and con-
clusions to the practical work including suggestion for further development of acoustic
chemometrics.

The fifth part starts on page 163 and contains additional information and docu-
mentation. References to relevant appendices have been provided in the report, where
appropriate.

Throughout the thesis figures and table are numbered Figure # and Table #,
respectively. Their numbering consists of two digits. The first refers to the chapter
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number and the second to the consecutive number of object in that particular chapter.
If no source is cited along with a figure or table, it is a personal production of the
author. After the table of contents, the list of Figures and Tables have been placed,
which should help finding appropriate object in the thesis. Equations are numbered
with the same logic.

The reference numbers are given in brackets [#] and refer to the list of literature
found on page 157 where a detailed description of the sources used can be found.

A CD is available at the end of the manuscript. It contains the laboratory results
and the electronic version of this thesis.
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Chapter 1
Introduction

The quest for robust, reliable, fast, and technically simple at-, on-line monitoring and
control technology has radically gained attention during the past few years, aiming to
gain new knowledge about the process in order to decrease production costs and increase
quality of the final product, including minimizing waste of energy and environmental
impacts. The objectives of this quest can be fulfilled by applying the principles of
Process Analytical Technologies, abbreviated PAT, to the process.

Process Analytical Technology initiative provides guidance and tools for real-time
monitoring, quality assurance and risk management. It also acknowledges the need of
representative samples to ensure reliable information to be extracted from the process.
However, it never explained how such representative samples can be taken out of process
stream.

Generally, all the scientific and financial attention is given to the technology used
to monitor and control the process i.e. process sensors must be accurate and precise,
computer softwares for automation must be fast and reliable, etc. Whereas little or
no attention is given to the extraction of the samples, which is always, erroneously,
considered as an easy task. Indeed, grab sampling is the most often used method in
practice. Grab sampling consists of obtaining the sample by simply scooping from the
top of the lot or similar. This is the worst method that could ever be used; too much
focused on the final sample volume needed for the analysis, it always generates sampling
error that can be up to hundredfold larger, than those produced in the analytical
instruments!

Hence, it is impossible to obtain reliable information on the process state if the
extracted sample is not representative of the process state. The Theory of Sampling
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(TOS), which defines tools and rules which lead to a truly representative sample, is
therefore revealed to be the missing link between the process and the monitoring tools.

Acoustic chemometrics is a new technique used in many technological and indus-
trial sectors. It is particularly useful for real-time characterization of multiphase fluid
flow rate and physical composition. In this new approach, vibrations generated in
a transportation process or as a results of manufacturing of a product are used to
quantify physical process parameters such as particle size distribution, flow velocity,
concentration of solids, density, and viscosity.

Nonetheless, in most cases, acoustic signals from complex system are useless by
themselves and multivariate analysis techniques must be used to unscramble the rel-
evant information from this apparent noise spectra. In fact, during the calibration,
multivariate analysis i.e. chemometrics is used to create a model between the reference
value and the corresponding acoustic spectra. Once calibrated the model can be used
to predict future value of the parameter modeled. Careful attention should be given to
the validation technique used to validate the model. Indeed only proper validation can
ensure reliable future predictions. Test set validation constitutes the best approach to
validate a model. The test set is not, in any way, associated with the calibration data
set. Furthermore, ensuring that the samples of both sets are true representatives of
the future population span increases the validity of validating a model.

1.1 Project objectives

At the beginning, the primary objective of the project was to contribute to the de-
velopment of a laboratory scale sampling facility, followed by an evaluation of the
representativeness of the sampling extracted. Due to unexpected events and difficul-
ties1, the objective of the thesis changed to evaluating the representativeness of the
sampling system mounted on the TENIRS system owned by the university and which
has been used many times in scientific researches without quantification of its bias and
reproducibility.

The second objective is to demonstrate the ability of passive acoustic chemometrics
to monitor dry matter content of biochemical processes.

The most important parameter when evaluating the quality of a sampling device is
its representativeness r2

e which is a synthesis of accuracy m2
e and reproducibility σ2

e of
the sampler. The accuracy is defined as the absence of bias or systematic error. It is
a property of the mean of the sampling errors and should less than a small predefined

1They are summarized in section 1.2 and explained in detail in section 10.3.
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acceptable value. Whereas the reproducibility is defined as a low dispersion of the
sample values about their mean. It is a property of the variance of the sampling errors
and should be less than a low predefined acceptable value. The sum of the accuracy
and the reproducibility gives the representativeness of the sampling process.

Figure 1.1: Accuracy v.s. Reproducibility.

The most critical parameter when using passive acoustic chemometrics to quantify
physical properties of the flow is to find the optimal position of the acoustic sensor.
In the particular case of determining the dry matter content, the sensor should be
deployed where the most important vibrations are produced by the particles moving
in the flow. From a mechanical point of view, the best location would be where the
particles are stopped or where they loose a most of their velocity in a very short period.
Thus, deploying the sensor in a bend should ensure to register the highest frequency
possible that the particles can produce.

1.2 Story of a cursed thesis

This section tries to explain why I felt that I was doing my practical work together with
Marvin, the Paranoid Android, the depressed robot of The Hitchhiker’s Guide to the Galaxy.

The story began at the end of January, when I went to Prof. Esbensen to have a final
project in the area of sampling and chemometrics. He told me that he had a project on a
shelf which can be my master thesis. We discussed it together and he asked me to take a
decision within two hours. At that time I did not hear the Mission2: Impossible theme being
played in my mind, and I accepted this thesis full of challenges i.e. traps.

2In this particular case, it can be renamed in Thesis: Impossible.
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The first challenge was to find plastic particles that no one could find before. Prof.
Esbensen was confident, the particles exist and we will find them somewhere. Nevertheless,
it was not possible to find them, they were too small, and none of the 35 chemical companies
contacted within the first month and a half of the thesis could help us.

The second challenge was to redesign the recurrent sampling loop of the laboratory scale
reactor. It was decided to used solenoid valves to extract the samples, so we ordered the
valves needed according to the catalogue of the suppliers. However, when we received the
order after 6 weeks, we found out that the valve did not correspond to what is written in the
catalogue. We had to order new valves.

Finally, at the end of April we had the valve, but the pellets were still missing. Therefore,
we took the bag of pellets used in the first screening experiments – which revealed that they
were too big – and we all sat at the same table, to cut them using razor blade. A few hours
later, we gave up, and decided to try the find the ultimate clogging concentration to perform
the experiments with them.

The clogging concentration found, the experiments were started, and ... after a few
minutes of circulation, a clog was formed at the in-let of the sampling valve, and when I
closed the flow of the loop to take out a sample, the pressure blew up the pipes, flooding the
lab. It was on May 17th, a few seconds after the incident I felt like Marvin, I was almost
as depressed as he is. Even the lowest concentration of the experimental design clog the
entire system. The conclusion was popping in my mind ... it is not possible to perform the
experiments with this kind of pellets, and we do not have time to cut them either.

In parallel, a design of an up-scaled reactor allowing to use plastic pellets of normal size
was started. The reactor will only be used for sampling study, therefore we decided to order
a PMMA pipe as body at the beginning of May. The company lost our order, and we had to
sent it again, in the middle of May. They could not produce the pipe within the dimensions
asked, so we told them to ship a pipe with a standard diameter ... it was what they did but
they did not cut it so we received during the first week of June a pipe of 2m height instead
of 0.60m.

Prof. Esbensen was in the US, and I wrote him a email to find a emergency solution to
work with. Fortunately, he came back with the idea to transfer the objectives of the thesis to
the TENIRS system the university owns. That was fine by me and I started the experiments
at the end of May ... two weeks of intensive experiments3 to produce all the results needed.
Of course, I was helped by Marvin, since after the first experiments, the sampling device
broke down, and needed to be fixed.

Owing to all those reasons this thesis has been delayed and the practical work could not
be started before the first of June.

Figure 1.2 perfectly summarized what I had in mind during the practical work ... Don’t

37 days a week, 15 hours a day ...
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panic ... it could be worse ... I could be much more depressed than Marvin.

Figure 1.2: Don’t Panic – Summary of the practical work. [13]
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Chapter 2
Process Analytical Strategies

This chapter introduces and compare the Centralized laboratory, the Process Analyt-
ical Chemistry/Chemometrics (PAC), and the Process Analytical Technology (PAT)
approaches for process monitoring and quality control.

Effective monitoring and control of production processes are necessary in order to
enhance process performance. This includes increasing the product quality, reducing
the energy consumption, enhancing the productivity, etc. In other words, this leads to
ensure a higher economic viability of the process.

This can be done by applying process analytical strategies, to the process. [38]

The traditional way of monitoring and assessing the quality of a production process
is based on the centralized laboratory approach. Samples are taken out from a process
stream and transported to a centralized analytical laboratory where the sub-sampling,
sample preparations, and chemical analysis are carried out by highly qualified technical
staff using state-of-art equipment. Hence, the time elapsed from the primary sampling
takes place at the process stream and until the analytical result had been produced
and approved could vary from hours to several days depending on the laboratory in-
frastructure and routine. [41, 42, 44]

Unless if the process was designed to accommodate this time delay, this centralized
strategy is almost useless in terms of process control. For instance, a fast changing
process would require an immediate detection and thus, a short combined analysis
time, if the analytical result was to be used as an efficient process regulating tool.

Therefore, in most cases, the centralized laboratory approach can only be used as
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Figure 2.1: (a) Off-line, (b) At-line, (c) On-line analysis. Adapted from [42]

a quality control assessment in order to document that the final product is within its
specifications.

As an alternative to this traditional approach, the process analytical strategy or
Process Analytical Chemistry (PAC ). Introduced in the beginning of the last century
(1911), it has been applied in the petroleum and petrochemical industries since the early
1950’s. Nowadays, it is going through a reincarnation and becoming a fast developing
field in all areas of chemical production (e.g. fine chemicals, commodity chemicals,
pharmaceutical, biotechnology, etc). [42]

Figure 2.2: Comparison of analytical strategies for process monitoring [42, 44]

The most obvious differences between the centralized laboratory strategy and the
process analytical strategy are location and speed. Indeed, process analyzers are placed
right next to the process (at-line1) or in the process (on-line2) and are often abe to
produce a result within minutes (See Figures 2.1 and 2.2). [44]

Analysis speed is critical in order to monitor a process in real time. Actually, a

1This involves manual sampling but in this case the measurement is carried out on a dedicated
analyzer by the process operative. Usually accompanied by significant method development work to
simplify the sample preparation and to modify the measurement technique to permit the use of robust,
reliable instrumentation. [42]

2This includes all examples of fully automated analyzer system. [42]
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rapid analyzer feedback allows to learn from the process and to know what is really
going on. It also brings the possibility to react to unusual process variations and will
therefore, increase the chances to keep the process under control.

The American Food and Drugs Administration (FDA) describes process under-
standing in their new Process Analytical Technology (PAT ) initiative, which essen-
tially is a re-compilation of the earlier PAC-process analytical strategy. [44]

According to FDA, process is generally considered well understood when: [5]

i. all critical sources of variability are identified and explained;

ii. variability is managed by the process;

iii. product quality attributes can be accurately and reliably predicted over the design
space established for materials used, process parameters, manufacturing, environ-
mental, and other conditions.

Nevertheless, the centralized laboratory strategy is still widely used owing to the
fact that the process analytical strategy is far from trivial, and must not be considered
as an easy task. In fact, the strategy lies on several key technologies which must be
mastered prior to any PAT deployment.

Figure 2.3 depicts the pyramid of the fundamental technologies behind PAC [41, 44].

Figure 2.3: Fundamental disciplines behind Process Analytical Chemistry [41]

i. Representative sampling is the basis of the pyramid which means that the sample
analyzed should faithfully represent the process. Most of the time, sampling is not
considered important; however, only correct sampling will lead to representative
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samples. The Theory of Sampling (TOS) explains the general principles behind
representative sampling and correct sampling. Chapter 3 on page 13 discusses the
principles of TOS.

ii. Advanced sensor technology covers a considerable suite of different analytical tech-
niques. In fact, the general trend for analyzers is that they are becoming smaller
and the research is focused on improving the response time in order to carry on
real-time measurements for both biological and chemical phenomena. Within the
field of sensor technology, this thesis is focussed on Acoustic Chemometrics where
the sensor used is an 1-axis piezoelectric accelerometer. Chapter 4 on page 37
introduces the theory and the principles behind the technology.

iii. Multivariate data analysis extracts the relevant information from the process ana-
lyzer. The results can be used for process monitoring purposes by plant operators.
Within the field of data analysis, this thesis is focussed on Chemometrics tech-
niques. Chapter 5 on page 57 describes its principles.

A few years ago, PAC converged to what is known as Process Analytical Technology
(PAT). The American Food and Drugs Administration (FDA) has been one of the key
actors in defining the concept of PAT [41]. The FDA issued its so-called PAT-Initiative
which defines PAT as [57] :

A system for designing, analyzing, and controlling manufacturing through
timely measurements (i.e. during processing) of critical quality and perfor-
mance attributes of raw and in-process materials and processes with the goal
of ensuring final product quality.

PAT is largely directed towards the pharmaceutical industry but there is no restric-
tion to use PAT principles in other industries [44].

PAT and PAC may look to be the same strategy. However, PAT differs from PAC
in the sense that it also provides guidance and tools for quality assurance and risk
management, whereas the PAC strategy is solely technology driven. Therefore, PAC is
more oriented towards real-time monitoring.[39, 42, 44]

Moreover, even though the PAT framework acknowledges the sampling aspect by
mentioning the need of representative samples to ensure reliable information to be
extracted from the process, but unlike PAC, it does not explain how such representative
samples can be taken out of a process stream. [44]
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Chapter 3
Theory of Sampling – TOS

This chapter presents Pierre Gy’s Theory of Sampling and its importance to ensure
reliable, accurate, and precise quantification of parameters of interest, i.e representa-
tive sampling. First, it introduces the seven sampling errors, and the theory of zero
dimensional sampling, followed by one dimensional sampling, or process sampling end-
ing with variographic analysis. Applying principles of the Theory of Sampling will lead
to extraction of truly representative samples from any lot.

3.1 Introduction

We may want to sample because of many different reasons. For instance, if we do
not have the time, money, or personnel to examine an entire population or lot or if
measuring a property of interest may require destroying the lot. Sampling can also be
used to characterize the spatial contaminant in soil, air or water in an environmental
situation, or to characterize industrial process variation over time. Extracted samples
can thus be used as process control, environmental monitoring, etc. [59]

The Theory of Sampling (TOS) can be applied in many fields and to many mate-
rials. In fact the theory stays equally valid either for sampling of solids, liquids or gases
and at all scales from the largest lot dimensions to any relevant collection of molecules!
[27, 48, 59]

Pierre Gy’s Theory of Sampling provides a structured approach from which it is
possible to break down a sampling problem into its component parts and the basic
principles (Sampling Unit Operations, abbreviated SUO) that should be applied to
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any sampling situations.

Table 3.1 provides a minimum of basic definitions used in the Theory of Sampling:

Terms Definitions
Lot The original material subject to the sampling procedure,

e.g. a truckload, all the material in a reactor, or flowing
through a pipeline.

Sample The correctly extracted material from the lot.
Specimen A material extracted from the lot in an incorrect fashion.
Increment A partial sample unit, which combined with other incre-

ments form a composite sample.
Composite sample A sample made by the reunion of several distinct incre-

ments.
Fragment The smallest separable unit of the lot. Physically, this

could be a molecule, a granule or grain.
Group of fragments consists of spatially correlated fragments, which act as

a coherent unit during sampling.
Analytical grade aL The lot is the mass of analyte divided by the total mass

of the lot.
Analytical grade aS The sample is the mass of analyte divided by the total

mass of the sample.

Table 3.1: Basic definitions used in TOS. [18, 26, 27, 31, 48–50, 52]

3.2 Correct sampling

The purpose of a sampling procedure is to extract material with the same properties
as the lot i.e. securing a representative sample. The Fundamental Sampling Principle,
abbreviated FSP, sets the basic prerequisite for a correct sampling procedure which
is that all elements1 in the lot should have the same non-zero probability P of ending
up in the final sample.

Obtaining a representative sample is far from trivial and it can not be guaranteed
without professional consideration. The Theory of Sampling defines tools and rules
which shall lead to a truly representative sample. Furthermore, the quality of the
extracted sample should be constant over time. This is done by reducing the bias as
much as possible, preferentially eliminating it.

1Particles, molecules, impurities, etc. at the fragment level or all increments.
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Moreover, all elements that do not belong to the lot must have a zero probability
of being selected [26, 27, 52, 59], or in other words, leftovers in the sampling equip-
ment from previous increments/batches may not pollute new increments. A sample is
preferably materialized through several increments from the lot, this is called composite
sampling.

The relative sampling error is defined as:

e =
aS − aL
aL

(3.1)

A sampling process is said to be accurate if the average error me equals zero,
or practically when |me| ≤ m0, where m0 is a predetermined low acceptable value.
Likewise the sampling process is said to be reproducible or precise if the variance of
the sampling error is less than a small predetermined value, i.e. σ2

e ≤ σ2
0. A contrario,

a sampling process is said biased when it is not accurate or, mathematically speaking,
when |me| > m0.

The sampling procedure is said representative when r2
e ≤ r2

0 in which, by definition

r2
0 = m2

0 + σ2
0 (3.2)

In other words, a sample is representative when it is taken by a selection method
that is both accurate (property of the mean) and reproducible or precise (property of
the variance) [27]. However, any specific analytic results, aS, will always only be an
estimate of the true (average) aL.

Grab sampling is the most often used method in practice. Grab sampling consists
of obtaining the sample by simply scooping from the top of the lot. This is the worst
method that could ever be used. Indeed, it is too much focused on the final sample
volume needed for the analysis and it always generates sampling error that can be up
to hundredfold bigger, than those produced in the analytical laboratory.

TOS defines a set of seven Sampling Unit Operations, abbreviated SUO (Table
3.2). They represent a toolbox of operations that must be used to ensure a correct
sampling.

The SUO’s # 1 and 2 are applied prior designing a new sampling situation. [49]

The last SUO # 3, states that 2-D or 3-D lots should, whenever possible, trans-
formed into 1-D situations. [49]
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SUO # Operation
1 Perform heterogeneity characterization of new materials
2 Characterize 1-D heterogeneity using variographic analysis
3 Transform 2-D and 3-D lots into 1-D cases, whenever possible
4 Apply composite sampling wherever possible
5 Reduce particle size, whenever necessary
6 Mix well before sub-sampling
7 Mass reduce using representative techniques

Table 3.2: Sampling Unit Operations (SUO). Adapted in a modified form from [49]

The SUO’s # 4, 6 are the most commonly used in every sampling situations. Mix-
ing of a smaller lot before sub-sampling is common practice before mass reduction in
most analytical laboratories. Combining a number of increments in order to make a
composite sampling is naturally also encountered frequently. [49]

SUO # 5 makes representative sampling of a highly heterogeneous material with
particles of different size easier. [49]

SUO # 7 is one of the most critical issues at all sampling scales. [49]

During elaboration of a sampling procedure, it is important the be aware that when
a given sample has reached the analytical laboratory, it is impossible to determine if it
is representative of the lot it was extracted from. Therefore, representative sampling
is a necessary pre-requisite in order to ensure reliable data. [50]

3.3 Lot dimensionalities

A sampling situation classifies according to the specific nature of the material i.e. lot
being sampled; TOS deals with 0-, 1-, 2-, and 3-dimensional sampling lots (0-D, 1-D,
2-D, 3-D).

The four sampling dimensions are depicted in Figure 3.1, where gray boxes represent
extracted increments and white boxes the remaining lot i.e. the stock.

In case of 0-D sampling, the lot (heap of material) sampled is definite in space. The
0-D lot can be manipulated – at least in theory – by using SUO#2 previously defined.
Examples of a 0-D lot could be a container, a big bag or a truckload of material. [44]
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For 1-D sampling, one dimension in space dominates the lot and there is a natural
order between groups. A conveyor belt or a process stream, where material is flowing
by continuously are examples of 1-D lots. [44]

In 2-D and 3-D sampling, respectively two or three dimensions are dominating.
These sampling techniques are used especially within the field of geostatistics. [44]

Figure 3.1: Lot dimensionalities [49]

3.4 The seven sampling errors

Figure 3.2: Sampling errors in 0-D and 1-D sampling and their relations.

Uncertainties are everywhere, especially when dealing with measurements. In a
sampling process, it is a consequence of variabilities at all events from the moment
the increment is extracted until the analytical procedure is completed. Therefore, the
analytical result is just an estimate of the parameter of interest in lot and the Global
Error Estimate, abbreviated GEE is the sum of all sampling and analytical errors
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(see Figure 3.2 and Equation 3.3). It is composed of the Total Analytical Error,
abbreviated TAE and the Total Sampling Error, abbreviated TSE.

GEE = TSE + TAE (3.3)

TAE is due to the analytical procedure, it has often been optimized through well-
documented analytical routines. Modern analytical equipments are capable of deliver-
ing results that are reproducible to a large extent. TAE is very nearly always negligible
compared to TSE, except in special circumstances.

In TOS the total sampling error (TSE) splits into seven error components, some of
which characterize the material sampled and some the sampling procedure itself. Five
errors are, in principle, present at every sampling stage (n).

TSE =
∑

[Material Heterogeneity Errors] +
∑

[Sampling Process Errors] (3.4)

GEE = TAE +
N∑
n=1

(FSEn +GSEn + IDEn + IEEn + IPEn) (3.5)

There are two basic sampling errors encountered in all sampling operations; the
Fundamental Sampling Error (FSE ) and the Grouping and Segregation Error (GSE).
FSE and GSE are present in all sampling operations, but can be minimized by appli-
cation of the principles of TOS during the design of the sampling procedure.

The Time Fluctuation Error (TFE ) and the Cyclic Fluctuation Error (CFE)
comprise the two additional sampling errors, they relate only to 1-D sampling.

3.4.1 Fundamental Sampling Error (FSE)

The fundamental sampling error is due to the fact that the composition of a lot is never
homogenous and result indeed in an assembly of fragments which are not equally the
same for each increments

FSE is the smallest possible sampling error made during the sampling process, it is
always present and is impossible to cancel. However, it can be lowered significantly by
physical manipulations of the lot, i.e. particle size reduction.
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The theory of sampling describes the compositional distribution of a lot by the con-
stitutional heterogeneity (CHL). The Constitutional Heterogeneity (CH ) describes
the heterogeneity dependent on the physical and/or chemical differences between the
individual fragments. It increases when the compositional differences between the frag-
ments increases. It is defined as follows: [27]

CHL = σ2(hi) =
1

NF

∑
i

h2
i (3.6)

Where NF is the number of fragments in the population (lot), hi is the heterogeneity
contribution from fragment i, defined in this way:

hi =
ai − aL
aL

Mi

M i

= NF
ai − aL
aL

Mi

ML

(3.7)

Where ai is the mass proportion of the analyte in fragment i, Mi is the weight
of fragment i, M i is the average fragment weight, ML is the lot mass and aL is the
proportion of analyte in the lot:

aL =

∑
i

aiMi∑
i

Mi

(3.8)

Owing to its mathematical definition, the heterogeneity contribution is dimension-
less and has a mean equal to zero.

The relation between the constitutional heterogeneity and the variance of the fun-
damental error σ2(FSE) is defined as follows:

σ2(FSE) =
1− P
NFP

CHL (3.9)

where P is the constant non-zero probability of selection.

Calculation of CHL involves knowing the total number of fragment in the lot, NF .
Obviously, this is never a known quantity in practical situation. Instead, at the cost of
some approximations, the constant factor of the constitution heterogeneity, HIL, can
be used. Pierre Gy defines HIL as [26, 27]:
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HIL = CHLM i =
CHLML

NF

=
1

ML

∑
i

(
Mi

ai − aL
aL

)2

= cβfgd3
95 (3.10)

Where c, f , g, and β are material characteristics, and d95 is a measure of the coarsest
fragment size2 [19, 26, 27, 50].

HIL has the unit dimension of mass and can be calculated via an approximate
material’s parameter approach, according to Gy’s formula3 or estimated experimentally.

When we deal with particulate materials, Equation 3.10 is always able to provide
an estimate of HIL. The reliability of the estimate highly depends on the quality of
the estimates for the material parameters, of which the composition factor (also called
the mineralogical factor), c, and the top particle size, d95 are the most influential since
c can vary between one and infinity (but is constant for any material in a specific state)
and the particle size d95 is to the third exponent. [49]

The remaining factors may often be used at default values, or estimated more
precisely for higher overall estimate quality. It is noteworthy that this famous formula
generates an estimate to an order-of-magnitude only, which is most often all that is
needed in practice. [26, 27, 50]

The relation (Gy’s formula) between the heterogeneity invariant and the variance
of the fundamental sampling error is defined as follows; MS is the mass of the sample
and ML is the mass of the lot:

σ2(FSE) =
1− P
NFP

CHL =

(
1

MS

− 1

ML

)
HIL (3.11)

= cβfgd3
95

(
1

MS

− 1

ML

)
≈ Cd3

95

MS

(3.12)

The last expression is valid when MS �ML and C = cβfg.

2d95 is the top particle size, defined as the square-mesh screen that retains 5% of the material i.e.
upper 95% average grain size diameter.

3A complete development of Gy’s Formula can be found in Appendix A on page 165.
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3.4.2 Grouping and Segregation Error (GSE)

The Grouping and Segregation Error is due to the inherent tendency for particles to
segregate and group in a lot, not only over the whole lot but especially also locally.
Unlike for CHL, which is a function of the material properties only, the Distributional
Heterogeneity (DH ) describes the heterogeneity dependent on the spatial distribution
of the individual fragments and groups-of-fragments in the lot (stratification of frag-
ments with a significant high/low concentration of the critical element). DHL can
actively be modified, for instance by choosing a smaller volume of observation, i.e. a
smaller sampling tool volume, and in this way reduce it, or the lot can be mixed.
[26, 27, 49, 52, 59].

As CHL is defined in relation to σ2(FSE), the distributional heterogeneity of the
lot DHL is defined in relation to σ2(GSE)

DHL = σ2(hn) =
1

NG

∑
n

h2
n = NG

∑
n

(
an − aL
aL

Mn

ML

)2

(3.13)

NG is the number of groups of fragments in the population, hn is the contribution
to the heterogeneity as defined by Equation 3.7 but now on a different scale, the index
n represents a group of neighboring fragments instead of a single fragment.

From its definition it can be noticed that DHL can be, indeed, easily estimated in
practice by extracting and analyzing a number of group covering the lot and calculating
the resulting empirical variance. Often a relatively small number of groups are required
[49], but this is of course not a universal rule.

The distributional heterogeneity of a given lot L is an expression of the way different
groups are spatially distributed inside it. DHL is a function of the composition (CHL),
the tendency for particles to group together (grouping factor γ) and the tendency for
particles to segregate (segregation factor ξ). The greater the difference in composition,
particle size, and weight, the greater DHL is possible.

DHL =
1 + γξ

1 + γ
CHL (3.14)

Where γ is the grouping factor (γ ≥ 0), it characterizes the increment size. When
the increment size is equal to a particle, the grouping factor is equal to zero and DHL

equals CHL. ξ is the segregation factor (0 ≤ ξ ≤ 1), it characterizes the distribution
of the constituents within the lot. A perfectly mixed lot results in ξ being close to zero
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while a perfectly layered leads in ξ close to one (This phenomena is depicted in Figure
3.3).

Figure 3.3: Material of same composition in two different segregation states. [49]

The grouping factor γ describes the size of increments taken from the lot in relation
to the size of the lot. It is defined as follows:

γ =
NF −NG

NG − 1
⇔ 1

1 + γ
=
NG − 1

NF − 1
(3.15)

NF is the number of particles (fragments) in the lot and NG is the number of groups
in the lot.

For big lots (NF � NG) this equation approximates well to [27, 52]

γ ≈ NF

NG

(3.16)

The variance of the grouping and segregation error σ2(GSE) is defined by [52]

σ2(GSE) = γξσ2(FSE) = γξ
1− P
NFP

CHL (3.17)

= γξ
1− P
NFP

1 + γ

1 + γξ
DHL

Therefore, σ2(GSE) is proportional to DHL, which in turn is proportional to CHL.
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3.4.3 Incorrect Sampling Errors

The remainder of errors (IDE, IPE, IEE) concerns the sampling equipment and pro-
cedures. Together they are termed the Incorrect Sampling Errors, (ISE ’s), and they
can all be eliminated from a sampling scheme, although this is not necessarily an easy
task.

The Increment Delimitation Error, (IDE ), relates to the physical extraction of
the sample. The cutting lines that define the sample must be strictly parallel in both
transversal and vertical dimensions, perpendicular to the process dimension.

The Increment Extraction Error, (IEE), concerns the center-of-gravity rule.

The Increment Preparation Error, (IPE), deals with incidents that occur after
the sample extraction until the analytical result has been produced. For instance, con-
tamination, evaporation, deliberate manipulation, spillage, loss of sample to containers
etc. represent a few of the events that can happen during transport and storage of the
sample.

Figure 3.4 depicts three different situations in a 1-D sampling case. Fragments
having their center of gravity within the dot-and-dash line belong to the geometrically
correctly extracted sample. The upper illustration shows the theoretical ideal case.
The center illustration shows a practically correctly delimitated and extracted sample,
the lower illustration shows a practically incorrectly extracted sample.

With exception of IPE all errors are regarded as random variables with a given
average (might be zero) and variance (never zero).
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Figure 3.4: Examples of correct and incorrect delimitation and extraction in a 1-D
situation [49]

3.5 Process Sampling (1-D) – Variography

There are principally three different kinds of 1-D lots: [26, 27, 49, 52, 59]

i. A moving or stationary, stream of particulate material. Examples: conveyor belts
transporting fragmental materials or powders, slurries in ducts etc.

ii. A moving or stationary string of fluids (i.e. gasses, liquids). Examples: rivers or
produced/manufactured fluids in pipelines.

iii. A moving or stationary stream made of discrete chronological units. Examples:
railroad cars, truck loads, units (bags, drums, packages ...) from a production or
a manufacturing line.

3.5.1 Heterogeneity of 1-D lots

For 1-D lot sampling, it is necessary to characterize further the heterogeneity of the
material i.e. understanding the nature of the non-random heterogeneity fluctuations
along elongated or moving lots. Interest is now no longer in the heterogeneity within
the units of observation (as treated above) but in the heterogeneity related to the
differences between them in the process stream direction. [49]
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Focus is now placed on a new set of NU discrete units, Uq (q ∈ N ⊂ [1, NU ]), making
up the 1-D lot. The units are discrete (complete cross-stream) collections/materializa-
tions of material or similar, these unites are called increments.

The heterogeneity contribution, hq, of unit Uq, is defined as follow:

hq =
aq − aL
aL

Mq

M q

= NU
aq − aL
aL

Mq

ML

(3.18)

Where Mq is the unit mass, M q the average unit mass, aq is the grade of the unit
and NU the number of units in the lot.

The heterogeneity contribution, hq, from a unit is composed of four parts when
dealing with 1-D processes: [49]

1. A random, discontinuous, short range fluctuation term, h1q, describing the natural
randomness of the CH. This is equal to FSE +GSE with the unit

2. A non-random, continuous, long range fluctuation term, h2q, describing trends in
the process/lot (between units) over time/distance.

3. A non-random, continuous, cyclic term, h3q, describing cyclic or periodic behavior
of the process/lot.

4. A random fluctuation term, h4q, taking into account all measurement errors stem-
ming from weighing, sample processing and analysis. This is also named the TAE.

Therefore,

hq =
4∑
i=1

hiq (3.19)

Heterogeneity characterization of a 1-D lot must contain information on the chrono-
logical order of the units. If this information is not included, only 0-D lot relations
can be used to determined heterogeneity parameters, such as DH, DHL, and HIL.
When it is necessary to include the correlation information, the so-called variogram4 is
utilized.

4Technically known as a semi-variogram.
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3.5.2 The variogram

Plotting process data is a necessary and important step in understanding process vari-
ations. As stated before, two sources of sampling error are the variation of the material
as a short-range or localized phenomenon, FSE and GSE. [59]

Variation, such as cycles, long-range trends, and non-random changes, result from
differences in the material over time. Changes in the process result in variation, and
increments taken sufficiently far apart in time may differ greatly from each other in the
properties of interest. [59]

The exact concentration of an analyte in a material stream is always unknown and
will vary over time. The conceptual series of successive concentrations (or heterogene-
ity) of component A along the 1-D is in theory a continuous function of time, a(t)
(or h(t)), or more generally x(t) standing either for a(t) or h(t). The function x(t) is
always evaluated as a discrete function over time since discrete since only increments
are extracted and analyzed at several points in time, for practical reasons

To highlight process variations performing a variographic analysis is usually re-
quired. A variogram is plot of the average squared difference in a characteristic, such
as the values of the various hq, between pairs of units selected as a function of time
or distance [52], or in other words, it is a graph of the variation of units (increments)
taken at regular frequencies plotted against the time lag j between them [59]. The lag
is a dimensionless parameter reflecting the distance between two increments.

Figure 3.5 shows an example of unit pairs in a variographic experiment; only eight
units are extracted at 2 min intervals. Then seven unit pairs that are spaced by 2 min
(A), six unit pairs spaced by 4 min (B), five unit pairs spaced by 6 min (C) and this
continues until finally 1 unit pair spaced by 14 min (D) exist. The units shown in the
figure are the same physically extracted units in A, B, C and D, only the calculation
of intervals is different. [49]

3.5.2.1 Mathematical definition

To calculate the variogram a sufficient number of units, which spans the process interval
of interest, has to be extracted equidistantly. A dimensionless and relative lag parameter
j describing the distance between two extracted units is defined:

j =
θ

θmin

(3.20)
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Figure 3.5: Example of unit pairs in a variographic experiment. [49]
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where θ is the inter-sample distance and θmin the smallest interval sampled, also
known as T0. θ can be measured in units of minutes, hours, meters, kilometers, product
number, and so on, depending on the given situation.

If NU units are extracted and analyzed, NU − 1 pairs of units with space θ, NU − 2
pairs of units with space 2θ are available, etc. In practice, it is not necessary to go
higher than half of measured series, 1

2
NU for the different pairs of units. [49]

The most intuitive ways to compare two values such as xq+j, and xq representing,
respectively a given characteristic of unit Uq+j relative to that of unit Uq separated by
a given lag j, is to consider their difference. [52]

For each value of q+ j < NU , the difference ∆x(q+ j, q) is a given characteristic xq
between the final observation at time tq+j and the instant tq at which the observation
started is defined as:

∆x(q + j, q) = xq+j − xq (3.21)

These two points are separated on the time axis by an interval of [tq+j − tq] = jT0

called the lag. What is important is not the value or sign for each individual ∆x(q+j, q);
it is instead their quadratic mean at each lag.

This function called the variogram v(jT0), or more simply v(j), is defined as the
semi-mean square of the increment differences :

v(j) =
1

2(NU − j)

NU−j∑
q=1

(xq+j − xq)2 (3.22)

Where NU is the number of equidistantly distributed units in the time series x(t)
and j is the lag. If the descriptor x has a relative and dimensionless value, therefore
the variogram is absolute.

The variograms of non-dimensionless descriptors are easier to compare if they are
relative and dimensionless. Therefore, if an is a non-dimensionless descriptors (the
grade for instance), it is possible to keep the variogram absolute and dimensionless by
modifying Equation 3.22 as follow:

v(j) =
1

2(NU − j)
1

a2
L

NU−j∑
q=1

(aq+j − aq)2 (3.23)
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3.5.2.2 Interpretation

A variogram can be used to identify the presence of patterns in the process data
structure. For instance it may reveal trends in the variation, asses the periodicity
of cycles, and determine optimal sampling frequency.

Variograms have different appearances, depending on the information it carries,
however the three more important features are: (see Figure 3.6)

1. The sill: it represents the average overall variance between the units.

2. The range: it indicates the lag (j) above which autocorrelation5 is no longer
discernable.

3. The nugget effect: it is an indication of the Minimum Practical Error.

Figure 3.6: Generic variogram v(j), illustrating the three key parameters: the nugget
effect, the range and the sill. [44]

The sill is an important feature since it represents the maximum variation within a
time series and is an indicator for spatial randomness. In other words, when the vari-
ogram converges towards the sill, points in the time series x(t) are no longer correlated.

5Autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a
periodic signal which has been buried under noise, or identifying the missing fundamental frequency
in a signal implied by its harmonic frequencies.
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The range is the part of the variogram function is below the sill. Sampling within
these increment distances will be able to reveal variation in the process.

Finally, the nugget effect is estimated by extrapolating the variogram to v(0). A
time lag of zero signifies that the units have been extracted at the same time which
collapse the 1-D sampling situation to a 0-D sampling. In 0-D sampling, the nugget
effect represents the smallest error made by sampling twice in the same material at
the same localization. It is also called the variance of the minimum practical error
σ2(MPE). In fact, the nugget effect is the sum of all variances in the 0-D sampling
situation including the total analytical error. [18]

In practice, often one of three primary types of variograms is encountered (see
Figure 3.7):

1. The increasing variogram (top-left);

2. The flat variogram (top-right);

3. The cyclic variogram (bottom);

Figure 3.7: The three basic shapes of a variogram. Adapted in a modified form from
[49]
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3.5.2.3 Auxiliary functions

The variogram only provides a set of limited integer values of the lag j. To avoid this,
and in order to estimate the Continuous Selection Error (CSE), a set of so-called
auxiliary functions and error generating functions is needed. [49]

The generation of these functions can be performed through a simple point-by-point
calculation based directly on the individual points of the variogram or by an algebraic
modeling.

The variogram can be broken down into four component parts-corresponding to the
description of the four heterogeneity components above:

v(j) =
4∑
i=1

vi(j) (3.24)

where

i. v1(j) is the discontinuous random part of v(j) or the variogram of the discontin-
uous short range fluctuation term h1m. It describes the random fluctuations of
the constitutional and distributional heterogeneities within each unit of the to-
tal set of units. As these fluctuations are random, the mean would normally be
approximately zero and their variance σ2(h1m) is a constant. [49]

ii. v2(j) is the non-random continuous part of v(j) or the variogram of the continuous
long rage fluctuation term h2m. It describes trends in the process/lot. [49]

iii. v3(j) is the non-random, continuous, cyclic part of v(j) or the variogram of the
cyclic term h3m. [49]

iv. v4(j) is the residual part of v(j) not described by any of the others vi(j). Usually
this term is equal to zero or is very close to zero. The variance of the fluctuations
σ2(h4m) is a constant. [49]

The nugget effect, equal to the intercept of the variogram with the ordinate axis,
termed v(0), actually involves two of the above four parts: v(0) = v1(0) + v4(0).

After calculation and interpretation of the variogram a set of so-called auxiliary
functions, that are helpful in expressing the sampling variance, can be calculated or
derived.
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Four of these auxiliary functions exist:

i. The single integral S(j) of the variogram v(j).

ii. The average integral ω(j) of S(j).

iii. The double integral S ′(j) of the variogram v(j).

iv. The average double integral ω′(j)of S ′(j).

The first order average integral of the variogram is defined as follow

ω(j) =
1

j

∫ j

0

v(ϑ)dϑ (3.25)

Which applied to Equation 3.24 gives [52]

ω(j) =
4∑
i=1

{
1

j

∫ j

0

v(ϑ)dϑ

}
i

=
4∑
i=1

ωi(j) (3.26)

The second order average integral of the variogram is defined as follow

ω′(j) =
2

j2

∫ j

0

dϑ

∫ ϑ

0

v(ζ)dζ (3.27)

Which applied to Equation 3.24 gives [52]

ω′(j) =
4∑
i=1

{
2

j2

∫ j

0

dϑ

∫ ϑ

0

v(ζ)dζ

}
i

=
4∑
i=1

ω′i(j) (3.28)

Point-by-point calculation of auxiliary functions

Before going further into details, it is necessary to elaborate a method of variogram
integration. As recommended by Gy and Pitard, a point-by-point modeling will be used
instead of a mathematical modeling as indicated in Figure 3.8, where the hatched area
is approximately equal to the area between the curve and the abscissa axis, which is
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approximately equal to the area under an algebraically fitted, integrated mathematical
model through the points. The value of v(0) is estimated by backward extrapolation,
since it is not experimentally known. [49]

Figure 3.8: Point-by-point integration of a variogram (or any other function). [23]

The point-by-point approach is preferred owing to the fact that oftentimes math-
ematical models are unable to capture and satisfactory describe periodic phenomena;
they also provide greater demands to the computer and programming. [49]

According to Gy and Pitard, the point-by-point calculations can be done by follow-
ing this procedure

i. Estimation of v(0), either by backward extrapolation or through an added experi-
ment of very closely spaced increment extractions, called a short-term variogram.

ii. Calculation of the variogram’s single integral:

S(j) = S(j − 1) +
1

2
v(j − 1) +

1

2
v(j) for j ≥ 1 (3.29)

S(0) = 0 for j = 0 (3.30)

iii. Calculation of the average integral:

ω(j) =
S(j)

j
for j ≥ 1 (3.31)

ω(0) = v(0) for j = 0 (3.32)
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iv. Calculation of the variogram’s double integral:

S ′(j) = S ′(j − 1) +
1

2
S(j − 1) +

1

2
S(j) for j ≥ 1 (3.33)

S ′(0) = 0 for j = 0 (3.34)

v. Calculation of the average double integral:

ω′(j) = 2
S ′(j)

j2
for j ≥ 1 (3.35)

ω′(0) = 0 for j = 0 (3.36)

The auxiliary functions are used to estimate the so-called continuous selection error
(CSE). CSE is comprised of three error parts, CSE1 stemming from the short-range
random (stochastic) variation of the process, CSE2 stemming from the long-range
trend development of the process and CSE3 stemming from cyclic variations of the
process. More on the estimation of CSE in the section on error generating functions is
described below. [49]

3.5.2.4 The error generating functions and calculation of the Continuous
Selection Error (CSE)

In practice, a sample, S, describing a lot, L, is typically made up by a number, NU , of
increments. The objective of the sample is to characterize the lot with regard to the
average of the critical component (the analyte).

This is not the same scenario if the main purpose is, for example to map the 1-
D variance or map the internal heterogeneity variance of the lot-in which case the
increments are analyzed individually.

For typical process sampling purposes increments can be extracted according to
basically three different sampling schemes: [49]

i. Systematic sampling, denoted sy, where increments are extracted equidistant over
the runtime of the process (lot)-perhaps with a random starting point;

ii. Stratified random sampling, denoted st, where the run-time of the process is di-
vided into a number of equally sized intervals, and an increment is extracted at
random within each of these intervals;

iii. Totally random selection, denoted ra, of the increments over the runtime of the
process.
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The variogram and its auxiliary functions provide a lot of information on the sam-
pling error as a function of the distance between selected increments. This information
can be used at a great advantage, and this can be seen directly from the so-called error
generating functions. The sampling variance is a function of the number of increments
making up the sample and the sampling scheme chosen.

The error generating functions, denoted W , are the following:

W (j)sy = 2ω(
j

2
)− ω′(j) and σ2(CE)sy =

1

NU

W (j)sy (3.37)

W (j)st = ω′(j) and σ2(CE)st =
1

NU

W (j)st (3.38)

W (j)ra = σ2(hm) = CHL = constant and σ2(CE)ra =
1

NU

W (j)ra (3.39)

The value 2ω( j
2
) is also needed to calculate W (j)sy. If j0 is an integer then

i. if j is even, then j = 2j0 and 2ω( j
2
) = 2ω(j0);

ii. if j is odd, then j = 2j0 + 1 and 2ω( j
2
) = 2

S(j0+ 1
2
)

j0+ 1
2

where

S(j0 +
1

2
) = S(j0) +

1

4
v(j0) +

1

4
v(j0 +

1

2
) (3.40)

The values of v(j0 + 1
2
) and S(j0 + 1

2
) are estimated by linear interpolation.

3.5.3 Designing a variographic experiment

For all practical situation the following procedure can be applied in order to extract
the most reliable information on the process/lot. [26, 27, 49, 52, 59]

i. In accordance with TOS, extract 60-100 units (increments) at a constant interval
designed to span the expected autocorrelation or cyclic behaviors of the process or
lot.
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ii. Prepare and analyze all these units according to the existing sample preparation
and analysis protocol.

iii. Calculate the individual heterogeneity contributions, hm, for all units.

iv. Calculate a variogram v(j) of lag j up to 30 or 50 of the heterogeneity contributions
(depending on the number of original units).

v. In accordance with TOS, also extract 30-50 units (increments) as closely together
as possible to make an accurate estimate of the ordinate v(0) or nugget effect and
thus the MPE.

vi. Calculate the error generating functions.

Real life examples of variographic analysis can be found in the literature. [18, 26,
27, 49].
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Chapter 4
Sensor technologies

This chapter concerns sensors technologies in a frame of real time or nearly real time
analysis. Acoustic chemometrics and near infrared spectroscopy including their appli-
cations for process monitoring and quantification of process parameters are detailed. It
also reviews some recent studies in which both technologies are used as process moni-
toring tool. Other sensors technology are quickly introduced at the end of the chapter.

4.1 Acoustic chemometrics

Acoustic Chemometrics (AC ) is a multivariate data analysis technique, which can be
used for on-line process monitoring. It is a new approach in which vibrations generated
in a transportation process or as a result of manufacturing of a product, erroneously
often considered as simple noise, can be used to quantify physical process parameters
such as particle size distribution, flow velocity, concentration of solids, density, and
viscosity [7].

Since the acoustic sensor is welded directly on the pipeline, acoustic chemometrics
is said to be a passive approach as all of the parameters can be accessed by non-
intrusive data-acquisition. Therefore, no interaction with the process stream takes
place and the parameters can be monitored on-line in real-time for harsh environments
such as microbiological process, corrosive chemical, etc. [2]

This approach requires multivariate calibration and representatively extracted ref-
erence samples in order for the multivariate calibration to be reliable. It is imperative
to apply the most rigorous validation to all established prediction models, test set val-
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idation should be hence preferred, relevant and acceptable cross validation could also
be used if there is not possibilities to extract a test set.

However, acoustic patterns could be very complex and therefore difficult to inter-
pret without adequate mathematical tools and theoretical background. Moreover, the
deployment of acoustic sensors is not easy and its location has to be determined care-
fully since the vibrations that are being recorded must reflect actual information about
the process and not just noise from the plant.

Table 4.1 presents an overview of the advantages and disadvantages of the acoustic
chemometrics approach.

Advantages Disadvantages

i. Clamp-on, non-intrusive sensors.

ii. On-line, virtually real-time ap-
proach.

iii. A single sensor may predict several
process parameters.

iv. Relatively inexpensive equipment.

v. Acoustic sensors have many posi-
tioning options.

vi. Applicable to all systems which
generates acoustic energy.

i. Calibration must be based on
representative, problem-dependent
signals and reference samples. It is
a empirical approach.

ii. Generally not as ultimately ac-
curate and precise as laboratory
methods.

iii. Calibrated models are not nec-
essarily robust with respect to
drifts, upsets, interferences, tran-
sient phenomena-prediction mod-
els must be re-calibrated and up-
dated.

Table 4.1: Advantages and disadvantages of the acoustic chemometrics approach. [2,
17, 29, 41]

4.1.1 Principle

The physical explanation behind acoustic measurements is as follow: whenever a par-
ticle hits a pipe wall, it transfers a certain amount of its kinetic energy to the pipe,
this kinetic energy is absorb by the pipe and released as vibrating energy. Thereby,
a vibration wave is created inside the pipe wall, the magnitude of this vibration can
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be measured and recorded by an acoustic sensor. A simple illustration of compression
waves caused by different particle sizes and kinetic energy is given in Figure 4.1.

Figure 4.1: Mono-phase particles causing different kinetic impact (caused by different
sizes and/or densities) leading to vibrations with different frequency characteristics in
the sensor-head. [2]

In case of acoustic chemometrics, the acoustic sensor can be a well chosen piezo-
electric accelerometer1. An accelerometer is an electronic sensor delivering an output
directly proportional to the accelerations experienced. The signal is produced by a
force that vibrates or excites a piezoelectric crystal which generates an electric charge
proportional to the applied force. This charge is converted to a voltage or to a current
which can measured and registered by a computer. [9, 15, 35, 36, 40, 55, 60]

However, prior to being recorded, the electrical signal generated by the piezoelectric
crystal needs to be filtrated, adjusted and converted. When the signal is recorded it
can be analyzed by multivariate data analysis techniques, also known as chemometrics.

It is common to transform the time series to a power spectrum by use of the Fast
Fourier Transform (FTT ) algorithm2. The result of this step is a frequency spectrum,
which is used directly as a X-spectrum in the chemometrics calibration, seen as the
last step in the data path in Figure 4.2. Multivariate calibration (PLS-regression
modeling) is where the acoustic frequency spectra are calibrated versus reference values
Y, representing the parameter-of-interest.

4.1.1.1 Signal adaptation

In order to get the highest possible resolution out of an acoustic signal, its amplitude
should be as close as possible to the input range of the Data Acquisition board (DAQ).
This can be done by amplifying the acoustic signal.

For an input range of ±αV , the amplitude should be as close as possible to ±αV
to extract the highest possible resolution. A resolution R of β bits leads to 2β discrete

1The theory behind piezoelectric accelerometers can be found in Appendix B on page 167.
2Fourier Transform transforms signals from the time domain to the frequency domain. See Ap-

pendix C on page 181 for basic understanding of Fourier Transform.

L. Boland M.Sc. Eng. Thesis – July 3, 2008 39

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Chapter 4. Sensor technologies

Figure 4.2: General acoustic chemometrics signal pathway, showing all principal steps
towards final predicted parameter-of-interest. [17]

levels. However, if the signal amplitude is in a range of ±1
2
αV , the resolution will only

be 2(β−1) discrete levels3.

4.1.1.2 Band-pass filter

A pass-band filter is an analog electronic filter which passes frequencies within a certain
range4, and rejects (attenuates) frequencies outside its bandwidth [37]. Therefore, a
well designed pass-band filter allows to record only the frequencies of interest, excluding
most of the noise registered by the accelerometer.

In fact a band-pass filter can be decomposed into a low-pass filter5 and a high
pass-filter.

The role of the low-pass filter is to reduce/eliminate all the frequencies higher than
the so-called cut-off frequency fc whereas the role of the high-pass filter is to reduce/e-
limate all the frequencies lower than its cut-off frequency. Therefore, a band-pass filter
composed by a low-pass filter with a cut-off frequency of f low-pass

c and a high-pass filter
with a cut-off frequency of fhigh-pass

c , has a bandwidth of [fhigh
c ; f low-pass

c ].

In practice the cut-off frequency of the low-pass filter is set either by the frequency
of the upper sensor stability limit FL or by the sampling rate of the DAQ board. In
fact, in order to avoid aliasing error, the frequencies above half of the sampling rate
(Fs) of the DAQ board must be eliminated. If it is not done, according to Nyquist-

3Since the signal amplitude is half of the maximum amplitude of the DAQ, the resolution is as
follow:

R =
1
2

2β = 2(β−1)

4Generally called bandwidth.
5Further developments about low-pass filter can be found in Appendix D on page 187.
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Shannon sampling theorem, the frequency is folded down into the frequency range
[0; 1

2
Fs] resulting in errors in the frequency range of interest, 1

2
Fs is called the Nyquist

frequency6. The cut-off frequency of the low-pass filter be chosen in accordance with
the following equation:

f low-pass
c < min(

1

2
Fs, FL) (4.1)

The cut-off frequency of the high-pass filter is more difficult to determine since it
is highly problem dependent. However, after many experiments for one given situation
it is possible to determine wether a high-pass filter should be used or not, and then
employ a full band-pass filter.

To conclude, a low-pass filter must be used in any case whereas the utility of a
high-pass filter is revealed by the experience.

4.1.1.3 Analog to Digital conversion

When the signal is properly conditioned, its amplitude should be close to the optimal
input voltage range and all frequencies above the Nyquist frequency. The resolution
of the acoustic signal in digital form is then ±αV

A
bit, where A is the resolution of the

A/D converter. The voltage resolution is given by Equation 4.2.

A =
EFSR
2M

=
VRefHi − VRefLo

2M
(4.2)

Where A is resolution in volts per step (volts per output code), EFSR is the full
scale voltage range, and M is the ADC’s resolution in bits.

For an input range of ±αV and a resolution of β bits, the resolution A of the A/D
converter is

A =
2α

2β
=

α

2(β−1)
(4.3)

The A/D converter is physically integrated in the DAQ board.

6The Nyquist frequency is an absolute maximum frequency limit for an ADC, and does not represent
the highest practical frequency measurable. To be safe, it should not be expected that an ADC can
successfully resolve any frequency greater than one-fifth to one-tenth of its sample frequency.
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4.1.1.4 Signal conditioning

Now in a suitable digital form, the acoustic signal can be stored in a computer. In
order to calculate the power spectrum of the signal, it is necessary to select where to
start the calculation. In other words, determine the lowest practical frequency7 under
which the signal mainly contains noise.

The signal has now to be transformed from the time domain into the frequency
domain by application of the Fourier transform theorem. However, since the signal is
on a digital form, Discrete Fourier Transform (DFT ) algorithm can be used advan-
tageously. The DFT algorithm can be speeded up considerably by using the powerful
Fast Fourier Transform (FTT ) algorithm. In fact, if there is n samples in the time
domain, the DFT algorithm uses n2 computer operation to calculate the spectrum
whereas the FFT algorithm uses only n log2 n operations. [29, 53]

4.1.2 Practical applications of Acoustic chemometrics

A series of articles published during the last decade by a Norwegian research group8,
introduces many new applications where passive acoustic chemometrics can be used.
Their investigations have shown that acoustic chemometrics can be used, for instance,
to quantify the concentration of oil in water due to changes in the surface tension.
[14, 16, 28, 30]

The following paragraphs present some studies from the past decade involving
acoustic chemometrics as passive prediction tool for in-line or on-line measurements.

i. An English study from 1999 [35] investigated the feasibility of extracting informa-
tion from power spectra recorded with an acoustic sensor mounted onto a pipeline
that was transporting fine-grained silica particles materialized in dense slurries.
Relatively good regression models were established for parameters such as solid
concentration (model r2 = 0.987), mass flow rate (model r2 = 0.973), and volu-
metric flow rate (model r2 = 0.989). [35]

ii. A Norwegian study from 2000 [28] presents a new prototype acoustic chemometrics
approach for in-line prediction of powder particle size distributions. The standard
approach demand to carry out the calibration on representative non-segregated
reference powder samples.

7This lowest practical frequency can be used as cut-off frequency for a high-pass filter.
8Applied Chemometrics Research Group ACRG, Telemark Institute of Technology Tel-Tek Institute

of Process Technology, Porsgrunn, Norway
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Nevertheless, in practice, powder flow with no segregation represent a highly diffi-
cult challenge to fulfill with the precision needed for calibration, there will always
be a significant uncertainty in the reference values relative to what is measured.
The problem encountered here is the flow segregation, which will be revealed to be
also the solution by the study in question.

In fact, they have designed a completely new approach in which the flowing powder
mass is forced to segregate as much as possible by various mechanical means. Their
prototype measures the acoustic signals from an integrated series of segregated,
part-sample characteristics.

The three way X-data matrix generated demands a three-way calibration to reveal
the latent information on the segregated powder sample (see Figure 4.3). The
study concludes that maximum segregation three-way decomposition (MS3WD)
approach is a promising way to handle samples where the size ratio between the
coarse and fine particles, D/d, was earlier significantly large.

But the most important discovery in this study is that phenomenons such as flow
segregation and contrast ratio are no longer seen as problems but as solution to
the problem. [28]

Figure 4.3: Data array configuration of the three-way PLS calibration experiments.
[28]

iii. A Norwegian, Dutch, and Danish study from 2006 [30] investigates the potential
of applying acoustic chemometrics as an on-line monitoring and control tool to a
pilot plant producing urea fertilizer granules.

The granulation process was monitored both with traditional sensors and passive
acoustic sensors.

The authors concluded that acoustic monitoring was able to provide very early
warnings of upcoming process disturbances which could lead to process failure.
Figure 4.4 depicts an example of such an early warning. [30]

iv. A Danish and Norwegian study from 2007 [17] investigated the feasibility of devel-
oping a robust acoustic chemometrics facility on bed-load mass flux quantification
for deployment in rivers and hydroelectric power plant inlet canal system.
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Figure 4.4: Score plot giving early warnings of upcoming process failure (PCA Analy-
sis). [30]

The authors used a test rig equipped with an acoustic sensor attached to a steel
plate flush at the flume bottom (see Figure 4.5), in order to reproduce natural
sedimentary bed-load transportation characteristics.

Sensor signals were pre-treated by Fast Fourier Transform and subjected to PLS1
regression, enabling prediction of sediment bed-load transport interacting with
carrying sedimentary characteristics.

The investigation was based on a comprehensive experimental design of two major
factors, the mass flux and the grain-size distribution. It was was concluded that
reliable, test set validated PLS-prediction models can be obtained for bed-load
mass fluxes with effective compensation for widely varying sediment size. [17]

Figure 4.5: Schematic illustration of the test flume rig used in the study. [17]
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Acoustic chemometrics is revealed to be a powerful on-line monitoring and control
tool [30]. Applications of acoustic measurements to biotechnological process can serve
several purposes such as monitoring the concentration of total solids, water, oil, and
particle size distribution can be used to optimize the process strategy.

4.2 Near Infrared Spectroscopy

Near Infrared Spectroscopy (NIRS) is classified as molecular spectroscopy, and can
be described as the study of the interaction of electromagnetic waves and matter [6, 54].

NIRS is said to be a non-invasive approach as the parameters of interest can be
accessed by non-destructive data-acquisition. Therefore, no interaction with the process
stream takes place and the parameters can be monitored on-line in real-time for harsh
environments such as microbiological process, corrosive chemical, etc.

This approach requires multivariate calibration and representatively extracted ref-
erence samples in order to build a reliable model. It is imperative to apply the most
rigorous validation to all established prediction models, test set validation should be
hence preferred, relevant and acceptable cross validation could also be used if there is
not possibilities to extract a test set.

Table 4.2 presents an overview of the advantages and disadvantages of the Near
Infrared Spectroscopy approach.

4.2.1 Principle

The near infrared region of the electromagnetic spectrum spans from around 700 and
2500nm (Figure 4.6), lying between the visible and MIR regions. Most practical appli-
cations are based on the region between 1100 and 2500nm. [6, 42, 54, 61]

In order to perform NIRS measurement, infrared light is passed through (transmis-
sion) or reflected (reflection) from a sample, the amount of energy absorbed is recorded
as a function of wavelength/frequency. This function is known as the infrared spectrum.

In fact near infrared absorptions are overtones and combinations of the fundamental
vibrations of molecule seen in the mid IR. However, in order for a molecule to be IR-
active, two important conditions must be met. The frequency of the radiation must
be identical to one of the transitions between energy levels of a molecule and produce
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Advantages Disadvantages

i. little or no sample preparation.

ii. rapid, non-invasive, inexpensive.

iii. multi-parametric method.

iv. can be used in laboratory or on in-
dustrial fields.

v. On-line, virtually real-time ap-
proach.

vi. A single sensor may predict several
process parameters.

i. Calibration must be based on
representative, problem-dependent
spectra and reference samples.

ii. Generally not as ultimately ac-
curate and precise as laboratory
methods.

iii. Calibrated models are not nec-
essarily robust with respect to
drifts, upsets, interferences, tran-
sient phenomena-prediction mod-
els must be re-calibrated and up-
dated.

Table 4.2: Advantages and disadvantages of the Near Infrared Spectroscopy approach.
[6, 41, 61]

a change in dipole moment of the molecule [44]. Owing to these conditions, almost
exclusively covalent bonds are influenced by infrared light. Therefore, IR-techniques
are widely used to analyze organic matter. [6, 61]

4.2.2 Instrumentation

There is two distinct types of NIR spectrometers: dispersive and Fourier Transform
(FT-NIR).

Originally, NIR instruments were of the dispersive type, using a prism or grat-
ing monochromator to separate visible light into its frequencies. Grating based spec-
trometer are generally preferred over prism based since they offer better separation of
frequencies of IR radiation and hence a better resolution. [6, 42, 54, 61]

A typical dispersive NIR spectrometers uses a tungsten-halogen filament lamp as
radiation source. As shown in Figure 4.7, the monochromator is an oscillating concave
holographic grating consisting of a reflecting surface, which converts white light into
discrete wavelengths across the visible/NIR spectrum as it oscillates. [54]
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Figure 4.6: The Electromagnetic Spectrum showing near infrared region. [54]

Figure 4.7: Schematic of NIR dispersive spectrometer. [56]
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Due to its design, small movements in the optical components caused by vibrations
or changes in the surrounding temperature can seriously affect the measurement of
absorbance at each wavelength and potentially cause problems when developing mul-
tivariate calibration models. [6, 42, 54, 61]

Generally, FT-NIR instruments are build on the Michelson interferometer. The
infrared light beam is divided and reflected off two mirrors, one fix and one mobile, prior
being recombined (Figure 4.8). A modification in the light intensity at the detector
occurs as the various light wavelengths interference with each other. The interferogram9

is recorded and converted into the frequency domain by mean of Fourier Transform.

Figure 4.8: Schematic of NIR Fourier Transform spectrometer. [56]

FT-NIR based instruments have some distinct advantages over standard dispersive
types: [54]

i. All frequencies are measured simultaneously which reduces the time required to
generate a spectrum. Furthermore, the instrument is mechanically simpler than
dispersive types there is less chance of changes occurring in spectra due to me-
chanical alignment during scanning process.

ii. The wavenumber accuracy is unaffected by changes in temperature or vibration
since the instrument is wavelength calibrated during the scanning procedure.

9Plot of the light intensity vs. time.
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iii. All light passed through the sample is measured at the same time.

4.2.3 Spectral acquisition

Two modes of spectral acquisition are possible in NIRS, transmission and reflection.
In processes with a low cell density, it most common to use transmission spectroscopy,
whereas in high cell density processes or when the analyte has a complex structure,
resulting in an high risk of light dispersion by the sample, reflectance spectroscopy is
often used.

However, if the particle size is sufficiently small, the instrument will not transmit
enough energy through the sample for the detector to record a signal. To compensate,
the ideal instrument would have both transmittance and reflectance capabilities. [10,
61]

4.2.3.1 Transmission

In transmittance measurements the entire pathlength ` of a sample is integrated into
the spectral measurement (Figure 4.9), thereby reducing errors due to heterogeneity of
samples.

Figure 4.9: Near-infrared transmittance [56]

The reflection intensity is function of three factors. Transmittance T is defined as

T =
I

I0
(4.4)

Where I is the intensity of sample beam and I0 is the intensity of reference beam.
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When absorbance A is defined as

A = log

(
1

T

)
(4.5)

It follows from 4.4and 4.5 that

A = log

(
I0
I

)
(4.6)

A basis for quantification in absorption spectroscopy is the Beer-Lambert’s equa-
tion, which relates concentration directly to the absorption:

A = αλC` (4.7)

Where αλ is the intrinsic constant of the material in question, or absorptivity coef-
ficient, C is the concentration of the sample and ` is the thickness of the sample.

The absorptivity coefficient αλ is an expression of the sensitivity of an absorption
measurement at a particular wavelength. The thickness of the sample ` should be held
as constant as possible. The concentration C is the number to be determined from this
measurement.

4.2.3.2 Reflection

In reflectance measurements the light beam does not go through the sample but is
reflected on it (Figure 4.10).

The Reflectance R is defined as

R =
I

I0
(4.8)

Where I is the intensity of sample beam and I0 is the intensity of reference beam.
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Figure 4.10: Near-infrared reflectance [56]

Several equations are used in reflectance spectrometry to relate the measured re-
flectance to absorbance so that quantification can be achieved, all resting on the as-
sumptions underlying Beer’s law. It is found that the sample transformation of

A = log

(
1

R

)
(4.9)

is a reasonable approximation. Nevertheless, in reflectance spectroscopy, the Beer-
Lambert model ceases to be valid because of the changes in effective pathlength caused
by light scattering. According to [56], equation 4.10 is also a good approximation.

A =
αλC
s

(4.10)

Where αλ is the intrinsic constant of the material in question, or absorptivity coef-
ficient, C is the concentration of the sample and s is the sample scattering coefficient.

Kubelka-Munk (KM) transformation can also be used to relate the reflectance R to
the absorption K and the scattering coefficient S: [10]

K

S
=

(1−R)2

2R
= f(R) (4.11)

It may be stated that R is a function of the ratio K/S = KM is proportional to
the concentration.
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4.2.4 Practical applications of Near Infrared Spectroscopy

Near infrared spectroscopy is of interest for on-line monitoring purposes since it is fast,
inexpensive, simple, easy to automate, non-invasive, and remote sensing.

The following paragraphs present some recent studies involving NIRS as prediction
tool on-line measurements.

i. A Danish study from 2007 [32] has evaluated the feasibility of applying transflexive
embedded near infrared sensors (TENIRS) system for monitoring an anaerobic co-
digestion process.

The purpose of the study was to simulate at-line conditions. However, the system
can be configured as on-line, at-line, and off-line [32].

The manure samples were collected at two different Austrian biogas plant and
analyzed with TENIRS system for volatile fatty acids, dry mater, volatile solids,
total nitrogen, and ammonium content.

Acceptable models were obtained for the key parameters: total volatile fatty acids,
acetic acid, ammonium and dry matter (Figure 4.11). [32]

Figure 4.11: Calibration models for process parameters; spectra acquired at-line using
TENIRS [32]

ii. A Danish study from 2007 [33] conducted on a laboratory scale glycerol boosted
anaerobic digestion, has shown good perspectives for NIRS on-line monitoring of
anaerobic digestion.
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In fact, the PLS model for total VFA quantification leads to excellent measures of
prediction, precision: r2 = 0.97 and accuracy: s = 1.04. Similar results have been
established for acetic acid and iso-butanoic acid. [33]

4.3 Other process analytical techniques

4.3.1 Acoustic-Resonance Spectrometry

Unlike Acoustic Chemometrics, Acoustic-Resonance Spectrometry (ARS) is an active
acoustic technique of measurements. Which means that an acoustic wave is emitted
and it passes through the samples and then is recorded.

A acoustic wave is a longitudinal wave-one whose compressions and rarefaction
oscillate parallel to the direction of propagation. When an acoustic wave is applied to
a sample, the medium responds by locally contracting and expanding, with particles in
the medium drawing closer together and moving farther apart. The degree to which a
particular medium responds is a product of its incompressibility. For dense materials
with very little compressibility, a sound wave propagates very rapidly, while for less
dense samples, sound travels more slowly [43]. Once the spectra acquired the pathway
of treatments is the same than for acoustic chemometrics.

It is still an under-utilized PAT tool that could become an analytical method of
choice for the physical characterization of some analytes in pharmaceutical manu-
facturing. According to [43], the wide-ranging measurements that can be made by
Acoustic-Resonance Spectrometry include sample compaction and axial strain, defor-
mation, hydration and drying endpoint, elasticity, molecular stacking, and homogene-
ity, making ARS a very descriptive method of sample analysis. Furthermore, ARS
provides a rapid and efficient noninvasive way to identify and quantify an analyte with
no or little sample preparation.

4.3.1.1 Practical application of Acoustic-Resonance Spectrometry

This section analyze one of the application [43] of ARS in the pharmaceutical sector.

The US Food and Drug Administration frequently orders recalls of tablets because
of labeling problems e.g. the wrong table appears in a bottle. A high-throughput,
noninvasive method of online analysis and label comparison prior to shipment could
limit the need for recall.
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The study present ARS as an inexpensive and nondestructive method which is both
accurate and precise for this purpose.

Figure 4.12 depicts the schematic of the AR spectrometer used by the authors of
the study.

In the absence of a tablet at the vertex of the quartz rod, the applied acoustic
signal received at the detector is a standing wave that is characteristic of the quartz
wave guide. Whereas, when a tablet comes in contact with the rod, the acoustic waves
propagate through the tablet/quartz interface and pass to the tablet holder10. Waves
are reflected back or transmitted through the tablet, where they reenter the quartz rod.
The two sound paths lead to a pattern of in-phase and out-of-phase interferences11 that
is characteristic of the tablet.

Figure 4.12: Acoustic-resonance spectrometer schematic illustrating the instrumenta-
tion. The piezoelectric transducer on the left receives the excitation signal from the
radio, while the one on the right receives the transmitted signal through the quartz
rod. [43]

To test the classification ability of ARS, the study analyzed five common household
tablets of similar size and shape e.g. aspirin, ibuprofen, acetaminophen, vitamin C,
and vitamin B12. Models giving the tablet mass (r2 = 0.977), thickness (r2 = 0.977),
and density (r2 = 0.900) were established using cross-validation (see Figure 4.13). The
authors of the study concluded that the parameters were measured very accurately
from the AR spectra, each with less than 10% error, demonstrating that ARS effectively
identified and characterized the five types of tablets and could potentially serve as a
rapid high-throughput online pharmaceutical sensor.

Thanks to chemometrics, ASR can now make his way into the pharmaceutical

10Which may contain a second transmitting transducer.
11Between the standing wave traveling through the quartz rod from piezoelectric transducer (PZT)

to PZT with no tablet interaction, and the wave propagating through the tablet.
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Figure 4.13: Cross-validation results demonstrating the ability of acoustic-resonance
spectrometry to predict tablet thickness, mass, and density from the acoustic-resonance
spectra of the tablets. [43]

industry as alternatives to traditional invasive testing12 . ARS can easily be applied to
the quantification of Active Pharmaceutical Ingredient (API ) or moisture in tablets
because of the high correlation between AR spectral features and chemical composition.
[43]

4.3.2 Process chromatography

Well-known technique in analytical chemistry, chromatography separates a sample,
typically a mixture of different analytes, through a column, which retards the passage
of the analytes in the sample. Each analyte ideally has a characteristic retention time,
which is known in advance. This technique is an alternative to real time spectropho-
tometric techniques and it could e.g., be set up in e.g., the cultivation plant. A few
multiplexed instruments will be able to serve several reactors. [44, 58]

Unlike laboratory chromatographs, process chromatographs have to be designed to
withstand sometimes harsh environmental conditions, hazardous process areas, and
continuous operation with minimal attention. Sample extraction, preparation, and
injection are another important aspect.

Industrial end users expect an annual instrument up time in excess of 97% [42]. In
other words, the instrument has to be on-line providing successive analyzes around the
clock while requiring less than eleven days to calibrate and maintain the unit.

12Currently, the industry standard for tablet characterization and identification is high performance
liquid chromatography (HPLC), which, in addition to requiring extensive preparation (tablet grinding,
dissolution, and extraction), destroys the tablet during the analytical process. [43]
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4.3.2.1 Practical application of Process Gas Chromatography

Gas chromatography is particulary useful for quantification of volatile compounds [42]
and can thus be used for volatile fatty acids determination. In fact, process gas chro-
matography for VFA quantification has been investigated in a Danish study [51]. Con-
centrations from 6 to 3000mgL−1 can be quantified [41, 51]. The study showed a good
correlation (r2 = 0.9991) between the samples extracted automatically and the samples
extracted manually. [51]

However, the system can only analyze up to four samples per hour.

Figure 4.14: Schematic principle of on-line gas chromatography utilization for quan-
tification of volatile fatty acids [51]

Compared to infrared spectroscopy, and as shown in Figure 4.14 the system is not
easy to deploy, since a rotating pre-filtration unit has to be immersed into the reactor,
the flow from the pre-filtration unit goes to an ultrafiltration unit, the flow is then
pre-treated to removed gasses and precipitates the sample is prepared and injected
into the GC for VFA quantification. PGC is also quite expensive compared to infrared
spectroscopy.

4.3.3 Mass spectrometry

Mass spectrometry is a technique which determines the mass-to-charge (m/z) ratio of
ions. It is generally used to find the composition of a compounds by generating a mass
spectrum representing the masses of the components of a sample. [58]

The technique is being miniaturized leading to the possibility to clamp the instru-
ment on any process pipe or vessel [44].
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Chapter 5
Chemometrics

This chapter introduces the concepts and general mathematical overview of the elements
of Multivariate Data Analysis techniques.

5.1 Introduction

The International Chemometrics Society (ICS) has formulated the present definition:

Chemometrics is the science of relating measurements made on a chemical
system or process to the state of the system via application of mathematical
or statistical methods.

In other words, the essence of many chemometrics techniques is the production of
an empirical model, derived from data, allowing to estimate one or more properties of
a system from measurements.

However, not even multivariate methods can help you if your data does not contain
relevant information about the property that you are seeking. [15]

Chemometrics based its philosophy on the following formal logic: [2]

i. design or select optimal measurement procedures and experiments;

ii. provide maximum relevant information by analyzing data.
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5.2 Multivariate Data Analysis (MDA)

Multivariate Data Analysis (MDA) techniques assume that the measured data carry
the information of interest.

Therefore, a quantitative relationship between the set of measured variables and the
property of interest is compulsory to use MDA techniques. Mathematically speaking,
the desired property called Y-Matrix, is a function of the measured variables, X-Matrix.

Generally, the property of interest Y represents an expensive or difficult type of
analysis, whereas the X-Variables are variables which typically could be easier, less
expensive, faster, automatic, instrumental methods like acoustic or spectroscopic mea-
surements.

5.2.1 Purposes of Multivariate Data Analysis

Many multivariate data analysis techniques are available to reveal the relationship
between the X- and Y-Matrix , however, the method to use depends on the type of
structure to treat. When the problem and the data analysis objective are both well
defined, the choice of technique is often obvious.

Multivariate data analysis is used for a number of distinct, different purposes and
the objectives can be divided into three mains groups: [15]

i. Exploration and description of data including basic statistical analyzes and inves-
tigation of correlation between variables.

ii. Separation of groups of data by classification and discrimination. Discrimination
involves deriving a quantitative data model in order to discriminate between groups
of data. Classification has a somewhat similar purpose; prior to the analysis, we
need to know a set of relevant groupings to determine which groups are relevant
to model.

iii. Regression and Predication based on two data matrices (X and Y) focusing on
interrelated explanation of one set of variables with the other. Regression is an
approach for relating the two sets of variables to each other. It corresponds to
determining one (or several) Y-Variables on the basis of a well-chosen relevant X-
Variables set. Prediction means determining Y-Values from new X-Objects, based
on a previously representative estimated (calibrated) X− Y regression model.
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5.2.2 Multivariate Data Analysis Techniques

Four basic Multivariate Data Analysis modeling techniques basically exist:

i. Principal Component Analysis (PCA). It consists in modeling the X-Matrix
alone.

ii. Multi-linear Regression Analysis (MLR). With the assumption that it exist no
linear relation in the X-Variables, MLR inter-relates several X-Variables to a single
Y response variable.

iii. Principal Component Regression (PCR). It is similar to MLR but it can be
applied in cases where X-variables are highly correlated or collinear.

iv. Partial Least Squares Regression (PLS-R) methods; PLS1 and PLS2. It com-
prises modeling the X-Matrix (several variables) in directions corresponding to
maximum variation in the Y-Variable(s).

5.2.2.1 Principal Component Analysis (PCA)

Principal Components Analysis (PCA) is the basic weapon of all multivariate data
analysis modeling techniques. It is used for data compression and information extrac-
tion. PCA finds combination of variable or factors that describe major trends in the
data. Mathematically, PCA is defined as an orthogonal linear transformation which
transforms the data to a new coordinate system such that the greatest variance by
any projection of the data comes to lie on the first coordinate, called the first prin-
cipal component, the second greatest variance on the second coordinate, and so on.
PCA is based on an eigenvector decomposition and diagonalization of the covariance
or correlation matrix of the process variables. [15, 42]

The objective is to find a unit vector, p1, called first loading vector, in the direction
where the coordinates of the objects t1, called scores, have the largest variance.

For a given data matrix X with n rows and p columns, the covariance matrix of X
is defined as
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cov(Xc) =
XT
c Xc

n− 1
(5.1)

=
1

n− 1

x11 − x1 . . . xn1 − x1
...

. . .
...

x1p − xp . . . xnp − xp


x11 − x1 . . . x1p − xp

...
. . .

...
xn1 − x1 . . . xnp − xp



Owing to its definition, the covariance matrix is symmetrical.

Prior to the calculation of the covariance matrix, the columns of X have to be mean
centered, i.e. adjusted to have a zero mean by subtracting off the original mean of each
column. If the columns of X have been auto-scaled, i.e. adjusted to zero mean and
unit variance by divided each column by its standard deviation, Equation 5.1 gives the
correlation matrix of X1.

PCA decomposes the data matrix X as the sum of the outer product or tensor
product2 of vectors t and pi, plus a residual matrix E

X = t1 ⊗ p1 + t2 ⊗ p2 + . . .+ tk ⊗ pk =

(
k∑
i=1

ti ⊗ pi

)
+ E (5.2)

Where k must be less than or equal to the smaller dimension of X, i.e. k < min(p, n).
The ti vectors are known as scores and contain information on how the samples or
objects relate to each other, geometrically they represent the coordinates of the objects
in the new PC axis system (See Figure 2.3). The pi vectors are eigenvectors of the
covariance matrix, i.e. for each pi

cov(X)pi = λipi (5.3)

1Unless otherwise noted, it is assumed that the data is either mean centered or auto-scaled prior
to analysis.

2In linear algebra, the outer product or tensor product typically refers to the tensor product of two
vectors. The result of applying the outer product to a pair of vectors is a matrix. For instance, the
outer product of a n× 1 column vector a and a 1×m row vector b is defined by

a⊗ b = abT = ab =

a1b1 . . . a1bm
...

. . .
...

anb1 . . . anbm

 = A

Where A is a matrix n×m.
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Where λi is the eigenvalue associated with the eigenvector pi.

In PCA the pi are known as loading-vectors and contain information on how the
variables relate to each other. The ti form an orthogonal set ((ti|tj) = 0 for i 6= j)
while the pi are orthogonal3 ((pi|pj) = 0 for i 6= j and (pi|pj) = 1 for i = j). For X
and any ti, pi pair

Xpi = ti (5.4)

i.e. the score vector ti is the linear combination of the original X data defined by
pi. The ti, pi pairs are arranged in descending order according to the associated λi.

The λi are a measure of the amount of variance described by the ti, pi pair. There-
fore, we can think of variance as information.

Since the ti, pi pair are in descending order of λi, the first pair captures the largest
amount of information of any pair in the decomposition, and is called the first principal
component PC1. In fact, it can be shown that the ti, pi pair captures the greatest
amount of variation in the data that it is possible to capture with a linear factor, and
each subsequent pair captures the greatest possible amount of variance remaining at
that step.

Figure 2.3 depicts geometrically the PCA analysis for a 3-dimensional space. The
upper left figure shows the objects, the upper right figure shows the first PC component
PC1, the lower left figure shows the second PC component PC2⊥PC1, and the lower
right figure shows the projects of some objects on the PC axes, or in other words shows
the scores of a few objects.

Generally, the data can be adequately described using far fewer factors than original
variables. Therefore, the data overload experienced in chemical process monitoring can
be solved by monitoring fewer scores4, with no significant loss of information. [42]

Also, PCA reveals combinations of variables that are useful descriptions, or even
predictors, of particular process events. These combinations of variables are often
more robust indicators of process conditions than individual variables due to the signal
averaging aspects of PCA.

PCA is also a useful tool for classification purposes. In the case of very distinct
separation between classes, a straightforward PCA might be sufficient. Nevertheless,

3The eigenvectors belonging to a symmetrical matrix are orthonormal.
4Weighted sum of the original variables.
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Figure 5.1: Principal component analysis [1]
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in many cases the information necessary to distinguish classes is found in combinations
of several principal components. [11]

5.2.2.2 Multiple linear regression

Multiple Linear Regression (MLR) is a classical method which combines a set of
several X-Variables in linear combinations that correlate as closely as possible to the
corresponding single y-vector [15]. Therefore, it is assumed that a regression vector b
can be used to determine the property of the system y from the measured variables x
(a row vector such as a spectra). Mathematically,

y = b0 + b1x1 + b2x2 + . . .+ bpxp + f (5.5)

Or in a compressed form

y = Xb + f (5.6)

The idea is to find the vector of regression coefficient b so that the error term f is the
smallest possible. This can be done by using the least squares criterion on the squared
error terms: find b so that fT f is minimized. This leads to the following equation [15]

b̂ = X+y (5.7)

Where X+ is the pseudo-inverse of X and, in MLR, is defined as

X+ =
(
XTX

)−1
XT (5.8)

Unfortunately, this method often fails in practice. The most obvious cause is the
collinearity of X, e.g. some columns of X (variables) are linear combinations of the other
columns, since the matrix inversion will become unstable (dividing by zero). Another
cause is when X contains fewer objects than variables (fewer rows than columns). For
instance, the spectroscopy calibration is extremely ill-conditioned due to high degree
of correlation between absorbances at nearby wavelength. It is also typical that there
are fewer objects available than the number of wavelengths considered.
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When Equation 5.7 is used with systems that produce nearly collinear data, the
solution for b is unstable, i.e. small perturbations in the original data, possibly due
to noise or experimental error, cause the method to produce wildly different results.
While the calibrations may fit the data, they are typically not useful for predicting the
properties of new samples.

5.2.2.3 Principal components regression

Principal Components Regression (PCR) allows to deal with the problem of ill-
conditioned matrices. Instead of regressing the system properties, e.g. concentrations,
on the original measured variables, e.g. spectra, the properties are regressed on the
principal component scores of the measured variables. Therefore, PCA can be thought
of as a two-step procedure: first a PCA is used to transform X, the resulting T-matrix
fed the MLR algorithm.

Thus, X+ is estimated as [42]

X+ = P
(
TTT

)−1
TT (5.9)

As in PCA the number of principal components to retain in the model has to
be determined. Since the aim of the regression model is to quantify the properties of
interest for new samples, the number of PCs is chosen to optimize the predictive ability
of the model. This is can be done either by cross-validation or by test set validation.

The total prediction error over all the test sets can be expressed as a function of
the number of PCs and then used to determine the optimum number of PCs, i.e. the
number of PCs which leads to the minimum predictor error. When all of the PCs are
retained, the result is identical to that for MLR5. Therefore, it can be thought that the
PCR model converges to the MLR model when the number of PCs used increased.

5.2.2.4 Partial Least Squares Regression (PLS-R)

Partial Least Square (PLS) attempts to maximize covariance [42]. For a first approx-
imation, PLS can be thought as two simultaneous PCA-analyzes, PCA of X and PCA
of Y. The equivalent PCA equations are shown in Equations 5.10 and 5.11. Among
other features, the PLS approach gives superior interpretation possibilities and same
prediction results as PCR, but based on a smaller number of components.

5At least in the case of more samples than variables
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X =

(∑
A

TPT

)
+ E (5.10)

Y =

(∑
A

UQT

)
+ F (5.11)

Applying the NIPALS algorithm is one of the several ways to compute PLS model.
The algorithm calculates the traditional scores T and loadings P, and an additional
set of vectors known as weights, W. The addition of weights is required to maintain
orthogonal scores.

The NIPALS algorithm can also be used when there is more than one predicted
variables (PLS2), Y, and therefore scores U and loadings Q are also calculated for the
Y-space. Finally, an inner-relationship regression coefficients vector, b, that relates the
X and Y-space scores, has also to be determined. Using NIPALS the scores, weights,
loadings and inner-coefficients are calculated sequentially as explained below. [42]

Prior to applying the algorithm to the X and Y matrices, the matrices must be
centered and scaled.

Index initialization: i=1; Xi = X; Yi = Y

i. For ui choose any column of Y. It is often advantageous to choose the column
with the greatest variance.

Of course, in case of univariate y, ui = y (case of PLS1 algorithm).

ii. Calculate and normalized the loading weight vector wi as follows:

wi =
XT
i ui

‖XT
i ui‖

(5.12)

iii. Calculate the coordinates of the score vector ti as follows:

ti = Xiwi (5.13)

iv. Calculate and normalized the loading vector qi as follows:

qi =
YT
i ti

‖YT
i ti‖

(5.14)
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v. Calculate the coordinates of the score vector ui as follows:

ui = Yiqi (5.15)

vi. Check the convergence: if the convergence limit is ε, then proceed to Equation
5.17 when

|tnew
i − told

i | < ε (5.16)

Otherwise, proceed to Equation 5.12 again.

If the Y-block is univariate, Equations 5.14 and 5.15 can be omitted, set qi = 1,
and no iteration is required. [42]

vii. Calculate the coordinates of the loading vector pi as follows:

pi =
XT
i ti

‖tTi ti‖
(5.17)

viii. Calculate the regression coefficient b for the inner relation:

bi =
uTi ti
‖tTi ti‖

(5.18)

ix. The X- and Y-block have to be updated as follows:

Xi+1 = Xi − tip
T
i (5.19)

Yi+1 = Yi − bitiqTi (5.20)

By using the p-vectors instead of the w-vectors for updating X, the desired or-
thogonality for the t-vectors is secured. [15]

x. It is now time to increase the iterator i

i = i+ 1 = i+ + (5.21)

The score vectors ta and the loading weights vectors wa are orthogonal, while
pa loading vectors are not. qa vectors are the Y-loadings which are the regression
coefficient. Unlike MLR or PCR, in PLS6, the regression coefficients qa are found one
at a time, which is also known as projection of latent structures. When the projection
converts a single Y-variable, it is termed PLS1, while if it is the simultaneous modeling
of two or more Y-variables, it is termed PLS2.

6PLS is also the abbreviation of the partial least squares due to the way of calculation of the
regression coefficients.
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In PLS, both P and W are important owing to the formal regression equation

Y = XB (5.22)

Where B-matrix is calculated from:

B = W
(
PTW

)−1
QT (5.23)

Where the W, P, and Q are calculated as above. This B-matrix is often used for
practical prediction purposes.[15]

The important thing to remember is that PLS attempts to find factors which are
correlated with Y while describing a large amount of the variation in X. This is in
contrast with PCR, where the factors are selected solely on the amount of variation
they explain in X.

5.2.2.5 Interpretation of PLS Models – PLS1 and PLS2

In principle PLS models are interpreted in much the same way as PCA and PCR.
Plotting the X loadings weights (Y loadings) in the same plot allows to study the inter-
variable relationships, also including the relationship between the X and Y-Variables.

PLS2 gives one set of X and Y scores and one set of X and Y loadings, which are
valid for all of the Y-Variables simultaneously. Whereas, PLS1 gives one set of X and
Y scores and one set of X and Y loadings for each Y-Variable.

On the other hand, PCR produces only one set of scores and loadings for each
Y-Variable, even if there are several Y-Variables. PCR can model one Y-variable at a
time.

5.3 Multivariate Calibration

Multivariate calibration is based on a set of matrices (X, Y). The Y-matrix contains
the response/dependent variables i.e. parameters of interest, whereas X contains the
corresponding independent variables, i.e. acoustic measurement.
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Thus, the multivariate model for a set of matrices (X, Y) is simply a regression
relationship of the empirical (X, Y) relations. After calibration, the model can be used
for future prediction new Y-values.

Multivariate calibration always starts with a set of known measurements collected
to form the Y-matrix. For each object in the Y-matrix we must have at disposition the
corresponding object of X-matrix measured using the new technique to calibrate. The
object in the Y-matrix are also measured with the method to replace. The matrices X
and Y are respectively called the calibration set or training set.

The calibration set is of utmost importance in any multivariate calibration pro-
cedure. It must meet a number of requirements. The most important is that the
calibration set is representative of the future population from which the new measure-
ments are to be done, furthermore, the measuring conditions should be as similar as
possible. [2]

Therefore, the calibration set has to span the X-space, as well as the Y-space, as
widely and representatively as possible in the specific sense of future usage of the final
correctly validated prediction model [2, 15].

5.4 Validation

The purpose of modeling is to produce model for future prediction of Y i.e. the variable
of interest from unknown X measurements i.e. acoustic spectra.

In order to assess the robustness of the model, the prediction performance has to
be tested. There are three main types of validation methods:

i. leverage correction;

ii. cross-validation;

iii. test set validation.

They are all designed to estimate a model predictive ability, in other words, the
accuracy and precession associated with Y, Ypred. Therefore, Ypred is compared to the
reference Yref. A good prediction accuracy is characterized by a small difference, called
the prediction error and it is calculated for each objects.

Prediction Error = Ypred − Yref (5.24)
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The square difference of all objects is summed, and the mean calculated, this gives
the Residual Validation Variance (RVV ).

Residual Validation Variance = RV V =

n∑
i=1

(
ŷval
i − yval

i

)2
n

(5.25)

where ŷval is the predicted value based on data (X-Variables), yval is the reference
concentration determined by the analytical laboratory, and n is the number of reference
samples. The residual validation variance can be minimized by eliminating outliers from
the data set.

The square root of the residual variance is known as the Root Mean Square Error
of Prediction (RMSEP)

RMSEP =

√√√√√ n∑
i=1

(ŷval
i − yval

i )2

n
(5.26)

The accuracy of a regression model is often represented in terms of the RMSEP
with the same units as that of the reference Y value. A higher number of PC/PLSs
component generally lower the difference, but only up to a point called the optimal
number of components above which the difference starts increasing.

5.4.1 Test set validation

Test set validation constitutes the best approach to validate a model. The test set is
not, in any way, associated with the calibration data set. Furthermore, ensuring that
the samples of both sets are true representatives of the future population span increases
the validity of validating a model.

In fact, the validation is based on the use of different data sets for calibration and
validation. During the calibration step, calibration samples are used and then the
calibrated model is used on the test samples, and the validation residual variance is
computed form their prediction residuals. [15]

There is no clear cut limit to the number of samples of these set, it is purely a
problem dependent issue. It is preferred that the test-set is extracted as a totally
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separate sample set since it might include variations that may not have been present
when the calibration set was built.

5.4.2 Cross-validation

Cross-validation consists essentially in an internal sampling of objects for validation
purposes i.e. it only simulates a test set, and therefore will never be as realistic as test
validation is. This validation technique can be used when it is not possible or desirable
to extract more samples to perform a test set validation.

The principle behind cross validation can be explained as follow: a model is made
from part of the data set, while the rest is used for testing [12]. Tow different ap-
proaches of cross validation are typically used: full cross validation and segmented
cross validation.

As previously stated, cross validation provide only a simulation of test set, since
a part of the calibration set is used as test set. Therefore, this approach is missing
the random (TOS) sampling variations which can only be captured by extracting an
independent test set.

5.4.2.1 Full cross validation

Full cross validation is also known as leave one out cross validation, it can be seen as
a segmented cross validation with only one sample in each segment. This approach is
used when the data set is extremely small [12].

Using full cross validation on large data sets might lead to over-optimistic results
since the left out samples may on average lead to a significantly smaller sampling
variance contribution. Furthermore, using full cross validation on a data set composed
by replicates experiments results always in an artificial low validation variance owing
to the validation of samples very similar to those left in the model. [12, 15]

The principle of full cross validation is depicted in Figure 5.2. A set of only 10
samples is used in this example, first the algorithm makes a model on samples 1-9 and
uses 10 for validation, then a new model on samples 1-8+10 is computed using 9 for
validation, etc. [48]
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Figure 5.2: Full cross validation principle (only the first four of ten sub-models are
shown here).

5.4.2.2 Segmented cross validation

Segmented cross validation can be put between full cross validation and test set val-
idation. This approach is used when the training set is composed by a relative high
number of samples.

The calibration set is divided into segments to simulate a test set. All the elements
of the segments are left out and the remaining data are modeled, then the next segment
is left out, and the first segment is included in the data to be modeled and so on. [15]

Selecting the optimal number of segments is based on the data set size. Nevertheless,
two segments cross validation represents the best choice of all segmented options. [15]

5.4.3 Leverage corrected validation

Leverage corrected validation is initially used in modeling to save time owing to the
fact that only one model is made to view the trends in the data set. It leads to
over-optimistic estimates of the predictor error.

Therefore, the final validation must never be based on this method.
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Chapter 6
Description of the Applikonr study

6.1 Aims of the study

This part of the thesis aims to contribute to the development and the improvement of
the recurrent sampling loop mounted on the reactor, ending by evaluating the represen-
tativeness of the samples extracted from both recurrent sampling loop and Applikonr

standard sampling system.

The first task is to redesign the recurrent sampling loop to be as much as technically
possible in accordance with the Theory of Sampling, the second task is to find plastic
particles with the following properties:

i. Density: 1.00 < ρ < 1.1 kg
m3 ;

ii. Size (largest dimension `): 0.50 < ` < 1.00 mm;

The third task consists in evaluating the representativeness of the two sampling
systems using simple model-systems composed by polymer pellets and water in different
concentrations aiming at a lab- or pilot-scale trial on real (bio-)chemical system e.g.
biogas fermentation.

Interest is also placed on the application of acoustic chemometrics to establish PLS
prediction model quantifying key system parameters (liquid and solid).
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6.2 Critical success factors

The most critical success factor is to find the proper plastic pellets. That task is far from
easy people tried to find them by the past but they did not succeed. PoEM Research
Group1 is to be contacted in order to gather the address of polymer producers that
might be able to produce them. A total a 35 chemical companies are to be contacted. If
it turns to be impossible to find particles, a pilot study aiming to determine the clogging
concentration of the plastic particles owned by the university is to be performed.

The deployment of the acoustic sensor is also an important factor. The accelerom-
eter should be welded onto a metallic pipe to register as much vibrations as possible.
The sensor can be advantageously placed in a bend of a pipe, since it will be able
to listen to the particles hitting the pipe wall, giving better chance to record useful
acoustic spectra.

When dealing with the model-system pellets/water the analytical grade of the an-
alytes in the lot is always known and does not vary overtime. However, when dealing
with real (bio-)chemical systems, the grade of the analytes vary over time owing to
(bio-)chemical degradations and transformations occurring during the entire process,
therefore leading to difficulties to quantify the true grade of the lot at a given time.

Other critical success factors can be pointed out as cleaning the system between
two batches and the quantification of the sample content.

1Polymers and Engineering Materials – Esbjerg Institute of Technology – Aalborg University –
Denmark
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Figure 7.1 shows the reactor equipped with the original adaptation of the ACABS’
sampling loop and the Applikonr standard sampling system. The system is constituted
by a peristaltic pump Ismatec MCP-Process IP-65 which circulates the reactor content
into the recurrent loop, a Bio Controller Applikonr ADI-1010, a Bio Console Applikonr

ADI-1025, and a Stirrer Motor Applikonr P-100.

The reactor body is made of glass and was specially designed to allow the deploy-
ment of the ACABS’ recurrent sampling loop and to be used with standard Applikonr

devices. It has a capacity of 5L. The entire system is autoclavable.

As shown by the following analysis, the recurrent sampling loop deployment must
be redesigned to be, as much as technically possible, in accordance with the Theory of
Sampling.

7.1 Applikonr standard sampling system

The standard sampling system sold by Applikonr is constituted by a glass bottle
mounted onto the head plate of the reactor and connected to a height-adjustable sample
pipe (inner diameter: 10mm). The samples are extracted with a syringe as shown in
Figure 7.2.

According to Applikonr, the system guarantees that the samples extracted are
representative of the reactor content. [8]
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Figure 7.1: Laboratory scale reactor equipped with the original adaptation of the
ACABS’ sampling loop and the Applikonr standard sampling device – Picture courtesy
of Ph.D. Student Carina J. Lomborg
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Figure 7.2: Picture of Applikonr standard sampling system – Picture courtesy of Ph.D.
Student Carina J. Lomborg

In fact, the sampling system only extracts the sample around a given depth and
location in the reactor. In other words, the lot particles do not have the same non-zero
probability of selection depending where they are located in the medium. For instance
if the pipe inlet is located near to the bottom of the reactor, the particles located at the
top do not have the same non-zero probability of selection than the particles located
at the bottom.

The samples can be extracted using either a grab sampling method or a composite
sampling method. Nevertheless, the problem described above will affect the extracted
samples and will produce a bias.

7.2 ACABS’ recurrent sampling loop

The ACABS’ recurrent sampling loop essentially transforms the three-dimensional re-
actor sampling issue into a one-dimensional pipeline sampling situation and circulate
the content of the reactor from its bottom. When it is in steady state, it allows lot
particles to have the same non-zero probability to end-up in the primary sample [31].
The system is depicted in Figure 7.3.

However, mounting a recurrent loop on a reactor does not, alone, ensure the sample
extracted from to be representative of the reactor content. Indeed, the sampling ex-
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Figure 7.3: On-line PAT measurement and ACABS’ recurrent sampling loop. Adapted
in a modified form from [31]

traction device and method must be designed carefully in accordance to all the relevant
principles of the Theory of Sampling.

Figure 7.4 shows the recurrent loop inlet. The O-ring is centered in the reactor, it
has a diameter of 120mm and is located at 35mm height measured from the bottom
of the reactor. It is composed by a stainless pipe of 10mm of inner-diameter and have
8 wholes of diameter 10mm located every 45◦ all around the top surface of the O-ring
pipe.

Figure 7.4: Inlet of the recurrent loop placed at the bottom of the reactor – Picture
courtesy of Ph.D. Student Carina J. Lomborg

It cannot be deployed deeper in the reactor owing to its design and the height of
the smallest nut available to maintain it at the bottom. Therefore, particles located
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beneath the ring do not have the same probability of selection than particles located
above it. A well mixed reactor should decrease the difference of probability between
the particles allowing a better sample to be extracted.

Figure 7.5 shows the sampling valve of the original sampling loop whereas Figure
7.6 shows the schematic of its deployment. The pipe has an inner diameter of 9mm
and an outer diameter of 10mm.

Obviously, this configuration will not lead to structurally correct samples since only
a fraction of the stream ends up in the primary sample. As Dr. Pierre Gy wrote [26, 27]:
The only probabilistic method for sampling a moving stream is: Take the whole of the
stream a fraction of time shared between a number of increments of short duration.

The original configuration will not lower the incorrect sampling error, but will most
likely increase the increment delimitation error (IDE) and the increment extraction
error (IEE). The sampling valve is, in fact, a simple clamp which cannot be easily
manually operate.

Figure 7.5: Original sampling valve mounted on the recurrent loop – Picture courtesy
of Ph.D. Student Carina J. Lomborg
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Figure 7.6: Schematic of the original recurrent sampling loop deployment.
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Chapter 8
Rebuilding the system

8.1 Recurrent sampling loop

The recurrent sampling loop must be redesigned taking into account that the reactor
must stay autoclavable, micro-organism friendly, and easy to sterilize. The biggest
problem of the original loop is the sample extraction, therefore focus is placed on it.

To fulfill those three conditions the valve must not be in contact with the stream.
Such valves exist on the market and are called a pinch valves [45]. Actually, when
closed a pinch valve squeezes the pipe and stop the flow, thus only the pipe walls
are in contact with the fluid, leading to a system easy to sterilize and micro-organism
friendly. Furthermore, the pipe can be removed from the valve allowing the system to
be autoclavable.

8.1.1 Sampling valves

The sampling valves will be electrically commanded and two configurations will be
tried.

The first configuration uses a three-way pinch valve1. The valve tested is a Sirai
S307-06-Z130A supporting pipes of outer diameter up to 9.5mm. This was the largest
pinch valve it was possible to find for laboratory scale use.

1A three-way valve is commonly made such that the flow coming in at one port can be directed to
either the second port in one position or the third port in another position.
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Figure 8.1: Schematic of the recurrent sampling loop using a three-way pinch valve
electrically commanded.
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The second configuration uses two two-way pinch valve. One is normally open (NO),
which means that in absence of electrical signal the valve is open, and one is normally
closed2 (NC), which means that in absence of electrical signal the valve is closed. For
obvious security reasons3 the NC valve is to be mounted on the sampling outlet when
the NO valve is to be mounted on the loop. Both valves are to be connected on the
same switch allowing one valve to be open when the other is closed. The valves tested
were Sirai S206-06-Z130A (NO) and S106-09-Z130A (NC). They have both the same
characteristic as the three-way valve.

Figure 8.2: Schematic of the recurrent sampling loop using two two-way pinch valves
electrically commanded.

8.1.2 Loop inlet and outlet

Acoustic chemometrics is to be used on the system to determine its dry matter content.
A metallic structure is needed for the accelerometer to register most of the vibrations

2Two normally open valves could be used, but in that case proper electronic circuit is needed to
create the normally closed function.

3And electric consumption reasons.
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created by the particles. Therefore, the sensor is to be mounted on the inlet or outlet
since they are in metal.

The new inlet and outlet are circled in red in Figure 8.3.

Figure 8.3: Metal inlet (bottom picture) and outlet (upper picture) allowing acoustic
measurements.

8.2 System up-scaling

Up-scaling the reactor was the first emergency solution built in parallel to the other
task.

The major issue of this part of the thesis is to find the proper plastic particles
with the right size in order not to clog the system. In the past, Ph.D. Student Carina
J. Lomborg tried to find the particles during a few months search, but she did not
succeed.

Up-scaling the system might solve the pellet size issue, since the pipes will also
be up-scaled allowing standard pellets to be used. The idea was to stick as much as
possible to an existing Applikonr system in order to use the materials at dispositions
or order material from Applikonr to keep the systems interchangeable.

The new capacity of the reactor will be 20L which is the size of the largest auto-
clavable lab-scale reactor existing in the Applikonr catalogue.

The reactor body will be a transparent plastic tube, allowing the present theoretical
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study to be conducted4.

Naturally, the experimental conditions are to be adapted for the up-scaled system.
In particular, the tip speed5 of the impeller must stay constant in both system, fixing
all the stirring parameters. [47, 62]

4The system is not autoclavable, but in case of success, a glass body can be ordered making it
autoclavable.

5The tip speed is the speed [m/s] swept by the propeller tips.
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Chapter 9
Sampling study

9.1 Experimental design

The experimental plans presented here use the plastic pellets owned by the university
and it also includes the observations made during the pilot study.

9.1.1 5L Reactor

From a sampling point of view the diameter of the recurrent sampling loop pipe should
be at least three times larger than largest dimension of the largest particles in the broth
[26]. Since the inner diameter of the pipe is around 8− 9mm, the size of the particles
should be less than 3mm.

Some parameters are fixed for all experiments, e.g. the volume of the reactor, the
number of impeller (2), the location of the sampling and acoustic equipments.

The key parameters of the design are cited below:

i. Medium density;

ii. Number of analyte;

iii. Particles density;

iv. Particles size;
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v. Particles concentration;

vi. Sampling type (grab or composite);

vii. Stirring speed;

viii. Loop velocity;

ix. Impeller Type;

x. Aeration;

For each kind of impeller (rushton impeller and marine impeller) the following ex-
perimental design is to be performed (the design takes into account the issues discussed
in the next chapter)

i. Medium density: 1.

ii. Number of analyte: 1.

iii. Particles concentration: 6g / 12g / 18g.

iv. Stirring speed: 100RPM / 200RPM / 300RPM .

v. Loop velocity: 50% / 75% / 100% of the maximum power of the pump.

vi. Sampling type: Grab and Composite of 3 and 5 increments extracted from both
Applikonr system and recurrent loop.

vii. Replication factor: 10.

It was decided to perform a full factorial design, therefore, the experimental plan
leads to 270 experiments. A randomized laboratory report is generated using The
Unscrambler v9.2.

Between each replicate the system will be flushed and a new batch will be loaded.

9.1.2 20L Reactor

The experimental design is similar, but the stirring speed must be recalculated as
follow. [8]

The tip speed τi [m/s] of the experimental condition i has to be determined. If Ni

[RPM ] is the stirring speed and Di [m] the diameter of the impeller of the condition
i, the tip speed is given by the relation
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τi =
1

60
NiπD (9.1)

Once the tip speed is known the new stirring speed can be calculated according to
the size of the new impeller.

NNewi =
60τi
πD

(9.2)

Yet the power required for stirring must be calculated. According to [8], the required
power per impeller of a stirrer motor in non-aerated media is given by the equation1

P = ρ

(
N

60

)3

D5Np (9.3)

Where P is the required power of the stirrer motor [W ], ρ is the density of the
medium [ kg

m3 ], N the stirrer speed [rpm], D the impeller diameter [m] , and Np the
power number of the impeller type2.

The require torque M is given in [Nm] by the following equation

M = P
60

2πN
(9.4)

The calculations presented above give a indication on how to adapt the experimental
plans of the small reactor to the up-scaled. The plan is to be calculated when de
diameter of the impellers will be known.

1Then mounted according to the given configuration, a second or third impeller on a shaft requires
only 90% of the power of the first impeller. Therefore, for two impellers Equation 9.3 is multiplied by
1 + 0.90 = 1.90 and for three impellers by 2.80.

2Rushton impellers Np = 6 – marine impellers Np = 1.5. [8]
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Applikonr pilot study discussion

10.1 Clogging concentration

Since it was not possible to find the proper plastic pellets needed for the experiments,
a the present pilot study was conducted to evaluate the clogging concentration when
using the pellets owned by the university.

Those pellets have the right density, but their largest dimension is between 1.5mm
and 3.0mm hence barely fulfilling the condition on the particle sizes regarding the inner
diameter of the sampling pipes. Besides, when present in a too high concentration in
the reactor they lead to the formation of clogs in the loop.

Figure 10.2 shows the reactor loaded with 3.0g (left) and 30.0g (right) of plastic
pellets. The last concentration started to clog the pipes, therefore, higher concentration
will not be tried during the sampling study.

The clogging concentration (0.60% dry matter) does not have the magnitude of the
dry matter content of a biogas reactor, typically 5% to 10% [3, 4], but it was decided
to have try with the particles and hope for the best.

It also revealed that the peristaltic pump shakes the metal pipes connected the
plastic tubes. Those extra-vibrations must be taking into account when deploying the
acoustic sensor. In fact, they can ruin the measurements by masking the vibrations of
interest and thus jeopardize the chances to obtain a good model.
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Figure 10.1: Reactor loaded with 3.0g (left) and 30.0g (right) of plastic pellets.

Figure 10.2: Clogs in the pipe – Picture courtesy of Ph.D. Student Carina J. Lomborg
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10.2 Valves behavior

The different valves were also analyzed. Figure 10.3 shows the normally open valve,
the picture on the left shows the valve when open and that on the right when closed.
The pipes fit and do not seem to be squeezed when the valve is open. The normally
open valve should not introduce clogging problems.

Figure 10.3: Normally open valve – Left picture shows the valve when open and the
right when closed

Figure 10.4 shows the normally closed valve, the upper picture shows the valve
when closed and that lower when open. In open position the valve squeezes the pipes.
That might lead to clogging problems. A normally closed valve can always be replaced
by a normally open if connected to proper electronic circuit.

Figure 10.5 shows the three-way valve. It can be noticed, on both pipes, the same
issue than on the normally closed valve. Therefore the same pre-conclusion can be
drawn.

The clogging concentration is more a trace concentration might be lowered owing
to the risk of clogging presented by the normally closed valve.
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Figure 10.4: Normally closed valve – Upper picture shows the valve when closed and
the lower when open

Figure 10.5: Three-way valve – Left picture shows the valve when the principal outlet
is open and the right when it is closed
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10.3 Unexpected events

10.3.1 Pellets issue

At the end of April 30 out of the 35 chemical companies contacted had replied, all
saying that this was not possible to produce so small plastic particles or that they were
not dealing with small quantities for special products i.e. if you order less than one ton
we cannot help you.

It was decided to continue with the particles owned by the university. We all four
sat at the table of the ACABS group room and started cutting them one by one with
a razor blade. After one complete afternoon (5 hours i.e. 20 man hours), the quantity
needed to perform 3.5 replicates1 of the lowest concentration of pellets was cut i.e.
±21.0g. The idea was of course abandoned and a pilot study using the pellets was
performed to know whether the system can handle them or not.

That was performed at the beginning of May and the reactor body for the 20L
reactor was ordered.

10.3.2 Valves issue

Within the first month of the project two pinch valves were ordered according to the
references of the catalogue, they were designed to handle a pipe of 10mm. The delivery
took six or eight weeks, and they arrived in the beginning of April.

However, the valves were to small. Apparently, the catalogue references did not
correspond the to the reference encoded in the product data base.

We found another company which can deliver the valve we needed, the delivery
took about 3 weeks, and we received them at the end of April.

10.3.3 Up-scaling issue

The first problem came from Applikon, it was not possible to order the top plate of
the 20L reactor without ordering the reactor.

1According to the experimental plan 3240g of pellets is needed. 1t least 1kg of particles should be
cut leading to ±1030 man hours.
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The second problem came from the non standards reactor body diameter, the com-
pany asked us if a pipe with standard diameter can be shipped instead, meaning that
the top plate needed to be designed according to the dimensions of the pipes which
were unknown.

The pipe was ordered at the beginning of May, in the middle of May we found out
that the company had lost our order and we had to place it again.

The pipe finally arrived at the beginning of June but a small detail made it im-
possible to use ... The company sent us a pipe of 2m height (instead of 0.60m), in
polycarbonate and the university does not have the equipment to cut it. The idea was
thus abandoned. The impellers were to be ordered when we received the reactor body,
but as the idea was dismissed, nothing was ordered from Applikon.

10.3.4 Clogging issue

In the mean time, in the middle of May, the experiments were started on the 5L system.

After the extractions of a few samples the pipes were blown away and the lab was
flooded. The experiments were conducted again and the problem was identified – and
the lab flooded again –, the normally closed valve squeezes the tube to much when in
open position leading to a clog as shown in Figure 10.6.

It was decided to stop the experiments on the system, since time was running fast,
and all the efforts put inside could not make it taking off. Instead a sampling study of
the TENIRS system owned by the university was scheduled and started on the first of
June2.

2As the professor said: Ah, it is nice to have an experiment go completely bust. Makes you need
to think ... And indeed after some thought, the alternative idea of evaluating the existing TENIRS
system came up, which proved to be an excellent vehicle for this M.Sc. project.
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Figure 10.6: Progressive formation of the clog at the normally closed valve inlet.
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Chapter 11
Scopes of the TENIRS study

TENIRS stands for Transflexive Embedded Near Infrared Sensor system, this is a
portable near infrared system developed at University of Kiel by the Institute of Agri-
cultural Process Engineering (ILV) in collaboration with the manufacturer of spectro-
scopic solutions Carl Zeiss, Austria.

Aalborg University Esbjerg (AAUE) owns a prototype of this unit (see Figure 11.1).
It has been used in different scientific studies [32–34] . The prototype is equipped with
a pilot sampling device placed right after the TENIRS measuring cell. All the above
studies mention that this sampling device is not completely designed in accordance
with the theory of sampling, resulting in slightly biased samples, but none of them
presents a quantification of this slight bias.

11.1 Aims of the study

This part of the thesis aims to evaluated the representativeness of the samples ex-
tracted with the TENIRS sampling device. The study starts by evaluating the repre-
sentativeness of the TENIRS sampling device using simplistic model-systems composed
by polymer pellets and water in different concentrations and ends by using a realistic
model-systems composed by synthetic manure.

The third task consists in applying acoustic chemometrics to both kinds of model-
systems to establish a model able to predict the dry matter content of the 1L bottle.
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Figure 11.1: Schematic of the TENIRS loop owned by AAUE

11.2 Critical success factors

The most critical success factor common to each tasks is cleaning the loop. For the
studies based on the model-systems polymer/water, it can be done by flushing with
a few liters of water. When dealing with synthetic manure, more water is needed as
the dry matter sticks to the pipe wall. The sampling device and the loop are to be
cleaned between each experiments to limit the risk of cross contamination. Normally,
the TENIRS is equipped with a valve allowing to switch from the 1L bottle to a large
bucket of cleaning water. Unfortunately, the valve is broken had to be removed.

For the study based on the model-systems polymer/water, the second critical factor
is the limited quantity of pellets owned by the university. In fact, the pellets need to
be dried after each experiments. Drying the pellets ending up in the samples can be
done within 5 hours where as drying the pellets remaining in the plastic bottle needs 24
hours. The experimental plans are to be switch from one to the other one the quantity
of pellets is to low to continue the experimental work. The pellets from the lot are
to be disposed in an aluminium box and put in the oven after the experiments. Two
ovens are at disposition in the laboratory, their total capacity is 200 samples or 18
experiments.

For the study based on the synthetic manure, the second factor is the glycerol, the
university owns liters of glycerol in different concentrations. Some are almost pure
99.9%w/w but most of them are aqueous solution with a concentration of glycerol
varying from 50%w/w to 85%w/w. This information needs to be taken into account
when preparing the batches, and the mass of water must be adjusted to have a total
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mass of water in accordance with the experimental plan.

For the acoustic study the location of the sensor and the cleaning are of even
importance. The sensor must be deployed to have its axis of sensitivity along the
vibrations produced by the particles hitting the pipe wall. On the TENIRS system
there is not many suitable locations, only one pipe is in metal, is located right after
the pump. The accelerometer is to be deployed in the bend of this pipe.

The second critical success factor is the fixation of the sensor, according to [55], a
steel stud should be welded or glued onto the pipe. A ceramic glue is to be used. The
residual vibrations in the connecting wire can also be a problem, therefore the wires
are to be taped on still surfaces before taking any measurements.

And last but not least, the noise and vibrations from the surroundings environment
can also affect the measurements. Even though it is possible to treat the spectra
afterwards to extract only the information of interest, the level of noise and vibrations
should be limited as much as possible.
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Description of the TENIRS system

12.1 The TENIRS circulation loop

The TENIRS system is constituted by an horizontal circulation loop shown in Figure
12.1. it includes a flow-through NIR measuring cell, a sampling device, an electric
induction motor to ensure flow circulation, and a sample 1L bottle which contain the
sampled material to circulate in the loop.

Figure 12.1: Front picture of the TENIRS loop.
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The electric motor is controlled by a frequency convertor (Siemens Micromaster
420) allowing to set the angular velocity of the stirrer i.e. fixing the flow velocity to a
desired level. The highest frequency applicable to the induction motor is 50Hz owing
to its Delta connection to the grid.

12.2 The measuring cell

The measuring cell is made of polyoxymethylene (POM). This is a thermoplastic ma-
terial with very good chemical, mechanical and thermal properties. It is acid-proof,
presents a low coefficient of friction and shows good resistance to wear.

Figure 12.2 depicts the internal layout of the measuring cell as described in the
studies. The inner-distance between the two silicate glass plates is equal to 3mm. The
broth1 flow through the measuring cell and is irradiated with near-infrared light from
the bottom of the cell, the near-infrared beam is reflected on a ceramic disc at the top
of cell.

Figure 12.2: Flow-through measuring cell. [19, 32]

A quick look through the inlet of measuring cell created doubts on the actual path
length between the glasses. In fact, the inner distance appeared to be higher than
3mm. The cell was dismantled and a caliper was used to measure the inner distance
(see Figure 12.3), which is equal to 6.5mm. No adjustment of the height seems possible.

This is the first difference between the initial prototype presented by [19] and the
prototype owned by AAUE.

Furthermore, according to [19] the measuring cell was designed to provide an uni-

1The TENIRS system was primarily designed to deal with liquid manure.
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Figure 12.3: The dismantled TENIRS flow-through measuring cell.
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formly distributed flow across the measuring window and to avoid separation with the
manure, three built-in pins were placed at the in-let of the cell in order to create a
turbulence zone and to generate remixing (see Figure 12.4). There were no turbu-
lence pins to be observed upon dismantling the TENIRS flow-through cell (see Figure
12.3). According to the main author of [31–34], the path length between the glasses
was increased and the built in pins removed to avoid clogging.

Figure 12.4: Flow-through measuring cell, interior view. [19]

12.3 The sampling device

Figure 12.5 shows the TENIRS sampling device, it consists in a 10mL bottle screwed
in a holder placed at the bottom of the pipe. Samples are extracted by moving the
stainless steel latch from side to side, opening and closing the aperture.

Figure 12.5: Prototype sampling device. [33, 34]

As mentioned in the different studies, the sampling device was not completely de-
signed in accordance with the theory of sampling. Figure 12.5 reveals the first mistakes:
the sample is extracted from an horizontal pipe, while it should always be extracted
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from an up-stream vertically flowing piping system [26, 27]. The sampling valve is
located at the bottom of the pipe, leading to an over representation of the heaviest
and/or largest particles of the lot due to segregation.

Figure 12.6: Closer view of the sampling device

Figure 12.6 shows a closer view of the sampling valve, revealing that only a part of
the stream is extracted. In other words, the sampling device does not ensure a complete
cross section of the stream to be extracted in the sample, constituting another mistake.
According to Dr. Pierre Gy [26, 27]: The only probabilistic method for sampling a
moving stream is: Take the whole of the stream a fraction of time shared between a
number of increments of short duration. Sampling a fraction of the stream for the
whole or for a fraction of the time does not lead to structurally correct samples and
should never be practised [26, 27].

The valve can only be manually operated which does not allow to replicate the exact
same sampling procedure over time, leading to variation in the mass of the extracted
samples and in the duration of opening.

Figure 12.7 shows a cross-sectional picture of a sampling bottle. It reveals a po-
tential problem when sampling multi-phase system containing solids. The part circled
in red can act as a trap of particles leading to problems when emptying the sampling
bottle for analysis.

From this analysis it can be concluded that the design of the TENIRS sampling
device will not help to minimize the incorrect sampling errors. In fact, all three errors
are present at different levels (IDE, IEE, IPE). Moreover, sample quality, representa-
tiveness or rather the lack hereof, seems to be highly problem-dependent, since a high
velocity of the fluid in the loop may keep the particles in motion and counterbalance
the effect of the gravity leading to a lower concentration of particles in the sample,
whereas a low velocity leads to a higher concentration of particles – both with respect
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Figure 12.7: Axial picture of a TENIRS sampling bottle.

to the actual, true, concentration in the circulating lot material, the composition of
which is known in the evaluation studies.
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The quality of a sample can be expressed in terms of its: [27]

i. Accuracy m2
e : defined as the absence of bias or systematic error. It is a property of

the mean of the sampling errors and should be less than a low predefined acceptable
value (very close to zero).

ii. Reproducibility σ2
e : defined as a low dispersion of repeated sample values about

their mean. It is a property of the variance of the sampling errors and should be
less than a low predefined acceptable value.

iii. Representativeness r2
e : defined as a synthesis of accuracy and reproducibility (see

Equation 3.2). It is a property of the mean square, a combination of the mean and
the variance of the sampling errors.

The procedure used hereafter is similar to that used by [32–34], 10 increments of
10mL are extracted during a period of 10 minutes and gathered to form a composite
sample of 100mL. Each increment can also be seen as a grab sample of 10mL and will
therefore be analyzed independently. The composite sample made of those 10 incre-
ments is not representative of the lot because the increments are not free of sampling
error, but this is the only way to build a composite sample using the TENIRS system
as only a specific kind of bottles can be used and their volume is limited to 10mL. As
such it is a very good representation of all earlier uses of TENIRS [32–34].
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13.1 Plastic pellets study

The model-systems are composed by water and two different kinds of plastic pellets
added in different realistic quantities. The typical value of the dry matter content
found in the feedstock used in anaerobic digestion (from 5.0% to 10.0% [3, 4]) is used
as a basis to prepare the 1L bottle.

The plastic pellets have the same density, but two different masses: the red pellets
are lighter and smaller than the yellows (see Figure 13.1). The mass of the red pellets
is approximatively equal1 ±0.006g and the mass of the yellow pellets is ±0.013. For the
next developments, the term heavy pellets (HP) refers to the yellows and light pellets
(LP) to the reds.

This simplistic model system, is believed to mimic the essentials of more complex
real-world systems, especially with respect to the hydrodynamic behavior of multi-
phases system.

Figure 13.1: Picture of the plastic pellets used in the study.

13.1.1 Experimental conditions

After each extraction, the mass of the sampling bottle is recorded when it is full and
when it is empty an dried, the plastic pellets are poured in a pyrex beaker and dried
during 5 hours at 75◦C, their mass is recorded when dried using a Sartorius CP323S
precision scale. Each experiment leads to a total of 11 beakers, 10 so-called increments
and 1 containing the particles flushed out when cleaning the loop.

For each experimental condition defined below, the number of replicates is 5 i.e.
5 batches are prepared and the system is flushed with water between each replicate2.

1Based on the measurements of the mass of 1, 5, 10, 20, 50, 75, 100 pellets.
2The preparation procedure of the batches can be found in Appendix G on page 197.
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The cleaning is done by opening the loop and connecting it to a bucket of cleaning
water, a sieve is placed at the outlet to catch the pellets remained in the system.

It is decided to perform a full factorial design, leading to a total of 110 experiments,
for each experimental plan, a randomized laboratory report of the design is generated
using The Unscrambler v9.2.

Light – red – pellets study. The experimental plan is as follow:

i. Dry matter content: 5, 7.5, and 10% of the total mass;

ii. Pump frequency: 10, 20, and 30 Hz;

iii. Replication factor: 5 (45 experiments).

Heavy – yellow – pellets study The experimental plan is as follow:

i. Dry matter content: 5, 7.5, and 10% of the total mass;

ii. Pump frequency: 10, 20, and 30 Hz;

iii. Replication factor: 5 (45 experiments).

Light and heavy – red and yellow – pellets study. The experimental plan is as
follow:

i. Dry matter content: 5% of the total mass;

ii. Concentration of light/heavy pellets: 75/25 and 50/50 %

iii. Pump frequency: 20 and 30 Hz;

iv. Replication factor: 5 (20 experiments).

13.2 Synthetic manure based study

The synthetic manure is composed by lignocellulosic fibers, rapeseed, glycerol and water
in different amounts. To remain realistic and stay under the clogging concentration of
the TENIRS system, the dry matter content is kept under 10% [3, 4]. Figure 13.2
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shows a typical batch of synthetic manure. The solid constituents are allowed to swell
for a period of 24 hours before experimentation in order to make this synthetic manure
as realistic as possible.

Figure 13.2: Upper left: rapeseed. Lower left: lignocellulosic fibers. Right: a ready-to-
use bottle of synthetic manure (dry matter = 10%).

For each experimental conditions defined below, the number of replicates is 3 i.e.
3 batches are prepared and the system is flushed with water between each replicate.
Therefore, each experiments is performed with a new batch3.

The laboratory routine used for this part is the same than that used for the study
based on the plastic pellets.

13.2.1 Experimental conditions

The experimental plan for the synthetic manure based study is as follow:

3The preparation procedure of the batches can be found in Appendix G on page 197.
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i. Dry matter content: 2.5, 5.0, and 7.5% of the total mass;

ii. Concentration of fibers/rapeseed: 25/75% of the total dry matter content;

iii. Concentration of Glycerol: 5% of the total mass;

iv. Pump frequency: 20 and 30 Hz;

v. Replication factor: 3 (18 experiments).

It is decided to perform a full factorial design. A randomized laboratory report is
generated using The Unscrambler v9.2.
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Acoustic measurements

14.1 Sensor deployment

Acoustic chemometrics is used to establish models able to predict the dry mater content
of the TENIRS bottles. It is performed by mounting a standard one-axis accelerometer1

(DeltaTron, type 4396, Brüel & Kjær, Denmark) on the metal pipe right after the pump
(see Figure 14.1).

This kind of accelerometer is able to measure acceleration along one axis, called the
axis of sensibility, therefore its location must be carefully chosen in order to capture
most of the vibrations along this axis.

The censor is screwed to a steel stud glued on the bend of the pipe. This location
is chosen as there is only one metal pipe in the TENIRS system. Furthermore, located
right after the pump and in the bend of the pipe ensure to have a turbulent flow of
particles hitting the pipe wall i.e. creating informative vibrations in the pipe wall.

The wire connecting the sensor to the PSA100i is taped on the TENIRS and the
table to avoid measuring vibrations due to any motion in the wire (see the lower right
part of Figure 14.1). [55]

1The procedure for acquisition of acoustic spectra can be found in Appendix F on page 195.
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Figure 14.1: Acoustic sensor deployment on the TENIRS system.
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14.2 Experimental conditions

Four series of spectra acquisitions are to be performed, one using exclusively the heavy
(yellow) plastic pellets, one using exclusively the light (red) plastic pellets, one simul-
taneously using both kind of pellets, and the last one using the synthetic manure. Fast
Fourier Transform spectra are calculated as the mean of 100 acquisition of time series.
The TENIRS pump frequency is set on 40Hz.

For each campaign of acquisitions a calibration set and a validation set i.e. test set
[15] is acquired.

Between each batches the loop is flushed with cleaning water. Prior to measure-
ments the loop is circulated at high speed and then the frequency is set on 40Hz.
After 5 minutes the TENIRS is considered to be in steady state and the acquisition is
performed.

For each experimental plan a randomized laboratory experimental plan of the design
is generated using The Unscrambler v9.2. A total of 160 acoustic spectra is to be
acquired.

Light – red – pellets study. The experimental plan is as follow:

i. TENIRS pump frequency: 40Hz.

ii. Calibration Set – Dry matter concentration spanning from 0 to 15% by increments
of 0.50%.

iii. Validation Set – Dry matter concentration spanning from 1 to 15% by increments
of 1.0%.

iv. Number of spectra: 46.

Heavy – yellow – pellets study The experimental plan is as follow:

i. TENIRS pump frequency: 40Hz

ii. Calibration Set – Dry matter concentration spanning from 0 to 15% by increments
of 0.50%.

iii. Validation Set – Dry matter concentration spanning from 1 to 15% by increments
of 1.0%.

iv. Number of spectra: 46.
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Light and heavy – red and yellow – pellets study. The experimental plan is as
follow:

i. TENIRS pump frequency: 40Hz

ii. Calibration Set and Validation Set – Dry matter concentration spanning from 5 to
10% by increments of 5.0%.

iii. Calibration Set – Yellow/Red concentration: i/100− i% with i spanning from 0 to
100% by increments of 10.0%.

iv. Validation Set – Yellow/Red concentration: i/100− i% with i spanning from 0 to
100% by increments of 20.0%.

v. Number of spectra: 51.

Synthetic manure study. The experimental plan is as follow:

i. TENIRS pump frequency: 40Hz

ii. Calibration Set and Validation Set – Concentration of fibers/rapeseed: 25/75% of
the total dry matter content.

iii. Calibration Set and Validation Set – Concentration of glycerol: 5% of the total
batch mass.

iv. Calibration Set – Dry matter concentration spanning from 0 to 10% by increments
of 1%.

v. Validation Set – Dry matter concentration spanning from 1.5 to 9.0% by increments
of 1.5%.

vi. Number of spectra: 17.
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15.1 Pilot study

Prior to the sampling evaluation a pilot study was performed to point out as many
problems as possible in order to adjust, if need be, the experimental procedure.

15.1.1 Plastic pellets experiments

Two of the problems revealed by the pre-study are shown in Figure 15.1. As we can see
the sampling device introduces an increment extraction error (IEE), because particles
are trapped between the sampling device body and the latch. The second problem
was expected (see Figure 12.7), i.e. particles are trapped in the red circled part of the
bottles, leading to problems when emptying them for subsequent analysis. In fact it is
impossible to weight the entire content of the bottle reliably.

Therefore, the dry matter content determination is performed as follow: the bottle
wall must by dried after extraction e.g. by using a paper towel, the full bottle must
be weighted (mf

b ), emptied, cleaned, dried, and weighted empty (me
b). Equation 15.1

gives a good approximation of the total sample mass ms.

ms = mf
b −m

e
b (15.1)

The clogging concentration was found to be equal to 15% of dry matter. The clog
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Figure 15.1: Increment extraction error (IEE) on the TENIRS sampling device.
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is formed between the 1L bottle and the pump (see Figure 15.2).

Figure 15.2: Clogging concentration: 15% of dry matter.

As depicted in Figure 15.3, the plastic particles have a very clear tendency to
segregate. The photos were taken at the outlet of the sampling device. The segregation
decreases when the frequency increases.

Figure 15.3: Segregation at the outlet of the sampling device.

The last problem pointed out by the pilot study is shown in 15.4. It was routinely
observed that air bubbles could get caught up inside the top glass plate in the measuring
cell, they could be flushed out by circulating the loop at high speed. They act as a
damaging particle trap which most certainly leads to a significant sampling bias.
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Figure 15.4: Left: photo of an air bubble intermittently located in the measuring cell.
The bubble is acting as a damaging particle trap. Right: photo of the measuring cell
in steady state

15.1.2 Synthetic manure based experiments

The above issues remain valid for the synthetic manure. The clogging concentration
was here evaluated around 7.5% (see Figure 15.5). However, the experimental plan was
not changed since it seems to be possible to use higher concentrations by starting the
pump at high speed and then set the 1L bottle in circulation mode.

Figure 15.5: Clogging concentration: 7.5% of dry matter.

Increment extraction errors are still present as shown in Figure 15.6, however in the
case of synthetic manure, not only particles are pushed out but also the fluid medium!
Extracting chemicals containing acid might thus be directly armful!

L. Boland M.Sc. Eng. Thesis – July 3, 2008 126

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Chapter 15. Discussion

Figure 15.6: Several increment extraction errors (IEE) on the TENIRS sampling device.

15.2 Sampling study

The quality of a sampling device can be expressed in terms of its accuracy m2
e, repro-

ducibility σ2
e , and representativeness r2

e . They are calculated as follows:

e =
aS − aL
aL

(15.2)

Here e is the relative sampling error, aS is the grade of the analyte in the sample and
aL the grade of the analyte in the lot. aL is known – designed – and aS is determined
by the experiments. me is the average sampling error, σ2

e is its variance and the
representativeness is defined by

r2
e = m2

e + σ2
e (15.3)

A composite sample is made of ten 10mL increments extracted from the TENIRS
loop, the relative sampling error on the composite sampling will thus be the sum of
the errors of each increments. However, each increments are extracted using a non
representative way as the sampling device is not in accordance with TOS. Therefore,
the present composite sample cannot be considered as representative in the ultimate
TOS fashion.
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15.2.1 Bias

The bias is calculated as the average grade of the sample replicate minus the true
known grade of the lot. The bias can also be expressed in percent of the true grade of
the lot (Equation 15.2).

The bias presented in Figures 15.7–15.12 are the average bias of the individual
increments and the average bias of the composite samples.

The magnitude of the bias of individual increments are close to that of the corre-
sponding composite samples1. This is due to the size of the increments (the mass mi of
each increment is included in [9.0; 11.0] and the average mass is equal to [10.0±0.165]g)
and the lack of representativeness of the individual increments, i.e. as the individual
increments are not representative of the true analytical grade of the lot, the composite
sample will not be representative either.

15.2.1.1 Plastic pellets based experiments

Figures 15.7–15.11 present the biases for the experiments made with the model-systems
polymer/water.

As delimited above, the average bias magnitudes of the composite samples and that
of the individual increments are very close for each experiments.

It can be seen that the general trend is a decreasing bias from low frequencies to
high frequencies i.e. from low circulation speeds to high. At a frequency between
20Hz and 30Hz the bias cross the abscise axis, effecting to a bias close to zero for this
model-systems polymer/water and only for this specific, material-dependent circulation
speed.

These relatively simplistic model-systems are believed to mimic the essentials of
more complex real-world systems, especially with respect to the hydrodynamic behavior
of multi-phases system. They give us a good illustration of the lack of quality of the
sampling device.

The biases testify of the segregation taking place at the bottom of the pipe when
the loop is circulated at low speed as many particles are trapped on the latch of the
sampling device between two extractions. When circulated at high speed, the bias
decreases as more particles remain in suspension in the flow.

1See Appendix E on page 191 for mathematical developments.
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It can also be noticed from Figures 15.7 and 15.8 that, for the model-systems light
and heavy pellets separately, the bias decreases not only with respect to the loop
velocity but also with the concentration of polymer in the TENIRS bottle. When the
dry matter content increases, the bias tend to decrease for all model-systems.

Figure 15.7: Model-systems made of light pellets – Bias of the individual increments
and the composite samples
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Figure 15.8: Model-systems made of heavy pellets – Bias of the individual increments
and the composite samples

The interpretation is not so clear for the model-systems light and heavy pellets
simultaneously, the total dry matter content was constant for all the experiments, only
the ratio of light/heavy pellets changed. It can be concluded that at 20Hz the bias
increases when the particles were in even proportions (see Figures 15.9–15.11). The
biases of light pellets (as high as 175% – see Figure 15.9) are clearly higher than those
of the heavy pellets (less than 50% – Figure 15.10). Whereas at 30Hz the tendency is
in the other way, the biases of the heavy pellets (as low as −75% –Figure 15.10) are
higher than those of the light pellets (as low as −50% – see Figure 15.9).
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Figure 15.9: Model-systems made of light+heavy pellets – Bias for the light pellets of
the individual increments and the composite samples

Figure 15.10: Model-systems made of light+heavy pellets – Bias for the heavy pellets
of the individual increments and the composite samples
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Figure 15.11 shows the bias with respect to the total dry matter of the model-
systems light and heavy pellets simultaneously. These biases appear to be lower than
those showed in Figures 15.9 and 15.10.

Figure 15.11: Model-systems made of light+heavy pellets – Bias for the total dry
matter of the individual increments and the composite samples

15.2.1.2 Synthetic manure experiments

Figure 15.12 presents the biases for the experiments based on the synthetic manure.
Once again, it can be seen that the bias decreases with respect to the frequency of the
pump. Unlike the experiments based on the plastic pellets, the bias does not become
negative at 30Hz. The results are highly system- and frequency-dependents.

The synthetic manure is a simulate manure, its hydrodynamic behavior should not
be taken as strictly identical to the behavior of real manure. Nevertheless, it is believed
that it represents a good approximation. In fact the composition of the synthetic
manure was suggested by colleagues used to deal with manure for a long time, one of
them is the main author of [31–34].

The TENIRS samples are heavily biased at low frequency and low concentration
(up to 320% for a dry matter content of 2.5% and a frequency of 20Hz). When the
concentration increases the bias gradually decreases (to 15% for a dry matter content
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of 7.5% and a frequency of 30Hz), this can be explained by the fact that the sampling
valve more or less always extracts the same mass of dry matter whatever the grade of
the lot!

Figure 15.12: Model-systems made of synthetic manure – Bias of the individual incre-
ments and the composite samples

15.2.2 Representativeness

15.2.2.1 Plastic pellets based experiments

Figures 15.13–15.22 present the representativeness r2, the accuracy m2 and the repro-
ducibility σ2 of the sampling device for the experiments based on the plastic pellets.

From all of these it is possible to conclude that the TENIRS sampling device is
functioning in a fashion which can be characterized as being precisely wrong i.e. its
reproducibility σ2 is very good and, in the cases of the composite samples, often close
to zero, however it is not accurate at all!

Even though, the results are still heavily biased, the composite samples generally
present a slightly better accuracy and reproducibility2 than the individual increments,

2As would say Albert Einstein: Everything is relative!
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allowing to conclude that composite sampling is always better than grab sampling even
if the increments are extracted with a clumsy sampling device!

For the model-systems of light and heavy pellets separately (see Figures 15.13–
15.16), the representativeness of the samples get slightly better when the dry matter
content increases. When the circulation speed increases, the representativeness get sig-
nificantly better. This can be explained as follows: more particles remain in suspension
in the flow resulting in less particles trapped and caught by the TENIRS sapling device.

The reproducibility of the composite samples extracted at 20% from a lot containing
10% of light pellets is worse than the accuracy (see Figure 15.14). The only possible
explanation is a problem during the extraction of the increments, in fact, the laboratory
results show that the grades of nine out of the 10 increments are between three to five
times lower than those of the other replicates. It believed that an air bubble was present
somewhere in the TENIRS loop, trapping the particles i.e. decreasing the quantity of
particles caught by the TENIRS sampling device.

Despite this obvious outliers, the reproducibilities of the composite samples are very
good for both model-systems (see Figures 15.14 and 15.16) as they are close to zero.

As shown in Figures 15.13–15.16, the representativeness of the samples are material-
and system-dependent since they are generally smaller for the model-systems of heavy
pellets.
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Figure 15.13: Model-systems made of light pellets – Representativeness of the individ-
ual increments.

Figure 15.14: Model-systems made of light pellets – Representativeness of the compos-
ite samples.
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Figure 15.15: Model-systems made of heavy pellets – Representativeness of the indi-
vidual increments.

Figure 15.16: Model-systems made of heavy pellets – Representativeness of the com-
posite samples.
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Figures 15.17 and 15.18 show the representativeness for the samples regarding the
concentration of light pellets for the model-systems of light and heavy pellets simul-
taneously. The reproducibility is good for both increments and composites, especially
at 30Hz. The accuracy is mainly responsible for the lack of representativeness which
is particulary high at 20Hz when the concentration of pellets are even, this was ex-
pected regarding the biases commented above. The lacks of representativeness of the
composite samples are lower than for the individual increments at 20Hz whereas they
have the same order of magnitude at 30Hz.

Figure 15.17: Model-systems made of light+heavy pellets – Representativeness for the
light pellets of the individual increments.
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Figure 15.18: Model-systems made of light+heavy pellets – Representativeness for the
light pellets of the composite samples.

Figures 15.19 and 15.20 show the representativeness for the samples regarding the
concentration of heavy pellets for the model-systems of light and heavy pellets simul-
taneously. A high frequency (30Hz) leads to a higher lack of representativeness than a
low one (20Hz). This observation is not in accordance with that made for the model-
systems only based on the heavy pellets. Once again, it can be said that the behavior
of the TENIRS sampling device is system- and material-dependent. The lacks of rep-
resentativeness of the composite samples are lower than for the individual increments.
It can be seen on Figure 15.20 that for the first concentration (1.25% of heavy parti-
cles and 3.75% of light particles) the composite samples are representative of the true
concentration of heavy pellets in the lot, as r2 is close to zero (r2 < 0.01).
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Figure 15.19: Model-systems made of light+heavy pellets – Representativeness for the
heavy pellets of the individual increments.

Figure 15.20: Model-systems made of light+heavy pellets – Representativeness for the
heavy pellets of the composite samples.
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Figures 15.21 and 15.22 show the representativeness for the samples regarding the
concentration of dry matter for the model-systems of light and heavy pellets simulta-
neously. All the observations made for the individual concentrations of pellets remain
valid for the total dry matter content.

Figure 15.21: Model-systems made of light+heavy pellets – Representativeness for the
total dry matter of the individual increments.
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Figure 15.22: Model-systems made of light+heavy pellets – Representativeness for the
total dry matter of the composite samples.

15.2.2.2 Synthetic manure based experiments

Figures 15.23 and 15.24 present the representativeness, the accuracy and the repro-
ducibility of the sampling device for the experiments based on the synthetic manure.

Once again the TENIRS valve is precisely wrong and the composite samples only
lead to slightly better results than the grab samples.

The representativeness for a concentration of dry matter of 7.5% must be considered
with precaution as the system completely clogged for one of the replicate (the second)
and for the last increment of the third replicate.

For both individual increments and composite samples, the lack of representative-
ness decreases when the loop velocity increases. It also notably decreases, at equal
frequency, when the concentration of dry matter increases. The explanation given for
the bias stays of course valid to explain this tendency.
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Figure 15.23: Model-systems made of synthetic manure – Representativeness of the
individual increments.

Figure 15.24: Model-systems made of synthetic manure – Representativeness of the
composite samples.
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15.3 Acoustic chemometrics

Acoustic chemometrics was used to predict the dry matter concentration on the model-
systems based on the plastic pellets and the synthetic manure. The chemometrics
modeling is presented in Appendix H on page 199. Table 15.1 gives an overview of the
multivariate models obtained. For all models a calibration set and a bona fide test set
was used in validation. Indeed test set validation is the only realistic validation and
should always be preferred to cross validation. [15]

The Root-Mean-Square Error of Prediction RMSEP is given in % and is calculated
as:

RMSEP [%] =
RMSEP
yrefmax−yrefmin

2

× 100 (15.4)

System # X-var # PLS RMSEP % slope r2 #Outliers
Cal Val

Heavy 512 1 7.08 1.03 0.98 1 2
Light 512 1 7.43 0.95 0.98 0 1
Heavy in L+H 512 4 8.46 0.99 0.98 0 0
Light in L+H 512 4 11.58 1.02 0.96 0 0
DM in L+H 512 3 20.08 0.99 0.92 2 2
DM in SynMan 350 5 16.84 0.89 0.89 0 0

Table 15.1: Multivariate model overview based on acoustic spectra – All models were
test set validated.

From table 15.1 the following observations can be drawn:

i. The overall results are highly satisfactory and gives good hope to apply acoustic
chemometrics for determination of dry matter to the TENIRS system. They also
validate the chosen deployment location of the sensor.

ii. Models determining the mass or the fraction mass of heavy pellets in the lot present
a RMSEP of less than 9.0%. The model determining the mass of light pellets in
the model-systems made of light pellets is also lower than 9.0%. When dealing
with more complex material the percentages of RMSEP increase. However, the
RMSEP of the synthetic manure is lower than that of the model-systems light and
heavy pellets.
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iii. For all the batches composed by red and yellow plastic pellets, only half of the
X-variables are needed to described the system. The other 512 variables mainly lie
on a flat line, and therefore almost did not carry information about the dry matter
content of the batch.

iv. The number of PLS-components (1) needed to model the system composed by only
the red or the yellow plastic pellets testifies of the simplicity of the system. These
results are not surprising.

v. The number of PLS-components (4, 4 and 3) to model the system composed by the
red and the yellow plastic pellets testifies of the relative complexity of this system.
However the system stay simplistic compared to synthetic manure or real manure.

vi. For the synthetic manure, the number of X-variables needed is lower, this might
be explained by the fact that the dry matter content is not as heavy as the plastic
pellets, therefore less vibrations (intensity and quantity) are produced in the pipe.

vii. For the synthetic manure the number of PLS components is 5 which is a readily
accepted reflection of a – simulated – realistic system.
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Chapter 16
Perspectives

16.1 Further development of acoustic chemomet-

rics

The principle aims of acoustic chemometrics are to monitor the state of a process, and
to monitor and characterize a product in a process. There are many ways: it can
be by monitoring the manufacturing or product process or by monitoring the state
of the production tools i.e. the state of a machine or wear and tear for maintenance
purposes, or acoustic chemometrics can be used to monitor and characterize the raw
material, intermediary or final product specification, it is also suitable to characterize
multi-phase fluid systems and slurries.

The sensor deployment on a pipeline is a critical factor as it has to be located at
a position of maximum impact in order to record better signals. Good knowledge of
hydrodynamics and newtonian mechanics is beneficial to a correct deployment.

Moreover, since the sensor used only have one axis of sensibility i.e. it can only
registered vibrations along one axis, only a part of the vibrations present in the pipe
are recorded. In fact, when the particles hit the pipes wall they produce vibrations
in three dimensional vibrations. The vibrations can be decomposed along the axis of
accelerometer. Therefore, if the accelerometer is only sensible along one axis, only the
projection of the vibration on this axis is recorded, leading to a biased view of the
actual vibration.

Accelerometers allowing measurements on more than one axis exist. Typically they
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can measure along two or three axis1. Hence, a 3-axis accelerometer should be able to
record the entire vibration present at its deployment location.

It is therefore suggested to perform a pilot study using one-, two-, and three-axis
accelerometers, deployed at the exact same optimal locations and with the exact same
experimental design. Followed by one using the same accelerometers should be per-
formed, but in this one, the accelerometers are to be deployed at the most unfavorable
locations to assess which accelerometer is giving the best results.

According to the personal experience of the author [9], it is expected that the
spectra based on the three axis accelerometer should lead to the best models.

16.2 Perspectives for the TENIRS system

16.2.1 Sampling evaluation and acoustic calibration based on
real manure

The sampling was focused on plastic particles and synthetic manure. Real manure
should be tested for dry matter and other physical/chemical components also. The
samples must be extracted using a correct sampling facility.

Representative samples of manure extracted from a biogas plant, for example, can
be used in the 1L bottles. The samples should be analyzed first to determine the exact
dry matter content of the lot prior to start the experiments.

When determined, the dry matter of the 1L batches can be adjusted by dilution or
addition of dry matter to it, remaining a completely realistic study.

16.2.2 Suggestions to improve the TENIRS loop

Even though the sampling design is not in accordance with the theory of sampling, the
idea behind the TENIRS loop is judicious and very open to the necessary improvements.
This section suggests some modest design modifications in the to improve the quality
of the primary sample.

1Each axis produces a signal that must be recorded by the DAQ, therefore, a 3 channel DAQ must
be used when dealing with three axis accelerometers.
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16.2.2.1 Improvement of the sampling device

A step further to correct sampling is to replace the sampling device by a three-way
valve placed on an up-stream vertically flowing pipe to ensure the entire flow to be
sampled within a given time period (see Figure 16.1). Furthermore, the valve should
electronically commanded to set up once for all the sampling protocol to be repeated
for each new batch. The entire flow is to be kept as turbulent as possible in the entire
loop.

The size of the sampling bottle should be increased to a sufficient size to hold the
entire composite sample. The walls of the bottle has to be straight without particles
trap and should be designed to be used in an oven (e.g. pyrex) in case of dry matter
analysis, allowing the entire sample to be placed in the oven without need of pour it
to another bottle.

Figure 16.1: Suggested modification to be implemented on the TENIRS system.

16.2.2.2 Global redesign of the TENIRS loop

A complete automatic system is suggested in this section. All the improvements sug-
gested above are to be implemented on the TENIRS prior to deploy an automatic
system.
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Once the 1L bottle screwed to the TENIRS loop, it should be automatically put in
circulation position and the pump should started at the same time.

The frequency convertor should also be electronically commanded allowing to pro-
gram the starting sequence at high speed for a given time period in order to help the
system to get in steady state. Once in steady state the frequency can be decrease to
reach the loop velocity desired for the trials.

The NIR spectrometer should be electronically trigger to start measuring when the
loop is in steady state, once started sampling can be removed during the entire scanning
period. In fact the sampling valve can be opened and closed many time during the
NIR measurements.

Once the measurements done the bypass valve can be activated and fresh water can
be run in the system to clean in when, in the meantime, the operator is setting up the
new batch.

The whole point is to have a complete automatic system is to reproduce the exact
same circulation, scanning, and sampling conditions for each samples.

Everything can be commanded using a Programmable Logic Controller (PLC) or
using a LabView2 based software.

The algorithm can be summarized by this list of items;

i. Screw the bottle to the TENIRS System and the sampling bottle and then press
the start button;

ii. The system verify if the 1L liter bottle and the sampling bottle are present, if so;

iii. The bottle is set up in circulation position and the pump is started at high fre-
quency f1 for a time period of t1 seconds;

iv. After t1 seconds, the frequency of the pump is decreased to the operational fre-
quency f2 and the system is run for a time period of t2 seconds;

v. After t2 seconds, the NIR spectrometer is commanded to start measuring trough
the flow cell for a time period of t3 seconds;

vi. During the time period t3 seconds the sampling valve is commanded to extract x
increments every t3/x seconds leading to a representative composite sample;

2LabView, National Instruments, Austin, Texas, The United States of America.
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vii. After t3 seconds, the 1L bottle is bypassed and the clean water is circulated in the
loop during a time period of t4 seconds;

viii. After t4 seconds, the system is stopped and is waiting for further instructions.

All the different ti and fi can be settled by the operator to the optimal value. In
case of connecting the TENIRS to a reactor as portative on-line measurement tool, the
system should be notified and should not perform the test of the presence of the 1L
bottle.

If other sensors are mounted on the loop, as acoustic sensor, the software should
be able to deal with them and include them in the procedure. In case of a LabView
software this can be really easy since it can be designed to acquire the acoustic spectra
and calculate the FFT on the fly.

Therefore, the control software should include some extra routines or customizable
routines to connect other sensors.

With a fully automatic system, reducing human intervention as much as possible,
and all the recommendations previously mentioned integrated in the TENIRS loop,
the TENIRS system should become a more reliable and powerful tool for TOS-correct
process monitoring and calibration of on-line monitoring tools.
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Chapter 17
Conclusion

In this master thesis, the representativeness of sampling system were tested and acoustic
chemometrics was used to predict the dry matter content of a stream.

From the literature review the following conclusions can be drawn:

i. Extracting a sample representative of the analytical grade of the lot can only be
done by mean of composite sampling using a correct sampling system designed in
accordance with the theory of sampling.

ii. The theory of sampling presents a complete methodology for evaluating the total
sampling error associated with both static and process sampling.

iii. Variographic analysis is revealed to be a powerful tool to identify the presence
of patterns in the process data structure e.g. it may reveal trends in the varia-
tion, asses the periodicity of cycles, and determine optimal sampling frequency. It
especially estimates the total 0-D sampling and analysis error as well.

iv. Acoustic chemometrics – passive method – is reported to be a powerful tool for
potential quantification of physical parameters such as particle size distribution,
flow velocity, concentration of solids, density, and viscosity. All depending on a
full chemometrics multivariate calibration.

v. Acoustic-Resonance Spectrometry – active method – is predicted to be a powerful
tool for quantifying physical properties of products.

vi. The feasibility, of both acoustic chemometrics and near infrared spectroscopy as
monitoring and control tool of chemical processes, has been documented in several
scientific studies.
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Based on the practical work of this thesis, the following conclusions can be drawn:

i. It was not possible to find plastic particles small enough to be handled by the
applikon system. The recurrent sampling loop was redesigned to be as much as
technical possible in accordance to the theory of sampling. It should lead to the
extraction of samples representative of the bio-reactor content.

ii. The actual sampling system mounted on the TENIRS system is precisely wrong
i.e. it presents an apparent reproducibility but fatal accuracy.

iii. The experiments based on the light plastic pellets show an important bias: for the
composite samples at low frequency (10Hz) up to +182.4%, the bias decreases to
+84.1% at 20Hz and becomes as low as −67.4% at 30Hz. This tendency is the
same for all the concentrations tested.

iv. The experiments based on the heavy plastic pellets show an important bias: for
the composite samples at low frequency (10Hz) up to +145.5%, the bias decreases
to +80.0% at 20Hz and becomes as low as −55.0% at 30Hz. This tendency is the
same for all the concentrations tested.

v. The experiments based on the light+heavy plastic pellets show a bias more impor-
tant for the light pellets than the heavy pellets, but the bias is still highly positive
when the frequency converter is set to 20Hz and becomes negative when it is set
on 30Hz. This tendency is the same for all the concentrations tested.

vi. The experiments based on the synthetic manure show an important bias as high
as 319.3% at 20Hz.

vii. For all model-systems, the experiments show that the quality of the sampling is
material- and system-dependent, depending on the concentration of dry matter
and the velocity of the sampling loop, different bias were obtained. In fact the
bias decreased with when the concentration of dry matter increased. For high
concentrations of dry matter and high velocity of the loop the bias is artificially
low owing to the design of the sampling instrument itself. (See Table 17.1)

viii. The bias and the representativeness of the composite samples are only slightly
better than those of the corresponding grab samples but they have the same mag-
nitude. Therefore, a representative sample can only be guarantee by applying the
theory of sampling when designing the sampling device and by applying a sampling
protocol in accordance to the theory of sampling.

ix. Cleaning of the TENIRS loop is an important task and should not be underesti-
mated. Important cross contaminations can results from an insufficient cleaning.
When dealing with the manure the cleaning is far from easy, and a large quantity
of water must be used to flush the system. The flushing should be stopped when
the water comes out as clear as it was when it came in the loop.
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x. The TENIRS system should be redesigned to include a vertical sampling loop. The
sampling facility should be mounted as close as possible to the measuring cell. A
3-way electronically commanded valve must be used.

xi. The ability of acoustic chemometrics to predict dry matter content of the 1L
TENIRS bottle has been demonstrated, giving valuable indications that acoustic
chemometrics is a powerful PAT modality, at least concerning physical Y-variables.

xii. The model based on the light plastic pellets shows a slope of 0.95 and a correlation
coefficient r2 of 0.98. The model was test set validated.

xiii. The model based on the heavy plastic pellets shows a slope of 1.03 and a correlation
coefficient r2 of 0.98. The model was test set validated.

xiv. The models based on the light+heavy plastic pellets show: for the quantification
of heavy pellets a slope of 0.99 and a correlation coefficient r2 of 0.98, for the
quantification of light a slope of 1.02 and a correlation coefficient r2 of 0.96, and
for the quantification of dry mater a slope of 0.99 and a correlation coefficient r2

of 0.92. The models were test set validated.

xv. The model based on the synthetic manure shows a slope of 0.89 and a correlation
coefficient r2 of 0.89. The model was test set validated.

It is not possible to extract representative samples using the TENIRS sampling de-
vice, as the representativeness is highly material- and system dependent. Each model-
system (polymer/water and synthetic manure) lead to different conclusions regarding
the bias and the representativeness of the sampling device. However, nearly all experi-
ments show a very good reproducibility of biased samples: It can be concluded that this
device is functioning in a fashion which can be characterized as being precisely wrong
i.e. its reproducibility σ2 is very good (and in the cases of the composite samples often
close to zero), however its accuracy is abysmal!

It is claimed in studies [32–34] that samples obtained with the TENIRS sampler
were slightly biased as the device is not designed in total accordance with the theory of
sampling. These assessments must be declared as only marginally in touch with reality:
The present evaluation demonstrates that the bias regarding dry matter concentration
increases with respect to the complexity of the multi-phase system and decreases with
respect to the circulation velocity: composite samples of synthetic manure – the most
realistic model-systems evaluated – composed of 10 increments extracted at low speed
(20Hz i.e. 20% of the top circulation speed) can present a bias as high as 320% which
indeed must be qualified as a highly significant bias, whereas composite samples of light
pellets extracted in the same conditions reaches some 85%. At higher speed (30Hz i.e.
60% of the top circulation speed), the bias observed for the synthetic manure was 15%
while being significantly negative, -70% for model-systems based on the heavy model
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system particles. These findings have severe implications regarding the necessity of
redesigning the TENIRS reference sampling system completely.

Table 17.1 summarizes the bias measured.

System Inc. bias [%] Comp. bias [%]
Min Max Min Max

Light -47.7 182.8 -48.0 182.4
Heavy -67.5 145.7 -67.4 145.5
Light in L+H -45.0 175.7 -45.1 175.4
Heavy in L+H -77.0 47.2 -77.0 46.8
DM in L+H -58.1 111.4 -58.2 111.1
DM in SynMan 15.2 319.5 15.2 319.3

Table 17.1: Conclusion table relative to the bias generated by the TENIRS sampling
facility for the individual increments (Inc. bias) and the composite samples (Comp.
bias).

The work presented in this thesis shows that acoustic chemometrics is a powerful
PAT modality concerning physical Y-variables. Dry matter content was substanti-
ated in this work; there appear to be good reasons to expect a similar potential for
e.g. density, viscosity . . . Much work on acoustic chemometrics on this type of applied
biotechnological systems remains.
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Appendix A
The Gy’s Formula

Equation below expresses the Gy’s formula

σ2(FSE) = Cd3

(
1

MS

− 1

ML

)
= cfgβd3

(
1

MS

− 1

ML

)
(A.1)

Where

c is a dimensionless parameter called the constitutional parameter of specific gravity
expressed in g

cm3 . It can vary from a fraction of unity to several million. The
constitution parameter can be calculated as follow:

c =

(
1− aL

α

)2

aL
α

ρc +
(

1− aL
α

)
ρm (A.2)

where aL is the average concentration of the lot; α is the concentration of the
critical particles (particles of interest); ρc is the density of the critical particles;
ρm is the density of the matrix.

f is a dimensionless factor called particle shape factor. It describes the deviation from
the ideal shape of a square. A square will have f = 1, a sphere f = 0.52 and a
almost flat disc f = 0.1.

g is a dimensionless factor called size distribution factor. It describes the span of
particles sizes in the lot. The following rules of thumb can be formulated: if
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all particles have the same size, then g = 1, if 1 < d
d0.05

< 2 then g = 0.75; if

2 < d
d0.05

< 4 then g = 0.5; if d
d0.05

> 4 then g = 0.25.

β is a dimensionless factor called liberation factor. It describes the degree of liberation
of the critical component from the matrix. Totally liberated particles means β = 1
and totaly incorporated particles means β = 0. Otherwise β can be calculated
from:

β =

√
L

d
(A.3)

where L is the liberation size.

d is the top particle size, defined as the square-mesh screen that retains 5% of the
material1.

Obviously, the FSE estimate is better if we can determine all these parameters.
However this can be really difficult in practice, thus some default parameter value may
be used.

Finally,

σ2(FSE) =


(

1− aL
α

)2

aL
α

ρc +
(

1− aL
α

)
ρm

 fg(√L

d

)
d3

(
1

MS

− 1

ML

)
(A.4)

Appendix based on [18, 27, 31, 48–50].

1Dimension of length expressed in cm.
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Appendix B
Accelerometer

Vibration problems associated with structures which are more delicate and intricate,
and machines which are faster and more complex as raised in importance since the
recent years. Therefore, there has been a requirement for a greater understanding of
the causes of the causes of vibration and dynamic response of structures to vibratory
forces.

During the last few years the technology became more and more cheap allowing
accelerometer to be included in many different devices such as cell phones, numeric
camera, video game console, etc.

Piezoelectric accelerometer is the best choice for vibration transducer. The large
range of high performance measuring equipment now available can fully utilize the very
wide frequency range and dynamic range offered by such vibration transducer. [55]

This kind of accelerometer is widely accepted as the best available transducer for
the absolute measurement of vibration. This is a direct results of these properties:

i. Usable over very wide frequency ranges.

ii. Excellent linearity over a very wide dynamic range.

iii. Acceleration signal can be electronically integrated to provide velocity and dis-
placement data.

iv. Vibration measurements are possible in a wide range of environmental conditions
while still maintaining excellent accuracy.
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v. Self-generating so no external power supply is required.

vi. No moving parts therefore extremely durable.

vii. Extremely compact plus a high sensitivity to mass ratio.

B.1 Basic definitions

B.1.1 Quantification of vibration levels

There are several ways of quantifying the vibration amplitudes of a signal in the time
domain. The actual measurement units may differ from an application to another.
Therefore, the descriptor described in Figure B.1 are widely used.

Figure B.1: Simple harmonic vibration. [55]

Figure B.1 depicts the simples form of vibration. It is represented by a particle
oscillating about a reference position where exactly equal conditions of motion are
encountered at fixed time intervals called period, T, of vibration.

It can be shown that the shape and period of the vibration remain the same when
displacement, velocity or acceleration amplitude is chosen to represent the motion.
Only the relative phases are different.

The amplitude of vibration, as shown in Figure B.1, can be described by using the
following descriptors: [55]

i. RMS (Root Mean Square) Level: Provides the most useful description of
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vibration levels. The square root of the integrated time-averaged squared function
is related to the vibration energy and thus the vibration’s damage potential. The
RMS value a sine wave1 is 1√

2
times the value of the peak level.

ii. Peak Level: Defines the maximum level which is measured and is useful in the
measurement of short duration shocks. Nevertheless, no account is taken of the
time history of the vibration.

iii. Peak-to-Peak: Although of some use in describing vibration displacement, this
descriptor is mostly never used.

iv. Average Level: Takes the time history of the vibration into account but there is
no useful relationship between the average level and any physical quantity.

v. Crest Factor: Defines the ration of the peak value of a signal to the RMS value.
As the vibration becomes more impulsive or more random, the cres factor increases.
Therefore, by monitoring the growth of the crest factor, it is possible to predict a
breakdown or element fault.

B.1.1.1 Linear amplitude and frequency scales

Linear amplitude and frequency scales are used in vibration measurements when a high
resolution is needed. A linear frequency scale helps to separate closely spaced frequency
components. The linear frequency scale gives the further advantage that equally spaced
harmonic components of a vibration signa are easily recognized. [55]

B.1.1.2 Logarithmic amplitude and frequency scales

Piezoelectric accelerometers are able to perform accurate vibration measurements over
extremely wide dynamic and frequency ranges. Hence, to obtain convenient interpre-
tation of results the following are often required: [55]

i. An amplitude scale which can accommodate vibration amplitudes from the lowest
detectable amplitudes up to shock amplitudes, and which can also simplify the
comparison of vibration amplitudes.

ii. A frequency scale with the same percentage resolution over the whole width of the
recording chart.

Those two requirements can be met using the following:

1And only of a sine wave!
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A decibel scale Although more commonly associated with acoustic measurements
the decibel (dB) is equally useful in vibration measurements. It is defined as follow

N(dB) = 10 log

(
a2

a2
ref

)
= 20 log

(
a

aref

)
(B.1)

Where N is the number of decibel, a the measured vibration amplitude, and aref

the reference amplitude.

A logarithmic frequency scale Sometimes, frequency is plotted on a logarithmic
scale. This kind of scale has the effect of expanding the lower frequency ranges and
compressing the higher frequency ranges. The result is equal relative resolution over the
frequency axis, and the size of the scale is kept to reasonable proportions. Therefore,
a logarithmic frequency scale is used to cover a wide frequency scale. [55]

B.2 Physical principle behind

B.2.1 Operation of an accelerometer

Figure B.2 depicts a simplified model of a piezoelectric accelerometer showing only
the mechanical parts. The active elements of the accelerometer are the piezoelectric
elements. These act as springs connecting the base of the accelerometer to the seismic
masses via the rigid triangular center post.

When the accelerometer is vibrated a force, equal to the product of the acceleration
of a seismic mass and its mass, acts on each piezoelectric element. The piezoelectric
elements produce a charge proportional to the applied force. The seismic masses are
constant and consequently the element produce a charge which is proportional to the
acceleration of the seismic masses. [55]

Since the seismic masses accelerate with the same magnitude and phase than the
accelerometer base over a wide frequency range, the output of the accelerometer is
proportional to the acceleration of the base and therefore to the acceleration of the
surface onto which the piezoelectric accelerometer is mounted.
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Figure B.2: Schematic of a piezoelectric accelerometer. [55]

B.2.2 Analytical treatment of accelerometer operation

The developments presented in this section were established for a one-axis accelerometer
but can be applied to a two- or three-axis accelerometer without major changes.

Figure B.3 shows a simplified model of the accelerometer previously described and
referenced to an inertial system. The two masses are unsupported and connected by
an ideal spring. Damping is neglected in this model because most of the accelerometer
available on the market have a very low damping factors.

In order to well understand the mathematical development present in this section,
it is needed to define the parameters and variables of the equations.

ms is the total seismic mass, mb is the mass of the accelerometer base, xs is the
displacement of the seismic mass, xb is the displacement of the accelerometer base, L
is the distance between the seismic mass and the base when the accelerometer is at
rest in the inertial system, k is the equivalent stiffness of the piezoelectric elements,
Fe is the harmonic excitation force, F0 is the amplitude of excitation force, ω is the
excitation frequency and is equal to 2πf , ωn is the natural resonance frequency of the
accelerometer, ωm is the mounted resonance frequency of the accelerometer, fm is the
mounted resonance frequency of the accelerometer, and f is the excitation frequency.
All those variables and parameters have to be expressed in the international standard
system of unit. [55]

From Figure B.3 the following equations can be written
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Figure B.3: Simplified model of an accelerometer. [55]

i. The string force:

F = k(xs − xb − L) (B.2)

ii. Force on the base2:

mbẍb = F + Fe (B.3)

iii. Force on the seismic masses

msẍs = −F (B.4)

Therefore, the equation of the motion for the model can be found

ẍs − ẍb = − F

ms

− F + Fe
mb

=
k

µ
(xs − xb − L)− Fe

mb

(B.5)

2In Newtonian mechanic, ẋ and ẍ are defined as follows

d

dt
x(t) = ẋ(t) = ẋ

d2

dt2
x(t) = ẍ(t) = ẍ
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or

µr̈ = −kr − µ

mb

F0 sinωt (B.6)

Where

1

µ
=

1

ms

+
1

mb

(B.7)

or

µ =
msmb

ms +mb

(B.8)

µ is often referred to as the reduced mass and r is the relative displacement of the
seismic mass to the base

r = xs − xb − L (B.9)

B.2.2.1 Free vibration

When the accelerometer is in a free hanging position and is not being excited by external
forces (Fe = 0) the equation for its free vibration reduces to

µr̈ = −kr (B.10)

This simple differential equation can be solved3 by assuming that the displacement
of ms relative to mb varies harmonically with an amplitude R, therefore

r = R sinωt (B.11)

ṙ = Rω cos t (B.12)

r̈ = −Rω2 sin t (B.13)

3Using the full mathematical theory about differential equations will lead to the same results. But
will complicated the calculations.
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Hence

− µRω2 sinωt = −kR sinωt (B.14)

Therefore, the resonance frequency of the accelerometer, ωn, can be written as
follows

ω2
n =

k

µ
(B.15)

or if we use Equation B.7 in Equation B.15

ω2
n = k

(
1

ms

+
1

mb

)
(B.16)

From Equation B.16 it is possible to calculate the natural frequency of the seismic
mass-spring system. In fact, if the accelerometer is mounted with perfect rigidity
onto the structure which is heavier than the total weight of the accelerometer then
mb becomes much larger than ms and the resonance frequency of the accelerometer
becomes lower. Taken to the limit, of the accelerometer is mounted on an infinitely
heavy structure (mb →∞), the previous equation reduces to

ω2
m =

k

ms

(B.17)

Equation B.17 expresses the natural frequency of the seismic mass-spring system
and is defined as the mounted resonance frequency, ωm, of the accelerometer. It is
a property of the accelerometer and is used to define the useful operating frequency
range of an accelerometer.

Obviously, it is impossible, in practice, to mount the accelerometer on an infinitely
heavy and stiff structure. Therefore, the resonance frequency when mounted will change
and will split up in two and the lowest resonance frequency will be lower than the
mounted resonance frequency. [55]
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B.2.2.2 Forced vibration

The forced vibration of the accelerometer must be examined since it that we are inter-
ested in. The applied force on the accelerometer must be included in the analysis along
with the natural resonance frequency, ωn, define by Equation B.16. For this analysis
any kind of applied force can be used, however, in order to keep the calculations easy
a sinusoidal force will be applied. Therefore Equation B.5 becomes

r̈ + ω2
nr +

F0

mb

sinωt = 0 (B.18)

if we assume that the displacement of the masses vary sinusoidally4 then

− ω2R sinωt+ ω2
nR sinωt+

F0

mb

sinωt = 0 (B.19)

and thus,

R(ω2
n − ω2) +

F0

mb

= 0 (B.20)

or

R = − F0

mb(ω2
n − ω2)

(B.21)

At a frequency well below the natural resonance frequency of the accelerometer
(ωn � ω) the displacement (R0) is expressed by

R0 = − F0

mbω2
n

(B.22)

B.2.3 Frequency range

The ratio A of the displacement at low frequency, R0 expressed by Equation B.22, to the
actual displacement, R expressed by Equation B.21, can be expressed after rearranging

4Which can be seen, with a little training, from the equation form
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the expression

A =
R

R0

=
1

1−
(
ω

ωn

)2 (B.23)

Equation B.23 shows that the displacement between the base and the seismic masses
increases when the forcing frequency becomes comparable to the natural resonance
frequency of the accelerometer. Therefore the force on the piezoelectric elements and
the electrical output also increase.

As shown in Figure B.4, the upper frequency limit is hence equal to to natural
resonance frequency of the accelerometer. However the useful frequency ranges cannot
included the peak of the frequency response, therefore they will be limited to 0.3fm.

Figure B.4: Relative sensitivity of an accelerometer vs. frequency. [55]

As the accelerometer is not able to produce true DC response, the piezoelectric
elements will only produce a charge when acted upon by dynamic forces. The actual
low frequency limit is determined by the preamplifier which determines the rate at
which the charge leaks away from the accelerometer.
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B.2.4 Piezoelectric materials

A piezoelectric material can develop an electrical charge when subjected to a force. It
can be made of intrinsic piezoelectric mono-crystals such as quartz and Rochelle salt,
or artificially polarized ferroelectric ceramics.

The process by which the ceramics are polarized is analogous to the process by
which a piece of iron can be magnetized by a magnetic field. A high voltage surge is
applied across two ends of the material. the domains within the molecular structure of
the material become aligned in such a way that an external force causes deformations of
the domains and charges of opposite polarity to form on opposite ends of the material.
Figure B.5 depicts the piezoelectric effect5. [55]

As stated before, when a piezoelectric accelerometer is vibrated forces proportional
to the applied acceleration act on the piezoelectric elements and the charge generated
by them is picked up by the contact.

Figure B.5: Simple model of the piezoelectric effect within an artificially polarized
ceramic. The charge q is collected between the indicated surfaces. [55]

The piezoelectric element can undergo both compression and shear deformation as
shown in Figure B.5. In both cases a charge is developed along the surface on which
the forces act. [55]

5The sensitivity of piezoelectric material is given in pC/N
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B.3 Accelerometer performance in practice

In order to obtain accurate vibration measurements it is important to be aware of the
problems linked to the environment in which the accelerometer is placed.

Figure B.6 illustrates the many different extraneous inputs which may be present
during a vibration analysis. In most cases, piezoelectric accelerometers are designed to
minimize the contribution of all these external phenomena to ensure that the output
is only related to the vibration input.

Figure B.6: Selection of the many extraneous inputs which can result in non-vibration
related outputs in a poorly designed vibration transducer. [55]

Two general areas have to be considered:

1. The environment (noise, temperature, humidity, radiation, electromagnetic fields,
etc.). In fact, a vibration transducer which is totally immune to environmental
effects does not exist. Nonetheless, it is possible to find accelerometer which offer
excellent performance in extreme environments.

2. Mounting. In fact, the mounting technique used can alter the frequency response
and dynamic ranges of the accelerometer mass as well as its mounting location.
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B.4 Applications

Piezoelectric accelerometers are mostly used for vibration testing, machine health mon-
itoring and fault diagnosis, structural analysis, human vibration measurement, acoustic
chemometrics, etc.

However, nowadays accelerometers are used in different kind of electronics devices
such as cell phones, cameras, video game consoles, etc.

Appendix based on [9, 20, 46, 55, 60].
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Appendix C
Fourier analysis

The mathematical basis of frequency analysis is the fourier transform which takes
different form depending on the type of signal analyzed. However, all have in common
that the signal is assumed to be composed of a number of sinusoidal and co-sinusoidal
components at various frequencies, each with an amplitude A and initial phase φ.

C.1 Fourier series

If g(t) is a period function of period T i.e.

g(t) = g(t+ nT ) n ∈ N (C.1)

According to Fourier’s theorem using complex exponentials1, g(t) can be represented
represented as a sum of sinusoidal components at equally spaced frequencies kf1 where
f1 = 1/T and k is an integer2.

1This is an application of Euler’s equation

eθt = cos(θt) +  sin(θt)

Where  is the imaginary unit.
2Including zero and negative values.
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g(t) =
∞∑

k=−∞

G[fk]e
2πfkt (C.2)

Where Fourier coefficients G[fk] are given

G[fk] =
1

T

∫ T
2

−T
2

g(t)e−2πfktdt (C.3)

Where fk = kf1 and the square brackets are used to emphasize that the domain of
this function is a discrete set of frequencies.

At this stage it is important to notice that if the function g(t) is real-valued, then
each component at frequency fk must be matched by a component at −fk which has
equal amplitude but opposite phase. Therefore the imaginary parts at all frequencies
will always be canceled and the resultant will always be real.

The relationship concerning the distribution with frequency of the power content
of the signal can be now established. The instantaneous power of the time signal g(t)
is equal to {g(t)}2 and the mean power over one period is given by integrating the
instantaneous value over one period and dividing by the periodic time.

Pmean =
1

T

∫ T

0

{g(t)}2 dt (C.4)

For typical sinusoidal component Ak cos(2πfkt+ φk) this results in

Pmean =
1

T

∫ T

0

A2
k cos2(2πfkt+ φk)dt (C.5)

=
A2
k

T

∫ T

0

1

2
(1− cos 2(2πfkt+ φk)) dt (C.6)

=
A2
k

T
(C.7)

The spectrum of squared amplitudes is known as the power spectrum, and this
is often the most useful part of the entire spectra. Nonetheless, the initial phase
infirmation is lost, and it is not possible to re-synthesize the original time signal from
the power spectrum. [53]
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C.2 Fourier transform

All the previous results apply to periodic signal but it is possible to extend Equation
C.3 to a more general case by letting T → ∞. In this case, the spacing 1/T between
the harmonics tends to zero and G[f ] becomes a continuous function of f

G[f ] =

∫ ∞
−∞

g(t)e−2πftdt (C.8)

The latest equation, known as the forward transform can be combined to Equation
C.2 to give

g(t) =

∫ ∞
−∞

G[f ]e2πftdf (C.9)

which is known as the inverse transformation.

Together they form the so-called Fourier Transform Pair. The only difference be-
tween them is the sign of the exponent of the exponential.

C.3 Sampled time functions

Another form of Fourier Transform pair applies to sample functions, or functions which
are represented by a sequence of values at discrete equi-spaced points in time. This
case is really important in digital processing of data.

It can be seen that this situation is the reverse of au Fourier transform pair, it
happens that the spectrum becomes periodic, with a period equal to the sampling
frequency Fs = 1/∆t.

The Fourier transform equation becomes

G[f ] =
∞∑

n=−∞

g(tn)e−2πftn (C.10)

L. Boland M.Sc. Eng. Thesis – July 3, 2008 183

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Appendix C. Fourier analysis

g(tn) =
1

Fs

∫ fs
2

− fs
2

G[f ]e2πftndf (C.11)

Where tn = n∆t represents the time corresponding to the nth time sample.

C.4 Discrete Fourier Transform (DFT)

It occurs when the function are sampled in both time and frequency domain. Owing to
the sampling, it is evident that both time signal and frequency spectrum are implicitly
periodic.

The forward transform takes the form of

G[k] =
1

N

N−1∑
n=0

g(n)e−
2πkn
N (C.12)

while the inverse transform takes the form of

g[n] =
N−1∑
k=0

G[k]e
2πkn
N (C.13)

Owing to the infinite continuous integral of Equations C.8 and C.9 have been re-
placed by finite sums; known as Discrete Fourier Transform (DFT ), much better to
digital computations.

Hence, obtaining N frequency components from N time samples requires N2 com-
plex multiplication. A calculation procedure known as the Fast Fourier Transform
(FFT ) algorithm can lead to the same result with a number of complex multiplication
of the order of N log2N .

L. Boland M.Sc. Eng. Thesis – July 3, 2008 184

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Appendix C. Fourier analysis

C.5 Aliasing

The misinterpretation of high frequencies (above half the sampling frequency according
to Shannon’s sampling theorem) as lower frequencies is called aliasing. This is one of
the pitfalls to avoid when digitizing continuous signals.

Considering these two practical cases may help to understand this problem

i. The cartwheels in western films often appear to run backwards, i.e. negative fre-
quency, or too slowly forwards owing to the sampling involved in filming.

ii. The stroboscope is in fact an aliasing device which is designed to represent high
frequencies as low ones, even zero frequency when the picture is frozen.

Figure C.1 shows the aliasing effect while sampling a sinusoidal signal, it can be
noticed that the period of the output waveform is much longer (slower) than that of
the input waveform, and the two waveform shapes are different.

It should be understood that the Nyquist frequency is an absolute maximum fre-
quency limit for an ADC, and does not represent the highest practical frequency mea-
surable. To be safe, it should not be expected that an ADC can successfully resolve
any frequency greater than one-fifth to one-tenth of its sample frequency.

Appendix based on [37, 53, 55].
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Figure C.1: Illustration of aliasing effect [Anonymous]
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Appendix D
Low pass filters

A low-pass filter is a filter that passes low-frequency signals but attenuates/reduces
the amplitude of signals with frequencies higher than the cutoff frequency. The actual
amount of attenuation for each frequency varies from filter to filter. It is sometimes
called a high-cut filter, or treble cut filter when used in audio applications.

The concept of a low-pass filter exists in many different forms, including electronic
circuits (like a hiss filter used in audio), digital algorithms for smoothing sets of data,
acoustic barriers, blurring of images, etc.

A low-pass filter can be made of RC, LR, operational amplifier, and RLC circuit.
However, this appendix only describes the principles of a RC, (passive) and an oper-
ational amplifier1 based (active) low-pass filter. Applying the same principles to the
other circuits will lead to the same conclusions.

D.1 RC circuit based low-pass filter

Figure D.1 depicts a low pass RC filter for voltage signals. Signal Vout retains un-
attenuated only frequencies below the cut-off frequency of the filter set by its RC time
constant τ = RC.

1An op-amp is a DC-coupled high-gain electronic voltage amplifier with differential inputs and,
usually, a single output. Its output is controlled either by negative feedback, which largely determines
the magnitude of the output voltage gain, or by positive feedback, which facilitates regenerative gain
and oscillation. High input impedance at the input terminals and low output impedance are important
typical characteristics. [37]

187



Process Analytical Technologies in Applied Biotechnology
Appendix D. Low pass filters

Figure D.1: A low-pass electronic filter realized by an RC circuit.

A RC low-pass filter consists of a resistor in series with a load, and a capacitor in
parallel with the load. The capacitor exhibits reactance, and blocks low-frequency sig-
nals, causing them to go through the load instead. At higher frequencies the reactance
drops, and the capacitor effectively functions as a short circuit.

A capacitor is a charge storage device. Its capacitance is defined as the quantity of
charge stored ar a unit voltage across the capacitor. Its reactance is defined as follow

XC =
1

ωC
=
−

2πνC
(D.1)

Where ν is the frequency, ω the pulsation, and C the capacitance.

Therefore, when the frequency is high, XC tends towards to zero and the capacitor
functions as a short circuit. However, when the frequency is low, XC tends towards to
infinity and blocks the current.

The following equations are valid for an ideal capacitor.

V =
q

C
(D.2)

I =
dq

dt
(D.3)

I = C
dV

dt
(D.4)
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where V is the voltage, I the current, q the charge.

Using Ohm’s law it is possible to write the following equation to define the circuit.

I =
dq

dt
=
V

R
+ C

dV

dt
(D.5)

If the currents and voltages are assumed to be harmonic functions, the following
can be derived.

V =
q(

1 + 1

ωRC

)
C

=
q(

1 + 1
ωτ

)
C

(D.6)

=
q
(

1 +  1

ωRC

)
(

1 + 1

ω2τ 2

)
C

(D.7)

The cut-off frequency is defined as the frequency for which ωτ = 1, therefore

νc =
1

2πRC
=

1

2πτ
(D.8)

All the frequencies lower than nc will passed through the filter when the higher will
be reduces by the filter.

D.2 Operational amplifier based low-pass filter

This kind of low-pass filter is basically the same except that it include a operational
amplifier, often called an op-amp.

In this case, the cut-off frequency is defined by the resistance and the capacitor
present in the negative feedback loop (Figure D.2).

νc =
1

2πR2C
(D.9)
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Figure D.2: An operational amplifier based active low-pass filter.

Appendix based on [9, 37, 55].
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Appendix E
Mathematical approximation of the
bias

The mass mij of each increment is included in [9.0; 11.0] and the average mass is equal
to [10.0± 0.165]g.

The mass mC of the composite samples made of N increments is defined by

mC =
N∑
i=1

mij (E.1)

Where i is the running number for the individual increments and j the running
number for the replicates.

The mass of the analyte maC in the composite samples is defined by

maCj =
N∑
i=1

maij (E.2)

The grade of the each increments and the grade of the composite samples are defined
by

aij =
maij

mij

(E.3)
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aCj =
maCj

mCj

=

N∑
i=1

maij

N∑
i=1

mij

(E.4)

Since the average increment mass is centered on [10.0± 0.165]g, it can be approxi-
mated to be equal to 10, therefore mij ≈ m and Equation E.4 becomes:

aCj =

N∑
i=1

maij

N∑
i=1

mij

≈

N∑
i=1

maij

N ×m
=

1

N

N∑
i=1

maij

m
(E.5)

≈ 1

N

N∑
i=1

aij = aij (E.6)

Which is the average analytical grade of the individual increments.

The relative sampling error eCj of the composite samples of replicate j is therefore
approximated by

eCj ≈
aij − aL
aL

(E.7)

Whereas the bias of the individual component is defined as

meij = eij =
1

N

N∑
i=1

eij =
1

N

N∑
i=1

aij − aL
aL

(E.8)

=
1

N
× 1

aL

N∑
i=1

(aij − aL) =
1

N
× 1

aL

(
N∑
i=1

aij −
N∑
i=1

aL

)
(E.9)

=
1

N
× 1

aL

(
N∑
i=1

aij −NaL

)
=

(
1

N

N∑
i=1

aij

)
× 1

aL
− 1 (E.10)

=
aij − aL
aL

≈ eCj (E.11)
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Therefore, since the bias of the composite samples is defined as

meC = eCj (E.12)

and taking into account that the TENIRS sampling valve has a high degree of re-
producibility (see Section 15.2.2 on page 133), each eC is centered around the same
average value, the average bias of the composite samples is close to the average bias
of the individual increments. Furthermore, as the individual increments are not rep-
resentative of the true analytical grade of the lot, the composite sample will not be
representative either.
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Appendix F
Settings for acquisition of acoustic
spectra

The aim of the acoustic measurements was to illustrate the feasibility of applying
acoustic chemometrics for on-line determination of the concentration of dry mater in
bio-slurry.

Device Remark
Process analyzer PSA100i, Process Signature Analyser, Detect A/S, Pors-

grunn, Norway
Accelerometer DeltaTron general purpose piezoelectric accelerometer,

insulated base, Brüel & Kjær part no. 4396
Other device Remark
Software APM setup version 2.0.3, release 09.09.2005
Signal cable, accelerometer 75Ω 1,2 m coaxial with BNC connector and miniature

coaxial plug, single shielded
Signal cable, computer RS232 Sub-D, 9 leads, 15 m, female-female, null modem

cable

Table F.1: Method parameters for acquisition of acoustic spectra
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Parameter
Number of axis 1
Temperature range, operation −50◦C to +125◦C
Weight 18.2g
Height 23.7mm
Spanner size 15.0mm
Sensitivity, axial 10mVm−1s2

Acoustic sensitivity, typical 2mN or 0.002ms−2

Measuring range, typical (T < 100◦C) 750ms−2

Frequency range, typical 1− 14000Hz
Temperature range, environment −50◦C to +125◦C

Table F.2: Characteristics for the applied accelerometer

Dialog box Parameter Value
I/O Port Select the computer port to which the cable is con-

nected.
Input Channel Tick the box Activated to active the channel you

when to listen to. Tick also 0− 20mA.
Data
format

FFT Tick the boxes: Show chart; Save to file; Auto-
matic.
Samples in chart: 1024

FFT Number of average
FFT meas

100

LP Filter 15
Gain 1 15
Gain 2 4

Table F.3: Software parameters for acoustic measurements
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Appendix G
TENIRS – Batch preparation

The below procedure of batch preparation is used for the sampling study and the
acoustic measurements.

G.1 Plastic pellets based batch

i. Tare a precision scale with a clean beaker;

ii. Add plastic pellets to the beaker until reaching the desired mass;

iii. Tare a scale with a clean 1L TENIRS bottle;

iv. Pour the pellets inside;

v. Adjust the mass to 1kg using water;

vi. Add one drop of anti-foam (tween-80) to lower the surface tension of the water.

G.2 Synthetic manure based batch

i. Crush (macerate) the lignocellulosic fibers into a powder to avoid clogging;

ii. Pass the rapeseed through a sieves to remove all extraneous fibers and agglomerate
of seeds;

iii. Tare a precision scale with a clean beaker;

iv. Add rapeseed to the beaker until reaching the desired mass;

v. Tare a scale with a clean 1L TENIRS bottle;
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vi. Pour in the designed rapeseed masse;

vii. Tare a precision scale with a clean beaker;

viii. Add lignocellulosic fibers to the beaker until reaching the desired mass;

ix. Pour the lignocellulosic fibers in the TENIRS bottle;

x. Pour the desired quantity of glycerol (according to its concentration) in the TENIRS
bottle;

xi. Adjust the mass to 1kg using water;

xii. Add one drop of anti-foam (tween-80) to lower the surface tension of the water.
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Appendix H
Acoustic models

This appendix documents the multivariate model for dry matter based on acoustic
spectra.

For the PLS-1 regression all X-variables (the spectra) were scaled (multiplied by
the inverse standard deviation) and centered in order to equalize the variances of the
X-variables. The total solids concentrations (y-data) were also scaled and centered.

H.1 Model based on model-systems made of heavy

pellets

The acoustic spectra is made of 1024 variables (X-variables) and is presented in Figure
H.1.

It can be seen from the spectra that the last 512 X-variables – highest frequencies
– lie approximatively on a flat line. Therefore, the spectra is reduced to the first 512
variables as shown in Figure H.2

Prior to start modeling it must be said that 3 samples are expected to be outliers
due to manipulation problems in the laboratory.

Figure H.3 shows the first model based on the reduced acoustic spectra. One PLS
component is needed to model the mass of pellets in the batch. The model is test set
validated. The slope s = 0.92, the correlation coefficient r2 = 0.91 and the RMSE is
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Figure H.1: Complete acoustic spectra for model-systems made of heavy pellets.

Figure H.2: Reduced (512 first variables) acoustic spectra for model-systems made of
heavy pellets.
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low which hope to have a good model.

As expected three samples three samples seem to be outliers (samples 2, 42, and
44). A new model excluding them is computed.

Figure H.3: First model based on the reduced acoustic spectra for model-systems made
of heavy pellets – Model based on the reduced acoustic spectra – Test set validation.

Figure H.4 shows the final model obtained for the heavy pellets. The slope s = 1.03,
the correlation coefficient r2 = 0.98, the Residual Validation Variance RV V = 0.02,
Root Mean Square Error of Prediction RMSEP = 5.31, and the bias is −3.93. The
system is of course simplistic since it is only composed by heavy pellets.
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Figure H.4: Final model based on the reduced acoustic spectra for model-systems made
of heavy pellets – Samples 2, 42, and 44 are excluded – Model based on the reduced
acoustic spectra – Test set validation.

H.2 Model based on model-systems made of light

pellets

The acoustic spectra is made of 1024 variables (X–variables) and is presented in Figure
H.5.

The same observation regarding the last 512 X-variables can be made. Therefore,
the spectra is reduced to the first 512 variables as shown in Figure H.6

Figure H.7 shows the first model based on the reduced acoustic spectra. One PLS
component is needed to model the mass of pellets in the batch. The model is test set
validated. The slope s = 0.98, the correlation coefficient r2 = 0.96 and the RMSE is
low which leave great hopes to have a good model.

By analyzing the score plots, sample 43 is revealed to be an outliers. Figure H.8
shows the final model obtained for the light pellets. The slope s = 0.95, the correlation
coefficient r2 = 0.98, the Residual Validation Variance RV V = 0.01, Root Mean Square
Error of Prediction RMSEP = 5.57, and the bias is 0.46. Once a again it must be
said that the system is simplistic since it is only composed by light pellets. However,
this gives good hopes for the next models.

L. Boland M.Sc. Eng. Thesis – July 3, 2008 202

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Appendix H. Acoustic models

Figure H.5: Complete acoustic spectra for model-systems made of light pellets.

Figure H.6: Reduced (512 first variables) acoustic spectra for model-systems made of
light pellets.
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Figure H.7: First model based on the reduced acoustic spectra for model-systems made
of light pellets – Model based on the reduced acoustic spectra – Test set validation.

Figure H.8: Final model based on the reduced acoustic spectra for model-systems made
of light pellets – Samples 43 is excluded – Model based on the reduced acoustic spectra
– Test set validation.
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H.3 Model based on model-systems made of light

and heavy pellets

The models based on the light and heavy pellets are quite good which perhaps give
high hopes for the model based on the mixture of both. Once again it must be said
that the system is very simple compare to manure or synthetic manure.

The acoustic spectra is made of 1024 variables (X-variables) and is presented in
Figure H.9.

Figure H.9: Complete acoustic spectra for model-systems made of light and heavy
pellets.

For the reasons already defined, the spectra is reduced to the first 512 variables as
shown in Figure H.10
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Figure H.10: Reduced (512 first variables) acoustic spectra for model-systems made of
light and heavy pellets.

H.3.1 PLS1 Model to predict the mass fraction of heavy pel-
lets

Figure H.11 shows the final model quantifying the content of heavy pellets content
in model-systems made of light and heavy pellets. Four PLS component are required
to model the broth. The slope s = 0.99, the correlation coefficient r2 = 0.98, the
Residual Validation Variance RV V = 0.02, Root Mean Square Error of Prediction
RMSEP = 4.23, and the bias is 0.41. No samples are excluded.
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Figure H.11: Final model determining the quantity of heavy pellets for model-systems
made of light and heavy pellets – No samples are excluded – Model based on the
reduced acoustic spectra – Test set validation.

H.3.2 PLS1 Model to predict the mass fraction of light pellets

Figure H.12 shows the final model quantifying the content of light pellets content in
model-systems made of light and heavy pellets. Four PLS component are required
to model the broth. The slope s = 1.02, the correlation coefficient r2 = 0.96, the
Residual Validation Variance RV V = 0.04, Root Mean Square Error of Prediction
RMSEP = 5.79, and the bias is 0.50. No samples are excluded.

Figure H.12: Final model determining the quantity of light pellets for model-systems
made of light and heavy pellets – No samples are excluded – Model based on the
reduced acoustic spectra – Test set validation.
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H.3.3 PLS1 Model to predict the mass of dry matter

Figure H.13 shows the final model quantifying the content of dry matter pellets content
in model-systems made of light and heavy pellets. Three PLS component are required
to model the broth. The slope s = 0.99, the correlation coefficient r2 = 0.92, the
Residual Validation Variance RV V = 0.06, Root Mean Square Error of Prediction
RMSEP = 5.20, and the bias is 1.39. Samples 23, 24, 46, and 48 are excluded.

Figure H.13: Final model determining the quantity of dry matter pellets for model-
systems made of light and heavy pellets – Samples 23, 24, 46, and 48 are excluded. –
Model based on the reduced acoustic spectra – Test set validation.

H.4 Model based on batches made of synthetic ma-

nure

The acoustic spectra is made of 1024 variables (X-variables) and is presented in Figure
H.14.

It can be seen from the spectra that the last 512 variables lie approximatively on a
flat line. However, unlike the model based on the plastic pellets, sequential reductions
of the spectra showed that the model is getting significantly better after when keeping
only the first 350 variables (Figure H.15).

Model based on complete acoustic spectra is showed in Figure H.16 whereas model
based on the first 350 variables is showed in Figure H.17.

The X-Y outliers plot were inspected for outliers, even though some points could
be considered as outliers, removing them did not improve the model. Therefore the
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Figure H.14: Complete acoustic spectra for batches made of synthetic manure.

Figure H.15: Reduced (350 first variables) acoustic spectra for batches made of syn-
thetic manure.
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Figure H.16: Model predicting the dry matter content of the synthetic manure – Model
based on the complete acoustic spectra – Test set validation.

Figure H.17: Model predicting the dry matter content of the synthetic manure – Model
based on the first 350 variables acoustic spectra – Test set validation.
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model presented in Figure H.18 is considered to be the final model to determine the
dry matter content in the synthetic manure.

Five PLS component are required to model the broth. The slope s = 0.89, the
correlation coefficient r2 = 0.89, the Residual Validation Variance RV V = 0.06, Root
Mean Square Error of Prediction RMSEP = 8.42, and the bias is 3.91. Which is fully
acceptable for such complicated system. No samples are excluded

Figure H.18: Final model predicting the dry matter content of the synthetic manure
– Model based on the first 350 variables acoustic spectra – No samples are excluded –
Test set validation.

This model is a valuable indication that acoustic chemometrics is a powerful PAT
modality, at least concerning physical Y-variables. Several a.c. studies [14, 16, 28, 30,
35] have strongly enclosed a.c. also for a variety of chemical and physical variables.
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L. Boland M.Sc. Eng. Thesis – July 3, 2008 219

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Appendix I. Data sheet – DeltaTron from Brüel & Kjær
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L. Boland M.Sc. Eng. Thesis – July 3, 2008 224

http://www.aaue.dk/


Process Analytical Technologies in Applied Biotechnology
Appendix I. Data sheet – DeltaTron from Brüel & Kjær
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