
AEROELASTIC RESPONSE OF HIGH-RISE BUILDINGS
MASTER THESIS BY ANDERS TRONDAL SVENDSEN AND ALLAN MICHAELSEN

DEPARTMENT OF CIVIL ENGINEERING - AALBORG UNIVERSITY - 2008

.
.

Aeroelastic Response of
High-Rise Building

.

.
Master Thesis by

.
Anders Trondal Svendsen & Allan Michaelsen

.
Department of Civil Engineering, Aalborg University

September 2007 - June 2008
.
.
.
.
.
.
.

Anders Trondal Svendsen Allan Michaelsen

.
.

Abstract

The present report deals with the aeroelastic response of high-rise buildings. The
wind flow around an assumed square cylindrical high-rise building is modeled us-
ing the commercial CFD-program Ansys CFX 11. To model the Fluid-Structure
Interaction (FSI) a FEM beam model is used to represent the structure while the
dynamic model is set up using a modal representation.

A method for generating 3D meshes suitable for exterior flow around a rectan-
gular cylindrical building is presented, with basis in an algorithm for generating
2D meshes using a hyperbolic grid generation scheme. Some simple mechanisms
to ensure a smoother mesh are presented as well. The difference between using
structured and unstructured meshes are analyzed, and it is concluded that use
of structured meshes is superior with respect to computation time.

An analysis is then performed to see, which methods for governing mesh stiffness
during mesh deformations in Ansys-CFX is best, and on basis of 2D analyses it
is concluded that the use of the reciprocal of the wall distance as stiffness pa-
rameter, or use of the built-in function ’Increase Near Boundaries’ show superior
performance.

Due to limited availability of computational power in the project, analyses are
made determining the effects of using simulation settings that are less than ideal.
In these analyses it is shown that these delimitations show little influence on the
loads on the building in the streamwise direction, but that the loads in the cross
stream direction show strong dependency.

The effect of modeling the aeroelastic response of a high-rise building is de-
termined, by comparing the response of two different simulations, one where the
structure is allowed to move freely, and one where it is stationary. It is concluded
that there is an obvious difference between the two methods.

Finally the aeroelastic load response of a high-rise building are obtained by use
of flutter derivatives, and it is shown that this method gives qualitatively good
results, and seems applicable to use on high-rise buildings. The response is found
using the two first eigenmodes only, and the effects of including more eigenmodes
is not analyzed.

- i -

.

- ii -

Preface

This Master Thesis is written by Allan Michaelsen and Anders Trondal Svendsen
during the 3rd and 4th semester of the Masters of Structural and Civil Engineer-
ing Programme at the Department of Civil Engineering, Aalborg University. The
theme of the thesis is "Aeroelastic Response of High-Rise Buildings".

The thesis consists of a report and a DVD. The report is divided into a main
part and an appendix. The DVD contains the thesis in .tex and .pdf format,
as well as the programs, simulation setups, and data files produced throughout
the course of the project period. The files on the DVD are generated using the
following programs:

Ansys-CFX 10.0 CFD program
Ansys-CFX 11.0 CFD program
CorelDRAW 9 Graphics program
MatLab R2007b Math program
Microsoft Visio Graphics program
Microsoft Visual Studio 2005 Text editor
MiKTeX 2.7 LATEX source program (freeware)
WinEdt 5 LATEX text editor (shareware)

The chapters in the report are numbered 1,2,3 etc. and the appendices are num-
bered A,B,C etc. The references in the thesis are made using the Harvard model,
as follows; [Surname(s) Year, page number(s)].

In the equations throughout the report, the following notation has been used:

- Matrices are written in capital letters using a bold font as: M, K

- Vectors are written in small letters using a bold font as: q, q̇

- Variables, constants, and coefficients are written in using italic font as: u, C

The Master Thesis has been written under the supervision of Assistant Profes-
sor Jesper Winther Stærdahl from Aalborg University and Professor Niels N.
Sørensen from Risø.

- iii -

.

- iv -

Contents

1 Introduction 1

1.1 Project Description . 2

1.1.1 Hyperbolic Mesh Generation 3

1.1.2 Mesh Analyses . 3

1.1.3 Analyses Moving Mesh in CFX 3

1.1.4 Model Setup in CFX . 3

1.1.5 Structural Model . 4

1.1.6 Preliminary Analyses . 4

1.1.7 Effect of Modeling Aeroelastic 4

1.1.8 Modal Response . 4

1.1.9 Conclusion . 4

2 Hyperbolic Mesh Generation 7

2.1 Implementation of Algorithm into a MatLab Program 8

2.1.1 main.m . 9

2.1.2 calcspline.m . 10

2.1.3 spline2.m . 11

2.1.4 spline.m . 12

2.1.5 stretchf.m . 12

2.1.6 expanfct.m . 13

2.1.7 hypgrid.m . 15

2.1.8 TDMA.mexw32 or TDMA_cyclic.mexw32 15

2.1.9 mesh3d.m . 16

2.1.10 plug3d.m . 17

2.1.11 mesh_gen.m . 19

2.2 Examples . 21

2.2.1 Dissipation . 21

2.2.2 Volume averaging . 22

2.2.3 Surface node distribution 24

2.3 Alternative Methods for 3D Mesh Generation 24

- v -

0 Contents

3 Mesh analysis 27
3.1 Test case . 28

3.2 Unstructured mesh . 30

3.2.1 Inflation layers . 32

3.3 Structured mesh . 33

3.4 CFD input and Definitions . 35

3.4.1 Domain Parameters and Global Initial Conditions 35

3.4.2 Boundary Conditions . 36

3.5 Results . 37

3.5.1 Unstructured Mesh . 37

3.5.2 Unstructured mesh with inflation layers 41

3.5.3 Structured Mesh . 44

3.6 Observations . 50

4 Analyses of Moving mesh in CFX 53
4.1 Test case . 54

4.1.1 Constant Stiffness . 58

4.1.2 Reciprocal of Wall Distance 59

4.1.3 Tanh Function . 59

4.1.4 Cos Function . 61

4.1.5 Increase near Boundaries 61

4.1.6 Increase near Small Volumes 62

4.1.7 Summary . 62

5 Model Setup for Aeroelastic Analyses 71
5.1 Simulation Setup . 72

5.1.1 Domain Parameters and Global Initial Conditions 73

5.1.2 Turbulence Model . 74

5.1.3 Boundary Conditions . 76

5.1.4 User Routines and User Functions 79

5.2 Pressure Variables . 82

6 Dynamic Model 85
6.1 Structural Model . 86

6.1.1 Stiffness and Mass Matrices for a Single 3D Beam Element 88

6.1.2 Assembling Global Stiffness and Mass Matrices 92

6.2 Obtaining Loads . 94

6.2.1 Obtaining Nodal Loads 95

6.3 Modal Model . 96

6.3.1 Modal Damping Matrix 97

6.4 Obtaining Nodal Displacements 97

- vi -

0 Contents

6.5 Obtaining Displacement of Structure 98
6.6 Areas of Concern . 98

6.6.1 Fortran77 vs Fortran90 . 99
6.6.2 Allocation of Space for Variables 99
6.6.3 Initialization of Variables 99
6.6.4 Writing to and reading from the stacks 100

7 Preliminary Analyses 101
7.1 Mesh fineness . 102

7.1.1 Mesh . 103
7.1.2 Time step and duration 104
7.1.3 Results . 107

7.2 Coefficient loops . 111
7.3 Time Step . 115
7.4 Initial Conditions . 118
7.5 Observations . 121
7.6 Capturing Vortex Shedding . 122

8 Effect of Modeling Aeroelasticity 127
8.1 Stationary Simulation . 129
8.2 Aeroelastic Simulation . 129
8.3 Comparison of Methods . 131

9 Modal Response 135
9.1 Method for Determining Coefficient Matrices 136
9.2 Simulation Setup and Observations 139
9.3 Results . 141

9.3.1 Determination of Coefficients 141
9.3.2 Test of Model . 145

9.4 Comparison of Results . 148

10 Conclusion 151
10.1 Suggestions for Improvements . 153

10.1.1 CFD Simulation Setup . 154
10.1.2 Load Determination . 154
10.1.3 Mesh Generation . 155
10.1.4 Inlet Conditions . 155

- vii -

0 Contents

- viii -

1
Introduction

During the recent years the heights of buildings being constructed have increased
rapidly. The demand for tall and impressive buildings has grown and is still
growing. An example of this is Burj Dubai (Tower of Dubai), which as of the
21st of July 2007 became the tallest building in the world with its 512.1m. This
is spectacular in it self but the tower is far from finished. The final height of the
building is still a secret but figures released from a contractor suggest 818m as
the final height with an expected number of floors of 160. Fig. 1.1 shows Burj
Dubai as it is supposed to look like when it is finished.

Figure 1.1: Burj Dubai, The Worlds tallest building

- 1 -

1 Introduction

Impressive as these new skyscrapers are they introduce a number of problems
during the design phase. Especially the determination of wind loads on the
structure is a difficult task. The Eurocode covers buildings of up to 200m only
[CEN/TC250 2005], which leaves it up to the designers to determine the loads
when building heights exceed this. Presently, wind loads and the structural re-
sponse are determined from scale model tests in a wind tunnel. The determined
loads from wind tunnel tests give very good predictions of the real loads but the
downside of this method is the cost of these. Wind tunnel tests are very expensive
and as all designers are looking to keep their cost at a minimum an alternative
and cheaper method than wind tunnels tests is valuable, which is where using
Computational Fluid Dynamics (CFD) enters the picture.

1.1 Project Description

The purpose of this project it to model the aeroelastic response of a high-rise
building, and use this to asses the effect of said aeroelasticity. Once this is done,
it will be examined if it is possible to model the loads on the structure using the
following form:

Aq + Bq̇ = f (1.1)

where

A, B are n × n coefficient matrices
q is the n first modal coordinates
f is the modal load vector

The wind loads are obtained using the Computational Fluid Dynamics (CFD)
program Ansys CFX 11.0, and the structural model (a modal model), is set up
using MatLab. Finally the two are linked together through a series of Fortran
routines.

There exist a wide variety of commercial CFD programs such as ’Fluent’ or
’Numeca’, and the choice of using Ansys CFX is entirely based on that the Uni-
versity has student licenses for CFX already, and that the program has been
shortly introduced on an earlier semester, which made it familiar to use.

In secs. 1.1.1 - 1.1.9, each chapter will be shortly described along with it’s
purpose.

- 2 -

1.1 Project Description

1.1.1 Hyperbolic Mesh Generation

The purpose of the chapter is to determine the most suitable method for produc-
ing meshes that are well suited for large exterior flow simulations, like the flow
around a tall building. For any CFD simulation to be possible using the finite
volume method, like Ansys CFX does, a mesh must first be produced, dividing
the domain into a finite number of volumes. The quality of the mesh has a large
influence on the quality of simulations carried out using the mesh.

In the chapter a method for creating a 2D mesh of these qualities is presented,
employing an algorithm using hyperbolic partial differential equations. Different
means of controlling the mesh generation is presented, along with a description
of their use. After describing the method for creating the 2D mesh, a method to
convert the 2D mesh into a 3D mesh is derived.

1.1.2 Mesh Analyses

The structured meshes from the previous chapter are entered into an analysis
where meshes of varying coarseness produced using the algorithm is tested against
unstructured meshes of similar coarseness, created with Ansys CFX-Mesh. This
is done to determine the advantage of using structured meshes compared to other
types. Also, the effect of using prismatic inflation layers with unstructured meshes
is tested. Finally, it is concluded which method is best on the basis of the
computational time.

1.1.3 Analyses Moving Mesh in CFX

When conduction simulations where the structure is allowed to move it is im-
portant for the mesh to be able to obtain the deformations. In this chapter an
analysis is conducted to determine how Ansys CFX handles moving meshes and
what settings of the mesh stiffness are preferable. Both built in functions and
user specified functions are analyzed.

1.1.4 Model Setup in CFX

The purpose of the chapter is to describe the setup of the model in CFX.

In the chapter, the choice of geometry is described. Afterwards a description
of the setup in Ansys-CFX Pre is given, along with an explanation of the choices
made for model setup in CFX. The forces on the structure are determined via
the use of additional variables in CFX. The last part of this chapter deals with
how these additional variables are defined.

- 3 -

1 Introduction

1.1.5 Structural Model

The purpose of the chapter is to describe the setup of the structural model in
terms of defining the mass- and stiffness matrices, and afterwards to convert it to
a modal representation using a selected number of eigenmodes. Furthermore the
method for converting loads on the structure to nodal loads will be presented.

1.1.6 Preliminary Analyses

If the simulations in this project were carried out using "ideal" conditions, the
time and computer power needed would by far exceed what has been available.
Thus, the purpose of the chapter is to describe the effects of the delimitations
made, when using simulation settings that are not ideal. Ideally the simulation
setup would be sufficient to capture the phenomenon of vortex shedding, but due
to the necessary delimitations made in the project, this is not possible. Therefore
simulations have subsequently been conducted to examine if the vortex shedding
could be captured using a simulation setup with a higher resolution.

1.1.7 Effect of Modeling Aeroelastic

The purpose of the chapter is analyze if there’s any notable difference between
modeling aeroelastic response, and the more common approach where loads are
obtained from a stationary simulation. This is done by comparing the response
of two simulations; one where the structure is given a prescribed deformation
through the first eigenmode and subsequently allowed free motion in a flow, and
a stationary simulation where the loads on the structure are then recorded and
used in conjunction with the Newmark-Algorithm to produce a response from
the same initial deformation as in the first simulation.

1.1.8 Modal Response

After the effect of modeling has been determined, it is examined if it is possible to
describe the loads on the building through use of the modal representation in eq.
1.1, using the first two eigenmodes of the building. This is done through a series
of simulations where the structure is subject to harmonic motions in either of the
first two eigenmodes using a range of frequencies, and with a prescribed ampli-
tude. The data from these simulations (load trails) are then used to determine
the coefficients of A and B in eq. (1.1).

1.1.9 Conclusion

In this chapter the main results and observations of the conducted analyses and
methods used are summed up. It is attempted to conclude on the obtained results

- 4 -

1.1 Project Description

and the validation of these.
In the last part some suggestions are made as to where and how the methods
and simulations used in this project can be improved to yield better results.

- 5 -

1 Introduction

- 6 -

2
Hyperbolic Mesh Generation

.

In order to conduct the CFD simulations a suitable mesh must first
be generated. Many different types of meshes exist. In this project
a hyperbolic mesh generation method have been used which generate
good structured meshes for exterior flow simulations.

In the present chapter the MatLab program used to generate the meshes
is described. The theory behind the hyperbolic mesh algorithm is ex-
plained in app. A and therefore this chapter deals with the implemen-
tation of the algorithm into a MatLab program and the methods used
to control different aspects of the mesh generation.

Besides the hyperbolic mesh generation technique an interpolation
method called "Transfinite Interpolation" has also been used in the
process. This interpolation scheme is described in this chapter as
well.

- 7 -

2 Hyperbolic Mesh Generation

When computing flow problems using CFD it is generally accepted that CFD
simulations with an orthogonal mesh runs faster than with a non-orthogonal
mesh. In order to obtain a mesh with orthogonal cells around an arbitrary
closed boundary, a possible approach is to generate the mesh using an algorithm
governed by Hyperbolic Partial Differential Equations (PDE’s).
In the following, the implementation of such an algorithm into a program will be
described. The theory behind the hyperbolic mesh algorithm can be found in app.
A and the MatLab files are included on the DVD in [DVD:\Mesh_Generation\].
The mesh generation program is used throughout the project. In each case a
reference is made to a directory on the DVD containing one or more .m files.
These files replace the main.m file in [DVD:\Mesh_Generation\] to generate the
respective mesh.

2.1 Implementation of Algorithm into a MatLab Pro-

gram

The algorithm is implemented into a MatLab program, with the purpose of ge-
nerating a suitable mesh from specified initial data along the body surface. Two
different modes have been included; a cyclic mode, fig. 2.1a, and a vertical
boundary mode, fig. 2.1b.

a) Cyclic mesh b) Vertical boundary mesh

Figure 2.1: The two available mesh modes. The bold lines represent the body
surface.

In fig. 2.2, an overview of the programs used to generate the mesh and subse-

- 8 -

2.1 Implementation of Algorithm into a MatLab Program

quently write it to a format loadable by Ansys CFX is shown. In the following,
each of the functions will be explained and examples of certain features and their
effect will be given.

main.m

calcspline.m

spline2.m

stretchf.m

spline.m

hypgrid.m

TDMA.mexw32 or
TDMA_cyclic.mexw32

mesh3d.m

plug3d.m

mesh_gen.m

Ansys CFX

Input

spline.m

expanfct.m

own functions

matlab functions

other functions

call to function

function output

Input

Gererating surface
nodes

Generating
marching layer

distribution

Generating 2D
mesh from

surface nodes

Writing 3D mesh
to file

Output

Generating 3D
mesh from 2D

mesh

Figure 2.2: Structure of programs.

2.1.1 main.m

In main.m all input for the programs are entered, these include:

mode determines whether the mesh is generated as a cyclic mesh
(0) or a vertical boundary mesh (1).

COORDS is a matrix containing coordinates from which to spline the
geometry

BREAKS is a row vector defining in between which coordinates the
splines are to run. e.g.: BREAKS = [1 3 4] defines that the first
spline runs over coordinates 1,2,3 and the second over 3,4.

- 9 -

2 Hyperbolic Mesh Generation

n is a row vector defining the number of desired nodes on each
spline.

a1, b1 are matrices defining the start- and end slopes for each
spline.

x1, y1 are cells defining the coordinates for the stretch functions for
each spline. See sec. 2.1.5 for info on stretch functions.

a2, b2 are matrices defining the start- and end slopes of each
stretch function.

N defines the number of marching layers wanted.
L defines the height of the innermost cell. (L was initially used

as an approximate extent of the mesh from the body
geometry.)

x2 ,y2 defines the coordinates for the stretch function determining
the outwards marching layer distance.

a3, b3 defines the start- and end slopes for the stretch function
determining the outwards marching layer distance.

dis is a factor determining the amount of dissipation at the
body surface.

eps1 is a factor determining the volume averaging for each layer
eps2, eps3 are factors determining the diminishing of dissipation for

each layer.

After all the input are given, main.m calls the function calcspline.m (see sec.
2.1.2) in order to generate the body geometry at η = 0. Once the body ge-
ometry is returned from calcspline.m, a call is made to expanfct.m returning
the stretch function of the outwards marching layers. After this, a call is made
to hypgrid.m (see sec. 2.1.7) which calculate the marching layers for k=2 to k=N.

The 2D mesh returned from hypgrid.m is used when calling mesh3D.m which
uses the 2D mesh as input and returns a generated 3D mesh on the basis of the
specified number of layers in the z-direction and the rotation angle. The 3D mesh
is returned to main.mwhich can then finally call mesh_gen.m (see sec. 2.1.11) in
order to generate a mesh file to be loaded into ANSYS CFX.

2.1.2 calcspline.m

SYNTAX: [Xout Yout]=calcspine(BREAKS,COORDS,a1,a2,b1,b2,x1,y1,n).

In calcspline.m the coordinates defining the boundary surface are splined as
given by the input in main.m, and a specified number of nodes are then assigned
to each spline and distributed according to the respective stretch functions. The
theory behind splines can be found in app. B. This produces coordinates to a

- 10 -

2.1 Implementation of Algorithm into a MatLab Program

number of splines, which are then assembled into a complete body surface. In fig
2.3, it is shown how 7 defining coordinates are put together into a single geometry
using 3 splines.

Definining node and break

Definining node

Splined node

Figure 2.3: Definition sketch, combining splines into geometry.

The order of calcspline.m is as follows:

1. The coordinates provided from COORDS is divided into sets of coordinates
for each spline, using info from BREAKS.

2. For each spline, the function spline2.m (see sec. 2.1.3) is called with the
appropriate coordinates as well as input for the stretch functions of each.

3. The coordinates returned from each call of spline2.m is gathered into an
X- and Y vector, defining the body surface.

Afterwards, the X- and Y vectors are returned to main.m.

2.1.3 spline2.m

SYNTAX: [x y]=spline2(Y,a1,b1,xin,yin,n,a2,b2).

In spline2.m a set of coordinates defining one spline is input along with in-
put for the stretch function defining the distribution of nodes on the given spline.
The function makes a linearized curve length estimate by use of:

s =

n
∑

j=1

∆s =

n
∑

j=1

√

∆x2 + ∆y2 (2.1)

The function uses this estimated curve length along with the coordinates as input
into the MatLab function spline.m. The function can handle constrained start-
and end slopes for the stretch function, as well as free slopes.

- 11 -

2 Hyperbolic Mesh Generation

2.1.4 spline.m

SYNTAX: PP = spline(X,Y)

The function spline.m is an internal MatLab function. For further theory on
this function, see app. B.

The output from spline is of the MatLab type "structure" holding coefficients
for the proper cubic polynomials which can be used to evaluate the spline using
the function ppval.m. If the input into spline.m is on the form ([X], [Y]), the
evaluation will return the y value for a given x input. If the input into spline.m

are on the form ([S], [X;Y]), the evaluation will return the x, y value for a given
s input, where s denotes a curve length.

2.1.5 stretchf.m

SYNTAX: [Y]=stretchf(x,y,n,a,b).

In stretchf.m a set of coordinates are entered, ranging from 0 to 1 for both
x- and y values. These are used to spline a function ranging from (x, y) = (0, 0)
to (x, y) = (1, 1). This spline is then used with a number of evenly distributed
points on the X axis, to which the evaluated spline values of y are returned.
Also, a constraint on the start and end slopes is possible, but not required.

The purpose of the stretch function is to define a distribution of nodes on a
body surface, that are not evenly distributed - so that it is possible to have a
high concentration of nodes near sharp corners or areas of particular interest to
the flow calculations. It also ensures, that there are no strong deviation of node
spacing from one cell to the next. As can be seen in fig. 2.4, the evaluated va-
lues of the stretch function on the y axis are unevenly spaced, but has a smooth
transition from a higher node density to a lower node density, whereas the input
is evenly spaced nodes on the x axis.

- 12 -

2.1 Implementation of Algorithm into a MatLab Program

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 2.4: Plot of the stretch function, 2 are input coordinates, • are splined
values.

The vector defining the points on the y axis with values ranging from 0 to 1
is then used as normalized curve lengths when calling the spline function, or to
determine the outwards marching distance between different layers of η.

2.1.6 expanfct.m

SYNTAX: [p]=expanfct(n1,m,a1,a2).

In expanfct.m a function for determining the marching layer distance is given.
The function creates a layer distribution for n1 layers, where the first m % lay-
ers have a constant expansion of a1 % and the remaining layers go from a1 %
expansion in the inner part to a2 % expansion in the outer part. To illustrate
this, an example of three different functions is given in fig. 2.5. Here the dashed
and dashed-dotted lines have a constant expansion of 10 and 20 % respectively,
where the solid line have an expansion of 5 % for the inner 70 % layers, after
which the expansion gradually changes to 35 %, giving the very steep rise in the
end.

- 13 -

2 Hyperbolic Mesh Generation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

layers

n
or

m
al

iz
ed

ex
p
an

si
on

10 % expansion
20 % expansion
5 - 35 % expansion

Figure 2.5: Examples of expansion function for marching layers.

To illustrate this effect, three meshes have been generated around a cylinder with
a diameter of 1m. There are 40 nodes on the cylinder geometry and 20 layers,
where the innermost cells have a constrained height of 0.05m. This is shown in
fig. 2.6.

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a) 10%

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

b) 20%

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

c) 5 − 35%

Figure 2.6: Visualization of expansion effect.

Here it can be seen that for figs. 2.6a and 2.6b the expansion rates are constant,
but the mesh expands more rapidly for the latter. In fig. 2.6c the expansion is
very low for the innermost layers, followed by a very rapid expansion in the outer
layers.

- 14 -

2.1 Implementation of Algorithm into a MatLab Program

2.1.7 hypgrid.m

SYNTAX: [X Y]=hypgrid(mode,X,Y,N,P,L,dis,eps,eps2,eps3).

In hypgrid.m the algorithm, given by eqs. (A.15) through (A.24), is used to
calculate each new layer of η from the data given in the previous layer, by sol-
ving the system Ux = v, where U is a blocktridiagonal matrix, x is the solution
to the coordinates of the current layer of η and v is the righthand vector. The
righthand vector v consists of several parts; the known near solution state (x0, y0),
the prescribed volume, and the dissipation. Depending on the mode of the mesh
- the boundary conditions, given by j = 1 ∧ j = n, where n is the number of
boundary nodes, are treated differently, as described in app. A.2.

The function runs as follows:

1. If the mode is cyclic, the last coordinate of the body surface is deleted as
it is equal to the first.

2. A start guess for V 0 is made, using a central difference scheme to determine
the base length of each cell, and a stretch function to determine the height
h, see eq. (A.17).

3. An outer loop from k=2 to k=N, solving one outwards marching layer at
the time.

4. An inner loop sets up the equations for constant k. The algorithm given by
eq. (A.15) gives a number of equations equal to 2n, where n is the number
of surface nodes. By applying the correct boundary conditions, either as
a cyclic mesh given by eq. (A.20), or a vertical boundary mesh given by
eq. (A.21), the equations are set up on the form Ux = v and solved using
TDMA.mexw32 or TDMA_cyclic.mexw32, giving the nodes of the new layer.

2.1.8 TDMA.mexw32 or TDMA_cyclic.mexw32

In order to solve the system of equations, a blocktridiagonal solver has been
used. The advantage of such a solver is that the solution can be obtained in
O(n), the number of unknowns, rather than O(n3) as would be the case using
Gauss elimination [Ferziger & Peric 2002, p. 95].
The solvers used, TDMA.mexw32 and TDMA_cyclic.mexw32 respectively, have been
obtained from the project supervisors.

- 15 -

2 Hyperbolic Mesh Generation

2.1.9 mesh3d.m

SYNTAX:[Xout Yout Zout]=mesh3d(X,Y,N,xs,ys,as,bs,ntotal,H,nstart,rot)

In mesh3d.m the 2D mesh generated in hypgrid.m is transformed into a 3D
mesh. A stretch function determines the upwards layer distribution (in the z-
direction). From a specified starting layer, the mesh is then gradually rotated
towards a variable slope, α, at the top of the mesh. This is done by transforming
the coordinates using simple geometric relations, as follows.

Let P denote a given node that is to be rotated α degrees, as shown in fig.
2.7. Furthermore, let (x0, y0, z0) denote the coordinates of the corresponding
node on the surface, (x, y, z) the coordinates of the transformed node, ds the
distance from the node to the corresponding surface node, dx the difference in x

between the node and the corresponding surface node, and dy the difference in
y between the node and the corresponding surface node.

x

y

z

(x, y, z)

(x0, y0, z0) ds

dx

dy

α

P

Figure 2.7: Displacement of node due to rotation - definition sketch.

It is then obvious to see, that the new coordinate (x, y, z) is given by:

x

y

z

=

xo

y0

z0

+

cos α 0 0

0 cos α 0

0 0 sin α

dx

dy

ds

(2.2)

Using eq. (2.2) the layers are rotated to an α degree angle. The stretch function
defining the layer distribution in the z-direction is also used to control the gradual
rotation of the layers - a larger layer spacing gives larger rotation. Finally, the
coordinates are averaged gradually for each layer, so that the outer boundary for

- 16 -

2.1 Implementation of Algorithm into a MatLab Program

the top layer will have z=constant. In fig. 2.8 a plot of four layers is shown,
where the bottom layer shown on fig. 2.8a, has a 0 degree rotation, and the top
layer shown on fig 2.8d has a 45 degree rotation.

a) k = 1 b) k = 10

c) k = 20 d) k = 30

Figure 2.8: Plot of mesh for four values of k: 1,10,20,30.

2.1.10 plug3d.m

SYNTAX: [Xplug Yplug Zplug]=plug3d(X,Y,Z,n).

In plug3d.m the top layer, rotated to an angle of α degrees is used to inter-

- 17 -

2 Hyperbolic Mesh Generation

polate a mesh for the plug. In order to obtain x− and y− values for the nodes,
a transfinite interpolation between the outer boundaries (given from mesh3d.m)
is performed, assuming z=constant.
After the (xi,j , yi,j) coordinates are obtained for all layers in the plug, the zi,j co-
ordinates are found for each layer by weighting between the corresponding nodes
on the boundary; z1,j, zn,j, zi,1, and zi,m as shown for one layer in fig. 2.9. Each
of the four boundary nodes are weighted by the reciprocal of the distance.

η = 0

ξ = 0 ξ = I

η = J

z(ξ, η)
z(I, η)

z(ξ, J)

z(0, η)

z(ξ, 0)

Figure 2.9: Definition sketch, reciprocal weighting

Transfinite Interpolation

Given a domain contained between four boundaries and a known distribution of
nodes on the boundaries, for which it holds that two facing boundaries should
have the same number of nodes. Let ξ denote the node numbering in one direc-
tion, going from 0 to I and η denote the node numbering in the other direction,
going from 0 to J . Then the transfinite interpolation of the domain is given as
follows:

X(ξ, η) = X1(ξ, η) + X2(ξ, η)

Y (ξ, η) = Y1(ξ, η) + Y2(ξ, η)
(2.3)

where,

X1(ξ, η) = (1 − ξ

I
)X(0, η) +

ξ

I
X(I, η)

Y1(ξ, η) = (1 − ξ

I
)Y (0, η) +

ξ

I
Y (I, η)

X2(ξ, η) = (1 − η

J
)(X(ξ, 0) − X1(ξ, 0)) +

η

J
(X(ξ, J) − X1(ξ, J))

Y2(ξ, η) = (1 − η

J
)(Y (ξ, 0) − Y1(ξ, 0)) +

η

J
(Y (ξ, J) − Y1(ξ, J))

(2.4)

- 18 -

2.1 Implementation of Algorithm into a MatLab Program

[Thompson, Warsi & Mastin 1985]

In this case, ξ
I

and η
J

have been replaced by the node distribution in their respec-
tive directions, going from 0 to 1. An example of a plug mesh, corresponding to
the geometry in fig. 2.8d is shown in fig. 2.10.

Figure 2.10: Plug mesh - only the outer boundaries are plotted.

2.1.11 mesh_gen.m

In mesh_gen.m the 3D mesh coordinates obtained in mesh3d.m or plug3d.m are
written to a chosen .msh file, in a manner that allows ANSYS CFX to read it.
For the cyclic mesh, the Mesh2plug, Bottom, and Bodysurface boundaries are
defined, along with a variable number of exterior boundaries, Outer1,Outer2, etc.
For the plug mesh 3 boundaries are defined; BodySurface, Top, and Plug2mesh.

The .msh format

The format to which the mesh is written, is called .msh and is one of the formats
used by the mesh generation program Ansys ICEM CFD. In tab. 2.1, the struc-
ture of the .msh format is shown for a single 8 noded cell, with the dimensions
1.0mx 2.0mx 3.0m.

- 19 -

2 Hyperbolic Mesh Generation

Table 2.1: Example of .msh output (# indicates number)

Printed to .msh Explanation

1128683573 standard info
Version number: 5.6s standard info
8 0 0 1 0 1 6 #nodes 0 0 #elements 0 #domains #boundaries

0.0000 0.0000 0.0000 x1 y1 z1 (1. node)
1.0000 0.0000 0.0000 x2 y2 z2 (2. node)
1.0000 2.0000 0.0000 ...
0.0000 2.0000 0.0000 ...
0.0000 0.0000 3.0000 ...
1.0000 0.0000 3.0000 ...
1.0000 2.0000 3.0000 ...
0.0000 2.0000 3.0000 xn yn zn (n. node)

1 2 3 4 5 6 7 8 1. element (node numbering)

1 Domain #elements in domain and domainname
1 element#
1 West #elements on boundary and boundaryname
1 5 element# side#
1 East ...
1 6 ...
1 Bottom ...
1 4 ...
1 Top ...
1 3 ...
1 South ...
1 1 ...
1 North ...
1 2 ...

- 20 -

2.2 Examples

The cell is shown in fig. 2.11.

north (2)

south (1)

east (6)

west (5)

top (3)

bottom (4)

x

y
z 1. node

2. node

3. node

4. node

5. node

6. node

7. node

8. node

Figure 2.11: Definition sketch, 8 noded cell, numbers in () refer to side number.

2.2 Examples

In this section, a number of examples will be given, showing the effects of certain
input parameters in main.m:

1. Dissipation

2. Volume averaging

3. Surface node distribution

2.2.1 Dissipation

Dissipation is added to the equations in order to deal with a non-smooth geometry
that would otherwise cause the mesh lines to coalesce or cross, usually due to a
highly concave or convex geometry.
The amount of dissipation (given by eq. (A.18)) at the body surface is controlled
by the input parameter dis, corresponding to ε in (A.15). A function going from
1 at the body surface and converging towards a constant value ε2 in the far field
is constructed;

α1(k) = ε((1 − ε2)(1 − ε1)
k−2 + ε2) (2.5)

- 21 -

2 Hyperbolic Mesh Generation

The function α1(k) is used to control how fast the dissipation is turned off as the
layers march outwards - but allow for a certain amount of the initially assigned
dissipation to remain in the far field.

In fig. 2.12a it is obvious to see that the algorithm fails to produce a mesh
that is one-to-one, when different sets of (ξ, η) can lead to the same x, y. The
problem occurs when the outwards going lines coalesce and the mesh overlaps.
In some cases such a problem can be solved by a higher mesh resolution. How-
ever it can be seen from fig. 2.12b that by adding dissipation into the equations,
the mesh becomes smooth - and although some crowding of lines occurs in the
middle, the mesh does not overlap it self and is one-to-one.

a) No dissipation added (dis=0.0). b) Dissipation added (dis=-0.05).

Figure 2.12: Mesh with and without dissipation.

2.2.2 Volume averaging

In order to ensure an evenly sized mesh in the far field, volume averaging is
introduced. This is mainly to remove the inherent converging of mesh lines from
a concave body surface and the separation of lines from a convex body surface.
These effects are illustrated in fig. 2.13a, where a boundary with convex and
concave sharp corners is generated.
A function going from 1 at the surface and converging towards 0 in the far field
to govern the volume averaging is constructed. The function is given by:

α2(k) = (1 − ε3)
k−2 (2.6)

Here, ε3 is the input parameter eps. The volume of a cell is then given by eq.
(A.24), where α is replaced by α2 from eq. (2.6).
By setting eps=0.3, it can be seen from fig. 2.13 that the tendency to converge
and diverge is eliminated in the far field when the volume averaging is used.

- 22 -

2.2 Examples

Furthermore it is seen, that with the given volume averaging, a faster convergence
of the far field towards a circle is obtained.

converging

diverging

a) No volume averaging (eps=0.0). b) Volume averaging (eps=0.3).

Figure 2.13: Mesh with and without volume averaging.

Further inspection of the concave corner, fig. 2.14b, shows how the lines quickly
start diverging, whereas the crowding of lines is obvious in fig. 2.14a. Similarly,
the lines converge towards a uniform distribution at the convex corner.

a) No volume averaging (eps=0.0). b) Volume averaging (eps=0.3).

Figure 2.14: Closeup of concave corner.

Depending on the layer spacing near the body surface, eps can be adjusted to
slow down the volume averaging in the innermost layers. An optimal value of
eps varies from one mesh to the other.

- 23 -

2 Hyperbolic Mesh Generation

2.2.3 Surface node distribution

It can cause serious problems for the mesh generation if there’s a sudden and
strong deviation of node density on the body surface, as can be seen from fig.
2.15a. If they are smoothly distributed however a better mesh is generated, as
can be seen from fig. 2.15b.

a) Unevenly spaced nodes b) Evenly spaced nodes

Figure 2.15: Effects of smoothly distributed nodes on the body surface.

In this example the smooth distribution of nodes is ensured by use of the stretch
functions (generated with stretchf.m), allowing a certain side to have a higher
or lower node density at the ends, to match that of the adjoining side.

2.3 Alternative Methods for 3D Mesh Generation

In this project, the first step to meshing was to create a 2D mesh well suited
for modeling the exterior flow around an enclosed arbitrary boundary like the
plane geometry of a high-rise building. To do this, the 2D hyperbolic mesh al-
gorithm proposed by [Steger & Chaussee 1980] was chosen, and implemented
into a MatLab program with various additional control-mechanisms to ensure a
smooth, orthogonal mesh. After a successful generation of a 2D mesh that met
our requirements, the approach was then to extrude this to a 3D mesh, and close
it over the top of the building using an additional mesh, a so called "plug", with
a one-to-one interface between the two meshes. This approach enforced some
heavy constraints, as it was chosen to use a transfinite interpolation scheme to
close the plug. Another approach which was considered, was to model the plug
mesh using a 2D elliptic mesh algorithm, but this choice was discarded, as creat-
ing an additional MatLab program with a complexity similar to that of the first,
would require too much time and effort.

- 24 -

2.3 Alternative Methods for 3D Mesh Generation

The delimitations imposed by the choice of method for closing the 3D mesh
are avoided in [Chan & Steger 1992], where a 3D hyperbolic mesh algorithm to
produce meshes around highly complex geometries, a space shuttle and a tele-
scope, have been used. The algorithm works in a much similar manner to that of
[Steger & Chaussee 1980], merely incorporating a 3rd dimension to the governing
equations, and adding an additional equation governing the orthogonality. The
meshes produced this way, see [Chan & Steger 1992, p. 192 and p. 203], retain
the same orthogonality as the 2D algorithm, and further more incorporates a
series of control mechanisms to ensure smooth gridding such as spatially varying
smoothing coefficients, metric correction procedures and local treatment of severe
convex corners.

The method of [Chan & Steger 1992] is of course more complex, but as can
be seen from the results in the article, it allows 3D meshing of exterior flow
boundaries with arbitrary highly complex geometries, the major shortcoming of
the approach taken in this project.

- 25 -

2 Hyperbolic Mesh Generation

- 26 -

3
Mesh analysis

.

.

This chapter contains an analysis of the behavior of Ansys-CFX when
using different mesh types. Three different mesh types are entered into
the analysis: unstructured mesh, unstructured mesh with inflation lay-
ers and fully structured mesh. The test case is chosen as laminar flow
(Re = 40) past a circular cylinder with a diameter of 1m.

The analysis shows that there is a significant difference in the com-
putation time between the structured and unstructured meshes with
the structured being considerably faster than the unstructured. Also
when generating a mesh for use in Ansys-CFX an edge length ratio
< 100 and a volume ratio between two adjacent elements < 5 should
be secured for the solution to converge normally (CFX-Post manual
p. 108).

- 27 -

3 Mesh analysis

In this chapter CFD simulations with both structured and unstructured mesh
types on the same geometry are run in Ansys CFX and the results are compared
to get an idea of how the mesh types perform during simulations and if there
is a significant difference in using a structured mesh instead of an unstructured
mesh. The structured meshes used are generated by the hyperbolic mesh program
described in chap. 2 while the unstructured meshes are generated by use of Ansys
Workbench - CFX-mesh. All CFX files for this analysis are included on the DVD
in [DVD:\Mesh_Analysis\].

3.1 Test case

The test case for the simulations is the flow around a cylinder. The simulations
are restricted to 2D to save computation time. The geometry for the simulations
is shown in fig. 3.1.

1m

∼ 15m0.1m

x

y

z

Figure 3.1: Test case with dimensions

The outer boundaries used when setting up the flow in Ansys CFX are shown in
fig. 3.2. Problems in the solver can occur when connecting the inlet and outlet
directly. To account for this opening boundaries are included between the inlet
and outlet. This boundary type allows both flow in and out of the domain. The
extent of the opening boundaries in fig. 3.2 should not be considered as precise
indications of the extent but only as indicators of the position as the size of
the openings are a bit different in especially the simulations with the structured
mesh. The main thing is, that in all cases, the openings covers the "top" and
"bottom" part of the boundary.

- 28 -

3.1 Test case

Inlet

Opening1

Outlet

Opening2

Figure 3.2: Definition of outer boundaries

The results of the conducted simulations can be compared to [Dennis & Chang
1970], where similar flows have been computed. The results in [Dennis & Chang
1970] are based on Re = 40. To get the same Reynolds number in the simulations
the predefined parameters for air in Ansys CFX are altered. The values used are
listed below.

u∞ = 1 m
s

ρ = 1 kg
m3

µ = 0.025 kg
m s

Re =
ρDu

µ
= 40

(3.1)

The parameter used to check the results is the dimensionless surface pressure,
P (θ), determined by:

P (θ) =
P0 − P∞

1
2ρu2

∞

(3.2)

where

P0 is the pressure on the cylinder
P∞ is the pressure in the freestream far from the cylinder
ρ is the fluid density (See eq. (3.1))
u∞ Is the freestream velocity in the x-direction (See eq. (3.1))

The pressure in the free stream is equal to the reference pressure from table 3.5
but by default Ansys CFX determines the relative pressure deviation from the
reference pressure unless the user defines otherwise. Therefore the value extracted
from Ansys CFX is equal to the nominator in eq. (3.2).

- 29 -

3 Mesh analysis

It has to be noted that the results from [Dennis & Chang 1970] are extracted
from a figure where it is relatively difficult to make an accurate reading which
should be kept in mind when reading the following. The results from [Dennis &
Chang 1970] are introduced when dealing with the results of the simulations.

3.2 Unstructured mesh

As mentioned earlier the unstructured mesh is generated by use of Ansys CFX-
Mesh which is an application in Ansys Workbench. To make sure that the outer
boundary of the domain has no influence on the flow around the cylinder, the
boundary is made up of a circle with a diameter 30 times larger than the cylinder
with the same center.

To generate the mesh the geometry is loaded into Ansys CFX-Mesh. The mesh
is generated by specifying a maximum constant element size wanted and by over-
writing this overall scale in regions where necessary. Fig. 3.3 shows a screen cap
of the program interface.

Figure 3.3: CFX-Mesh interface

The mesh specifications are defined under the point mesh in the structure tree.
Under each of the elements different parameters can be set. An elaboration of
the elements under the point mesh in the structure tree is shown in fig. 3.4. A
specific value in the figure means that this value is used in all the unstructured
meshes generated. Values which are changed during the generations are marked

- 30 -

3.2 Unstructured mesh

with "variable". In the figure, Inflation is marked as this option is not used
initially but taken into account later on.

Mesh

Spacing

Default Body Spacing

Maximum Spacing [m]

Default Face Spacing

Face Spacing Type

Constant Edge length [m]

Location

Edge Spacing 1

Edge Spacing Type

Constant Edge length [m]

Radius of Influence [m]

Expansion factor

Location

“Variable”

1

Constant

7 2D regions

Constant

“Variable”

1.5

1.3

1 Edge

Controls

Extruded Periodic pair

Location 1

Location 2

Periodic Type

1 Composite

1 Composite

Translational

Inflation – See further below

Stretch – Not Used

Proximity – Not Used

Options

Global mesh Scaling

Surface meshing

Meshing Strategy

2D Extrusion Option

Number of layers

Delaunay

Extruded 2D mesh

1

Full

1

Default value - 1

Figure 3.4: Structure tree

The variable parameters indicated in fig. 3.4 are listed in tab. 3.1 where the
value used for the respective mesh given by the file-name is indicated. As seen
the spacings are halved for each new mesh.

Table 3.1: Variable parameters for unstructured mesh generation

Mesh Face Spacing Edge Spacing Nodes in
Const. Edge Length [m] Const. Edge Length [m] simulation

unstr1.gtm 0.80 0.080 3914
unstr2.gtm 0.40 0.040 11950
unstr3.gtm 0.20 0.020 33894
unstr4.gtm 0.10 0.010 167686
unstr5.gtm 0.05 0.005 728360

- 31 -

3 Mesh analysis

To illustrate the effect of the parameters the meshes unstr1.gtm and unstr4.gtm
are shown in fig. 3.5.

a) Coarse mesh (unstr1.gtm) b) Dense mesh (unstr4.gtm)

Figure 3.5: Illustration of generated unstructured meshes

3.2.1 Inflation layers

When using inflation layers the settings shown in fig. 3.6 are used. As in fig 3.4
the values changed for each mesh are marked with "Variable".

Inflation

Number of Inflated Layers

Expansion Factor

Number of Spreading Iterations

“Variable”

1.3

0

Minimum Internal Angle [deg]

Minimum External Angle [deg]

Define First Layer By

First Prism Height [mm]

Extended layer Growth

Layer By Layer Smoothing

2.5

10

First Prism Heigth

“Variable”

Yes

No

Inflated Boundary 1

Location 1 Composite

Inflation option First Layer Thickness

Figure 3.6: Variable parameters for inflation layers

The parameters for each set of inflation layers are listed in tab. 3.2. The para-
meters used to generate the unstructured mesh outside the inflation layers are

- 32 -

3.3 Structured mesh

the same as listed in tab 3.1. The connection between the full unstructured mesh
and the matching unstructured mesh with inflation layers can be seen by the file
name where only _infl have been added.

Table 3.2: Variable parameters for inflation layers

Mesh Number of Inflated layers First Prism heigth [mm]

unstr1_infl.gtm 7 40
unstr2_infl.gtm 13 20
unstr3_infl.gtm 25 10
unstr4_infl.gtm 50 5

The number of inflation layers are determined by the fact that the maximum
number of layers possible are 50. To construct the inflation layers it was in-
tended to halve the first prism height and doubling the number of layers for each
successive mesh. The limitation in the maximum number of layers caused the
number of layers to have a non regular sequence. This resulted in the fact that
the inflation layer did not have the same total height for all meshes.

The influence of using inflation layers can be seen in fig. 3.7 where a close
up of the region around the cylinder is shown. The meshes shown are unstr2.gtm
and unstr2_infl.gtm.

a) Without inflation layers (unstr2.gtm) b) With inflation layers (unstr2_infl.gtm)

Figure 3.7: Unstructured mesh with and without inflation layers

3.3 Structured mesh

The structured meshes are generated by the program described in chap. 2. From
the most coarse mesh the number of nodes on the boundary and the number
of marching layers are doubled. It is not possible to control the mesh to give
a diameter of precisely 30m as it is the case for the unstructured meshes. The

- 33 -

3 Mesh analysis

mesh is therefor generated as close to this as possible which is reach by specifying
an approximate height of L= 26m which give a diameter between 29 − 30m. It
should here be noted that this method relates to the first version of the mesh
generation program where an approximate extent of the mesh is given. The final
version uses L as the height of the first cell. More about this later.

The .m files used to generate the meshes can be found on the attached DVD
in [DVD:\Mesh_Analysis\Structured_Mesh\]. The constant parameters used
are listed in tab 3.3.

Table 3.3: Constant parameters for structured mesh generation

Parameter Value Parameter Value

mode 0 (cyclic mesh) dis 0
BREAKS [1 41] eps 0
a1 [0 ; −1]T eps2 0
b1 [0 ; −1]T eps3 0
x1(1) [0 1] H 0.1
y1(1) [0 1] as 2.0
a2 [1] bs 0.2
b2 [1] ntotal 2
L 26 rot 0
a3 Inf nstart 1
b3 6.1

The vectors defining the outwards layer distribution, x2 and y2, are specified
below:

x2 = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]

y2 = [0 0.001 0.008 0.027 0.064 0.125 0.216 0.343 0.512 0.729 1.000]
(3.3)

Later in this chapter problems with the initial structured meshes generated by
the settings shown above will be explained. The outwards layer distribution will
be changed and new structured meshes are generated. More about this in subsec.
3.5.3.

In tab. 3.4 the parameters that are variable are specified which as mentioned
are the number of nodes on the boundary and the number of marching layers.
The specific mesh is given by the file name.

- 34 -

3.4 CFD input and Definitions

Table 3.4: Variable parameters for structured mesh generation

Mesh Nodes on boundary Marching layers Nodes in simulation

struc1.msh 40 40 3200
struc2.msh 80 80 12800
struc3.msh 160 160 51200
struc4.msh 320 320 204800

As an example of a structured mesh the mesh generated by struc1.m, which is
the most coarse mesh, is shown in fig. 3.8.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

x

y

Figure 3.8: Example of structured mesh (struc1.msh)

3.4 CFD input and Definitions

In this section the flow parameters and boundary conditions for the simulations
are presented. In this case the simulation type is a steady state laminar flow.

3.4.1 Domain Parameters and Global Initial Conditions

The parameters defining the flow in the domain and the global initial conditions
used as input in Ansys CFX are listed in tab. 3.5. Also the parameters defined
as solution criteria are specified.

- 35 -

3 Mesh analysis

Table 3.5: Domain parameters and global initial conditions

Domain Parameters

General options Fluid Models

Basic Settings Heat transfer Model

- Location Assembly - Option None
- Domain type Fluid Domain
- Fluid List Air Custom
- Coord frame Coord 0
Domain Models Turbulence Model

- Ref. Press 1 [atm] - Option None (Laminar)
Buoyancy

- Option Non Buoyant
Domain motion

- Option Stationary

Global Initial Conditions Solver Control

Initial Conditions Advection Scheme

- Velocity Type Cartesian - Option High Resolution
Cart. Vel. Components Convergence Control

- u 1 [m ŝ -1] - Timescale Control Physical Timescale
- v 0 [m ŝ -1] - Physical Timescale 1 [s]
- w 0 [m ŝ -1] - Max Iterations 100

Static pressure Convergence Criteria

- Option Automatic - Residual Type RMS
- Residual Target 1.E − 4

3.4.2 Boundary Conditions

The boundary conditions used for the simulations are listed in tab. 3.6.

Table 3.6: Boundary conditions

Basic Settings Boundary Details

STRUCTURE:
- Boundary type Wall Wall Influence on Flow

- Location Structure - Option No Slip

INLET:
- Boundary Type Inlet Flow Regime

- Location INLET - Option Subsonic
Mass and Momentum

- Option Cart. Vel. Components
- u 1 [m ŝ -1]
- v 0 [m ŝ -1]
- w 0 [m ŝ -1]

OUTLET:
- Boundary Type Outlet Flow Regime

- Location OUTLET - Option Subsonic
Mass and Momentum

- Option Average Static Pressure
- Relative Pres. 0 [Pa]
Pressure Averaging

- Option Average Over Whole Outlet

OPENING:
- Boundary Type Opening Flow Regime

- Location OPENING1,
OPENING2

- Option Subsonic

Mass and Momentum

- Option Opening Pres. and Dirn
- Relative Pres. 0 [Pa]
Flow Direction

- Option Normal to Boundary Condition

TOP/BOTTOM:
- Boundary Type Symmetry
- Location Bottom, Top

- 36 -

3.5 Results

3.5 Results

In this section the results of the simulations are presented. The mesh types are
treated seperately and where possible the previous results are entered into a com-
parison.

Subsec. 3.5.3 which deals with the result with the structured mesh includes an
analysis of some numerical error which occurred when running the simulations
with the initially defined meshes from sec. 3.3.

3.5.1 Unstructured Mesh

All the simulations with the fully unstructured meshes showed the same char-
acteristics. Convergence was reached relatively quickly with a maximum of 32
iterations. The number of iterations decreased with increasing number of nodes
in the simulations. The computation time vs. the number of nodes in the com-
putations is plotted in fig. 3.9. For comparative reasons the computation time
have been normalized to the computation time for one node per. iteration. This
is done because the simulations does not contain the same number of nodes when
comparing to the other mesh types. The normalized time is determined by:

tnode =
t10 − t2

8 · nnode

(3.4)

where

t10 is the starting time for iteration 10
t2 is the starting time for iteration 2
8 is the number of iterations between t10 and t2.
nnode is the number of nodes in the present simulation

10
3

10
4

10
5

10
6

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Number of nodes

C
om

p
u
ta

ti
on

ti
m

e
[1

0
−

4
s]

Unstructured mesh

Figure 3.9: Number of nodes vs. computation time for one node per iteration,
unstructured mesh.

- 37 -

3 Mesh analysis

The simulations were run on a cluster at Aalborg University. The time used is
therefor the CPU-time on this cluster. It was found that the computation time
on the cluster was shorter than on a laptop (1.80 GHz Dual Core with 2046 MB
RAM). No further analysis of this difference have been made.

The plot was expected to be more smooth than the one shown in fig. 3.9. The
reason for this has not been investigated further. This is also the case for the
plot for the simulations with unstructured meshes with inflation layers as shown
later on.

The pressure isobars in the area around the cylinder is shown for the simula-
tions with the most coarse and most dense mesh in fig. 3.10. A close look at fig.
3.10a shows, that the pressure isobars for the most coarse mesh are not smooth.
Other than this there is not much difference in the pressure distribution.

a) Coarse mesh (unstr1.gtm) b) Dense mesh (unstr5.gtm)

Figure 3.10: Pressure on cylinder for simulations with most coarse and most
dense unstructured mesh

When increasing the number of nodes the simulations should converge towards
the same result. The final value of the force in the x-direction on the cylinder
for each simulation is listed in tab. 3.10.

Table 3.7: Force on cylinder for simulations with unstructured mesh

Nodes in simulation Ftotal

[

N
m

]

Fpress

[

N
m

]

Fvisc

[

N
m

]

3914 0.8240 0.5286 0.2955
11950 0.8080 0.5137 0.2942
33894 0.8030 0.5174 0.2855
167686 0.7930 0.5121 0.2809
728360 0.7840 0.5111 0.2724

- 38 -

3.5 Results

It is seen from tab. 3.10 that the simulations do not fully converge towards a
constant value. The drag coefficient, Cd is calculated by:

Cd =
Ftotal

1
2ρu2

(3.5)

The drag coefficient is determined for the entire simulation and the progress is
illustrated in fig. 3.11a for all five simulations. Fig. 3.11b shows a closeup of the
last 20 iterations. It is evident from fig. 3.11 that the simulations are converging
but they do not fully converge.

0 10 20 30 40 50
1

1.5

2

2.5

3

Iteration number

C
d

003914 nodes
011950 nodes
033894 nodes
167686 nodes
728360 nodes

a) Overall progress

30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

Iteration number

C
d

003914 nodes
011950 nodes
033894 nodes
167686 nodes
728360 nodes

b) Close-up of final 20 iteration steps

Figure 3.11: Progress of drag coefficient, unstructured mesh

To check and also verify the results the pressure distribution is compared to the
values from [Dennis & Chang 1970] as earlier mentioned. The dimensionless
surface pressure for all five simulations is determined by eq. (3.2) and plotted in
fig. 3.12 along with the results from [Dennis & Chang 1970].

- 39 -

3 Mesh analysis

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Angle from stagnation point [◦]

P
(θ

)

003914 nodes
011950 nodes
033894 nodes
167686 nodes
728360 nodes
Dennis and Chang

Figure 3.12: Dimensionless surface pressure, unstructured mesh

From fig. 3.12 it is seen that the simulations that fits the data from [Dennis &
Chang 1970] closest are with the coarse meshes. This corresponds well with the
fact that the data from [Dennis & Chang 1970] are obtained with a relatively
coarse mesh as well. Fig. 3.12 also shows that the simulation which deviates the
most is with the finest mesh. This behavior was not expected. More about this
later.

- 40 -

3.5 Results

3.5.2 Unstructured mesh with inflation layers

The simulations with unstructred meshes with inflation layers also converged
relatively quickly with a maximum of 31 iterations. The computation time vs.
the number of nodes in the computations is plotted in fig. 3.13. For comparative
reasons the data for the simulations with the fully unstructured mesh (fig. 3.9) are
included. The total computation time have been normalized to the computation
time for one node per iteration.

10
3

10
4

10
5

10
6

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Number of nodes

C
om

p
u
ta

ti
on

ti
m

e[
10

−
4

s]

Unstructured mesh
Unstructured mesh w. inflation layers

Figure 3.13: Number of nodes vs. computation time, unstructured mesh with and
without inflation layers

The reason that only four and not five simulations with inflation layers have been
run is because of the lack of computer power necessary to generate the mesh in
CFX-Mesh. The program crashed numerous times when checking for intersecting
inflation layers.

Inspection of fig. 3.13 shows some difference in the computation time but the
relation between the two curves are unclear. This could indicate, that the in-
clusion of prismatic layers have no real influence on the computation time. The
number of prismatic elements are less than 9% of the total number of elements
in all simulations and the amount of prismatic elements should be much larger
to see any clear relation at least for these simulations. As it will be shown later,
when dealing with the simulations with the fully structured meshes, the compu-
tation time will decrease significantly when using fully structured meshes with
only prismatic elements.

The main reason for using inflation layers is to capture the large gradients in
the boundary layer flow and still keep the number of elements as low as possi-

- 41 -

3 Mesh analysis

ble to save computation time. In fig. 3.14 pressure isobars for the simulations
with the most coarse and most dense unstructured mesh with inflation layers are
shown. These show no major difference except for the back side where the most
dense mesh shows some effect on the pressure from the wake.

a) Coarse mesh (unstr1_infl.gtm) b) Dense mesh (unstr4_infl.gtm)

Figure 3.14: Pressure on cylinder for simulations with most coarse and most
dense unstructured mesh with inflation layers

Similar to tab. 3.10 the forces on the cylinder at the end of the simulations are
listed in tab. 3.8.

Table 3.8: Force on cylinder for simulations with unstructured mesh with inflation
layers

Nodes in simulation Ftotal

[

N
m

]

Fpress

[

N
m

]

Fvisc

[

N
m

]

3836 0.8430 0.5467 0.2966
4632 0.8060 0.5215 0.2846
40108 0.8020 0.5226 0.2793
97308 0.7980 0.5181 0.2799

The drag coefficient is determined by eq. (3.2) and plotted in fig. 3.15. As was
the case for the simulations with the fully unstructured meshes, the simulations
are converging but not fully converged.

- 42 -

3.5 Results

0 10 20 30 40 50
1

1.5

2

2.5

3

Iteration number

C
d

003836 nodes
014632 nodes
040108 nodes
197308 nodes

a) Overall progress

30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

Iteration number

C
d

003836 nodes
014632 nodes
040108 nodes
197308 nodes

b) Close-up of final 20 iteration steps

Figure 3.15: Progress of drag coefficient, unstructured mesh with inflation layers

The surface pressure distribution is determined by eq. (3.2) for all four simula-
tions and plotted in fig. 3.16 along with the results from [Dennis & Chang 1970].

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Angle from stagnation point [◦]

P
(θ

)

003836 nodes
014632 nodes
040108 nodes
197308 nodes
Dennis and Chang

Figure 3.16: Dimensionless surface pressure, unstructured mesh with inflation
layers

- 43 -

3 Mesh analysis

As is was the case for the simulations with unstructured mesh the best fit is
with a relatively coarse mesh. Also in this case the finest mesh is the one which
deviates most from the reference results which was not expected.

3.5.3 Structured Mesh

The simulations with the structured mesh caused some problems. The initially
generated structured meshes with the settings presented in sec. 3.3 resulted in
CFX runs which did not converge or terminated with error. In the following
subsection the cause for this error and solution to this is sought for.

Numerical Error with Structured Meshes

The first CFX runs, as mentioned, did not converge after 100 iterations or ter-
minated with the following error message:

ERROR # 004100018 has occurred in subroutine FINMES.

| Message:

| Fatal overflow in linear solver.

The error message above occurs when the solution is diverging instead of con-
verging. The velocity in the domain and the pressure gradients on the cylinder
from one of these simulations are shown in fig 3.17.

a) Velocity profile in domain b) Pressure gradients on cylinder

Figure 3.17: Screenshots of results from simulations with initial structured mesh
(struc3.msh)

It is easily seen that the results of the simulations are not corresponding to the
expected results.

Before choosing the cylinder as test case, the simulations were run on a geometry
with only straigth faces. These simulations resultet in relatively fast convergence

- 44 -

3.5 Results

and no errors. To see whether the mesh generation had difficulties dealing with
curved faces, the geometry with straigth faces was changed to contain one curved
face. The initial and altered geometry are shown in fig. 3.18

1m

0.5m

1m

0.5m

0.5m

Initial geometry Altered geometry

Figure 3.18: Initial and altered geometry

Contrary to the initial geometry, which as mentioned converged quickly, the
simulation with the altered geometry resulted in a run which did not converge
after 100 iterations. Due to this behavior the emphazise was now turned to
the meshes generated. A closer inspection of the mesh struc1.msh showed, that
the stretch function determining the outwards layer distribution, defined by the
vectors in eq. (3.3), resulted in a very thin first layer at the cylinder surface. Fig.
3.19 shows a close-up of the region close to the cylinder surface where the thin
layer is visible.

−0.51 −0.505 −0.5 −0.495 −0.49
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

x [m]

y
[m

]

Figure 3.19: Close-up of mesh next to cylinder surface (struc1.msh)

- 45 -

3 Mesh analysis

Besides the thin first layer fig. 3.19 also reveals that the height ratio between the
first and second layer is relatively large. In the CFX-Post manual a volume ratio
between two adjacent elements larger than 5 can cause problems when running
the solver. To avoid this the mesh generation program was changed so instead of
specifying an approximate extent and a stretch function to define the outwards
layer distribution, another method is used. The outwards layer distribution was
now defined by specifying the element height of the first layer and a constant
expansion factor and the outwards extent limitation was removed. A reference is
made to subsec. 2.1.6 where this function is described in more detail.

With this new function it was initially intended to double the expansion fac-
tor every time the number of surface nodes and marching layers were halved.
The expansion factor was found for the most dense mesh which gave an approxi-
mate extent of the mesh of 30m with a starting height of L = 10−4 m. Doubling
this factor three times and halving the number of nodes also three times gave
the most coarse mesh which only extended about two times the diameter of the
cylinder.

Finally the generation of the structured mesh was done by generating the most
dense mesh and hereafter deleting every second layer outwards and every second
node around the boundary. The most dense mesh was first generated with a
height of the first layer of 10−4 m. This resulted in a simulation with the most
coarse mesh which did not converge after 100 iterations. In the CFX-Post ma-
nual it states that an edge length ratio of more than 100 can cause errors when
running the solver. An estimate showed an edge length ratio of over 780 in the
first layer when using 10−4 m. Instead 10−3 m was used and hereafter no errors
occurred. The parameters used to generate the most dense mesh are listed in
tab. 3.9.

Table 3.9: Parameters used to generate new structured meshes

Number of nodes Number of marching Expansion factor
on boundary n layers N expan_fac

640 641 0.0088

An example of the new structured mesh is shown in fig. 3.20 which is the second
most coarse mesh.

- 46 -

3.5 Results

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

x

y

Figure 3.20: Example of final structured mesh

Results from Runs with new Structured Meshes

After generating the five new mesh files the simulations were run. The simulations
converged after a maximum of 29 iterations. The computation time have been
normalized the same way as in fig. 3.13 and plotted in fig. 3.21 along with the
results from the two other mesh types. It is clear that the computation time
is significantly smaller for the simulations with structured mesh. As mentioned
when dealing with the unstructured mesh with inflation layers which did not
show any real time difference compared to the fully unstructured mesh, there is
a significant time to save if the amount of prismatic layers is sufficiently large.

10
3

10
4

10
5

10
6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of nodes

C
om

p
u
ta

ti
on

ti
m

e
p
er

n
o
d
e

[1
0−

4
s]

Unstructured mesh
Unstructured mesh w. inflation layers

Structured mesh

Figure 3.21: Number of nodes vs. computation time per node, all mesh types

- 47 -

3 Mesh analysis

The pressure isobars for the simulations with the most coarse and most dense
structured mesh are shown in fig. 3.22. A closer look at the two figures shows
a difference in the pressure on the back side of the cylinder. Also comparing
fig. 3.10b and 3.14b with 3.22b shows a difference in the pressure on the back
side. The structured mesh is apparently better at including the effect of the wake
behind the cylinder.

a) Coarse mesh (struc1_new.msh) b) Dense mesh (struc5_new.msh)

Figure 3.22: Pressure on cylinder for simulations with most coarse and most
dense structured mesh

The forces on the cylinder at the end of the simulations are listed in tab. 3.10.

Table 3.10: Force on cylinder for simulations with unstructured mesh

Nodes in simulation Ftotal [N/m] Fpress [N/m] Fvisc [N/m]

3280 0.8230 0.5372 0.2857
12960 0.7960 0.5200 0.2760
51520 0.7910 0.5179 0.2727
205440 0.7840 0.5141 0.2698
820840 0.7950 0.5214 0.2736

The drag coefficient is determined by eq. (3.2) and plotted in fig. 3.23. The
same behavior as for the two previous mesh types is also present here with the
simulations converging but not fully converged.

- 48 -

3.5 Results

0 10 20 30 40 50
1

1.5

2

2.5

3

Iteration number

C
d

003280 nodes
012960 nodes
051520 nodes
205440 nodes
820480 nodes

a) Overall progress

30 35 40 45 50
0.05

0.06

0.07

0.08

0.09

0.1

Iteration number

C
d

003280 nodes
012960 nodes
051520 nodes
205440 nodes
820480 nodes

b) Close-up of final 20 iteration steps

Figure 3.23: Progress of drag coefficient, structured mesh

The dimensionless surface pressure is determined by eq. (3.2) for all five simu-
lations and plotted in fig. 3.24. Again the best fit of the data from [Dennis &
Chang 1970] are the results from the simulations with the most coarse meshes.

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Angle from stagnation point [◦]

P
(θ

)

003280 nodes
012960 nodes
051520 nodes
205440 nodes
820480 nodes
Dennis and Chang

Figure 3.24: Dimensionless surface pressure, structured mesh

- 49 -

3 Mesh analysis

As it is the case for all mesh types, the pressure distribution for the one/two most
dense meshes deviate from the rest of the simulations and from the reference
results.

3.6 Observations

To sum up on the observations during the analysis, the main difference in using
structured and unstructured mesh types in Ansys CFX is the computation time.
There is a large difference in the necessary computation time when going from a
fully unstructured mesh to a fully structured. The inclusion of inflation layers in
the unstructured meshes did not show any real improvement of the results and
the computation time. This could be due to the ratio of prismatic elements to
the total number of elements which was below 9% in all simulations. The much
shorter computation time for the fully structured meshes indicate that there is
a lot to gain by including these prismatic layers as long as the ratio between
prismatic and unstructured elements become sufficiently high.

The structured meshes introduced some problems in the simulations. By analysis
it was found, that the edge length ratio and volume ratio between two adjacent
elements are of great importance. In CFX-Post the mentioned limits for these
ratios are not listed as maximum ratios but only listed as values which can cause
problems in the solver. This analysis showed that these ratios should be consi-
dered as maximum limits when generating meshes to use in simulations in Ansys
CFX.

It was the case for all three mesh types that the simulations did not fully converge
and on top of this, the simulations which deviated the most from the reference
results was the ones with the finest mesh. This was not at all expected. Supervi-
sor of this project, Niels N. Sørensen, Risø, have conducted simulations with the
same settings but with a different solver developed at Risø. The pressure distri-
bution from his simulation with the finest mesh is plotted in fig. 3.25 along with
the results from [Dennis & Chang 1970]. Also the results from the simulation
with the finest mesh of the three mesh types are included.

- 50 -

3.6 Observations

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Angle from stagnation point [◦]

P
(θ

)
Unstructured mesh
Unstructured mesh w. inflation la

Structured mesh
Niels N. Sørensen
Dennis and Chang

Figure 3.25: Comparison of results from the conducted simulations with results
from supervisor Niels N. Sørensen

It is seen from fig. 3.25 that the results from Niels N. Sørensen fits the reference
data very well compared to the results from the conducted simulations in this
project. The reason for this behavior has not been searched for any further.

- 51 -

3 Mesh analysis

- 52 -

4
Analyses of Moving mesh in CFX

.

.

.
In this chapter a problem with moving mesh in Ansys CFX is de-
scribed, where the mesh orthogonality would deteriorate through a
transient run. An analysis of six different functions to govern mesh
stiffness is performed. The goal of this analysis is to determine which
functions are less likely to cause problems with deteriorating orthogo-
nality in the mesh during transient runs with moving mesh.

The analysis shows that the best way to govern the mesh stiffness is
by using either the reciprocal of wall distance as a stiffness parameter,
or by using the predefined function "Increase near Boundaries". This
conclusion holds only if there are no unforseen problems arising dur-
ing 3D simulations, that were not visible in the 2D test case.

- 53 -

4 Analyses of Moving mesh in CFX

When conducting CFD simulations where the structure is allowed to deflect, the
mesh in the simulation has to be able to obtain the deformation. In this chap-
ter the ability to control the mesh stiffness in Ansys CFX is analyzed. Also it
became apparent that a certain problem can occur in CFX when the mesh is
moved, being that the mesh is slowly deforming, or folding. This also has to
be taken care of so the solver does not terminate before reaching the end of the
specified simulation time.

The mesh deformation is in Ansys CFX governed by a displacement diffusion
model given by, cf. ANSYS CFX-Solver Modeling Guide, p. 4 :

∇ ·
(

Γdisp∇δ
)

= 0 (4.1)

where

Γdisp is the mesh stiffness
δ is the displacement relative to the previous mesh locations
∇ is the gradient operator

Eq. (4.1) expands to:

∂

∂x
Γdisp

∂δ

∂x
+

∂

∂y
Γdisp

∂δ

∂y
+

∂

∂z
Γdisp

∂δ

∂z
= 0 (4.2)

which in the case of Γdisp = constant becomes:

∂2δ

∂x
+

∂2δ

∂y
+

∂2δ

∂z
= 0 (4.3)

4.1 Test case

The test case for the moving mesh is a cylinder with a diameter of 1 m in a
circular domain, like the test case in sec. 3.1. The cylinder is translated in a
circular motion and during these cycles of translation the mesh will deform away
from the initial mesh. The cyclic motion is governed by the functions dx and dy,
controlling the displacement of the cylinder. These functions are given as:

dx = 0.1 cos(1m
s t) − 0.1 (4.4)

dy = 0.1 sin(1m
s t) (4.5)

- 54 -

4.1 Test case

Fig. 4.1 shows a sketch of the circular motion of the cylinder, and fig. 4.2 shows
an example of the mesh before and after permanent deformations have occurred
even though the cylinder has returned to it’s initial position.

Figure 4.1: Sketch of test case

a) Mesh before deformation b) Mesh after deformation

Figure 4.2: Mesh before and after deformation

The problems were first encountered while running CFX 10.0 and were so exten-
sive that the deformations would create negative volume elements and prema-
turely shut down the transient runs. Several different approaches to govern the
mesh stiffness in the domain were tried, with varying degrees of success. The
problem of the mesh deforming or folding became less severe if the mesh stiffness
was controlled in a way, that would ensure a high stiffness in the very small e-
lements close to the cylinder and a lower stiffness away from the cylinder where
the elements are much larger.

- 55 -

4 Analyses of Moving mesh in CFX

After installing CFX 11.0 the problems were less severe. Functions for governing
mesh stiffness that caused problems in CFX 10.0 worked much better. Still it is
desired to compare different ways of governing the mesh stiffness, to determine
the optimal method for doing so. Furthermore the effects of the time step size is
investigated.

To do this, four different approaches for governing the mesh stiffness are at-
tempted. The functions for these are illustrated in figs. 4.3a - 4.3d, where the
mesh stiffness and wall distance have been normalized. Here it is important to
remember that a mesh stiffness of 1 does not equal infinite stiffness, but merely
the maximum stiffness in the domain. As such, deformations can occur in areas
with a mesh stiffness of 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Γ
d
is

p

Γ
d
is

p
,m

a
x

wd

wd,max

a) Constant

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Γ
d
is

p

Γ
d
is

p
,m

a
x

wd

wd,max

b) Reciprocal of wall distance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Γ
d
is

p

Γ
d
is

p
,m

a
x

wd

wd,max

c) tanh function

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Γ
d
is

p

Γ
d
is

p
,m

a
x

wd

wd,max

d) cos function

Figure 4.3: Normalized mesh stiffness as function of normalized wall distance

- 56 -

4.1 Test case

The tanh and cos functions, Stanh and Scos respectively, are given by eqs. (4.6)
and (4.7) where wd denotes the normalized wall distance.

Stanh(wd) =

tanh(30wd − 18)2 for wd < 0.6

tanh(30wd − 24)2 for wd > 0.83

0 else

(4.6)

Scos(wd) =

1 for wd < 0.2

0 for wd > 0.9

0.5 cos(π
0.7 (wd − 0.2)) else

(4.7)

Also, two internal CFX 11.0 functions were tried; Increase near Boundaries and
Increase near Small Volumes. Both were used with the standard settings.

As a parameter for the mesh quality, the minimum orthogonality factor has been
measured in the surface layer. The mesh orthogonality is in ANSYS CFX-Solver
Modeling Guide p. 371 defined as:

"The most relevant measure of mesh orthogonality in ANSYS CFX-
Solver is illustrated below. It involves the angle between the vector
that joins two mesh (or control volume) nodes (s) and the normal
vector for each integration point surface (n) associated with that edge.
Significant orthogonality and non-orthogonality are illustrated at ip1
and ip2, respectively."

ip1

ip2

n

ns

Figure 4.4: Definition sketch of mesh orthogonality

The minimum orthogonality factor is in ANSYS CFX-Solver Modeling Guide p.
372 defined as:

"Minimum of all integration point surface scalar products of unit n
and s vectors (i.e., n·s) associated with each control volume."

- 57 -

4 Analyses of Moving mesh in CFX

An orthogonality factor of 1 defines a fully orthogonal mesh.
Each of the six functions have been tested with a case of 50 cyclic motions. One
test using 20 steps for a cycle and one using 40, so that any influence the step
size may have will be shown.

In tab. 4.1 a list of the runs made is shown, along with their path on the DVD.
For each type of test, there is a 20 step cycle run and a 40 step cycle run.

Table 4.1: Moving mesh test runs

Moving mesh test runs

Name Path to .res and .out files

Constant DVD\Moving_Mesh\constant\
Reciprocal of wall distance DVD\Moving_Mesh\one_over_WD\

tanh function DVD\Moving_Mesh\tanh_function\
cos function DVD\Moving_Mesh\cos_function\
Increase near Boundaries DVD\Moving_Mesh\inc_near_bound\
Increase near Small Volumes DVD\Moving_Mesh\inc_near_small_vol\

For each run there is a result file (.res), and an out file (.out). The transient
result files have not been included on the DVD due to excessive usage of disk
space (>4 GB per run).

4.1.1 Constant Stiffness

A constant stiffness parameter throughout the domain has proven a very poor
choice, as can easily be seen on fig. 4.5.

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

Figure 4.5: Deformation of innermost elements; constant stiffness

The large amplitudes of each cycle shows there are large deformations of the e-
lements in each cycle, and the deteriorating orthogonality factor shows that the
permanent deformations are rapidly growing.

- 58 -

4.1 Test case

There is practically no difference between using 20 step cycles and 40 step cycles.

4.1.2 Reciprocal of Wall Distance

Using the reciprocal of the wall distance as a stiffness parameter shows that
there are no deformation of the innermost elements, as seen on fig. 4.6. This
is contradictory to the initial tests in CFX 10.0 where this approach gave large
deformations.

0 5 10 15 20 25 30 35 40 45 50
0.99

0.992

0.994

0.996

0.998

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

Figure 4.6: Deformation of innermost elements; reciprocal of wall distance

That there is no deformation in the innermost elements suggests that the stiffness
here goes towards infinite.

The difference between 20 step cycles and 40 step cycles cannot be explained
in any other way than some numerical error, as it is obvious the two simulations
start out with a different orthogonality factor, despite using the same mesh.

4.1.3 Tanh Function

Using the tanh function, it can be seen from figs. 4.7a and 4.7b that although
there is a clear cyclic behavior of the deformations, they are quite small. It seems
however, that there is a slowly deterioration in the orthogonality factor over time.

- 59 -

4 Analyses of Moving mesh in CFX

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

a) Overview

0 5 10 15 20 25 30 35 40 45 50
0.99

0.992

0.994

0.996

0.998

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

b) Closeup

Figure 4.7: Deformation of innermost elements; tanh function

There is an obvious difference between using 20 step cycles and 40 step cycles,
where the smaller steps causes less deformation over time.

- 60 -

4.1 Test case

4.1.4 Cos Function

It can be seen from fig. 4.8 that the cos function deforms fast and is certainly
not as good as the tanh or reciprocal of wall distance functions.

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

Figure 4.8: Deformation of innermost elements; cos function

There is also an obvious difference between using 20 step cycles and 40 step cycles
here, where the 20 step cycles starts deteriorating sooner than using 40 steps, but
then flattens out and actually causes less permanent deformation at the end of
the run. This behavior is peculiar and probably has to do with some unforseen
numerical effects.

4.1.5 Increase near Boundaries

This method is virtually identical to using the reciprocal of wall distance, as can
be seen by comparing fig. 4.9 to fig. 4.6.

0 5 10 15 20 25 30 35 40 45 50
0.99

0.992

0.994

0.996

0.998

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

Figure 4.9: Deformation of innermost elements; increase near boundaries

- 61 -

4 Analyses of Moving mesh in CFX

4.1.6 Increase near Small Volumes

This method shows cyclic behavior similar to that of the tanh function. As can
be seen from figs. 4.10a and 4.10b, the oscillations cause very little deterioration
of the orthogonality over time.

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

a) Overview

0 5 10 15 20 25 30 35 40 45 50
0.99

0.992

0.994

0.996

0.998

1

Cycles

O
rt

h
og

on
al

it
y

fa
ct

or

20 steps
40 steps

b) Closeup

Figure 4.10: Deformation of innermost elements; increase near small volumes

There seem to be no clear difference between using 20 step cycles and 40 step
cycles with this method.

4.1.7 Summary

Figs. 4.11 to 4.16 show the minimum orthogonality angle in the mesh for each
of the six methods during one cycle at 0, 90, 180, 270 and 360 degrees rotation.
Cycle 26 has been chosen to illustrate this, going from step 1000 to step 1040.

- 62 -

4.1 Test case

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.11: Minimum orthogonality angle in mesh, constant stiffness

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.12: Minimum orthogonality angle in mesh, reciprocal of wall distance

- 63 -

4 Analyses of Moving mesh in CFX

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.13: Minimum orthogonality angle in mesh, tanh function

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.14: Minimum orthogonality angle in mesh, cos function

- 64 -

4.1 Test case

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.15: Minimum orthogonality angle in mesh, Increase near boundaries

a) 0 degrees b) 90 degrees c) 180 degrees

d) 270 degrees e) 360 degrees

[degrees]

Figure 4.16: Minimum orthogonality angle in mesh, Increase near small volumes

- 65 -

4 Analyses of Moving mesh in CFX

It is evident that as the cylinder moves away from its point of origin, the or-
thogonality throughout mesh deteriorates, however most of this orthogonality is
subsequently reestablished as the cylinder returns to the point of origin.

From figs. 4.5 - 4.10 it can be seen that the two functions which give the most
orthogonal elements in the surface layer is either the reciprocal of the wall dis-
tance or the increase near boundaries. Both these functions show no deformation
of the surface layer at all, and as such no deterioration over time either. This can
also be seen from tabs. 4.2 and 4.3 where the minimum orthogonality factors are
listed in descending orders.

Table 4.2: Moving mesh results, 20 step cycle

Moving mesh results, 20 step cycle

Name Minimum orthogonality factor

Increase near boundaries 0.9984
Reciprocal of wall distance 0.9984
Increase near small volumes 0.9953
Tanh function 0.9924
Cos function 0.9315
Constant 0.7482

Table 4.3: Moving mesh results, 40 step cycle

Moving mesh results, 40 step cycle

Name Minimum orthogonality factor

Increase near boundaries 0.9990
Reciprocal of wall distance 0.9990
Tanh function 0.9959
Increase near small volumes 0.9953
Cos function 0.8942
Constant 0.7546

When studying the entire mesh however, figs. 4.17 - 4.22, it can be seen that
the reciprocal of the wall distance, fig. 4.18b, performs significantly better than
increase near boundaries, 4.21b, where a small band shows a lot of permanent
deformation. The strange behavior of the cos function with two areas of low
orthogonality, fig. 4.20b, seems to be due to some numerically odd behaviour in
the solver.

- 66 -

4.1 Test case

a) b)

[degrees]

Figure 4.17: Screencaps after finished run, constant stiffness

a) b)

[degrees]

Figure 4.18: Screencaps after finished run, reciprocal of wall distance

a) b)

[degrees]

Figure 4.19: Screencaps after finished run, tanh function

- 67 -

4 Analyses of Moving mesh in CFX

a) b)

[degrees]

Figure 4.20: Screencaps after finished run, cos function

a) b)

[degrees]

Figure 4.21: Screencaps after finished run, increase near boundaries

a) b)

[degrees]

Figure 4.22: Screencaps after finished run, increase near small volumes

- 68 -

4.1 Test case

Again, it is obvious that the reciprocal of the wall distance or the increase near
boundaries produce a more orthogonal mesh also further away from the boun-
dary. On this note, it is concluded that unless unforseen problems occur when
running 3D moving mesh simulations, these two methods are superior and either
can be used.

- 69 -

4 Analyses of Moving mesh in CFX

- 70 -

5
Model Setup for Aeroelastic Analyses

.

In this chapter the model used for the simulations, used for aeroelas-
tic analyses, is presented. The dimensions of the model are shown
and the implementation of the model into Ansys CFX is explained.
This includes the setup of the boundary conditions as well as the flow
properties used in the simulations.

As many of the simulations conducted deals with a moving structure
the method for controlling the structure movement by external For-
tran routines is presented. This includes defining user routines and
functions in Ansys CFX linking to the relevant Fortran routines.

Lastly the method used for dividing the structure into a defined num-
ber of sections to obtain the loads in the Fortran routines is described.
The programming language called PERL have been used in this pro-
cess. Not much emphasis is put on describing this programming lan-
guage and a reference is made to app. G where this is described in
further detail.

- 71 -

5 Model Setup for Aeroelastic Analyses

In this chapter the model for the simulations, used for aeroelastic analyses, and
the setup in CFX is presented. The structure is chosen as a square cylindrical
structure with dimensions as shown in fig. 5.1.

A A

AA

u

20m

20m

200m

x

x

y

z

Figure 5.1: Dimensions of model structure

The structure is exposed to a uniform wind in the x-direction. The wind speed
is selected as u = 20m

s . The simulations are transient and the definition of total
time and time step will be presented when dealing with the respective simulation
and will not be explained further in this section.

5.1 Simulation Setup

In this section the input for the simulations are presented. This includes the flow
parameters and the boundary conditions used. The full domain is made up of
two mesh files. This requires the definition of a domain interface between the two
meshes for the solver to know how the flow is affected by this. Fig. 5.2a shows an
illustration of the two meshes making up the entire domain and fig. 5.2b shows
the names of the boundaries. The latter will be helpful in subsec. 5.1.3 dealing
with the boundary conditions.

- 72 -

5.1 Simulation Setup

a) Illustration of the two meshes
making up the entire domain

Top

Plug2mesh

Mesh2plug

Outer 2

Outer 1 Bottom

BodySurface

Outer 3

Outer 4
BodySurface 2

b) Definition of boundary names

Figure 5.2: Illustration of domain and boundaries

The input for the domain interface are listed in tab. 5.1.

Table 5.1: Definition of domain interface for simulations

Basic Settings
- Interface Type Fluid Fluid

Interface Side 1
- Domain (Filter) Domain 1
- Region List Mesh2plug
Interface Side 2
- Domain (Filter) Domain 2
- Region List Plug2mesh
Interface Models
- Option General Connection
- Frame Change/Mixing Model
- Option None
- Pitch Change
- Option None
Mesh Connection Method
- Option Automatic

5.1.1 Domain Parameters and Global Initial Conditions

The flow parameters and initial conditions for the simulations are listed in tab.
5.2.

- 73 -

5 Model Setup for Aeroelastic Analyses

Table 5.2: Domain parameters and global initial conditions for simulations

Domain Parameters

General options Fluid Models

Basic Settings Heat transfer Model

- Location DOMAIN1, DO-
MAIN2

- Option None

- Domain type Fluid Domain
- Fluid List Air at 25 C
- Coord frame Coord 0
Domain Models Turbulence Model

- Ref. Press 1 [atm] - Option Shear Stress Transport
- Wall Function Automatic

Buoyancy

- Option Non Buoyant
Domain Motion

- Option Stationary
Mesh Deformation

- Option "Varies"

Global Initial Conditions Solver Control

Initial Conditions Advection Scheme

- Velocity Type Cartesian - Option High Resolution
Cart. Vel. Components Convergence Control

- Option Automatic with
Value

- u 20 [m ŝ -1]
- v 0 [m ŝ -1]
- w 0 [m ŝ -1]
Static pressure Convergence Criteria

- Option Automatic - Residual Type RMS
Turbulence Eddy Dissipation - Residual Target 1.E-4
- Option Automatic

As can be seen from tab. 5.2, the fluid is chosen as Air at 25 C. In tab. 5.3
below, the case relevant data for this fluid are listed.

Table 5.3: Data for the fluid Air at 25 C

Density, ρ 1.185
[

kg
m3

]

Dynamic Viscosity, µ 1.831e-005
[

kg
m s

]

In the case of specification of the mesh deformation, different options are used
throughout this project. Therefore specification of this will be explained in the
respective section when relevant.

It is seen in tab. 5.2 that the turbulence model used is the Shear Stress transport
model (SST). The motivation for using this model is presented in subsec. 5.1.2.

5.1.2 Turbulence Model

As mentioned above, the turbulence model used is the Shear Stress Transport
model (SST) which utilizes the strengths of both the k − ǫ and the k − ω model.
The two latter will be discussed first to explain the motivation for using the SST

- 74 -

5.1 Simulation Setup

model. Only a discussion of the pros and cons of the two models will be con-
ducted. For a derivation of the governing eqs. for the turbulence models, see
app. C.

Both the k − ǫ and the k − ω model are two equation models which are also
called Complete models as they do not require any prior knowledge of the tur-
bulence structure in the flow. As the names indicate they both use the specific
turbulence kinetic energy, k, in the model but uses different variables for de-
termining the turbulence length scale. The turbulence kinetic energy is used to
compute the energy in the turbulence while the computation of the turbulent
length scale require knowledge of an additional variable. Here, the k − ǫ model
uses the dissipation, ǫ, while the k − ω model uses the specific dissipation rate,
ω.

k − ǫ model

The (High Re) k − ǫ model is the most widely used turbulence model. This
model uses the dissipation, ǫ, to determine the turbulent length scales. Studies
in [Wilcox 2002] show that the k−ǫ model gives inaccurate results in regions with
adverse pressure gradients. The flow in this thesis is expected to separate and
cause adverse pressure gradients and hereby contain a region, where the model
does not give accurate results.
The k− ǫ model only yield an accurate solution for fully turbulent flows. In flows
near walls, regions exist in which the local turbulent Reynolds number is so small
that the viscous effects become more significant than the turbulent ones providing
inaccurate results when using the k − ǫ model through the viscous sublayer.
When increasing the distance from wall bounded flows and into the free-stream
in the farfield the k−ǫ model yield very accurate results as it is not very sensitive
to the free-stream conditions.

k − ω model

As mentioned, the k − ω model uses the specific dissipation rate, ω, as the addi-
tional variable. Studies in [Wilcox 2002] show that the k − ω model yields good
results in flows with adverse pressure gradients and is also capable of handling
the viscous sublayer with low turbulent Reynolds number. However the ω term
in the k − ω model shows a high sensitivity to the free-stream conditions, which
is opposite the behavior of the k − ǫ model.

- 75 -

5 Model Setup for Aeroelastic Analyses

SST model

As the two models have their strengths and weaknesses in opposite regions of
the flow, a model used to utilize the best features of both models and take the
transport of shear stress into account has been developed. This model is called
the Shear Stress Transport model (SST). The SST model uses a k − ω formula-
tion in the near wall regions with adverse pressure gradients and low turbulent
Reynolds number, where this formulation yield accurate results. An important
aspect when dealing with Fluid-Structure interaction (FSI) is to determine the
pressure on the body as accurate as possible. Flow separation and the displace-
ment effects associated with this is very important to predict which the k − ǫ

model is incapable of.
When moving away from the wall the model is gradually transformed into a k− ǫ

formulation which, as mentioned, is less sensitive to the free-stream conditions.
The transition is controlled by a blending function which can distinguish be-
tween the different zones using the appropriate turbulence model in the correct
zone. Furthermore, to account for the effects of shear stress transport, a blending
function is introduced in the SST model to govern the eddy viscosity, νT , which
significantly improves the behavior in strong adverse pressure-gradient flows.

5.1.3 Boundary Conditions

In this subsection the boundary conditions used for the simulations are presented.
The boundary conditions used are listed in tab. 5.4.

- 76 -

5.1 Simulation Setup

Table 5.4: Boundary Conditions

Basic Settings Boundary Details

STRUCTURE:
- Boundary type Wall Wall Influence on Flow

- Location BodySurface,
BodySurface 2

- Option No Slip

Mesh Motion

- Option Specified Displacement
- X Component dispX(z)
- Y Component dispY(z)
- Z Component 0 [m]

INLET:
- Boundary Type Inlet Flow Regime

- Location Outer 2 - Option Subsonic
Mass and Momentum

- Option Cart. Vel. Components
- u 20 [m ŝ -1]
- v 0 [m ŝ -1]
- w 0 [m ŝ -1]
Turbulence k and Omega
- Turb. Kinetic Energy 0.01 [m̂ 2 ŝ -2]
- Turb. Eddy Frequency 1e+006 [ŝ -1]
Mesh motion

- Option Stationary

OUTLET:
- Boundary Type Outlet Flow Regime

- Location Outer 4 - Option Subsonic
Mass and Momentum

- Option Average Static Pressure
- Relative Pres. 1 [Pa]
Pressure Averaging

- Option Average Over Whole Outlet
Mesh motion

- Option Stationary

OPENING:
- Boundary Type Opening Flow Regime

- Location Outer 1, Outer 3 - Option Subsonic
Mass and Momentum

- Option Opening Pres. and Dirn
- Relative Pres. 1 [Pa]
Flow Direction

- Option Normal to Boundary Condition
Turbulence Medium (Intensity = 5 %)
Mesh motion

- Option Stationary

BOTTOM:
- Boundary Type Wall Wall Influence on Flow

- Location Bottom - Option No Slip
Mesh motion

- Option Stationary

TOP:
- Boundary Type Opening Flow Regime

- Location Top - Option Subsonic
Mass and Momentum

- Option Opening Pres. and Dirn
- Relative Pres. 1 [Pa]
Flow Direction

- Option Normal to Boundary Condition
Turbulence Medium (Intensity = 5 %)
Mesh motion

- Option Stationary

- 77 -

5 Model Setup for Aeroelastic Analyses

The inclusion of a domain interface results in two extra boundaries, where
the boundary conditions used are listed in tab. 5.5

Table 5.5: Boundary Conditions for Domain Interface

Basic Settings Boundary Details

DOMAIN INTERFACE 1 SIDE 1:
- Boundary Type Interface Mass and momen-

tum

- Location Mesh2plug - Option Conservative Interface Flux
Turbulence

- Option Conservative Interface Flux
Mesh motion

- Option Unspecified

DOMAIN INTERFACE 1 SIDE 2:
- Boundary Type Interface Mass and momen-

tum

- Location Plug2mesh - Option Conservative Interface Flux
Turbulence

- Option Conservative Interface Flux
Mesh motion

- Option Unspecified

The specifications of the mesh motion under "Structure" in tab. 5.4 are valid
for simulations where the structure is allowed to move. In simulations with a
stationary structure mesh motion is not used an these settings are not available.

Furthermore, the names, dispX(z) and dispY(z), are not CFX related names.
The names relate to defined "User Functions" in CFX named by the user. The
mesh deformation is governed by Fortran routines where the "User Functions"
refer to specified "User Routines". The connection can be seen in fig. 5.3.

Figure 5.3: Definition of mesh motion in CFX using "User Functions" and "User
Routines"

The turbulence settings under "Inlet" are specified due to the expected presence
of vortex shedding. in order to capture these vortices, the eddy viscosity has to
be sufficiently low. The eddy viscosity is given by:

νt =
k

ω
(5.1)

- 78 -

5.1 Simulation Setup

where

k is the turbulent kinetic energy,
[

m2

s2

]

ω is the specific dissipation rate ,
[

1
s

]

,
denoted the turbulent eddy frequency in CFX

Using the values for k and ω listed in tab. 5.4 the eddy viscosity at the inlet
boundary becomes:

νt = 10−8 m2

s ∼ ν

1500
(5.2)

Opposite the molecular viscosity, the eddy viscosity is not a fluid property. The
eddy viscosity is purely an imaginary concept. The eddy viscosity is intro-
duced when simplifying the Reynolds stresses. The simplification states that
the Reynolds stresses are proportional to the gradient of the mean velocity. The
proportionality coefficient is termed the eddy viscosity.

The reason that a low eddy viscosity is used is to try and keep the Reynolds
number sufficiently high, and thereby to ensure a turbulent flow. The Reynolds
number is proportional to the reciprocal of the sum of the molecular and the
eddy viscosity. As the molecular viscosity is a fluid property the eddy viscosity
is kept at a minimum. In Ansys CFX it is possible to overwrite the predefined
molecular viscosity, but that function has not been used.

5.1.4 User Routines and User Functions

In order to simulate FSI several "User Routines" and "User Functions" have been
specified. In this subsection the purpose of the individual routines and functions
are described. For information on the setup of User Routines and User Functions
in CFX, see app. F.

usr_input

This User Routine (Junction Box Routine) links to the Fortran routine usr_input
_XX.F, in which all the structure model related info, and some additional sim-
ulation related info is loaded into CFX and saved for use in the other routines.
The XX in the Fortran file name are not to be considered to be the actual name.
XX merely indicates that different names are used after the terms usr_input.
The routine is called only once during a simulation, at the Junction box location
"User Input". The following info is loaded in usr_input_XX.F:

- 79 -

5 Model Setup for Aeroelastic Analyses

• The eigenmodes of the structure are loaded from P.dat

• The eigenvalues of the structure are loaded from O.dat

• The transformation matrix is loaded from T.dat

• The number of beams in the structural model, the length of the beams, the
number of sections each beam is divided into, the eigenmodes included in
the modal model, and the position of P.dat, O.dat, T.dat and Output.dat

are loaded from input.dat

The data loaded is subsequently stored on the Ansys CFX Memory Management
System (MMS), for more info on this, see app. E.

usr_jcb

This User Routine (Junction Box Routine) links to the Fortran routine usr_jcb

_XX.F where XX again only means that this is not the full file name. The routine
calculates loads on the structure, displacements of the structural model, and is
called at the end of each time step. The procedure of the routine is as follows:

• The wind loads on the building are calculated section-wise, sections being
determined from the z coordinate. How the sections are specified can be
found in sec. 5.2.

• These section loads are then distributed onto the nodes in the structural
model as nodal loads, using the shape functions for the beams to do so

• A modal model of the structure is setup, using a limited number of eigen-
modes

• The Newmark-algorithm is employed to calculate the resulting displace-
ments of the nodes in the modal model

• The displacements are transformed back to nodal displacements of the
structural model

• The nodal displacements are saved on the MMS, for use in the routines
usr_disp_x and usr_disp_y

usr_disp_x

This User Routine (User CEL Function) links to the Fortran routine usr_disp_x
_XX.F. The routine calculates the x-displacement of the nodes on the structure
boundary, and is called when CFX calculates mesh displacements. The procedure
of the routine is as follows:

- 80 -

5.1 Simulation Setup

• The z coordinate of a node is used to determine which beam the placement
of the node corresponds to

• The displacements for the given beam , calculated in usr_jcb_XX.F, are
loaded from the MMS

• The shapefunctions for the beam are evaluated for the z value

• The x-displacement of the node is found by multiplying the shapefunctions
with the displacements, and sent to CFX

usr_disp_y

This User Routine (User CEL Function) links to the Fortran routine usr_disp_y

_XX.F. The routine calculates the y-displacement of the nodes on the structure
boundary, and is called when CFX calculates mesh displacements. The procedure
of the routine is as follows:

• The z coordinate of a node is used to determine which beam the placement
of the node corresponds to

• The displacements for the given beam , calculated in usr_jcb_XX.F, are
loaded from the MMS

• The shapefunctions for the beam are evaluated for the z value

• The y-displacement of the node is found by multiplying the shapefunctions
with the displacements, and sent to CFX

dispX

This User Function links to the User Routine (User CEL Function) usr_disp_x

and is used when specifying x-displacements of the structure, see tab. 5.4, as
follows: dispX(z). This sends the z values to the User Routine, in which they are
processed and used to calculate the x-displacements, as described for usr_disp_x.

dispY

This User Function is links to the User Routine (User CEL Function) usr_disp_y
and is used when specifying y-displacements of the structure, see tab. 5.4, as
follows: dispY(z). This sends the z values to the User Routine, in which they are
processed and used to calculate the y-displacements, as described for usr_disp_y.

- 81 -

5 Model Setup for Aeroelastic Analyses

5.2 Pressure Variables

As mentioned above, the forces on the structure are determined in sections. In
order to get these forces in the Fortran routine a macro is written which adds
variables to the CFX environment. The variables are pressure variables. The
definition of each variable is, that it contains the nodal values of the pressure in
a defined section of the domain and 0 in the rest of the domain. This retains the
possibility of using the built in areaInt function in CFX. The areaInt function
calculates an integral of a given variable on a given surface (area). By creating
variables where the pressure is set to 0 outside the section of interest, the function
can then perform an area integral over the entire structure surface and obtain
only the forces on the section specified.

The macro used, (add_variables.ccl), is included on the DVD in [DVD:\CFX\

Macros\]. The structure of the macro is based on the introduction in app. G
and will not be elaborated further here. Only the structure of the loops and
expressions included will be introduced. The individual terms and expressions
are presented the same way as they are written in the macro.

As mentioned each additional variable contains pressure data for a specific region
and set to 0 in the rest of the domain. To separate the section data from the
full set a built in step function in CFX is used. The structure of this function is
given below:

step(x) =

1 for x > 0

0 for x < 0

0.5 for x = 0

(5.3)

where

x is the argument for the step function

The force on the structure is made up of two contributions: from the pressure on
the structure and from the wall shear. The two contributions are first added in
the Fortran routine and two sets of additional variables are made. Also different
expressions have been used, one for the first section and one for the rest of the
sections. The expressions for the first section are listed below:

p1 = p * step((dz-z)/1[m]) Pressure term
s1 = wall shear * step((dz-z)/1[m]) Wall shear term

where

- 82 -

5.2 Pressure Variables

dz is the height of the section [m]
z is the vertical coordinate [m]

The height of the section, dz, is determined by dividing the total height of the
structure with the wanted number of sections:

dz=maxZ/$nsection

where

maxZ = max(z)Structure

The reason that the argument in the step function is divided by the unit of
the nominator is, that the step function only works for dimensionless arguments.
it is easily seen from the step functions that the argument becomes negative as
z increases above dz.

The additional variables, called pSect001 and sSect001, are programmed to
attain the value of p1 and s1 respectively by the method described in app G.

As mentioned the expressions for the remaining sections are a bit different than
the ones used for the first section. This is due to the structure of the step func-
tion. When dealing with the section $i the step function used above would cause
the variables to contain pressure values for all nodes below z=$i*dz and not
only within the height dz of section $i as wanted. To correct this another step
function is introduced which is multiplied onto the existing step function. An
illustration of these step functions are shown in fig. 5.4 where it should be noted
that $nhelp=$i-1.

=

000 11 1

step((($i*dz)-z)/1[m])
step((z-(($nhelp)*dz))/1[m])

dz $nsection*dz

z

× $i

Figure 5.4: Illustration of step functions

- 83 -

5 Model Setup for Aeroelastic Analyses

The expressions for the remaining sections are therefore given by:

p$i = p * step((($i*dz)-z)/1[m])*step((z-(($nhelp)*dz))/1[m])

s$i = wall shear * step((($i*dz)-z)/1[m])*step((z-(($nhelp)*dz))/1[m])

The use of $i and $nhelp is because the expressions are determined within a
loop for $i (2 .. $nsection).

Progress in the project showed that due to program problems the use of the
areaInt function on the wall shear variables were not possible in Ansys CFX
11. According to Ansys Support this should be fixed in the coming version to
be released later in 2008. Therefore the wall shear variables are not actually
used and the presentation of the variables in this section should be regarded as
a presentation of how it would have been done if possible.

- 84 -

6
Dynamic Model

.

In this chapter the structural model used to govern the structure move-
ment is described. The structure is divided into a number of beam seg-
ments and the mass and stiffness properties are assembled into global
matrices. These matrices form the basis for the derivation of a modal
representation of the structure which is then used throughout the rest
of the project.

Besides the structural model this chapter also deals with the method
used for determining the loads on the structure. The loads are ex-
tracted from Ansys CFX in specified sections of the structure during
transient runs and these loads are processed in Fortran routines to
generate nodal loads in the beam model. The way this transition works
is described. Also the method used for determining the structure move-
ment based on these nodal loads is presented.

- 85 -

6 Dynamic Model

In order to simulate the aeroelastic response of the structure, a way to govern
the structure displacements from the loads in the flow has to be set up. In this
chapter the dynamic model used in this project is presented. Also, the method
for determining nodal loads in the chosen FEM beam model is described. Lastly
the method used for transforming these loads into structure displacements is
presented.

6.1 Structural Model

First step towards modeling the FSI, is to set up a structural model. In the
present case, a FEM model using 3D beam elements has been chosen. The
purpose of the FEM model is to supply a stiffness matrix, K, and a mass matrix,
M, for the entire structural model, which is shown on fig. 6.1.

x

y

z

1

23

4

5
6

7

89

10

11
12

1313

14141515

1616

1717
1818

Figure 6.1: Illustration of undeformed structural model composed of 3D beam ele-
ments. The coordinate system shown is the global coordinate system,
used in CFX, and the degrees of freedom are shown in the local coor-
dinates of the beams, used in the structural model.

In this section, the theory used to obtain the global stiffness and mass matrices,
K and M respectively, will be explained.

The MatLab program used to assemble the mass and stiffness matrices is a multi
purpose FEM program created by Lars Andersen, Jesper W. Stærdahl and Jo-
han Clausen at Aalborg University. The input needed to calculate the mass and
stiffness matrices are:

- 86 -

6.1 Structural Model

• Material data

• Section data

• Node coordinates

• Beam topology

Under Material data, the mass per length, µ, needs to be specified. This is esti-
mated from the assumption that the load bearing structure looks like the sketch
in fig. 6.2, with one 0.25m thick floor structure every 3.50m, and that the entire
load bearing structure is made of reinforced concrete with an average density of
2500 kg

m3 . The cross section of the core is assumed quadratic, c1 = c2. Similarly,
under section data the moments of inertia about the x- and y-axes needs to be
given along with the area. These are calculated based upon the same square solid
core, as mentioned above. The MatLab program consists of several MatLab files,
where only the ones used with the FEM beam model have been used. These are
included on the DVD under [DVD:\Beam_Model\].

x
y

z

c1

c2

3.50m

0.25m

Figure 6.2: Concept of the load bearing structure.

- 87 -

6 Dynamic Model

6.1.1 Stiffness and Mass Matrices for a Single 3D Beam Element

A single 3D beam has 12 degrees of freedom (DOF), 6 for each node as shown in
fig. 6.1, and it’s shape functions are given in the matrix N as:

NT =

N1 0 0 0
0 N3 0 0
0 0 N3 0
0 0 0 N1

0 0 −N4 0
0 N4 0 0

N2 0 0 0
0 N5 0 0
0 0 N5 0
0 0 0 N2

0 0 −N6 0
0 N6 0 0

(6.1)

where the shape functions N1-N6 are functions of ξ = x
L
, given as:

N1 = 1 − ξ

N2 = ξ

N3 = 1 − 3ξ2 + 2ξ3

N4 = Lξ(−1 + 2ξ − ξ2)

N5 = ξ2(3 − 2ξ)

N6 = Lξ2(1 − ξ)

(6.2)

[Nielsen 2004, p. 152]

The shape functions are shown in fig. 6.3. N1 and N2 govern axial torsion
and axial displacement, N3 and N5 govern cross stream displacement, and lastly
N4 and N6 govern bending.

- 88 -

6.1 Structural Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

Dimensionless distance ξ.

D
is

p
la

ce
m

en
t

or
ro

ta
ti
on

.

N1

N2

N3

N4

N5

N6

Figure 6.3: Illustration of shape functions N1-N6.

The mass and stiffness matrices of the beam, Kb and Mb, are then given as:

Kb =

∫

BTEB dV

Mb =

∫

ρNTN dV

(6.3)

[Cook, Markus, Plesha & Witt 2002, p. 89 & p. 376]

where ρ is the density of the beam, E is given by eq. (6.4), and B is given
by eq. (6.5).

E =

EA 0 0 0
0 EIy 0 0
0 0 EIz 0
0 0 0 GA

(6.4)

- 89 -

6 Dynamic Model

BT =

d
dx

N1 0 0 0

0 d2

dx2 N3 0 0

0 0 d2

dx2 N3 0

0 0 0 d
dx

N1

0 0 − d2

dx2 N4 0

0 d2

dx2 N4 0 0
d
dx

N2 0 0 0

0 d2

dx2 N5 0 0

0 0 d2

dx2 N5 0

0 0 0 d
dx

N2

0 0 − d2

dx2 N6 0

0 d2

dx2 N6 0 0

(6.5)

Using eq. (6.3) the 3D beam stiffness matrix, Kb, is given as:

A 0 0 0 0 0 −A 0 0 0 0 0
0 Bz 0 0 0 Cz 0 −Bz 0 0 0 Cz

0 0 By 0 −Cy 0 0 0 −By 0 −Cy 0
0 0 0 F 0 0 0 0 0 −F 0 0
0 0 −Cy 0 Dy 0 0 0 Cy 0 Ey 0
0 Cz 0 0 0 Dz 0 −Cz 0 0 0 Ez

−A 0 0 0 0 0 A 0 0 0 0 0
0 −Bz 0 0 0 −Cz 0 Bz 0 0 0 −Cz

0 0 −By 0 Cy 0 0 0 By 0 Cy 0
0 0 0 −F 0 0 0 0 0 F 0 0
0 0 −Cy 0 Ey 0 0 0 Cy 0 Dy 0
0 Cz 0 0 0 Ez 0 −Cz 0 0 0 Dz

where indices y and z are substituted with index i as

A =
AE

L
Bi =

12EIi

L3
Ci =

6EIi

L2

Di =
4EIi

L
Ei =

2EIi

L
F =

GIx

L

(6.6)

- 90 -

6.1 Structural Model

Using eq. (6.3) the 3D beam mass matrix, Mb, is given as:

M1 0 0 0 0 0 M5 0 0 0 0 0
0 M2 0 0 0 M3 0 M4 0 0 0 −M6

0 0 M2 0 −M3 0 0 0 M4 0 M6 0
0 0 0 M9 0 0 0 0 0 M0 0 0
0 0 −M3 0 M7 0 0 0 −M6 0 −M8 0
0 M3 0 0 0 M7 0 M6 0 0 0 −M8

M5 0 0 0 0 0 M1 0 0 0 0 0
0 M4 0 0 0 M6 0 M2 0 0 0 −M3

0 0 M4 0 −M6 0 0 0 M2 0 M3 0
0 0 0 M0 0 0 0 0 0 M9 0 0
0 0 M6 0 −M8 0 0 0 M3 0 M7 0
0 −M6 0 0 0 −M8 0 −M3 0 0 0 M7

where

M1 =
140m

420
M2 =

156m

420
M3 =

22Lm

420

M4 =
54m

420
M5 =

70m

420
M6 =

13Lm

420

M7 =
4L2m

420
M8 =

3L2m

420
M9 =

140JL

420

M0 =
70JL

420

(6.7)

The stiffness and mass matrices used in the various simulations in the project
are obtained from the following input in MatLab:

matdat{1} = [2 30e9 0.3 151850 1e6 0 0];

section{1} = [4 400 1000000 100 100 1];

The input in matdat{1} are:

[mt - E - ν - µ - J - am - ak]

where

mt is the material type (2=homogeneus linear elastic)
E is Youngs Modulus, [Pa]
ν is Poissons Ratio, [-]

µ is the mass per length of the beam,
[

kg
m

]

- 91 -

6 Dynamic Model

J is the polar moment of inertia, [m4]
am,ak are the constants for the Rayleigh damping matrix, [-]

(not used directly)

The input in section{1} are:

[st - A - Ix - Iy - Iz]

where

st is the section type (4=3D beam)
A is the area, [m2]
Ix is the moment of inertia about the x-axis (local coordinates), [m4]
Iy is the moment of inertia about the y-axis (local coordinates), [m4]
Iz is the moment of inertia about the z-axis (local coordinates), [m4]

6.1.2 Assembling Global Stiffness and Mass Matrices

Once the local stiffness and mass matrices, Kb and Mb, have been constructed,
they need to be transformed into global coordinates, as they are given in local
coordinates, with the x-axis running along the beam. This is done using a 12×12
transformation matrix, T, as follows:

Kb,global = TKbT
T

Mb,global = TMbT
T

(6.8)

Then the matrices are assembled according to the topology of the model, so ma-
trices from adjoining beams overlap in the global matrices, K and M.

The eigenmodes and eigenvalues are found, according to app. D.1, and norma-
lized to M so that PT MP = I, where P is the modal matrix P = [Φ(1)Φ(2) · · ·Φ(n)]
and Φ(i) is the i’th eigenmode.

The normalization is done as follows:

M = P
T
MP

Φ(i) =
1√
Mi

Φ
(i) (6.9)

[Nielsen 2005, p. 23]

- 92 -

6.1 Structural Model

where a bar denotes unnormalized, and M is given below:

M =

M1 0 · · · 0

0 M2
. . .

...
...

. . .
. . . 0

0 · · · 0 Mn

(6.10)

In this project, only the first four eigenmodes are used. These are shown in fig.
6.4. The corresponding undamped circular eigenfrequencies are:

ω1 = 0.3907 rad
s ⇒ f1 = 0.0622Hz

ω2 = 0.3907 rad
s ⇒ f2 = 0.0622Hz

ω3 = 2.4486 rad
s ⇒ f3 = 0.3897Hz

ω4 = 2.4486 rad
s ⇒ f4 = 0.3897Hz

(6.11)

As can be seen, the undamped circular eigenfrequencies are paired two and two.
This is due to the circumstance that the structure is symmetric about the global
x- and y-axes both structurally and geometrically. In this project it is chosen not
to include axial deformation and torsion in the dynamic model. This is mainly
based on an expectation, that axial deformation and torsion will be much smaller
than the other parts.

- 93 -

6 Dynamic Model

−2 0 2

x 10
−4

0

50

100

150

200

−2 0 2

x 10
−4

0

50

100

150

200

−2 0 2

x 10
−4

0

50

100

150

200

−2 0 2

x 10
−4

0

50

100

150

200

H
ei

gh
t

ab
ov

e
gr

ou
n
d

z
[m

]

H
ei

gh
t

ab
ov

e
gr

ou
n
d

z
[m

]

H
ei

gh
t

ab
ov

e
gr

ou
n
d

z
[m

]

H
ei

gh
t

ab
ov

e
gr

ou
n
d

z
[m

]

1st eigenmode [m] 2nd eigenmode [m]

3rd eigenmode [m] 4th eigenmode [m]

Figure 6.4: Plot of the first four eigenmodes. — are displacements in the x-
direction and — are displacements in the y-direction.

6.2 Obtaining Loads

During a transient run in CFX, the loads need to be extracted for each time step.
The loads are obtained by integrating the pressure section-wise over the surface
of the structure, using additional variables as described in sec. 5.2. Due to a bug
in the routine USER_GET_GVAR the shear forces cannot be obtained and are thus
not used. This is a bug in CFX 11.0 which should be fixed in CFX 12.0.
The section forces are illustrated in fig. 6.5.

- 94 -

6.2 Obtaining Loads

x
y

z

sections

a) Structural model

Fx1

Fx2

Fx3

Fx4

Fx5

Fy1

Fy2

Fy3

Fy4

Fy5

Fz1

Fz2

Fz3

Fz4

Fz5

b) Closeup of
beam with
section forces

Figure 6.5: Illustration of structural model with a closeup of one beam and the
section forces belonging to it. Coordinates are global, as used in CFX.

The integrated pressure on a section of the building, in the x, y and z directions
respectively, is obtained using the call USER_GET_GVAR:

CALL USER_GET_GVAR (
& ’ Varname ’ , ’ L o c a t i o n ’ , ’ a r e a I n t _ x ’ ,CRESLT , FX , CZ , DZ, IZ , LZ , RZ)

CALL USER_GET_GVAR (
& ’ Varname ’ , ’ L o c a t i o n ’ , ’ a r e a I n t _ y ’ ,CRESLT , FY , CZ , DZ, IZ , LZ , RZ)

CALL USER_GET_GVAR (
& ’ Varname ’ , ’ L o c a t i o n ’ , ’ a r e a I n t _ z ’ ,CRESLT , FZ , CZ , DZ, IZ , LZ , RZ)

where Varname is the name of the additional variable, Location is the name of the
structure boundary, FX, FY, FZ are the variables in which the results are stored,
and areaInt_x, areaInt_y, areaInt_z defines the integration to be carried out.
CRESLT, CZ, DZ, IZ, LZ, and RZ are explained in app. E.

6.2.1 Obtaining Nodal Loads

Once the section forces are calculated, they need to be transformed into nodal
loads, so a load vector can be assembled. First step is to transform the section
forces into local coordinates for the beam (where the x axis runs along the beam)
and furthermore change the section forces into evenly distributed loads over the

- 95 -

6 Dynamic Model

section length. The nodal loads for a single beam, fnodal, are then obtained in
the following way:

fnodal =
n
∑

i=1

(

∫ i L
n

(i−1)L
n

NT (x)fi dx

)

(6.12)

where

L is the length of the beam, [m]
n is the number of sections on the beam
NT is the shape functions where the 4th row governing axial torsion

has been omitted
fi is the evenly distributed loads in the x, y, and z directions for

section i

It has been deemed that the influence of axial torsion is quite small. As such,
the axial torsion has been omitted as the benefits of including it would be over-
shadowed by the added complexity in the programming.

Finally, the nodal loads for each beam are transformed back to global coordi-
nates and assembled into the load vector.

6.3 Modal Model

The modal model is introduced using the equations given in app. D.2, where the
four first eigenmodes are used, corresponding to 1st and 2nd eigenmode about the
principal axes. The equations of motion are then given as:

q̈i + 2ζiωiq̇i + ω2
i qi = Φ(i)T f (6.13)

where

x =
∑

∞

1 Φiqi is the coupling between cartesian coordinates (x)
and modal coordinates (q)

ζi is the i’th structural damping coefficient
ωi is the i’th undamped circular eigenfrequency

Φ(i) is the i’th eigenmode
f is the load vector

For use with the Newmark algorithm, eq. (6.13) can be rewritten as:

Mmq̈ + Cmq̇ + Kmq = fm (6.14)

where

- 96 -

6.4 Obtaining Nodal Displacements

Mm = I is the modal mass matrix
Cm is the modal damping matrix which is a diagonal matrix

with Cm(i, i) = ζiωi

Km is the modal stiffness matrix which is a diagonal matrix
with Km(i, i) = ω2

i

fm = Φ(i)T fis the modal load vector

6.3.1 Modal Damping Matrix

The modal damping ratios, ζi, are used in the modal damping matrix Cm. In
the actual structural model, the damping matrix is given as:

C = amM + akK (6.15)

also known as Rayleigh’s damping model. In this, ζ1 and ζ2 are known, and the
coefficients am and ak are given as:

am

ak

 =
2ω1ω2

ω2
2 − ω2

1

ω2 −ω1

− 1
ω2

1
ω1

ζ1

ζ2

 (6.16)

The remaining modal damping ratios, ζi, can then be found from:

ζi =
1

2ωi

(

am + akω
2
i

)

=
am

2ωi
+

ak

2
ωi (6.17)

[Nielsen 2004, p. 100]

In case of a structure where ω1 = ω2, eq. (6.16) can be used where ω2 = ω3

and ζ2 = ζ3. Then eq. (6.17) can be used to determine the remaining modal
damping ratios as normal.

6.4 Obtaining Nodal Displacements

The Newmark algorithm, described in app. D.4, is used with eq. (6.14) to
find displacements in modal coordinates with β = 0.25, γ = 0.50, correspon-
ding to a constant acceleration in the time interval, and the initial conditions
q0 = q̇0 = q̈0 = 0.
For each time step q̈, q̇, and q are stored in MMS (see app. E), and then loaded
in the following time step as "initial conditions" to calculate new values.

The nodal displacements are given as x = Pq, and stored at each time step
as well.

- 97 -

6 Dynamic Model

6.5 Obtaining Displacement of Structure

The displacement of the structure boundary in CFX is calculated one node at
the time in two separate routines usr_disp_x.F and usr_disp_y.F. The method
for calculating the displacements is:

1. The z value of the node is found in global coordinates (used in the fluid
model).

2. The z value is used to determine which beam the node belongs to, e.g. for
beams with a length of 10 m, a z value of 21.7 m would mean it belongs to
the 3rd beam.

3. From the full nodal displacement vector x (in global coordinates), a par-
tial displacement vector fp corresponding to the position of the node is
extracted.

4. The partial displacement vector xp (12× 1) is transformed to local coordi-
nates (used in the structural model).

5. The displacements of the node in local coordinates are found by N(x)xp,
where x is the position of the node in the local coordinate system of the
beam, where x runs along the length of the beam.

6. The displacements of the node is transformed back to global coordinates
and sent to CFX.

The Fortran routines usr_disp_x.F and usr_disp_y.F used to control the dis-
placements are included on the DVD under [DVD:\CFX\Functions_Routines\].
These routines are accessed as User CEL Functions from within CFX, with z as
input argument for both (see app. F.1.2 for info on how to set up user functions
and user routines in CFX).

6.6 Areas of Concern

During the programming of the Fortran code that is used to extract loads from
the CFX simulation and calculate displacements, certain note worthy experiences
have been made, which if taken into consideration may drastically reduce poten-
tial difficulties in the programming process. It should here be noted that all the
programs are written to work with a Fortran77 compiler, and some of the issues
discussed below would be of no concern if operating with a Fortran90 compiler.

- 98 -

6.6 Areas of Concern

6.6.1 Fortran77 vs Fortran90

When the compilers used are Fortran77 compilers, it is important to make sure
the code is compatible with Fortran77. Most things which are possible in For-
tran90 can also be done in Fortran77, albeit sometimes with a bit extra work
involved.

6.6.2 Allocation of Space for Variables

When allocating space for variables on either of the stacks CZ, DZ, IZ, LZ, or
RZ (see. app. E for info on these), it is of paramount importance that
enough space is allocated, as to avoid overwriting other areas when writing to
the variable. It is preferable to allocate the correct amount of space, but if at
the time of allocation that number is unknown, make sure to allocate plenty.

Allocating Space for Variables of unknown size

When allocating space for a variable of unknown size, it is possible in Fortran90
to allocate a space of "yet to be defined" size using the variable definition:
REAL, ALLOCATABLE, DIMENSION(:,:) ::.
Allocating space like that is not possible in Fortran77, but can be circumvented
using MMS, see app. E.

6.6.3 Initialization of Variables

Depending on the compiler used, Fortran may or may not initialize variables
(scalars and arrays alike) once space has been allocated, that is - deleting any
previous data that may exist in the designated area for the variable data. As
a precaution, it is therefor advised always to initialize data areas. This can be
done manually, or the CFX routine SET_A_0 can be used in either of two following
ways:

CALL SET_A_0 (VARNAME , SIZE)
CALL SET_A_0 (STACK(pPOINT) , SIZE)

where VARNAME is the name of the variable, SIZE is the size of the variable e.g.
12 for a 2 × 6 array, STACK is the appropriate stack for the type of variable(CZ,
DZ, IZ, LZ, and RZ), and pPOINT is the stack pointer to the variable.

- 99 -

6 Dynamic Model

6.6.4 Writing to and reading from the stacks

As the stacks are one dimensional arrays, when operating with two- or higher
dimension arrays, it is important to read the variables the same way they were
written e.g. if the array is written one row at the time, it should be read one row
at the time. Writing to and reading from the stacks is further explained in app.
E.

- 100 -

7
Preliminary Analyses

.

In this chapter an analysis is conducted to find out if and how the
different parameters in a CFD simulation influences on the results.
The analysis is limited to deal with four parameters: mesh fineness,
number of coefficient loops, time step size and use of initial conditions
from another simulation.

The analyses show that all parameters have a significant influence in
the results, especially when looking at cross-wind loads. These loads
are very dependent on vortex shedding and to capture this flow phe-
nomenon, requirements for the mesh fineness and time step size are
apparent. The streamwise loads show only little dependency on the
different parameters in question.

The analyses are not used to determine the actual size of the er-
rors made when using coarse settings but merely to find out if the
particular parameter has an effect and and what order the errors are.

- 101 -

7 Preliminary Analyses

In order to get the most information in the least amount of computation time
a number of preliminary analyses can be carried out in the aid of determining
the choice of mesh quality and fineness, time duration of simulation, time step
size etc. In this project it has turned out that the simulations, taking all aspects
into account, will be very time consuming. An analysis using ideal settings
would therefore take a considerable amount of time taking the limited computer
power available into account. Therefore it has been decided to turn the attention
towards the method of modeling FSI with CFD and accept that the simulations
may not give the best possible result. Instead of using the preliminary analysis
to set up the best possible simulation, the analyses are conducted to find out
how big an influence it has on the result when changing different parameters to
reduce the computation time. The analysis are limited to four parameters listed
below:

• Mesh fineness

• Coefficient loops

• Time step

• Time duration

From a previous to the next analysis of one of the parameters, the most coarse
settings from the previous analysis have been used for the following. This is done
well aware that an alteration to one parameter may have an influence on the
others. The analyses are conducted with simulations with a moving structure
determined on the basis of a structural modal model. This will not be dealt with
more here and a reference is made to chap. 6 where a description of the model
used can be found. The setup of the simulations in CFX is described in chap. 5.

7.1 Mesh fineness

The mesh quality is one of the most important factors when trying to reduce
the computation time. In a normal simulation the mesh should be fine enough
to resolve the flow into sufficiently small volumes for the numerical scheme to
converge and to capture the flow phenomena important for the specific analysis.
In this case the presence of vortex shedding have a big impact on the mesh fine-
ness needed. Vortex shedding is important in FSI as the cross stream dynamic
response of the structure is closely related to this phenomenon. When dealing
with a 3D mesh, a refinement in all directions leads to a significant increase of
the number of nodes in the computation. Therefore running the simulations with
a very coarse mesh could reduce the computation time significantly. By doing

- 102 -

7.1 Mesh fineness

this it might not be possible for the mesh to resolve the flow properly which leads
to results deviating from the results that could be obtained by a mesh optimized
for the specific flow.

In order to investigate the influence of using a very coarse mesh, three simu-
lations are run and finally compared. The comparison of the results are based
on the load series on the structure extracted via Fortran routines. The loads ex-
tracted during the CFX runs are used to determine the response of the structure
and a large deviation from the "correct" loads will also cause a response deviation.

The CFX- and Fortran files for this analysis can be found on the DVD in
[DVD:\Preliminary_Analyses\CFX_files\Mesh_Analysis\].

7.1.1 Mesh

The three meshes are generated by the hyperbolic mesh program described in
chap. 2. The MatLab files used can be found in [DVD:\Preliminary_Analyses\
Mesh_files\] and are called Pre_Sim_Mesh_X.m where X = 1, 2, 3. The input
parameters for the mesh generation are listed in tab. 7.1 and 7.2. In the latter a
row containing the number of nodes in the mesh has been included.

Table 7.1: Constant parameters for all three meshes

Parameter Value Parameter Value

mode 0 (cyclic mesh) dis 0.001

BREAKS [1 2 3 4 5] eps 0.2

a1 [0 -1 0 1 eps2 0.1

-1 0 1 0];

b1 [0 -1 0 1 eps3 0

[-1 0 1 0];

x1{1:4} [0 0.35 0.65 1]; rot 45

y1{1:4} [0 0.2 0.8 1]; nstart 1

a2 [0.1 0.1 0.1 0.1];

b2 [0.1 0.1 0.1 0.1];

xs [0 0.4 0.8 1];

ys [0 0.6 0.95 1];

as 2

bs 0.1

- 103 -

7 Preliminary Analyses

Table 7.2: Variable parameters for the three meshes

Parameter Pre_Sim_Mesh_1.m Pre_Sim_Mesh_2.m Pre_Sim_Mesh_3.m

n [15 15 15 15]+1; [20 20 20 20]+1; [25 25 25 25]+1;

L 0.004; 0.004; 0.004;

N 35; 40; 45;

expan_fac [0.34 0.9 0.75]; [0.285 0.9 0.70]; [0.24 0.9 0.65];

ntotal 70; 75; 80;

Number of nodes 155960 257640 390420

An example of the generated meshes is shown in fig. 7.1a which is the most
coarse mesh. Fig. 7.1b shows a close up of the mesh around the structure where
the element distribution is visible.

a) Full mesh b) Close up of mesh around struc-
ture

Figure 7.1: Example of generated mesh

7.1.2 Time step and duration

Determination of time duration and time step is based on model size, shedding
frequency and eigenfrequencies of the structure. Requirements for each of the
elements are determined and the lowest time step is adapted. The time duration
also have to be long enough to ensure that any possible effect of the initial
conditions are dissipated away.

Time duration

The simulation time due to the structure eigenfrequencies are based on the lowest
eigenfrequency and a wanted number of minimum displacements through the
corresponding eigenmode. In eq. 6.11 the lowest circular eigenfrequency is listed
as ω = 0.39 rad

s . The period of motion, T , is determined by:

T =
2π

ω
= 16.11 s (7.1)

- 104 -

7.1 Mesh fineness

The period of motion during the simulations are expected to be equal to or lower
than the period in eq. (7.6) and using this as the basis for the time duration
of the simulations is therefore on the safe side to ensure a sufficient number of
motions.

As the computations are very time consuming the time duration of the simu-
lations are kept relatively short. This is chosen well aware, that all affects over
time may not be modeled.

The time duration of the simulations is chosen to t = 60 s. This is a conser-
vative choice based on the highest period of motion of the structure determined
in eq. (7.6). This duration allows a minimum of three motion periods while
leaving time for the effects of the initial conditions to dissipate away. The simu-
lations will show if this simulation period is in fact sufficient to dissipate the initial
conditions in time to also ensure enough information on the structure motion.

Time step

The time step selection is based on requirements for the time step due to model
size and vortex shedding.

The required time step due to model size is based on the chosen dimensions
of the structure and the wind speed. In fig. 5.1 a streamwise side length of 20m
and a wind velocity of 20 m

s is specified. The time an air particle use to pass the
entire structure side have to be divided into a sufficient amount of time steps. It
is assumed, that 50 time steps is sufficient. This results in a required time step
size of:

∆tmodel =

(

20 m
20

m
s

)

50
= 0.02 s (7.2)

In order to capture the vortex shedding on the lee side of the structure the time
period of the shedding have to be divided into a sufficient number of time steps.
The dimensionless frequency of the vortex shedding is known as the Strouhal
number. For a square cylinder the Strouhal number is given by:

St =
f H

u∞

(7.3)

where

f is the shedding frequency of the vortices, [Hz]

- 105 -

7 Preliminary Analyses

H is the side length of the square cylinder, [m]
u∞ is the free stream velocity in the x-direction,

[

m
s

]

According to [CEN/TC250 2005, pp. 116-117] the Strouhal number for a square
cylinder is 0.12. With a cylinder side length of 20m and a free stream velocity
of 20 m

s the shedding frequency, f , is determined by eq. (7.3) to:

f =
St u∞

H
= 0.12Hz (7.4)

The shedding frequency in eq. (7.4) corresponds to a shedding period of 8.33 s. A
number of 50 time steps per shedding period is assumed sufficient corresponding
to a time step size of:

∆tvortex =
8.33 s

50
= 0.17 s (7.5)

Based on eq. (7.2) and (7.5) the time step is chosen to ∆t = 0.02 s for the
simulations with the different meshes.

CFL condition

The CFL (Courant-Friedrichs-Lewy) condition is a mathematical condition for
certain algorithms, solving partial differential conditions, to be convergent. The
condition have no impact on the algorithm stability. In CFD the condition is
related to the Courant number, Cr, given by:

Cr =
u∆t

∆x
(7.6)

where

u is the fluid velocity,
[

m
s

]

∆t is the time step size, [s]
∆x is the mesh size, [m]

A condition for the courant number can be used to determine the time step size.
If the condition is, that a fluid particle must be captured at least once within
every control volume it passes through, this leads to the condition that Cr ≤ 1.
The grid size and velocity are not constant and therefore the Courant number
varies throughout the domain. In order to check the Courant number with a
time step size of 0.02 s as specified above fig. 7.2a shows the Courant number in
a plane in the domain and 7.2b a close up of one of the corners on the structure,
which is representative for the three other corners.

- 106 -

7.1 Mesh fineness

a) Courant number in whole plane b) Courant number at one corner

c) Legend, Courant number

Figure 7.2: Example of Courant number in simulation with ∆t = 0.02 s

It is seen from fig. 7.2 that Cr < 1 in the entire domain except close to the cor-
ners where the value increases significantly. In order to keep the Courant number
below 1 in the entire domain the time step size should therefore be reduced by
a factor corresponding to the highest Cr value in the domain. In this case the
time step size is approximately 100 times too large for this to be fulfilled. The
time step size should therefore have been reduced to 0.0002 s which with the rel-
atively limited computer power would make the simulations be extremely time
consuming (hundreds of days).

Looking at fig. 7.2 it is seen that the Courant number rapidly decreases when
moving away from the corner of the structure. Therefore to save computation
time, it is decided not to incorporate the CFL condition in this analysis keep-
ing in mind that if the algorithm solving the flow equations seems to be non
convergent, the reason might be the exclusion of the CFL criterion.

7.1.3 Results

The results of the simulations are presented in the form of the total simulation
time and load series. The simulation time is taken into account as these ana-
lyses are conducted to investigate the errors which must be accepted to reduce
the computation time. To see which effect the individual parameter has on the
computation time the total time is presented.

The simulations with the finest mesh (Mesh 3) with the setting 1[m 3̂ ŝ -1]/(Wall
Distance) for the mesh stiffness, resulted in an error where the solver terminated

- 107 -

7 Preliminary Analyses

due to the wall distance somewhere in the domain becoming 0. The mesh stiffness
was therefore changed to the built in CFX setting Increase near Small Volumes
but this also resulted in an error, this time the creation of a negative volume
element. Finally the setting was changed to Increase near Boundaries which did
not return an error.

For the simulations with different mesh fineness the simulation time is listed
in tab. 7.3 along with the number of nodes in the simulation. The specific
simulation is given by the CFX file-name.

Table 7.3: Number of nodes and total simulation time for different mesh fineness

Simulation Number of nodes Simulation time [hhh:mm:ss]

Pre_Analysis_Mesh_1.cfx 155960 231:25:42
Pre_Analysis_Mesh_2.cfx 257640 283:53:20
Pre_Analysis_Mesh_3C.cfx 390420 Simulation time n/a

The inclusion of the C in the last file-name relates to the fact that it was the 3rd

setting of the mesh stiffness as mentioned. The simulations with the 3rd choice
of mesh stiffness also terminated before running the total number of time steps.
The reason for this solver termination could not be found as the .out file did not
contain anything (file size - 0 KB) which was also the case for the .res file. The
reason for the file size being 0 is probably due to lack of storage space on the
cluster where the simulations were run and therefore no space was available to
write the files. A couple of times during the project period this behavior was
encountered. Even though the solver failed the simulation time before the failure
was above 50 s. It was decided that this amount of results was enough for this
comparison. This decision was mainly based on the long computation time it
would require to get results for the last 10 s. It will later be shown, that the
loads have almost stabilized within the first 50 s and no real deviation would be
obtained by running a new simulation.

The loads chosen for the comparison are the streamwise and cross stream loads
at the nodes indicated in fig. 7.3.

- 108 -

7.1 Mesh fineness

z

y

x

1

5

10

Figure 7.3: Indication of chosen nodes for load comparison, local coordinates

Regarding the loads in the streamwise direction it is expected, that the mesh
fineness will not have a significant impact as the streamwise loads does not de-
pend as much on the expected vortex shedding as the cross-wind loads.. The
streamwise loads at the indicated nodes are shown in fig. 7.4.

- 109 -

7 Preliminary Analyses

0 10 20 30 40 50 60
110

120

130

140

150

0 10 20 30 40 50 60
120

130

140

150

0 10 20 30 40 50 60
70

80

90

100

Load history in streamwise direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

Mesh 1

Mesh 1

Mesh 1

Mesh 2

Mesh 2

Mesh 2

Mesh 3

Mesh 3

Mesh 3

Figure 7.4: Streamwise load history

It is seen in fig. 7.4 that the loads show only little dependence on the mesh
fineness as expected. The load series is almost identical for all three meshes.
After about 20 s the loads seem to stabilize a bit and close inspection of fig. 7.4,
especially the one for node 5, show that the structure movement causes an almost
periodic variation in the load. This is said keeping the relative short simulated
time in mind. This behavior is not as apparent for node 1 and 10 respectively
but some load dependency on the structure movement can be seen.

The loads in the cross stream direction are very dependent on the vortex shed-
ding expected to occur on the lee side of the structure. The mesh fineness is
very important in order to fully capture the vortices. By making the mesh more
coarse the loads are expected to deviate more and more from the ones obtained
by the finest mesh. The load series of the cross stream loads at nodes 1, 5 and
10 are shown in fig. 7.5

- 110 -

7.2 Coefficient loops

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

Load history in cross stream direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

Mesh 1

Mesh 1

Mesh 1

Mesh 2

Mesh 2

Mesh 2

Mesh 3

Mesh 3

Mesh 3

Figure 7.5: Cross stream load history

As expected the cross stream loads show a large deviation as the mesh coarseness
increases. The progress of the loads obtained with the finest mesh (Mesh 3) could
indicate, that vortex shedding is present. The size of the loads indicate otherwise
as these are relatively small. Also, looking at the progress of the loads with the
most coarse mesh (Mesh 1) indicate that this mesh is inable to resolve the flow
properly to capture the vortices. The cross stream load seems to fluctuate around
0 during the entire simulation.

7.2 Coefficient loops

In the simulations presented in sec. 7.1 the maximum number of coefficient loops
was set to 10. In the simulation with the most coarse mesh, (Pre_Analysis_
Mesh_1.cfx), the maximum number of coefficient loops was used for every time
step. This is due to the inability of the coarse mesh to resolve the flow suffi-
ciently. The use of 10 coefficient loops for all time steps have a large impact
on the computation time. Therefore in this section the effect of lowering the

- 111 -

7 Preliminary Analyses

maximum number of coefficient loops to 5 and 2 respectively is investigated.
The simulations are run with the most coarse mesh and finally the results are
compared to the simulation with the most coarse mesh from the previous section.

The CFX- and Fortran files for this analysis can be found on the DVD in
[DVD:\Preliminary_Analyses\CFX_files\Coefficient_Loops_Analysis\].

The simulation time is listed in tab. 7.4. The number of nodes are the same
as the one with the coarse mesh in tab. 7.3. The results for this simulation are
presented here also.

Table 7.4: Number of nodes and total simulation time for different maximum
number of coefficient loops

Simulation Max. Coeff. Loops Simulation time [hhh:mm:ss]

Pre_Analysis_Mesh_1.cfx 10 231:25:42
Pre_Analysis_Coeff_5.cfx 5 Simulation time n/a
Pre_Analysis_Coeff_2.cfx 2 70:51:01

It is seen in tab. 7.4 that the computation time have been reduced by approxi-
mately 70% by reducing the number of coefficient loops from 10 to 2. As it was
the case with the simulation with the finest mesh in sec. 7.1 the solver failed
when running the simulation with a maximum of 5 coefficient loops. The two
simulations were run at the same time but it has not been investigated if this
had anything to do with the solver failure.

A new simulation with a maximum of 5 coefficient loops were not run with
the same argumentation as used for the simulation with the finest mesh in the
previous section.

The streamwise and cross stream load series are shown in fig. 7.6 and 7.7 where
the node numbers refer to the nodes shown in fig. 7.3.

- 112 -

7.2 Coefficient loops

0 10 20 30 40 50 60
110

120

130

140

150

0 10 20 30 40 50 60
120

130

140

150

0 10 20 30 40 50 60
70

80

90

100

Load series in streamwise direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

10 Coeff. Loops

10 Coeff. Loops

10 Coeff. Loops

5 Coeff. Loops

5 Coeff. Loops

5 Coeff. Loops

2 Coeff. Loops

2 Coeff. Loops

2 Coeff. Loops

Figure 7.6: Streamwise load history

As it was the case with the simulations with different mesh fineness the loads in
the streamwise direction show negligible dependency on the number of coefficient
loops wherefore only the same small dependency on the structure movement is
visible. The effect in the cross stream direction is on the other hand evident.

- 113 -

7 Preliminary Analyses

0 10 20 30 40 50 60
−0.5

0

0.5

0 10 20 30 40 50 60
−0.5

0

0.5

0 10 20 30 40 50 60
−0.5

0

0.5

Load series in cross stream direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

10 Coeff. Loops

10 Coeff. Loops

10 Coeff. Loops

5 Coeff. Loops

5 Coeff. Loops

5 Coeff. Loops

2 Coeff. Loops

2 Coeff. Loops

2 Coeff. Loops

Figure 7.7: Cross stream load history

It is seen that there is a significant difference in the cross-wind loads at the be-
ginning of the simulations which over time gets closer to the ones determined by
the simulation with 10 coefficient loops.

At the instant the simulation is started the structure is exposed to wind at
20 m

s . The instantaneous large gradients which arise to move the wind around
the structure seems to cause large peaks in the cross stream loads which takes
a considerable amount of time to dissipate away and the flow to stabilize. To
further illustrate this behavior the cross stream displacement of the top node
(node 10) is shown in fig. 7.8 for both simulations.

- 114 -

7.3 Time Step

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Cross stream displacement of top node

Time [s]

D
is

p
la

ce
m

en
t

[m
]

10 Coeff. Loops
5 Coeff. Loops
2 Coeff. Loops

Figure 7.8: Cross stream displacement of top node

It is seen in fig. 7.8 that the cross-wind displacements also deviate considerably.
Contrary to the load the displacement does not show the same decrease as the
load over time. The lowest eigenfrequency is in eq. 6.11 listed as 0.39 rad

s corre-
sponding to a period of 16.11 s determined in eq. (7.6). The vertical lines included
in fig 7.8 are placed with one period in distance. it is seen that the structure top
moves very close to the vibration period of the 1st eigenmode. Even though the
load decreases over time the displacement stays almost at the same level.

Instead of introducing a relatively diffuse error by setting a maximum num-
ber of coefficient loops it is possible to reduce the computation time and have
a better idea of the error in the simulations. This could have been done by in-
creasing the residual target from the 10−4, which have been used, and to a higher
value. By doing this the number of coefficient loops necessary at each time step
might decrease but still leave the simulation to determine the number necessary.
Controlling the error this way have not been used in this project.

7.3 Time Step

The time step size is an important parameter in CFD simulations. When dealing
with turbulent flows the time step have to be low enough to resolve the flow into
small steps to make the numerical scheme converge. Areas of high turbulence
means that the flow properties can change very rapidly in one point over time.
Modeling this requires a sufficiently low time step.

On the other hand the time step size also has a great impact on the computation
time in the simulations. In sec. 7.1.2 the time step for the present simulations

- 115 -

7 Preliminary Analyses

was determined to 0.02 s when taking model size and vortex shedding into consid-
eration. This means each second of simulation time is modeled by 50 time steps
and for each time step a number of coefficient loops are run. In sec. 7.2 the effect
of lowering the number of coefficient loops was investigated. In this section the
effect of the time step size is presented. It is chosen to run two more simulations
equal to the one in the previous section with a maximum of two coefficient loops
to reduce the computation time. The time step size is set at 0.05 s and 0.1 s
respectively.

The CFX- and Fortran files for this analysis can be found on the DVD in
[DVD:\Preliminary_Analyses\CFX_files\Time_Step_Analysis\].

Table 7.5: Number of nodes and total simulation time for different time step size

Simulation Time step size Simulation time [hh:mm:ss]

Pre_Analysis_Coeff_2.cfx 0.02 s 70:51:01
Pre_Analysis_tstep_0_05.cfx 0.05 s 29:00:39
Pre_Analysis_tstep_0_1.cfx 0.10 s 14:38:26

It is seen from tab. 7.5 that the simulation time varies almost linearly with the
time step size. In this case this is due to the fact, that all simulations are set to
use a maximum of two coefficient loops per iteration which they all do. Therefore
doubling the time step size and hereby halving the total number of time steps in
the simulations will halve the simulation time. If the simulations were run with
a finer mesh and a larger number of coefficient loops the situation could have
been different. The simulation with the lowest time step might have converged
using a smaller number number of coefficient loops while the large time steps
would result in the use of several more loops. This could have the effect, that the
computation time saved by increasing the time step size would not have been as
significant as in this case. This matter has not been investigated further in this
project.

As with the previous tests the streamwise and cross stream load series are plotted
in fig. 7.9 and 7.10.

- 116 -

7.3 Time Step

0 10 20 30 40 50 60
110

120

130

140

150

0 10 20 30 40 50 60
120

130

140

150

0 10 20 30 40 50 60
70

80

90

100

Load series in streamwise direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

∆t = 0.02 s

∆t = 0.02 s

∆t = 0.02 s

∆t = 0.05 s

∆t = 0.05 s

∆t = 0.05 s

∆t = 0.10 s

∆t = 0.10 s

∆t = 0.10 s

Figure 7.9: Streamwise load history

The streamwise load show only little difference when changing the time step size
and the progress all follow the same path. Again it is the load progress in the
cross stream direction which show a significant deviation.

- 117 -

7 Preliminary Analyses

0 10 20 30 40 50 60

−2

0

2

0 10 20 30 40 50 60

−2

0

2

0 10 20 30 40 50 60

−2

0

2

Load series in cross stream direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

∆t = 0.02 s

∆t = 0.02 s

∆t = 0.02 s

∆t = 0.05 s

∆t = 0.05 s

∆t = 0.05 s

∆t = 0.10 s

∆t = 0.10 s

∆t = 0.10 s

Figure 7.10: Cross stream load history

The cross stream loads are very irregular in time over the first 15−20 s whereafter
it becomes more or less regular. It is seen in fig. 7.10 that the load for all time
step sizes approach the same value at the end of the simulation but the larger the
time step size the longer it takes for the simulation to stabilize. The simulation
with ∆t = 0.1 s also shows some large peak values in the beginning. As mentioned
earlier, the structure is exposed to wind instantaneously when the simulation is
started and in connection with the low number of coefficient loops and coarse
mesh the large time step size causes the large gradient areas to be very poorly
resolved.

7.4 Initial Conditions

In this section results from simulations with time duration shorter and longer
than the 60 s used above was intended to be presented. By inspection of fig. 7.4
- 7.5, 7.6 - 7.7 and 7.9 - 7.10 the loads seem to have almost stabilized in all cases.
It is therefore chosen not to run simulations with different time durations and

- 118 -

7.4 Initial Conditions

use 60 s as the duration for the future simulations in this project.

Instead it is chosen to run two simulations with the use of initial conditions
from a steady state simulation to see whether or not this has an effect on the
time it takes for the effects of the initial conditions to dissipate away. In sec. 7.2,
regarding the number of coefficient loops, it was found that lowering the number
had a big effect on the cross stream loads due to the large gradient flow. This
was also the case in sec. 7.3 regarding the time step size. The initial conditions
used could also have been results from a transient run but in this case steady
state simulations have been used as mentioned.

The initial conditions for these simulations are steady state simulations run with
the exact same settings as the transient runs. The maximum number of iterations
is set to 100. Two different steady state simulations are run, one with the most
coarse mesh, Mesh 1, and one with the finest mesh, Mesh 3. The simulation files
can be found in [DVD:\Preliminary_Analyses\CFX_files\Initial_Conditions\].
The transient simulations, Pre_Analysis_Mesh1_Ini_Cond.cfx and
Pre_Analysis_Mesh1_Ini_CondB.cfx, used for the comparison are simulations
set to a maximum of 2 coefficient loops and a time step size of ∆t = 0.05 s corre-
sponding to the red curve in fig. 7.10. Regarding the computation time needed
the three simulations (one without and two with initial conditions) showed no
real difference with a deviation of only a few minutes.

The results of the simulations are shown in fig. 7.11 - 7.12 for the streamwise
and cross stream loads respectively.

- 119 -

7 Preliminary Analyses

0 10 20 30 40 50 60
110

120

130

140

150

0 10 20 30 40 50 60
120

130

140

150

0 10 20 30 40 50 60
60

70

80

90

Load series in streamwise direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

Without ini.cond.

Without ini.cond.

Without ini.cond.

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 3)

With ini.cond. (Mesh 3)

With ini.cond. (Mesh 3)

Figure 7.11: Streamwise load history

For the streamwise direction the load at the beginning of the simulation is almost
at the same level as the end when using the initial conditions from the steady state
simulations. The load is periodic over almost the entire simulated period with
the load converging towards a constant amplitude. The dissipation of the effects
from the initial conditions in the original transient simulation can be completely
removed by using a steady state simulation as initial conditions no matter which
mesh chosen for the steady state simulation.

- 120 -

7.5 Observations

0 10 20 30 40 50 60
−2

0

2

0 10 20 30 40 50 60
−2

0

2

0 10 20 30 40 50 60
−2

0

2

Load series in cross stream direction

Time [s], node 1

Time [s], node 5

Time [s], node 10

L
oa

d
[k

N
]

L
oa

d
[k

N
]

L
oa

d
[k

N
]

Without ini.cond.

Without ini.cond.

Without ini.cond.

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 1)

With ini.cond. (Mesh 3)

With ini.cond. (Mesh 3)

With ini.cond. (Mesh 3)

Figure 7.12: Cross stream load history

In the cross-wind direction it is seen in fig. 7.12 that the use of a steady state sim-
ulation does not seem to stabilize the simulation faster. Only the size of the loads
in the beginning of the simulations seems to be affected by the initial conditions.
Is was expected, that the simulation with the initial conditions determined with
the finest mesh would produce better results but inspection of fig. 7.12 shows
otherwise. The reason for this could be, that the condition at the end of the
steady state with the finer mesh is further away from what the coarse mesh can
actually represent.

7.5 Observations

The preliminary analyses above have been conducted to determine which param-
eters have the largest effect on the results achieved. This is done to find out how
to save computation time without losing to much information from the simula-
tions.

- 121 -

7 Preliminary Analyses

It is found in the analyses that the loads in the streamwise direction show almost
no deviation no matter which parameter is altered. The loads attain nearly the
same value and follow the same load path during the respective simulations. A
lot of computation time can therefore be saved if the loads of interest only include
the streamwise loads.

Regarding the cross stream loads, these show a considerable dependency on all
parameters which have been included in this analysis. It is difficult to say which
parameter have the largest effect. To be able to make this determination the
simulations should have been run with exactly the same settings and only one
parameter changed for each simulation. These simulations could then have been
compared and the parameter with the largest effect might have been clear. The
problem with these analyses is that all simulations would have been very time
consuming and the limited computer power available would have caused the ana-
lyses to take a very long time to conduct.

The way the analyses are conducted in this case results in the fact, that it is
only possible to determine if the parameter has an impact in the results but not
actually the size of this impact.

The analysis in sec. 7.4 shows, that when using a steady state simulation as
initial conditions it is important that the two simulations are able to represent
the same state, i.e. both simulations must be able to capture the same flow
phenomena. As it can be seen, a steady state simulation able to capture more
flow properties than the transient simulation where it is used as initial condition
causes the simulation to use longer time for the effects of the initial conditions
to dissipate away and the flow to stabilize. Again this condition applies mainly
to the loads in the cross-wind direction.

7.6 Capturing Vortex Shedding

From the analyses in secs. 7.1 - 7.4 it has been determined that the loads in the
cross stream direction show a significant dependency on the parameters mesh
fineness, number of coefficient loops, time step size, and the use of initial con-
ditions. However in these tests the vortex shedding has not been captured. To
examine what it would take to capture this phenomenon, four additional simula-
tions have been run. These simulations are carried out on 2D meshes rather than
3D to save computation time. In the 2D simulations two different meshes are
used, both with a time step size of 0.02 s and 0.01 s, respectively. The coarsest

- 122 -

7.6 Capturing Vortex Shedding

of the two meshes corresponds to first layer in the z-direction of the finest mesh
from the analyses in sec. 7.1.1 (Mesh 3), extruded to generate a 2D mesh of one
cell thickness. The second and finer mesh is generated to have twice the number
of boundary nodes, and twice the number of marching layers.

The two meshes are generated by the same hyperbolic mesh program as the
3D meshes in sec. 7.1.1.
The MatLab files used can be found in [DVD:\Preliminary_Analyses\Mesh_files\]
and are called Pre_Sim_2D_norm.m and Pre_Sim_2D_fine.m.

Most of the parameters for the two 2D meshes are given in tab. 7.1 with the
difference that rot is set to 0 and ntotal is set to 2. The remaining input
parameters that vary between the two meshes are given in tab. 7.6.

Table 7.6: Varying parameters for the two 2D meshes

Parameter Pre_Sim_2D_norm.m Pre_Sim_2D_fine.m

n [25 25 25 25]+1; [50 50 50 50]+1;

L 0.004; 0.001;

N 45; 90;

expan_fac [0.24 0.9 0.65]; [0.12 0.7 0.2];

Number of nodes 9000 36000

To show the difference in mesh fineness, a closeup of a corner of the structure is
shown in fig. 7.13 for each of the two meshes. It should here be noted that the
coarse mesh in fig. 7.13a corresponds to the first layer in the z-direction of the
finest mesh in sec. 7.1.1.

a) Coarse 2D mesh b) Fine 2D mesh

Figure 7.13: Example of mesh fineness for the two 2D simulations

- 123 -

7 Preliminary Analyses

All four simulations are set to run for 300 s, but due to problems with memory
allocation in CFX, none of the analyses ran the full 300 s. The results of the
analyses is however still conclusive, by inspection of figs. 7.14 and 7.15, as it
shows a significant difference in the loads for the cross stream direction when
using a finer mesh than in the 3D analyses.

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Simulation Time [s]

F
y

[N m
]

fine mesh
coarse mesh

Figure 7.14: Cross stream load history for time steps of 0.01 s

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Simulation Time [s]

F
y

[N m
]

fine mesh
coarse mesh

Figure 7.15: Cross stream load history for time steps of 0.02 s

It can be seen from the two figures that whereas halving the time step size from
0.02 s to 0.01 s makes little difference, the doubling of nodes on the structure
boundary and in the marching direction shows a huge deviation, and a very
clear behavior corresponding to that of vortex shedding is observed. To further
demonstrate the appearance of vortex shedding, figs. 7.16a to 7.16d show the
vorticity in the domain at two separate time steps, one corresponding to where

- 124 -

7.6 Capturing Vortex Shedding

Fy has a maximum, 96.44 s on fig. 7.15, and the other corresponding to the
following minimum, 100.76 s on fig. 7.15.

a) Coarse mesh at t = 96.44 s b) Coarse mesh at t = 100.76 s

c) Fine mesh at t = 96.44 s d) Fine mesh at t = 100.76 s

Figure 7.16: Vorticity [s−1] for each of the two meshes at Fy,max and Fy,min

respectively

Figs. 7.16c and 7.16d clearly shows the vortex shedding. The shedding frequency
can be estimated as

f =
1

2 (100.76 − 96.44) s
= 0.1157 s−1 (7.7)

which corresponds well with the shedding frequency of 0.12 s−1 given in (7.4).

To conclude this section it is seen that the ratio of number of nodes between
the coarsest mesh and the finest mesh in sec. 7.1.1 is ≈ 2.5, and the ratio of
number of nodes between the finest and the coarsest mesh in this section is 4.
Thus, assuming that the computation time scales linearly with the number of
nodes in the domain, this suggests that simulations carried out on a 3D mesh,

- 125 -

7 Preliminary Analyses

with a resolution similar to the finest of the 2D meshes, would take approximately
10 times longer than on the coarse mesh in sec. 7.1.1, which has been used in
the further analyses of the project. Also taking into account the time step size,
number of coefficient loops this means that for a 60 s 3D a simulation to be able
to capture vortex shedding, it would require a simulation time of 300-1000 hours,
as opposed to the ≈ 30 hours the simulations run in this project takes.

- 126 -

8
Effect of Modeling Aeroelasticity

.

.

In this chapter the effect of modeling the aeroelastic response of a
structure is analyzed. This is done by comparing two different simu-
lations, one conducted on a stationary structure and one where aeroe-
lasticity has been included. The two simulations are hereafter com-
pared by considering the modal coordinates.

It is found, that modeling the aeroelasticity have some effect on the
structure movement. In this case the simulations returned results op-
posite of what was expected. It was not possible to determine any
notable positive or negative aeroelactic damping on the basis of the
conducted simulations.

- 127 -

8 Effect of Modeling Aeroelasticity

It is common procedure, when calculating wind loads on structures, not to include
the aeroelastic response of the building. This means that the wind loads are
calculated on a stationary structure, and subsequently used to find the response
of the structure. The purpose of this analysis is to show, whether modeling the
aeroelasticity has any notable effect on a simulation or not. To test this, two
different simulations are performed, a stationary simulation and an aeroelastic
simulation. The concept is as follows:

1. A prescribed deformation of the structure is enforced using the first eigen-
mode.

2. The structure is then released from the confined displacement, allowing free
movement governed by the equation of motion.

3. The displacement history is compared.

Both simulations are run on the coarsest mesh used in sec. 7.1 with a setup
as described in chap. 5, using the simulation type, solver control, and domain
settings in tabs. 8.1, 8.2, and 8.3, respectively.

Table 8.1: Simulation Type settings

Details of Simulation Type

Basic Settings

Time Duration

- Option Total Time
- Total Time 60 [s]
Time Steps

- Option Timesteps
- Timesteps 0.05 [s]

Table 8.2: Solver Control settings

Details of Solver Control

Basic Settings

Convergence Control

- Max. Coeff. Loops 2

Table 8.3: Domain settings

Details of Domain 1

General Options

Mesh Deformation

- Option Regions of Motion Specified
Mesh Motion Model

- Option Displacement Diffusion
Mesh Stiffness

- Option Increase near Boundaries
- Model Exponent 10

- 128 -

8.1 Stationary Simulation

The following two sections will describe the two models, after which they will be
compared.

8.1 Stationary Simulation

In the stationary simulation, there are no displacements of the geometry in CFX,
the load history is merely stored. The load history from the CFX simulation is
then used in conjunction with the Newmark-algorithm in MatLab to produce a
displacement history. For initial conditions, the Newmark algorithm is given the
same displacements as in the aeroelastic simulation, see sec. 8.2.

In fig. 8.1 the resulting displacements of the structure are plotted, given as
the time series of the first two modal coordinates, q1 and q2 respectively.

0 10 20 30 40 50 60

−4000

−2000

0

2000

4000

6000

Time [s]

M
o
d
al

co
or

d
in

at
e

[-
]

q1,stationary
q2,stationary

Figure 8.1: Time series of the modal coordinates q1 and q2 in the stationary ana-
lysis.

It can be seen from fig. 8.1 that there is a slight damping of the motion over time
for both q1 and q2. The MatLab files used to generate the response of the struc-
ture can be found in [DVD:\Aeroelastic_Analyses\Effect_of_Aeroelasticity\]

8.2 Aeroelastic Simulation

In the aeroelastic simulation, the structure is moved to a prescribed displacement,
so that the top node is deflected 2.5m in the first eigenmode. The simulation
runs as follows:

1. The structure is moved to a prescribed displacement, so that the top node
is deflected 2.5m. This displacement is done over 5 seconds.

- 129 -

8 Effect of Modeling Aeroelasticity

2. Once the structure is displaced, it is held stationary in that position for 1
second, allowing the flow to somewhat adjust.

3. Then, the structure is released from the confined displacement, letting the
equation of motion govern the displacement of the structure, and letting
the flow forces effect this displacement.

The toggle between prescribed displacement and utilizing the Newmark-algorithm
is done as follows

fdisp =

∆q1 Φ1 for 0 ≤ t < t1

q1,maxΦ1 for t1 ≤ t < (t1 + t2)

Newmark for (t1 + t2) ≤ t

(8.1)

where

t1 is the prescribed time for the displacement, [s]
t2 is the prescribed time for the flow to adjust, [s]
q1 is the first modal coordinate, [-]
q1,max is the maximum of q1, [-]
∆q1 is the modal step size given as t

t1
q1,max, [-]

∆t is the time step size, [s]
Φ1 is the first eigenmode, [m]

This toggle between prescribed displacement and the Newmark-algorithm is car-
ried out in the Fortran routine usr_spec_jcb.F, which is found on the DVD
under [DVD:\Aeroelastic_Analyses\Effect_of_Aeroelasticity\].

In fig. 8.2 the resulting displacements of the structure are plotted, given as
the time series of the first two modal coordinates.

- 130 -

8.3 Comparison of Methods

0 10 20 30 40 50 60

−4000

−2000

0

2000

4000

6000

Time [s]

M
o
d
al

co
or

d
in

at
e

[-
]

q1,aeroelastic
q2,aeroelastic

Figure 8.2: Time series of the modal coordinates q1 and q2 in the aeroelastic
analysis.

It can be seen from fig. 8.2 that there is a slight damping of the motion over
time for both q1 and q2, similar to that in the stationary analysis.

8.3 Comparison of Methods

To compare the two methods of modeling the modal coordinates, q1 and q2, from
the two respective methods have been plotted together in fig. 8.3.

0 10 20 30 40 50 60

−4000

−2000

0

2000

4000

6000

Time [s]

M
o
d
al

co
or

d
in

at
e

[-
]

q1,stationary
q2,stationary
q1,aeroelastic
q2,aeroelastic

Figure 8.3: Comparison of figs. 8.1 and 8.2.

It seems difficult to say anything conclusive about the differences between the two
methods from inspection of fig. 8.3, to which extent two additional simulations
have been run with the same setup as described in the two previous sections. The
only difference is that these simulations are set to run for 300 s, rather than 60 s.
The modal loads, f1 and f2, for the two methods are shown in fig. 8.4, and the

- 131 -

8 Effect of Modeling Aeroelasticity

response in terms of modal coordinates q1 and q2 are shown for the two methods
in fig. 8.5.

0 50 100 150 200 250 300
100

120

140

160

180

200

Time [s]

M
o
d
al

lo
ad

s

f1,stationary
f2,stationary
f1,aeroelastic
f2,aeroelastic

Figure 8.4: Comparison of modal loads from the two methods from a 300 s simu-
lation.

0 50 100 150 200 250 300

−4000

−2000

0

2000

4000

6000

Time [s]

M
o
d
al

co
or

d
in

at
e

[-
]

q1,stationary
q2,stationary
q1,aeroelastic
q2,aeroelastic

Figure 8.5: Comparison of modal coordinates from the two methods from a 300 s
simulation.

In fig. 8.4 it can be seen how the load signal from the two methods differ, and
it is clear to see that the loads in the aeroelastic analysis fluctuates around the
loads from the stationary method. From fig. 8.5 it is seen that the time series of
the first modal coordinate shows no distinctive difference between the two met-
hods. This is a somewhat curious behavior, considering the obvious difference in
the load signals. The time series of the second modal coordinate however, shows
a distinct difference between the two methods. For the stationary method the
amplitude of the second modal coordinate shows a clear damping behavior over

- 132 -

8.3 Comparison of Methods

time, whereas the amplitude for the aeroelastic method seems to stay at a steady
level.

It may not be obvious what causes the difference between the two methods,
but it can however be concluded that there is a clear difference between the two
methods. It was however expected to see a behavior opposite of the one shown
by fig. 8.5, that is it was expected that the aeroelastic simulation would display
a faster damping of the motions than the stationary, this due to the forces from
the fluid working in opposite direction of the structure motion. In sec. 7.6 the
necessary mesh resolution for capturing vortex shedding has been determined.
Assuming a simulation was run on such a mesh, sufficiently fine to resolve the
vortex shedding, this would lead to additional forces on the structure from these
vortices. Depending on the frequency and phase shift, the vortex shedding could
then result in an even stronger damping, or if shedding in phase with the struc-
ture, cause an increase in the amplitudes of the structure movement.

- 133 -

8 Effect of Modeling Aeroelasticity

- 134 -

9
Modal Response

.

In this chapter a method to determine modal loads, f1 and f2, on a
structure using the modal coordinates, q1 and q2, along with modal
velocities, q̇1 and q̇2, is derived by determining the coefficients of ma-
trices A and B from a series of CFX simulations, so that the loads
can be described by Aq + Bq̇ = f .

Eight simulations are used to determine the coefficients of A and B.
Four simulations are run where the building is excited harmonically
in the first eigenmode with a constant amplitude and four different
circular frequencies, and another four where the building is excited
harmonically in the second eigenmode, with the same amplitude and
circular frequencies as the former four simulations.

From a test simulation it is determined that the method described
above shows good correlation with the load signal directly extracted
from the simulation, and on that basis it is concluded that the method
can be used to give a good estimate of the modal loads through use of
the modal coordinates and modal velocities.

- 135 -

9 Modal Response

In this chapter it is attempted to derive a method to describe the loads on the
structure from a modal point of view. In what follows it is assumed, that the
modal loads, f , on the structure can be written as:

f = Aq + Bq̇ (9.1)

where

A,B are modal coefficient matrices
q is the modal coordinate vector
q̇ is the modal velocity vector

The entries of the coefficient matrices, A and B, are dependent on the num-
ber of eigenmodes retained in the analysis. In this project only the first two
eigenmodes are taken into account as the project focusses more on the method
than the actual results. The coefficient matrices are therefore both 2×2 matrices.

The representation in eq. (9.1) is a very simplified expression. It could be
discussed whether an acceleration term, a constant term and a term dependent
on the vortex shedding frequency should be included. Of course the more terms
the expressions include the possibility of the expression to yield accurate results
increase. But in this project only loads due to displacement and velocity are
considered.

9.1 Method for Determining Coefficient Matrices

In this section the method for determining the coefficient matrices is presented.
The basis for the determination are CFD simulations where the structure is forced
to move in a specific eigenmode by a specified frequency and amplitude. The har-
monic motion of the structure during the simulations is governed by the following:

qj(t) = q̃j cos (ωt + Ψ) (9.2)

where

q̃j is the amplitude of the harmonic motion, [-]

ω is the circular frequency of the harmonic motion,
[

rad
s

]

t is the time, [s]
Ψ is the phase of the motion, [rad]

- 136 -

9.1 Method for Determining Coefficient Matrices

[Nielsen 2004]

The forced harmonic motion of the structure is determined by specifying a max-
imum value of the displacement, qj, and inserting this into eq. (9.2) as the am-
plitude of the motion, q̃j(t). The specified frequency and eigenmode determines
the motion of the structure on the basis of the selected maximum amplitude,
q̃j. It should be noted that the specified displacement is given as the maximum
displacement of the top node and hereafter the eigenmode determines the motion
of the rest of the structure.

The structure is initially considered at rest in a vertical position, t = 0, and
by inspection of eq. (9.2) the phase, Ψ, must therefore be selected as Ψ = π

2 .

The amplitude of the harmonic motion in the simulations is chosen to 2m. The
structure vibration frequency is expected to be somewhere in the region of the
first eigenfrequency listed as 0.39

[

rad
s

]

in eq. 6.11. It is therefore chosen to run
four sets of simulations, each set containing two simulations, one for each of the
first two eigenmodes. Each set of simulations have their own specific frequency.
The four sets of simulations are listed in tab. 9.1 where the period of motion, T ,
have been determined by T = 2π

ω
.

Table 9.1: Definition of simulations

Simulation Frequency ω,
[

rad
s

]

Period of motion T , [s]

Sim 1 0.3 20.9
Sim 2 0.4 15.7
Sim 3 0.5 12.6
Sim 4 0.6 10.5

The harmonic motion of the structure top governed by the frequencies listed in
tab. 9.1 are shown in fig.

0 10 20 30 40 50 60

−2

0

2

Time [s]

D
is

p
la

ce
m

en
t

[m
]

ω = 0.3
ω = 0.4
ω = 0.5
ω = 0.6

Figure 9.1: Harmonic motion of structure top. Frequencies in rad
s

- 137 -

9 Modal Response

The harmonic motion given in eq. (9.2) also works for the modal coordinate,
q. Utilizing Euler’s formula, eit = cos(t) + i sin(t), the harmonic motion can be
written in the following complex notation where q̃j cos (ωt + Ψ) corresponds to
the real part of the complex notation:

q = q̃ei(ωt+Ψ) (9.3)

In the following it is assumed that the load on the structure is also harmonic
with the same frequency as the structure movement but with some phase shift,
Ψ. The load can therefore be written as:

f = f̃ei(ωt+Ψ) = f̃eiωteiΨ (9.4)

As the method is based on a modal representation the modal loads must be used.
The modal loads are determined by:

fmodal = Pf (9.5)

where

P is the modal matrix, P =
[

Φ(1) · · · Φ(n)
]

Φ(j) is the jth eigenvector
f is the nodal forces and moments
n is the number of eigenmodes taken into account

The harmonic representation of the load in eq. (9.4) works just as well for the
modal load. Inserting eqs. (9.3) and (9.4) in (9.1) gives:

Aq̃ eiωt + iωBq̃ eiωt = f̃modal e
iωt eiΨ

Aq̃ + iω Bq̃ = f̃modal e
iΨ (9.6)

Eq. (9.6) can be written in the following way using index notation:

Ajk q̃k + iω Bjk q̃k = f̃j eiΨ (9.7)

where

f̃j is the load components of the load vector fmodal

From eq. (9.7) it is seen, that the term containing Ajk corresponds to the real
part of the right hand side while the term with Bjk corresponds to the imaginary

- 138 -

9.2 Simulation Setup and Observations

part. This fact is utilized to determine the coefficients in A and B. This yields
the following two equations to determine the coefficients:

Ajk = Re

(

f̃j ei Ψ

q̃k

)

Bjk = Im

(

f̃j ei Ψ

q̃k ω

) (9.8)

The procedure for determining the coefficients is summarized below.

1. The load vector, f , determined from the CFD simulations is loaded into a
MatLab program

2. The modal load, fmodal, is determined by eq. (9.5)

3. By use of the specified frequency, ω, the motion amplitude, q̃j , and the time
step size, ∆t, a time series of the modal coordinate, qj, is generated by use
of eq. (9.2)

4. The modal load and modal coordinate are plotted and the phase, Ψ, and
load amplitude, f̃ , is determined

5. The phase and amplitude is inserted into eq. (9.8) and the coefficients
in A and B are determined. Which simulation relates to the individual
coefficients in A and B can be seen in fig. 9.2

6. The procedure is repeated for simulations with different frequency

excited in the 1st eigenmode Φ1

excited in the 2nd eigenmode Φ2

1st modal load f1

1st modal load f2

a11 a12

a21 a22

Figure 9.2: Relation between coefficients and simulations

9.2 Simulation Setup and Observations

The setup of the simulations in CFX are basically the same is listed in sec. 5.1.
The settings for mesh deformation was initially set to Increase near Boundaries
with a model exponent of the default value 10. This resulted in simulations
which relatively quickly failed due to the creation of a negative volume element.

- 139 -

9 Modal Response

The Increase near Boundaries model uses the following relationship for the mesh
stiffness, cf. ANSYS CFX-Solver Modeling Guide, p. 5 :

Γdisp =

(

1

d

)Cstiff

(9.9)

where

d is the distance from the nearest boundary
Cstiff is the model exponent

Eq.(9.9) yields an exponential increase in the mesh stiffness as the distance to
the nearest boundary, d, decreases. The model exponent, Cstiff, determines how
quickly this increase occurs. The model exponent was hereafter increased to 100
to get the stiffness to increase more rapidly. The simulations did hereafter finish
without error. It should be noted that increasing the stiffness parameter does
not move the area where deformation of the mesh must be absorbed that much.
If the simulations keep crashing after increasing the stiffness parameter another
mesh deformation model must be used. Either the user can try one of the other
built in models in CFX or make one in Fortran and incorporate this into CFX.
The effect of both methods have been analyzed in chap. 4.

The mesh used for the simulations is the one called Mesh 1 in subsec. 7.1.1.
This mesh does not capture all flow related phenomena according to the analyses
in chap. 7. Since the method presented in this chapter is a simplified model
intended to describe the load variation from the structure displacements only,
the need for including e.g. vortex shedding in the simulations is unnecessary as
this will have no impact on the coefficients in A and B.

In the analyses in chap. 7 it was found, that the simulations had almost stabi-
lized after 60 s of simulated time. To be sure to get a usable harmonic signal the
simulated time is doubled to 120 s. As mentioned earlier a total of 8 simulations
have been run in four sets of two simulations. The simulation names are listed
below and can be found on the attached DVD in [DVD:\Aeroelastic_Analysis\
Modal_Response\CFX_Files\]:

• ω = 0.3 rad
s :

{

Sim_omega_0_3_V_20_Phi1_120.cfx

Sim_omega_0_3_V_20_Phi2_120.cfx

• ω = 0.4 rad
s :

{

Sim_omega_0_4_V_20_Phi1_120.cfx

Sim_omega_0_4_V_20_Phi2_120.cfx

- 140 -

9.3 Results

• ω = 0.5 rad
s :

{

Sim_omega_0_5_V_20_Phi1_120.cfx

Sim_omega_0_5_V_20_Phi2_120.cfx

• ω = 0.6 rad
s :

{

Sim_omega_0_6_V_20_Phi1_120.cfx

Sim_omega_0_6_V_20_Phi2_120.cfx

9.3 Results

In this section the results of the analyses are presented. The first part deals
with the determination and analysis of the coefficients in A and B. Hereafter
the model is tested on a simulation where the structure is allowed to move freely
during the simulation.

9.3.1 Determination of Coefficients

The determination of the coefficient matrices is done on the basis of the harmonic
motion specified for the structure movement and the resulting load history from
the simulation. The main part deals with treatment of the load history to deter-
mine the phase shift and load amplitude of the load variation which is assumed
harmonically varying with the same frequency as the structure movement with
some phase shift.

The harmonic part of the load history does not begin at once. The effects of
the initial conditions must be dissipated away before the data treatment starts.
This is done by specifying a specific place in the load history from where the data
treatment starts. The time series of the modal loads from all eight simulations
are shown in fig. 9.3. The specified cut-off limit is also shown for each simulation.

- 141 -

9 Modal Response

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

0 20 40 60 80 100 120
0

100

200

300

Sim_omega_0_3_V_20_Phi1_120.cfx Sim_omega_0_3_V_20_Phi2_120.cfx

Sim_omega_0_4_V_20_Phi1_120.cfx Sim_omega_0_4_V_20_Phi2_120.cfx

Sim_omega_0_5_V_20_Phi1_120.cfx Sim_omega_0_5_V_20_Phi2_120.cfx

Sim_omega_0_6_V_20_Phi1_120.cfx Sim_omega_0_6_V_20_Phi2_120.cfx

Figure 9.3: Modal loads for all simulations. — is load vector multiplied by Φ1,
— is load vector multiplied by Φ2 and — specifies the cut-off limit.
x-axis is time and y-axis is modal load

To start with the top points on the two curves are localized to the right of the
cut-off limit and the time to which these maxima occur is stored. Each top point
on the displacement curve is connected with the top point on the load curve to
the left of it. Each phase between the connected points is determined and the
final phase, Ψ, is determined as a mean value of these.

- 142 -

9.3 Results

The load amplitude is determined by localizing the minima and maxima on the
load curve. The amplitude, f̃ , is then calculated as the difference between the
mean of the maxima and the mean of the minima, divided by two.

In fig. 9.6 the 16 fits are shown, corresponding to two for each of the 8 sim-
ulations run. The subfigures are named e.g. ’ω = 0.3, Φ1, f2’, meaning that it is
the simulation where the structure has been subjected to a harmonic motion in
the first eigenmode at a circular frequency of 0.3, and that it is a plot of the 2nd

modal load.

The coefficients of A and B are plotted in figs. 9.4 and 9.5 respectively.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
−4

−2

0

2

4
x 10

−3

ω [rads]

m
o
d
al

re
sp

on
se

co
effi

ci
en

t

a11
a12
a21
a22

Figure 9.4: Coefficients of A as a function of the circular frequency ω

0.3 0.35 0.4 0.45 0.5 0.55 0.6

−6

−4

−2

0

2

x 10
−3

ω [rads]

m
o
d
al

re
sp

on
se

co
effi

ci
en

t

b11
b12
b21
b22

Figure 9.5: Coefficients of B as a function of the circular frequency ω

- 143 -

9 Modal Response

60 80 100 120
115

120

125

130

60 80 100 120
150

155

160

165

170

60 80 100 120
110

120

130

140

60 80 100 120
150

155

160

165

170

60 80 100 120
115

120

125

60 80 100 120
145

150

155

160

165

170

175

60 80 100 120
110

115

120

125

130

135

60 80 100 120
150

155

160

165

170

60 80 100 120
115

120

125

130

60 80 100 120

140

150

160

170

180

60 80 100 120
100

110

120

130

140

150

60 80 100 120
150

155

160

165

170

60 80 100 120
90

100

110

120

130

140

150

60 80 100 120

140

160

180

200

60 80 100 120

100

120

140

160

60 80 100 120
140

150

160

170

180

ω = 0.3, Φ1, f1 ω = 0.3, Φ1, f2 ω = 0.3, Φ2, f1 ω = 0.3, Φ2, f2

ω = 0.4, Φ1, f1 ω = 0.4, Φ1, f2 ω = 0.4, Φ2, f1 ω = 0.4, Φ2, f2

ω = 0.5, Φ1, f1 ω = 0.5, Φ1, f2 ω = 0.5, Φ2, f1 ω = 0.5, Φ2, f2

ω = 0.6, Φ1, f1 ω = 0.6, Φ1, f2 ω = 0.6, Φ2, f1 ω = 0.6, Φ2, f2

Figure 9.6: Modal loads for all simulations, compared with those generated by use
of eq. (9.1). — are the modal load vectors from the simulations, and
— are the modal load vectors generated by use of eq. (9.1). x-axis is
time and y-axis is modal load

As can be seen in fig 9.6, the harmonic signals produced match the load signals
from the simulations quite well. The few notable deviations that are seen are
all due to the load signal from the simulations not quite being harmonic yet.
It should here be noted that the output load signal from the MatLab program
fluctuates around zero, as the mean value is not considered. So, in fig. 9.6 the

- 144 -

9.3 Results

mean value of the incoming load signal (after the cut-off limit) have been added
to these fluctuations. The MatLab program, matrix_coeff.m, can be found on
the DVD in: [DVD:\Aeroelastic_Analyses\Modal_Response\].

The coefficients obtained this way, as given in figs. 9.4 and 9.5, are only valid
for this specific setup. If a more general approach had to be taken, the depen-
dency on the circular frequency ω should be replaced by the reduced frequency
k, which is given as k = ω D

u
, where D is the side length of the structure and

u is the wind velocity. Furthermore the entries in A and B would need to be
normalized which is not directly possible in the modal presentation, because the
eigenmodes consists of both translation and rotation. To make the coefficient
matrices dimensionless, this would have to be done while the equations are still
on cartesian form, Mẍ + Cẋ + Kx = Ax + Bẋ, where the entries containing
translation/forces would be divided by

(

1
2 ρ u2 D

)

and the entries containing ro-
tation/moments would be divided by

(

1
2 ρ u2 D2

)

9.3.2 Test of Model

To test the model with the coefficients determined in subsec. 9.3.1 a simulation
have been run, where the structure is allowed to move freely in the first two
eigenmodes corresponding to the ones used to set up the model. The time series
of the load is extracted as usual, but this time also the time series of the modal
coordinates, q1 and q2, and modal velocities, q̇1 and q̇2, are extracted. The modal
coordinates are used to determine frequencies for each modal coordinate respec-
tively. These frequencies are used to find values in A and B. This is done by
interpolation between the determined coefficients for the four known frequency
values used to set up the model. The coefficient matrices determined by this in-
terpolation is inserted into eq. (9.1) and a loop in MatLab is run over the number
of time steps in the simulation each time updating eq. (9.1) with the matching
modal coordinates and velocities. In this way a time history of the modal loads
is determined.

The modal coordinates from the simulation are shown in fig. 9.7 where it is
clear that the modal coordinates have the same phase and circular frequency,
but have different amplitudes.

- 145 -

9 Modal Response

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

q1
q2

time [s]

m
o
d
al

co
or

d
in

at
e

Figure 9.7: Modal coordinates extracted from the test simulation.

To conduct the interpolation a linear variation of the coefficients between the
frequencies are assumed. Instead of using a mean value of the frequency over the
entire time series for the interpolation the time series are divided into sections,
each section as the distance between two adjacent top points on the curve for
the relevant modal coordinate. The time, T , covered by one section is used to
determine the corresponding frequency by:

ωi =
2π

T
(9.10)

whereafter the reduced frequency is determined by eq. (??). The frequency
determined for the respective section is assigned to the midpoint of this section
and a linear variation is assumed between the frequency values. For each step in
the loop over the number of time steps a frequency for this time step is found
using this linear variation. The method is illustrated in fig. 9.8.

ω(t)

q(t)

ω1
ω2

ω3
ω4

T1 T2 T3 T4

t

t

Figure 9.8: Illustration of determination of ω

- 146 -

9.3 Results

The frequency to each time step is hereafter used to interpolate in A and B to
determine the coefficients for the relevant frequency. As mentioned earlier, eq.
(9.1) is hereafter used to generate a load signal. By the method presented the
load signal generated are shown in figs. 9.9 and 9.10 against the fluctuations
of the load signals extracted from a simulation in CFX where the structure is
allowed to move freely in the two first eigenmodes. In fig. 9.11 the full load
signals extracted from the CFX simulation is shown.

0 20 40 60 80 100 120

−2

−1

0

1

2

time [s]

m
o
d
al

lo
ad

fl
u
ct

u
at

io
n

f1,gen

f1,cfx

Figure 9.9: Comparison of the load fluctuations in f1 from the generated and
extracted loads.

0 20 40 60 80 100 120

−2

−1

0

1

2

time [s]

m
o
d
al

lo
ad

fl
u
ct

u
at

io
n

f2,gen

f2,cfx

Figure 9.10: Comparison of the load fluctuations in f2 from the generated and
extracted loads.

- 147 -

9 Modal Response

0 20 40 60 80 100 120
110

120

130

140

150

160

170

time [s]

m
o
d
al

lo
ad

f1,cfx
f2,cfx

Figure 9.11: Extracted modal loads f1,cfx and f2,cfx.

By inspection of figs. 9.9 and 9.10 it can be seen that the fluctuations of loads
generated through use of eq. (9.1) fit quite nicely, albeit with a slight deviation
of amplitudes in f1. As mentioned earlier, the mean value is not considered in
this analysis, as it is more dependent on the flow, than the deformation of the
structure. If this was to be included, additional simulations would have to be
run, as a minimum including a variation of the free stream velocity, u∞. As this
is not done here, the behavior of fluctuations is the main focus, and it can be
concluded that the method of eq. (9.1) can in fact produce reasonable modal
loads, corresponding to those measured in a CFX simulation.

9.4 Comparison of Results

The use of modal response coefficients, or flutter derivatives, is a well known
method within dynamic bridge design. In this project it is attempted to verify
if such a method could be used to model the aeroelastic response of a high-rise
building, and yield qualitative good results. It was determined that the method,
where the flutter derivatives are determined as a function of the reduced fre-
quency, K, yielded results in terms of the modal load vector, which were well
correlated with results directly extracted from a CFD simulation.

A similar conclusion has been reached in [Stærdahl, Sørensen & Nielsen 2007],
where flutter derivatives have been used to determine the aeroelastic stability
(flutter stability) of the Great Belt Bridge of Denmark. [Stærdahl et al. 2007]
determines that the mesh does not need to be fine enough to resolve the vortex
shedding, which works in favor of the delimitations made in the present project,
as long as the deformation frequency can be observed in the load signal. Finally,
it is concluded in [Stærdahl et al. 2007] that using CFD to compute the flut-

- 148 -

9.4 Comparison of Results

ter derivatives can yield qualitative and quantitatively good results, compared
to the conventional approach of determining the flutter derivatives from wind
tunnel tests. In this project there are no wind tunnel tests to compare against,
but it has similarly been concluded that the method can produce good results
when using the modal coordinates and flutter derivatives to determine the modal
loads.

- 149 -

9 Modal Response

- 150 -

10
Conclusion

.

.

.

In this final chapter the main results and observations are summed up
for the different analyses and methods. Due to the simulations con-
ducted being run with coarse meshes and settings some small methods
of improvement for the analyses in this project are presented.

In the last part of this chapter different areas to which attention could
be turned for the analyses and methods in this project to be improved
are presented. To each area different proposals are made on how the
specific area can be improved compared to the present project. The
last part should be considered as inspiration for future work within
this field.

- 151 -

10 Conclusion

The purpose of this project was to model and analyze aeroelasticity in connec-
tion with high-rise buildings. The analyses have been conducted by use of CFD
simulations of the wind flow around a square structure.

One of the main flow phenomena which has an impact on the wind induced
forces on the structure is vortex shedding. In the process of conducting the anal-
yses it became apparent, that to capture vortex shedding during the simulations
the mesh has to be sufficiently fine and the time step size so low that the com-
putation time on one CPU would be extremely long. Instead the focus of the
project was turned towards the method of simulating aeroelastic response by use
of CFD and then accept, that the results obtained might not be physically correct.

The first part of the project deals with generation of a suitable mesh for the
simulations. A mesh generation algorithm was programmed in MatLab based
on hyperbolic partial differential equations. By use of this algorithm structured
meshes for the exterior flow can be generated. The advantage of using a struc-
tured mesh was analyzed by comparing simulations with these to simulations
run with fully unstructured meshes (chap. 3). It was clear, that the main advan-
tage is in the computation time needed. The time used for the simulations with
the structured mesh was much lower than for the simulations with unstructured
meshes (see. fig. 3.21). Therefore it is recommended to use a structured mesh
if the generation of this does not take considerable longer than an unstructured
mesh. This difference is evened out as the amount of simulations to be conducted
increase.

As the simulations used to model the aeroelastic response was conducted with
a coarse mesh and a relatively high time step size, analyses was carried out to
find out, if one parameter in the setup has a larger impact than others. Due to
the long computation time needed the analyses in chap. 7 only showed, that all
parameters analyzed have some influence on the result but not which one had
the largest impact. The influence on the results was most visible in the cross-
wind direction whereas the loads in the streamwise direction showed only little
dependency on the different parameters. In order to find out the magnitude of
influence of the different parameters a reference simulation should have been used
and then simulations where only one parameters at the time have been altered
should have been run. The latter analysis is left out due to the limited computer
power and the needed computation time needed for the analysis.

In chap. 8 an analysis of the effect of modeling the aeroelastic response is con-
ducted. The analysis did however not show the expected result. It was expected,

- 152 -

10.1 Suggestions for Improvements

that the presence of aeroelastic damping would reduce the structure movement
faster than for the simulation with the stationary structure. Instead, the sim-
ulations showed some presence of damping on the second modal coordinate for
the simulation with a stationary structure whereas the simulation with a moving
structure did not show the expected result. The displacement of the structure
including aeroelasticity maintains approximately the same magnitude during the
entire run. This could indicate some negative aeroelastic damping acting on the
structure causing the displacements to maintain their amplitude and not dampen
away over time.

In chap. 9 a method is derived for determining the load on a structure based
on the movement of this. The method is based on a modal representation of
the structure. Different simulations with enforced harmonic motions in known
frequencies have been conducted and based on these a model for determining the
load response have been set up. The model is then tested on a simulation with
the structure allowed to move freely and the load response from this simulation
is compared to the one generated by the model on the basis of the structure
movement.
It is found that it is possible to model the load response quite well. The disad-
vantage of the present model is, that the mean of the load is not contained in
the model and only the load fluctuations around the mean value are determined
by the model. In order to incorporate the mean of the load into the model a
number of simulations have to be run with different settings of the wind velocity
to determine the mean load dependency on this parameter. If the model is to be
made generally applicable, also the structure size and shape have to be incorpo-
rated into the mean load determination.

As mentioned the simulations for the analyses were conducted using coarse set-
tings and mesh and hereby not all flow phenomena were captured. In the following
section suggestions are made to where and how improvements to the conducted
analyses can be made. This should be thought of as inspiration for any future
work to be done within this field.

10.1 Suggestions for Improvements

In this chapter some areas as to where the analyses in this project can be im-
proved will be presented. In this project the major limitation was the relatively
limited computer power available. This condition was the main reason for the
simplifications of the simulations. Therefore the main emphasis of this chapter
will be used to present areas where the simulations from this project should be

- 153 -

10 Conclusion

improved assuming that the necessary computer power was available.

10.1.1 CFD Simulation Setup

The first area where the simulations should be improved is the use of a suitable
mesh with a resolution fine enough to resolve all relevant flow phenomena, in this
case especially vortex shedding. In this project some preliminary analyses have
been conducted (chap. 7) where it has been determined that the use of coarse
settings for mesh fineness, time step etc. has a significant impact in the results.
Instead preliminary analyses can be used to determine the necessary mesh fine-
ness, time step size and other relevant settings for the simulations to perform the
best possible way.

If the results are to be used in some comparison with results from other methods
the emphasis must be put into this area as all the results depend on simulations
capable of representing nature in the best possible way. The CFD settings does
not necessarily need to be optimized as long as the settings are finer than actually
needed. This might save some time in the short term if only a small number of
simulations need to be run. If several simulations are to be run it is advised that
the user takes the time to conduct relevant analyses to optimize the simulation
setup and hereby save computation time. It takes longer in the short run but it
is the experience that the extra time used is better in the long run.

10.1.2 Load Determination

Due to program deficiencies in Ansys CFX 11 the total loads presented and used
in this project only contain contributions from the pressure on the structure.
This is due to the method used to extract the loads during a transient simula-
tion. This method does not work with the wall shear in Ansys CFX 11. Therefore
the presented loads are not to be considered as representative of nature. The de-
ficiency in CFX 11 should be fixed in the coming version 12 and should hereafter
of course be included in the total loads.

In this project no analysis have been conducted to check whether the use of
50 sections (5 on each beam) for determining the loads is sufficient, or whether
the number of sections can be decreased or needs to be increased. However, the
emphasis of this project is turned towards the method of using modal analysis
in modeling fluid-structure interaction rather than obtaining accurate simulation
results.

If the method in the future is to be used to get reliable results an analysis of

- 154 -

10.1 Suggestions for Improvements

the necessary sections for load determination could be an area of interest. The
loads are in this project determined after each time step in the transient runs
but the experience is, that the time consumption of this area in the simulations
is negligible compared to the fluid solving part. The analysis of needed sections
might therefore be left out and the number of sections set to a sufficiently high
number without increasing the total computation time much.

10.1.3 Mesh Generation

In this project, the 3D mesh has been generated from the basis of a 2D mesh.
The 2D mesh is generated from an algorithm based on hyperbolic PDE’s. As
long as the algorithm is used purely for 2D meshing, it has shown to be quite
good. However, when extruding to a 3D mesh, the mesh program has some very
prominent deficiencies with regards to closing the mesh above the structure, lead-
ing to the very limiting constraint, that the mesh has to be created from four
boundaries, and that the number of nodes on these boundaries must be equal for
the pairwise opposing sides.

In the interest of performing analyses similar to the analyses performed in this
project, but on a more complex geometry, the need for a different mesh algorithm
is irrefutable. Such algorithms exist, e.g. by means of three dimensional hyper-
bolic PDE’s. Using such a method to generate the 3D grid would give the user
far more flexibility in choosing a 3D geometry which more adequately represents
a real structure.

Another aspect of the mesh generation which could be improved, for a more
user friendly approach, is the use of adaptive meshing. This could be utilized
when specifying e.g. the dissipation, so that the dissipation would be determined
from local conditions in the mesh, rather than a set dissipation for each marching
layer, as has been done in this project. The problem with a constant dissipa-
tion factor for one marching layer is that the optimal factor varies depending on
whether the mesh is near a corner, or near a concave or convex boundary. The
adaptive dissipation would thus ensure that an "optimal" (relative to a constant
factor for each marching layer) dissipation factor is used for every cell.

10.1.4 Inlet Conditions

The inlet conditions used in the project are constant both in time and in the
global z-coordinate. For a more precise representation of nature, it could be
argued that the inlet conditions should model the atmospheric boundary layer,

- 155 -

10 Conclusion

corresponding to a no-slip condition imposed on the ground surface boundary.

Furthermore it is somewhat naive to model an inlet where the wind direction
and velocities do not vary even a fraction over time. To this end, some ran-
dom fluctuations of the inlet velocities could be added to the inlet conditions,
controlled by a few user specified parameters.

- 156 -

Bibliography

CEN/TC250, T. C. [2005]. Eurocode 1, Actions on structures - Part 1-4: General
actions - Wind actions, BSI.

Chan, W. M. & Steger, J. L. [1992]. Enhancements of a three-dimensional hyper-
bolic grid generation scheme, Applied Mathematics and Computation Vol.
51: pp. 181–205.

Cook, R. D., Markus, D. S., Plesha, M. E. & Witt, R. J. [2002]. Concepts and
Applications of Finite Element Analysis, 4th edn, John Wiley and Sons Inc.

Dennis, S. & Chang, G.-Z. [1970]. Numerical solutions for steady flow past a
circular cylinder at reynolds numbers up to 100, Journal of Fluid Mechanics
Vol. 42, part 3: pp. 471–489.

Ferziger, J. H. & Peric, M. [2002]. Computational Methods for Fluid Dynamic,
3. edition edn, Springer-Verlag.

Nielsen, S. R. K. [2004]. Vibration Theory - Linear Vibration Theory, Vol. 1,
Aalborg tekniske Universitetsforlag.

Nielsen, S. R. K. [2005]. Structural Dynamics - Computational Dynamics, Vol. 9,
Aalborg tekniske Universitetsforlag.

Steger, J. L. & Chaussee, D. S. [1980]. Generation of body-fitted coordinates
using hyperbolic partial differential equations, SIAM Journal SCI. STAT.
COMPUT. Vol. 1(No. 4): pp. 431–437.

Stærdahl, J. W., Sørensen, N. & Nielsen, S. R. K. [2007]. Aeroelastic stability of
suspension bridges using cfd.

Thompson, J. F., Warsi, Z. & Mastin, C. W. [1985]. Numerical Grid Generation,
Elsevier Science Publishing Co., Inc.

Wilcox, D. C. [2002]. Turbulence Modeling for CFD, 2nd edn, D C W Industries.

- 157 -

.
.

.
.
.
.
.
.
.
.

Appendix

.
.

Contents

A Hyperbolic Mesh Generation, Theory 1
A.1 Obtaining the PDE . 1

A.2 Obtaining the Algorithm . 5

A.2.1 Boundary Conditions . 6

A.2.2 Dissipation . 7

A.2.3 Volume Averaging . 8

B Spline Theory 9

B.1 Clamped Cubic Spline . 14

B.1.1 Examples . 16

B.2 Limitations . 19

C Computational Fluid Dynamics, Theory 23

C.1 Governing Equations for Fluid Flow 23

C.1.1 Reynolds Time Averaging 23

C.1.2 Reynolds Averaged Equations 25

C.2 Turbulence Models . 26

C.2.1 The Turbulence Energy Equation 26

C.2.2 The k − ω Model . 30

C.2.3 The k − ǫ Model . 31

C.2.4 The SST Model . 33

C.3 Finite Volume Method . 37

D Structural Dynamics, Theory 41
D.1 General Dynamic Equations . 41

D.2 Modal Equations . 42

D.3 Reduction of DOF . 44

D.4 Newmark Algorithm . 45

E Ansys CFX Memory Management System 49

E.1 Allocating Space on the Stacks 50

E.2 Writing Data onto Allocated Space on the Stacks 50

- i -

Contents

E.3 Reading Data from Allocated Space on the Stacks 51
E.4 Locating Data on the Stacks . 51

F Moving Mesh in CFX 53
F.1 Setup . 53

F.1.1 Domain and Boundary Settings 55
F.1.2 Setting up Fortran Routines 56

G Macros in CFX 59
G.1 General Features in CFX Macros 59
G.2 CFX-Pre Macro . 60

G.2.1 Scalar Values . 61
G.2.2 Arrays . 61
G.2.3 Loops and Logical Statements 63
G.2.4 CFX Environments . 63

G.3 CFX-Post Macro . 67

H Load Extraction in Transient Runs in CFX, Trials and Error 75

- ii -

A
Hyperbolic Mesh Generation, Theory

When conducting CFD analyses an important feature is the mesh used. Many
different methods for mesh generation exist. In this project a hyperbolic mesh
generation method have been used. In this appendix, the theory behind the
algorithm will be presented. Unless anything else is mentioned the following is
based on [Steger & Chaussee 1980].

A.1 Obtaining the PDE

First, the generation of an exterior mesh around an arbitrary closed boundary
like the one in fig. A.1 is considered. On fig. A.1a the physical plane is shown,
in coordinates x, y - on fig A.1b the computational plane is shown in coordinates
ξ, η. It can be seen how ξ, η is denoted in the physical plane, as radial lines and
encircling lines respectively.
The inner boundary is prescribed by a set of coordinates, whereas the outer
boundary is not; it only needs to be sufficiently far from the inner boundary.

- 1 -

A Hyperbolic Mesh Generation, Theory

replacemen

ξ = 0 ξ = 0

ξ = ξmax

ξ = ξmax

η = 0

η = 0

η = ηmax η = ηmax

η

η

∆s x, y SPECIFIED

ξ

ξ

x

y

a) Physical plane x, y. b) Computational plane ξ, η.

Figure A.1: Illustration of grid mapping procedure.

The PDE’s should produce smoothly distributed grid lines so that lines of the
same family (η and ξ respectively) do not cross or coalesce. If this is fulfilled, a
one-to-one mapping will exist between the grid in the computational plane and
that in the physical plane.

Consider an arc length scheme, imposed by a constraint of orthogonality, given
by:

xξxη + yξyη = 0 (A.1)

where lower index indicates differentiation, e.g. xξ = ∂x
∂ξ

.

The distance, ds, between levels of η = constant lines is constrained by:

(ds)2 = (dx)2 + (dy)2

= (xξdξ + xηdη)
2 + (yξdξ + yηdη)

2
(A.2)

A uniform grid is specified in the computational plane, see fig. A.1b. For conve-
nience, dη/dξ = 1 is chosen. Expanding eq. (A.2) and using eq. (A.1) gives:

ds2 = x2
ξdξ

2 + x2
ηdη

2 + y2
ξdξ

2 + y2
ηdη

2 + 2(xξdξxηdη + yξdξyηdη)

(∆s)2 ≡
(

ds

dη

)2

= x2
ξ + y2

ξ + x2
η + y2

η

(A.3)

Eqs. (A.1) and (A.3) forms a system of nonlinear PDE’s with initial data in

- 2 -

A.1 Obtaining the PDE

η = 0. Local linearization of this system of equations followed by analysis shows
that the equations are hyperbolic. This mean the equations can be marched in
η from initial data along the body, η = 0, as shown in fig. A.1a.

Let x̃ = x − x0 and ỹ = y − y0, where x0 and y0 denote a known near solu-
tion state, i.e. the coordinates of the previous η line. Term by term linearization
of eqs. (A.1) and (A.3) yields expressions on the following form, where x̃ is
assumed small compared to x and x0:

xξxη = (x0 + x̃)ξ(x
0 + x̃)η

= (x0
ξx

0
η + x0

ξ x̃η + x0
ηx̃ξ) +O(x̃2)

≃ x0
ξx

0
η + x0

ξ(x− x0)η + x0
η(x− x0)ξ

= x0
ξxη + x0

ηxξ − x0
ξx

0
η

(A.4)

In analogy to eq. (A.4), the remaining terms can be obtained as:

yξyη = y0
ξyη + y0

ηyξ − y0
ξy

0
η

xξyη = x0
ξyη + y0

ηxξ − x0
ξy

0
η

yξxη = y0
ξxη + x0

ηyξ − y0
ξx

0
η

(A.5)

The resulting system of equations corresponding to linearization of eqs. (A.1)
and (A.3) is then given as:

x0
η y0

η

x0
ξ y0

ξ

x

y

ξ

+

x0
ξ y0

ξ

x0
η y0

η

x

y

η

=

x0
ξx

0
η + y0

ξy
0
η

1
2((∆s)2 + (x0

ξ)
2 + (x0

η)
2 + (y0

ξ)
2 + (y0

η)
2)

(A.6)

or:

Arξ + Brη = f (A.7)

If the transformation Jacobian, x0
ξy

0
η − x0

ηy
0
ξ 6= 0, then B−1 exist. Furthermore if

B−1A has real distinct eigenvalues, the system is hyperbolic and therefore well
posed for initial data in η [Steger & Chaussee 1980, p. 433]. The characteristic
equation for B−1A is:

σ2 − (x0
ξy

0
η − x0

ηy
0
ξ)

2 = 0 (A.8)

which has real distinct roots, σ, as x0
ξy

0
η −x0

ηy
0
ξ 6= 0. If however x0

ξy
0
η − x0

ηy
0
ξ = 0,

the mapping from x, y to ξ, η is no longer one-to-one.

- 3 -

A Hyperbolic Mesh Generation, Theory

In order to ensure a non-singular mapping from x, y to ξ, η, an alternative set of
equations are formulated in a cell volume scheme. Again, the constraint of or-
thogonality is imposed. If a finite grid cell volume is specified, the transformation
Jacobian should be non-singular [Steger & Chaussee 1980, p. 433]:

dxdy = (xξyη − xηyξ)dξdη = J dξdη (A.9)

In the numerical implementation ∆ξ = ∆η = 1, so the Jacobian determinant is
approximately equal to the physical cell volume ∆x∆y. A set of grid generation
equations are then given by:

xξxη + yξyη = 0 (A.10)

xξyη − xηyξ = J ≡ V (Area) (A.11)

Here eq. (A.10) is the constraint of orthogonality and in eq. (A.11) V represents
the grid cell volume, which is user specified. Linearization of the two equations
yields:

x0
η y0

η

y0
η −x0

η

x

y

ξ

+

x0
ξ y0

ξ

−y0
ξ x0

ξ

x

y

η

=

0

V + V 0

 (A.12)

which again can be put on the same form as eq. (A.7).

If (x0
ξ)

2 + (y0
ξ)

2 6= 0 then B−1 exists. Furthermore this means that B−1A is
a symmetric matrix which has real eigenvalues:

A =

x0
η y0

η

y0
η −x0

η

B−1 =
1

(x0
ξ)

2 + (y0
ξ)

2

x0
ξ −y0

η

y0
ξ x0

ξ

f =

0

V + V 0

B−1A =
1

(x0
ξ)

2 + (y0
ξ)

2

x0
ξx

0
η − y0

ξy
0
η x0

ξy
0
η + x0

ηy
0
ξ

x0
ξy

0
η + x0

ηy
0
ξ y0

ξy
0
η − x0

ξx
0
η

(A.13)

So, again the system is hyperbolic and suitable for marching in η.

- 4 -

A.2 Obtaining the Algorithm

A.2 Obtaining the Algorithm

A mesh generation algorithm is developed using eqs. (A.10) and (A.11) by choo-
sing V and subsequently solving numerically with specified initial data along the
body surface. A non iterative implicit finite difference scheme is used which is
centrally differenced in ξ and first order accurate in the marching direction η as
follows.

rη = rj,k+1 − rj,k

rξ =
rj+1,k+1 − rj−1,k+1

2

(A.14)

Let ∆ξ = ∆η = 1 so that η = k − 1 and ξ = j − 1. Eq. (A.12) can then replace
eqs. (A.10) and (A.11) to second order numerical accuracy, and be differenced
as:

rj,k+1 − rj,k + B−1A
rj+1,k+1 − rj−1,k+1

2
= B−1fj,k+1 + ε(∇j∆j)

2rj,k (A.15)

where lower index refers to node numbering, A, B−1, and f are given by eq.
(A.13), and x0

ξ , y
0
ξ , x

0
η , y

0
η, V

0 are evaluated at the previous level k as

x0
ξ =

xj+1,k − xj−1,k

2

y0
ξ =

yj+1,k − yj−1,k

2

x0
η = −

y0
ξV

0

(x0
ξ)

2 + (y0
ξ)

2

y0
η =

x0
ξV

0

(x0
ξ)

2 + (y0
ξ)

2

(A.16)

and V is given as

V = h
√

(x0
ξ)

2 + (y0
ξ)

2 (A.17)

where

h is a user specified height

The term (∇j∆j)
2 is an added, fourth order numerical dissipation term, given

by:

(∆j∇j)
2rj,k = rj+2,k − 4rj+1,k + 6rj,k − 4rj−1,k + rj−2,k (A.18)

- 5 -

A Hyperbolic Mesh Generation, Theory

[Pulliam 1986, p. 1933]

The resulting equations for solving for each new k+1 will be on the form Ux = v

where Ux and v are given as:

Ux = rj,k+1 + B−1A
rj+1,k+1 − rj−1,k+1

2

v = B−1fj,k+1 + ε(∇j∆j)
2rj,k + rj,k

(A.19)

A.2.1 Boundary Conditions

As with all PDE’s, special care has to be taken when considering the boundaries,
given by j = 1 and j = n, where n is the number of surface nodes. Two different
boundary conditions have been considered here; a cyclic mesh enclosing a body
surface, and a vertical boundary mesh growing from a "horizontal" body surface.

If the mode is set to cyclic mesh, the boundary conditions are given so that the
nodes on each boundary for the same value of η are treated as being coinciding.
This gives the following alterations:

rj−1,k = rn,k

rj−1,k+1 = rn,k+1

rn+1,k = r1,k

rn+1,k+1 = r1,k+1

(A.20)

If the mode is set to vertical boundary mesh, the boundary conditions are given
so the boundaries are vertical. This gives the following alterations:

x1,k = x1,k−1

y1,k = y2,k

xn,k = xn,k−1

yn,k = yn−1,k

(A.21)

Depending on the boundary conditions chosen, the mesh chosen will either be
cyclic fig. A.2a, or with a vertical boundary fig. A.2b.

- 6 -

A.2 Obtaining the Algorithm

a) Cyclic mesh b) Vertical boundary mesh

Figure A.2: The two available mesh modes. The bold lines represent the body
surface.

A.2.2 Dissipation

The dissipation given by eq. (A.18) is controlled by the user defined parameter
ε. At the boundaries special considerations has to be made for the dissipation as
it is of fourth order.

If the mode is set to cyclic mesh, the alterations are given as eq. (A.20), plus an
additional two:

rj−2,k = rn−1,k

rn+2,k = r2,k

(A.22)

If the mode is set to vertical boundary mesh, the dissipation is merely turned off
for the outer 2 nodes in both ends:

(∆j∇j)
2r1,k = 0

(∆j∇j)
2r2,k = 0

(∆j∇j)
2rn−1,k = 0

(∆j∇j)
2rn,k = 0

(A.23)

An alternative approach would be to add a second order dissipation at j = 2
and j = n− 1, however the body surface at the boundaries should be sufficiently
smooth, so dissipation is not needed there.

- 7 -

A Hyperbolic Mesh Generation, Theory

A.2.3 Volume Averaging

In order to obtain an evenly spaced mesh in the far field, removing converging or
diverging tendencies originating from the geometry of the body surface, volume
averaging is used. The volume averaging is given as:

V ⋆
j,k = αVj,k + (1 − α)

1

n

n
∑

i=1

Vi,k (A.24)

where

V ⋆
j,k is the averaged volume

α is a parameter between 0 and 1
Vj,k is the volume given by eq. (A.17)

- 8 -

B
Spline Theory

In the process of generating a hyperbolic mesh, the MatLab function spline is
used. In this appendix the theory behind this function is described. Unless any-
thing else is mentioned the following is based on [Mathews & Fink 2004, pp.
280-290].

Generally the spline is used to fit a curve through data points. The property
of the spline is, that the spline goes through all the points and does not only
generate a curve making the best fit of the available data. This is done by con-
sidering the distance between two adjoining points and determine a polynomial
which include the considered points and have continuity in both the first and
second derivative across node points.

The spline function in MatLab makes use of a so-called Cubic Spline. It is called
cubic because between each two points a third degree polynomial is fitted. The
final spline, S(x), consists of N polynomials where N +1 is the number of points
to be fitted i.e {(xk, yk)}N

k=0. This can be written as:

S(x) = Sk(x) =sk,0 + sk,1(x− xk) + sk,2(x− xk)
2 + sk,3(x− xk)

3

for x ∈ [xk, xk+1] and k = 0, 1, . . . , N − 1
(B.1)

where

Sk(x) is a third degree polynomial (Cubic polynomial)
sk,i are coefficients in the polynomial i = 0, 1, . . . , 3

- 9 -

B Spline Theory

Fig. B.1 shows an example of the numbering of points and splines when four
points exist.

k = 0
(x0, y0)

k = 1
(x1, y1)

k = 2
(x2, y2)

k = 3
(x3, y3)

k = 4
(x4, y4)

S0

S1

S2

S3

x

y

Figure B.1: Example of a spline and definition of index

The task is to determine the coefficients, sk,i, in the spline in terms of known
values.

For the final spline to fit the data in a satisfying way it has to fulfill 4 crite-
ria which are:

I : S(xk) = yk for k = 0, 1, . . . , N

II : Sk−1(xk) = Sk(xk) for k = 1, . . . , N − 1

III : S′

k−1(xk) = S′

k(xk) for k = 1, . . . , N − 1

IV : S′′

k−1(xk) = S′′

k(xk) for k = 1, . . . , N − 1

Statement I indicates that the piecewise cubic polynomials interpolate all data
points. By inserting in eq. (B.1) this yields:

Sk(xk) =sk,0 + sk,1(xk − xk) + sk,2(xk − xk)
2 + sk,3(xk − xk)

3

Sk(xk) =sk,0 = yk (B.2)

Statements III and IV indicate that the cubic polynomials make up a smooth
curve which is continuous in both the first and second derivative. These state-
ments form the basis for the derivation of the polynomial coefficients.

- 10 -

Each cubic polynomial contains four unknowns, the coefficients sk,0, sk,1, sk,2, sk,3,
and as there are N polynomials this gives 4N coefficients to be determined. The
data points {(xk, yk)}N

k=0 gives N +1 conditions and statement II-IV gives N −1
conditions each. Together this supplies N+1+3(N −1) = 4N−2 conditions lea-
ving two unknown coefficients to be determined. This will be dealt with later by
considering end conditions of either the first, S′(x), or second derivative, S′′(x).

In the following an equation system is set up which can be used to determine
the coefficients, sk,i, in eq. (B.1). The starting point for this derivation is the
continuity of the second derivative.

As a consequence of the polynomials being cubic the second derivative is piece-
wise linear on [x0, xN]. Due to this linearity a linear Lagrange interpolation can
be used to determine the value of the second derivative between two adjacent
points. The linear Lagrange interpolation formula is given by:

S′′

k(x) = S′′(xk)
x− xk+1

xk − xk+1
+ S′′(xk+1)

x− xk

xk+1 − xk

(B.3)

By defining mk = S′′(xk) and hk = xk+1 − xk eq. (B.3) can be written as:

S′′

k(x) =
mk

hk

(xk+1 − x) +
mk+1

hk

(x− xk)

for xk ≤ x ≤ xk+1 ∧ k = 0, 1, . . . , N − 1
(B.4)

A solution to eq. (B.4) is obtained by integrating twice.:

S′(x) =

∫

S′′(x) dx

=
mk

hk

xk+1x− mk

2hk

x2 +
mk+1

2hk

x2 − mk+1

hk

xkx+ C1 (B.5)

S(x) =

∫

S′(x) dx

=
mk

2hk

xk+1x
2 − mk

6hk

x3 +
mk+1

6hk

x3 − mk+1

2hk

xkx
2 + C1x+ C2 (B.6)

where

C1, C2 are integration constants to be determined

- 11 -

B Spline Theory

The constants, C1 and C2, can after some rewriting be written as:

C1 = pkxk+1 − qkxk +
mk

6hk

x3
k+1 −

mk+1

6hk

x3
k + C2

C2 = qk − pk −
mk

2hk

x2
k+1 +

mk+1

2hk

x2
k

(B.7)

where

pk, qk are two new constants to be determined

By inserting the constants in eq. (B.7), eq. (B.6) can be written as:

Sk(x) =
mk

6hk

(xk+1 −x)3 +
mk+1

6hk

(x−xk)
3 + pk(xk+1 −x)+ qk(x−xk) (B.8)

Using eq. (B.2) for k and k+1 in eq. (B.8) results in the following two equations
containing pk and qk respectively:

yk =
mk

6
h2

k + pkhk and yk+1 =
mk+1

6
h2

k + qkhk (B.9)

Solving eq. (B.9) for pk and qk respectively and inserting in eq. (B.8) yields the
following equation for the cubic function:

Sk(x) = − mk

6hk

(xk+1 − x)3 +
mk+1

6hk

(x− xk)
3

+

(

yk

hk

− mkhk

6

)

(xk+1 − x) +

(

yk+1

hk

− mk+1hk

6

)

(x− xk)

(B.10)

In eq. (B.10) the only unknowns are the second derivatives represented by m.
To calculate these values the derivative of (B.10) is used:

S′

k(x) = − mk

2hk

(xk+1 − x)2 +
mk+1

2hk

(x− xk)
2

−
(

yk

hk

− mkhk

6

)

+
yk+1

hk

− mk+1hk

hk

(B.11)

Eq. (B.11) is evaluated at xk. Secondly k in eq. (B.11) is replaced by k − 1 and
again evaluated at xk. This yields the following two equations:

S′

k(xk) = −mk

3
hk − mk+1

6
hk + dk where dk =

yk+1 − yk

hk

(B.12)

S′

k−1(xk) =
mk

3
hk−1 +

mk−1

6
hk−1 + dk−1 (B.13)

- 12 -

Eqs. (B.12) and (B.13) represent the right- and left hand side of statement III
respectively. Insertion yields:

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk (B.14)

where uk = 6(dk − dk−1) for k = 1, 2, . . . , N − 1

Eq. (B.14) expresses a useful relation between mk−1, mk and mk+1. The only un-
knowns are the values of mk−1, mk and mk+1 while all other terms are constants
dependent on only the known data points. This leaves an under determined
equation with N + 1 unknowns and N − 1 linear equations.

It has earlier been mentioned that the two additional equations required to solve
the equation system is obtained by specifying end conditions of the derivatives
of Sk(x). These equations are used to eliminate m0 from the first equation and
mN from equation N − 1.

The end point constraints are usually specified in one of the five different ways
listed below:

1. Clamped cubic spline: Specify S′(x0) and S′(xN)

2. Natural cubic spline: m0 = 0 and mN = 0

3. Extrapolate S′′(x) to the end points: m0 a function of m1 and m2, mN a
function of mN−1 and mN−2

4. S′′(x) is constant near the end points: m0 = m1, mN = mN−1

5. Specify S′′(x) at each end point: m0 = S′′(x0), mN = S′′(xN)

By default the spline function in MatLab uses a not-a-knot condition at the
end points. This interpolation scheme makes use of the condition that the third
derivative of Sk(x) is continuous at x1 and xN−1. Another option is to specify
the first derivative which gives a clamped spline as in point 1 in the list above.
This is the spline used in this project as a tool for generating the hyperbolic
mesh and is therefore the only strategy considered in the following. A reference
is made to [Mathews and Fink, 2004, pp. 280-290] for more information about
the other four end conditions.

Regardless of the end conditions chosen, eq. (B.14) can be rewritten and thereby
obtain a tridiagonal linear equation system. For k = 1 and k = N − 1 eq. (B.14)
attain a different form than for k = 2, 3, . . . , N − 2 which have been taken into

- 13 -

B Spline Theory

account setting up the equation system. The linear system can be written as:

b1 c1

a1 b2 c2

a2

. . .

cN−3

aN−3 bN−2 cN−2

aN−2 bN−1

m1

m2

...

mN−2

mN−1

=

v1

v2

...

vN−2

vN−1

(B.15)

In matrix notation eq. (B.15) can be written as:

Am = v (B.16)

The entries in A and v are different dependent on the type of spline wanted and
are not further elaborated here. Later the entries in A and v for a clamped spline
are introduced.

Eq. (B.15) is solved for m and the results for m1 and mN−1 are used to compute
the values of m0 and mN which have been eliminated from the equation system.

The coefficients, sk,i, in eq. (B.1) are hereafter determined by:

sk,0 = yk

sk,1 = dk − hk(2mk +mk+1)

6

sk,2 =
mk

2

sk,3 =
mk+1 −mk

6hk

(B.17)

The coefficients determined by eq. (B.17) are inserted in eq. (B.1) and the final
spline is defined over the entire interval x0 ≤ x ≤ xN .

B.1 Clamped Cubic Spline

In this appendix the procedure for fitting a spline with end conditions for the
slope of the spline is presented and afterwards examples of clamped splines are
shown.

- 14 -

B.1 Clamped Cubic Spline

For the clamped cubic spline the elimination of m0 and mN in the equation
system is done by considering eqs. (B.12) and (B.13) and solving these for mk

which yields the following two equations:

mk =
3

hk

(dk − S′

k(xk)) −
mk+1

2
(B.18)

mk =
3

hk−1
(S′

k(xk) − dk−1) −
mk−1

2
(B.19)

Inserting k = 0 in eq. (B.18) and k = N in (B.19) yields:

m0 =
3

h0
(d0 − S′

0(x0)) −
m1

2
(B.20)

mN =
3

hN−1
(S′

N (xN) − dN−1) −
mN−1

2
(B.21)

Eqs. (B.20) and (B.21) are used when the equation system for k = 1, 2, . . . , N−1
have been solved. In eqs. (B.20) and (B.21) S′

0(x0) and S′

N (xN) are the pre-
scribed end conditions of the spline.

As stated earlier the equation system is dependent on the type of spline. For
the clamped spline the linear system is made up of the following equations:

(

3

2
h0 + 2h1

)

m1 + h1m2 = u1 − 3(d0 − S′(x0)) for k = 1

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2

hN−2mN−2 + 2

(

2hN−2 +
3

2
hN−1

)

mN−1 = uN−1 − 3(S′(xN) − dN−1)

for k = N − 1

(B.22)

- 15 -

B Spline Theory

By comparing eqs. (B.15) and (B.22) the equation system for clamped splines
can be written as:

3

2
h0 + 2h1 h1

h1 2(h1 + h2) h2

. . .

hN−3 2(hN−3 + hN−2) hN−2

hN−2 2hN−2 +
3

2
hN−1

m1

m2

...
mN−2

mN−1

=

u1 − 3(d0 − S′(x0))
u2

...
uN−2

uN−1 − 3(S′(xN) − dN−1)

(B.23)

B.1.1 Examples

The first example illustrates the procedure for two different data sets listed below
and shown in fig. B.2. Also A and v are shown where the entries are determined
as indicated in eq. (B.23) where hk = xk+1 − xk, dk =

yk+1−yk

hk
and uk =

6(dk − dk−1) .

X1 = [0; 1; 2; 3]

Y1 = [0; 0.5; 2; 1.5]

S′(0) = 0.2

S′(3) = −1

A =

[

3.5 1.0

1.0 3.5

]

v =

[

5.1

−10.5

]

(B.24)

- 16 -

B.1 Clamped Cubic Spline

X2 = [1; 2; 3; 4]

Y2 = [2.5; 0; 3; 0.5]

S′(0) = 2

S′(4) = 1

A =

[

3.5 1.0

1.0 3.5

]

v =

[

46.5

−43.5

]

(B.25)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Data Set 1
Data Set 2

x

y

Figure B.2: Illustration of data points

The equation system given by eq. (B.16) is solved and afterwards m0 and mN are
determined by eq. (B.20) and (B.21). Finally the coefficients, sk,i are determined
by eq. (B.17). The results are listed in tab. B.1 for the data in eq. (B.24) and
tab. B.2 for the data in eq. (B.25).

- 17 -

B Spline Theory

Table B.1: Coefficients for cubic spline for data set 1.

sk,0 sk,1 sk,2 sk,3

k = 0 0 0, 2 −0, 18 0, 48
k = 1 0, 5 1, 28 1, 26 −1, 04
k = 2 2 0, 68 −1, 86 0, 68

m0 m1 m2 m3

−0.36 2.52 −3.72 0.36

Table B.2: Coefficients for cubic spline for data set 2.

sk,0 sk,1 sk,2 sk,3

k = 0 2, 5 2 −11, 33 −6, 83
k = 1 0 −0, 17 9, 17 −6
k = 2 3 0, 17 −8, 83 6, 17

m0 m1 m2 m3

−22.67 18.33 −17.67 19.33

Fig. B.3 shows the cubic splines determined above. In addition the results from
a call of the MatLab function spline with the same data are shown and it is clear
that they coincide with the manually determined splines.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Data Points
Manual Spline 1
Manual Spline 2
MatLab Spline

x

y

Figure B.3: Cubic splines for data set 1 and 2

To illustrate the effect of the end conditions two cubic splines fitting the data set

- 18 -

B.2 Limitations

in eq. (B.24) but with different end conditions have been made. The gradients
used for end conditions are the same as in eq. (B.24) and (B.25) but both on the
first data set as mentioned. A plot of the splines are shown in fig B.4 along with
the results from a call of the spline function in MatLab.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Data Points
Manual Spline 1
Manual Spline 2
MatLab Spline

x

y

Figure B.4: Illustration of effect of end conditions

As it is seen from fig. B.4 the splines are different even though they go through
the same four points.

B.2 Limitations

The theory presented in the previous appendix has the limitation, that the con-
sidered data points have to be lined up in increasing order of x. When the data
points have x-values that not necessarily increase from point to point, the prob-
lem arises, that one x value may very well have several y values. This means
that for an evaluation of x the function cannot give an unambiguous output in
the form of a single y. The figure below shows an example of this, where two
or more y values exist for a given x. Despite splines being used for several pur-
poses in the process of generating the hyperbolic mesh, the only time at which
the above mentioned problem can occur is when defining the body surface using
splines. In all other cases the spline is used to generate values between 0 and 1
defining some type of distribution and the value used for this is always increasing.

When splining the body surface, the spline function is called twice. To do this,
the curve length between the adjacent points in the spline is needed. The curve
length calculated is the cumulative linear distance between the points as indi-

- 19 -

B Spline Theory

xi

yi,2

yi,1

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

s1

s2

s3

x

y

Figure B.5: x and y not one-to-one

cated by sk in fig. B.5.

Two splines are then created, one using the input s, x and one using the in-
put s, y, where s is calculated as defined above. This creates two splines, shown
in figs. B.6a and B.6b for s, x and s, y respectively. For a given curve length
s, the corresponding x- and y-values can now be found, which if combined will
produce the spline shown in fig. B.5.

x

s
si

xi

a) s, x spline

y

s
si

yi

b) s, y spline

Figure B.6: Illustration of method for determining points for splines with non-
increasing x-values

The node distribution on the geometry is determined by a stretch function which
indicate the normalized curve length from the starting point to the respective
point. This curve length is the one used to determine the x- and y-values of the
node.

- 20 -

B.2 Limitations

note: Special care has to be taken when utilizing the clamped spine, that is
when constraining the end slopes of the spline. In the following an example is
given with a linear spline going from x, y=(0,0) to x, y=(2,1). 11 equidistant
points are used as curve lengths to evaluate the spline, going from 0 to

√
5 , the

length of the line.

Let a1 and a2 define the end slope at one end and let b1 and b2 define the
end slope at the other end, so that a1 is the change of x for ∆s = 1, a2 is the
change of y for ∆s = 1 . Analogous for the other end, b1 and b2 are defined.

Firstly, we define the end slopes a1=b1=2 and a2=b2=1, corresponding to the
slope of the line y = 0.5x. Evaluating this spline for the 11 equidistant points
yields a straight line going from x, y=(0,0) to x, y=(2,1) as shown in fig B.7a.
However, it can be seen that the points are no longer equidistant. The reason
for this can be found by examining the s, x and s, y plots, shown in figs. B.7c
and B.7e. Here it is obvious that the relation between the curve length s and the
corresponding values for x and y is no longer linear but combining the x values
from fig. B.7c and the y values from fig. B.7e does produce a straight line. This
is due to the fact that a1 and a2 or b1 and b2 are not to be considered as vectors
defining the "direction" of the slope on the x, y spline, but rather as the end
slopes on the s, x and s, y splines respectively.

If we instead of using a1=b1=2 and a2=b2=1 try to normalize these values, to the
actual values corresponding to ∆s = 1 we get a1=b1=2/

√
5 and a2=b2=1/

√
5 .

This too, produces an even line as can be seen in fig. B.7b, but unlike with fig.
B.7a the points are equidistant as desired. Inspecting figs. B.7d and B.7f it can
be seen that the relations between s and x or y are all linear as they should be.

- 21 -

B Spline Theory

0 0.5 1 1.5 2
0

0.5

1

x

y

a) x, y - regular end slopes

0 0.5 1 1.5 2
0

0.5

1

x

y

b) x, y - normalized end slopes

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

x

s

c) s, x - regular end slopes

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

x

s

d) s, x - normalized end slopes

0 0.5 1 1.5 2 2.5
0

0.5

1

y

s

e) s, y - regular end slopes

0 0.5 1 1.5 2 2.5
0

0.5

1

y

s

f) s, y - normalized end slopes

Figure B.7: Examples of splines with "regular" and "normalized" end slopes

In conclusion to this, the end slopes should be "normalized", in order not to
interfere with the node distribution given by the input.

- 22 -

C
Computational Fluid Dynamics, Theory

In this appendix, the basic theory and ideas behind Computational Fluid Dy-
namics are explained. Unless otherwise noted, this appendix is based on [Wilcox
2002]. First the governing equations for fluid flow will be described, then a select
few of the two-equation turbulence models will be described, and finally the finite
volume method will be described.

C.1 Governing Equations for Fluid Flow

To be able to model a turbulent flow, one must first realize that turbulence can be
described as random variations in the various properties which describe the flow.
The constant fluctuations of the flow properties make them difficult to describe,
to which end Reynolds time averaging is used. In what follows, index notation
has been used where roman letters attain the value 1, 2, or 3.

C.1.1 Reynolds Time Averaging

The concept of Reynolds time averaging is, that for an instantaneous flow variable
such as ui(x, t), it’s time-average, Ui(x), is defined as:

Ui(x) = lim
T→∞

1

T

∫ t+T

t

ui(x, t) dt (C.1)

- 23 -

C Computational Fluid Dynamics, Theory

Using Reynolds time averaging to describe the instantaneous property of e.g. the
flow velocity, ui(x, t), this is given as the sum of a mean and a fluctuating part:

ui(x, t) = Ui(x) + u′i(x, t) (C.2)

where

Ui(x) is the mean
u′i(x, t) is the fluctuating part

By use of eqs. (C.1) and (C.2), it is assumed that Ui is not time dependent. For
many flows however, the mean value varies over time. To incorporate this, eqs.
(C.1) and (C.2) are replaced with eqs. (C.3) and (C.4):

ui(x, t) = Ui(x, t) + u′i(x, t) (C.3)

Ui(x, t) =
1

T

∫ t+T

t

ui(x, t) dt, T1 ≪ T ≪ T2 (C.4)

where

T1 is the maximum period of the fluctuations
T2 is the time scale characteristic of the slow variations in the flow,

that are not regarded as turbulence

It is here assumed that T1 and T2 differ by several orders of magnitude or else
the equations cannot be used.

The Reynolds-averaged products of two and three properties are given in eqs.
(C.5) and (C.6):

φψ = (Φ + φ′)(Ψ + ψ′) = ΦΨ + Φψ′ + Ψφ′ + φ′ψ′ = ΦΨ + φ′ψ′ (C.5)

φψξ = ΦΨΞ + φ′ψ′Ξ + ψ′ξ′Φ + φ′ξ′Φ + φ′ψ′ξ′ (C.6)

where it has been used that the mean of a fluctuation quantity is 0, φ′ = ψ′ =
ξ′ = 0. Hence, all terms with only one fluctuating quantity vanish, but terms
with two or more fluctuating quantities do not.

- 24 -

C.1 Governing Equations for Fluid Flow

C.1.2 Reynolds Averaged Equations

Assuming incompressible, constant-property flow, the Navier-Stokes equations
for conservation of mass and momentum are given in eqs. (C.7) and (C.8):

∂ui

∂xi
= 0 (C.7)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+
∂tji

∂xj
(C.8)

where

ui is the velocities
xi is the position
t is the time
p is the pressure
ρ is the density
tij is the viscous stress tensor defined in eq. (C.9)

The viscous stress tensor is given by:

tij = 2µsij (C.9)

where

µ is the molecular viscosity
sij is the strain-rate tensor defined in eq. (C.10)

The strain-rate tensor is given by:

sij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

(C.10)

It should be noted that for simple viscous fluids the strain-rate tensor is sym-
metric, sij = sji, which means that the viscous stress tensor is also symmetric,
tij = tji. To simplify the time averaging process, the 2nd (convective) term in eq.
(C.8) is rewritten:

ρuj
∂ui

∂xj
= ρ

∂

∂xj
(uiuj) − ρui

∂uj

∂xj
= ρ

∂

∂xj
(uiuj) (C.11)

where eq. (C.7) is used to drop the term ρui
∂uj

∂xj
. Combining eqs. (C.8) - (C.11)

gives the Navier-Stokes equation in conservation form:

ρ
∂ui

∂t
+ ρ

∂

∂xj
(uiuj) = − ∂p

∂xi
+

∂

∂xj
(2µsji) (C.12)

- 25 -

C Computational Fluid Dynamics, Theory

Finally, time-averaging of eqs. (C.7) and (C.12) yields the Reynolds averaged
equations of motion in conservation form :

∂Ui

∂xi

= 0 (C.13)

ρ
∂Ui

∂t
+ ρ

∂

∂xj

(

UjUi + u′ju
′

i

)

= − ∂P

∂xi
+

∂

∂xj
(2µSji) (C.14)

Eq. (C.14) can be rewritten to it’s most common form, yielding the Reynolds-
averaged Navier-Stokes equations (RANS):

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj

= − ∂P

∂xi

+
∂

∂xj

(2µSji − ρu′ju
′

i) (C.15)

where

ρu′ju
′

i are denoted Reynolds stresses

Apart from replacing instantaneous variables with mean values, the only differ-
ence between the instantaneous momentum equations, eq. (C.12), and the RANS
equations, eq. (C.14), is the term ρu′iu

′

j, the Reynolds-stresses. This is the fun-
damental problem of turbulence: In order to compute all mean-flow properties of
the turbulent flow, a method for calculating the six components of u′iu

′

j is needed.

This leads to the subject of turbulence modeling, in which methods are devised to
approximate the six unknown correlation terms, u′iu

′

j , in terms of flow properties
that are known. Once this is done, a closed set of equations exists.

C.2 Turbulence Models

A wide range of turbulence models exists, ranging from very simple to very com-
plex models. Depending on the problem at hand, some models may work better
than others, and there is no model universally better than the others.

In this appendix, three of the most common turbulence models will be described;
the k−ω model, the k−ǫ model, and the k−ω SST model. These models belong
to a class of models known as two-equation models.

C.2.1 The Turbulence Energy Equation

The kinetic energy (per unit mass) of the turbulent fluctuations, k, is given as:

k =
1

2
u′iu

′

i =
1

2

(

u′2 + v′2 + w′2
)

(C.16)

- 26 -

C.2 Turbulence Models

It can be seen that the kinetic energy of the turbulent fluctuations has the dimen-

sion length2

time2 . The kinematic eddy viscosity has the dimension length2

time
and Thus,

dimensional arguments dictate that the kinematic eddy viscosity in terms of the
turbulence length scale, l, and k is given as:

νT = c · k1/2l (C.17)

where

c is a constant

To determine k, the trace of the Reynolds stress tensor, τij, is taken:

τii = −u′iu′i = −2k (C.18)

As can be seen, the trace of the Reynolds stress tensor is proportional to the
kinetic energy of the turbulent fluctuations. The Reynolds Stress equation is
given by eq. (C.19):

∂τij

∂t
+Uk

∂τij

∂xk

= −τik
∂Uj

∂xk

− τjk
∂Ui

∂xk

+ ǫij −Πij +
∂

∂xk

[

ν
∂τij

∂xk

+ Cijk

]

(C.19)

where

Πij =
p′

ρ

(

∂u′i
∂xj

+
∂u′j

∂xi

)

(C.20)

ǫij = 2ν
∂u′i
∂xk

∂u′j

∂xk

(C.21)

ρCijk = ρu′iu
′

ju
′

k + p′u′iδjk + p′u′jδik (C.22)

By taking the trace of the Reynolds stress equation, eq. (C.19), and noting that
the trace of the tensor Πij vanishes for incompressible flow, this leads to the
transport equation for the turbulence kinetic energy, given in eq. (C.23).

∂k

∂t
︸︷︷︸

unsteady

+ Uj
∂k

∂xj
︸ ︷︷ ︸

convection

= τij
∂Ui

∂xj
︸ ︷︷ ︸

production

− ǫ
︸︷︷︸

dissipation

+
∂

∂xj

(

ν
∂k

∂xj

)

︸ ︷︷ ︸

molecular diffusion

− ∂

∂xj

(

1

2
u′iu

′

iu
′

k

)

︸ ︷︷ ︸

turbulent transport

− ∂

∂xj

(

1

ρ
p′u′j

)

︸ ︷︷ ︸

pressure diffusion

(C.23)

- 27 -

C Computational Fluid Dynamics, Theory

where the dissipation per unit mass, ǫ, is defined as:

ǫ = ν
∂u′i
∂xk

∂u′i
∂xk

(C.24)

The terms of eq. (C.23) represent physical processes occurring as the turbulence
moves about in a given flow:

• The sum of the unsteady term and the convection is the substantial deriva-
tive of k which gives the rate of change of k following a fluid particle.

• The production represents the rate at which kinetic energy is transferred
from the mean flow to the turbulence.

• The dissipation is the rate at which turbulence kinetic energy is converted
into thermal energy.

• The molecular diffusion represents the diffusion of turbulence energy caused
by the natural molecular transport process of the fluid.

• The turbulent transport is regarded as the rate at which turbulence energy
is transported through the fluid by means of turbulent fluctuations.

• The pressure diffusion is regarded as another form of transport resulting
from correlation of pressure and velocity fluctuations.

The dissipation per unit mass, ǫ, differs from the classical definition, as given in
the text above. The true dissipation, ǫtrue, is proportional to the square of the
fluctuating strain-rate tensor, s′ik, and given as:

ǫtrue = 2νs′iks
′

ik s′ik =
1

2

(

∂u′i
∂xk

+
∂u′k
∂xi

)

(C.25)

Thus, ǫ is given by:

ǫ = ǫtrue −
∂

∂xk

(

νu′i
∂u′k
∂xi

)

(C.26)

In practice there is little difference between ǫ and ǫtrue, and the difference should
only be expected significant in areas of strong gradients, e.g. in shock waves or
the viscous wall region. In the latter case, cf. [Wilcox 2002, p. 105], it has been
shown by Bradshaw and Perot (1993) that the maximum difference is only 2%,
and can thus be ignored.

The unsteady, molecular diffusion, and convection terms are exact, while the
production, dissipation, turbulence transport, and pressure diffusion terms in-
volve unknown correlations. To close this equation , the Reynolds-stress tensor,
dissipation, turbulence transport, and pressure diffusion must be specified.

- 28 -

C.2 Turbulence Models

The Reynolds-Stress Tensor

The Boussinesq approximation (which states that the Reynolds-stress tensor, τij
is proportional to the mean-strain-rate tensor, Sij, and that the coefficient of
proportionality between the two is the eddy viscosity, νT) is assumed valid, and
the specific Reynolds-stress tensor is thus given by:

τij = 2νTSij −
2

3
kδij (C.27)

where

Sij is the mean strain-rate tensor

Note that the trace of τij is −2k, as prescribed in eq. (C.18), because Sii = 0 for
incompressible flows.

Turbulent Transport and Pressure Diffusion

It is assumed that the sum of the pressure diffusion and the turbulence transport
behave as a gradient-transport process and, cf. [Wilcox 2002, p. 106], Direct
Numerical Simulation (DNS) results indicate that the term is quite small for
simple flows. Thus it is assumed that the terms can be written as:

1

2
u′iu

′

iu
′

j +
1

ρ
p′u′k = −νT

σk

∂k

∂xj

(C.28)

where

σk is a closure coefficient

Dissipation

Two unknown parameters still exist, the turbulence length scale, l, and the dissi-
pation ǫ. If both properties are assumed strictly to be functions of the turbulence,
independent of natural fluid properties, purely dimensional arguments show that:

ǫ ∼ k3/2

l
(C.29)

Hence, a length scale is needed to close the system of equations. This task is
up to the individual turbulence models. Finally, by combining eqs. (C.23) and

- 29 -

C Computational Fluid Dynamics, Theory

(C.26), the model of the turbulence kinetic energy equation used by virtually all
turbulence energy equation models is given:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ǫ+

∂

∂xj

[(

ν +
νT

σk

)

∂k

∂xj

]

(C.30)

where τij is given by eq. (C.27).

C.2.2 The k − ω Model

The reasoning for an ω equation can, on the grounds of dimensional analysis, be
given as follows:

• Since k already appears in the constitutive relation, eq. (C.27), it is plau-
sible that νT is proportional to k.

• The dimensions of νT are length2

time
, and the dimensions of k are length2

time2 .

• This means that νT

k
has the dimensions time.

• Turbulence dissipation, ǫ, has the dimensions length2

time3 .

• This means that ǫ
k

has the dimensions 1
time

.

• Eqs. (C.27) and (C.30) can be closed by introducing a variable (ω) with
dimensions time or 1

time
.

Through physical reasoning and dimensional analysis, the following equation for
ω is proposed, cf. [Wilcox 2002, p. 120]:

∂ω

∂t
+ Uj

∂ω

∂xj

= −βω2 +
∂

∂xj

[

σνT
∂ω

∂xj

]

(C.31)

where

β is a closure coefficient
σ is a closure coefficient

There have been different interpretations of ω in the years, but ω can be inter-
preted simply as the ratio of ǫ to k. The remaining equations, closure coefficients,
and auxiliary relations for the k − ω model are given below.

Kinematic eddy viscosity:

νT =
k

ω
(C.32)

- 30 -

C.2 Turbulence Models

Turbulence kinetic energy:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− β∗kω +

∂

∂xj

[

(ν + σ∗νT)
∂k

∂xj

]

(C.33)

Specific dissipation rate:

∂ω

∂t
+ Uj

∂ω

∂xj

= α
ω

k
τij
∂Ui

∂xj

− βω2 +
∂

∂xj

[

(ν + σνT)
∂ω

∂xj

]

(C.34)

Closure coefficients and auxiliary relations:

α =
13

25
, β = βofβ, β∗ = β∗ofβ∗ , σ =

1

2
, σ∗ =

1

2

βo =
9

125
, fβ =

1 + 70χω

1 + 80χω

, χω ≡
∣

∣

∣

∣

ΩijΩjkSki

(β∗oω)3

∣

∣

∣

∣

fβ∗ =

1, for χk ≤ 0
1+680χ2

k

1+400χ2

k

, for χk > 0
, χk ≡ 1

ω3

∂k

∂xj

∂ω

∂xj

β∗o =
9

100
, ǫ = β∗ωk, l =

k1/2

ω

(C.35)

where the mean-rotation and mean-strain-rate tensors, Ωij and Sij respectively,
are defined by:

Ωij =
1

2

(

∂Ui

∂xj

− ∂Uj

∂xi

)

, Sij =
1

2

(

∂Ui

∂xj

+
∂Uj

∂xi

)

(C.36)

C.2.3 The k − ǫ Model

To formulate the k − ǫ model, the approach is to derive an exact equation for ǫ
and finding suitable closure approximations for exact equations that govern it’s
behavior. The definition of ǫ is given in eq. (C.24), and the exact equation for ǫ
is derived by taking the following moment of the Navier-Stokes equation:

2ν
∂u′i
∂xj

∂

xj
[N (ui)] = 0 (C.37)

where N is the Navier-Stokes operator defined by:

N (ui) = ρ
∂ui

∂t
+ ρuk

∂ui

∂xk

+
∂p

∂xi
− µ

∂2ui

∂xk∂xk

(C.38)

- 31 -

C Computational Fluid Dynamics, Theory

This leads to the following equation for ǫ, cf. [Wilcox 2002, p. 123]:

∂ǫ

∂t
+ Uj

∂ǫ

∂xj
= − 2ν

[

u′i,ku
′

j,k + u′k,iu
′

k,j

] ∂Ui

∂xj
− 2νu′ku

′

i,j

∂2Ui

∂xk∂xj
︸ ︷︷ ︸

production of dissipation

− 2νu′i,ku
′

i,mu
′

k,m − 2ν2u′i,kmu
′

i,km
︸ ︷︷ ︸

dissipation of dissipation

+
∂

∂xj

[

ν
∂ǫ

∂xj
− νu′ju

′

i,mu
′

i,m − 2
ν

ρ
p′,mu

′

j,m

]

︸ ︷︷ ︸

turbulent transport of dissipation

(C.39)

which is far more complicated than the turbulence kinetic energy equation, eq.
(C.30), and involves many unknown double and triple correlations of fluctuating
velocity, pressure and velocity gradients. The terms on the three lines on the
right-hand side are generally regarded as production of dissipation, dissipation of
dissipation, and turbulent transport of dissipation respectively, cf. [Wilcox 2002,
p. 123].

The k−ǫ model (also referred to as the standard k−ǫ model) is then given below.

Kinematic eddy viscosity:

νT =
Cµk

2

ǫ
(C.40)

Turbulence kinetic energy:

∂k

∂t
+ Uj

∂k

∂xj

= τij
∂Ui

∂xj

− ǫ+
∂

∂xj

[(

ν +
νT

σk

)

∂k

∂xj

]

(C.41)

Dissipation rate:

∂ǫ

∂t
+ Uj

∂ǫ

∂xj

= Cǫ1
ǫ

k
τij
∂Ui

∂xj

− Cǫ2
ǫ2

k
+

∂

∂xj

[(

ν +
νT

σǫ

)

∂ǫ

∂xj

]

(C.42)

Closure coefficients and auxiliary relations:

Cǫ1 = 1.44, Cǫ2 = 1.92, Cµ = 0.09, σk = 1.0, σǫ = 1.3

ω =
ǫ

Cµk
, l =

Cµk
3/2

ǫ

(C.43)

- 32 -

C.2 Turbulence Models

C.2.4 The SST Model

The appendix about the Shear-Stress Transport (SST) model is based on [Menter
1993]. The SST model is a modification of the new Baseline model (BSL), and
before explaining the SST model, the BSL model will be described.

The BSL Model

The concept of the BSL model is to counteract some of the shortcomings of the
k−ǫ and the k−ω models, by introducing a blending function, F1, which ensures
the use of the k − ω model in the inner half of the boundary layer (δ

2) and then
gradually changes to the k − ǫ model in the outer wake region. The reason for
this blending is further described in the main report.

In order to utilize the blending function, both models are written in a simi-
lar k − ω formulation below. In the formulations the substantial derivative,
D
Dt

= ∂
∂t

+ ui
∂

∂xi
, is used.

The original k − ω model:

Dρk

Dt
= τij

∂ui

∂xj

− β∗ρωk +
∂

∂xj

[

(µ+ σk1µT)
∂k

∂xj

]

(C.44)

Dρω

Dt
=
γ1

νT
τij
∂ui

∂xj
− β1ρω

2 +
∂

∂xj

[

(µ+ σω1µT)
∂ω

∂xj

]

(C.45)

The transformed k − ǫ model:

Dρk

Dt
= τij

∂ui

∂xj

− β∗ρωk +
∂

∂xj

[

(µ+ σk2µT)
∂k

∂xj

]

(C.46)

Dρω

Dt
=
γ2

νT
τij
∂ui

∂xj
−β2ρω

2+
∂

∂xj

[

(µ+ σω2µT)
∂ω

∂xj

]

+2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
(C.47)

Eqs. (C.44) and (C.45) are then multiplied by F1 while eqs. (C.46) and (C.47)
are multiplied by (1 − F1):

Dρk

Dt
= τij

∂ui

∂xj
− β∗ρωk +

∂

∂xj

[

(µ+ σkµT)
∂k

∂xj

]

(C.48)

Dρω

Dt
=

γ

νT
τij
∂ui

∂xj
− βρω2 +

∂

∂xj

[

(µ+ σωµT)
∂ω

∂xj

]

+2ρ(1 − F1)σω2
1

ω

∂k

∂xj

∂ω

∂xj

(C.49)

- 33 -

C Computational Fluid Dynamics, Theory

Here φ1 represents any constant in the original k − ω model and φ2 represents
any constant in the transformed k − ǫ model so that the constants used in eqs.
(C.48) and (C.49) are given by φ = F1φ1 + (1 − F1)φ2. The constants used, are
given below.

Set 1 (φ1) (Wilcox’s k − ω model):

σk1 = 0.5, σω1 = 0.5, β1 = 0.0750

β∗ = 0.09, κ = 0.41, γ1 =
β1

β∗
− σω1κ

2

√
β∗

(C.50)

Set 2 (φ2) (Standard k − ǫ):

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828

β∗ = 0.09, κ = 0.41, γ1 =
β2

β∗
− σω2κ

2

√
β∗

(C.51)

Set 1 corresponds to the original k − ω model and will be used in the near wall
region only. Set 2 corresponds to the transformation of the standard k− ǫ model,
with C1ǫ = 1.44 and C2ǫ = 1.92, cf. eq. (C.43), and will be used mainly in the
free shear layers.

The model has to be supplemented by a definition of the kinematic eddy vis-
cosity:

νT =
µT

ρ
=
k

ω
(C.52)

The turbulent stress tensor is then given as:

τij = µT

(

∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)

− 2

3
ρkδij (C.53)

Finally, in order to complete the model, F1 needs to be defined. The function
will be defined in terms of the variable arg1

arg1 = min

(

max

(√
k

0.09ωy
;
500

y2ω

)

;
4ρσω2k

CDkωy2

)

(C.54)

as follows:

F1 = tanh(arg4
1) (C.55)

- 34 -

C.2 Turbulence Models

where CDkω is the cross-diffusion term of eq. (C.47):

CDkω = max

(

2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
; 10−20

)

(C.56)

The first argument in eq. (C.54) is the turbulent length scale LT =
√

k
0.09ω

= k3/2

ǫ

divided by the wall distance, y. The ratio LT

y
is equal to 2.5 in the logarithmic

region of the boundary layer and goes to zero towards the boundary layer edge.
The second argument in eq. (C.54) ensures that F1 does not go to zero in the
viscous sublayer. The third argument in eq. (C.54) is an additional safeguard
against the "degenerate" solution of the original k − ω model with small free
stream values.

The SST Model

One of the major differences between eddy-viscosity and full Reynolds-Stress
models is that the latter accounts for the important effects of the transport of
the principal turbulent shear-stress τ = −ρu′v′ by inclusion of the term:

Dτ

Dt
=
∂τ

∂t
+ µk

∂τ

∂xk

(C.57)

In two equation models, the turbulent shear-stress, τ , is computed from:

τ = µT Ω (C.58)

with Ω = ∂u
∂y

, whereas based on Bradshaws assumption, it is proportional to the
turbulence kinetic energy, k:

τ = ρa1k (C.59)

For conventional two-equation models this relation can be written as:

τ = ρ

√

production of k

dissipation of k
a1k (C.60)

In adverse pressure gradient flows the ratio between production and dissipation
of turbulence kinetic energy can be significantly larger than one, which leads to
an over prediction of τ , using eq. (C.60). In order to satisfy eq. (C.59) in a
two-equation model, the kinematic eddy-viscosity would have to be redefined as:

νT =
a1k

Ω
(C.61)

- 35 -

C Computational Fluid Dynamics, Theory

The reason for this modification is as follows: In conventional two-equation mo-
dels, the turbulent shear stress, τ , responds instantly to changes in the shear-
strain rate, Ω, whereas eq. (C.61) ensures that τ does not change any faster than
ρa1k. Eq. (C.61) is however not desirable for the complete flow field, as it would
lead to infinitely high eddy viscosities at points where Ω goes towards zero. In
most cases with adverse pressure gradient flows, the production is larger than
dissipation for the largest part of the boundary layer (Ω > a1ω). The following
equation ensures the use of eq. (C.61) for the most of the adverse pressure gra-
dient regions, and eq. (C.52) is used for rest of the boundary layer.

In order to recover the original formulation of the eddy viscosity for free shear-
layers (where Bradshaws assumption, eq. (C.59), may not hold), the modification
to the SST model must be limited to wall bounded flows. This is done by intro-
ducing a blending function F2:

νT =
a1k

max (a1ω; ΩF2)
] (C.62)

where F2 is defined as:

arg2 = max

(

2

√
k

0.09a1ω
;
500ν

y2ω

)

F2 = tanh(arg2
2)

(C.63)

Since the modification to the eddy viscosity has the largest impact in the wake
region of the boundary layer, it is imperative that F2 extends further out into
the boundary layer than F1. Similarly, F1 must reach zero within the boundary
layer in order to prevent the freestream dependence inherent to the k−ω model.

The modifications of the eddy viscosity in the SST model, given in eqs. (C.62)
and (C.63), are used in conjunction with the BSL model, where the constants of
set 1, eq. (C.50), are slightly adjusted in order to recover the correct behavior
for a flat plate boundary layer:

Set 1 (SST - inner):

σk1 = 0.85, σω1 = 0.5, β1 = 0.0750, a1 = 0.31

β∗ = 0.09, κ = 0.41, γ1 =
β1

β∗
− σω1κ

2

√
β∗

(C.64)

Set 2 remains the same as in the BSL model. Furthermore, Ω is taken to be the
absolute value of the vorticity for general flows.

- 36 -

C.3 Finite Volume Method

C.3 Finite Volume Method

The sappendix about the finite volume method is based on [Versteeg & Malalasekera
1995, pp. 85-102]. The finite volume method for 3D problems can be derived
by considering simple diffusion in steady state. The governing equation for the
property φ becomes:

∂

∂x

(

Γ
∂φ

∂x

)

+
∂

∂y

(

Γ
∂φ

∂y

)

+
∂

∂z

(

Γ
∂φ

∂z

)

+ S = 0 (C.65)

where

S is a source term
Γ is a diffusion coefficient

Eq. (C.65) is derived from the general transport equation, where the transient
and convective terms are omitted. The general transport equation is given as:

∂ (ρφ)

∂t
+ div (ρφu) = div (Γgradφ) + Sφ (C.66)

A three-dimensional grid is used to subdivide the domain into control volumes.
A typical control volume (CV) is shown in fig. C.1.

P

x

y

z

T

B

N

S
E

W
t

b

n

s
e

w

Figure C.1: Definition sketch of a typical control volume in three dimensions with
neighboring nodes.

A control volume containing the node P has six neighboring nodes; north, south,
east, west, top, and bottom (N , S, E, W , T , and B). The cell faces are named
after the adjoining nodes as n, s, e, w, t, and b. Integration of eq. (C.65) over

- 37 -

C Computational Fluid Dynamics, Theory

the control volume shown in fig. C.1 yields:
[

ΓeAe

(

∂φ

∂x

)

e

− ΓwAw

(

∂φ

∂x

)

w

]

+

[

ΓnAn

(

∂φ

∂y

)

n

− ΓsAs

(

∂φ

∂y

)

s

]

+

[

ΓtAt

(

∂φ

∂z

)

t

− ΓbAb

(

∂φ

∂z

)

b

]

+S∆V = 0

(C.67)

Here the Divergence Theorem (Gauss’s Theorem), eq. (C.68), has been used to
change the volume integral into an area integral.

∫

V

div(F)dV =

∫

A

n ·FdA (C.68)

Furthermore it is assumed that all boundaries have normals in the global coordi-
nate systems directions, so that the flux ∂φ

∂xi
of the property φ over a boundary

can be described by one of three components: ∂φ
∂x

, ∂φ
∂y

, or ∂φ
∂z

. In the case that
the boundary normals are not aligned with the directions of the global coordi-
nate system, additional terms will appear in eq. (C.67) taking into account the
decomposition of the flow over the boundaries into the three general directions.

Using a central differencing scheme, and approximating the source term by the
linear form S∆V = Su + SPφP , the discretised form of eq. (C.67) yields:

[

Γe
(φE − φP)Ae

δxPE

− Γw
(φP − φW)Aw

δxWP

]

+

[

Γn
(φN − φP)An

δyPN
− Γs

(φP − φS)As

δySP

]

+

[

Γt
(φT − φP)At

δzPT
− Γb

(φP − φB)Ab

δzBP

]

+ (Su + SPφP) = 0

(C.69)

Eq. (C.69) can be rearranged to give the discretised equation for interior nodes:

aPφP = aEφE + aWφW + aNφN + aSφS + aTφT + aBφB + Su (C.70)

where the coefficients are given as:

aE =
ΓeAe

δxPE

, aW =
ΓwAw

δxWP

, aN =
ΓnAn

δyPN

aS =
ΓsAs

δySP
, aT =

ΓtAt

δzPT
, aB =

ΓbAb

δzTP

aP = aE + aW + aN + aS + aT + aB − SP

(C.71)

- 38 -

C.3 Finite Volume Method

Boundary conditions can be incorporated by cutting links with the appropriate
faces (setting the coefficient to the appropriate face equal to zero), and intro-
ducing the boundary side flux, either exact or as a linear approximation through
additional source terms.

The theory for the finite volume method for diffusion problems can be extended
to cover more complex problems, following the approach given in this appendix.
If more complex problems are being solved it will result in additional terms in
the equations, but the principal setup will remain the same.

- 39 -

C Computational Fluid Dynamics, Theory

- 40 -

D
Structural Dynamics, Theory

In dynamic analysis the computation time is often considerably longer than for
a pure static analysis of the same problem. Therefore it can be helpful to reduce
the number of DOF and hereby the matrices being manipulated. Reduction of
the system can be done in several ways. In this project a modal representation
is used for the reduced system. In this appendix the modal method is described.
Unless otherwise noted, the theory in this appendix is based on [Nielsen 2004].

Modal methods use an alternative set of DOF and solving for these DOF as
a function of time. Last the reduced DOF is transformed back into the original
DOF.

D.1 General Dynamic Equations

The equation of motion for a MDOF system is generally given by:

Mẍ + Cẋ + Kx = f , t > t0

x(t0) = x0 , ẋ(t0) = ẋ0
(D.1)

Eq. (D.1) states an initial value problem for the motion of the MDOF system.
The undamped eigenmodes for the system are determined by solving the following
generalized eigenvalue problem:

(

K − ω2M
)

Φ = 0 (D.2)

- 41 -

D Structural Dynamics, Theory

where

ω is the undamped circular eigenfrequency
Φ is the undamped eigenmode

Non-trivial solutions, Φ 6= 0, to eq. (D.2) is obtained by requiring:

det
(

K − ω2M
)

= 0 (D.3)

Solutions to eq. (D.3) yield n eigenvalues which by insertion in eq. (D.2) gives
n eigenmodes. If the eigenmodes, Φ(i) and Φ(j), are associated with different
eigenvalues, ω2

i and ω2
j , where ω2

i 6= ω2
j , the eigenmodes fulfil the orthogonality

condition:

Φ(i)TMΦ(j) =

{

0 for i 6= j

Mi for i = j
(D.4)

Φ(i)TKΦ(j) =

{

0 for i 6= j

ω2
iMi for i = j

(D.5)

The parameter Mi is denoted the undamped modal mass and is given by:

Mi = Φ(i)T MΦ(i) for i = 1, . . . , n (D.6)

In most cases, the eigenmodes are normalized to the mass matrix which means
that Mi = 1 for i = 1, . . . , n.

D.2 Modal Equations

The orthogonality condition in eq. (D.4) can be written on matrix form in the
following way:

Φ(1)T

...

Φ(n)T

M
[

Φ(1) · · · Φ(n)
]

=

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

PTMP = m

(D.7)

where

P is the modal matrix
m is the modal mass matrix

- 42 -

D.2 Modal Equations

A similar relation as eq. (D.7) holds for the stiffness matrix:

PTKP = k , k =

M1ω
2
1 0 · · · 0

0 M2ω
2
2 · · · 0

...
...

. . .
...

0 0 · · · Mnω
2
n

(D.8)

where

k is the modal stiffness matrix

As the eigenvectors are linearly independent, an arbitrary displacement vector,
x(t), can be expressed as a linear combination of the eigenvectors which can be
written as:

x(t) = q1(t)Φ
(1) + q2(t)Φ

(2) + · · · + qn(t)Φ(n)

= Pq(t)
(D.9)

where

qn(t) is the undamped modal coordinate

Eq. (D.9) express the transition between the cartesian and the modal coordinate
system. Also eq. (D.9) is valid for the velocity and acceleration vectors. Including
these yield:

x(t) = Pq(t) , ẋ(t) = Pq̇(t) , ẍ(t) = Pq̈(t) (D.10)

Inserting eq. (D.9) into (D.1) and multiplying by Φ(i)T yields:

n
∑

j=1

(

Φ(i)TMΦ(j)q̈j + Φ(i)T CΦ(j)q̇j + Φ(i)T KΦ(j)qj

)

= Φ(i)T f(t) (D.11)

Using the orthogonality conditions in eqs. (D.4) and (D.5) and the relation in
(D.6), eq. (D.11) can be written as.

q̈i +
1

Mi

n
∑

j=1

(

Φ(i)TCΦ(j)q̇j

)

+ ω2
i qi =

1

Mi
Φ(i)T f(t)

for i = 1, . . . , n , t > 0

(D.12)

- 43 -

D Structural Dynamics, Theory

Introducing modal damping given by:

Φ(i)TCΦ(j) =

{

0 for i 6= j

2ζiωiMi for i = j
, (D.13)

Eq. (D.12) can be written as:

q̈i + 2ζiωiq̇i + ω2
i qi =

1

Mi
Φ(i)T f(t) , i = 1, . . . , n , t > 0 (D.14)

where

ζi is the modal damping ratio

In many cases the eigenmodes for the structure are normalized to unit modal
mass i.e m = I. In this case Mi = 1 which makes the term 1

Mi
on the right-hand

side of eq. (D.14) disappear.

Eq. (D.14) is solved for the n modal coordinates, qi and eq. (D.9) is used
to make the transition to the cartesian coordinate system.

D.3 Reduction of DOF

If all n eigenmodes are used in the calculations eq. (D.14) is a mathematically
exact representation of eq. (D.1). Modal analysis on the other hand benefits
from the fact that in many practical problems only the lowest few eigenfrequen-
cies need to be included. This means that the number of DOF in modal analysis
is significantly lower. Instead of being n × n, the modal matrix, P, becomes an
n × m matrix, where m ≪ n in many cases. m corresponds to the number of
eigenmodes retained in the calculations.

The reduced set of eigenmodes must include all lower modes up to a chosen
frequency. There is no distinct definition of how this frequency must be cho-
sen. The more abrupt in time and irregular in space the loading becomes, the
more modes are needed. A guideline for the necessary frequency is double the
highest important frequency contained in the loading [Cook, Markus, Plesha &
Witt 2002, p. 397].

- 44 -

D.4 Newmark Algorithm

D.4 Newmark Algorithm

A widely used algorithm for solving the initial value problem in eq. (D.1) is the
Newmark Algorithm. In this appendix the theory behind this algorithm will be
presented. The theory is based on [Nielsen 2005, pp. 32-34].

The Newmark Algorithm is based on the following equations, which is a de-
scription of eq. (D.1) at time step tj+1:

Mẍj+1 + Cẋj+1 + Kxj+1 = fj+1 , j = 1, 2, . . . , n (D.15)

xj+1 = xj + ẋj∆t+

((

1

2
− β

)

ẍj + βẍj+1

)

∆t2 (D.16)

ẋj+1 = ẋj + ((1 − γ)ẍj + γẍj+1) ∆t (D.17)

where

β, γ are constants in the algorithm, more about these later

As mentioned, eq. (D.15) represents the differential equation at time tj+1 which
is required to be fulfilled for the solution consisting of ẍj+1, ẋj+1 and xj+1. By
using integration theory the displacement and velocity at time tj+1 can be written
as:

x(tj+1) = x(tj) +

∫ tj+1

tj

ẋ(τ) dτ

ẋ(tj + 1) = ẋ(tj) +

∫ tj+1

tj

ẍ(τ) dτ

(D.18)

Considering only the first equation in eq. (D.18), integration by parts yields:

x(tj+1) = x(tj) −
[

(tj+1 − τ)ẋ(τ)

]tj+1

tj

+

∫ tj+1

tj

(tj+1 − τ)ẍ(τ) dτ ⇒

xj+1 = xj + ∆tẋj +

∫ tj+1

tj

(tj+1 − τ)ẍ(τ) dτ (D.19)

The representation in eq. (D.19) can be interpreted as a truncated Taylor ex-
pansion where the integral represent a remainder in the expansion. In a similar
manner the second equation of (D.18) can be written as:

ẋj+1 = ẋj +

∫ tj+1

tj

ẍ(τ) dτ (D.20)

- 45 -

D Structural Dynamics, Theory

The integrals in eq. (D.19) and (D.20) can be represented by the following linear
combinations of the acceleration vector at the end of the time interval:

∫ tj+1

tj

(tj+1 − τ)ẍ(τ) dτ ≃
(

1

2
− β

)

∆t2ẍj + β∆t2ẍj+1

∫ tj+1

tj

ẍ(τ) dτ ≃ (1 − γ)∆tẍj + γ∆tẍj+1

(D.21)

It is seen from eq. (D.21) that the result becomes correct if and only if the acce-
leration during the time interval is constant, i.e. ẍ(τ) ≡ ẍj = ẍj+1. This means
that the parameters β and γ express information about the actual variation of
the acceleration during the time interval. Assuming ẍ(τ) constant and equal to
the mean value of the end-point values, this yields (β, γ) =

(

1
4 ,

1
2

)

while assuming
a linear variation in the interval yields (β, γ) =

(

1
6 ,

1
2

)

. β and γ determines the
numerical stability and accuracy of the algorithm.

Insertion of the integral representation in eq. (D.21) into eqs. (D.19) and (D.20)
respectively results in the two equations postulated in eqs. (D.16) and (D.17) in
the beginning of this appendix.

Eqs. (D.15)-(D.17) states the full family of Newmark Algorithms whereto several
special cases exist. The most useful is a single step value implementation. This
method starts with a calculation of predictors of the displacement and velocity
at the next time step. The predictors are determined by:

x̄j+1 = xj + ẋj∆t+

(

1

2
− β

)

∆t2ẍj

˙̄xj+1 = ẋj + (1 − γ)∆tẍj

(D.22)

In words, eq. (D.22) yields a preliminary prediction of the displacement and
velocity at time step tj+1 based on the acceleration, velocity and displacement
at the previous time step, tj, and the assumed variation of the acceleration rep-
resented by β and γ.

The idea of the algorithm is to insert eqs. (D.16) and (D.17), in this special
case eq. (D.22), into (D.15) as it is required to fulfill the solution at time tj+1.
The new acceleration vector is given by the following based on information from
the previous time step (represented by the predictors) and the load vector at the
present time step, fj+1:

(

M + γ∆tC + β∆t2K
)

ẍj+1 = fj+1 − C ˙̄xj+1 −Kx̄j+1 (D.23)

- 46 -

D.4 Newmark Algorithm

Eq. (D.23) is solved for the new acceleration, ẍj+1 and corrected displacement
and velocity vectors are determined by:

xj+1 = x̄j+1 + β∆t2ẍj+1

ẋj+1 = ˙̄xj+1 + γ∆tẍj+1

(D.24)

To start the algorithm the initial acceleration must be determined on the basis
of the supplied initial conditions for the displacement, velocity and load. The
acceleration at t = 0 is determined by the equation of motion:

Mẍ0 = f0 − Cẋ0 − Kx0 (D.25)

The single step single value implementation method of the Newmark family can
summarized as follows:

1. Define the initial conditions for the displacement x0, velocity, ẋ0, and load,
f0 at time t = 0. Calculate the initial acceleration vector, ẍ0 by eq. (D.25)

2. Calculate predictors of the new displacement, x̄j+1, and velocity, ˙̄xj+1, by
eq. (D.22)

3. Calculate the new acceleration vector, ẍj+1, by eq. (D.23)

4. Calculate new corrected displacement, xj+1, and velocity, ẋj+1, vectors by
eq. (D.24).

5. Repeat step 2-4 for j = 0, 2, . . . , n, where n is the number of time steps
wanted.

The Newmark Algorithm described above can just as well be used in the modal
coordinate system. This is because eq. (D.9) express a one-to-one transformation
between the physical and the modal coordinates. In this project the Newmark
Algorithm have been used on the modal coordinates.

- 47 -

D Structural Dynamics, Theory

- 48 -

E
Ansys CFX Memory Management System

When using Fortran routines during transient runs, the need for accessing and
storing data from one time step to the next may arise. To that purpose, CFX
incorporates a Memory Management System (MMS) to use with Fortran. This
appendix will describe some of the most useful routines and methods when using
MMS. For further information about the MMS and specific routines, see ANSYS
CFX-Solver Modelling Guide pp. 478-495.

The basic concept of the MMS is, that all data is stored in 5 different stacks,
listed in tab E.1. These stacks are internal in CFX and their contents can be
changed, but they cannot be renamed.

Table E.1: Stacks in MMS

Stack Type

CZ character
DZ double precision
IZ integer
LZ logical
RZ real

Each stack holds all data of the given type, and can only store values of the given
type. The stacks are all one dimensional arrays, and are accessed using stack

- 49 -

E Ansys CFX Memory Management System

pointers. A stack pointer is essentially an integer, giving the position of a given
data area on a stack. The suggested naming convention is, that a stack pointer
to a variable VARNAME is named pVARNAME. The stack pointers are declared of the
type __stack_point__ along with the normal variable definitions.
As an example, if a 3 × 3 array A of the type REAL is stored on the stack RZ

at position pA, then RZ(pA:pA+8) will contain the array A stored one row at
the time as follows: RZ(pA:pA+2)=A(1,1:3), RZ(pA+3:pA+5)=A(2,1:3), and
RZ(pA+6:pA+8)=A(3,1:3).

E.1 Allocating Space on the Stacks

To allocate space on one of the stacks, a call to MAKDAT is used:

CALL MAKDAT(CDANAM, CDTYPE, CERACT , ISIZE , pPOINT , CRESLT)

Here CDANAM is the name of the data area e.g ’NBEAM’, CDTYPE is the type of the
data e.g. ’INTR’, CERACT is the action to be taken if the call produces errors
e.g. ’STOP’, ISIZE is the size of the data area e.g. 9 for a 3× 3 array, pPOINT is
the stack pointer (integer) as explained above e.g. 2178462, and CRESLT is a text
string showing the result of the call e.g. ’GOOD’.

E.2 Writing Data onto Allocated Space on the Stacks

In order to write data to the allocated space on the stacks, the stack pointer is
needed. Below is an example where a 3× 2 matrix A of the type INTR is loaded
onto the stack IZ using the stack pointer pA:

DO I =1 ,3
DO J =1 ,2

IZ (pA+(I −1)*2+J−1) = A(I , J)
END DO

END DO

It is important to notice here, that it is possible to write more data to the stacks
than space has been allocated for. This will result in writing data to an area
which might be allocated for a different purpose. Thus, it is of paramount
importance to make sure that the correct space has been allocated.

Special POKE routines exist to set values at a single address on a stack, POKER for
real values, POKEI for integer values etc.

Below an example is given, if a REAL entry is to be altered:

- 50 -

E.3 Reading Data from Allocated Space on the Stacks

CALL POKER (CDANAM, JADRES , RVALUE, CERACT, CRESLT , RZ)

Here CDANAM is the name of the data area (the name used when the space was
allocated), JADRES is the position on the data area e.g. on a 9 byte data area
JADRES can be 1-9, RVALUE is the value to be written to the specified address,
CERACT is the action to be taken if the call produces an error, CRESLT is a text
string showing the result of the call and RZ is the appropriate stack to be written
on.

E.3 Reading Data from Allocated Space on the Stacks

In order to write data to the allocated space on the stacks, the stack pointer
is needed. The data is read in a similar manner as it is written. Below is an
example where a 2×5 matrix B of the type REAL is read from the stack RZ using
the stack pointer pB:

DO I =1 ,2
DO J =1 ,5

B(I , J) = RZ (pB+(I −1)*5+J−1)
END DO

END DO

Special PEEK routines exist to read values at a single address on a stack. Below
an example is given, if an INTR entry is to be read:

CALL PEEKI (CDANAM, JADRES , IVALUE , CERACT, CRESLT , IZ)

Here CDANAM is the name of the data area (the name used when the space was
allocated), JADRES is the position on the data area e.g. on a 9 byte data area
JADRES can be 1-9, IVALUE is the variable to which the data is written, CERACT
is the action to be taken if the call produces an error, CRESLT is a text string
showing the result of the call and IZ is the appropriate stack to be read from.

E.4 Locating Data on the Stacks

Data on the stacks can be accessed from other routines or time steps than the
ones in which they were created. To do this, the data needs to be located using
LOCDAT. Below is an example:

CALL LOCDAT(CDANAM, CDTYPE, CERACT, ISIZE , JADRES , CRESLT)

Here CDANAM is the name of the data area (the name used when the space was
allocated) e.g. ’NBEAM’ or ’/USER_DATA/NBEAM’, CDTYPE returns the type of the
area e.g. ’REAL’ or ’CHAR’, CERACT is the action to be taken if the call produces

- 51 -

E Ansys CFX Memory Management System

an error, ISIZE returns the size of the data area e.g. 6 for a 2 × 3 array, JADRES
returns an integer telling the position of the data area on the stack (essentially a
stack pointer), and CRESLT is a text string showing the result of the call.

- 52 -

F
Moving Mesh in CFX

In order to model the aeroelastic response of a wind exposed high rise building,
the ability to handle Fluid-Structure Interaction (FSI) in the CFD simulations
is important. To facilitate this interaction, it must be possible to deform the
structure geometry in a physically meaningful way, as a response to the wind
loads.

In this appendix, a method for moving the mesh in Ansys CFX will be presented.

F.1 Setup

For the reason of simplicity, all the fluid related options will be neglected here
and emphasis will be on the options related to mesh deformation only. In tab.
F.1 the input for the simulation type are given.

The Total Time and Timesteps are defined as user expressions to allow easy access
to these parameters in other expressions and functions. The expressions are set up
by double clicking Expressions, as shown in fig. F.1a and right clicking, choosing
New as shown in fig. F.1b. Once named, the expression can be anything from
a scalar to a function of several variables (either user predefined expressions or
internal variables).

- 53 -

F Moving Mesh in CFX

Table F.1: Simulation Type for mesh motion. * user expression

Simulation Type

Basic Settings

External Solver Coupling

- Option None
Simulation Type

- Option Transient
Time Duration

- Option Total Time
- Total Time tTotal*
Time Steps

- Option Timesteps
- Timesteps tStep*
Initial Time

- Option Automatic with value
- Time 0 [s]

a) Expressions tab b) New expression

Figure F.1: Setting up user expression

In order to obtain data for each time step in the transient run, this needs to be
defined. This is done by expanding Solver and entering the settings in tab. F.2 in
Output Control, where the user defined expression tStep is used as time interval
for logging data.

- 54 -

F.1 Setup

Table F.2: Output Control

Output Control

Trn Results

Transient Results

- Option New (input name)
Transient Results 1

- Option Selected Variables
- File Compression Default
- Output Variables List Mesh Displacement, Orthogonality Angle Minimum
- Include Mesh Select
Output Frequency

- Option Time Interval
- Time Interval tStep

Global Initialization is set up as normally.

F.1.1 Domain and Boundary Settings

To enable the mesh to move, double click Domain 1 (see fig. F.1a) and enter the
input given in tab. F.3.

Table F.3: Domain Settings

Details of Domain 1

General Options

Mesh Deformation

- Option Regions of Motion Specified

The mesh should be stationary on all external boundaries (inlets, outlets and
openings). This is done by expanding Domain 1 (see fig. F.1a) and applying the
following settings to each of these.

Table F.4: Inlet, Outlet and Opening Settings

Details of ’Boundary’ in Domain 1

Boundary Details

Mesh Motion

- Option Stationary

In a 2D simulation, the boundaries facing in and out of the plane should be set to
symmetry plane due to computational reasons in CFX. These symmetry boun-
daries should not interfere with the mesh motion specified by other boundaries.
This is ensured by expanding Domain 1 (see fig. F.1a) and applying the following
settings to the symmetry boundaries.

- 55 -

F Moving Mesh in CFX

Table F.5: Settings for Symmetry boundaries

Details of ’Boundary’ in Domain 1

Boundary Details

Mesh Motion

- Option Unspecified

Finally, the structure boundary should be able to move freely, according to input
routines. This is done by entering the input given in tab. F.6. Note that dx, dy

and dz are merely representative names of functions or expressions that govern
mesh movement or deformation in that respective direction.

Table F.6: Structure Settings

Details of Structure in Domain 1

Boundary Details

Wall Influence On Flow

- Option No Slip
- Wall Velocity Relative To Select
- Wall Vel. Rel. To Mesh Motion
Mesh Motion

- Option Specified Displacement
- X Component dx(input variables)
- Y Component dy(input variables)
- Z Component dz(input variables) (0 [m] if 2D)

F.1.2 Setting up Fortran Routines

There are three steps to implementing a Fortran routine; Creating a User Routine

in CFX that links to the Fortran routine, Creating a User Function in CFX that
links to the User Routine, and finally creating and compiling the Fortran routine
itself.

Firstly, a user routine has to be created - this is done by right clicking User

Routines (see fig. F.1a) and choosing Insert → User Routine. Fig. F.2 shows the
tab that opens and the input is given as shown in the figure. Note that calling

name is the name of the Fortran routine without the file extension. The library

name should be the same as the calling name. Also, it is a good idea to make
these in all lower case letters to avoid problems. This is not a must however. The
library path should direct to the path of the definition file and can be input either
as a full path, or as a relative path.

- 56 -

F.1 Setup

Figure F.2: Setting up user routine

After the user routine is set up, a corresponding user function should be created.
In a similar manner to above, this is done by right clicking User Functions (see
fig. F.1a) and choosing Insert → User Function. Fig. F.3 shows the input entered,
where User Routine Name should point to the corresponding routine. Argument

Units and Result Units should contain the units in which the input and output for
the Fortran routine is given.

Figure F.3: Setting up user function

When creating a Fortran routine (or CEL function), CFX has a template ucf_

template.F in the examples folder which is very useful, since it has the basic
structure of a CEL function. The basic structure of a CEL function can be seen
in the following:

- 57 -

F Moving Mesh in CFX

i n c l u d e " c f x 5 e x t . h "
d l l e x p o r t (< c a l l i n g n a m e >)

SUBROUTINE < c a l l i n g n a m e >(
& NLOC, NRET, NARG, RET , ARGS, CRESLT , CZ , DZ, IZ , LZ , RZ)

C
INTEGER NLOC,NARG, NRET
CHARACTER CRESLT* (*)
REAL ARGS(NLOC,NARG) , RET(NLOC, NRET)

C
INTEGER IZ (*)
CHARACTER CZ (*) * (1)
DOUBLE PRECISION DZ (*)
LOGICAL LZ (*)
REAL RZ (*)

C
E x e c u t a b l e s t a t e m e n t s . . .

C
CRESLT = ’GOOD’

C
END

The template makes use of mainly 5 variables; NLOC, NRET, NARG, ARGS, and RET.
The input variables (defined in the call to the routine, see tab. F.6) are loaded
into the matrix ARGS(NLOC,NARG), and the output variables are saved to the ma-
trix RET(NLOC,NRET).
Here NLOC is the number of locales, i.e. when governing the movement of a boun-
dary, NLOC will be the number of nodes on that boundary. NARG is the number
of input arguments to the function, so if the function is dependant on time and
x displacement, NARG would be two. NRET is the number of output variables, so
if the output would be the x displacement, NRET would be one.

For instance, when governing the mesh stiffness in the domain, the input variable
could be the wall distance for each element in the mesh. In that way ARGS would
be a n×1 matrix, where n is the number of elements in the mesh, and each entry
holds the wall distance for each element. Similarly RET would be a n× 1 matrix
where each entry holds the mesh stiffness for each element.

- 58 -

G
Macros in CFX

The use of macros in CFX can become useful when the user would like to make
relatively quick changes in simulations where the normal way of doing the changes
would take a considerable amount of time and work. This can be the case in both
CFX-Pre when defining the simulation or in CFX-Post when processing the re-
sults. Macros can be used in both cases and an introduction to using macros in
CFX-Pre and -Post are given in apps. G.1 - G.3.

Macros in CFX makes use of the programming language PERL. PERL was origi-
nally developed for text manipulation and is widely used in internet programming.
PERL borrows features from many other programming languages including C.
The macros can be written in any text editor. In this project Notepad has been
used as editor for the macros.

G.1 General Features in CFX Macros

The beginning of the macro for both CFX-Pre and -Post contains a definition of
the Graphical User Interface (GUI). This is done by writing the following lines
at the beginning of the file:

Macro GUI begin

#

macro name =

macro subroutine =

- 59 -

G Macros in CFX

#

Macro GUI end

What is to be put in between Macro GUI begin and Macro GUI end will be
explained in apps. G.2 and G.3 as this differs in the two types of macros.

G.2 CFX-Pre Macro

The syntax of the macro for CFX-Pre is illustrated on the basis of a writ-
ten macro which was intended for use in this project. Progress in the project
showed, that only a portion of the macro was actually needed. The full ini-
tial macro, CELexpressions.ccl (note the file type), is included on the DVD in
[DVD:\CFX\Macros\] for learning purposes only. It is recommended that the
reader opens the file to get the full context of the macro, as the macro is divided
into pieces in this introduction.

The macro for CFX-Pre was programmed to automatically generate equivalent
CEL expressions (CFX Expression Language) for a given number of sections of
the structure used in the project. The GUI for this macro is as shown below:

Macro GUI begin

#

macro name = CELexpressions

macro subroutine = CELexpressions

#

#

Macro GUI end

The macro name is the one which is visible when the macro is opened in the
macro calculator in CFX-Pre. This is shown in fig. G.1 which is a screen cap
from the program.

Figure G.1: Macro opened in macro calculator in CFX-Pre

The name of the subroutine that the macro calls is also defined in the GUI. The
subroutine can be run directly from the command editor in CFX-Pre by entering

- 60 -

G.2 CFX-Pre Macro

the subroutine name.

The next step in the macro is the subroutine mentioned. The subroutine is
in this case written in the same file as the macro because only one subroutine is
used. The subroutine is initiated and ended by the following command:

! sub CELexpressions {

#

#

! }

The routine is written in between the curly brackets. All arguments to a loop or
statement must be enclosed in curly brackets. More about this later. It is seen
that the statement where the subroutine is initiated and ended is started with a
!. This is the way PERL knows that the line is a statement in the routine and all
statements must be initiated with a !. Commenting lines in PERL are initiated
by #. The function of this sign corresponds to % in MatLab and C in Fortran 77
(! in Fortran 90).

G.2.1 Scalar Values

Definition of scalar values in PERL must be started with a $. An example from
the .ccl file is shown below. It is seen that the value of the scalar is not restricted
to numbers but can also be character values.

! $nsection = 2 ;

! $bound = STRUCTURE;

G.2.2 Arrays

In PERL arrays must be initiated by @. An example of a one- and two-dimensional
array is given below:

! @vector = (1, 2, "test");

! @matrix =([1, 2, "test1"],[4, "test2", 6]);

As seen from the structure of the arrays above, the entries are not restricted to
number but can contain all different types of scalar values.

To access entries in the array it should be noted, that the numbering of the
entries starts with 0 for the first entry. For the @vector array above this means
that the entries have to be called with either 0, 1 or 2. An example is given
below:

- 61 -

G Macros in CFX

! $vector[0] = 1;

! $vector[2] = test;

! $matrix[0][1] = 2;

! $matrix[1][1] = test2;

It should here be noted that the initial sign before vector, matrix have been
changed from @ to $. This is due to that fact, that all entries in the array are
scalar values and when accessing one value this is also a scalar.

To alternate the arrays different commands listed in tab. G.1 can be used.

Table G.1: Array manipulation commands in PERL
Command Example Description

push() push(@vector, 3) Adds an element to the end of the array @vector. In
this case the result is @vector = (1, 2, "test", 3);

pop() $last = pop(@vector) pop() removes the last entry of the array and return
it into the scalar $last, in this case $last = 3. This
is after the use of push() above, @vector = (1, 2,

"test");

shift() $first=shift(@vector) shift() removes the first entry of the array and re-
turns it into the scalar $first, in this case $first =

1, @vector = (2, "test")

unshift() unshift(@vector, 4) Adds an element to the beginning of the array @vector,
In this case the result is @vector = (4, 2, "test");

An empty array can be created by @vector = ();. The commands in tab. G.1
can then be used to enter values into the array. This can be done directly or by
including the commands into a loop. Definition of space for a two-dimensional
array is a bit more difficult. Say the dimensions of the array is given by nRows

and nCols. The first step is to make space for a single row with nCols entries:

for($col = 0; $col < $nCols; $col++)

push @rowMatrix, "0";

The next step is to make a two-dimensional array by adding more of these one-
dimensional arrays into the same array. This can be done by:

for($row = 0; $row < $nRows; $row++)

push @matrix, [@rowMatrix];

The commands above result in a 0-matrix of dimension nRows x nCols.

- 62 -

G.2 CFX-Pre Macro

G.2.3 Loops and Logical Statements

As in MatLab and Fortran it is possible to make loops in PERL. The syntax
differs a bit from the other two. Below is an example of a simple for loop.

! for $i (1 .. $nsection) {

f$i = $i

! }

The result of the loop would be:

f1 = 1

f2 = 2

It is seen that the counter can be used as both a value and as an index on the
variables or functions. Also note that after definition of the counter, the loop is
enclosed in curly brackets as earlier mentioned.

In the final .ccl file used in this project (add_variables.ccl) an if and elsif

statement is used. The if and elsif statements are illustrated below.

! $n = $i ;

! if ($i < 10) { $n = "00$i" ; }

! elsif ($i < 100) { $n = "0$i" ; }

Note the spelling of the elsif statement. The use of paragraphs is necessary
when the return value of the statement should be considered as a character which
is necessary when the first number is 0. The statement above would return the
following:

$n = 001 for $i = 1

$n = 010 for $i = 10

$n = 100 for $i = 100

The if and elsif statements are used to name additional variables defined in
CFX. The reason that the variables are named this way is, that when calling
for these variables from a Fortran routine it is necessary to define the character
length and by naming the additional variables this way it is only necessary to
define the character length by one value.

G.2.4 CFX Environments

In CFX all model definitions and settings are entered into the model library. For
this reason when wanting to define something in CFX from a macro, this should
be written in a library environment. In the macro this is done by writing:

- 63 -

G Macros in CFX

LIBRARY:

"Executable statements/definitions"

END

Note that when writing things in the macro which are to be entered into CFX
the line should NOT be initiated by !. This is because the statements within the
LIBRARY environment are not to be considered PERL statements but only text
strings which can be read by CFX.

The different parameters in the structure tree in CFX-Pre can all be accessed
from the macro. In this project the most useful thing to use the macro for,
was to generate expression and additional variables automatically from a defined
number of wanted quantities. These two cases are the only ones demonstrated
in this introduction. Other parameters are written in the macro and therefore
a reference is made to CELexpressions.ccl. The structure of these parameters
should be obvious from the structure of the expression and additional variables
definitions.

Expressions in CFX-Pre should be entered into the CEL environment (CFX Ex-
pression Language). The expressions in the macro are to be written in the same
way as it would have been done when working directly in CFX-Pre. The expres-
sions can be entered within a loop and the index and variables entered into the
expression in the way shown above. Below is an example of how the expression
structure should be in the macro:

loop start

LIBRARY:

CEL:

EXPRESSIONS:

fx$i = areaInt_x(pZoneX$i)@$bound+areaInt_x(sZoneX$i)@$bound

px$i = p * step((($i*dz)-z)/1[m])*step((z-(($nhelp)*dz))/1[m])

sx$i = wall shear x * step((($i*dz)-z)/1[m])*step((z-(($nhelp)*dz))/1[m])

END

END

END

loop end

The content of the expressions are not explained further here. A reference is made
to the main report where an explanation can be found. The expressions above are

- 64 -

G.2 CFX-Pre Macro

entered into a loop in the .ccl file where ! for $i (2 .. $nsection). The
expressions for $i = 1 are a bit different. For $nsection = 3 the macro results
in the expressions in CFX-Pre shown in fig. G.2 which is a screen cap from the
program.

Figure G.2: Expression from macro

Adding an additional variable to the domain in CFX-Pre via a macro routine is
relatively easy. When the user has defined a single additional variable the usual
way in CFX-Pre the structure of the macro is evident. Below is an extract from
CELexpressions.ccl where an additional variable is defined.

LIBRARY

ADDITIONAL VARIABLE: pZoneX1

Boundary Only Field = T

Option = Definition

Tensor Type = SCALAR

Units = [N mˆ-2]

Variable Type = Unspecified

END

END

In fig. G.3 a screen cap from CFX-Pre is shown to link the macro language
above to the program when defining an additional variable. The line Boundary

Only Field = T cannot be set directly in CFX-Pre. It only means that the
variable only exist on a boundary and not in the entire domain (T = True).

- 65 -

G Macros in CFX

Figure G.3: Definition of additional variable in CFX-Pre

Besides defining the additional variable it has to be assigned a value. This is
usually done in "fluid models" under the domain settings. In the macro this is
done by entering the following. Note that this is no longer within the LIBRARY

environment but now this is related to the flow in the simulation. Therefore the
value of the additional variable is set in the FLOW environment.

FLOW:

DOMAIN: Domain

FLUID MODELS:

ADDITIONAL VARIABLE: pZoneX1

Additional Variable Value = px1

Option = Algebraic Equation

END

END

END

END

To relate the list above to the program a screen cap is shown in fig. G.4.

The illustration of the use of macros in CFX-Pre should not be considered a com-
plete description as it only contains a small amount of the possibilities in using
macros. When installing Ansys CFX two files exist within the installation which
can be useful when trying to learn macros. In <install dir>\v110\CFX\etc\ a
file called RULES and a file called VARIABLES can be found. These files can
be opened in Notepad and contain a lot of information about how to write the
commands in a macro and which variables are possible. Further in CFX-Pre it
is possible to right-click on a lot of the parameters and chose "Edit in Command
Editor". When choosing this the text shown in the command editor can easily
be copied into the macro as this is the way CFX read the information from the
macro. This can also be a useful thing to use when writing macros for the first
time.

- 66 -

G.3 CFX-Post Macro

Figure G.4: Definition of value of additional variable in CFX-Pre

G.3 CFX-Post Macro

The basic structure of the macro in CFX-Post is the same as for the macro in
CFX-Pre: A definition of the user interface and definition of a subroutine. The
file type differs from the CFX-Pre macro. The macro for CFX-Post is a .cse file.
This type can also be edited in Notepad.

A big difference is the amount of information which can be put into the user
interface (GUI). In CFX-Pre only the macro name is visible. In CFX-Post it is
possible to include elements for the user to chose the input for the macro. In this
project a macro was developed for generating a contour plot on the structure and
user surfaces on the basis of this contour plot. Progress in the project showed
that the macro was not necessary anyway but is included in this introduction
for learning purposes only. The macro (User_Surface.cse) is included on the
DVD in [DVD:\CFX\Macros\] and it is recommended that this file be opened
when reading this introduction for the same reason as mentioned in app. G.2 for
CFX-Pre.

For the use in CFX-Post some predefined macros exist included in the instal-
lation. These can be found in <install dir>\v110\CFX\etc\ and can be very
useful as inspiration when programming macros for the first time. Especially
when dealing with the GUI these are a big help as they all include a user inter-
face which by comparison with CFX-Post when the macro is loaded is quite easy
to understand.

The GUI for the macro written in this project is shown below:

- 67 -

G Macros in CFX

Macro GUI begin

#

macro name = User Surfaces on Structure

macro subroutine = Surfaces

#

macro parameter = comment

type = Comment

default = This macro generates a contour plot on the

specified boundary with the specified number of levels.

Then generates user surfaces on the basis of the contour

plot.

#

macro parameter = Contour variable

type = variable

default = Z

#

macro parameter = Location

type = location

location type = Boundary

default = StructureBody

#

macro parameter = Contour levels

type = Int

range = 1, 1000

default = 1

#

Macro GUI end

Instead of making a long explanation of the entries in the GUI a screen cap from
CFX-Post is shown in fig. G.5. In this figure most of the entries can be identified
and the result of the GUI should be obvious.

- 68 -

G.3 CFX-Post Macro

Figure G.5: Graphical User Interface in CFX-Post

It can be seen in fig. G.5 that a drop down list exist for the "Contour variable".
In this list all variables available in CFX-Post can be accessed. In this case the
vertical coordinate Z was the one used every time and therefor chosen as default.
A drop down list also exist for choosing the "Location". The number of contour
levels are selected either by entering the number manually or by using a slider
which occurs under the data field when the cursor is placed in this. The range
of this slider is evident from the GUI above.

The subroutine is written in the same file as the GUI. It is initiated and ended
in the same way as the macro for CFX-Pre. In the beginning of the subroutine
the input given in the GUI have to be defined as input for the macro. In this
case this is done by writing the following line:

! my ($contourvar, $contourLoc, $nlevels) = @_;

The term my used in the statement means, that the variables only belong to
this subroutine. It can be excluded from the statement if the user is working
with more subroutines and want to have the variables available in more than one
routine. The number of variables in the brackets is dependent on the number
of macro parameters entered into the GUI. The GUI used in this case specifies
3 input parameters as indicated in fig. G.5. The value of the variables is given
by the row order of the macro parameters as the value is assigned in this order.
The last term, @_, tells the subroutine that this is a list of incoming parameters
to the routine.

As earlier mentioned the macro generates a contour plot on the specified boun-
dary and a given number of User Surfaces equal to the number of contour levels
minus 1. As in CFX-Pre a lot of the parameters in CFX-Post can be edited in
the command editor by right-clicking and choosing this option. It can therefore

- 69 -

G Macros in CFX

be useful to generate a contour plot manually and then choose to edit this in
the command editor. The text in the editor can be copied into the macro di-
rectly. The user can then identify important parameters in the list and make use
of PERL programming to make loops etc. By using the method of copying the
text from the command editor a lot of default values are entered into the macro
making a very long list. It can be a bit difficult to overview this list. Experience
show however that this is the easiest approach when writing macros in the be-
ginning.

The necessary parameters to generate the contour plot is extracted from the
macro and shown below. The rest of the parameters in the list in the macro are
default values and can be left out.

Domain List = All Domains

Location List = $contourLoc

Colour Variable = $contourvar

Number of Contours = $nlevels

The variables in the list is determined by the input in the GUI. In fig. G.6
a screen cap is shown with the default values given in the macro related to the
list above.

Figure G.6: Default input for generation of contour plot

To get an idea of how the contour looks for different number of levels, two plots
are shown in fig. G.7 where the number of levels of Z is 11 and 21 respectively.

- 70 -

G.3 CFX-Post Macro

a) 11 contour levels b) 21 contour levels

Figure G.7: Illustration of contour plots

The User Surfaces are generated on the basis of the number of contour levels. For
each level one User Surface is created. Therefore a loop is made in the following
way:

! for $nsurf (1 .. $nlevels-1) {

! $nhelp = $nsurf+1;

The code for the User Surfaces was written by generating a single surface ma-
nually and copying the code from the command editor into the macro. The
contour level was located and the number was replaced by the value $nhelp.
The reason that this variable is introduced is that $nsurf is used to name the
User Surface by an index and that the contour level cannot be an expression e.g
$nsurf+1 but has to be a scalar. The first contour level that can be used is 2
because the surface is generated from the previous contour and up to the next.
Using 1 would not result in any surface.

The most important lines in the code for the User Surfaces are extracted and
listed below.

USER SURFACE: Surface$nsurf

Contour Level = $nhelp

Contour Name = SurfaceContour

Domain List = All Domains

Option = From Contour

In fig. G.8 a screen cap is shown relating the list above to CFX-Post.

- 71 -

G Macros in CFX

Figure G.8: Most important input for generation of User Surface

It is also possible in CFX-Post to set up expressions. These can also be included
in the macro. In User_Surface.cse expressions are included which calculate the
integrated forces on each of the defined User Surfaces. The expressions in the
macro is given by:

! $forceX = force("Surface$nsurf","X");

! $forceY = force("Surface$nsurf","Y");

! $forceZ = force("Surface$nsurf","Z");

The expressions corresponds to using the force_<x,y,z>()@"Location" func-
tion. The expressions are in this case not entered into CFX-Post. The results
are instead written to a .dat file. To write to a file it must be "opened". This is
done by the following command. Writing to a file is much like writing to files in
html.

! open(OUT,">Forces.dat");

The name OUT is used every time something is printed to the output file Forces.dat.
To write to the output file the following command is used which writes a header
line in the output file:

! printf(OUT "%10s %13s %16s %19s \n","Surface","Force X","Force Y","Force Z")

The numbers in the line specify where the text strings should be placed. The \n
specifies that a new line is started. By including the line above within the loop
over contour levels gives the forces on each User Surface in the output file. After
the loop the output file must be closed by the following command:

! close(OUT);

- 72 -

G.3 CFX-Post Macro

For 11 contour levels corresponding to 10 User Surfaces the output files contain
the following data listed below:

Table G.2: Data in and structure of Forces.dat

Surface Force X [N] Force Y [N] Force Z [N]

1 114.135 0.105888 0.631613

2 128.633 0.0460073 0.393827

3 137.218 -0.0371464 0.206649

4 142.493 -0.126807 0.0783013

5 145.785 -0.0612079 -0.0102736

6 147.817 0.052662 -0.0828953

7 148.78 0.0870237 -0.122044

8 148.801 0.046391 -0.175223

9 146.96 -0.0117619 -0.277649

10 128.84 -0.0224208 -0.203655

The Forces.dat file have been included on the DVD in [DVD:\CFX\Macros\].
It should be noted that the file does not contain data which have been used in
any way in the project.

In the Ansys CFX-Post User’s Guide more about the use of macros in CFX
can be found in the sections regarding "Power Syntax in CFX" on p. 199.

- 73 -

G Macros in CFX

- 74 -

H
Load Extraction in Transient Runs in CFX,

Trials and Error

To extract the loads on the structure in Ansys CFX different approaches were
attempted until the final method was chosen. The final method deals with ad-
ditional variables and calling integrated quantities in the Fortran routine. This
method is described further in the main report.

The first approach was to get the loads as nodal values at the grid points on
the structure. To get these nodal loads, the pressure at the grid points have to
be integrated through a specific area connected to that specific point. A lot of
time was used to try and obtain these nodal values. Firstly it was investigated
whether it was possible to make a Fortran call to CFX to get these results di-
rectly which turned out to be impossible. Secondly if the pressure at the grid
points could be extracted along with the specific area connected to each point,
the load could be determined by a numeric integration scheme in Fortran. Differ-
ent calls to different areas were attempted but the correct areas were never found.

During the trial and errors regarding the first approach it was found, that cal-
ling the forces as integrated pressure over a specific area, was relatively easy in
Fortran. The second approach therefore concerned this fact. it was investigated
whether is was possible to use features from CFX-Post during the transient runs.
The approach was to generate "User Surfaces" in CFX-Post and use these areas
to get the resulting forces on each "User Surface". The procedure was to gen-

- 75 -

H Load Extraction in Transient Runs in CFX, Trials and Error

erate a "Contour Plot" on the structure surface using the vertical coordinate,
z, as variable. The "user Surfaces" could hereafter be generated on the basis
of the contour levels, which can be set by the user. In this way it was possible
to control the size of the "User Surfaces". Fig. H.1 shows examples of "User
Surfaces" created by this procedure.

a) 11 contour levels b) 21 contour levels

Figure H.1: Illustration of contour plots

Unfortunately a solution to call this function in CFX-Post during a transient
run was not found. The process was firstly used in Ansys CFX 10 where a call
to make CFX-Post integrate the pressure over a specified "User Surface" did
not show any failure. But when doing the same thing in Ansys CFX 11, CFX-
Post started to "hang" and not return a value. A conference with Ansys Support
showed, that this was a known problem which can be corrected with a custom fix.

In the process a macro for use in CFX-Post was written but eventually never
used for the final approach. A description of the use of macros with Ansys CFX
can be found in app. G, where both macros for CFX-Pre and -Post are described.

The third and final approach which finally showed useful in this project, was
using additional variables in CFX-Pre as mentioned at the beginning of this ap-
pendix. The pressure is divided into n variables each containing the pressure
over a specific region. More about this can be found in the main report. Initially
also the integration procedure of the variables was included in CFX-Pre but this
was later left out as it turned out to be easier to call this function directly from
a Fortran routine. To assist in the process of generating n similar variables and
CEL expressions a macro for use with CFX-Pre was written. The full macro was
not used due to the exclusion of the integration expressions but a description of
the macro can be found in app. G.

- 76 -

Bibliography

Cook, R. D., Markus, D. S., Plesha, M. E. & Witt, R. J. [2002]. Concepts and
Applications of Finite Element Analysis, 4th edn, John Wiley and Sons Inc.

Mathews, J. H. & Fink, K. K. [2004]. Numerical Methods Using MatLab, 4th edn,
Prentice-Hall Inc.

Menter, F. R. [1993]. Zonal two equation k−ω turbulence models for aerodynamic
flows, AIAA-93-2906 .

Nielsen, S. R. K. [2004]. Vibration Theory - Linear Vibration Theory, Vol. 1,
Aalborg tekniske Universitetsforlag.

Nielsen, S. R. K. [2005]. Structural Dynamics - Computational Dynamics, Vol. 9,
Aalborg tekniske Universitetsforlag.

Pulliam, T. H. [1986]. Artificial dissipation models for the euler equations, AIAA
Journal Vol. 24(No. 12): pp. 1931–1940.

Steger, J. L. & Chaussee, D. S. [1980]. Generation of body-fitted coordinates
using hyperbolic partial differential equations, SIAM Journal SCI. STAT.
COMPUT. Vol. 1(No. 4): pp. 431–437.

Versteeg, H. K. & Malalasekera, W. [1995]. An introduction to computational
fluid dynamics: The finite volume method, 1st edn, Longman Pub Group.

Wilcox, D. C. [2002]. Turbulence Modeling for CFD, 2nd edn, D C W Industries.

- 77 -

.
.

.
.

AEROELASTIC RESPONSE OF HIGH-RISE BUILDINGS - MASTER THESIS BY ANDERS TRONDAL SVENDSEN AND ALLAN MICHAELSEN

	Introduction
	Project Description
	Hyperbolic Mesh Generation
	Mesh Analyses
	Analyses Moving Mesh in CFX
	Model Setup in CFX
	Structural Model
	Preliminary Analyses
	Effect of Modeling Aeroelastic
	Modal Response
	Conclusion

	Hyperbolic Mesh Generation
	Implementation of Algorithm into a MatLab Program
	main.m
	calcspline.m
	spline2.m
	spline.m
	stretchf.m
	expanfct.m
	hypgrid.m
	TDMA.mexw32 or TDMA_cyclic.mexw32
	mesh3d.m
	plug3d.m
	mesh_gen.m

	Examples
	Dissipation
	Volume averaging
	Surface node distribution

	Alternative Methods for 3D Mesh Generation

	Mesh analysis
	Test case
	Unstructured mesh
	Inflation layers

	Structured mesh
	CFD input and Definitions
	Domain Parameters and Global Initial Conditions
	Boundary Conditions

	Results
	Unstructured Mesh
	Unstructured mesh with inflation layers
	Structured Mesh

	Observations

	Analyses of Moving mesh in CFX
	Test case
	Constant Stiffness
	Reciprocal of Wall Distance
	Tanh Function
	Cos Function
	Increase near Boundaries
	Increase near Small Volumes
	Summary

	Model Setup for Aeroelastic Analyses
	Simulation Setup
	Domain Parameters and Global Initial Conditions
	Turbulence Model
	Boundary Conditions
	User Routines and User Functions

	Pressure Variables

	Dynamic Model
	Structural Model
	Stiffness and Mass Matrices for a Single 3D Beam Element
	Assembling Global Stiffness and Mass Matrices

	Obtaining Loads
	Obtaining Nodal Loads

	Modal Model
	Modal Damping Matrix

	Obtaining Nodal Displacements
	Obtaining Displacement of Structure
	Areas of Concern
	Fortran77 vs Fortran90
	Allocation of Space for Variables
	Initialization of Variables
	Writing to and reading from the stacks

	Preliminary Analyses
	Mesh fineness
	Mesh
	Time step and duration
	Results

	Coefficient loops
	Time Step
	Initial Conditions
	Observations
	Capturing Vortex Shedding

	Effect of Modeling Aeroelasticity
	Stationary Simulation
	Aeroelastic Simulation
	Comparison of Methods

	Modal Response
	Method for Determining Coefficient Matrices
	Simulation Setup and Observations
	Results
	Determination of Coefficients
	Test of Model

	Comparison of Results

	Conclusion
	Suggestions for Improvements
	CFD Simulation Setup
	Load Determination
	Mesh Generation
	Inlet Conditions

	Appendix
	Hyperbolic Mesh Generation, Theory
	Obtaining the PDE
	Obtaining the Algorithm
	Boundary Conditions
	Dissipation
	Volume Averaging

	Spline Theory
	Clamped Cubic Spline
	Examples

	Limitations

	Computational Fluid Dynamics, Theory
	Governing Equations for Fluid Flow
	Reynolds Time Averaging
	Reynolds Averaged Equations

	Turbulence Models
	The Turbulence Energy Equation
	The k- Model
	The k- Model
	The SST Model

	Finite Volume Method

	Structural Dynamics, Theory
	General Dynamic Equations
	Modal Equations
	Reduction of DOF
	Newmark Algorithm

	Ansys CFX Memory Management System
	Allocating Space on the Stacks
	Writing Data onto Allocated Space on the Stacks
	Reading Data from Allocated Space on the Stacks
	Locating Data on the Stacks

	Moving Mesh in CFX
	Setup
	Domain and Boundary Settings
	Setting up Fortran Routines

	Macros in CFX
	General Features in CFX Macros
	CFX-Pre Macro
	Scalar Values
	Arrays
	Loops and Logical Statements
	CFX Environments

	CFX-Post Macro

	Load Extraction in Transient Runs in CFX, Trials and Error

