
Indexing and Querying Spatiotemporal Raster Data

Dennis B. Andersen
buhhko@cs.aau.dk

Martin L. Kristiansen
martinlk@cs.aau.dk

Claus H. Poulsen
kludder@cs.aau.dk

Thomas Winterberg
thomasw@cs.aau.dk

Department of Computer Science, Aalborg University, Denmark

June 12, 2008

Abstract

This paper addresses the issue of indexing and
querying spatiotemporal raster data. This is done
by developing a prototype named Weathr that
allows users to make queries on historical precipi-
tation data, e.g., to determine the origin of water
masses that has caused a flooding. Three function-
ally equivalent implementations have been devel-
oped. One is based on the GeoRaster component
for Oracle Database, providing a performance base-
line. Another is based on storing single pixel val-
ues along with their corresponding coordinates in
a table. The last one is similar to the latter, but
uses the Hilbert space-filling curve for indexing two-
dimensional raster space.

Among the key findings is that the Hilbert space-
filling curve is not well-suited when raster data
is sparse, nor when data is queried using small,
non-rectangular search windows. Furthermore, the
GeoRaster-based implementation has a storage re-
quirement that is four times bigger compared to the
other two, and a query performance that is slower
by several orders of magnitude.

Keywords: Raster data, Hilbert space-filling curves,
index-organized tables, GeoRaster, range query, k-
NN query, sparse data.

1 Introduction

The Weathr prototype, as presented in [1], is a
location-based service capable of providing various
services related to precipitation. The services of-
fered by the prototype consist of monitoring user-
defined regions and routes. If precipitation will oc-
cur inside or on these, respectively, the prototype
is able to warn the user in advance—how far in
advance is determined by a forecast algorithm. If

Figure 1: Layered data overview. From top to
bottom: precipitation data layer, region layer, geo-
graphical reference layer.

combined with a route recognition mechanism, the
service will be able to warn users traveling along a
route on which precipitation is about to occur. An-
other example is that of a painter working outdoors.
It would be very convenient for him to receive an
early warning of upcoming rainfall, allowing him to
stop working and the paint to dry before it actu-
ally starts raining. A scenario showing a region is
illustrated in Figure 1.

The prototype bases its services on data provided
by a Local Area Weather Radar (LAWR)—a device
capable of recording the aerial distribution of rain-
fall within its coverage area. LAWR data sets are
in raster format, where each pixel is an 8-bit byte
value [0; 255]. Pixels with a value greater than
zero represent an area that is currently experienc-
ing rainfall—the greater the value, the heavier the
rainfall. Figure 2 illustrates an example of a 6 × 6
LAWR data set (a real-world data set is typically
larger). Weathr uses data provided by a LAWR

1

mailto:buhhko@cs.aau.dk
mailto:martinlk@cs.aau.dk
mailto:kludder@cs.aau.dk
mailto:thomasw@cs.aau.dk

0 0 0 0 0 0

0 0 42 35 0 0

0 0 3 57 14 0

0 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Figure 2: 6× 6 LAWR data set.

located in North Jutland, Denmark.1 The radar de-
livers a 240×240 image where each pixel represents
a 500m× 500m area.

The focus of this paper is to describe an ex-
tension of the Weathr prototype that introduces
advanced query types on spatial LAWR data. In
particular, all data received from the LAWR is
stored in a database, allowing the prototype to per-
form historical queries on the entire range of stored
LAWR data sets. Consider, for example, a farmer
that uses Weathr to estimate how much rainfall
his land has received over a specified period of time.
As another example, using Weathr to better de-
termine the cause of sewage overflowing or similar
would also be feasible.

The contributions of this paper are summarized
as follows:

• A working prototype that demonstrates three
types of historical queries on LAWR data:

– Range

– Single-point

– k-nearest neighbor

• A performance comparison in terms of execu-
tion time and space usage of implementations
using the Hilbert space-filling curve and scan-
line data organization, respectively.

• A comparison of the two above-mentioned im-
plementations to the commercial GeoRaster
component for Oracle Database.

The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 provides
an abstract overview of the basic components in
the prototype and outlines the workflow involved in
executing a query. Section 4 describes three func-
tionally equivalent solutions for implementing his-
torical queries in Weathr. Section 5 provides an

1The UTM coordinate of the LAWR is: Zone 32, 547636
meters east, 6318784 meters north (northern hemisphere).

overview of the technical system architecture and
details on implementation. Section 6 presents per-
formance studies which provides performance mea-
surements on real-world data combined with data
analysis. Section 7 describes future work and Sec-
tion 8 concludes the paper.

2 Related Work

Storing raster data in a DBMS is supported by sev-
eral database products, such as the GeoRaster com-
ponent of the Oracle Spatial Cartridge [2] for Or-
acle Database and the Rasdaman database server
[3]. Both Oracle GeoRaster and Rasdaman support
georeferencing spatial raster data such as satellite
or radar imagery, allowing retrieval of data by sup-
plying coordinates on the Earth’s surface.

For this project, Oracle Database has been cho-
sen as the underlying data source for the Weathr
prototype. The reason behind this is that Ora-
cle Database is freely available for non-commercial
use and offers the Spatial and GeoRaster compo-
nents. The GeoRaster component serves as a com-
mercial off-the-shelf (COTS) reference implementa-
tion for storing and querying spatial raster data in a
DBMS. However, the out-of-the-box capabilities of
GeoRaster does not meet the requirements of the
Weathr prototype. GeoRaster is geared toward
the efficient delivery of large images for onscreen
viewing. It does not support querying arbitrarily-
shaped subsets of raster data from within a sin-
gle image. GeoRaster outputs only bitmap formats
(such as JPEG, PNG, etc.), which are by design
rectangularly dimensioned. Querying arbitrarily-
shaped subsets of raster data is, however, required
by Weathr, since a user is allowed to query re-
gions which are defined by unconstrained polygon
shapes—convex as well as concave. This justifies
the implementation of a custom-built GeoRaster-
based solution that supports the above require-
ment.

Reducing data from multiple dimensions to one
enables simple and well-known access methods to
be utilized, such as the B+-tree [4, 5, 6]. The way
to perform such a reduction is to use a space-filling
curve. Space-filling curves represent a technique
suitable for encoding the entire range of a multidi-
mensional space as a one-dimensional curve—i.e.,
a one-to-one correspondence mapping R× R→ R.
A curve can be thought of as the path of a contin-
uously moving point—a point that moves through
the multi-dimensional space in an order that pre-
serves locality in the reduced space. More formally,
a curve is an indexing which is continuous with re-
spect to the discrete topology given by a distance

2

metric, such as the Manhattan metric [7]. The
Hilbert space-filling curve [8] is widely accepted as
achieving the best locality preservation and provide
significant performance benefits with regard to data
access [9, 10]. This assertion is substantiated by ex-
periments conducted by Faloutsos et al. [4, 10, 11].

As mentioned earlier, Weathr must store all
LAWR data it receives and answer historical
queries based on these data. Research has been
conducted on Hilbert curves for indexing multidi-
mensional grids [7], i.e., dimension d ≥ 2. LAWR
data consists of two-dimensional raster images, but
a temporal dimension may be considered the third
dimension. However, indexing grids with d = 3 is
inherently for cube space only, meaning that as the
third (temporal) dimension grows, so will the other
two (x and y). Locality in the reduced space is
then an approximation of that in the original three-
dimensional space. This property, however, is not
desirable in the case of indexing multiple LAWR
images, in which the temporal dimension continues
to grow while the other two remain constant. Due
to this, LAWR images in Weathr are indexed us-
ing a Hilbert curve where d = 2. Efficient access
with regards to temporal locality is ensured by a
composite database index.

Space-filling curves are used in the field of
databases as well as computer graphics. McCoo
et al. [12] describe an algorithm that rasterizes a
polygon. The algorithm rasterizes along a Hilbert
curve and stores a sparse matrix in Hilbert-order.
Generally, a matrix is sparse if it is primarily pop-
ulated with zero-entries and contains very few non-
zero elements per row [13]. Duff et al. [14] shows
practical approaches to the efficient utilization of
sparsity. Their idea is to store only non-zero val-
ues of sparse matrices, as opposed to storing all
values. It is possible to reduce storage and compu-
tational requirements by storing only non-zero val-
ues [15, 16]. This substantiates the approach used
for the first prototype of Weathr, which used a
memory-based approach, storing only non-zero val-
ues. This was based on statistics showing that ap-
proximately 97.2 percent of the values in 18 days
worth of data (a total of 5,184 data sets) were zero-
values [1].

A number of data access methods for spatial data
exist. Among these methods, the R-tree [17] is the
most popular. The R-tree is a dynamic B-tree-like
data structure for representing spatial data. Spa-
tial objects are approximated by their minimum
bounding rectangle (MBR), which is a much sim-
pler container than the object’s original shape. Al-
though the R-tree has lots of applications, it has
some drawbacks [18, 19]. E.g., a spatial query is
performed by first examining the root node of the

O1

O2

Figure 3: Objects O1 and O2 overlapping raster
data.

tree and then recursively searching through all chil-
dren nodes that intersect the search rectangle. A
spatial query can overlap multiple MBRs and con-
sequently a query may require several nodes to be
visited before determining which objects the query
intersects. The query performance is thus propor-
tional to the number of nodes covered by the search
rectangle. Also, as updates occur, the tree evolves
by applying appropriate insert and delete opera-
tions, thereby discarding the previous version of the
tree. Due to this, the R-tree is not applicable when
storing historical LAWR data, since the tree in-
dexes a current state and discards previous states.
However, indexing multiple versions of data can be
done by making the tree multi-dimensional. The
Multi-Version R-Tree (MVR-tree) [20] conforms to
this property and is used in, e.g., CAD systems
that index multiple versions of the same drawings,
where the drawings differ only slightly from one an-
other. The idea behind the MVR-tree is to share as
many common nodes as possible between versions
and thereby reduce duplication. The MVR-tree is,
however, not suitable for indexing raster LAWR
data. Conceptually, a rain cloud moves as time pro-
gresses, making an R-tree-like indexing ideal. How-
ever, pixels in a raster image never actually move,
but simply change value as time progresses. This
means that it does not make sense to index mov-
ing rain clouds in a raster data set since pixels are
stationary objects.

Figure 3 shows two spatial objects, O1 and O2,
overlapping a raster grid. The figure attempts to
illustrate that since we only deal with raster data,
and not vector-based objects such as O1 and O2,
indexing techniques such as space-filling curves are
more suitable compared to, e.g., a spatial index
such as the R-tree. As described by Ooi and Tan
[6], the use of space-filling curves causes the space to
be partitioned into cells of uniform size where each
cell is labeled with a unique number. However, a
spatial object may not fit into a single cell and con-

3

GPS satellite

PC client W server

Cellular phone client

StreamSpin server

Relational database

LAWR

Figure 4: System overview.

sequently an object may overlap several cells. But
since LAWR data sets are formatted as raster (or
gridded) data, this is not a problem since it is pos-
sible to achieve a one-to-one mapping between the
generated curve and the uniform, raster-formatted
LAWR data.

3 System Overview

The Weathr prototype is a system capable of
querying precipitation data received from LAWRs,
as described in [1]. This paper addresses an ex-
tension of the prototype, implementing historical
query support by storing LAWR data in a relational
database and subsequently querying it. Figure 4 il-
lustrates the major components in Weathr. This
section briefly explains each of those components.

Weathr is built on the client-server model. The
client is either a PC running web browsing software
or a cellular phone running the StreamSpin client
software [21]. When using a PC, users can navi-
gate a Google Maps interface [22], viewing the lat-
est LAWR output as an overlay on the map. Addi-
tionally, users can create and save areas of interest
using a point-and-click interface. Areas of interest
represent areas that a user is interested in monitor-
ing continuously. Creating such an area enables a
user to view estimated forecast data for the area,
as well as receive notifications of upcoming rainfall
in that area on a mobile phone via the StreamSpin
service. An area of interest is a polygon shape and
will from here on out be referred to as a geometry.
Figure 5 shows a screenshot of the web front-end
with a geometry visible on the map. For more de-
tails on Weathr and its capabilities, see [1].

The dashed box containing the LAWR in Fig-
ure 4 represents the weather radar delivering data
to the system. Data is currently being received
from a single LAWR every five minutes, but the im-
plementation is generic enough to accept data from
multiple radars and in other time intervals as well.
When a data set is received at the Weathr server,
it is immediately stored in a relational database. As
time goes by, the database builds up an archive of
data sets that can be accessed by the system. This
allows a user of the web front-end to execute histor-
ical queries by creating geometries and specifying
various query properties, such as temporal range
defined by query start and end time. An abstract
overview of the workflow involved in executing a
historical query is illustrated in Figure 6. A user
first creates a geometry or selects an already cre-
ated one and then specifies a set of historical query
properties. The user then submits the information,
sending the query to the server. On receiving, the
server prepares an SQL statement equivalent to the
specified query properties and executes the state-
ment. In reality, the process is much more involved
than just preparing a single SQL statement—the
exact details are explained in Section 4. Finally,
a report is generated from the SQL result set and
sent back to the user where it is displayed. In the
case of range and single-point queries, the result
is displayed as a chart showing the temporal dis-
tribution of precipitation throughout the specified
temporal range. In case of a k-NN query, the result
is displayed as a simple summary of the k values
found and their corresponding coordinates.

Figure 5: Weathr web front-end screenshot.

4

SERVERCLIENT

Send
report

Receive
report

start

Select geometry

end

Send
query

Receive
query

Display report

Define query Prepare SQL
statement

Execute SQL
statement

Generate
report

Figure 6: UML state diagram illustrating the ba-
sic workflow process of submitting, executing, and
displaying historical queries.

4 Queries & Algorithms

This section describes three solutions for imple-
menting historical query ability in Weathr. The
first two solutions have been built specifically to
solve the problem at hand. They have both been
implemented on top of Oracle Database and each
utilize their own optimized schema design. The first
of the two is a simplified approach for storing pixel
values in a table—that is, one pixel value per record
along with corresponding (x, y) coordinates for that
particular pixel. The other is similar, only based
on one-dimensional space-filling curves instead of
two-dimensional coordinates. The third solution
is based on the commercially available GeoRaster
component for Oracle Database—a component ca-
pable of handling spatial raster data—and acts as a
baseline against which to measure the performance
of the two first solutions. Each solution must pro-
vide support for a number of query types:

Single-point query Allows users to query a spe-
cific position on the Earth’s surface by pro-
viding geodetic coordinates (such as UTM or
latitude/longitude) and a temporal range that
defines the time interval from which the data
must be gathered.

Range query A user-defined geometry consisting
of either a convex or concave polygon is used
as the basis for performing a spatiotemporal
range query. This query type enables users to
collect statistics about, e.g., how much rain-
fall a specific area has received over a pe-
riod of time. A spatiotemporal range query
in Weathr has two pairs of upper and lower

boundary values (i.e., ranges) that are used for
retrieval: a spatial range defining pixels that
are covered by a query as well as a temporal
range. Figure 7(a) illustrates an example of a
spatial range.

k-nearest neighbor query The final query type
is capable of answering a question such as
“What are the locations of the two nearest rain
showers?” Imagine for example an area being
flooded due to insufficient drainage along the
water’s travel path. A k-nearest neighbor (k-
NN) query on historical data could be used to
determine the origin of the water masses, en-
abling optimization of the drainage system.

In order to obtain a high level of independence
between application and database, the solutions
described here have all been implemented at the
database level. This ensures that the entire process
of executing queries on LAWR data is totally sepa-
rated from and independent of a client application,
such as the Weathr web front-end.

The rest of this section describes in detail the
design and implementation of each solution. Par-
ticular care is taken to explain how each supports
the query types listed above. First, however, the
essential concept of geometry rasterization—a tech-
nique introduced in [1] for the initial prototype of
Weathr—is shortly reviewed.

4.1 Geometry Rasterization

When performing a spatial query using a geometry
to define the spatial range, the geometry must first
go through a rasterization process. The reason for
this is that in order to perform a spatial join be-
tween a geometry and a LAWR raster image, the
geometry must be converted to the same discrete
raster space as that of the image. After the rasteri-
zation process has finished, the dimensions of both
the LAWR image and the rasterized geometry are
exactly the same. This means that a pixel position
(x0, y0) in the rasterized geometry has the same
spatial occupancy as a corresponding pixel located
at (x0, y0) in the LAWR raster image.

Figure 7(a) illustrates the principle behind per-
forming a spatial join between a geometry and a
LAWR image by rasterizing the geometry. The two
top layers show a geometry before and after ras-
terization, respectively. The bottom layer shows a
LAWR raster image that has the exact same spatial
extent and number of pixels as the layer above it.
This enables the application to iterate through the
pixel positions in a rasterized geometry while at the
same time visiting the corresponding pixels in the

5

(a) Spatial join illustrated in three layers.

Prepare & execute
SQL statement

Rasterize geometry

Display result

Geometry

Pixel
positions

(b) Basic workflow.

Figure 7: Rasterization.

LAWR image, effectively collecting only the LAWR
pixel values that overlap the original geometry.

The basic workflow of performing a query in the
prototype is outlined in Figure 7(b). The rasteriza-
tion process takes as an input parameter a geome-
try in the form of a polygon and outputs a number
of pixel positions. These pixel positions are then
used to construct an SQL statement that queries
the pixel values at the corresponding positions in an
LAWR image. It is important to note that the ras-
terization algorithm outputs (x, y) pairs that corre-
spond to (x, y, v) triplets in an LAWR image, where
v is the pixel value. For more details on the inner
workings of the geometry rasterization algorithm,
see [1].

4.2 Coordinate-Based Solution

This section describes the first solution. It is based
on a relatively simple database schema for storing
raster images in a relational data model. It stores
one pixel value per record along with a correspond-
ing raster space coordinate for that particular pixel.

A similar database schema, depicted in Figure 8,
is used for the first two solutions. They both carry
the simple concept of an image entity that is com-
prised of raster content represented by pixels—a
concept which is realized as a master-detail table
design. A table containing a single row per image
describes the basic properties of the image while
another table contains the actual raster data. The
latter is named the raster data table (RDT). For
the sake of simplicity, a relational normalized ap-
proach has been chosen for the two solutions not
built on GeoRaster.

The database schema for the first solution is pre-

sented in Figure 9. A table radar contains a row
for each LAWR registered in the system—in our
case, we have just a single radar providing data,
but multiple radars are supported throughout the
application. The most important columns on this
table are:

pixel size: Length and height in meters of each
pixel in an image output by the particular
LAWR. In our case, each pixel is 500m×500m.

cols: Number of columns in a raster image.

rows: Number of rows in a raster image.

bounds: Bounds of an image as specified by the
SQL type SDO_GEOMETRY. In other words, this
attribute georeferences an image.

Some of the columns on the radar table could
be argued to be properties of the individual images
rather than the LAWR. For instance, an LAWR can
provide images in a number different resolutions,
which is impossible to model using the schema de-
sign in Figure 9. In such an event, a new row for the
same LAWR will have to be inserted in the radar
table. The same is true in case an LAWR physi-
cally moves—e.g., a mobile radar towed by a car.
This design has been chosen in order to minimize
redundancy through normalization, requiring only
four columns in the image table.

Each LAWR in the system has a number of im-
ages associated with it, modeled by the one-to-
many referential constraint between the two rela-
tions radar and image. Important columns on
the image table are:

retrieved at: The time at which an image was re-
ceived from the LAWR.

6

Radar

Radar DataSource

Image

Content

records

(skey)/(x,y)value

columns

rows

namespatial
bounds

gathered from

Weathr User

Role

Member-
ship

Area Point

Geometry

IS A disjoint

registers

timespan

cell size

Figure 8: ER diagram of the overall database schema with essential attributes only.

id : INTEGER
name : VARCHAR
pixel_size : INTEGER
cols : INTEGER
rows : INTEGER
bounds : SDO_GEOMETRY

radar

image_id : INTEGER
x : INTEGER
y : INTEGER
cell_value : INTEGER

rdt

id : INTEGER
radar_id : INTEGER
retrieved_at : DATE
duration : INTERVAL

image

1 *

1

*

Figure 9: Coordinate-based schema.

duration: The temporal extent of an image. The
duration is measured back in time, starting
from the retrieved at attribute. In our case,
each image has a duration of five minutes.

As mentioned, the actual raster data is stored in
a separate RDT, named rdt in Figure 9, where each
row is a tuple (image id , x , y , cell value). Each row
in the image table has a number of associated rows
containing pixel values in the rdt table, modeled
by yet another one-to-many referential constraint.
Due to each image consisting of 240 × 240 pixels,
the amount of rows required per image is 57600.
However, as discussed in Section 2, a high compres-
sion ratio can be obtained by storing only non-zero
values. By storing meta values that describe the
dimensions of the original image in the radar ta-
ble (i.e., columns rows and cols), the compression
is in effect lossless since we are able to derive the
discarded zero values.

4.2.1 Indexing

For optimal access patterns when querying data,
appropriate indexing schemes have been carefully
chosen. A property of the rdt table is that it
has only four columns, each containing a simple

INTEGER type. Oracle tables are per default heap
tables, providing no guarantee on order. Any in-
dex applied on top of a heap table will thus be
dense. This combined with the fact that the RDT
contains a massive amount of entries, any index
applied on top will cause a significant space over-
head compared to the actual size of the data itself.
Comparing segment sizes of a populated RDT with
default 90% block filling (PCTFREE 10%) and the
primary key index shows almost identical allocation
sizes for the two, which means the index represents
an overhead the size of the data itself.

This led to the choice of using Oracle-specific
index-organized tables (IOTs) [23]. An IOT is a
concept where table and index are merged together.
Conceptually, an IOT is a B+-tree variant where
data is stored inside the leafs of the tree and nodes
are arranged by the logical primary key [24]. This
guarantees that data always be stored physically
in search key order based on the primary key. This
boils queries down to a single index scan which min-
imizes block reads since it is no longer necessary
to retrieve native row identifiers (rowids) from the
index and subsequently fetch the data from some-
where else on disk.

Performance measurements documented in [25]
show that significant time savings on queries and
updates can be obtained by using IOTs on the ex-
pense of higher cost of delete operations. The rdt
table has only four columns, and the data herein is
never deleted nor updated. Given these two prop-
erties, tests in [25] show only a minor impact on
inserts, yet significant time savings present them-
selves when querying the primary key. This sug-
gests that the rdt table will benefit significantly
from being implemented as an IOT instead of a reg-
ular heap table with an indexed primary key col-
umn. The rdt table is modeled as a weak entity
which involves a composite primary key definition
composed of the primary key of the image table

7

(image_id, y, x)

(15,7,6)
cellvalue

(15,6,6)
cellvalue

(15,5,9)
cellvalue

(15,5,8)
cellvalue

(15,2,7)
cellvalue

(15,2,6)
cellvalue

(20,8,2)
cellvalue

(19,3,3)
cellvalue

(20,8,4)
cellvalue

(20,8,3)
cellvalue

(15,4,0(15,2,6) (15,6,6) (20,8,3)

18,9,3(15,5,6)

(15,1,2)
cellvalue

(1,1,1)
cellvalue

(15,5,0)
cellvalue

(15,4,0)
cellvalue

Figure 10: Index tree for the coordinate-based solution.

and the two columns x and y. Figure 10 illustrates
the rdt table as an IOT.

The primary key of the image table is a com-
puted sequence. Although the primary key is ar-
tificially generated, the sequence reflects a sense
of logical time since the table is append-only and
data is inserted chronologically as it is recorded by
the LAWR. A spatiotemporal query involves join-
ing the image table and the rdt table. Queries
on the image table will rarely be conducted on
the primary key, making the use of an IOT unwise.
Furthermore, the row count of the image table will
always be several magnitudes lower than that of the
rdt table, meaning that it will not represent a per-
formance bottleneck. All queries on the image ta-
ble involve querying the retrieved at column, either
by executing a single-point query or, perhaps more
interesting, a range query. Due to all these proper-
ties, a standard heap table has been chosen for the
image table with a standard Oracle B+-tree index
applied on the retrieved at column.

4.2.2 Range Query

A spatiotemporal range query facilitates retrieval
of pixel data from within a spatial range as well
as a temporal range. A spatial range is defined by
a user-created geometry. A geometry has spatial
extent, consisting of a set of points that together
form a polygon shape. A temporal range is simply
an interval in time, consisting of a start and end
time.

The process is as follows. The user draws a ge-
ometry using the Google Maps interface and saves
it in the system. He then specifies a temporal range
using controls available on the Weathr web front-
end. This information is then sent to the server
where it is passed on to the underlying database
for processing. On receive, the geometry is lo-
cated in a table geometry where it is stored as an
SDO_GEOMETRY—see Figure 8 for a conceptual ER
diagram. This geometry is then filtered through
the rasterization algorithm where it is converted to
a set of pixel positions. After this, the pixel posi-

1 coordRange (geom :SDO GEOMETRY; t1 , t2 :
TIME TYPE) :SQL RESULT i s

2 do
3 p i x e l s := r a s t e r i z e (geom) ;
4 s l := toScanLines (p i x e l s) ;
5 s q l := bui ldQueryStr ing (s l , t1 , t2) ;
6 return dbExecute (s q l) ;
7 end ;
8

9 toScanLines (p i x e l s :ARRAY) : LIST i s
10 do
11 s o r t (p i x e l s) ;
12 l i n e S t a r t := p i x e l s [0] ;
13 lastRead := p i x e l s [0] ;
14 for i :=1 to p i x e l s . length−1 do
15 i f (! hAdjacent (lastRead , p i x e l s [i]))
16 l i n e s . addLine (l i n eS t a r t , lastRead) ;
17 l i n e S t a r t := p i x e l s [i] ;
18 end ;
19 lastRead := p i x e l s [i] ;
20 end ;
21 l i n e s . addLine (l i n eS t a r t , p i x e l s [p i x e l s .

length −1]) ;
22 return l i n e s ;
23 end ;

Listing 1: Range query for coordinate-based
solution.

tions are sorted in a horizontal scan line fashion,
separating each scan line. Finally, an SQL state-
ment that executes the range query can be gener-
ated.

Listing 1 shows the algorithm for executing a spa-
tiotemporal range query. The function coordRange
in line 1 is the entry point. It has three input pa-
rameters. The first is a geometry geom defining the
spatial range. The last two are timestamps t1 and
t2 defining the temporal range. In line 3 the ge-
ometry is rasterized, where output is an array of
pixels. Line 4 calls a function toScanLines that
generates the scan lines necessary for building the
final SQL query. In this function, line 11 sorts the
array of pixel positions with regards to both y and
x in an ascending order, where y precedes x. This
establishes a scan line order on the pixels array.
Lines 12–21 separate each scan line in the sense that
a line is a number of pixels that all have the same y-

8

join ← image ./image.id=rdt.image id rdt

temp0 ← σt≥t1∧t≤t2(join)
temp1 ← (σy=y0∧x≥x0∧x≤j0(temp0)) ∪

(σy=y1∧x≥x1∧x≤j1(temp0)) ∪
...
(σy=yn∧x≥xn∧x≤jn(temp0))

result ← Πt,tGsum(v)(temp1)

Query 1: Relational algebra statements for per-
forming a coordinate-based range query.

coordinate and adjacent x-coordinates. Note that
the function hAdjacent(p0, p1) returns true for two
pixels p0 and p1 that are located directly next to
each other on a horizontal line—e.g., (2, 3) and
(3, 3) but not (2, 3) and (4, 3). Once all scan lines
have been determined, the toScanLines terminates
and control is returned to the coordRange func-
tion. Line 5 calls a function buildQueryString
that builds an SQL string equivalent to the rela-
tional algebra statements in Query 1. It takes a
list of n scan lines 〈l0, l1, . . . , ln〉 and two times-
tamps t1 and t2 as inputs. Each scan line is a pair
of coordinates, i.e., ln = ((xn, yn), (jn, yn)). No-
tice that both coordinates always have the same
y-coordinate due to them being endpoints of the
same horizontal scan line. First in Query 1, all im-
age data is assigned to the join variable. Second,
the number of rows is significantly reduced by ap-
plying a predicate that selects the temporal range
defined by t1 and t2. This is assigned to temp0.
Third, the expression being assigned to temp1 ex-
pands to n predicates—one for each scan line. This
selects the spatial range into temp1. Finally, a pro-
jection using a GROUP BY statement and the aggre-
gate function sum boils the result down to one row
(t, vsum) per time slot, where vsum is the summed
precipitation amount for the entire spatial range.
After the range query has been executed the result
is returned in line 6 of Listing 1.

4.2.3 Single-Point Query

A single-point query is the simplest query type. It
basically consists of mapping a real-world coordi-
nate to a coordinate in raster space, followed by a
lookup in the database.

A single-point query can be considered the equiv-
alent of a range query based on a polygon that
covers a single pixel only. The rasterizer compo-
nent is capable of taking a real-world coordinate

join ← image ./image.id=rdt.image id rdt

temp0 ← σt≥t1∧t≤t2(join)
temp1 ← σx=x0∧y=y0(temp0)
result ← Πt,v(temp1)

Query 2: Relational algebra statements for per-
forming a coordinate-based single-point query.

(e.g., latitude/longitude) as a parameter instead of
a polygon. This causes the output to be a single
pixel position only. This pixel position is the (x, y)
pair that corresponds to the (x, y, v) triplet that
is georeferenced so that it contains the input real-
world coordinate. Once a pixel position has been
determined, a query equivalent to that in Query 2
is executed, where t1 and t2 define the temporal
range and (x0, y0) is the position of the pixel value
being looked up.

4.2.4 k-NN Query

A k-NN query in Weathr is basically a spatiotem-
poral range query with a dynamic spatial range.
The query returns the k nearest pixels where pre-
cipitation has occurred within a specified temporal
range.

The process of executing this query type consists
of creating a number of increasingly larger “ring”
images where each pixel has a value that is the sum
of the corresponding pixel values from all original
LAWR images within the temporal range. Con-
sider Figure 11. The center pixel O is the point of
origin—or starting point—of the algorithm. If O
contains precipitation it will be added to the result
set. If not, it will not be added. After examining O,
the algorithm continues outward, looking for pixels
containing precipitation. First, the pixels covered
by the ring L1 will be examined. After L1, ring L2

is examined, followed by L3 and so on. When k or
more pixels have been found, the algorithm termi-
nates. This means that a k-NN query guarantees
returning a minimum of k results. In other words,
all results from the last visited ring will be included
in the result.

The algorithm for a k-NN query is presented in
Listing 2. As can be seen in line 1, the input pa-
rameters consist of a pixel position determining the
starting point of the algorithm, a pair of times-
tamps determining the temporal range from which
to gather data, and a value k determining the min-
imum number of results to be returned. Line 6

9

L1

L2

L3

O

Figure 11: k-NN rings. Gray pixels contain precip-
itation.

contains a while loop that runs until k or more re-
sults have been found and the algorithm can termi-
nate. In lines 7–8 a ring of pixel positions is calcu-
lated and converted to a list of scan lines using the
toScanLines function from Listing 1. Line 9 builds
an SQL expression very similar to that of the range
query—see Query 1. The only difference, expressed
in relational algebra, is the projection:

result← Πx,y,(x,y)Gsum(v)(tempn)

The result of the projection is a row per pixel
(x, y, vsum), where vsum is the sum of each indi-
vidual pixel within the specified temporal range.
A convenient consequence of storing only non-zero
values in the database is that only pixels contain-
ing non-zero values are returned, making it easy to
identify results and as well as determine how many
there are. This takes place in lines 11–12. Note
that the union method on a result set in line 11
simply adds two result sets together. Lines 13–15
check if k or more results have been found. If that
is the case, the algorithm terminates and returns
the result.

The actual implementation of the k-NN query
contains an additional conditional check. This con-
sists of a user being able to define minimum and
maximum thresholds for pixel values, such that the
algorithm will ignore values that do not lie within
a certain range. This has, however, been left out of
Listing 2 due to brevity.

4.3 Hilbert-Based Solution

The idea behind space-filling curves is to map
multi-dimensional data into one dimension while
preserving data locality during the mapping. A
curve is a continuous function that lies in, e.g.,
the two-dimensional plane (a so-called plane curve).
The Hilbert curve, for example, is continuous with

1 coordkNN(cente r :COORD TYPE; t1 , t2 :TIME TYPE;
k : INT) :SQL RESULT i s

2 do
3 running :=true ;
4 kFound :=0;
5 r i ngLeve l :=0;
6 while (running) do
7 r ing :=getRing (r ingLeve l , c en te r) ;
8 s l := toScanLines (r ing) ;
9 s q l := bui ldQueryStr ing (s l , t1 , t2) ;

10 subResult :=dbExecute (s q l) ;
11 kNNResult . union (subResult) ;
12 kFound:=kFound+subResult . s i z e () ;
13 i f (kFound ≥ k)
14 running := fa l se ;
15 end ;
16 r i ngLeve l++;
17 end ;
18 return kNNResult ;
19 end ;

Listing 2: k-NN query for coordinate-based
solution.

respect to the discrete topology given by the Man-
hattan metric[7]—see Figure 12(a). The original
space is divided into a number of cells and each
cell is labeled with a unique scan index number,
referred to as an skey. The cells are labeled in an
increasing order according to the path of the space-
filling curve. The division must conform to certain
properties[11]: all cells must have equal size and
there must be no overlap between cells—essentially,
the whole space is divided into a grid. An ad-
vantage of this mapping is the possibility to use
well-known indexing methods for a one-dimensional
space, such as the B+-tree.

As already mentioned in Section 2, the Hilbert
curve has the best locality-preserving behavior
compared to other space-filling curves, which can
be taken advantage of when querying a spatial re-
gion. Consider a B+-tree on a column of skey val-
ues. Given that a geometry covers a set of pixels
that are spatially close to one another, the index
scan will ideally be very efficient since the index will
be favorably organized, having a locality-preserving
order on the leafs in the tree. The Hilbert curve di-
vides each side of a square into two equal size parts,
which divides the square into four smaller equal size
squares. Each of these squares is similarly divided
into four smaller squares etc. The Hilbert curve is
therefore only applicable to spaces where each side
length is equal to an integer power of two. However,
as described in Section 1, we receive LAWR raster
images with dimensions 240× 240, which does not
satisfy the above requirement. To overcome this
problem, the indexed space is extended to 256×256.
The extra “padding” is simply ignored because all
queries lie within the 240 × 240 area. The Hilbert
curve for Weathr has been implement using an

10

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

(a) Hilbert curve indexing an 8× 8 grid.

8 9

1011

30 31 32

53

54
(2,2) (3,2) (4,2)

(2,3) (3,3) (4,3)

(2,4) (3,4) (4,4)

(b) Hilbert curve extract of Fig-
ure 12(a) showing three subcurves: 8–
11, 30–32, and 53–54.

Figure 12: Hilbert space-filling curve.

id : INTEGER
name : VARCHAR
pixel_size : INTEGER
cols : INTEGER
rows : INTEGER
bounds : SDO_GEOMETRY

radar

image_id : INTEGER
skey : INTEGER
cell_value : INTEGER

rdt

id : INTEGER
radar_id : INTEGER
retrieved_at : DATE
duration : INTERVAL

image

1 *

1

*

Figure 13: Hilbert-based schema. The only real
change from Figure 9 is the skey attribute, marked
in bold font.

efficient non-recursive algorithm that utilizes a for
loop and bitwise operations [26, 27].

The Hilbert-based queries operate upon data
stored in tables with a schema illustrated in Fig-
ure 13. Note that, compared to Figure 9, the
only change is that the column skey replaces the
columns x and y. When performing queries it is
therefore necessary to map coordinates in the two-
dimensional 240×240 grid to one-dimensional skey
values. Put another way, a pixel (x, y, v) in the
LAWR raster image is queried by mapping the co-
ordinate (x, y) to an skey value and using this as
a search key to perform the lookup. The mapping
is depicted in Figure 12(b) where, e.g., the coordi-
nate (2, 2) is mapped to skey = 8. A Java stored
function located on the database server is respon-
sible for performing the mapping. The function
has input values x, y, and l, where l is the so-
called level which determines the size of the indexed
space—e.g., level 8 indexes a space with side-length

28 = 256.
On query-time a set of skeys can be grouped into

segments that consist of numerically adjacent skeys
and thereby avoid having to retrieve each precip-
itation value one at a time. This is illustrated in
Figure 12. The gray area in Figure 12(a) represents
a spatial range query. Figure 12(b) shows a close-
up of the same range query. The query’s spatial
range covers nine pixels that each have their own
unique skey value. The nine keys can be grouped
into three unique segments consisting of numeri-
cally adjacent skey values: 8–11, 30–32, and 53–
54. Due to the locality-preserving properties of the
Hilbert curve, a typical user-created polygon will
be made of fewer segments than it contains pixels.
If data is organized properly on disk, this will re-
sult in fewer random block reads when fetching a
spatial region.

4.3.1 Indexing

The choice of indexing scheme for the Hilbert-
based solution is identical to that of the coordinate-
based solution described in Section 4.2.1. However,
where the composite key of the rdt table in the
coordinate-based solution is a triple, the composite
key of the Hilbert-based solution is a pair consist-
ing of the foreign key column image id and the skey
column.

Since the two-dimensional coordinates of a pixel
are now expressed using a single integer, the stor-
age of each pixel requires less disk space, making
the space savings even more verbose by applying
the IOT concept on the Hilbert-based solution. In
fact, when comparing the allocation sizes of the pri-
mary key index of the non-IOT solution and the

11

IOT solution, identical size were observed despite
all data being stored in the index segment in case
of the IOT.

On IOTs rowids are not present. They do not
make sense since data is stored inside the index it-
self. Instead the primary key takes its place and
serves as a logical rowid. In our case, the size of
the primary key is less than that of a rowid, which
effectively means that data is physically organized
on disk in primary key order while saving disk space
at the same time. Range queries are especially be-
lieved to gain from applying an IOT due to the
locality-preserving features of the Hilbert space-
filling curve and data being organized on disk in
search key order.

4.3.2 Range Query

The Hilbert-based spatiotemporal range query im-
plementation strongly resembles that of the range
query in Section 4.2.2. However, the Hilbert-based
algorithm differs since it does not establish a scan
line order on the pixels positions output by the ras-
terization algorithm. The algorithm instead maps
each pixel position from the rasterization output to
an skey value and then groups these into segments
of Hilbert subcurves.

Listing 3 shows the function for executing a spa-
tiotemporal range query. Lines 3–6 calculate an
skey value for each pixel position output by the
rasterization algorithm and adds them to the skey
array. This is done using the xy2skey function that
takes in a two-dimensional raster space coordinate
and an integer defining the level, and outputs the
corresponding skey value. Line 7 calls a function
toSegments that splits an array of skey values into
subcurves, as illustrated in Figure 12(b). Once the
toSegments function has been called, the first thing
that happens is that the skey array is sorted in as-
cending order, preparing the array for a loop struc-
ture in lines 16–21 that finds the subcurves in the
skey array. Line 17 checks if an skey and its prede-
cessor in the skey array are numerically adjacent.
If this is the case, the two skey values lie on the
same subcurve, and the algorithm simply contin-
ues. If not, the two skey values lie on different
subcurves, and the appropriate segment is added
to the segment list in line 18. After exiting the
loop, the final segment is added in line 22. Af-
ter this, the toSegments function terminates and
returns control to the hilbertRange function. In
line 8 an SQL string equivalent to the relational
algebra statements in Query 3 is built, where b is
the smallest skey value of a segment in s, and e is
the largest. Finally, the result of the SQL query is

join ← image ./image.id=rdt.image id rdt

temp0 ← σt≥t1∧t≤t2(join)
temp1 ← (σs≥b0∧s≤e0(temp0)) ∪

(σs≥b1∧s≤e1(temp0)) ∪
...
(σs≥bn∧s≤en

(temp0))
result ← Πt,tGsum(v)(temp1)

Query 3: Relational algebra statements for per-
forming a Hilbert-based range query.

1 hi lbertRange (geom :SDO GEOMETRY; t1 , t2 :
TIME TYPE; l :INTEGER) :SQL RESULT i s

2 do
3 p i x e l s := r a s t e r i z e (geom) ;
4 for i :=0 to p i x e l s . length−1 do
5 skeys [i] := xy2skey (p i x e l s [i] , l) ;
6 end ;
7 s eg s :=toSegments (skeys) ;
8 s q l := bui ldQueryStr ing (segs , t1 , t2) ;
9 return dbExecute (s q l) ;

10 end ;
11

12 toSegments (skeys :ARRAY) : LIST i s
13 do
14 s o r t a s c (skeys) ;
15 s egS ta r t := skeys [0] ;
16 for i :=1 to skeys . length−1 do
17 i f (skeys [i −1] 6= (skeys [i]−1))
18 s eg s . add (segStart , skeys [i −1]) ;
19 s egS ta r t := skeys [i] ;
20 end ;
21 end ;
22 s eg s . add (segStart , skeys [skeys . length −1]) ;
23 return s eg s ;
24 end ;

Listing 3: Hilbert-based range query.

returned in line 9.

4.3.3 Single-Point Query

The implementation of the Hilbert-based single-
point query differs only very slightly from that
of the coordinate-based single-point query. The
only difference is the addition of a call to the
xy2skey function that converts a two-dimensional
raster space coordinate to an skey value. This skey
value is then used for performing a lookup in the
database. The actual query executed is equivalent
to the relational algebra statements in Query 4,
where t1 and t2 define the temporal range and s0 is
the skey value output by the xy2skey function.

12

join ← image ./image.id=rdt.image id rdt

temp0 ← σt≥t1∧t≤t2(join)
temp1 ← σs=s0(temp0)
result ← Πt,v(temp1)

Query 4: Relational algebra statements for per-
forming a Hilbert-based single-point query.

1 hilbertkNN (o r i g i n :COORD TYPE; t1 , t2 :
TIME TYPE; k :INTEGER) :SQL RESULT i s

2 do
3 running :=true ;
4 kFound :=0;
5 r i n g l e v e l :=0;
6 skeyOr ig in :=xy2skey (o r i g i n) ;
7 while (running) do
8 r ing :=getRingSkeys (r ingLeve l , skeyOr ig in) ;
9 s q l := bui ldQueryStr ing (r ing , t1 , t2) ;

10 tmpSkeys :=dbExecute (s q l) ;
11 for (i :=0 to tmpSkeys . s i z e ()−1) do
12 subResult . add (skey2xy (tmpSkeys . get (i))) ;
13 end ;
14 kFound:=kFound+subResult . s i z e () ;
15 kNNResult . union (subResult) ;
16 i f (kFound ≥ k)
17 running := fa l se ;
18 end ;
19 r i ngLeve l++;
20 end ;
21 return kNNResult ;
22 end ;

Listing 4: Hilbert-based k-NN query.

4.3.4 k-NN Query

Just like the previous query types, a Hilbert-based
k-NN query is similar to its coordinate-based coun-
terpart. But since it is based on a space-filling
curve, it relies on the xy2skey function. However,
it also makes use of the reversed skey2xy function
since a k-NN query is location-aware and must re-
turn the positions of its k or more results, requiring
a calculation R→ R× R.

Listing 4 shows the pseudo code for performing
a Hilbert-based k-NN query. The basic principle
of the algorithm is the same as for a coordinate-
based k-NN query, but there are some extra steps
which are explained in the following. The calcu-
lation of the skey values covered by a ring is han-
dled by the function getRingSkeys in line 8. A
ring in this context is exactly the same as in the
coordinate-based k-NN query—see Figure 11—only
instead of returning pixel positions, the function
getRingSkeys returns the corresponding skey val-
ues. Lines 9–10 build and execute an SQL state-
ment almost exactly like that of the Hilbert-based

id : INTEGER
retrieved_at : DATE
duration : INTERVAL
image : SDO_GEORASTER

georaster
rasterID : INTEGER
pyramidLevel : INTEGER
bandBlockNumber : INTEGER
rowBlockBumber : INTEGER
columnBlockNumber : INTEGER
blockMBR : SDO_GEOMETRY
rasterBlock : BLOB

georaster_rdt (SDO_RASTER)

Figure 14: Schema for the GeoRaster based solu-
tion.

range query—see Query 3. The only difference is a
slightly modified projection at the end:

result← Πs,sGsum(v)(tempn)

The result of the query is a row per pixel (s, vsum),
where vsum is the sum of each individual pixel
within the specified temporal range. In lines 11–13
each row (s, vsum) is converted to a row (x, y, vsum)
using a function skey2xy. The rest of the algo-
rithm is completely identical to the latter part of
the coordinate-based k-NN query algorithm.

4.4 GeoRaster-Based Solution

GeoRaster [2] is a component of Oracle Spatial [28]
that enables the user to store, index, query, analyze,
and deliver raster images and other gridded data
along with associated metadata. Raster data can
be stored by GeoRaster in a number of different
image formats and georeferenced to positions on
the Earth’s surface or to a local coordinate system.
GeoRaster is typically used to store images from
technologies that capture or generate raster images,
e.g., remote sensing.

For our purposes, GeoRaster acts as a COTS
solution that facilitates an implementation of
database integration in the Weathr application.
This implementation is a valuable reference, provid-
ing a performance baseline against which to com-
pare the coordinate- and Hilbert-based solutions.
Using GeoRaster, raster LAWR images are georef-
erenced to a position on the Earth’s surface. This
allows a query to, e.g., return a LAWR pixel value
when given a location on the Earth’s surface asso-
ciated with that pixel. Historical queries can be
answered through GeoRaster by continuously stor-
ing incoming LAWR images in the system, and then
subsequently querying the relevant data using the
GeoRaster Java API [29].

Physically, the GeoRaster data model consists of
two data types and an object-relational schema.
For each raster image, a row is stored in a user-
defined table containing a column of object type

13

SDO_GEORASTER along with any number of user-
defined columns. In the schema of Figure 14, this
table is the georaster table. The column image is
of type SDO_GEORASTER and contains information
about the raster image. The columns retrieved at
and duration are user-defined columns equivalent
to the columns of the same name on the image ta-
ble of the coordinate- and Hilbert-based solutions.
Compared to the latter two solutions, there are no
columns defining image properties such as the num-
ber of columns, rows, and pixel size. These are all
enclosed in the SDO_GEORASTER object. Further-
more, spatial reference information is also enclosed
inside this object, which is why a bounds column of
type SDO_GEOMETRY is not included.

Each SDO_GEORASTER object includes a number
of SDO_RASTER row type objects, each of which
represent a single raster block. Where the two
previous solutions saves a pixel per row in the
RDT, GeoRaster stores the images in chunks in
a binary large object whose dimensions are de-
fined by a blocking size option. As documented
by [30], GeoRaster will generally perform better
when the blocking size is close to the typical query
size. In our case, the blocking size has been set
to 16 × 16. Each block has a range of attributes
attached—rowBlockNumber and columnBlockNum-
ber are equivalent to the x and y columns of the
coordinate-based solution, only they describe the
position of a block and not a pixel. The attributes
pyramidLevel and bandBlockNumber are not used
in the context of Weathr. Pyramids is a feature of
GeoRaster for building pyramid structures from the
images that it stores, delivering different resolutions
depending on, e.g., zoom level in a GIS application.
Furthermore, the images received from a LAWR
radar are single-banded, meaning that the band-
BlockNumber attribute will remain zero through-
out. Each SDO_RASTER object is saved in an RDT
named georaster rdt in Figure 14. No relational
constraints are depicted in the figure since none ex-
ist in the GeoRaster object-relational schema. In-
stead, the RDT’s integrity is maintained by DML
triggers on the image column of the georaster ta-
ble.

GeoRaster offers different ways of querying raster
image data stored in the database, of which
the three most relevant ones are: (i) A pro-
cedure SDO_GEOR.getRasterData returns through
an OUT parameter an entire raster image as a
BLOB object. Using this procedure in our sce-
nario would basically reduce GeoRaster to an ad-
vanced BLOB storage mechanism. (ii) A func-
tion SDO_GEOR.getCellValue returns the value
of a single pixel in the raster image when sup-

Georaster result

Geometry

Figure 15: Post-processing when using GeoRaster.
Excess pixels (colored gray) are filtered out from
the result set.

plied with either a raster space coordinate—
i.e., (row, column)—or a point geometry of type
SDO_GEOMETRY. Preliminary tests have shown that
this function has a time complexity of O(n), where
n is the amount of pixels in an image, meaning that
querying subsets of an image is very slow when us-
ing the getCellValue function. In other words,
querying 400 pixels takes about 1.5 seconds, and
querying an entire 240×240 image takes over 3 min-
utes. This is obviously not acceptable for querying
large portions of an image. Finally, (iii) a proce-
dure SDO_GEOR.getRasterSubset returns through
an OUT parameter a subset of a raster image by
passing a window parameter from which to crop the
pixels. A window is defined by upper-left and lower-
right coordinates as specified by raster space coor-
dinates or the MBR of a geometry object of type
SDO_GEOMETRY. Also, a window can be defined us-
ing positions on the Earth’s surface if valid Spatial
Reference Identifier (SRID) values are defined for
the geometry object. The getRasterSubset pro-
cedure returns an image encoded using a variety of
well-known graphics file formats (TIFF, GeoTIFF,
PNG, etc.), and output is limited to the rectan-
gular nature of the MBRs surrounding geometry
objects. This means that, when using GeoRaster,
post-processing must be performed in order to fil-
ter out excess pixels, since we can not specify an
arbitrarily-shaped window geometry [31]—see Fig-
ure 15.

4.4.1 Indexing

The indexing schemes applied on top of the Geo-
Raster solution are recommendations from Sec-
tion 3.7 of the GeoRaster Developer’s Guide [31].
It is recommended that each RDT is applied a B-
tree index on the columns rasterId, pyramidLevel,
bandBlockNumber, rowBlockNumber, and column-

14

1 GeoRasterRange (geom :SDO GEOMETRY; t1 , t2 :
TIME TYPE) :SQL RESULT i s

2 do
3 geoResult :=queryMBRData(geom , t1 , t2) ;
4 p i x e l s := r a s t e r i z e (geom) ;
5 for i :=0 to geoResult . s i z e ()−1 do
6 r e s u l t . union (f i l t e r (p i x e l s , geoResult .

getRow(i))) ;
7 end ;
8 return r e s u l t ;
9 end ;

Listing 5: GeoRaster-based range query.

BlockNumber. This indexing is obtained implicitly
since these columns have been defined as primary
keys of the RDT. Furthermore, a spatial index on
the spatialExtent attribute of the SDO_GEORASTER
object should be applied. The latter is highlighted
as the most important index. In the scenario of
Weathr, however, we do not expect any particu-
lar gains from this latter index during performance
testing. This is due to all LAWR images currently
being georeferenced in exactly the same position,
since there is only one LAWR, rendering the spa-
tial index inconsequential.

4.4.2 Range Query

A spatiotemporal range query in the GeoRaster-
based solution basically consists of extracting a sub-
set of a number of images by supplying a window
parameter, and subsequently filtering out excess
pixels. First, a geometry and a temporal range is
supplied by the user. Then a rectangular subset
of raster data is returned by the getRasterSubset
procedure by passing it the MBR of the geometry as
a window parameter. Second, the geometry is ras-
terized, identifying exactly which pixel values need
to be part of the query result. Finally, the Geo-
Raster result set is iterated through, filtering out
pixels that do not overlap the rasterization from
the previous step. The result is all pixel values
that overlap the original geometry. This process
is repeated for all images in the provided temporal
range.

Listing 5 shows the algorithm for executing a
GeoRaster-based range query. The algorithm is rel-
atively abstract, concealing most of the logic behind
a call to the queryMBRData function in line 3. In
short, this function is responsible for querying the
database for raster data using the GeoRaster SQL
API. In order for it to do this, it is passed three
arguments: a user-created geometry defining the
spatial range and two timestamps t1 and t2 defin-
ing the temporal range. For each image within the

1 GeoRasterkNN(cente r :COORD TYPE; t1 , t2 :
TIME TYPE) :SQL RESULT i s

2 do
3 running :=true ;
4 kFound :=0;
5 r i ngLeve l :=0;
6 while (running) do
7 r ing :=getRing (r ingLeve l , c en te r) ;
8 subResult :=queryRingData (r ing , t1 , t2) ;
9 kNNResult . union (subResult) ;

10 kFound:=kFound+subResult . s i z e () ;
11 i f (kFound ≥ k)
12 running := fa l se ;
13 end ;
14 r i ngLeve l++;
15 end ;
16 end ;

Listing 6: GeoRaster-based k-NN query.

temporal range, a subset of raster data is extracted
by calling the GeoRaster getRasterSubset proce-
dure mentioned earlier, passing it the MBR of the
geometry as a window parameter. In line 4 the
input geometry is rasterized. The result of the ras-
terization is used in conjunction with the extracted
raster data in lines 5–7, where excess pixels are fil-
tered out of the raster data by the filter function,
as illustrated in Figure 15. Finally, in line 8, the
result of the range query is returned.

4.4.3 Single-Point Query

A single-point query using GeoRaster is imple-
mented using the function getCellValue men-
tioned earlier. The rasterizer component takes in a
real-world coordinate and outputs the correspond-
ing pixel position. This pixel position is then fed to
the getCellValue function, which in turn outputs
the appropriate pixel value.

4.4.4 k-NN Query

The GeoRaster-based k-NN query is similar to the
coordinate-based k-NN query. It is based on the
same principle of fetching rings of data, one ring
at a time. The only real difference lies in the
way data is queried. Using GeoRaster, data is
queried by repeatedly calling the getCellValue
function. An implementation that instead utilizes
the getRasterSubset procedure is also feasible,
but that would have implied that each fetch of a
ring of data consist of also fetching everything in-
side the ring.

The algorithm for executing a GeoRaster-based
k-NN query is shown in Listing 6. It is virtu-
ally identical to Listing 2, except for line 8 where
data is queried by the queryRingData function.

15

Application Profile Data

Radar Images

StreamSpin ClientWeb Client

View
DataLAWR incoming

Data file
(VRIS/ASCII format)

User Profiles

Geometries

Radar
Definitions

(GUI)
JSF +
Facelets

StreamSpin
User Location

(Servlet)

Oracle Database

Weathr In-Memory Live
Component

Database logic

Data Access Component

Session Beans & Seam Components

Application Server

Filesystem

Data Monitor

StreamSpin Service
Component

Spatiotemporal Query
Facade

Logic

Figure 16: Overall system architecture.

Querying data in this case consists of calling the
getCellValue function on the pixels covered by
the ring calculated in line 7. Note that this is
done for all images within the temporal range de-
fined by t1 and t2. Additionally, pixels returning a
value of zero are filtered out from the result of the
queryRingData function. The rest of the algorithm
proceeds as previously explained.

5 Architecture and Integra-
tion

The previous section dealt with the design of algo-
rithms and database schemas. This section broad-
ens the scope and deals with the implementation
and integration into the prototype introduced in
[1].

5.1 Application Architecture

The base of the application architecture is drawn
from [1], presenting a highly modular design based
on a three-tier architecture, separating concerns
into view, business-logic, and persistence. Fig-
ure 16 shows an overview of the current proto-
type architecture. For a detailed description of
the overall system architecture—in particular the
grayed out components—consult [1]. Where the
usual three-tier architecture describes a clear sepa-
ration of concerns, this prototype breaks the con-
vention somewhat since portions of the domain spe-
cific logic has been moved into the DBMS. This
is, more specifically, the logic concerned with spa-
tiotemporal querying as presented in Section 4.

The Weathr application is built on the JBoss
Seam application framework, which is a framework
aimed at developing rich internet applications that

integrates a wide variety of components and stan-
dards from the Java community into a complete
enterprise application framework. The front-end is
implemented by utilization of JSF/Facelets, which
is a component-based view technology.

The model of the application is tightly integrated
with the database through the Hibernate Object
Relation Mapping (ORM) tool, which serves as part
of the JBoss implementation of the EJB3 specifica-
tion. Hibernate conforms to the JPA (Java Persis-
tence API), but delivers some additional extensions
which come in handy for implementing the data ac-
cess layer.

5.2 Data Layer

Moving from the bottom of Figure 16, we start out
by presenting the Oracle Database layer.

5.2.1 Oracle Database

The table design of the prototype is in close corre-
spondence to that of the ER diagram and schema
designs presented in Section 4. In addition, a
few other tables are present. Geometries are
constructed from the coordinates delivered from
Google Maps. These geometries are represented in
latitude/longitude coordinates in a Google-specific
mercator projection. Internally the components op-
erate in the Universal Transverse Mercator (UTM)
projection. Since coordinate reference system con-
version is irreversible without introducing precision
loss, the original geometries are stored in the ge-
ometry table. A database view is not applicable
for handling this, since a spatial index cannot be
applied on views and is needed for a spatial join
process between radar bounds and the geometries
used as a prefiltration step before each query. Mate-
rialized views do not allow update on commit time
when a function is involved. Instead, a trigger man-
aged table is kept of the converted geometries in
UTM projection. Furthermore, temporary tables
are used for intermediate storage for k-NN queries
and for storage of geometries for non-saved queries.

The query logic for all three solutions is imple-
mented primarily by the use of Java stored proce-
dures in correspondence to the pseudo code of Sec-
tion 4, returning either result cursors or SQL table
types.

5.3 Application Server

Stepping up in Figure 16, we have the prototype
itself which runs on a JBoss application server. In
the following section, the data access component

16

integrating the link between the database and the
application is described.

5.3.1 Data Access Component

The Data Access component can be separated into
three parts: (i) An entity model, (ii) Data Ac-
cess Objects (DAO), and (iii) the Object Relational
Mapping (ORM) engine.

All communication between the application and
the database takes place through the data access
component which comprises a set of annotated Hi-
bernate entity objects modeled according to the
presented ER diagram in Figure 8 as to reflect the
database schema design.

All geometries in the model are mapped through
Hibernate ORM with the extension project named
Hibernate Spatial [32], which is a set of tools pro-
viding mapping between vendor-specific spatial sys-
tems such as Oracle Spatial, PostGIS, and the Java
Topology Suite (JTS) [33], which is a light, yet
powerful, spatial library for Java that conforms to
the “Simple Features Specification for SQL” by the
Open GIS Consortium [34]. This adds the pos-
sibility of using the JTS geometries as attributes
on the entity objects and have Hibernate persist
them to disk—in this case as the Oracle-specific
SDO_GEOMETRY spatial type.

As previously mentioned, the spatiotemporal
queries are performed on the database through a
number of stored Java functions. Normally, en-
tity objects map to corresponding tables on the
database. In order to execute the stored Java func-
tions, one possibility would have been to retrieve a
connection through the Hibernate entity manager
and issue direct queries through JDBC and subse-
quently unmarshalling the data to objects. How-
ever, Hibernate supports mapping native queries
and callable statements to entity objects as long as
a database cursor is returned at the first parameter
index of the statement. This is simply implemented
as an entity bean for the range query and another
for the k-NN query, each with the proper Hiber-
nate annotations and attributes corresponding to
the return values for the particular query type.

All DAOs inherit from an abstract generic class
implementing the most basic queries such as selec-
tion of single entities based on the primary key iden-
tifier, persisting entities, and loading all entities.

Present are DAOs for, e.g., retrieving users based
on different search criteria and a trivial one for load-
ing user roles. The most interesting DAO, however,
is the ImageDAO which, besides retrieving the image
data into the application, contains the code for ex-
ecuting the spatiotemporal queries. These access
methods are listed in Listing 7. Line 1 carries out

1 List<RangeQueryObject> range (int geomId , Date
from , Date to) ;

2 List<RangeQueryObject> range (Geometry geom ,
Date from , Date to) ;

3 List<KNNObject> knn (int pointId , Date from ,
Date to , int kResults , int lower , int
upper) ;

4 List<KNNObject> knn (Point point , Date from ,
Date to , int kResults , int lower , int
upper) ;

Listing 7: Spatiotemporal DAO Interface.

a range query given a geometry ID reference to a
stored geometry. Line 2 is an overload of the previ-
ous method, carrying out the query on a non-saved
geometry. Line 3 issues a k-NN query given an id
reference to a point geometry ID, a date range, a
value k, and lower and upper bound for the precip-
itation levels that must be considered results.

5.3.2 Spatiotemporal Query Facade

The spatiotemporal query facade is a quite shal-
low component, since all query logic is contained in
the database. The interface is equal to that of the
ImageDAO. It merely exists for the purpose of com-
plying with the architecture of the rest of the pro-
totype and for accommodating future extensions.
It is basically a single class which is the entrance
point for all other parts of the application.

5.3.3 Session Beans and Seam Components

The session beans and seam components depicted
in Figure 16 forms the entrance point for the view
layer components. These components reflect the
different tasks from a user’s point of view, such
as user registration and authentication, adminis-
tration, and most importantly of all, a component
for issuing queries both on live and historical data.

5.4 User Interface

The user interface has been extended from that pre-
sented in [1], adding animated forecasts, a push-
style update of data on the interface when new
data arrives, utilizing Java Messaging features of
the Seam Remoting component. Most important
of all is that users are now able to issue historical
queries on both saved and non-saved geometries.
Whenever the user issues, e.g., a historical range
query, he chooses an already created geometry or
creates one by clicking the Google Maps interface.
He then specifies a temporal range and hits a sub-
mit button. The result of the range query is re-

17

turned as a chart showing the precipitation levels
within the geometry throughout the provided tem-
poral range.

6 Performance Study

This section describes the results from a number of
tests carried out in order to study the performance
of the three solutions devised for performing histor-
ical queries in Weathr. Performance is measured
on several factors. In the first test, the space us-
age of each individual solution is measured. In the
second, the query execution performance of spa-
tiotemporal range, single-point, and k-NN queries
is tested. First, however, a brief summary of the
test environment is presented.

6.1 Test Environment

All tests have been carried out on a machine
equipped with a quad core Intel Xeon 2.13 GHz
CPU, four hard disk drives, and 4 GB memory. The
machine is running the Debian GNU/Linux oper-
ating system, the JBOSS Application Server, and
Oracle Database 11G.

The Weathr database instance is configured to
use automatic shared memory management and
is equipped with a shared memory space roughly
half the size of the amount of physical memory
(∼2 GB). Furthermore, database log settings have
been changed from their defaults, storing the logs
on a separate disk in order to minimize disk I/O
impact when maintaining log files.

Finally, in order for the cost-based optimizer
(CBO) to make the best execution plan for our SQL
queries, statistics are gathered from the tables and
indexes that participate in the queries. This is done
by calling dbms_stats.gather_schema_stats just
before executing the tests. Note that no additional
data arrives at the system while the tests are run-
ning, ensuring that the gathered statistics are al-
ways up to date and thereby enabling the CBO to
consistently make an informed decision.

6.2 Space Usage

The purpose of this first test is to outline the space
requirements of each solution. Given the append-
only storage requirement of the prototype—i.e.,
new LAWR data sets constantly being stored in
the database, never to be deleted—a space effi-
cient storage mechanism is of great value. The
coordinate- and Hilbert-based solutions imple-
ment almost identical database schema layouts,
both storing a single pixel per row, whereas the

GeoRaster-based solution differs by storing images
in blocks, where each block is a subset of the origi-
nal image. Furthermore, due to the way GeoRaster
stores images—i.e., using image compression tech-
niques such as JPEG or Deflate—all pixel values
from the original images are stored, including zero-
values. A test conducted in [1] shows that approxi-
mately 97.2 percent of the values in 18 days worth
of data (a total of 5,184 data sets) were zero-values,
meaning that the coordinate- and Hilbert-based so-
lutions only store approximately 2.8 percent of the
entire amount of LAWR data.

Figure 17(a) shows the distribution of the data
used for measuring space requirements. The data
spans a period from March 24th to June 2nd, during
which a LAWR data set has been received once ev-
ery five minutes. Note that due to LAWR downtime
during that period, the actual number of data sets
received is 12070. Figure 17(b) contains a graph
showing the space requirements for the RDT of all
three solutions. The four rightmost bars represent
the Coordinate- and Hilbert-based solutions—two
bars for each, showing space usage using a heap ta-
ble and an IOT, respectively. As expected when
using a heap table, the index segment takes up
roughly as much space as the actual data stored
in the table segment. In terms of storage require-
ments, it is clear that IOTs represent a massive
reduction, requiring approximately half that of a
heap table. Furthermore, the Hilbert-based solu-
tion has a slightly lower space usage due to the
representation of a two-dimensional coordinate us-
ing a one-dimensional skey value. The two leftmost
bars show the space usage of the GeoRaster RDTs.
Both use considerably more space compared to the
other RDTs, especially when storing uncompressed
data. But even when compressing the data using
the Deflate compression algorithm, the GeoRaster
RDT uses almost four times the space compared to
the Hilbert RDT using an IOT.

6.3 Querying

In this section, the three query types—i.e., range,
single-point, and k-NN—are tested for execution
time. The LAWR image data used for testing con-
sists of actual recorded data as to assure the tests
do not fall far from a real-world scenario.

6.3.1 Range Query

Performance testing the spatiotemporal range
query consists of two subtests. The first subtest
is designed to emulate a real-world scenario during
heavy load. It has been performed by concurrently
querying 500 predefined geometries with sizes and

18

0

250000

500000

750000

1000000

1250000
24

/3
27

/3
30

/3 2/
4

5/
4

8/
4

11
/4

14
/4

17
/4

20
/4

23
/4

21
/5

24
/5

27
/5

30
/5 2/
6

Nu
m

be
r o

f n
on

-z
er

o
pi

xe
ls

pe
r d

ay

Date

(a) Data statistics.

0

200

400

600

800

1000

1200

1400

G
eo

Ra
st

er

G
eo

Ra
st

er
w/

 c
om

pr
.

Co
or

di
na

te

Co
or

di
na

te
w/

 IO
T

Hi
lb

er
t

Hi
lb

er
t

w/
 IO

T

Si
ze

 in
 M

B

Index segment Table segment

(b) Space usage per solution.

Figure 17: Space usage.

0

22500

45000

67500

90000

0 1 2 3 4 5 6 7

Hilbert IOT Hilbert
XY IOT XY
Georaster

Figure 18: 500 concurrent range queries.

shapes that can be described as being “realistic”—
covering fields, small towns, buildings etc., having
an average pixel coverage of ∼ 5 3

4 . The geome-
tries are distributed across the entire range of the
LAWR, with only few overlaps. The test is repeated
with temporal ranges that range from a single day
to seven days in single-day steps—ultimately cov-
ering March 25th to April 1st.

In case of the coordinate- and Hilbert-based solu-
tions, the range query is tested using both regular
heap tables as well as IOTs. It is expected that the
IOTs perform slightly faster than heap tables due
to them being organized on disk in search key order,
making a query consist of less random block reads
due to the index and table segments being merged
together. The GeoRaster-based solution does not
have such advantages when executing a spatiotem-
poral range query, and must in addition perform a
filter step to eliminate excess pixels.

Figure 18 presents the results from the first
subtest. The GeoRaster graph is completely off
the chart, consuming a whopping 1046101 ms (∼
17, 5 minutes) when executing 500 concurrent range
queries with a single-day temporal range. The up-
ward curvature on the remaining graphs is pre-
sumably due to an increasing data amount around
March 31st to April 1st—see Figure 17(a). There
are no noticeable differences in the performance
graphs of the IOT and heap table graphs. Some
tests have shown results in favor of IOT and some
the opposite. The explanation is that data has
been loaded into the heap tables in sorted order
as to reflect the append only nature of the sys-
tem, mimicking the organization of the IOT. This
is, however, a pleasing result considering the fact
that an IOT consumes roughly half the space of
a regular heap table with an index on top. But
perhaps more interesting is the fact that the per-
formance of the Hilbert-based solution compares to
that of the coordinate-based solution, meaning that
using a Hilbert space-filling curve for indexing spa-
tial raster data has seemingly no worthwhile effect.
A likely reason for this lies with the size of “realis-
tic” geometries. With a pixel size of 500m× 500m,
such a geometry covers only few pixels and does
therefore not gain from constructing SQL state-
ments from segments of skeys. Figure 19 shows
the distribution of the various segment sizes found
using the scan line algorithm of the coordinate-
based solution and the subcurve algorithm of the
Hilbert-based solution, respectively. The Hilbert-
based solution produces the most segments of size
one, meaning that it also requires the most random
block reads.

19

0

70

140

210

280

350

420

490

560

630

1 2 3 4 5 6 7 8 9 11 15 16 20 22 27 35 38 44

O
c
c
u
rr

e
n
c
e
s

Segment size

Hilbert Coordinate

Figure 19: Segment size distribution in 500 geome-
tries.

An interesting side note is that reversing the com-
posite index—e.g., (skey, image id)—would provide
a performance benefit, causing the entire tempo-
ral range for a single pixel to lie adjacently in the
index. Results from an identical test with a re-
verse composite index applied are presented in Fig-
ure 20. The reversed index is clearly faster, yielding
nearly constant performance as the temporal range
increases. This is due to the entire temporal range
for each pixel being read using a single sequential
block read. Furthermore, during execution of the
first subtest, a substantial amount is spent on CPU
activity with only little I/O, meaning that the spa-
tiotemporal range query is CPU bound. This sug-
gests that the GROUP BY statement and the SUM ag-
gregate function are the most expensive operations
in the SQL statement.

The goal of the second subtest is to further mea-
sure the consequence of using a space-filling curve
for indexing two-dimensional raster space. The
locality-preserving behavior of the Hilbert curve en-
sures that data is indexed in such a way that the

0

9600

19200

28800

38400

48000

57600

1 2 3 4 5 6 7

Ex
ec

ut
io

n
tim

e
in

 m
s

Temporal range span in days

Hilbert IOT Hilbert w/ reverse idx

Figure 20: 500 concurrent range queries—with and
without reverse index applied.

0

3750

7500

11250

15000

18750

22500

12 99
2

35
40

76
56

13
34

0
20

59
2

29
41

2
39

80
0

51
75

6
65

28
0

80
37

2
97

03
2

11
52

60
13

50
56

15
64

20
17

93
52

20
38

52
22

99
20

Ex
ec

ut
io

n
tim

e
in

 m
s

Polygon pixel coverage
Hilbert Coordinate

Figure 21: Varying geometry pixel coverage.

pixels covered by a geometry will be located in close
proximity in the index, as described in Section 4.3.
Ultimately this should lead to faster performance
when querying a spatial region. It is expected that
as geometries grow larger, the Hilbert curve will
show increasingly larger performance benefits. This
expectation is based on the fact that the larger a
geometry becomes, the more pixels it will cover,
and in return the larger the subcurves of adjacent
skeys will become. Additionally, considering that
the Hilbert curve moves in either a horizontal or
vertical direction, the largest subcurves are found
in rectangular geometries. For the purpose of this
subtest, data sets with larger resolution are gener-
ated by recursively splitting the pixels of the origi-
nal 240×240 LAWR data sets, giving an RDT with
pixel size 125m× 125m and dimensions 960× 960.
The desired effect of this is to make geometries
cover a larger amount of pixels due to the smaller
pixel size. 120 rectangular geometries with increas-
ing pixel coverage are generated and queried with
a temporal range used covering a single image only,
ensuring a focus on spatial query performance.

Figure 21 presents the results from the second
subtest. As can be seen from the two graphs,
the Hilbert- and coordinate-based solutions per-
form very similarly, apart from some fluctuations.
This is unfortunate in case of the Hilbert-based so-
lution, since the test results clearly show that the
use of a Hilbert curve for indexing two-dimensional
raster space does not yield the desired performance
benefit. It seems that the scan line order in which
pixel values are read in the coordinate-based solu-
tion is every bit as efficient as utilizing the locality-
preserving behavior of the Hilbert curve. This
brings up a discussion on the characteristic of the
way LAWR data is stored in the database. Because

20

Coordinate Hilbert GeoRaster

1 day 121 ms 138 ms 3646 ms
3 days 126 ms 131 ms 10568 ms
5 days 128 ms 130 ms 17415 ms
7 days 146 ms 143 ms 22413 ms

Table 1: Single-point query with increasing tempo-
ral range.

only non-zero pixel values are present in a RDT
and non-zero values are few and far between in a
typical LAWR image, the data is best described as
being very sparse. As a possible explanation of the
outcome of the test, consider that even though a
geometry consists of large Hilbert subcurves, many
of these curves will cover only few rows in the RDT,
resulting in far smaller sequential block reads. Had
the data been dense, a large subcurve would result
in a sequential read fetching all rows covered by the
subcurve, allowing the locality-preserving behavior
of the Hilbert curve to improve performance.

6.3.2 Single-Point Query

The test devised for the single-point query type is
quite simplistic. No substantial difference in per-
formance is expected between the coordinate- and
Hilbert-based solutions, since the implementation
of each is very similar. Furthermore, a single-point
query is unable to take advantage of any locality-
preserving indexing, since only a single pixel is
queried for each LAWR data set in the tempo-
ral range. The GeoRaster-based solution, on the
other hand, is expected to perform several magni-
tudes slower in comparison. GeoRaster uses the
getCellValue function, which preliminary tests
have shown to be a slow performer—see Section 4.4.

Table 1 shows the results from performing a num-
ber of single-point queries with increasing tempo-
ral range. The outcome is as expected. GeoRaster
is slowest, taking up to over 150 times as long to
complete compared to the coordinate- and Hilbert-
based solutions. The two latter have comparable
performance.

Just as with the range query, the single-point
query is expected to benefit from using a reversed
composite index. Such a test has been performed,
but the result did not reveal any discerning differ-
ence compared to using a non-reversed composite
index. The reason for this is most likely caused
by only a minuscule amount of data being queried,
concealing any performance differences.

6.3.3 k-NN Query

As mentioned in Section 4.2.4, a k-NN query relies
on querying increasingly larger rings of data, un-
til a minimum of k results have been found or the
ring exceeds the boundaries of the data set. How-
ever, the coordinate-based solution offers an opti-
mization because pixels are arranged in a scan line
order, allowing a sequential read at the top and but-
ton of each ring, and thereby reducing the number
of random block reads.

Figure 11 illustrates how rings are built. L3 is
the third ring to be queried and consists of 24 pix-
els. By performing sequential reads at the top and
button rows of pixels in the ring, more than half
the pixels in the ring are fetched in two read op-
erations. This repeats itself in all rings visited by
a particular query. The remaining pixels in a ring
are, however, fetched by random block reads. As a
purely speculative note, consider the remaining pix-
els in a relatively small ring. Due to the closeness of
the pixels, these pixels may actually be fetched in
a sequential read if the database optimizer deems
this more cost-effective than performing additional
index lookups.

The locality-preserving behavior of the Hilbert
curve is not likely to provide measurable cost sav-
ings on k-NN queries since a ring of data does not
follow the sequential ordering of the Hilbert curve.
The Hilbert subcurves covered by a ring will typi-
cally have a length of just one or two pixels, whereas
only very few have a length of three pixels or more.
Turning to the GeoRaster-based solution, subpar
performance is once again expected since it—just
as the single-point query type—relies on the slow
getCellValue function.

Figure 22(a) illustrates the performance of the
Hilbert- and coordinate-based solutions using IOTs
for increasing values of k on real-world data sets.
The temporal extent remains constant throughout
and covers April 2nd 08:06 to April 2nd 12:06, con-
taining a total of 48 images. The graphs show that
the Hilbert-based solution is slightly slower com-
pared to the coordinate-based solution. Within
the specified temporal range there are 478 possi-
ble results to be found before reaching the LAWR
images boundaries. When setting k = 479, both
algorithms search through the entire spatial range
and terminate with 478 results found, taking the
coordinate-based solution 9993 ms and the Hilbert-
based solution 10153 ms. During this search, 120
rings have been constructed and queried, with ring
number 119 being the largest, consisting of 952 pix-
els. The reason for the Hilbert-based solution per-
forming slightly slower is most likely due to per-
formance overhead due to the conversion of skey

21

2000

2200

2400

2600

2800

1 5 10 15 20 25

Ti
m

e
in

 m
s

k

Coordinate Hilbert

(a) Coordinate- and Hilbert-based solutions.

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500
k

Ti
m

e
in

 m
s

(skey, image)(image, skey)

(b) Hilbert-based solution with different orderings on
the composite index.

Figure 22: k-NN query performance.

values—a conversion that has to be performed for
all the pixels in each ring query. The coordinate-
based solution’s advantage due to larger sequen-
tial block reads is most likely degenerated due to
data being sparse. No graph is present for the
GeoRaster-based solution since the resulting curve
would simply not fit. At k = 1, the GeoRaster-
based solution takes ∼ 4 minutes before terminat-
ing. At k = 5, it takes ∼ 5 minutes, and at k = 25
it takes ∼ 7 1

2 minutes.
Figure 22(b) illustrates the performance of the

Hilbert-based solution when using different order-
ings on the composite index. The graphs show
that the k-NN query exhibits superior performance
when using the non-reversed composite key, i.e.,
(image id , skey). The relatively short temporal
range used in the test coupled with the charac-
teristics of the expanding rings, which creates an
increasingly larger spatial extent, degrades the ef-
ficiency of the reversed composite index by up to
a factor of twenty compared to the non-reversed
index.

7 Future Work

In order to optimize the performance of historical
queries that have large temporal ranges, a proposi-
tion is to gradually reduce the temporal granularity
of data by merging images as time goes. Consid-
ering that most users will probably tend to only
construct high-precision queries on recent LAWR
images, the temporal granularity can safely be re-
duced by, e.g., merging all images from an entire
day into a single image when the data is more than
a month old. As an added bonus, the space require-
ments of the prototype would as a consequence be
reduced dramatically.

Another interesting direction for future work is to
examine the tracking of precipitation regions. By
intelligently dividing each LAWR image into groups
of adjacent non-zero pixels, regions are formed that
represent rain clouds. An R-tree variant such as
the TPR-tree [35] could be used to track these re-
gions within LAWR data sets. The TPR-tree can
be used to enclose objects into MBRs with time as
a parameter. A spatiotemporal query could then be
answered by specifying a spatial query region q and
a temporal time interval t, and thereby retrieve all
objects that lie in q during t. An example of such a
query is “find all rain clouds that will be in Aalborg
in the next 10 minutes.”

8 Conclusion

This paper has presented a prototype for perform-
ing historical queries on LAWR raster data stored
in a database. The main requirement has been to
find an efficient solution for querying raster data,
both in terms of space usage and query execution
performance.

Three functionally equivalent implementations
have been made. One serves as a baseline for
comparison, based on Oracle’s GeoRaster compo-
nent for Oracle Database. The remaining two are
based on storing pixel values in a table along with
corresponding two-dimensional coordinates or one-
dimensional Hilbert keys, respectively. Three query
types are supported: spatiotemporal range, single-
point, and k-NN.

The GeoRaster-based implementation is by far
the worst performer of the three, typically perform-
ing several magnitudes slower. The Hilbert-based
implementation was initially expected to outper-
form the implementation based on two-dimensional

22

coordinates. Indexing two-dimensional raster space
using a Hilbert space-filling curve did, however, not
yield performance benefits. When querying spa-
tial data that has been indexed using a Hilbert
curve, the size and shape of the search window
is essential in terms of performance. The bigger
the window, the longer the individual Hilbert sub-
curves covered by the window will become, which
leads to fewer random block reads and more se-
quential ones. Also, rectangular search windows
will consist of longer Hilbert subcurves than con-
cave or bulging convex ones. This led to another
observation—using large rectangular search win-
dows in the Weathr scenario did not increase per-
formance. A possible explanation for this is that
indexing sparse raster data using a Hilbert curve
will possibly diminish performance. In other words,
when data is sparse, a typical subcurve will often
cover much fewer pixels than had the data been
dense, resulting in many index range scans being
reduced to, in the worst case, a random block read.

Raster data in Weathr is sparse because only
non-zero values are stored, and search windows in
the form of user-created geometries are often non-
rectangular and most always small in size. These
factors combined entail that it is undesirable to
use a Hilbert space-filling curve for indexing two-
dimensional raster images. In order for the Hilbert
curve to show performance benefits when indexing
two-dimensional raster data, the data must ideally
be dense and the search window must ideally be
large and rectangular.

Even though the Hilbert-based implementation
did not yield the results initially hoped for, the per-
formance of both it and the coordinate-based imple-
mentations are satisfactory, both answering queries
well within an acceptable time frame.

In terms of storage requirements, the GeoRaster-
based solution is the biggest offender, requiring
roughly four times as much or more compared to
the Hilbert-based solution using an IOT, depend-
ing on wether GeoRaster compression is applied or
not.

Acknowledgment

We would like to thank Michael R. Rasmussen from
the Department of Civil Engineering, Aalborg Uni-
versity for providing us with LAWR data sets, soft-
ware for calculating extrapolated forecast data sets,
and for answering questions throughout the project
period.

References

[1] Dennis B. Andersen, Martin L. Kristiansen,
Claus H. Poulsen, and Thomas Winterberg.
Weathr: a Prototype for Location-Based Pre-
cipitation Monitoring and Warning. 2007.

[2] Qingyun Xie and Jayant Sharma. Oracle
Spatial 11g GeoRaster: An Oracle Technical
White Paper. 2007.

[3] Rasdaman. http://www.rasdaman.com/.

[4] C. Faloutsos. Gray codes for partial match and
range queries. Software Engineering, IEEE
Transactions on, 14(10):1381–1393, 1988.

[5] C. Faloutsos and S. Roseman. Fractals
for secondary key retrieval. Proceedings of
the eighth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems,
pages 247–252, 1989.

[6] B.C. Ooi and K.L. Tan. B-trees: bearing
fruits of all kinds. Proceedings of the 13th Aus-
tralasian database conference-Volume 5, pages
13–20, 2002.

[7] Jochen Alber and Rolf Niedermeier. On mul-
tidimensional curves with hilbert property.
Theory of Computing Systems, 33(4):295–312,
2000.

[8] D. Hilbert. Ueber die stetige Abbildung einer
Line auf ein Flächenstück. Mathematische An-
nalen, 38(3):459–460, 1891.

[9] D.J. Abel and D.M. Mark. A comparative
analysis of some two-dimensional orderings.
International Journal of Geographical Infor-
mation Science, 4(1):21–31, 1990.

[10] HV Jagadish. Linear clustering of objects
with multiple attributes. Proceedings of the
1990 ACM SIGMOD international conference
on Management of data, pages 332–342, 1990.

[11] B. Moon, HV Jagadish, C. Faloutsos, and
J.H. Saltz. Analysis of the Clustering Proper-
ties of the Hilbert Space-Filling Curve. IEEE
TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, pages 124–141, 2001.

[12] M.D. McCool, C. Wales, and K. Moule. In-
cremental and hierarchical Hilbert order edge
equation polygon rasterizatione. Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pages 65–72,
2001.

23

http://www.rasdaman.com/

[13] S. Vassiliadis, S. Cotofana, and P. Stathis.
Block based compression storage expected per-
formance. Proceedings of HPCS2000, Victoria,
pages 389–406, 2000.

[14] A. M. Erisman I. S. Duff and J. K. Reid. Direct
Methods for Sparse Matrice. Oxford University
Press, 1989.

[15] S. Pissanetzky. Sparse Matrix Technology.
London-Orlando, Florida etc, 1984.

[16] G. Gundersen and T. Steihaug. Data struc-
tures in Java for matrix computations. Con-
currency and Computation Practice and Expe-
rience, 16(8):799–815, 2004.

[17] A. Guttman. R-trees: a dynamic index struc-
ture for spatial searching. Proceedings of the
1984 ACM SIGMOD international conference
on Management of data, pages 47–57, 1984.

[18] E.G. Hoel and H. Samet. Data-parallel spatial
join algorithms. Proceedings of the 23rd In-
ternational Conference on Parallel Processing,
pages 227–234, 1994.

[19] W.G. AREF and H. SAMET. Efficient Win-
dow Block Retrieval in Quadtree-Based Spa-
tial Databases. GeoInformatica, 1(1):59–91,
1997.

[20] Y. Nakamura and H. Dekihara. Spatial data
structures for version management of engineer-
ing drawings in CAD database. Image Analysis
and Processing, 2003. Proceedings. 12th Inter-
national Conference on, pages 219–225, 2003.

[21] StreamSpin. http://www.streamspin.com/.

[22] Google Maps. http://maps.google.com/.

[23] Oracle R© Database Concepts 11g Release 1
(11.1). http://download.oracle.com/docs/
cd/B28359_01/server.111/b28318.pdf.

[24] Shirley Ann Stern. Oracle9i Index-Organized
Tables: Technical Whitepaper. 2001.

[25] Alon Peled. Index-Organized Tables: When
should they be used? SELECT Magazine,
pages 59–91, 2002.

[26] H.S. Warren. Hacker’s Delight. Addison-
Wesley Professional, 2002.

[27] WM Lam and JH Shapiro. A class of
fast algorithms for the Peano-Hilbert space-
fillingcurve. Image Processing, 1994. Proceed-
ings. ICIP-94., IEEE International Confer-
ence, 1, 1994.

[28] Jean Ihm, Xavier Lopez, and Siva Ravada. Or-
acle Spatial 11g: Advanced Spatial Data Man-
agement for Enterprise Applications. 2007.

[29] Oracle GeoRaster Java API. http:
//www.oracle.com/technology/software/
products/spatial/index.html, As of March
19 2008.

[30] Jeffrey Xie Zhun Li Terry Xu. Oracle Database
10g GeoRaster: Scalability and Performance
Analysis. 2005.

[31] Chuck Murray. Oracle Spatial: GeoRaster De-
veloper’s Guide. 2007.

[32] Hibernate Spatial. http://www.
hibernatespatial.org/.

[33] Vivid Solutions - JTS Topology Suite.
http://www.vividsolutions.com/jts/
jtshome.htm.

[34] Open GIS Consortium. http://www.
opengeospatial.org/.

[35] S. Šaltenis, C.S. Jensen, S.T. Leutenegger, and
M.A. Lopez. Indexing the positions of continu-
ously moving objects. ACM SIGMOD Record,
29(2):331–342, 2000.

[36] T. Bially. Space-filling curves: Their genera-
tion and their application to bandwidth reduc-
tion. Information Theory, IEEE Transactions
on, 15(6):658–664, 1969.

24

http://www.streamspin.com/
http://maps.google.com/
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318.pdf
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318.pdf
http://www.oracle.com/technology/software/products/spatial/index.html
http://www.oracle.com/technology/software/products/spatial/index.html
http://www.oracle.com/technology/software/products/spatial/index.html
http://www.hibernatespatial.org/
http://www.hibernatespatial.org/
http://www.vividsolutions.com/jts/jtshome.htm
http://www.vividsolutions.com/jts/jtshome.htm
http://www.opengeospatial.org/
http://www.opengeospatial.org/

	Introduction
	Related Work
	System Overview
	Queries & Algorithms
	Geometry Rasterization
	Coordinate-Based Solution
	Indexing
	Range Query
	Single-Point Query
	k-NN Query

	Hilbert-Based Solution
	Indexing
	Range Query
	Single-Point Query
	k-NN Query

	GeoRaster-Based Solution
	Indexing
	Range Query
	Single-Point Query
	k-NN Query

	Architecture and Integration
	Application Architecture
	Data Layer
	Oracle Database

	Application Server
	Data Access Component
	Spatiotemporal Query Facade
	Session Beans and Seam Components

	User Interface

	Performance Study
	Test Environment
	Space Usage
	Querying
	Range Query
	Single-Point Query
	k-NN Query

	Future Work
	Conclusion

