


 



 

A B S T R AC T  
In this rapport, the aeroelastic phenomenon, flutter is investigated for the Great Belt East Bridge. 

The bridge is examined at two different stages during construction: when only 15% of the bridge 

deck is mounted and when the bridge is fully erected. A numerical approach, CFD, is used for both 

stages. 

According to the well-known Scanlan theory, the aerodynamic loads are described by a set of 

aerodynamic parameters, which can be derived by use of different approaches. These aerodynamic 

derivatives are found by a two dimensional analysis of the cross section of the bridge, by a forced 

oscillation test. The derivatives are used in determination of the critical flutter wind velocity for the 

fully erected bridge. The purpose of this 2d-test is to validate the CFD as a mean of computing 
critical flutter wind velocities. The resulting critical flutter wind velocity of m

s71.9 found, is not far 

from the velocity found in wind tunnel tests, m
s70  to m

s74 . 

For the investigation of the bridge during erection, two three dimensional analysis are performed. A 

forced vibration test is performed in a similar way as for the two dimensional case. In this analysis 

the fluid is allowed to flow around the free end of the bridge, introducing some end effects. The 

structural behavior of the bridge during construction shows that the lowest vertical eigenfrequency 

is very close to the lowest torsional eigenfrequency. This implies that the critical flutter wind 

velocity should be somewhat lower for the bridge during construction. This velocity is found at 
m
s47.6 . Wind tunnel tests of this construction stage show a critical flutter wind velocity of m

s43.3  

The rapport further investigates the possibility of using a fully coupled fluid-structure interaction 

when determining critical flutter wind velocities. A two degree of freedom system is used to 

determine the motion of the bridge deck, which is assumed rigid. A first order backward Euler 

integration scheme is applied in Ansys 11 when prescribing the movements of the system. The 

mesh of the fluid domain is very coarse, in order to reduce the computation time. The simulations 

have been run, but with some difficulties with respect to damping. The test show a critical flutter 
wind velocity of approximately m

s20  to m
s25  which is far lower than the wind tunnel tests. The test 

is, however described in the report, as the method gives a very good visual and physical 

understanding of the aeroelastic phenomenon. 
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1 .  P R E L I M I N A R I E S  

1.1.  INTRODUCTION TO THE REPORT 

The research on fluctuating wind loads on long-span cable-supported suspension bridges is an 

ongoing process, encouraged by the increasingly larger bridge spans. The increase in bridge span 

has often been implemented without a proportional increase in stiffness, which has resulted in large 

flexibility of most of the cable-supported bridges seen today. Large flexibility often leads to large 

vibration amplitudes and under special conditions to the total collapse of the bridge, as seen with 

Tacoma Narrows Bridge.  

Suspension bridges must be designed to support the static wind forces, lift, drag and moment, 

created by the mean wind, but also the dynamic load cases, created by an interaction between the 

wind force and structural motion, known as aeroelasticity. Aeroelasticity can be said to be the 

mutual interaction of forces, originating from inertia, elasticity (forces from elastic deformation), 

and aerodynamics. The aeroelastic phenomena seen for long-span suspension bridges are flutter, 

galloping and vortex shedding induced vibrations.  Flutter is chosen as the focus area of this report. 

In chapter 3 the phenomena are shortly described.  

At the moment, the investigation of the stability of bridges is widely based on wind tunnel testing, 

but as Computational Fluid Dynamics (CFD) simulation techniques have developed, so has the use 

of these to reduce the expensive and time-consuming wind tunnel tests. Furthermore, use of CFD 

gives the opportunity for good visualization of the flow conditions, and thereby a better 

understanding of the problem at hand. CFD is only used as a complement to the wind tunnel tests, 

which is essential in proofing of the stability of the bridge. Implementing CFD does not serve as a 

replacement for the wind tunnel tests, but is instead used as a tool to document the results from the 

experiments supplemented by the possibility of easily changed input parameters, and thereby small 

parameter studies, and as mentioned before, the use of simulation tools.  

1 .2 .  PURPOSE OF THE REPORT 

The purpose of this report is to show to which extend it is possible to use CFD to consider the 

stability problems that can occur in large flexible cable-supported suspension bridges due to 

aeroelastic phenomena. As mentioned in the introduction, CFD does not replace the wind tunnel 

tests, but is used as a complimentary tool. Therefore, the calculations by CFD must be verified, by 
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comparing the calculated results with experimental values. This is done to clarify the reliability and 

robustness of the CFD-simulations. The simulation is not considered to be useful if the 

experimental values can not be reproduced. The Great Belt East Bridge is used throughout this 

thesis because plenty of investigations have been carried out previously. This makes a very good 

reference for a comparison of results. 

As a starting point, the CFD-simulations are verified by treating a 2d bridge section, and analyzing 

the flutter phenomenon by finding the aerodynamic derivatives and critical values. The CFD-

simulation is given boundary conditions, mesh refinement and other variables, so that the 

experimentally found values can be reproduced and a comparison with the experimental values will 

show any inaccuracies in the modeling assumptions.  

With the knowledge gathered from the 2d simulation, CFD is implemented in finding the 

aerodynamic derivatives and critical values with consideration of end flow around the bridge deck, 

simulating the construction phase. Experimental data is also available for this situation, and the 

CFD-simulation can therefore also be verified.  

The main purpose of this report can be said to be enabling CFD programs to simulate stability 

problems for large flexible cable-supported bridges. When the results are satisfactory, the tools 

integrated in the used simulation tool, are used to create a basis for a better understanding of the 

problem.  
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2 .  T R E AT M E N T  O F  F LU T T E R  

2.1.  INTRODUCTION 

The purpose of this chapter is to describe how the flutter phenomenon has been treated in 

previous work. For a short introduction to the flutter phenomenon in general, see section 3.2.4. 

The report focuses on the CFD-approach, but the calculations in this report are verified by use of 

results from wind tunnel tests, described in section 2.3. The results from the tests are available in 

[Hansen 2008] and [Hansen 1996]. 

2 .2 .  STUDY OF PREVIOUS WORK 

In order to start an investigation of aerodynamic properties of long span bridges, it seems natural to 

comment on some previous results. In the following, a short introduction is given to a few of the 

papers and references used in this thesis. All the papers and references deal with the analysis of the 

flutter phenomenon for the Great Belt East Bridge. 

[Hansen 1996] is an analysis of critical flutter wind velocities for the Great Belt East Bridge during 

construction. The report was carried out by Svend Ole Hansen ApS for the company Steinman in 

order to comment on the work done by the consulting engineers from COWI. The report is based 

on wind tunnel tests and concludes that the critical stage during construction is when five bridge 

sections have been erected. The bridge deck is at that stage 249 meters long. The natural 

frequencies and modal masses used in [Hansen 1996] have been adopted in this thesis. The 
resulting critical flutter wind velocity has been found to m

s43.3 . The flutter phenomenon is found to 

occur as a coupling between the two lowest eigenmodes for torsion and vertical translation. 

[Frandsen 2003] has carried out extensive numerical bridge deck studies using CFD. She uses a 

coupled fluid structure formulation in finding critical flutter wind velocities for the fully erected 

bridge. The fluid domain is meshed rather coarse, but the results are surprisingly good. Even 

though the smallest mesh elements have a characteristic length of approximately one meter, she 

captures the beginning of a vortex street behind the bridge deck. The fluid domain is modeled with 

1900 nodes in an irregular unstructured mesh. [Frandsen 2003] finds the Strouhal number for the 

Great Belt East Bridge to be 0.26St = , which is somewhat higher than the values measured in wind 

tunnel tests, which show 0.11 0.15St≤ ≤ . [Frandsen 2003] finds the critical flutter wind velocity for 
the fully erected bridge to be between m

s65  and m
s70 . This is slightly lower than the values 
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measured in the wind tunnel of the Danish Maritime Institute in 1992 and 1993. These tests show 
critical flutter wind velocities between m

s70  and m
s75 . The conclusion of the paper is that 

computational fluid dynamics, combined with a finite element model of the structure, may provide 

a good approximation to the critical flutter wind velocities. The results are however not good 

enough to trust without verification from wind tunnel testing. 

[Awruch and Braun 2003] employs two different techniques for finding critical flutter wind 

velocities. A forced vibration test has been performed in a numerical model where the fluid domain 

is modeled with 8400 nodes. The vibrations are simulated by altering the angle of the wind in the 

inlet. The test is used in deriving the aerodynamic derivatives. The critical flutter wind velocity has 
been found to be m

s73 . [Awruch and Braun 2003] has also carried out a fluid-structure interaction 

on the same mesh of 8400 nodes. The work shows a critical flutter wind velocity of m
s69 . Both 

results are relatively close to the results found in wind tunnel tests, as mentioned earlier. The 

Strouhal number is found to be 0.18St = , which in also close to the measured values.  

2 .3 .  WIND TUNNEL TESTING 

The approach used in this report, is verified by use of results from aeroelastic tests of the Great 

Belt Bridge performed in a wind tunnel. The procedures used in the CFD simulations are 

conducted so that the results produced are based, if possible, on the same assumptions and 

presented in the same way.  

Model testing in a wind tunnel are dependent on model laws, which ensures the correct 

interpretation of the test results when using scaled models. The model laws can be used to consider 

the following forces on a scaled model: 

• Inertia forces 

• Gravitational forces 

• Viscous forces 

In aeroelastic models, the dominating forces are identified as the inertia forces from the wind flow 

since these forces create the motion-induced wind loads. The inertia forces must be scaled 

correctly, so the response of the model, in the wind tunnel is similar to full scale. This means that it 

is of major importance that the natural frequencies, defined by mass and stiffness, and the 

structural damping in the model are scaled correctly. Usually this is done by use of Froude’s model 

law. It is well known that Reynolds’s model law is very difficult to fulfill for scaled wind tunnel 
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testing, since this only could be done by use of a different fluid or by using extreme wind velocities. 

The viscous forces of a wind tunnel tests are therefore not correctly scaled, but since flow 

separation for a bridge deck profile mainly is dictated by the sharp edges of the bridge deck, and 

therefore not dependent of Reynolds number, this has small significance in this case. [Hansen and 

Dyrbye 1997]  

Aeroelastic model testing in a wind tunnel is a complicated affair, when all the significant modes, 

contributing to a phenomenon such as flutter, are to be modeled correctly. Furthermore, the scaled 

model must contain all the geometrical details, and building a model is therefore a very time 

consuming and expensive assignment. Due to these difficulties, an aeroelastic section model test is 

often used when determining critical flutter wind velocities in a wind tunnel. In these tests the 

bridge deck is modeled as a rigid body where the masses and stiffnesses are modeled at the end of 

the section model. An example of the setup of an aeroelastic bridge in a wind tunnel can be seen on 

Figure 1.  

 
Figure 1: Aeroelastic model in a wind tunnel. The modal parameters of the bridge are ensured by the 

weights and springs, marked on the figure. 

When investigating the bridge during the erection phase, the section model is withdrawn from the 

entire width of the tunnel, thereby allowing flow around the free end. The critical flutter wind 

velocities can be determined by three different methods [Hansen and Dyrbye 1997]: 

1. Vibration test –Transient behavior of the bridge is considered after an initial displacement 

2. Forced oscillation test – Forces from a known oscillation are used. 

3. Buffeting tests – The bridge deck behavior is analyzed for different velocities.  
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Wind tunnel tests are usually based on method 1 and 2. It is possible to use method 3, where the 

forces are measured for a known oscillation, by use of pressure taps on the bridge decks surface, 

but this method gives some practical complications. Placing pressure taps on the model is very time 

consuming and ads to the complexity of the model and the demand in equipment. Introducing a 

known forced oscillation can also be difficult. Therefore, method 1 is usually used, where the 

transient behavior of the bridge is observed, when this is given and initial displacement. This 

method is also used in this report. Method 3 also gives a good illustration of the aerodynamic 

instability, since a correctly scaled model, will go into flutter at the critical velocity, and the behavior 

is similar to that in full scale. Method 3 can therefore be introduced, by testing the bridge for 

increasing wind velocities, and observing when instability occurs.  
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3 .  T H E  N AT U R E  O F  W I N D  
L OA D S  O N  B R I D G E  D E C K S  

3.1.  INTRODUCTION 

In this chapter an introduction to the load phenomena occurring on bridge decks are given. As 

mentioned in the preliminaries, the report focuses on the flutter phenomenon, but knowledge of 

other phenomena is essential for fully understanding the nature of the problem and thereby 

understanding the solution method. Furthermore, the simple description given in this chapter will 

be of use later on to understand the basis of the computational model created.   

As mentioned in the introduction, the effects occurring when flexible long-span suspension bridges 

are subject to wind-induced forces, can be rather extreme and in the most severe situations leading 

to collapse. In the following, the wind-induced motions will be described in more detail, but with 

focus on the flutter phenomena.  

3 .2 .  WIND-INDUCED FORCES ON BRIDGE DECKS 

A bridge deck immersed in a flow interacts with the flow, and is as a result of this exposed to 

surface pressures. The incoming turbulent flow will cause the forces on the bridge deck to be time 

dependent. Furthermore, for almost any, not perfectly, streamlined shape, signature turbulence 

created by the body itself also causes the lift, drag and moment to be time-varying. Normally, the 

forces are divided into static forces, associated with the mean wind, and forces related to the 

pressure fluctuations, caused by the turbulence, often referred to as buffeting. In general it can be 

said, that the influence the wind load has on bridge decks, regardless of the origin, are dependent 

on the aerodynamic characteristics of the bridge deck. For example, a perfectly streamlined deck 

can be designed so no lift force will occur, but naturally the outline of a bridge deck is dependent 

on other parameters such as strength, size requirements and practical measures which seldom make 

such a design possible. [Scanlan 1993] [Vario 2002].     

Wind-induced loads on bridge decks are often divided into three different categories.  

• Extraneously induced excitation. This covers dynamic loads due to turbulence in the 

incoming wind. It is not commonly seen that extraneously induced loads give rise to very 
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large movements, as the energy in the incoming wind normally is very low at the structures 

lowest eigenfrequencies. The motions caused by fluctuating winds are known as buffeting. 

• Instability caused by turbulence created by the structure itself, known as signature 

turbulence. This covers the well known Von Kármán’s Street which is likely to be in 

resonance with the structure.  

• Aerodynamic instability (negative damping) – where motion-induced wind loads arises on 

the structure. This covers phenomena such as galloping and flutter. 

[Morgenthal 2000] 

Before describing the different flow phenomena in detail, a more overall description of the flow 

situation is performed. This description is done the easiest by considering the bridge deck to be 

motion-less and thereafter moving.  

In general, the wind-induced forces on a bridge section can be divided into the following parts, as 

previously described. 

 ( ) ( ) ( )tot m t aeF t F F t F t= + +  (3.1) 

where 

 Ftot is the total wind load on the bridge section 

 Fm is the mean wind load 

 Ft is the turbulent wind load, from the signature turbulence and buffeting 

 Fae is the aeroelastic forces from the motion-induced wind loads 

[Vario 2002] 

The origin of the loads for a motionless and moving bridge deck will be described in the following 

section. 

3 .2 .1 .  MOTIONLESS BRIDGE DECK 

For a motionless bridge deck, the time-varying wind-induced loads are generated by the turbulence, 

and the mean wind is assumed to create a static load. The turbulence for a motionless deck can be 

divided into turbulence from the incoming wind and the signature turbulence. The turbulence in 

the incoming wind is traditionally treated in two parts. This can be closely connected to the 

procedure in which wind loads on structures are treated, for example in [EN 1991-1-4 2005], where 

the turbulence is divided into background turbulence, and resonant turbulence. Background 

turbulence is associated with the high energy levels in the low frequent turbulence. For cases in 
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which the turbulence length scale, associated with the background turbulence, is large compared to 

the characteristic size of the bridge section, a large correlation of the wind forces are seen across the 

bridge section for the turbulence in the incoming wind. In such cases the wind force can be treated 

as quasi-static. In case of resonant turbulence, vortices act with frequencies close to the structures 

eigenfrequency, as seen with vortex shedding. In a similar way, as with the background turbulence, 

the correlation is also of significant importance.  

The correlation between the signature turbulence and the turbulence in the incoming wind is also 

of importance, but usually the two components are treated separately, assuming no correlation 

since the frequency of the two contributions are separated.  

If the characteristic size of the bridge is larger than the turbulence length scale, the background 

turbulence, and in some cases the resonance turbulence, cannot be treated as quasi-static. This is 

often the case for large bridges. The difference from the quasi-static case is usually described by use 

of aerodynamic admittance functions, which described the lack of correlation [Hansen and Dyrbye 

1997]. In this case, the harmonic contents of the two turbulence contributions, signature turbulence 

and the turbulence in the incoming wind, must be treated as working together. 

3 .2 .2 .  MOVING BRIDGE DECK 

In a similar way as for the motionless bridge deck, the description of the wind-induced loads is 

done in both a quasi-static and a dynamic state.  

In the quasi-static state, it can be assumed that the aerodynamic forces acting on the bridge section 

are solely dependent on its current motion, since this force can be calculated as the velocity 

pressure, from the difference in the moving speed and the speed of the incoming wind. When not 

treating the problem as quasi-static, the wind-induced force is no longer independent of the bridge 

decks previous motion, as shown later in this report. Consideration of the motion of the bridge 

deck can be taken into account by use of the aerodynamic derivatives, defined in detail later in this 

section. It is seen that the derivatives are dependent on a reduced frequency, which in a similar way 

as can be shown for the aerodynamic admittance function, works as a frequency filter on the wind 

components, making it possible to describe the self-excited forces for different motion patterns. 

The procedure for this is described in detail later in this section. [Hansen and Dyrbye 1997] 

[Scanlan 1993]   

A more detailed explanation of some of the wind-induced loads can be found in the following 

sections. 
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3.2 .3 .  VORTEX SHEDDING 

Periodic movements of a structure may happen when the vortices formed around the body is shed 

at a frequency close to the eigenfrequency of the structure. Both vertical and torsional modes can 

be considered. A principal sketch of the phenomenon is seen on the figure below.  

SP

SP

Wind velocity

 

Figure 2: Principal sketch of the vortex street created by a bridge deck. SP indicates the separation points where the 
vortices are shed from the bridge deck.  

Vortex induced motions can be avoided by ensuring that the frequencies of the vortices created are 

widely separated from the structures natural frequencies. This is done by altering the geometry of 

the bridge design or changing the natural frequencies. [Morgenthal 2000] 

The shedding frequency, defined in(3.2), can be found by considering the vortices in the vortex 

street behind the bridge. The shedding frequency is usually described by use of Strouhal’s number, 

defined in (3.2). 
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where 

  fs is the shedding frequency [Hz] 

  vvs is the mean wind velocity in the vortex street [m/s] 

  lv is the length between the vortices [m] 

  U is the mean wind velocity in the incoming wind [m/s] 

  D is a characteristic length, usually the height of the bridge [m] 

  St is Strouhal’s number [-] 

[Hansen and Dyrbye 1997] 

The necessary values for determination of Strouhal’s number for the bridge deck, treated in this 

report, can be found by use of two contour plots from the simulation, one illustrating the 

horizontal velocity and one illustrating the vortices.  
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Figure 3: Vortices created behind the bridge deck. 

 

Figure 4: Horizontal velocity behind the bridge deck. 

The necessary values can be extracted visually from the two figures, and the Strouhal’s number can 

then be found by use of (3.2).  

A more correct way would be by considering the moment load from the shed vortices in the 
frequency domain. This is seen in Figure 5. The spectrum is found for incoming winds of 20 m

s and 

Strouhal’s number is then found to 0.27. This is a rather high value, which could be caused by some 

complications in simulation of the turbulent boundary layer. This is not investigated further. Wind 

tunnel measurements give Strouhal’s number between 0.11-0.15 and [Awruch and Braun 2003] 

finds Strouhal's number by use of CFD to 0.18.  
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Figure 5: Fourier spectrum of the moment coefficient for the bridge deck exposed to an 
incoming wind of 20 m/s. 

3.2 .4 .  AERODYNAMIC INSTABILITY 

Flutter and galloping both occur for wind which does not act in resonance with the structure, both 

described as aerodynamic instability phenomena. In addition, the phenomena are independent on 

the turbulence of the incoming wind, but can arise in a uniform flow. Galloping is the phenomenon 

occurring when the structural vibrations are almost perpendicular to the incoming wind and is 

characterized by negative aerodynamic damping as the driving force. A principal sketch of the flow 

and forces introduced on a cross section is showed in Figure 6. 

Incoming wind 
velocity

Relative wind velocity for
downward motion

topF

bottomF

 

Figure 6: Principal sketch of galloping for a bridge deck. Galloping occurs when Fbottom>Ftop. 
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Due to the downward motion of the bridge deck, the streamline on the bottom-side of the bridge 

deck flows closer to the boundary than the streamline on the top-side, as shown on the figure 

above. This result in an increase in the velocity on the bottom-side, which will decrease the static 

pressure, relative to the top-side, cf. Bernoulli’s equation, hereby introducing negative aerodynamic 

damping. This may result in a wind-induced force, working parallel with the motion.  

The remaining phenomenon to be described is flutter, which is the focus area of this report. Flutter 

is a combination of a coupled vertical motion and a rotational motion. A principal sketch of the 

phenomenon is seen in Figure 7, where it is assumed that a flutter vibration is fully developed.  

0 0 0

0
0

CBA HFD IGE

 
Figure 7: Flutter vibrations for a bridge deck. Black arrow indicating the movement of the deck, grey the vertical 

wind force. [Hansen and Dyrbye 1997] 

It is important for the coupled flutter vibration, that there is a phase difference between the 

torsional and the vertical movement. If there is no phase difference between the two movements, 

the resulting work is zero. The coupled flutter vibration is shown in the figure above and described 

below in the following. The phase difference in Figure 7 is 45°. 

A. The bridge deck is moving down and the total force is zero. The work done in this stage is 

zero. 

B. The force on the bridge deck is positive and the vertical velocity is zero. The work done in 

this stage is zero. The moment is also working in the same direction as the rotation.  

C. The stored elastic strain energy now forces a vertical movement, enhanced by a vertical 

wind force. The total work in this stage is positive.  

D. As C. 

E. As A with a reversed velocity 

The stages from E to H are similar to those from A to D, only symmetric around the axis of zero 

vertical displacement. The wind forces shown in Figure 7 are schematic, and may vary a little for 

different cross sections. As an example, the wind force in stage A is found to be slightly positive for 

the Great Belt Bridge, as shown later in this report. Flutter is said to occur when the energy input, 
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from the wind velocity, is equal to the energy dissipated. This velocity is known as the critical flutter 

wind velocity. The aerodynamic damping loads become negative when exceeding the critical flutter 

wind velocity, and thereby further increasing the vibration amplitudes.  

For flutter to occur, the torsional frequency must exceed the vertical frequency for the bridge 

movements, but only marginally. This ensures the continued energy transfer to the system which is 

crucial for the phenomenon to arise. Else the energy transfer will dissipate due to structural 

damping. [Hansen and Dyrbye 1997] 

The definition sketch for the treatment of flutter is seen on Figure 8 . 

MFLF

( )u t
( )tα

W  

Figure 8: Definition sketch for flutter. FL and FM are the lift and moment 
respectively. u and α are the vertical and rotational motion 
respectively. 

3.3.  GOVERNING EQUATIONS FOR THE FLUTTER PHENOMENON 

The wind-induced forces on a bridge deck have been briefly explained in the previous section. By 

use of this, a derivation of the formula, with which the aeroelastic forces, in the case of flutter, can 

be described. This is used to determine the aerodynamic derivatives and thereby the critical values 

for the wind velocity for a given bridge deck. Since the phenomenon, beside the aerodynamic 

forces, is dependent on inertia and elasticity it is rational to use the equation of motion as the 

governing equation. Both a vertical and rotational motion is included in the phenomenon. The full 

derivation can be seen in appendix A. 
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( )

( )
mx cx kx F t
I c k M tα αα α α

+ + =
+ + =

�� �
�� �   (3.3) 

where 

 m, I  is the mass or mass moment of the system respectively  

 c  is the damping of the system  

 k  is the stiffness of the structure  

 x, α  is the vertical or rotational displacement respectively 

 F(t), M(t) is the lift- or moment force respectively 

 [Nielsen 2004] 

The dot denotes the number of differentiations with respect to time, thereby describing the 

acceleration and velocity. In the following, the procedure is only described for the vertical motion. 

Description of (3.3) are now done by use of the aerodynamic derivatives introduced by [Scanlan 

1978]. In its original form, 18 derivatives are introduced. There are three load terms, described by 

three velocity and three deflection terms. The terms containing the accelerations are considered 

negligible, since a heavy structure as a bridge, only is exposed to small accelerations. Furthermore, 

the derivatives describing the vertical displacement are considered to be of minor importance. 

[Scanlan 1978] 
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The time dependent force in (3.3) is described in more detail in the previous chapter, and is 

denoted in (3.1). By use of the assumptions of the expected flows, as described in section 3.2, the 

force F(t) is expanded. 

 ,( ) ( ) ( ) ( )m t ae ae bF t F F t F t F t= + + +  (3.5) 

where 

 Fae,b is the aeroelastic forces related to buffeting 

  

The force described in (3.5) is considered as containing all the load contributions on a bridge deck.  

Considering the forces in (3.5), the turbulence contribution to the total force, F(t), is disregarded. 

By this assuming that the contribution to the aerodynamic forces from buffeting and vortex 

shedding is negligible. An argument for this is that buffeting results in a random response, which 

can be considered to prevent the occurrence of single-mode flutter. Furthermore, the wind field 

around bridge decks, often seen high above water, is seen to have low turbulence intensity. For 
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multi-mode cases, a similar assumption can not be made, where the random forces is capable of 

contributing to higher frequency modes. It must be noted that buffeting can be included in the 

investigation, by finding the aeroelastic contributions from the turbulence in the incoming wind. 

This is an ongoing research field and is not investigated further in this report. Another effect that is 

disregarded is vortex shedding, which is possible to simulate, as shown in appendix B, by using a 

fine mesh in the flow simulation, and by controlling y+. This can be shown to be without influence 

on the flutter derivatives [Nielsen et al. 2008]. If the vortex shedding is to be implemented in the 

solution of the critical flutter wind velocity, the linear expression for the flutter condition cannot be 

used. A nonlinear approximation of the motion effects on the aerodynamic forces must be 

introduced to describe the cross-wind contributions. [Nielsen et al. 2007] [Vairo 2002] [Scanlan 

1993] [Scanlan 1997] [Diana et al. 2006] 
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4 .  BA S I C  A S S U M P T I O N S  

4.1.  INTRODUCTION 

This chapter will describe the approach taken in treating the bridge deck simulations, and thereby 

finding the critical values. Furthermore, the chapter will emphasize the assumptions made, and the 

results of these.  

4 .2 .  STRUCTURAL BEHAVIOR OF THE GREAT BELT BRIDGE 

As the aerodynamic derivatives are used in describing the motion-induced forces, knowledge of the 

bridge’s structural behavior is essential, since the response of any structure are dependent on 

parameters such as mass, stiffness, form of deflection and the natural frequencies, as described in 

the governing equations in the previous chapter. The main structural components of a long 

suspension bridge can be seen on Figure 9. 

Bridge deck

PylonMain cables Hanging cables Anchor block

Main spanSide span Side span  

Figure 9: Main structural components of a long suspension bridge. 

As seen in the previous chapter, the bridge is simplified to a simple 2-dof system. By doing this, it is 

important to include all the vibrating masses from the entire construction. The response of the 

section model is not just described by considering the small section, but must be done by taking the 

whole bridge into account, including deck, cables and pylons. For example, the vibrating cables are 

of major importance to the modal masses. Furthermore, the modal load must also be introduced, 

but when considering a small mid section for the lowest symmetrical modes, where the value of the 

mode shapes are close to one, the modal size of the load are of smaller importance. 

Besides the modal mass and load, a precise description of the natural frequencies of the bridge is 

essential in determining the correct critical wind velocities for flutter, since the relation between the 

vertical and torsional frequency are of great importance to the energy transfer essential for the 

phenomenon.  
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This report focuses on flutter mode 1, and a multi-mode analysis is not performed. In flutter mode 

1, only the lowest modes are relevant. As mentioned previously, the problem is solved by use of the 

aerodynamic derivatives, where the drag components are removed. It is noted, that for suspensions 

bridges with spans above 1 km, the horizontal deflections becomes significant, and should be 

included in the investigation [Hansen and Dyrbye 1997]. In this report, only the vertical and 

torsional modes are considered.  The simplest lowest modes are that of the 1. symmetrical and 1. 

asymmetrical mode for both vertical and torsional movements. The modes are seen on Figure 10. 
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Figure 10: The lowest vertical and torsional modes for the bridge. Free interpretation after 
[Hansen 1996] 

As mentioned in appendix A, the coupling between the vertical and torsional modes is of 

importance. Coupling between symmetrical modes are more likely to occur when these have their 

largest deflections at the same part of the bridge deck, and symmetrical modes are not likely to 

couple with asymmetrical modes. For example, by considering Figure 10, the lowest symmetrical 

vertical mode, will have its largest deflections, where the first asymmetrical torsional mode have its 

smallest vibrations. The coupling coefficient between the two lowest asymmetric modes shown in 

the figure is found to 0.79, and the mode coupling coefficients in flutter mode 1 are close to one. 

[Hansen 1996] [Hansen and Dyrbye 1997]  

4 .2 .1 .  STRUCTURAL ASSUMPTIONS 

As mentioned in the introduction of this report, the bridge is treated at two different stages: during 

construction and when fully erected. The numerical simulations utilize the symmetry conditions 

around the centre of the bridge. When analyzing the bridge during construction, the numerical 

model moves as a rigid body. This has been done to reproduce the results found by the section 
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model tests in the wind tunnel. To ensure that the right input parameters are used and to interpret 

the results in the correct way, it is here described which parameters are used in both the 2d and 3d 

case, and how the wind load is treated. 

2-dimensional bridge section 

To calculate the critical flutter wind velocity for the fully erected bridge, a mid section is considered. 

The calculated critical velocity is therefore the value at which this section goes into flutter. As seen 

in Figure 10, the deflections for the symmetrical modes, used in flutter mode 1, has its maxima at 

the middle of the bridge deck, and is therefore exposed to the largest motion-induced wind loads. 

The parameters used in the calculation are found as the modal mass for the completed bridge. As 

mentioned earlier, it is essential that the modal mass is introduced, to ensure that the energy 

dissipation, from the movements of vibrating cables and other structural components of the bridge, 

is found correctly. Furthermore, to use the formula, described in appendix A, the generalized wind 

load must also be found. The modal load is assumed to be close to identical to the measured wind 

load, based on the assumption made earlier, that the mode shape has a value close to one in the mid 

section considered. Using the measured value of the wind load directly is therefore assumed to be a 

good approximation. The results of the modal analysis of the fully erected bridge, used in the 

calculation of the critical flutter wind velocity, are seen in Table 1. 

Table 1: Constants used in determining the critical flutter wind 
velocity and the flutter frequency for the completed bridge. 
[Hansen 1997] [Hansen 1996] 

Modal mass per unit length [kg/m] 19.562 

Modal mass moment of inertia [kgm2/m] 2.342.626

Natural vertical frequency [Hz] 0.0985 

Natural rotational frequency [Hz] 0.2549 

Width of the deck [m] 31 

Density of air [kg/m3] 1.185 

Structural vertical damping ratio 0.01 

Structural rotational damping ratio 0.01 

 

The damping ratio used includes structural damping and the aerodynamic damping from the 

aerodynamic forces on the cables. [Hansen 1996] 

The section is treated as a rigid body in the simulation, thereby not considering the deflection of the 

bridge deck itself. The deflection is considered small compared to the much larger vibrations of the 

bridge, and therefore assumed to have only a small effect on the motion-induced wind loads.  
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3-dimensional bridge section 

The 3-dimensional case is the bridge during construction. Two methods can be used in erecting the 

bridge. Transport limitations normally dictate the length of the bridge deck sections, so the major 

difference is found in the starting point of the erection. From a structural point of view, only two 

starting points are relevant to use, to ensure a symmetric load distribution. The two starting points 

are illustrated on the figure below. 

A BB

 

Figure 11: Erection starting points.  

As seen on the figure the two starting points are A: starting from midspan, and B: starting from the 

two pylons. Start point A relies on the increase in rotational stiffness from the cables. In general, 

the stiffness of the structure in the early erection phases can be solely ascribed to the cables, since 

the stiffness of the bridge deck is relatively small. The separation of the lowest vertical and torsional 

frequencies is important to the developing of flutter. The separation is expressed by the frequency 

ratio, γω, As described in appendix A, a large frequency separation will lead to a large critical flutter 

wind velocity, since the energy transfer in the coupled flutter mode is dependent on the energy 

transfer between the vertical and torsional mode. This transfer is at its highest when the torsional 

frequency is only slightly larger than the vertical. Based on this, it must be concluded that a large 

frequency separation in the erection sequence is desired.  

For case A, the stiffness of the dynamic system is mainly originating from the cables which 

contribute a great deal to the modal mass. The vertical frequency of a bridge deck erected from the 

middle can be seen to be close to constant, due to a proportional increase in both mass and 

stiffness. The relation between the mass moment of inertia and the rotational stiffness will increase, 

thereby resulting in an increasing natural rotational frequency. This is illustrated on Figure 12.  
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Figure 12: Principal sketch of the rotational and vertical frequency as 
a function of the erected length. [Hansen and Dyrbye 1997] 

The frequency separation, seen in the figure, is the reason for the increasing critical flutter wind 

velocity for a longer bridge deck. This is not investigated further in this report, but can be seen in 

[Hansen 1996].  

For case B, the torsional stiffness is ensured by the pylon, on which the bridge deck is supported. 

The deck does not rest on the pylon, but is mounted by use of brackets providing a rotational 

support [Thorbek 2008]. When extending the bridge deck towards the midspan, the rotational 

stiffness of the bridge deck will decrease, proportional to the length, thereby reducing the critical 

flutter wind velocity, as a result of the frequency separation decreasing. Often, the critical flutter 

wind velocity found for this case, is smaller than the one found for case A. In general, the most 

important difference between A and B, is that the modes considered for case A, will result in the 

wind load being converted to kinetic energy in vibrating cables to a larger extend then in case B. 

This has a stabilizing effect. Considering the cables are therefore of great importance when 

considering flutter in large suspension bridges.  

Sometimes a combination of the two erection sequence strategies is used. A great advantage in this 

case, is that the bridge deck mounted in the cables around the pylons will increase the mass of the 

dynamic system, and thereby increasing the modal mass of the bridge deck mounted in the 

midspan, considering that this is dependent on the induced wind load being converted into kinetic 

energy of the cables, as mentioned previously. This will lead to a higher rotational frequency, 

resulting in a higher frequency separation. This report focuses on erection method A which was 

used when erecting the Great Belt East Bridge. 

The mode shapes for the 3-dimensional case are, since the bridge deck has yet to be erected, 

dominated by the main cable movements. Approximating it by the two lowest symmetrical modes, 

as seen on Figure 10, is a possibility, but [Hansen and Dyrbye 1997] has calculated the cable 
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movements for when 20 % of the bridge deck is erected. The movements of the main cables can be 

seen in Figure 13. 

 

Figure 13: The movements of the main cables in the main span for the lowest relevant symmetrical mode 
shapes for both vertical and torsional movements. The solid line illustrates the neutral position. 
The length of the critical bridge length is marked [Hansen and Dyrbye 1997] 

As mentioned in the beginning of the report, an erected length of bridge deck of 249 meters is 

critical, resulting in the lowest critical flutter wind velocity. The bridge deck length is marked on 

Figure 13. The Great Belt Bridge was erected, by hoisting a 57 meter long center section up, and 

thereafter mounting 48 meter sections on each side, one at the time. The 249 meter long bridge 

deck can then be illustrated as shown on Figure 14. [Thorbek 2008] 

 

Figure 14: Principal sketch of 249 meters of erected bridge deck. 



 24 

A picture of the Great Belt Bridge at this stage of erection can be seen on Figure 15.  

 

Figure 15: Illustration of the Great Belt Bridge with 
249 meters of erected bridge deck. 
[Frandsen 2003] 

Is it assumed that the mode shape for a 20 % completed bridge, is almost similar to the case where 

249 meters are completed, corresponding to approximately 15 %.  By considering Figure 13, the 

variation of the mode shape, in the interval considered, a rather small, thereby minimizing the error 

made by treating this as a section with constant mode shape. Still, it is of critical importance to 

separate modal and actual masses in the calculations, as these are critical to the determination of the 

correct critical flutter wind velocity. By use of the same assumptions as for the 2-dimensional case, 

the modal load is assumed close to the measured wind load. The mid section will deflect, as seen in 

principal on Figure 14, but the magnitude of this deflection is considered small compared to the 

much larger bridge vibrations. The section is therefore treated as a rigid body.  
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The results of the modal analysis are seen in Table 2. 

Table 2: Constants used in determining the critical flutter wind 
velocity and the flutter frequency for a bridge under 
erection. [Hansen 1996]  

Modal mass per unit length [kg/m] 33.400 

Modal mass moment of inertia [kgm2/m] 6.724.000 

Natural vertical frequency [Hz] 0.109 

Natural rotational frequency [Hz] 0.135 

Width of the deck [m] 31 

Density of air [kg/m3] 1.185 

Structural vertical damping ratio 0.01 

Structural rotational damping ratio 0.01 
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5 .  E VA LUAT I O N  O F  T H E  2 D -
S I M U L AT I O N  R E S U LT S  

5.1.  INTRODUCTION 

This section describes the procedure for determining the aerodynamic derivatives and the critical 

flutter wind velocity. The results are compared to wind tunnel measurements. The procedure is 

based on the forced oscillation technique. By use of the simulation described appendix B, it is 

possible to find the aerodynamic forces on the bridge deck caused by the motion-induced forces. 

This is explained in section 3.3. The simulation is performed by use of Ansys CFX, using a SST 

turbulence model, with 20.954 nodes and 15.168 elements. The general equations behind this 

program are described in appendix C.  

The dimensionless time step, defined in (5.1), is equal to *tΔ =0.05 for all simulations. The 

turbulent kinetic energy and the specific dissipation rate, as mentioned in appendix C, is defined so 
that the kinematic eddy viscosity is of the magnitude 1210Tν

−∼ . This is done to ensure that the 

Reynold’s number, Re, defined in (5.1), is primarily dependent on the molecular kinematic viscosity, 

ν , which ensures the desired turbulent flow.    

 
*

Re
T

UL

tUt
W

ν ν
=

+

Δ
Δ =

 (5.1) 

where 

 L is a characteristic length 

  

5 .2 .  THE FORCED OSCILLATION OF THE BRIDGE DECK 

The amplitudes of the rotational and vertical motion are chosen as 2 meters and 5○ and 10○ for 

translation and rotation respectively. The motion is harmonic as shown in Figure 16.  The rotation 

is defined as positive clockwise and the translation is positive upwards as shown in Figure 16. 
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Figure 16: Harmonically varying rotation, with amplitude of 10○. T=31 s. as used 
in one of the simulations. 

5.3.  LIFT AND MOMENT ON THE BRIDGE DECK 

As explained in section 3.2.4, the vertical and rotational motions induce a load on the structure. By 

integrating the pressure and wall shear forces, the total load on the structure can be calculated. The 

force is expected to be harmonic with the same frequency as the motion, but with a phase shift. For 

a section of length 1 meter the lift and moment forces for a rotational movement can be found to 

the values shown on the figures below. The rotation starts from rest and moves anti clockwise. The 
mean velocity in the simulation is chosen as 10 m

s . This leads to a reduced velocity of 10, defined by 

 2
r

UU
W
π
ω

=  (5.2) 

where 

 Ur is the reduced velocity m
s⎡ ⎤⎣ ⎦  

 ω is the circular frequency of the motion [s-1] 

 W is the width of the bridge [m] 
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Figure 17: Lift and moment forces for the bridge deck. 

The lift and moment coefficients for the rotation, seen in Figure 16, are shown on Figure 18. 

 
Figure 18: Lift and moment coefficient for a moving deck. The motion pattern is described by the 

arrows. The curvature of the path is discussed further in section 5.3.2.  
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5.3 .1 .  STATIONARY FORCE COEFFICIENTS 

The previously described load coefficients can be seen to be strongly dependent on the motion 

pattern. To investigate the difference from a stationary bridge, a calculation of the force coefficients 

are performed. This is done to avoid the effects from the motion. The lift coefficient for a 

stationary condition, when the deck is rotated 10 degrees anti-clockwise can be seen in Figure 19. 

The solution is stabilized after approximately 20 s. The  

 
Figure 19: Stationary solution for the lift coefficient, when the bridge deck is rotated -10 ۫. 

By performing a series of stationary solutions, the following relationship between the force 

coefficients and the rotation can be found.  

 
Figure 20: Stationary solutions for CL and CM. 
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It is seen that the used bridge deck geometry results in a rather high lift coefficient compared to 

Reinhold data and other sources [Morgenthal and McRobie 2000]. This can be partially ascribed to 

the mesh generation used in the 2d simulation, where only one element is used over the length of 

the section, thereby not allowing any flow in this direction, creating what can be best described, as 

an enhanced tunnel-flow around the element. A better estimation of the lift coefficients could be 

found by use of a large eddy simulation.  

5 .3 .2 .  VARIATION OF LIFT AND MOMENT DUE TO SEPARATION 

As seen in Figure 18, the variation in the load coefficient is significant, as expected due to the 

motion.  However, a small deviation occurs around a rotation of -3◦. This is seen to be caused by a 

sudden change in pressure, caused by a sudden change in the flow condition. The results of this can 

be seen on the moment force, around 62.5-65 seconds, as shown in Figure 21.  

 

Figure 21: Detail of moment around 62.5-65 seconds. 

To clarify the reason for this change, the pressure around this interval is investigated. A contour 

plot of the pressure for three time steps in this interval can be seen on Figure 22.  
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Figure 22: The pressure around the bridge deck in Pa, for time steps 62.775 s, 63.55 s and 
64.325 s. A counter clockwise rotation of the bridge deck is ongoing.  
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The following remarks can be made of the pressure condition. 

• A pressure, resulting in an upwards force, is acting on the leading edge of the deck. The 

pressure field is, even though it is decreasing, still positive in the three time steps. 

• A vortex moving right along the top of the deck is resulting in a negative pressure. This is 

acting opposite the pressure at the leading edge.  

• An almost evenly distributed negative pressure field is acting on the bottom of the bridge 

deck. The pressure field is increasing in size due to the counter clockwise rotation, but the 

contribution to the moment is considered to be rather limited.  

By considering these three dominating effects on the bridge deck, the unexpected change in the 

moment, can be seen to be a result of the vortex moving right on the top of the deck. When this is 

shed from the deck, an increase in the (positive) moment is seen on Figure 21. A similar effect can 

be shown to be the reason for the change in lift. 

5 .4 .  AERODYNAMIC DERIVATIVES 

The following sections will describe the calculation of the aerodynamic derivatives (AD´s), which 

are derived in appendix A. The center of attention is on the overall procedure, and not the specific 

results and use of the formulas, as this merely is a mathematical expression for the modal 

parameters. The formulas for the determination of the six Ads’ are repeated in(5.3). 
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 (5.3) 

[Hansen and Dyrbye 1997] 

5 .4 .1 .  PARAMETERS USED FOR DETERMINING THE AERODYNAMIC 
DERIVATIVES 

As seen in appendix A derivations and the formulas above, the determination of the amplitude and 

phase of the load relative to the motion are the substantial parameters in the determination of 

AD’s. Since the motion, for both rotation and translation, is fully known, the focus must be on the 
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motion-induced wind load on the bridge deck, in search of the load coefficients, which act 

harmonically with the same frequency as the motion, and the phase difference between motion and 

load. This is done by use of a Fast Fourier Transformation analysis (FFT). To cut off the unstable 

data in the beginning of the time series, a period of the motion is removed. It is then possible to 

perform a FFT-analysis on the data in time domain, converting this to amplitudes in the frequency 

domain. The assumption for deriving the formulas above is that the motion-induced wind load has 

the same frequency as the motion itself. This can be verified, when looking at the frequency 

domain. The frequency domain for the lift coefficients for the case with a reduced velocity of 10 is 

shown for the load coefficients in Figure 23. 

 
Figure 23: Frequency domains for lift and moment coefficients for a reduced velocity of 10.  

As can be seen on the frequency domains two distinct load amplitudes are found at a frequency of 

0.0315 Hz. This is the dominating motion-induced wind load. The frequency of the motion is 

found from a period of 31 s, to 0.0323 Hz. The small deviation between the motion and load 

frequency, less than 2.5 %, can be minimized by increasing the extent of the FFT-analysis, but with 

a corresponding increase in calculation time. For example by introducing a data filter. As the 2d-

case is not the focus area of this report, as well as Fast Fourier Transformation, this is not 

investigated further. The number of FFT-points used in this analysis is chosen as the smallest 

power of two that is greater than or equal to the number of data points, since an FFT operation is 

more efficient when the sequence length is an exact power of two [Zill and Cullen 2001]. The 

pressure variations, due to phenomena as shown in Figure 22, can be seen in the frequency domain 

as small variations in the load coefficients, especially evident after 0.05 Hz.  
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By considering the formulas in (5.3), the last unknown is the phase shift ψ, which can be found 

with the time interval between the motion and the load as shown in Figure 24.  

 
Figure 24: Normalized rotation, lift force and moment for illustration of the phase shift for the case 

with a reduced velocity of 10. 

The motion and load are correlated as expected, as a positive rotation (clock wise) results in a 

positive moment and an upward lift, cf. the definition sketch in Figure 8. The phase shift is found 

by use of a zero down-crossing analysis. The time interval found in this particular case is 

approximately 1 s for the lift and 0.3 s for moment. The phase difference is converted from time 

interval to radians as 

 2 t
T
πψ ⋅Δ

=  (5.4) 

where 

 Δt is the time interval [s] 

5 .4 .2 .  RESULTS 

The previous section gave a short introduction on how to find the parameters used when 

determining the AD´s. This section will consider the AD´s calculated. The results are evaluated by 

comparison with wind tunnel tests. Since the focus of this report is not on the 2d case, it is chosen 

to centre the attention on considering which parameters, effects etc. are dominant in the 

calculations, so that the conclusion can be extended to the 3d case.  
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By evaluating the results it is evident that the needed parameters for different simulations, especially 

at high incoming wind velocities, become unstable, not necessarily wrong, when considering their 

usability in (5.3). This is described in detail later in this section. In general, two different principal 

simulations have been performed, when finding the AD’s for different values of the reduced 

velocity defined in (5.5).   

2
r

UU
W
π
ω

=    (5.5) 

The two variables in (5.5) are identified as the wind velocity, U, and the frequency of the motion, 

ω. Another parameter, which can be controlled, is the amplitude of the motion, as seen in (5.3). To 

different simulation types are performed by altering these variables: 

• Constant frequency of motion: Control of the reduced velocity, Ur, is done by use of the 

velocity U. The amplitude of this case is ± 10 degrees for rotation and ± 2 meters for 

translation. 

• Constant velocity: Control of the reduced velocity is done by use of the frequency of 

motion. The amplitude of this case is ± 5 degrees for rotation and not investigated for the 

case with vertical motion.  

The reason why the amplitude of the rotation and velocity is lowered is due to unstable results, for 

the AD’s, seen later in this section. 

 Aerodynamic derivatives found by use of a rotation 

The AD’s H2, H3, A2 and A3 are found by use of a rotational motion of the bridge deck. The 

results can be seen in Figure 25 to Figure 28. The unstable results, occurring at reduced velocities 

above 9, are easily seen in the figures. The reason for this is expected to be the high wind velocity 

and an extreme rotation of the deck, which is expected to create severe turbulent flow conditions 

around the leading edge of the bridge deck when this is rotated close to its maximum. This can be 

seen in Figure 18 where it is possible to see a change in the lift force around the maximum rotation, 

in a similar way that the moment changes around -3○ which is explained in detail in section 5.3.2. By 

reducing the amplitude of the rotation, and using a lower constant velocity, thereby controlling the 

reduced velocity by use of the frequency of motion, the severe flow conditions are reduced, and the 

results are seen to stabilize, with a clear tendency. Further adjusting of the simulation for the 2d 

case is not the purpose of this report, and the reasonable results obtained are accepted. The 

calculated data is compared to the data from [Hansen 2008]. 
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Figure 25: H2 as function of the reduced velocity. 
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Figure 26: H3 as a function of the reduced velocity.  
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Figure 27: A2 as a function of the reduced velocity. 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

U r

A
3
*

Wind tunnel tests Fit - wind tunnel tests

Present work (frequency constant) Present work (velocity constant)

 

Figure 28: A3 as a function of the reduced velocity.  

Aerodynamic derivatives found by use of a translation 

The AD’s for the translation are H1 and A1. The results are seen in Figure 29 and Figure 30. It can 

be seen that the results are stable with a clear tendency. This supports the conclusion made 

previously that the instability is caused by severe turbulent flow conditions around the leading edge 

of the bridge deck, which is more likely to occur when this has large rotational amplitude in a 

strong incoming wind.  
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Figure 29: H1 as a function of the reduced velocity.  
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Figure 30: A1 as a function of the reduced velocity. 

Critical velocity and flutter frequency 

The critical flutter wind velocity is found by use of the flutter condition, derived in appendix A. 

The condition describes a multivariate, non-linear system, which is to be solved for the flutter 

frequency, and the critical flutter wind velocity. As seen in appendix A, the AD’s are dependent on 

the reduced frequency K, and thereby the reduced velocity Ur. To solve the system, it is chosen to 

fit the AD’s to a function of Ur.  
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By use of a third order polynomial, and the least square method, the AD’s are fitted as seen in the 

figures below. The data are only fitted in the simulated range, and is not extrapolated. 

  
Figure 31: AD’s fitted by use of a third-order polynomial. 

The constants for solving the flutter condition are found by use of a modal analysis, by which the 

natural frequencies are determined. The values used are listed in Table 1 in section 4. By inserting 

the values in the flutter condition, and solving the system for when the imaginary part is equal to 

the real part, the solution can be illustrated as seen in Figure 32. The solution which gives the 

lowest value of the critical velocity is of interest. It is noted that the solution lies in the interval of 

the found AD’s and no extrapolation is needed. 
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Figure 32: Illustration of the solution of the critical flutter wind velocity Uc, at the flutter 

frequency, found by Ωc. 

The intersection point in Figure 32, (Uc, Ω), is found to (12,752; 1,847). The critical velocity and the 

flutter frequency are then found by use of equation (5.6) 

 2 2c c
cr

u c

U U
W W

π π
ω ω

= Ω  (5.6) 

[Hansen and Dyrbye 1997] 
Table 3: Critical values for flutter from selected references. 

Reference Critical flutter wind velocity 

Uc [m/s] 

Flutter frequency  

nc [Hz] 

Present work (two modes) 71,9  0,1819 

[Nielsen et al 2007] (two modes) 68,8 0,1833 

Wind tunnel tests [Reinhold et al. 1992] 70-74 N.A. 

[Enevoldsen et al 1999] Multi-mode numerical 70-80 N.A. 

[Frandsen 2003]  65-60 N.A. 

[Awruch and Braun 2003] 73 N.A. 

As seen in Table 3, the calculations show a good agreement, when compared to other references. It 

should be noted that railings, wind screens etc. on top of the deck not are simulated. This will 

decrease the critical flutter wind velocity. Considering a multi-mode vibration, the critical flutter 

wind velocity will increase, due to the increased energy dissipation from the added modes. 

[Frandsen 2003] [Nielsen et al. 2007] 
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6 .  E VA LUAT I O N  O F  T H E  3 D -
S I M U L AT I O N  R E S U LT S  

6.1.  INTRODUCTION 

The three dimensional analysis is performed in two different ways. In section 6.3 an approach 

similar to the one used in the 2d-case is investigated. Aerodynamic derivatives are extracted from a 

forced vibration test, and the flutter equations are solved for the flutter frequency and the critical 

flutter velocity. The mesh of the domain consists of 97.683 elements and 30.374 nodes. This is 

described in appendix B mesh requirements.  

In section 6.4, a set of dynamic equations are used to model the movements of the bridge when 

subject to wind loads. This is known as a fluid-structure interaction. This method requires the 

simulation of a long period of time, which is the reason why the domain is modeled very coarse. 

The domain consists of 20.217 elements and 4.431 nodes. 

In both cases, a flow is allowed around the free end of the bridge, which results in changed wind 

loads. In general, two major differences are found from the 2d bridge section: 

• End flow effect 

• Change in modal mass and stiffness, and thereby the natural frequencies, dependent on the 

erection sequence strategies. 

The erection sequence and the approach to solve for the aerodynamic derivatives are described in 

section 4.  

6 .2 .  END EFFECT 

Besides the difference in how to treat mass and stiffness of a bridge during erection, compared to a 

finished bridge, there is also a change in flow. The flow is allowed to pass the ends of the bridge 

deck, thereby resulting in end effects. The end effect is also used when considering more typical 

structures as a freestanding wall, where a reduction in the lateral force coefficients can be seen, 

when taking the end effect into account. [EN 1991-1-4 2005] The end effect will result in smaller 

lift forces on the bridge deck, thereby increasing the critical flutter wind velocity.  



 42 

The difference in pressure for a bridge deck with the end effect can be seen on the figure below, 

where a change in pressure can be seen around the end. The change can be seen for both pressure 

and suction. This is illustrated in Figure 34. 

 
Figure 33: Illustration of the end effect on the bottom of the bridge deck, when the bridge is moving up. 

To illustrate the change in the fluctuating part of the pressure, the bridge is considered in three 

different cases:  

• The pressure on the inner part of the bridge, where no end effects are present 

• The outer 15 meters of the bridge, where the end effect is dominating 

• The two parts combined, which is the case used in the flutter calculations 

 
Figure 34: Fluctuating pressure for a translating bridge, calculated for three different cases. 

As seen in the figure, the reduction in pressure and suction, when allowing flow around the free 

end of the bridge, is evident. The difference in lift force is dependent on the slenderness of the 
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bridge, where a small slenderness ration will result in the largest pressure reductions. This is also the 

case for other structures, exposed to end flows. [EN 1991-1-4 2005] 

6 .3 .  RESULTS OF THE 3D FORCED VIBRATION TEST 

As mentioned in section 4, the frequency separation is much smaller, compared to the 2d case, and 

this result in a much lower critical flutter wind velocity. The necessary values for calculating the 

critical flutter velocities are seen in Table 2 in section 4. The coupled flutter mode is found by use 

of the 1. symmetric vertical and rotational mode. 

The solution of the flutter condition for the real and imaginary part is seen on Figure 35. 
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Figure 35: Illustration of the solution of the critical flutter wind velocity Uc, at the flutter frequency, 

found by Ωc. 

By use of the critical reduced velocity and the flutter frequency, the critical values can be found in a 

similar way as it was done for the 2d case. The two values are found as (Uc, Ωc), (12.898;1.09175).  

The critical values are compared to [Hansen 1996] in the table below. A difference of less than 14 

% is found, which is acceptable.  
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Table 4. Critical flutter wind velocities for the bridge during erection.  

 Critical flutter wind velocity [m/s] Flutter frequency [Hz] 

Present work 47,6 0.119 

[Hansen 1996] 43,3 N.A. 

6 .4 .  FLUID STRUCTURE INTERACTION 

In the present chapter it is described how an interaction between the movements of the bridge and 

the fluid flow can be modelled. The aim of the exercise is to determine the critical flutter velocities 

of the bridge profile in a similar way as when working in a wind tunnel. The wind tunnel technique 

is described in section 2.3. In theory, a perfect FSI is able to simulate the exact behaviour of the 

system, and more detailed knowledge of the movements of the system, prior and after the critical 

velocity is reached, are therefore made available. 

 
Figure 36: The three dimensional model of the bridge in the virtual wind tunnel. 

In the following, the dimensions of the fluid domain, shown in Figure 36, are the same as described 

in appendix B. The meshing however is far coarser, to reduce the calculation time.  
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The formulation of the bridge itself is described in the present chapter. Two different formulations 

have been used in the attempt to describe the movements of the bridge deck. These are respectively 

a finite element model, generated in Ansys 11, and a rigid body motion generated in CFX by the 

use of CFX Expression Language, CEL. In the following these two methods are described, and the 

results are presented. 

6 .5 .  FSI BY FINITE ELEMENT MODELLING 

In order to model the two lowest eigenmodes correctly, as described in section 4.2, a finite element 

model of the bridge deck can be employed. Ansys 11 has a built-in tool for structural analysis, 

which is used in this part of the FSI-modelling. In the construction phase, the vertical stiffness of 

the bridge deck is not yet established. This is a result of the method used when joining two bridge 

sections. Only a few hinges connects the bridge sections, allowing rotations, but not relative 

torsional movements. In theory, a full finite element model may be used in order to simulate the 

correct frequencies, mode shapes and modal masses. However, in this project the lowest 

frequencies and modal masses have been provided by [Hansen 1996]. These are values for the 

bridge when five sections have been attached – a total of 249 metres. The mode shapes have not 

been provided. It is therefore assumed, that the first symmetrical vertical mode shape follows the 

free cable movements as described in section 4. By the use of symmetry around the centre of the 

bridge, the mode shape is approximated by  

 
( ) ( )

3 2

1 3 22 3 1
2 2

z z
L L

Φ = − +
⋅ ⋅

 (6.1) 

where 

 nΦ  is the nth mode shape 

 z is the coordinate 

 L is half of the length of the erected bridge. 

The approximated mode shape prescribes a movement as shown in Figure 37, where the vertical 

movement at the centre of the bridge is twice as large as at the free end.  
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Figure 37: Approximation to the first symmetric vertical eigenmode. 

The construction of an element model, which results in the correct frequencies and modal masses, 

can be done by the following steps: 

• Determination of the mass per unit length, μ  from the provided modal mass and the 

approximated mode shape. This is done by solving the formulation of the modal mass, as 

done in (6.2). 
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where 

 μ  is the mass per length 

 mn is the nth modal mass 

• Determination of Young’s Modulus from the formulation of the modal stiffness, as done 

in (6.3) . 
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where 

 ik  is the modal stiffness 

 nω  is the nth cyclic eigenfrequency 

 E is Young’s Modulus 

 I is the second moment of area around the length axis of the bridge. 
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The values of μ  and E are assigned to the model of the bridge and the boundary conditions are 

applied. The boundary conditions at the line of symmetry allow vertical movements and a rotation 

around the z-axis. The boundary conditions at the free end allow all movements except a rotation 

around the y-axis and a horizontal movement in the x-direction. Four springs are attached as shown 

in Figure 38. 

 
Figure 38: Structural setup for the bridge deck 

The spring constants are adjusted so the frequency of the first vertical mode shape is correct. This 

can be done by iteration. In the present simulation a suitable set of spring constants were found by 

four or five iterations. Hence, the first vertical symmetrical mode shape is shown in Figure 39, 

which is the result of a modal analysis in Ansys. 

 
Figure 39: First symmetric vertical mode shape. 

The modal mass of this mode shape should automatically be near the provided value. This may be 

validated by Ansys, and the mass of the bridge can be slightly adjusted to get the correct value. This 

naturally affects the frequency, but again an iteration of a few steps will provide a good result. The 

provided frequency is n1=0.109 Hz, and the frequency found in Ansys is n1=0.108 Hz. The first 

symmetrically torsional mode shape and eigenfrequency is adjusted, by moving the springs closer 

to- or away from the centerline of the bridge. As the bridge deck attains the torsional stiffness 
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immediately during construction the mode shape is assumed to be one over the entire length. The 

mode shape is shown in Figure 40. 

 
Figure 40: First symmetrical torsional mode shape. 

The modal mass of this mode shape can be adjusted by adding rotational point masses between the 

springs. 

The bridge deck is set as a Fluid Structure Surface in Ansys, which allows the loads from the fluid 

domain to be transferred to the structure. Iteration between the structural and the fluid solver 

performs the actual fluid structure interaction. 

This method has not been used in this project, due to programming problems. A structural model 

has been built and analysed in Ansys. In this part of the process, no problems were experienced, 

but when the loads from the fluid domain were imported an error occurred. The error was related 

to the constraints of the bridge deck. The method worked well, when the constraints were changed 

so the bridge was fixed at the centre line. This however does not provide the correct mode shape, 

and the method is therefore not used. 

6 .6 .  FSI BY CFX EXPRESSION LANGUAGE 

As described in section 2.3, a rigid body motion of the bridge deck can be a good approximation to 

the real movements of the bridge during construction. This approximation has been adopted in the 

wind tunnel tests, carried out in the design phase of the Great Belt Bridge. These wind tunnel tests 

were performed on a rigid section model of the bridge deck where the stiffness and damping were 

modelled by springs outside the section. A rigid body formulation in two degrees of freedom forms 

the basis of a FSI by CEL. The formulations for the two degrees of freedom are given in (6.4). 
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where 

 m is the modal mass for the first symmetrical vertical eigenmode 

 I is the modal mass moment of inertia for the first symmetrical torsional eigenmode 

 u is the vertical degree of freedom 

 α  is the rotational degree of freedom 

 1ξ  is the damping ratio of the first symmetrical vertical eigenmode 

 2ξ  is the damping ratio of the first symmetrical torsional eigenmode 

 1ω  is the circular eigenfrequency of the first symmetrical vertical eigenmode 

 2ω  is the circular eigenfrequency of the first symmetrical torsional eigenmode 

 F1 is the lift on the bridge deck 

 F2 is the moment on the bridge deck 

These general equations of motion can be discretized to express updated values for the two degrees 

of freedom when the forces on the bridge deck are calculated. In the following, the vertical 

movement is used as an example.  The acceleration u��  is discretized in (6.5). 
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The updated value for the velocity 1nu +�  is found similarly in (6.6). 
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These updated values are inserted into (6.4). 
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The updated value for the displacement 1nu +  is the only unknown and can therefore be expressed 

explicitly. This is shown in (6.8). 
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A similar formulation for the rotation can be found for the rotation degree of freedom. The 

simulation is initialized by a prescribed vertical movement of the bridge deck to a position of 

2u m= − . No initial rotation has been applied. After the initial movement has been reached, the 

bridge deck is released and the displacement is found by (6.8). The harmonic oscillating movements 

of the bridge deck will have decreasing amplitude if the wind speed is below the critical flutter wind 

velocity. If the amplitudes of the motion are increasing, the wind speed has surpassed the critical 

flutter wind velocity. Only in the unlikely event, that the exact critical flutter velocity has been 

applied, the bridge deck will perform an oscillating movement of constant amplitude. 

6 .7 .  VALIDATION OF THE STRUCTURE MODEL 

The formulation of the dynamic system may be validated in Ansys, by applying an initial 

displacement and then releasing the structure. In Figure 41, the vertical oscillating movements are 
plotted when the bridge is released from -10 metres with an initial velocity of -2 m

s . 

 
Figure 41: Vertical vibration of the bridge deck when given an initial displacement of -10 metres and an 

initial velociy of -2 m/s. 

The wind load on the bridge deck is set to zero in this analysis and the damping ratio is 0.01ξ = . It 

is seen, that the oscillations are damped out, but not as expected. The damping ratio can be found 

from the formulation of the exponentially decaying functions, G enclosing the harmonic motion. 

The formulation is given in (6.9). 
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 0tG Ae ξω−= ±  (6.9) 

which is the time dependent amplitude of the general motion of a damped system, as seen in (6.10). 
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“0” denotes initial values, and the dot is the number of time derivations. 

[Nielsen 2004] 

The damping ratio is found to be 0.025ξ = , as seen in Figure 41, which is somewhat larger than 

expected. The numerical integration scheme used in this simulation is a first order backward Euler 

algorithm, with a time step of 0.044 s. A Newmark algorithm has also been tested, with the same 

result. It is, however, believed that the solution algorithm is part of the reason for the energy 

dissipation from the system, which is not unusual in many numerical integration schemes. [Nielsen 

2005] notes that damping in a Newmark algorithm requires extremely small time steps. The 

programming in CEL may have some error, which needs to be investigated further if the results are 

to be used.  

The modelling of the natural frequencies is of the highest importance when simulating flutter. In 

the vibration test the frequency is found by FFT. A normalised single sided frequency spectrum is 
shown in Figure 42. It can be seen that the natural frequency of 0.109 Hzn = is dominating. 
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Figure 42: Normalized single sided frequency spectrum of vertical vibration test 

A similar vibration test can be performed for the rotational degree of freedom. The results are 

similar for this case: A correct frequency is modeled, but the damping is too high. 

6 .8 .  RESULTS OF THE 3D FSI ANALYSIS 

The critical flutter wind velocity for the bridge under construction, found by the use of the forced 
vibration test, as shown in section 5, is m

s47.6c =U  with a flutter frequency of 0.119 Hz. [Hansen 

1996] has found a critical velocity of m
s43.3c =U .  A range of FSI-simulations around these 

velocities have been performed, in order to compare the two methods.  It is found that flutter 

occur at a lower velocity than expected, probably as a result of a problematic system. The 
oscillation amplitude for 20 and 25 m

s  are seen in the figure below. The critical flutter wind velocity 

is expected to be found in this interval, due to the diverging oscillations for the simulation with 25 
m
s  compared to the more stable, but slightly decaying oscillations, for 20 m

s . As a higher damping 

results in a higher critical flutter wind velocity, it must be concluded that the problem relating the 

solution of the system, not only is related to the damping ratio. Furthermore, the FSI also permits 

other aeroelastic phenomena as single-mode flutter and galloping, which also may influence the 

results. 
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Figure 43: Vertical and rotational movements for 20 m

s  and 25 m
s . 

For the case with an incoming wind of 25 m
s , the frequency of the oscillations are found to 

approximately 0.122 Hz, which is close to the calculated flutter frequency, and is in between the 

vertical and rotational natural frequencies of 0.109 Hz and 0.135 Hz, respectively.  

As seen in the flutter condition, the critical flutter wind velocity is dependent on the frequency 

separation, and a high frequency separation will lead to a high critical flutter wind velocity. The 

damping also has a positive effect on the critical velocity, as mentioned previously, and shown in 

Figur 44.  
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Figur 44: The influence of frequency separation and damping on the critical 
flutter wind velocity. The dotted lines show the energy 
dissipation per vibration period and the solid lines the input. 
[Hansen and Dyrbye 1997] 

To illustrate the importance of the frequency separation, the FSI-calculations are performed for a 

higher rotational natural frequency. This leads to a frequency ratio, γω, on 4.59, compared to the 

real value of 1.24. The influence this has on the oscillations is seen in Figure 45. 

 
Figure 45: The influence of frequency separation for 35 m/s in the FSI-simulation. 
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It is clearly seen that the rotational movements are decaying for the case of a high frequency 

separation. The growing vertical displacements could be created by the same effects as seen for 

galloping.   

An illustration of flutter, fully developed for a high incoming velocity, is illustrated on the figure 

below. The case of the high frequency separation is used to ensure a high critical velocity. 

 
Figure 46: Flutter, with shift in the dominating mode. 

As seen in Figure 46, the dominating mode in the flutter movements shifts from the vertical mode 

to the rotational mode, at approximately 60 s of simulation time, indicating that the rotational and 

vertical movements are uncoupled. This leads to believe that the bridge is undergoing single-mode 

flutter, initially for vertical movements, but then changing to rotational movements at t=60 s.  
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The flow in the FSI-simulation is shown in Figure 47 and Figure 48 for the case with the lowest 
frequency separation and a velocity of the incoming wind of 35 m

s .  The bridge deck is shown just 

before the oscillations increase dramatically, causing the simulation to end. 

 

 
Figure 47: The bridge deck in flutter. There is negative aerodynamic damping, due to the suction on the top of 

the deck for an upwards movement. 

 

 
Figure 48: The bridge deck in flutter, with aerodynamic damping in the case where the bridge deck is moving down.  
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A P P E N D I X  A :  A E RO DY N A M I C  
D E R I VAT I V E S  A N D  F LU T T E R  

C O N D I T I O N  

By use of the equation of motion, disregarding the dead loads by considering the system from the 

equilibrium state, [Nielsen 2004], and by performing the analysis from the aerostatic equilibrium, 

created by the load from the mean wind, the vertical system of one degree of freedom reduces to 

 aemu cu ku F+ + =  (A.1) 

Formula (A.1) thereby describe the equation of motion of a moving bridge deck, disregarding 

buffeting and turbulence, as explained in detail in section 3.3. The equation can be rewritten as 

 aeFc ku u u
m m m

+ + =  (A.2) 

By introducing the circular eigenfrequency and the definition of the damping ratio from [Nielsen 

2004], the system can be written as 

 2
0 02 aeF

u u u
m

ζω ω+ + =  (A.3) 

where 

 ω0 is the circular eigenfrequency of the system  

 ζ is the damping ratio 

 
The force, created by the self-excited bridge deck, is now described by introducing the notation 

from [Scanlan 1978]. A two-degree-of-freedom system is considered, neglecting the drag. The effect 

of the vertical displacement on the loads is also omitted. Also, the inertial coefficients for the 

vertical and rotational acceleration is assumed to be negligible, since very heavy structures, as a 

bridge deck, is seldom exposed to large accelerations, even in the case of resonance. This leads to a 

system, for both moment and lift, of three aerodynamic derivatives for both the vertical and 

rotational motion. This notation is based on the assumption of a linear connection between forces 

and the structural displacements, as mentioned previously. The equations, for both the vertical and 

rotational motions, are shown in (A.4). [Scanlan 1978] 
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2

0, 0, 1 2 3

2
0, 0, 1 2 3

2

2
u u uu u u H x H H

A x A Aα α α

ζ ω ω α α

α ζ ω α ω α α α

+ + = + +

+ + = + +
 (A.4) 

where 

 Hi, Ai are coefficients that describe the self-excited aerodynamic effects   

If all the derivatives were to be included, the system would consist of six AD’s, for each load term, 

hereby still neglecting the coefficients for acceleration. It is noted that several constants, such as the 

mass as seen from (A.3) to (A.4), is contained in the coefficients. By introducing a number of 

dimensionless variables, which also ensures an easier transfer from model to full scale sizes, the full 

equation of motion, as shown in (A.1), can be written as shown in (A.5). The equation in (A.5) is on 

a slightly different form as the one introduced in [Scanlan 1978], and results in aerodynamic 

derivatives twice the magnitude and with different sign convention. [Hansen 1997] 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
0, 0, 1 2 3

2 2 2 2
0, 0, 1 2 3

12
2
12
2

u u u
u Wm u u u U W KH K KH K K H K
U U

u WI U W KA K KA K K A K
U Uα α α

αζ ω ω ρ α

αα ζ ω α ω α ρ α

∗ ∗ ∗

∗ ∗ ∗

⎛ ⎞+ + = + +⎜ ⎟
⎝ ⎠
⎛ ⎞+ + = + +⎜ ⎟
⎝ ⎠

 (A.5) 

where 

 iH ∗ , iA∗  are the aerodynamic derivatives, for the vertical and rotational motion respectively 

 U is the mean wind velocity of the incoming wind 

The aerodynamic derivatives are functions of the motion and the incoming wind, here described by 

the reduced frequency, K. 

 WK
U
ω

=  (A.6) 

where 

 ω is the circular flutter frequency of the bridge deck 

[Hansen and Dyrbye 1997] 

Identification of the aerodynamic derivatives is possible by finding the relation between the self-

excited forces on the bridge deck, and the motion. This is done, as previously mentioned, by 

prescribing a harmonic motion to the system, and assuming that the motion-induced lift and 

moment varies in the same way. The dimensionless lift and moment coefficients are used, and here 

the reason for using the modified Scanlan notation becomes clear, when observing that the 

denominator resembles part of (A.5), when considering the length to be unity.  



 4 

 
2

2 2

1
2

1
2

y
L

z
M

F
C

U WL

M
C

U W L

ρ

ρ

=

=
 (A.7) 

where 

 CL is the lift coefficient [-] 

 CM is the moment coefficient [-] 

 Fy is the measured lift force [N] 

 Mz is the measured moment [Nm] 

 L is the length of the considered bridge section [m] 

The harmonic behavior of the system is introduced, by use of the following expressions for the 

vertical and rotational motion 

 
( )
( )

i tuu t
e

t
ω

α α

⎧ ⎫⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪⎩ ⎭

 (A.8) 

where 

 u(t),α(t) is the translation and rotation respectively  

 u ,α  is the amplitude of the translation and rotation respectively. 

 ω is the frequency 

 t is the time variable [s] 

The force, described by the moment and lift coefficient, is expected to vary in a similar way. A 

phase difference, between the motion and the load is assumed in a similar way as derived in 

[Nielsen 2004]. Equation (A.5) is then written as  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 3

2
1 2 3

L

M

i t i t
L

i t i t
M

u WC e KH K KH K K H K e
U U

WC e KA K KA K K A K e
U U

ω ψ ω

ω ψ ω

α α

α α α

− ∗ ∗ ∗

− ∗ ∗ ∗

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (A.9) 

where  

 ψ is the phase difference between the motion and load 

By inserting the function for the motion derivatives, found by use of (A.8), formula (A.9) can be 

written as 
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( ) ( ) ( ) ( )
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i t i t
M
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⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (A.10) 

Derivation of the aerodynamic derivatives, related to the lift force, is performed. Derivation of the 

ones for the moment is considered trivial.  By use of the reduced frequency, (A.10) is written as 

 ( ) ( ) ( ) ( )( )2
1 2 3

Li t i t
L

uC e K iH K iH K H K e
B

ω ψ ωα− ∗ ∗ ∗⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (A.11) 

The aerodynamic derivative 1H ∗ is related to the damping of the vertical motion, as seen in the 

formulas. It is only relevant for the vertical motion, and for this motion, α is zero, making it 
possible to define 1H ∗  as 

 1 2Im
Li

LC We
H

K u

ψ−
∗ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (A.12) 

By considering (A.11) in the case of the rotational motion, 2H ∗  and 3H ∗  is found as the imaginary 

and real part, respectively, of the same expression. 
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C e
H

K

C e
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−
∗

−
∗

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (A.13) 

In a similar way, the remaining three aerodynamic derivatives are found as 
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C We
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C e
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−
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−
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⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (A.14) 

Flutter occurs at the motion-induced wind load, created by the so called critical wind velocity, at 

which the vertical and torsional vibration couple at the flutter frequency. The flutter frequency is 
found between 0,uω  and 0,αω  and it is assumed that the vertical and rotational motion are of the 

same frequency. Identification of these two variables are done by deriving them from (A.5).  When 

the motion defined in (A.8), and the respective derivatives, are inserted into (A.5), the two 

equations take the following forms. 
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(A.15) 

By rearranging and using the reduced frequency, defined in (A.6), the equations can be written as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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 (A.16) 

For simplification, the normalized masses defined in (A.17) are introduced, and by inserting K, the 

equations are further reduced in form. Note that the normalized masses in (A.17) are introduced by 

use of the modal masses, since it is of extreme importance that the contribution from the whole 

bridge, for example the mass of vibrating cables, are included in the simplified 2-dof system. This is 

explained later in this section. 

 2 4
e e

m I
m I
W W

γ γ
ρ ρ

= =  (A.17) 
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 (A.18) 

By identifying *
2H  and *

3H   and *
2A  and *

3A  as defining a complex number, which together can be 

shown to define the damping and stiffness in the rotational motion, for lift and moment forces, 

explicitly defined in [Gu and Qin 2004], but can be derived from the equations in this sections,  

(A.18) is arranged as shown below. 
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⎝ ⎠

 (A.19) 

By dividing all parts with the circular natural eigenfrequency squared for the vertical motion, 2
0,uω , 

and introducing the following two dimensionless quantities in (A.20), the equation can be rewritten 

as shown in (A.21) 

 0,

0, 0,u u

α
ω

ωω γ
ω ω

Ω = =  (A.20) 
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 (A.21) 

It is noted, that the flutter condition, shown in (A.21), is valid only for bridge deck section, with 

constant mode shapes, assuming a coupling coefficient between the two modes of one. If the 

equations in (A.21) are to be used in a modal analysis when considering several mode shapes, 

coupling coefficients and modal coordinates must be introduced, and all masses generalized. The 

coupling coefficients are introduced on the parts, which describe the connection between the 

vertical and the rotational motion, and vice versa. This is shown in (A.22). 
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 (A.22) 

where 

 C is the coupling coefficient for the two modes considered [-] 

[Hansen and Dyrbye 1997] 

The two equations are written in matrix form. 
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⎢ ⎥⎣ ⎦

 (A.23) 

The trivial solutions of the system, where the motion amplitudes are zero, are not of interest. 

Therefore, (A.23) must be fulfilled when the matrix, A, is non-invertible, found when the 

determinant is zero. This must be fulfilled for both the real and imaginary part of the matrix, 

thereby making it possible to define two governing multivariate, non-linear equations to solve the 

system. 

 
( )( )
( )( )

Re det A 0

Im det A 0

=

=
 (A.24) 

The dimensionless variable Ω is thereby assumed to describe the flutter frequency ω, on complex 

form, written as ω1+ iω2, for which the flutter oscillation is decaying when ω2>0 and increasing for 

ω2<0. The critical flutter wind velocity is found when the oscillation is neither decaying nor 
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diverging, for ω2=0. [Hansen and Dyrbye 1997]. Solution of the system is done by finding the case 

for which the real and imaginary part intersects. The two equations are solved for both Ω and K, or 

Ur .  
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A P P E N D I X  B :  M E S H  
R E QU I R E M E N T S  

In the present chapter, the meshing strategy is discussed. It is investigated how different meshing 

techniques can be used to capture different phenomena of a flow around a sharp edged body. In 

order to start building the mesh around the bridge profile, the expected flow pattern must be 

identified. In Figure 1, a schematic flow around a stationary bridge profile is visualised. 

Stagnation
Separation

Reattachment

Build up of turbulent
boundary layer

Vortex shedding

Wind direction

 

Figure 1: Schematic flow around a bridge profile 

On the windward side of the profile, a point of stagnation is expected for a bridge at rest. On the 

first two edges the flow is expected to separate, forming two standing vortices. Due to the relatively 

large afterbody it is expected that the flow reattaches to the bridge deck. After the reattachment a 

turbulent boundary layer builds up until the end of the profile is reached. Due to the sharp edges 

on the leeward side of the profile, vortices are expected to be shed periodically forming a well 

known vortex street in the wake. 

To capture all these phenomena an extremely fine mesh structure is required. Not all phenomena 

are, however essential to the determination of aerodynamic derivatives, which is the scope of these 

simulations. In the following, the domain size and the flow phenomena in Figure 1 are commented. 

The performed analysis are all modelled to full scale, so mesh statistics can easily be compared to 

characteristic lengths of the bridge. 

B.1 DOMAIN SIZE 

The size of the domain is dictated by two contradicting requirements. One the one hand, the 

domain must be sufficiently large so the boundaries have a minimal impact on the flow around the 
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bridge profile. This means that the streamlines near the boundaries must be independent of the 

bridge profile. For the upper and lower confining walls the streamlines must be parallel to the 

boundaries. In the upstream area it is important that the flow is approximately horizontal before 

curving around the profile. In the wake a great deal of turbulence is generated. If the simulation 

must capture the full wake after the profile, an extremely large domain is required. In practical use 

the wake is normally cut off some lengths downstream from the profile.  

On the other hand, an increasing domain size will add to the computer processing time, cpu-time. 

It is found, that there is a linear connection between number of mesh elements and the cpu-time. 

The mesh used in this analysis is described in section B.7. Four simulations have been run with 

different sizes of domain, as shown in Figure 2. The mesh statistics are given in Table 1. 

2 5B B−

2 5B B−

2 5B B− 4 10B B−B

 
Figure 2: Four different sizes of the domain are analysed 

Table 1: Mesh statistics 

 4B x 7B 6B x 10B 8B x 13B 10B x 16B 

# Nodes 30.802 32.864 36.230 38.478 

# Prisms 13.961 16.007 19.362 21.586 

# Elements 22.149 24.195 27.550 29.774 

Cpu-time for last 
time step 

18,02s 19,05s 21,25s 22,75s 

The height of the domain varies from 4B to 10B, and the length varies from 7B to 16B. In Figure 3 

the cpu-time is plotted for the different domains. In the analysis the bridge profile undergoes a 

forced periodic rotation.  
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Figure 3: Cpu-time per time step for selected domain sizes. 

The importance of the domain size is evaluated by considering the global forces on the bridge and 

the phase shift of these compared to the harmonic rotation. These values are used when calculating 

the aerodynamic derivatives. Therefore a small investigation of the importance of the domain size, 

when considering these values, has been made. The deviations are found from the largest domain 

introduced. The results can be seen in Table 1.  

Table 1: Deviations in percent of the phase shift and force coefficients in four domains.  

 Phase shift, lift [%] Phase shift, moment [%] CL [%] CM [%]

4B x 7B -1.98 39.32 -18.71 -10.20 

6B x 10B -0.94 2.56 -9.28 -4.70 

8B x 13B -0.43 -5.58 -3.22 -1.60 

10B x 16B - - - - 

As expected, the smallest domain results in the largest deviation, but a significant decrease in the 

deviations are seen in the following domains. In all the considered values, except the phase shift for 

the moment for 8Bx13B, a rapid decrease is seen. This deviation can be caused by severe flow 

conditions around the leading edge of the bridge deck, when this is positioned in the maximum 

angles of rotation. This is described in more detail in chapter 5. When determining aerodynamic 

derivatives in two dimensions a domain of 8 15B B×  is used. A domain of this size has been found 

to produce good results in accordance with [Hansen 2008] and [Reinhold et al. 1992]. 
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B.2 STAGNATION 

On the front of the bridge profile a point of stagnation is expected. In order to capture this point, a 

fine mesh is required. The point itself has no further importance to the aeroelastic parameters and it 

is not easily found in a simulation. However, a refinement of the mesh in this area will capture the 

contracting streamlines and the strong velocity gradients of the wind, as it approaches the bridge. 

The mesh is refined in a radius of 10 metres from the leading edge, as shown in Figure 4, to a 

maximum size of 1 metre. This refinement is coarser than the one near the edge as described in B.5  

 

Figure 4: The mesh is refined in the area around the leading edge 

 

 

Figure 5: Stagnation and velocity gradients near the leading edge. The streamlines are 
coloured by the relative pressure 
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B.3 SEPARATION 

Strong adverse pressure gradients are expected to arise when the wind passes over the sharp edges 

on the top and bottom of the bridge.  This will cause the flow to separate from the boundary, 

forming two standing vortices. The vortex on the top side of the bridge is formed on a sharper 

edge, resembling a backward facing step. Therefore this vortex is expected more easily to be 

captured in a simulation. The meshing must be very fine around the edges, where the flow separates 

from the bridge deck. In order to resolve the vortices, the mesh must also be fine in the area behind 

the edge, where the flow is turbulent. The mesh near the boundary is dictated by the inflation layer, 

used to capture the turbulent boundary layer as described in section B.5. Above this, the mesh is set 

to a maximum size of one metre.  

 

Figure 6: Streamlines around the leading edge visualizes the vortex on the upper 
part of the bridge. The vortex is captured at an angle of attack of 8,5°, 
as the bridge is returning to horizontal in a forced harmonic vibration. 
The figure also captures the reattachment of the flow to the bridge deck. 

In Figure 6 it can be seen, that the used mesh captures the vortex very nicely. In the figure, the 

vortex is captured in a forced harmonic motion, as the bridge is returning to horizontal. No vortex 

is seen when the bridge is moving away from horizontal. 

B.4 REATTACHMENT  

After the separation on the top and bottom of the bridge profile the flow is expected to reattach to 

the surface. This is expected as the width of the bridge is larger than the vortex formed on the edge. 

The location of the reattachment is not strongly dependent on the size of the mesh. The inflation 

layer around the profile, as described in section B.5 easily captures the point of reattachment, see 

Figure 6. The global forces on the bridge deck are very sensitive to the reattachment, as this dictates 

the size of the vortex where the relative pressure is large.  
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B.5 BUILD UP OF TURBULENT BOUNDARY LAYER 

After the reattachment a turbulent boundary layer is expected to build up. A typical velocity profile 

for a turbulent boundary layer is given by [Wilcox 2006], see Figure 7.  

 

Figure 7: Typical velocity profile for a turbulent boundary layer [Wilcox 2006] 

In this model Wilcox introduces the dimensionless velocity u+ and wall distance y+ given by 

    and   
u yUu y

u
τ

τ ν
+ += =  (B.1) 

Where 

 U is the free stream velocity. 

 y is the distance from the wall. 

 ν  is the kinematic molecular viscosity. 

 uτ  is the friction velocity. wuτ
τ
ρ

= , where wτ  is the surface shear stress and ρ  is the 

density. 

In order to capture the entire boundary layer very small mesh elements are required near the 

surface. If it is wished to model the viscous sublayer, the dimensionless wall distance needs to be in 

the region of 1-2, making the element height as small as 0.1mm. The aspect ratio needs to be below 

approximately 100, which means that the number of mesh elements rapidly grows to around 

200.000 around the bridge profile. Such a fine mesh is time consuming not only to generate, but the 

cpu-time for the simulation also becomes very long. For an analysis of the aerodynamic derivatives 

the viscous sublayer is not important. In the 2d-simulations the log layer is modelled by the use of 
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rectangular mesh elements, which are 4mm’s high near the surface. The size of the elements grows 

exponentially in an inflated boundary as shown in Figure 8. 

 

Figure 8: Inflated boundary with 23 layers. First layer thickness is 4mm. 

The loglayer is captured with the used mesh, as shown in Figure 9.  

 

Figure 9: Visualization of loglayer. 

Some investigations have been carried out to establish the importance of the loglayer to the global 

forces and the simulated flow around the bridge. In the turbulent boundary layer friction forces 

cause great velocity and pressure gradients which may be important to turbulent structure of the 

flow. However, [Frandsen 1999] has captured vortex shedding with an element thickness of 1 metre 

near the surface. This indicates that the flow solver in Ansys uses a wall function that substitutes 

the real boundary layer very well. In the simulations carried out for this project it has not been 

possible to capture vortex shedding with a mesh structure as coarse as the one used by [Frandsen 

1999]. When the inflated boundary mesh is applied, the value of y+ is as shown in Figure 10. 
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According to the velocity profile for a turbulent boundary layer, Figure 7, this is sufficiently small to 

capture the loglayer on most of the surface.  

 

Figure 10: Dimensionless wall distance, y+. 

B.6 SHEDDING  

The formation of periodic alternating vortices, von Karman’s vortex street, in the wake of the 

bridge profile is highly dependent on the mesh near the surface and in the area downwind. 

Naturally the size of the vortices determines the size of the mesh, as the vortices must be resolved 

in several mesh elements. In Figure 11 a fully developed vortex street is shown, and in Figure 12 it 

is shown how an increasing element size destroys the vortices. In Figure 11 the mesh is relatively 

fine in the wake throughout the domain, whereas in Figure 12 the mesh elements are only relatively 

fine in part of the wake. This indicates that the element size of the wake needs a characteristic 

length of approximately 0.2 times the diameter of the vortices shed on the bridge. As these Vortices 

have a diameter of approximately the same size as the height of the bridge profile, the elements in 

the wake have a characteristic length of 0.25m to 1m.  
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Figure 11: Fully developed vortex street 

 

Figure 12: The increasing mesh size downwind destroys the periodic vortex shedding on the bridge. 

The element size around the bridge profile also plays a role in the forming of vortices behind the 

bridge. Very high values of velocity gradients near the surface require a very fine mesh. The vortices 

on a sharp edged body as a bridge are formed on the edges, as shown in Figure 13. Therefore the 

mesh requirements near the surface are not due to modelling of a loglayer or a viscous sublayer, 

which dictates the separation point in a boundary layer. 

 

Figure 13: A vortex is formed on the sharp edge of the bridge 

An inflated boundary layer, as described in B.5  sufficiently captures the vortices behind the bridge. 

In Figure 14 the result of a combined simulation is shown. In the first part a vortex street is formed 

when an inflated boundary layer is used around the bridge profile. In the second part of the 

simulation the inflated boundary layer is removed, but the remaining mesh is maintained. 
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Figure 14: A vortex street is destroyed when the element size around the bridge is increased. 

Figure 14 clearly demonstrates the effect of the inflation layer. In Figure 15 and Figure 16 the mesh 

around the bridge profile is shown for the two parts of the simulation. 

  

Figure 15: An inflation layer is used to generate a 

vortex street as shown in Figure 14. 

Figure 16: When the inflation layer is removed, the 

vortex street is destroyed. 

B.7 THREE DIMENSIONAL MESH GENERATION 

In the following, the meshing strategy for the two different three dimensional flutter analyses is 

described. The analyses are respectively the 3D forced vibration and the 3D fluid-structure 

interaction method as described in section 6.4. Due to limitations of computer power and to avoid 

lengthy simulation running for several weeks, the mesh is far coarser for both 3D cases than the 2D 

case. It is acknowledged, that the aim of this project is educational and that the results of the 

simulations therefore are of minor importance. The 3D analyses are meshed so the simulations run 

for a maximum of approximately 24 hours. 
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B.8 MESH FOR FORCED VIBRATION TEST 

The bridge profile is extruded 124.5 metres from the symmetry plane into a domain with a width of 

170 metres. This allows 45.5 metres of ‘free’ flow around the free end of the bridge. The domain is 

meshed in two stages, in order to use an extruded 2D mesh on the part nearest the plane of 

symmetry. In Figure 17 this part of the domain is shown along with the bridge. As it can be seen, 

the bridge is sticking out by 14.5 metres until the domain is closed by the section shown in Figure 

18. 

 

Figure 17: Subdomain 1 near the symmetry plane 

 

 

Figure 18: Subdomain 1 and subdomain 2. 

 The mesh of subdomain 1 is extruded from a 2D mesh generated by the values given in Table 2 
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Table 2: Values for 2D mesh on the surface of subdomain 1. 

Constant edge spacing for bridge profile 0.5 m 

Number of inflated layers 5 

Height of first inflation layer 1 m 

Expansion factor for inflation layer 1.2 

Default body spacing 23 m 

Default face spacing, angular resolution 30° 

Default face spacing, maximum edge 
length 

23 m 

Default face spacing, minimum edge 
length 

1.2 m 

The generated 2D mesh is shown in Figure 19 

 

Figure 19: 2D mesh for extrusion into subdomain 1. 

The mesh is extruded from the plane of symmetry so the element size is decreasing towards the 

free end of the bridge. This is shown in Figure 20. 
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Figure 20: The 2D mesh is extruded with a decreasing size near the free end of the bridge. 

The mesh of domain 2 is generated by the same settings around the bridge profile. The only 

difference from domain 1 is that the 3D mesh is unstructured instead of extruded. The mesh 

elements around the free end of the bridge have a characteristic length of 0.5 meters. 

B.9 MESH FOR FLUID-STRUCTURE INTERACTION 

The mesh used when performing a fluid-structure interaction is the coarsest mesh used in this 

project. The settings for the mesh elements of the domain are mainly the default settings, set by 

Ansys. The reason for this is the need of a long simulation time. When performing a fluid-structure 

interaction the simulation time is set to 120 seconds, in order for the oscillating movements to be 

fully developed. A simulation like this, with the mesh shown in Figure 21 takes around 12-16 hours 

for the highest velocities used. The settings are given in Table 3. 
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Figure 21: 3D mesh for the domain in a fluid-structure interaction. 

Table 3: Settings of 3D mesh of subdomain 2. 

Default body spacing 23 m 

Default face spacing, angular resolution 30° 

Default face spacing, maximum edge 
length 

23 m 

Default face spacing, minimum edge 
length 

1.2 m 
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A P P E N D I X  C :  G E N E R A L  
T R A N S P O RT  E QUAT I O N S  

In this appendix the governing equations of the fluid flow is briefly described. The main purpose of 

the appendix is to establish the different schemes used by Ansys CFX, when solving the general 

transport equations for the fluid domain. This part of the appendix is naturally closely linked to the 

theory guide of Ansys. Furthermore, the applied types of turbulence modeling are explained. The 

appendix will not serve as a textbook example of the derivation of transport equations and 

turbulence models. It will, however briefly introduce the underlying physics of the equations solved 

in Ansys CFX.  

C.1 NAVIER-STOKES EQUATIONS 

General equations, describing the fluid flow and heat transfer, some basic physical conservation 

laws of mass, momentum and energy form the foundation of the calculations. These are Newton’s 

Second Law of Motion, the First Law of Thermodynamics and the mass conservation of a fluid 

body. The derivation of the general equations is done in many textbooks, and is therefore omitted 

here. The result is a set of five transport equations and two state equations, constituting the Navier-

Stokes equations of the flow of a compressible Newtonian fluid. The equations are given in (C.1). 
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 (C.1) 

where 

 p is the pressure 

 t is the time 

 ρ  is the density 
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 u  is the velocity vector 

 x, y, z are cartesian coordinates 

 u ,v, w are velocities in direction of x, y and z 

 μ  is the molecular viscosity 

 S is a source term 

 i is static enthalpy 

 k is the thermal conductivity 

 Φ  is a dissipation function 

 T is the temperature 

[Malalasekera and Versteeg 2007] 

The first equation expresses the mass conservation in three dimensions. Equations 2-4 express the 

conservation of momentum in three dimensions. The fifth equation expresses the conservation of 

energy in three dimensions, while equations 6 and 7 are constitutive relations, linking four 

thermodynamic variables: pressure, density, static enthalpy and temperature. In general, the 

resulting system provides seven equations and seven unknowns. 

When the fluid or gas flows at low speeds it is customary to regard them as incompressible, leaving 

no density variations in the domain. Without density variations the equations can often be solved 

merely by considering the continuity and momentum equations. Equation five, the energy equation, 

needs only to be solved when a heat transfer is of interest. 

C.2 DISCRETIZATION OF NAVIER-STOKES EQUATIONS 

Only in very rare occasions, an analytical solution to the Navier-Stokes equations is possible. In 

most cases, a discretization of the fluid domain is necessary. In the following, it is described how 

Ansys CFX discretizes and solves the seven equations given in (C.1). In the process of 

discretization, a mesh is generated. Ansys CFX creates control volumes around each node, confined 

by the surrounding elements as shown in Figure 22. In general the volumes are not two-

dimensional, with a unit depth as shown in Figure 22, but fully three-dimensional. The variables of 

the Navier-Stokes equations are integrated over the control volume to ensure conservation of mass, 

momentum and energy at every discrete volume. The variables are stored at the element nodes. 
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Figure 22: Control volume (hatched area) is confined by the surrounding elements.[Ansys 2006] 

Volumetric values, such as the source terms are approximated in each sector as shown in Figure 23 

and integrated over all the segments constituting the control volume. Area terms are approximated 

at integration points on the surface of the control volume and integrated over the entire surface. 

 

Figure 23: Mesh element [Ansys 2006] 
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The discrete form of the momentum equation is shown in (C.2) as an example. 

 ( )( ) ( ) ( )
0 0

i i ip eff i Mxip ip ip
ip ip ip

u uV U n u P n u n S V
t

ρ ρ ρ μ
⎛ ⎞−

+ Δ = Δ + ∇ Δ +⎜ ⎟Δ⎝ ⎠
∑ ∑ ∑  (C.2) 

where 

 V is the control volume 

 tΔ  is the time step 

 inΔ  is the outward normal vector for the surface 

 effμ  is the effective viscosity. A sum of the molecular and the eddie viscosity. 

An overbar indicates a mean value, a superscript 0 indicates a value from the previous step and a 

subscript ip indicates the integration points. 

C.3 TRANSIENT SCHEME  

When solving transient analysis, Ansys provides two different schemes for updating values from 

one time step to the next. These are respectively the first- and second order backward Euler methods. 

The following equations are only valid for stationary mesh elements, i.e. no change in the geometry 

of the control volumes. For the first order backward Euler method, the discrete formulation of the nth 

transient term is given by (C.3). 

 ( ) ( ) ( ) 1n n
n

V
dV V

t t
ρθ ρθ

ρθ
−−∂

=
∂ Δ∫  (C.3) 

The first order backward Euler method is a stable scheme which is first order accurate with the chosen 

time step. However, the scheme tends to introduce discretization errors, and is therefore not used 

in the analysis of the present project. [Ansys 2006] 

The discrete formulation of the second order backward Euler scheme for the nth transient term is given 

by (C.4) to (C.6) 

 ( ) ( ) ( )½ ½n n
n
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dV V

t t
ρφ ρφ
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+ −−∂
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∂ Δ∫  (C.4) 

 ( ) ( ) ( ) ( )( )½ 1 1 21
2
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 ( ) ( ) ( ) ( )( )½ 11
2

n n n nρφ ρφ ρφ ρφ+ −= + −  (C.6) 
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The second order backward Euler is a less stable algorithm, but second order accurate with the chosen 

time step [Ansys 2006]. This scheme is used in the transient analysis of the present project. 

C.4 ADVECTION SCHEME 

When running a transient simulation, Ansys provides three different schemes for solving the 

advection term in the Navier-Stokes equations. All three are variations of the general equation in 

(C.7). 

 ip up rφ φ β φ= + ∇ ⋅Δ  (C.7) 

where 

 φ  is the quantity of interest 

 β  is a coefficient, 0 1β≤ ≤ . 

 φ∇  is the average of the adjacent nodal gradients when using the specified blend scheme and 
φ∇  is the nodal gradient of the upwind node when using the high resolution scheme. 

 r  is the vector from the upwind node to the integration point. 

The three different advection schemes are described in the following: 

• In the upwind differencing scheme, a value of 0β =  is applied. The scheme is very stable, but is 

likely to introduce discretization errors, smearing out steep gradients of the variables in 

space. This is shown in Figure 24. 

 

Figure 24: The figure shows how a steep spatial gradient on the left is smeared out on 
the right by the use of the upwind differencing scheme [Ansys 2006]. 

• When using the specified blend scheme, the user is allowed to set the value of β  manually. A 

choice of 1β =  is theoretically second order accurate in space, i.e. with the chosen element 

size. However, a choice of  1β =  introduces a secondary oscillating error, when 

approximating steep spatial gradients, as shown in Figure 25. [Ansys 2006] 
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Figure 25: The figure shows how a steep spatial gradient on the left is 
approximated on the right by the use of the specified blend scheme 
[Ansys 2006]. 

• The last method is the high resolution scheme, which will set a value of β  as close to one as 

possible without introducing the oscillations shown in Figure 25. The advantage of the 

scheme is that it will solve most of the domain with a second order spatial accuracy, only 
reducing the value of β  in regions of steep gradients. This method is used in the 

simulations in the present project. 

C.5 TIME STEP INITIALIZATION 

When solving a simulation using the second order backward Euler scheme, there are three different 

options for initializing the time step iteration: 

• The Previous time step option simply uses the solution of the last time step to initialize the 

current. 

• The Extrapolation option uses the two previous solutions to extrapolate to the current time 

step initialization. 

• The Automatic option evaluates the Courant number for every mesh element. The Courant 

number is defined in one dimension in (C.8). 

 u tCourant
x
Δ

=
Δ

 (C.8) 

The Courant number needs to be sufficiently low in transient analysis for the solution to 

converge. When using the second order backward Euler scheme, and the automatic time 

step initialization, Ansys will use a blend of previous time step and extrapolation if the 

Courant number is between five and ten. For values below five, previous time step is used, 

and for values above ten, the extrapolation method is used.  
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C.6 TURBULENCE MODELLING  

In theory, the Navier-Stokes equations presented in section C.1  fully describe any fluid flow. 

However, in order to resolve the finest turbulence scales of interest, the mesh size needs to be 

sufficiently small. This leads to use of many elements and thereby requiring computer processors 

far more powerful than the ones available today or in the near future. To solve this problem, a 

method, known as Direct Numerical Simulation, DNS, is normally used, but only for detailed 

simulations where the range of the turbulence is small. In the present project this approach is not 

an option, due to the nature of the turbulent structure of the atmospheric boundary layer. 

Turbulence is represented in very wide spectrum, ranging from the low frequency scales from 

vortices which may be several times larger than the considered structure to the highest frequency 

turbulence created on the surface of the bridge.  

C.7 REYNOLDS AVERAGING 

In practical applications a turbulence model is often applied, simplifying the turbulent structure in 

different ways. Many of the most well known and well tested turbulence models are based on 

Reynolds time averaging, assuming that a turbulent flow may be separated into a mean flow and a 

fluctuating part. This is formally stated for the x-component of the velocity vector in (C.9). 

 'u U u= +  (C.9) 

where 

 u is the x-component of the velocity vector 

 U is the mean value of u 

 u’ is the fluctuating part of u. 

A similar separation is used for the total velocity vector u, and the pressure, p. It is customary to 

disregard the fluctuations in density and viscosity of the flow. If (C.9) is inserted into the 

momentum equation (C.1), the time averaged x-momentum equation is found. 

 ( ) ( ) ( )( )1div U div 'u' div gradU PU u U
t x

ν
ρ

∂ ∂
+ + = − + ⋅

∂ ∂
 (C.10) 

where 

 ν  is the kinematic molecular viscosity, μν
ρ

=  

 An overbar indicates a time averaged value. 
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[Malalasekera and Versteeg 2007] 

In (C.10) the source term in (C.1) has been omitted for the sake of simplicity. To a very large 

extent, equation (C.10) looks like (C.1), with just one term in difference. A time averaging of the 

fluctuating part of the velocity has been introduced into the equation. Similar equations are made 

for the two remaining directions. When expanding (C.10) and rearranging the terms so that the 

fluctuating parts are on the right hand side of the equation, it shows that six new unknowns have 

been introduced. These terms are known as the Reynolds stresses, and these are the keystones to 

the classical theory of turbulence modeling. The stresses are given in (C.11). 

 

2

2

2

'

'

'

' '

' '

' '

xx

yy

zz

xy yx

xz zx

yz zy

u

v

w

u v

u w

v w

τ ρ

τ ρ

τ ρ

τ τ ρ

τ τ ρ

τ τ ρ

= −

= −

= −

= = −

= = −

= = −

 (C.11) 

C.8 WILCOX’ K-Ω  MODEL 

In order to close the undetermined system of 13 unknowns and only seven equations, an additional 

six equations are needed. For the type of turbulence models treated here, the Boussinesq 

Approximation shown in (C.12) is assumed to be valid. 

 2 22
3 3

ji
ij T ij ij T ij

j i

UU
S k k

x x
τ ν δ ν δ

⎛ ⎞∂∂
= − = + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (C.12) 

where 

 ijτ  is the Reynold’s Stress Tensor. 

 Tν  is the fluctuating velocity vector, consisting of u’, v’ and w’.  

 ijS  is the mean strain rate tensor. 

 k  is the kinetic turbulence energy, as defined in (C.13). 

 ijδ  is the Kronecker Delta 

This reduces the problem, as the elements of the Reynold’s Stress Tensor are approximated by the 

mean strain rate tensor. In classical turbulence models for Reynolds-averaged Navier-Stokes 

(RANS) equations, models are closed by simplifying the turbulence by the kinetic turbulence energy 

and a turbulent length scale. The kinetic energy in the fluctuating part of the flow is defined in 

(C.13). 
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 ( ) ( )2 2 21 1' ' ' ' '
2 2i ik u u u v w= = + +  (C.13) 

where 

 k is the specific kinetic energy of the fluctuating part of the flow. 

 'iu  is the fluctuating velocity vector, consisting of u’, v’ and w’.  

[Wilcox 2006] 

It is widely recognized, that an additional transport equation of k will provide a good and physical 

basis of a turbulence model. It furthermore introduces an additional equation to the problem. The 

general transport equation for the turbulence kinetic energy is given in (C.14). 

 1 1' ' ' ' '
2

i
j ij i i j j

j j j j

Uk k kU u u u p u
t x x x x

τ ε ν
ρ
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+ = − + − −⎢ ⎥

∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (C.14) 

The derivation of (C.14) is somewhat lengthy, and can be seen in [Wilcox 2006]. The quantity ε  is 

known as the dissipation per unit mass, defined in (C.15). 
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 (C.15) 

where 

 ν  is the kinematic molecular viscosity, μν
ρ

= . 

Some turbulence models, the so called one equation models, will solve the RANS-equations by means 

of (C.14) alone. In order to close the system of equations these models will require some 

knowledge of the length scale of the turbulent structure. Due to this, one equation models are 

referred to as incomplete.  

In the present project, the fluid domain is solved by the use of Wilcox’ k-ω turbulence model. This 

introduces an equation for the turbulence length scale, in the form of the variable ω. In the 

literature the nature of this variable is found to be less clear than the interpretation of k. It is noted 

in [Wilcox 2006] that “… 2ω  is the mean square vorticity of the energy containing eddies”, or that 

“…ω  is a frequency characteristic of the turbulence decay process under its self-interaction”. 

Wilcox himself simply regards ω  as the ratio of ε  to k. A transport equation is made forω , much 

similar to (C.14). The transport equation is shown in (C.16). 
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 (C.16) 
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However, [Menter 1993] has implied that the equation not satisfactorily accounts for the transport 

shear stress. Therefore an implementation of a so called stress limiter has been made to the classical 

k-ω model. The stress limiter is given in (C.17). 

 
27, max ,
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ij ij
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S Skν ω ω
βω

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

 (C.17) 

Where 

 β  is a constant 

[Wilcox 2006] 

In equation (C.16) and (C.17) a series of coefficients are needed to close the problem. These 

coefficients are given in [Wilcox 2006] and in the Ansys theory guide. The turbulence model 

presented in (C.16) is referred to, as the Wilcox 2006 model by the author himself. Menter has 

furthermore implemented so called blending functions, which will blend the k-omega model with 

the classical k-epsilon model. This mix of the two turbulence models is solved in Ansys CFX, when 

choosing the Shear Stress Transport option.  

When choosing the SST model, Ansys solves the classical k-epsilon model for the free flow in the 

domain, while the k-omega model is solved near boundaries. Ansys recommends the SST model for 

high accuracy boundary layer simulations. This turbulence model has been used in the simulations 

of this project. 
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