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Abstract

Regular Model Checking is a method
for verification of infinite-state and
parametric systems via regular lan-
guages and finite-state transducers.
The configurations of the system are
modelled using regular languages and
the transition relation of the system is
modelled with a transducer. Regular
model checking is used to verify ques-
tions of the type, can we reach or avoid
a given configuration (safety), or does
all computations from each configura-
tion reach a given configuration (live-
ness).
Cellular Automata is a model for de-
scribing state systems with local com-
munication. Cellular Automata are
used e.g. to model election algorithms,
artificial life and car traffic.
The contribution of this thesis is di-
vided into two main areas. First we,
show the basics of regular model check-
ing, then prove three results concern-
ing the expressiveness of regular model
checking. Secondly, we deal with Cel-
lular Automata, the relation between
different types of Cellular Automata
and how we can analyse the behaviour
of Cellular Automata of arbitrary size
with regular model checking.
We carry out a number of experiments
to test our prototype implementation,
that can automatically convert a Cel-
lular Automaton into a regular model
checking framework.





Thesis Summary

RMC is method for verification for parametric systems and infinite state
system. It was intoduced in 1997-1998 by Kesten et al. [14] and Boigelot
and Wolper [31], and in 2000 Bouajjani et. al.

The idea of RMC is that the state space of an infinite or parametric
system, can be described by a regular language, and that the transition rela-
tion between configuration can be represented as a regular relation between
words. Several articles have shown different application of RMC for verifi-
cation of token passing protocols, queues and mutual exclusion algorithms.
In RMC we ask questions like, for any possible infinite number of initial
configuration, can we avoid a set of bad configuration. In general the RMC
framework is Turing powerful, this is why developing semi-algorithms to ef-
ficiently compute the reachable configuration, is an important part of work
regarding RMC.

This thesis deals with two main areas.

The first area is concerned with the basics of RMC and theoretical parts
of RMC. It defines and explains the basic concept of RMC, including a run-
ning example and description of a specific verification technique for RMC.
Further it provided proofs of theorems about the expressiveness of RMC.
The motivation for this is to formally formulate these folklore results and to
further investigate the properties of RMC. The report provides full proofs
for the claims, that RMC is Turing powerful, that by considering only a
finite set of initial configurations the verification problem becomes PSPACE-
complete and lastly, that length preserving transducers can model non-length
preserving ones.

The first result obviously states that RMC is by its nature undecidable.
The second result is proved via a reduction from one-safe Petri nets, and so
provides a sketch of how to verify bounded Petri nets with RMC. This result
also illustrates that RMC can be used for bounded model checking. The
last result concerning length and non-length preserving transducers preserve
the possibility to verify safety properties, but verifying liveness properties
remains equally problematic — however we briefly sketch how a class of non-
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length preserving transducers can be verified for liveness properties.
Second part of the thesis deals with the class of computational devices

called Cellular Automata (CA). A CA are state-evolution system with local
communication, that are used for e.g. simulation of car traffic and sim-
ulation of artificial life. The CA contains a cellular space, which can be
multi-dimensional. Each cell in the cellular space know of the states of the
surrounding cells. At an update signal, all cells evolve simultaneously to a
new state, based on their neighbours. The thesis focuses on the restricted
CA types, where the cellular space is finite, called bounded CA (bCA), and
where a finite cellular space is connected in a ring typology, called circu-
lar CA (cCA). Also these are defined to allow nondeterministic evolutions.
The thesis shows a linear reduction from bCA to cCA, and an exponential
reduction from cCA to bCA. Both reductions are up to isomorphism.

Finally the thesis contains a reduction from reachability in cCA to RMC.
This reduction is used to show how RMC can be used for parametric verifi-
cation of bCA and cCA. The results of the conducted experiments illustrate
that some CA algorithms are hard to describe regularly, but also that rather
complex behaviour is still verifiable in short time. The properties verified is
either properties avoided or that there exists a configuration in a given CA
that satisfies the given property. The experiments are conducted so that the
number of cells in the initial configurations are parametrised. Which leaves
the future work of verifying the problems so that a given property holds for
every initial configuration.
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Preface

This Master Thesis is written as a part of the specialisation year at the De-
partment of Computer Science - Aalborg University. The thesis builds upon
the work in our specialisation midterm report “Regular Model Checking” [8],
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this thesis are reused from the midterm report [8]. Section 2.1 concerning
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proofs and the proof idea of of Theorems 3.1, 3.2 are reused with some correc-
tion and the proof for Theorem 3.3 is reused, but with significant corrections
and small modifications. Section 2.3 concerning the related work is to some
extend rewritten. We will not make any references to our self when reusing
these parts.
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Chapter 1

Introduction

Today many tasks are automated by computers — and of course we expect
that these tasks are carried out correctly. Often this is a question of im-
plementing given algorithms correctly. But it is also a matter of designing
the algorithms correctly, so that they do what they are intended to do —
without any exception. In parallel and/or possibly non-terminating systems
it can be quite hard for designers to reason about the exact behaviour of the
system, though this can be very vital. As an example, consider a safety crit-
ical systems like airbag release or flight traffic management systems. Correct
behaviour of such systems is crucial, since malfunction might result in severe
injuries or casualties.

Even though the designer should guarantee, on the basis of his/her an-
alysis and design, that the system does not fail, some safety critical systems
can not be subject to human failures. These systems need to be proven that
they behave according to their specifications. This is where formal and auto-
matic verification of systems comes into play. Formal verification proves that
a system behaves according to some specified property. However, there is a
complexity issue to take into account — the actual system can include a lot
of irrelevant behaviour with regards to a given property. So checking the sys-
tems behaviour, line for line, is near impossible. Instead we can make some
symbolic representation of the important parts of the system and then auto-
matically verify properties of this representation. This concept is referred to
as Model Checking, — given a model, we check if the model complies with a
given specification.

In general we can model a system as a Labelled Transition System (LTS),
which is a directed graph over the set of configurations (also called the state-
space) that a given system can be in. The vertices of the LTS are the con-
figurations and the edges are representing the transition relation over the set
of configurations.
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With a model of the system we can ask whether certain properties are
satisfied or not, e.g. if we have a model of a mutex algorithm we would like
to know if our model complies to the mutual exclusion requirement. Such a
property is what we call a safety property. Safety properties often describe
situations that we would like to avoid in our model. In the case of mutex we
would like to avoid two or more process being in the critical section at the
same time.

Sometimes we also want to make sure that no matter which configuration
we consider we can always reach some configuration with a ”good” property.
With regards to the mutex example, it could be that we want to make sure
that each processes can eventually get into the critical section. Properties
like this are referred to as liveness properties.

The lowest level of a model is in general a LTS, and so it is often feasible
to use some abstraction to describe the LTS. One such abstraction is the
Calculus of Concurrent Systems (CCS)[17] developed for concurrent processes
by R. Milner in 1980. This language makes use of a handshake concept so
that different processes can communicate via handshake synchronisations.
R. Milner et. al. later extended CCS so that the channels can process
names. This is referred to as the π-calculus. Considering CCS, a model
checking strategy would be to check if a given CCS model is equivalent, for
some equivalence, to some specification. E.g. the equivalence could be weak
bisimulation and a specification could be modelled also in CCS.

To check if a property is satisfied in the model we have to explore the
state-space of the system, to see if one or more states violate or satisfy the
property. However, we often have the problem that the state-space is quiet
large, possibly infinite, making it hard or impossible to iterate all possible
configuration in the state-space. This problem is often referred to as the
state-space explosion problem.

Normally we divide systems into finite state system and infinite state
systems. Most interesting systems has by nature an infinite state-space, just
consider a program that contains a single integer variable. As an integer can
be arbitrary large, we have a state-space with infinitely many states.

As a consequence of the problem regarding state-space explosion, an im-
portant part of model checking is finding an efficient representation of the
state-space. For finite state-space systems a common way to represent the
state-space is by using Binary Decision Diagrams (BDD).

Over the years tools have been developed to facilitate domain specific or
just easy modelling and automatic verification. The website [32] shows a list
of different types of verification tools, including tools for real-time systems.

In 1997-1998 Kesten et al. [14], Boigelot and Wolper [31] proposed us-
ing regular languages as representations for infinite state-space systems, and
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parametric systems. In 2000 Bouajjani et. al. presented Regular Model
Checking (RMC) as a uniform framework for algorithmic verification of infi-
nite state-systems[7]. The fundamentals of RMC, is to represent the possibly
infinite state-space, as a finite-state automaton, and to represent the transi-
tion relation between the configuration as a regular relation. The task is now
to calculate the reachable configurations efficiently.

Regular Model Checking To explain the basics of RMC we will use a
simple token passing protocol as example. This protocol will be used through
the report as a running example.

The token passing protocol works on a number of connected processes
labelled 1 to n. The process can either hold the token (T), or not hold the
token (N). A given process with the token can pass the token to its right
neighbour.

We can now model this protocol using RMC. In RMC we use a word over
the alphabet {T,N} to describe the possible configuration of this system.
Given a system with n = 5 processes, the word NNTNN means that the
process labelled 3 has the token, and that processes labelled 1, 2, 4 and 5 do
not have the token.

We can describe the behaviour of the system using a relation. In this
case the relation will be that words on the form (N iTNN j) will be rewritten
to words of the form (N iNTN j) for any numbers i, j ≥ 0. We can describe
such a relation using a finite transducer.

The initial configuration of the system would be one where the first pro-
cess holds the token. We can for all possible numbers of processes, describe
this using the regular expression TN∗.

This shows how we can encode a problem using RMC, the task is now
how to calculate the reachable configuration. In this example it is easy to
see that for each configuration, the token is passed to the right neighbour,
TNNNN −→ NTNNN −→ · · · . Hence the set of all reachable configurations
is expressed by the regular expression: N∗TN∗.

Contributions The contributions of the thesis are divided into two areas.
The main focus of this thesis is in the area of regular model checking. So
first we demonstrate results concerning the expressiveness of RMC. Second
we show how we can apply RMC to perform verification of Cellular Automata
(CA).

In the thesis we provide the proofs for the folklore result that in general
RMC is undecidable. We prove that by restricting the initial configurations
to be finite we get that RMC is PSPACE-complete. And lastly we show that
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it makes no difference when we consider safety properties if we use length
or non-length preserving transducers. Together with these results, we also
show how we can reduce reachability of two-counter Minsky machines and
one-safe Petri nets to RMC.

In the second part of the thesis we focus on Cellular Automata (CA),
in particular we focus on one dimensional non-deterministic bounded and
circular CA, which are a subclass of the CA. We show how we can perform
parametric analysis of circular CA, by giving a reduction from reachability
analysis of circular CA to RMC. We also prove that circular and bounded CA
are equal up to isomorphism. We provide a tool, for automatic conversion of
CA into RMC, and carry out a number of experiments for different types of
CA, to test the automatic reduction and the usefulness of RMC as verification
of CA.

Thesis Outline In Chapter 2 we will formally define the area of RMC,
and give an example of RMC. We also outline the work done in the area,
and go into detailed of an acceleration method used for RMC. In Chapter
3, we present proof of three results concerning the expressiveness of RMC.
We also give a short discussion of how we can preserve liveness checking for
some special non-length preserving transducers. Chapter 4 introduces and
defines the model of Cellular Automaton. Chapter 5 we present the result
for isomorphism between circular and bounded CA and bounded and circular
CA. This chapter also shows how we can reduce circular and bounded CA to
RMC. In Chapter 6 we present the result of our experiments of verification
of some interesting CA with the use of our reduction tool and the ARMC
tool. The thesis is concluded in Chapter 7.
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Chapter 2

Regular Model Checking

In this chapter we introduce regular model checking (RMC) formally. First
we will introduce a number of definitions concerning RMC. These will be
used throughout the report. Hereafter we will give a definition of RMC as
a decision problem, followed by an example of RMC, and lastly we describe
the acceleration technique Abstract Regular Model Checking. The tool we
have used for our experiments is an implementation of this technique.

2.1 Definitions

In this section we introduce a number of definitions, which we use throughout
the following chapters.

We denote the set of natural numbers {1, 2, . . .} by N, and let N0 denote
the set of non-negative integers. The set Z is the set of positive and negative
integers.

We say that a finite set of symbols is an alphabet and it by Σ. The set
of all strings over Σ is denoted Σ∗. The identity element of Σ∗ is the empty
string, denoted ε. A set of strings over the alphabet Σ is called a language.
We denote the length of the string w as |w|.

Finite Automaton

Definition 2.1. A nondeterministic finite automaton (NFA) is a 5-tuple,
M = (Q,Σ, q0, F, δ) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• q0 ∈ Q is the start state,
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• F ⊆ Q is the set of accept states, and

• δ : Q× Σ ∪ {ε} −→ 2Q is the transition function.

♦
We say that a finite automaton M = (Q,Σ, q0, F, δ) accepts a string

s = α1α2 · · ·αn, where αi ∈ Σ∪{ε} for all i, 1 ≤ i ≤ n, if there is a sequence
of states, q0, q1, . . . , qn, where it holds that:

• q0 is the start state,

• qi+1 ∈ δ(qi, αi+1) for i = 0, . . . , n− 1, and

• qn ∈ F .

The set of all strings that M accepts is the language recognised by M and
is denoted L(M).

We say that a language L is a regular language if L is recognised by a
finite automaton.

Theorem 2.2 ([24]). Regular languages are closed under ∪, ∩, ◦, − and ∗.

Deterministic Finite Automaton

Definition 2.3. A deterministic finite automaton is a nondeterministic finite
automaton as defined in Definition 2.1, but where |δ(q, a)| ≤ 1 and |δ(q, ε)| =
0 for all q ∈ Q and a ∈ Σ. ♦

Theorem 2.4 ([24]). Every nondeterministic finite automaton Mn has an
equivalent deterministic finite automaton Md, where L(Mn) = L(Md).

Finite-state transducer

Definition 2.5. A finite-state transducer is a 5-tuple T = (Q,Σ, q0, F, δ),
where

• Q is a finite set of states,

• Σ is a finite alphabet,

• q0 ∈ Q is the start state,

• F ⊆ Q is the set of accept states, and

• δ : Q× (Σ ∪ {ε})× (Σ ∪ {ε}) −→ 2Q is the transition function.
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♦

We use q
α/α′−−→δ q

′, or just q
α/α′−−→ q′ if δ is clear from the context, if

q′ ∈ δ(q, (α, α′)).
We say that a finite-state transducer T = (Q,Σ, q0, F, δ) translates string

s = α1α2 · · ·αn to string s′ = α′1α
′
2 · · ·α′n, where αi, α

′
i ∈ Σ ∪ {ε} for 1 ≤ i ≤

n, if there exists a sequence, q0
α1/α′1−−−→ q1 · · · qn−1

αn/α′n−−−−→ qn, where it holds
that

• q0 is the start state,

• qi
αi+1/α

′
i+1−−−−−−→ qi+1 for i = 0, . . . , n− 1, and

• qn ∈ F .

We call such a sequence a translating computation of the finite-state trans-
ducer T .

A finite-state transducer T defines a regular relation [T ] over Σ∗.

Given a finite-state transducer T and strings s, s′ ∈ Σ∗. We have (s, s′) ∈
[T ] if T has a translating computation that translates from s to s′. We call
s the input string and s′ is the output string.

Let T = (Q, q0,Σ, F, δ) be a finite-state transducer, where q ∈ Q, a, b ∈ Σ,

w1, w2 ∈ Σ∗ and string s = w1aw2, then q
a/b−−→ q′ intuitively means that when

T is in the state q and reads a symbol a from a string s, then a is exchanged
with b and T moves to the state q′.

Example 2.6. Let T = ({q0, q1, q2, q3}, q0, {a, b}, {q3}, {q0
a/a−−→ q0, q0

ε/b−→
q1, q1

a/ε−−→ q2, q0
ε/ε−−→ q2, q2

a/a−−→ q2, q2
ε/a−−→ q3}) be a finite-state transducer. We

shall often use only the graphical representation to define transducers, as in
Figure 2.1.

a/a
ε/b a/ε

a/a

ε/a
ε/εq0

q1

q2 q3

Figure 2.1: Graphical representation of transducer T

The graphical representation is a directed graph, where the states are
the vertices, δ is the connecting edges between the states. The start state
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is pointed to by an edge with no starting state. The accept states are high-
lighted by a double lined circle. The first symbol on a given edge is the input
symbol and the second symbol is the output symbol.

Now (aaa, aaba) ∈ [T ], as the following translating computation exists:

q0
a/a−−→ q0

a/a−−→ q0
ε/b−→ q1

a/ε−−→ q2
ε/a−−→ q3, where q3 is an accepting state. 4

Deterministic finite-state transducer

Definition 2.7. A deterministic finite-state transducer is a finite-state trans-
ducer as defined in Definition 2.5, but where for every q ∈ Q, a, b ∈ Σ and
α ∈ Σ ∪ {ε}, either |δ(q, a, b)| ≤ 1 and |δ(q, ε, α)| = 0 or |δ(q, ε, α)| ≤ 1 and
|δ(q, a, b)| = 0.

♦

Example 2.8. Let T be a finite-state transducer as follows:

ε/a

a/aa/a

b/a q1 q2q0

Then T is an example of a deterministic finite-state transducer. 4

Length-preserving Transducer

Definition 2.9. A transducer T = (Q,Σ, q0, F, δ) is called length preserving

if it satisfies that there are no transitions on the forms q
ε/a−−→ q′ or q

a/ε−−→ q′,
where a ∈ Σ. ♦

Observe that for all pair of strings (s, s′) ∈ [T ] it then holds that |s| = |s′|.

Example 2.10. As an example of a length-preserving transducer see Figure
2.2.

a/a

a/c

b/b

q0 q0

Figure 2.2: Example of a length preserving transducer.

Where as the transducer in Figure 2.1 is non-length preserving, as we see

that it has rules on the form q
ε/a−−→ q′ and q

a/ε−−→ q′. 4
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Union of Transducers

Definition 2.11. Let T1 = (Q1,Σ1, q01 , F1, δ1) and T2 = (Q2,Σ2, q02 , F2, δ2)
be finite-state transducers, where Q1 ∩ Q2 = ∅. The union of T1 and T2 is
defined as T1 ∪ T2 = (Q,Σ, q0, F, δ), where q0 /∈ Q1 ∪Q2 and

• Q = Q1 ∪Q2 ∪ {q0}

• F = F1 ∪ F2

• Σ = Σ1 ∪ Σ2

• δ(q, α, α′) =


δ1(q, α, α

′) if q ∈ Q1

δ2(q, α, α
′) if q ∈ Q2

{q01 , q02} if q = q0 and α = α′ = ε
∅ otherwise

So (s, s′) ∈ [T1 ∪ T2] iff (s, s′) ∈ [T1] or (s, s′) ∈ [T2]. ♦

Example 2.12. Two transducers T1, T2 and the union of these T1 ∪ T2, are
illustrated in Figure 2.3.

b/a

a/aa/a

b/a q1 q2q0T1

a/b

b/bb/b

a/b q′1 q′2q′0T2

b/a

a/aa/a

b/a

a/b

b/bb/b

a/b

ε/ε

ε/ε

q1 q2q0

T1 ∪ T2

q′1 q′2q′0

q

Figure 2.3: Two transducers and the union of these.
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The union is made by adding a new start state q, and adding ε/ε transi-
tions from q to the start states in T1 and T2. This new transducer, T1 ∪ T2,
nondeterministically guesses whether the string is accepted by T1 or T2. 4

Composition of Transducers

Definition 2.13. Let T1 = (Q1, q01 , F1,Σ1, δ1) and T2 = (Q2, q02 , F2,Σ2, δ2)
be finite-state transducers. We say that T1 ◦ T2 = (Q, q0, F,Σ, δ) is the
composition of T1 and T2, where

• Q = Q1 ×Q2

• q0 = (q01 , q02)

• F = F1 × F2

• Σ = Σ1 ∪ Σ2

• (q′1, q
′
2) ∈ δ((q1, q2), (α, α′)) if for some α′′ ∈ Σ ∪ {ε} there exists q′1 ∈

δ1(q1, (α, α
′′)) and q′2 ∈ δ2(q2, (α

′′, α′)) where q1, q
′
1 ∈ Q1, q2, q

′
2 ∈ Q2

and α, α′, α′′ ∈ Σ ∪ {ε}.

Note that even if T1 and T2 are deterministic, T1 ◦ T2 can be nondeter-
ministic.

Let T1, T2 be finite-state transducers, then finite-state transducer T1 ◦ T2

defines a relation [T1 ◦ T2] where (s, s′) ∈ [T1 ◦ T2] if there exists a string s′′

such that (s, s′′) ∈ [T1] and (s′′, s′) ∈ [T2].
Let S be a set of strings and T a finite-state transducer. By abuse of

notation, we let S◦T denote the set of strings S ′, where for all strings s′ ∈ S ′,
we have (s, s′) ∈ [T ], where s ∈ S. If S is regular, then by Definition 2.1 there
is a finite automaton that recognises S. In general we do not distinguish
between finite automata and regular sets with regards to composition of
regular sets and transducers.

We denote the transducer T ◦T as T 2, and in general T n = T n−1 ◦T . We
define T ∗ =

⋃
n∈N0

T n, as the reflexive, transitive closure of T .
♦

Example 2.14. Recall the token passing example from the introduction.
The relation defined in that example can be expressed by the transducer T
in Figure 2.4.

Given the transducer T we compose T ◦T or T 2, illustrated in Figure 2.4.
The set of states in T 2 is easily obtained by Q×Q. Now we add transitions

by imagining that we have two transducers, T1 and T2, equal to T . We have
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N/N

T/N N/T

N/N

q0 q1 q2T

T/N N/N N/T

N/N N/N

q0, q0 q1, q0 q2, q1 q2, q2T 2

Figure 2.4: Transducer T simulates one step of a token passing protocol. The
composition, T 2, simulates two steps of the protocol.

to do an exhaustive analysis of all edges in T1 and T2 to create the transition
function δ of T 2.

4

2.1.1 Regular Model Checking

Regular Model Checking (RMC) is a method for automatic verification of
transition systems. Verification is done using a regular model checking frame-
work.

When verifying a system we create a RMC-framework consisting of:

• A set of strings describing the initial configurations for the system.

• A set of strings describing the ”bad” states that we want to avoid.

• A finite-state transducer describing the transition relation between con-
figurations of the system.

A configuration1 is a snapshot of the transition system. The transition
relation describing the progress of the system from a configuration to a new
configuration.

Definition 2.15. A RMC-framework is a 3-tuble R = (I, T,B) where

• I is a regular set,

• T is a finite-state transducer, and

1Configurations are often also refered to as states, we use the term configuration to
avoid confusion with the state of finite-state automata and transducers.
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• B is a regular set.

♦
We can formulate RMC as a decision problem. In most literature RMC

is defined as the problem

Definition 2.16. Decision Problem: RMC

Instance: An RMC-framework R = (I, T,B), where T is length preserv-
ing.

Question: Is (I ◦ T ∗) ∩B = ∅?

♦
Even though most literature focuses on length preserving transducers, we

still have the more general instance of the problem, where the transducer
is allowed to be non-length preserving. We formulate this as the decision
problem GRMC :

Definition 2.17. Decision Problem: GRMC

Instance: An RMC-framework R = (I, T,B), where T is allowed to be
non-length preserving.

Question: Is (I ◦ T ∗) ∩B = ∅?

♦
Finally we define the decision problem RMC-finite. Here the initial set

is finite and the transducer is length preserving. This problem stands out
because we only have finitely many reachable configurations.

Definition 2.18. Decision Problem: RMC-finite

Instance: An RMC-frameworkR = (I, T,B), where T is length preserving
and I is finite.

Question: Is (I ◦ T ∗) ∩B = ∅?

♦
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2.2 Example of Regular Model Checking

In this section we present a detailed example of how RMC works.
As an example we will use the token passing protocol as described in the

Introduction on 11.
We create a RMC-framework as defined in Definition 2.16, R = (I, T,B),

where T is length preserving.
In the case of the token passing protocol we can describe the initial (pa-

rameterised) set by the automaton M = (Q,Σ, q0, F, δ):

T

N

q0 q1

We have previously seen that the transition relation of the protocol can be
described by a relation. This is a regular relation and so it can be described
by a length-preserving transducer T = (Q,Σ, q0, F, δ):

N/N

T/N N/T

N/N

q0 q1 q2

By a view of this transducer we can see that it moves the token one place
to the right.

We now have a RMC encoding of the transition system. To do the veri-
fication we need to express a property we wish to check for. In this case we
would like to check for the property: “there is always exactly one token?”. We
can express this property using a regular language. In RMC we reformulate
this to a “bad” property that our model should avoid, that is “there are more
or less than one token?”. The bad set is as follows:

N

T

N

T

N, T

q0 q1 q2

After building the RMC-framework, we can now perform the verification.
The task now consists of calculating the reachable configurations and see if
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there is an intersection with the bad set. We can calculate the reachable
configuration by repeatedly applying the transducer to the initial set. In
this example by applying the transducer once to the initial set, we get the
languages described by the regular expression NTN∗. And by applying the
transducer again we get language described by NNTN∗. Observe that this
approach is clearly never going to end and so we will not be able to say
anything about the system.

Instead of applying the transducer repeatedly, we can create a transducer
that has the effect of applying the transducer several times. To do this we can
calculate the composition of T with it self. Recall Definition 2.13 on page 18
of composition of transducers, then the transducer T ◦ T is the following
transducer:

N/N

T/N N/N N/T

N/N

q0 q1 q2 q3

By applying this transducer to I we get the reachable configurations
NNTN∗, as expected. If we can calculate the reflexive, transitive closure
of T , denoted T ∗ then we can calculate all reachable configurations by apply-
ing this to the initial set. The problem is how to calculate T ∗. Here we will
need an acceleration technique to speed up the computation. In Section 2.3
we shortly introduce a number of different techniques for accelerating this
calculation. However in this simple example, it is fairly easy to see that the
transducer for T ∗ will be:

N/N

T/N

N/N

N/T

N/N

q0 q1 q2

By applying T ∗ to I, we see that the set of reachable configurations is
N∗TN∗. Now by calculating the intersection with B, we can check if some of
the configurations in B are included also in I ◦ T ∗. In other words we check
if I ◦ T ∗ ∩B ?= ∅. In the case where the intersection is empty, we know that
the ”bad” configurations are avoided.

2.3 Related Work

In this section we will look at the work already done in the area of RMC. As
mentioned in general RMC is undecidable, that is way an important part of
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RMC is to develop good simi-algoirhms for calculating the effect of applying
the transducer an arbitrary number of times on the initial set.

The article ”A Survey of Regular Model Checking” [4] from 2004 sum-
marises the work in the area of RMC. The article divides the approaches into
tree overall categories: quotienting, abstraction and extrapolation.

Quotienting The idea is to find a suitable equivalence relation of the states
in the transducer, and by quotienting the transducer finding a approximation
of the transducer composed with it self.

In general quotienting increases the relation defined by the transducer.
This problem has been solved by introcucing special constraints to the equiv-
alence relation. The work done in [2, 7, 10, 1] all uses a quotienting technique
to find the transitive closure of transducers.

Extrapolation In the extrapolation approaches, the transitive closure of
the transducer is calculated by calculating the effect of composing the trans-
ducer a number of times with it self, and the guessing the growth pattern.

In [7, 25] a method for extrapolation is presented. They also show that
under some special conditions the extrapolation is an exact limit.

In [5] Boigelot et. al. present a technique for Presburger arithmetic ex-
pressions, with a binary encoding of numbers. They extend the extrapolation
technique by using sample points, a trick that utilise that the transducer is
reflexive. Then we only need to consider a number of fix points, when looking
at the transducer. They also present an efficient dominance relation to speed
up the determination procedure of transducers.

Habermehl and Vojnar [13] uses a different extrapolation approach. Their
approach calculates the exact set of reachable configuration up to some length
n. Now if some configuration violates the property, we have an counterex-
ample, else the set of configuration of arbitrary length is extrapolated. If the
extrapolated set does not violate the property, the property is not violated,
else the n is increased and the computations are done again.

As the extrapolation is a over approximation we might encounter spurious
counter-examples, that must be handled and detected.

Abstraction In the computation of the transitive closure of the trans-
ducer, there might be parts that are computably large and complicated, and
might even unused or irrelevant for it the property holds. By applying the
abstract-check-refine paradigm into the computation of the closure, we might
accelerate the computation, so instead of calculating the reachable configu-
ration, a over approximation is calculated.
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Often a over-approximation will not give a negative answer, but a maybe
answers, and we then need to refine the abstraction, to conclude, if a positive
answer is given we know that the property is satisfied.

When abstracting and refining, it might be the case that we continue
refining infinitely. Often, when this is an equivalence relation with a finite
index, termination is guaranteed and the abstraction converges to a (exact)
limit.

The article [6], by Bouajjani et. al. describes four ways to decide candi-
dates for state merging, along with a way to detect if a ”maybe” answer is
indeed correct. In Section 2.4 we will have a closer look at this method.

Other work The work done in [3] propose to use the Linear Temporal
Logic, with monadic second-order locig (LTL(MSO)) to specify transducers,
sets and validation properties of a given model. This makes it easier to specify
a fairness requirement in the model.

It seems that in resent years there is devoted more time to the area of tree
model checking, where tree languages is used in the same way as a regular
languages in RMC.

Several articles tests there acceleration techniques using a prototype im-
plementation of their method. However after searching for these, we found
only very few tools thatsvn are published, and those which was, where no
longer under development, and several of them where no longer accessible.
The only public accessible RMC tool we where able to get, was that of
regularmodelchecking.com [22].

2.4 Abstract Regular Model Checking

For our experiments and implementation we have used the ARMC prototype
tool developed by A. Bouajjani et. al.[6]. It was kindly lent to us by T.
Vojnar. The ARMC tools implements the acceleration technique used in the
article Abstract Regular Model Checking [6]. In this section we will look at
how this acceleration techniques works.

Bouajjani et. al. state in the article that it is often enough to calculate an
over approximation of the set I ◦ T ∗ to get answers for verification question
I ◦T ∗∩B ?= ∅. They computes the over approximation of I ◦T ∗ by iteratively
computing over approximations as illustrated in Figure 2.5. The computation
is guaranteed to halt as long as the abstraction function α, is finitary. In
practise this means that the computation will reach a fix point, where the
last iterative overapproximation is in fact the same as the set it was calculated
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from. Later in this section we give a couple of examples of how abstraction
is done.

M

M1

Mn−1

α(      )n−1Mα(    )

1

0

0

0M

M
M

nMα(     )
α(     )oT

Mn−1 Tα(      )o

B

Figure 2.5: Iterative overapproximation, where Mi is a finite automaton rep-
resenting a set of strings and α is the abstraction function.

In Figure 2.5 we see a example of the approximation. The resulting
overapproximation is intersecting with the set B. If the computation ends
with an intersection like this we will have to find out if this is indeed an
intersection with the actual set I ◦ T ∗ and not just the over approximation.

This is done by applying the inverse transducer T−1 to the intersection
and then checking if the resulting set is intersecting with the previous ab-
straction, if this is the case, then T−1 is applied to this new intersection as
is illustrated in Figure 2.6. This procedure is repeated until we either reach
the initial set and we have found a real intersection or we at some point
while backtracking encounter an empty intersection, in which case we found
a spurious counterexample and will have to refine the abstraction function.

One way is to refine α to α′, where for every set that is disjoint from
the encountered intersection, will not be approximated to a set that is not
disjoint from the intersection. The other way is to simply exclude the encoun-
tered intersection from the last abstraction and then continue to do iterative
abstractions as before — even though the intersection set might ”sneak” into
the abstraction again.

This is the overall approach used in abstract regular model checking. Now
let us have a look into how abstractions are done.

Abstraction is done locally on the automata representation of a given set
of configurations M = (Q,Σ, q0, F, δ). The states of the automaton M are
compared to an finite automaton P defining a predicate language.

There are two ways they can be compared and merged: (1) Two states
q1, q2 ∈ Q are merged if they have the same forward and/or backward be-
haviour for up to some given length. (2) Two states q1, q2 ∈ Q are merged if
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M

M To
M

M

Mn−1α(      ) = Mn

n−1

α(      )n−2

α(      )n−2

n−2

B

M

M

T
T

−1

−1

n−3

α(      )n−3

M

M

n−k

α(      )n−k
ToMα(      )n−3

Figure 2.6: Backtracking the intersection with the over approximations. In
this case we illustrate that we have found a spurious counter example.

both their forward and/or backward predicate language is intersecting with
the language of the predicate automaton L(P ).

1. Two states are merged if they share the same behaviour for a predefined
number of transitions. This means that if from two states there exists
two equivalent traces of the given length, they are merged. This is
possible for both forward and/or backwards traces.

2. Given finite automaton M = (Q,Σ, q0, F, δ), we say that the forward
language of the state q ∈ Q is the set:

L(M, q) =

{
a0a1a2 · · · an

∣∣∣∣ ai ∈ Σ, and there is a computation

q
a0−→ q′

a1−→ q′′
a2−→ · · · an−→ qF ,where qF ∈ F

}
,

and similarly we say that the backward language of the state q is the
set:
←−
L (M, q) =

{
a0a1a2 · · · an

∣∣∣∣ ai ∈ Σ, and there is a computation

q0
a0−→ q′

a1−→ q′′
a2−→ · · · an−→ q

}
.

Now abstraction by forward and backward predicate language respec-
tively of a given automaton M = (Q,Σ, q0, F, δ) and the states q1, q2 ∈
Q by means of predicate automaton P = (Q′,Σ′, q′0, F

′, δ′), is done by
detecting if the predicate language L(P ), is intersecting with either

L(M, q1) and L(M, q2) or
←−
L (M, q1) and

←−
L (M, q2). If both L(M, q1)

and L(M, q2) have nonempty intersection with L(P ), then the states q1
and q2 are merged. Likewise with regards to the backwards language.

Example 2.19. Recall Section 2.2, where we went through the token passing
protocol encoded as the following RMC-framework R = (I, T,B):
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T

N

q0 q1I

N/N

T/N N/T

N/N

q0 q1 q2T

N

T

N

T

N, T

q0 q1 q2B

Now let us merge some states by the two abstraction methods. First
we illustrate an example of abstraction by bounded forward trace of states,
then we show how to do abstraction by predicate languages and then we how
backtracking and refinement is done.

Now have a look at automaton C3 in Figure 2.7. E.g. the behaviour of q0
and q3 have the same forward trace up to length two. The automaton αF2 (C3)
in Figure 2.7 illustrates the result of merging the states that have equivalent
forward traces up to length two. If the length of the considered traces are
shortened, we often get more equivalent states, as depicted in αF1 (C3), where
the traces considered are of length one.

N N T

N

q0 q1 q2 q3C3

N N

T

N

q0, q3

q1

q2αF2 (C3)

N
T

N

q0, q1, q3 q2αF1 (C3)

Figure 2.7: Trace abstraction Examples
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Next we demonstrate abstraction by predicate languages. Let the pred-
icate language be L(I ∪ B) and let us make an abstraction of I by do-
ing predicate language abstraction. We can merge q0 and q1 of I, since
L(q0, I)∩(I∪B) 6= ∅ and L(q1, I)∩(I∪B) 6= ∅— more precise L(q0, I)∩I 6= ∅
and L(q1, I) ∩B 6= ∅ and so our abstraction will result in:

N, T

q0α(I)

Notice that this abstraction is in fact already violating our requirements
defined by B.

Now let us have a look at how refining abstractions is done. As an example
take αF1 (C3) from Figure 2.7. This automaton is intersecting with the bad
set. The intersecting set is represented by automaton X3:

N

N

T N

N

T N

N

T
q0 q1 q2 q3 q4 q5

So we backtrack, by applying T−1,

N/N

N/T T/N

N/N

q2q1q0

to X3 and getting X2, where in fact X2 = ∅ and ∅ does not intersect with
αF1 (C2):

N
T

N

q0, q2 q1αF1 (C2)

And so we have found a spurious counter example and need to refine. The
simple way is to simply exclude X3 from the abstraction function. An other
way is to exclude all the intersections cought while backtracking (in our
example it is indifferent). 4

The article does not give one method universal method for how using the
acceleration technique, or the tool. But the article suggests that the initial
set and the bad set are good candidates for the predicate language.
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Chapter 3

Expresivness of Regular Model
Checking

In this section we will present a number of results concerning the expres-
siveness of regular model checking. First we show that in general RMC is
undecidable. Then we show that by constraining the initial set to be finite
(we call this RMC-finite), this problem becomes PSPACE-complete. The last
result shows that the strength of regular model checking does not increase, at
least for safety questions, by using non-length preserving transducers instead
of length preserving ones.

3.1 RMC-verification is undecidable

In the literature several articles claim that regular model checking frameworks
are Turing powerful hence RMC (that is regular model checking with a length
preserving transducer) is undecidable. However to the best of our knowledge,
we are not aware of any written proof of this folklore result. For completeness
we proof this.

To proof that RMC is undecidable we make a reduction from the halting
problem of a Two-Counter Minsky Machine to RMC .

A Two-Counter Minsky Machine is a simple computation device with
three instruction types and two counters. Yet the Minsky Machine is simple
it is still Turing powerful [18].

We will use the following definition of a Two-Counter Minsky Machine.

Definition 3.1. A Two-Counter Minsky Machine is a computation device,
with a program that can modify the values of two non-negative integer coun-
ters, c1 and c2.

A Two-Counter Minsky Machine program is a sequence of instructions
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1 : Ins1

2 : Ins2

...
...

`end − 1 : Ins`end−1

`end : HALT

where for every i, 1 ≤ i < `end. Ins i is one of the two types:

• ck++; goto j; where k ∈ {1, 2}, which we denote INC k, or

• if ck==0 then goto j; else {ck--; goto m;} where k ∈ {1, 2},
which we denote TADk .

The last instruction is always the HALT instruction.
A configuration of the Two-Counter Minsky Machine is written as (`, v1, v2)

where ` is the number of the current line in the Two-Counter Minsky Machine
program, and v1 and v2 are the values of the counters c1 and c2 respectively.

The notation (i, v1, v2) −→ (h, v′1, v
′
2) means that we perform the instruc-

tion on line i, Insi , resulting in configuration (h, v′1, v
′
2) defined as expected.

If u and u′ are configurations of the Two-Counter Minsky Machine then
u

n−→ u′ means that we can reach u′ from u, in n steps. Similarly u
∗−→ u′

means that it is possible to reach u′ from u with a finite number of steps
(including 0). ♦

The halting problem of a Two-Counter Minsky Machine can be formu-
lated as the decision problem HALTminsky.

Definition 3.2. HALTminsky

Instance: A Two-Counter Minsky Machine M .

Question: Does M reach the halt instruction from the initial configuration
(1, 0, 0)?

♦

Theorem 3.3 ([18]). HALTminsky is undecidable.

3.1.1 Reduction

We will construct a reduction from HALTminsky to RMC .
Given Two-Counter Minsky Machine M we construct a RMC -framework,

R = (I, T,B), such that I ◦ T ∗ ∩B 6= ∅ if and only if the computation of M
halts.
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We describe the states of M using strings on the form `#w1#w2#, where
w1, w2 are sub-strings describing the values of the counters c1, c2 respectively
and ‘#’ is used as a separator symbol between the values. For encoding the
values of the counter we use a unary encoding.

The transducer has to be length preserving, but the values of the counter
might grow to be arbitrary large. We solves this problem by modifying the
initial set. As the initial set is allowed to be infinite, we make sure that there
always is a string large enough to write the value of any number.

In general we describe a state of a Two-Counter Minsky Machine (`, v1, v2),
as the set of strings on the form `#Xv1 ∗#Xv2 ∗#. This means that there
always is at least one string large enough to contain any number.

The initial set I will be I = L(1# ∗# ∗), which is the encoding of the
initial configuration of the Two-Counter Minsky Machine. And the bad setB,
will be any string representing the halt instruction: B = L(`end#X

∗ ∗#X∗ ∗#)
where line `end of the program contains the halt instruction.

For each line ` in the program we create a transducer T` based on the
instruction type of line `.

The transducer for the instruction type INC on c1 is illustrated in Figure
3.1. The transducer first reads the line number of the current instruction
and switches it with the line number of the instruction we jump to. Then it
reads the separator symbol #, copies it and the following X symbols until
the next blank symbol is read. Then it exchanges the read blank symbol
with an X, copies blanks until the next separator symbol. Now we copy the
symbols from here until we reach a new # symbol and reach the final state.

Transducer INC on c2 is illustrated in Figure 3.2, which works just like
INC on c1, only that we copy the value of the first counter and increase the
second counter.

Transducer TAD on c1 is illustrated in Figure 3.3. The transducer works
by first choosing non-deterministically whether the counter c1 is zero or not.
The upper branch of the transducer checks if c1 is zero by copying blank
symbols until we read a # symbol and copies from here. The lower part of
the figure decreases the counter by one, by converting the last X into a blank
symbol. TAD on c2 is illustrated in Figure 3.4 and works just like TAD on
c1, only that counter c2 is checked and decreased instead.

We let T be the union of the transducers for each instruction in M .
Now the question whether I ◦ T ∗ ∩ B ?= ∅ is the same as asking if M

reaches the halt instruction.
As we know that HALTminsky is undecidable we know that the problem

RMC is undecidable too.
This leads to the theorem,
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i/j #/# −/X #/# #/#

X/X −/− −/−, X/X

INC0
1 INC1

1 INC2
1 INC3

1 INC4
1 INC5

1

Figure 3.1: The transducer for instructions of the type: c1++; goto j;.

i/j #/# #/# −/X #/#

−/−, X/X X/X −/−

INC0
2 INC1

2 INC2
2 INC3

2 INC4
2 INC5

2

Figure 3.2: The transducer for instructions of the type: c2++; goto j;.

i/j

#/# #/# #/#

−/− −/−, X/X

i/m
#/# X/− #/# #/#

X/X −/− −/−, X/X
TAD0

1

TAD1
1

TAD2
1 TAD3

1 TAD4
1

TAD5
1 TAD6

1 TAD7
1 TAD8

1 TAD9
1

Figure 3.3: The transducer for instructions of the type: if c1==0 then goto

j; else{c1--; goto m;} .
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i/j

#/# #/# #/#

−/−, X/X −/−

i/m
#/# #/# X/− #/#

−/−, X/X X/X −/−
TAD0

2

TAD1
2

TAD2
2 TAD3

2 TAD4
2

TAD5
2 TAD6

2 TAD7
2 TAD8

2 TAD9
2

Figure 3.4: The transducer for instructions of the type: if c2==0 then goto

j; else{c2--; goto m;} .

Theorem 3.4. RMC is undecidable.

3.1.2 Correctness of Reduction

To prove that our reduction is correct we formulate and prove the two
stronger lemmas, Lemma 3.5 and Lemma 3.6.

Lemma 3.5. Given a Two-Counter Minsky Machine M , initial set I =
L(1# ∗# ∗#), and the length-preserving transducer T constructed from M
according to the method presented in section 3.1.1, we have that

∀n.∀b.∃k1, k2 ≥ b.[(1, 0, 0)
n−→ (y, v1, v2)⇒ y#Xv1 k1#Xv2 k2# ∈ I ◦ T n].

Proof. By induction on n.

Basis step (n = 0)

Assume a given b, let k1 = k2 = b. We know that (1, 0, 0)
0−→ (1, 0, 0). So it

is apparent that

(1, 0, 0)
0−→ (1, 0, 0)⇒ 1# k1# k2# ∈ I ◦ T 0

because I ◦ T 0 = I = L(1# ∗# ∗#) we get that 1# k1# k2# ∈ I ◦ T 0.

Induction Hypothesis (n)

IH (n) ≡

∀b.∃k1, k2 ≥ b.[(1, 0, 0)
n−→ (y, v1, v2)⇒ y#Xv1 k1#Xv2 k2# ∈ I ◦ T n].
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Induction Step (n+ 1)
Given b we will find k1, k2 ≥ b s.t.

(1, 0, 0)
n+1−−→ (y, v1, v2)⇒ y#Xv1 k1#Xv2 k2# ∈ I ◦ T n+1.

If (1, 0, 0)
n+1−−→ (y, v1, v2) then (1, 0, 0)

n−→ (y′, v′1, v
′
2) → (y, v1, v2). By

induction hypothesis we know that for any b′ there are

k′1, k
′
2 ≥ b′ such that y′Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n. (3.1)

The label y′ can hold an instruction of one of the instruction types INC1 ,
INC2 , TAD1 or TAD2 . We show for each case that the claim holds.

• INSy ′ ≡ c1++; goto y; (INC1 )

So we have (y′, v′1, v
′
2) −→ (y, v1, v2) where v1 = v′1 + 1 and v2 = v′2. We

want to show that for any given b, there are k1, k2 ≥ b s.t.

y#Xv1 k1#Xv2 k2# ∈ I ◦ T n+1.

By using (3.1) where b′ = b + 1 there are k′1, k
′
2 ≥ b′ > b such that

s′ = y′#Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n.

Now by running transducer T on s′, the transducer part 3.1 on page 32
applies and so s′[T ]s, where s = y#Xv′1+1 k′1−1#Xv′2 k′2# =
y#Xv1 k′1−1#Xv2 k′2#. Hence s ∈ I ◦ T n+1.

By choose k1 = k′1 − 1 and k2 = k′2 we get k1, k2 ≥ b and so this proves
the claim for this case.

• INSy ′ ≡ c2++; goto y; (INC2 )

This case is symmetric to INC1 .

• INSy ′ ≡ if c1==0 then goto j; else{c1--; goto m;} (TAD1 )

In this case we have (y′, v′1, v
′
2)→ (y, v1, v2), where

(y, v1, v2) =

{
(j, v′1, v

′
2) if v′1 = 0

(m, v′1 − 1, v′2) if v′1 > 0
.

By using (3.1) where b′ = b there are k′1, k
′
2 ≥ b′ ≥ b such that s′ =

y′#Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n.
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Now by running transducer T on s′, the transducer part 3.3 on page 32
applies and so s′[T ]s, where s = y#Xv1 k1#Xv2 k2#, where k2 = k′2,

k1 =

{
k′1 if v′1 = 0

k′1 + 1 if v′1 > 0
, v2 = v′2 and v1 =

{
v′1 if v′1 = 0

v′1 − 1 if v′1 > 0
.

This implies that k1, k2 ≥ b, and because s ∈ I ◦ T n+1 we have proved
our claim for this case.

• INSy ′ ≡ if c2==0 then goto j; else{c2--; goto m;} (TAD2 )

This part is symmetric to TAD1 .

Observe that based on the transducer and initial set given by the reduc-
tion, all strings in I ◦ T n for any n will be of the form y#Xv1 k1#Xv2 k2 for
any v1, k1, v2, k2 ∈ N0.

Lemma 3.6. Given a Two-Counter Minsky Machine M , initial set I =
L(1# ∗# ∗#) and the length-preserving transducer T constructed from M
according to the method presented in section 3.1.1, we have that

∀n.∀k1, k2.[y#Xv1 k1#Xv2 k2# ∈ I ◦ T n ⇒ (1, 0, 0)
n−→ (y, v1, v2)].

Proof. By induction on n.

Basis step (n = 0)
We show that for all k1, k2 ∈ N, if s = y#Xv1 k1#Xv2 k2# ∈ I ◦ T 0 then

(1, 0, 0)
0−→ (y, v1, v2).

As I ◦ T 0 = I = L(1# ∗# ∗#) we know that v1 = v2 = 0. Now we need

to show that (1, 0, 0)
0−→ (1, 0, 0).

This is trivially true and so the basis step is shown.

Induction Hypothesis (n)

IH (n) ≡ ∀k1, k2.[y#Xv1 k1#Xv2 k2# ∈ I ◦ T n ⇒ (1, 0, 0)
n−→ (y, v1, v2)].
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Induction step (n+ 1)
We show that for all k1, k2 ∈ N0 we have that

y#Xv1 k1#Xv2 k2# ∈ I ◦ T n+1 ⇒ (1, 0, 0)
n+1−−→ (y, v1, v2).

Because s = y#Xv1 k1#Xv2 k2# ∈ I ◦ T n+1 there must be a string s′ =
y′#Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n s.t. s′[T ]s.

By using the induction hypothesis we have that

(1, 0, 0)
n−→ (y′, v′1, v

′
2).

If s′ = y′#Xv′1 k′1#Xv′2 k′2# ∈ I◦T n translates to s = y#Xv1 k1#Xv2 k2#
∈ I ◦T n+1 by T , then different parts of T will apply to s′. They will be of the
following types: INC1 , INC2 , TAD1 or TAD2 as illustrated in Figure 3.1,
3.2, 3.3 and 3.4 respectively. We show that for each case the claim holds.

• INC1 (c1++; goto j;):

Let s′ = y′#Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n and s = y#Xv1 k1#Xv2 k2# ∈
I ◦ T n+1 s.t. s′[T ]s where v1 = v′1 + 1 and v2 = v′2 and k1 = k′1 − 1 and
k2 = k′2. We have to show that

(y′, v′1, v
′
2) −→ (y, v′1 + 1, v2) = (y, v1, v2).

We see that the Two-Counter Minsky Machine instruction: INSy ′ ≡
c1++; goto y; corresponds to (y′, v′1, v

′
2) → (y, v1, v2), which proves

the claim for this case.

• INC2 (c2++; goto j):

This case is symmetric to INC1 .

• TAD1 (if c1==0 then goto j; else{c1--; goto m;}):

In this case let s′ = y′#Xv′1 k′1#Xv′2 k′2# ∈ I ◦ T n and
s = y#Xv1 k1#Xv2 k2# ∈ I ◦ T n+1 s.t. s′[T ]s, where

v1 =

{
v′1 if v′1 = 0

v′1 − 1 if v′1 > 0
, v2 = v′2, k1 =

{
k′1 if v′1 = 0

k′1 + 1 if v′1 > 0
and

k2 = k′2.

Now by executing INSy ′ ≡ if c1==0 then goto j; else{c1--; goto

m;}. We see that (y′, v′1, v2) −→ (y, v1, v2), where y =

{
j if v′1 = 0
m if v′1 > 0

,

which proves the claim for this case.
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• TAD2 ( if c2==0 then goto j; else{c2--; goto m;} ):

This case is symmetric to TAD1 .

Given a Minsky Machine M and RMC -framework R = (I, T,B) cre-
ated according to our reduction. By Lemma 3.6 we know that, if the string
`#Xv1 k1#Xv2 k2 ∈ I ◦ T ∗ for some v1, v2, k1, k2 ∈ N, then the computation
of M can reach configuration (`, v1, v2) from (1, 0, 0).

By the construction of T we know that I ◦ T ∗ only contains strings on
the form i#Xv1 k2#Xv2 k2 for v1, v2, k1, k2 ∈ N.

By Lemma 3.5 we know that if M can reach configuration (`, v1, v2) from
(1, 0, 0), then `#Xv1 k1#Xv2 k2 ∈ I ◦ T ∗ for some k1, k2 ∈ N.

By combining this we get that

I ◦ T ∗ ∩B 6= ∅ ⇐⇒ (1, 0, 0)
∗−→ (`end, v1, v2).

This was what we wanted to show, and Theorem 3.4 is hereby proved.

3.2 RMC-finite is PSPACE-complete

In section 3.1 we showed that in general RMC is undecidable. However, by
constraining the initial set so that it is finite, we get that the problem (RMC-
finite) is decidable and PSPACE-complete. Recall RMC-finite defined in
Section 2.1.1, where the initial set is finite. To show RMC-finite is PSPACE-
complete we show that

• RMC-finite is in PSPACE, and

• there is a polynomial time reduction from the reachability problem in
one-safe unary Petri Net to RMC-finite.

In the reduction we use one-safe unary Petri Nets, so we will start by
having a look at these.

3.2.1 Petri Net

Definition 3.7. A Petri Net is a 4-tuple: N = (P, T, F,M0) where

• P is a finite set of places,
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• T is a finite set of transitions,

• F is a flow relation: F ⊆ (P × T ) ∪ (T × P ), and

• M0 : P −→ N0 is the initial marking of N .

Let N = (P, T, F,M0) be a Petri Net. A marking of N is a function
M : P −→ N0. The function M(p) returns the number of tokens in place p.
Assuming P = {p1, p2, · · · , pm}, then we can write a marking of Petri Net N
as the vector (M(p1),M(p2), . . . ,M(pm)).

Given a ∈ P ∪ T . The preset of a is •a = {a′|a′Fa} and the postset of a
is a• = {a′|aFa′}.

In Petri Net N = (P, T, F,M0) a transition t ∈ T is enabled at marking
M if all places p ∈ •t satisfy M(p) > 0.

Given a transition t ∈ T we define a relation
t−→ between markings as:

M
t−→ M ′ if t is enabled at M and for every place p, M ′(p) = M(p) +

F (t, p) − F (p, t), where F (x, y) is 1 if (x, y) ∈ F else it is 0. We use the

notation M
k−→M ′ to denote that marking M ′ can be reached from marking

M in k number steps. We write M
∗−→ M ′ if M ′ is reachable from M in any

finite number of steps.
A marking in N is one-safe if, for every place p in N it holds that M(p) ≤

1. A Petri Net N is called one-safe if all reachable marking in N are one-
safe. A Petri Net is called unary if at most one transition is enabled for each
reachable marking. ♦

Example 3.8. A Petri Net can be drawn as in Figure 3.5. A circle defines a
place in the net. A square defines a transition. The arrows define the presets
and postsets of places and transitions. A dot in a place means that this place
holds a token. The net in Figure 3.5 is one safe, as all reachable marking
holds at most one token in each place. The net is unary as all reachable
markings only enable at most one transition.

4
The problem of reachability in a one-safe unary Petri net can be formu-

lated as the decision problem 1S-PN-reach.

Definition 3.9. 1S-PN-reach

Instance: A one-safe unary Petri Net N = (P, T, F,M0) and marking of
Mr.

Question: Is Mr reachable from marking M0?

♦

Theorem 3.10 ([9]). 1S-PN-reach is PSPACE-complete
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Figure 3.5: Example of a Petri Net

3.2.2 PSPACE Algorithm

First we show that RMC-finite belongs to PSPACE by providing Algorithm
1, that decides RMC-finite in PSPACE.

Algorithm 1: Algorithm to decide RMC-finite.

Input: RMC-finite-framework R = (I, T,B).
Output: True if I ◦ T ∗ ∩B 6= ∅, false otherwise.
begin1

Nondeterministically select a string s ∈ I ;2

while s /∈ B do3

Let s := s′, where s′ is a nondeterministically chosen string s.t.4

(s, s′) ∈ [T ]. ;
if s’ does not exist then5

return false6

return true7

end8

This algorithm does not terminate, however by using a trick from Sav-
itch’s theorem,[24] we can detect if the machine loops, and then terminate.
A loop can be detected by using no more than NPSPACE.

The algorithm uses at most O(n) space in its computation, where n is the
size of the input. The algorithm uses space to store the input of the algorithm.
Beyond that two strings s and s′ are stored for each non-deterministic choice
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of string. The total size of the two strings is |s| + |s′|, where the size of s′

does not exceed the size of s for any s, as the transducer is length-preserving
(this of coarse also holds for any string derived from a string from the initial
set I). The algorithm therefore belongs to NPSPACE, and as NPSPACE =
PSPACE [24] we have an algorithm deciding RMC-finite in PSPACE.

3.2.3 Reduction

We now give a reduction from 1S-PN-reach to RMC-finite.
The idea is to create RMC-framework R = (I, T,B), for a given one-

safe unary Petri Net N and goal marking Mr, such that I ◦ T ∗ ∩ B 6= ∅ iff
M0

∗−→Mr.
Given a Petri Net N = (PN , TN , FN ,M0) where PN = {p1, p2, . . . , pm}

and a marking Mr, we describe the markings of the Petri Net by a string s =
a1a2 · · · am. Here ai corresponds to the number of tokens in place pi ∈ PN , for
1 ≤ i ≤ m. As N is 1-safe, we only need two symbols, Σ = {0, 1} to describe
the possible markings. We write 〈M〉 to denote the string representation of
the marking M = (a1, a2, . . . , am) as the string a1a2 · · · am.

For an RMC-finite-framework R = (I, T,B), we let I = {〈M0〉} and
B = {〈Mr〉}. The flow relation of the Petri Net can be expressed using a
length preserving finite-state transducer T . Where for each t ∈ TN we create
a transducer modeling the transition in the Petri Net.

The algorithm for the reduction is shown in Algorithm 2.
The running time of Algorithm 2 is as follows: for each transition in TN

we create at most one transducer of linear size in the number of places in N .
This gives a running time O(|TN | · |PN |). This belongs to PTIME.

We have hereby shown a polynomial time reduction from 1S-PN-reach to
RMC-finite. To illustrate the reduction we give the following example.

Example 3.11. Given a one-safe unary Petri Net N defined as in Figure 3.5
and resulting marking Mr = (0, 0, 0, 1). We can create a RMC-finite-instance
R = (I, T,B) using Algorithm 2. The initial set I will be I = {1000}, as the
Petri Net has 4 places and a token in place 1. The set of ”bad states” will be
B = {0001}. To construct T three transducers will be created.

The transducer created from transition t1 is illustrated in Figure 3.6. First
it reads 1 and replaces it with 0 as one token is consumed in place p1. It
then reads 0 and replaces it with 1, as one token is created in p2, and reads
0 and replaces it with 1 as a token is created in p3. Rest of the string is left
unchanged.

The transducer created from transition t2 is illustrated in Figure 3.6. It
reads 0 and outputs 0 or reads 1 and outputs 1, as the number of tokens
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Algorithm 2: Algorithm for construction the reduction from 1S-PN-
reach to RMC-finite

Input: A one-safe unary Petri Net
N = (PN = {p1, p2, . . . , pm}, TN , FN ,M0). A marking Mr

Output: A RMC-finite-framework R = (I, T,B)
begin1

I := {〈M0〉};2

B := {〈Mr〉};3

for each t ∈ TN do4

construct transducer Tt = (Qt,Σ, δt, qt0, F
t), where5

Qt := {qt0, qt1...qtm} ;
Σ := {1, 0} ;6

F := {qtm};7

for i = {0, 1, . . . ,m− 1} do8

Add rule qti ,
Xi−→ qti+1 to δt where9

Xi =


1/0 if pi ∈ •t\t•

0/1 if pi ∈ t•\•t
1/1 if pi ∈ •t ∩ t•

1/1, 0/0 otherwise

T :=
⋃
t∈TN

Tt;10

end11

in place p1 is left unchanged. It then reads 1 and outputs 0 as one token is
consumed from place p2 in transition t2, again it reads 1 and outputs 0 as
one token is consumed from place p3. At last it reads 0 and output 1, as one
token is created in place p4.

The transducer created from transition t3 is illustrated in Figure 3.6.
4
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1/0 0/1 0/1 0/0, 1/1t1 q0 q1 q2 q3 q4

0/0, 1/1 1/0 1/0 0/1t2 q0 q1 q2 q3 q4

0/1, 0/0, 1/1 0/0, 1/1 1/0t3 q0 q1 q2 q3 q4

Figure 3.6: The transducer created from transitions t1, t2 and t3 by Algorithm
2 on the Petri Net in Figure 3.5
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3.2.4 Correctness of Reduction

To show the correctness of the reduction we prove Theorem 3.12

Theorem 3.12. Given one-safe unary Petri Net N = (PN , TN , FN ,M0),
marking Mr and regular model checking-framework R = (I, T,B) constructed
according to Algorithm 2 on page 41, we have

I ◦ T n ∩B 6= ∅ ⇐⇒ M0
n−→Mr.

Lemma 3.13. All strings in I ◦ T n are on the form a1a2 · · · am.

Lemma 3.13 is true as the transducer always produces strings on this
form.

To show Theorem 3.12 we formulate and prove the stronger lemma,

Lemma 3.14. Given one-safe unary Petri Net N = (PN = {p1, p2, . . . , pi},
TN , FN ,M0 = (a1, . . . , am)), marking Mr = (b1, . . . , bm) and regular model
checking-framework R = (I, T,B) constructed according to Algorithm 2 on
page 41, then

(a1, . . . , am)
n−→ (b1, . . . , bm) ⇐⇒ b1 · · · bm ∈ I ◦ T n.

Proof. By induction on n.

We show the two directions separately. We start by showing the right
direction.

”=⇒ direction”

Basis step (n = 0)

We have to show that if (a1, . . . , am)
0−→ (b1, . . . , bm) = (a1, . . . , am) then

a1 · · · am ∈ I ◦ T 0.

Because I ◦ T 0 = I = {〈M0〉} we get that a1 · · · am ∈ I ◦ T 0 and this
shows the basis step.

Induction Hypothesis (n)

IH (n) ≡ (a1, . . . , am)
n−→ (b1, . . . , bm) =⇒ b1 · · · bm ∈ I ◦ T n
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Induction Step (n+ 1)

We have to show that if (a1, . . . , am)
n+1−−→ (b1, . . . , bm) then

b1 · · · bm ∈ I ◦ T n+1

If (a1, . . . , am)
n+1−−→ (b1, . . . , bm) then (a1, . . . , am)

n−→ (b′1, . . . , b
′
m)

t−→
(b1, . . . , bm) then by IH(n) we have that s′ = b′m · · · b′m ∈ I ◦ T n

Now by running transducer T on s′, the transducer part created from
transition t applies, and s′[T ]s where s = a1 · · · am ∈ I ◦ T n+1.

”⇐= direction”

Basis step (n = 0)

We need to show that if b1 · · · bm ∈ I ◦ T 0 then (a1, . . . , am)
0−→ (b1, . . . , bm).

As I ◦ T n = I = {a1 · · · am} and as (a1, . . . , am)
0−→ (a1, . . . , am) we have

shown the base case.

Induction Hypothesis (n)
Recall Lemma 3.13, then:

IH (n) ≡ b1 · · · bm ∈ I ◦ T n =⇒ (a1, . . . , am)
n−→ (b1, . . . , bm).

Induction Step (n+ 1)

We have to show that, if s = b1 · · · bm ∈ I ◦ T n+1 then (a1, . . . , am)
n+1−−→

(b1, . . . , bm).

If b1 · · · bm ∈ I ◦ T n+1 then we know that there is a string s′ = b′1 · · · b′m ∈
I ◦T n, such that s′[T ]s. By IH (n) we know that (a1, . . . , am)

n−→ (b′1, . . . , b
′
m).

Now we need to show that (b′1, . . . , b
′
m) in one step can reach (b1, . . . , bm).

When s′[T ]s we now that, one part of the transducer corresponding to one
transition in the Petri Net. As the Petri Net is unary, only one transition is

enabled. By choosing this transition we get (b′1, . . . , b
′
m)

t−→ (b1, . . . , bm). This
shows the ⇐ direction.

As Lemma 3.14 is stronger than Theorem 3.12 we have proven the theo-
rem.
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3.3 Expressiveness on Non-Length Preserv-

ing Transducers

Most literature in the area concern almost exclusively length preserving trans-
ducers. The only article to our knowledge that deals explicitly with non-
length preserving transducers is [10].

By modelling a non-length preserving regular model checking-framework
using a length-preserving regular model checking-framework we can show
that surprisingly we do not add extra expressive power, by using non-length
preserving transducers, at least for safety properties.

Recall the decision problems RMC and GRMC defined in Section 2.1.1.
We show how to reduce from GRMC to RMC . The other way is trivially
true, as of coarse a length preserving transducer is a non-length preserving
transducer.

3.3.1 Reduction

Given a general (non length-preserving) RMC-framework Rg = (Ig, Tg, Bg)
we create a (length-preserving) RMC -framework R` = (I`, T`, B`) s.t.

Ig ◦ T ∗g ∩Bg 6= ∅ ⇐⇒ I` ◦ T ∗` ∩B` 6= ∅.
A non-length preserving transducer is allowed to grow or shrink a string,

using ε-transitions. The idea is to describe this with a length preserving
transducer. This is done by modelling the empty string ‘ε’ explicitly by
using a fresh blank symbol ‘ ’. By exchanging all ε-transition in the non-
length preserving transducer with transitions with the blank symbol, we have
created a length preserving transducer. This will work in the cases where the
computation if finite, which it will be when searching for safety problem. In
the case of infinite computations we have no grantee for this approach to
work. We will discuss these details in later sections.

To model that between every symbol we can insert an arbitrary number
of symbols, we change the initial set to contain an arbitrary number of blank
symbols between any of its symbols. As the initial set is allowed to be
infinite but regular, we can describe it by an NFA for Ig where all states
have been added a blank symbol (‘ ’) loop. Now we know, that for each
string a1a2 · · · am ∈ Ig we have a set of strings in I described by the regular
expression ∗a1

∗a2
∗ · · · ∗am ∗ in Ig. For any string in I` we always have an

other string with a larger number of blanks.
The function ϕ (Algorithm 3 on the next page) translates the strings of

a regular set to a set of strings containing blank symbols between all its
symbols, as described above.
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Algorithm 3: Function ϕ

Input: A regular set described by a non-deterministic finite
automaton M = (Q,Σ, q0, F, δ).

Output: A regular set described by a non-deterministic finite
automaton ϕ(M) = (Q,Σ ] { }, q0, F, δ′).

begin1

δ′(g, a) := δ(g, a) ∀g ∈ Q and ∀a ∈ Σ
δ′(g, ) := {g} ∀g ∈ Q2

end3

The function Ψ (Algorithm 4) translates a non-length preserving trans-
ducer into a length preserving one. (Recall that by Definition 2.5 of a trans-
ducer we have ε /∈ Σ.)

Algorithm 4: Functions Ψ.

Input: A finite-state transducer T = (Q,Σ, q0, F, δ).
Output: A length preserving finite-state transducer

Ψ(T ) = (Q,Σ ] { }, q0, F, δ′).
begin1

δ′(g, a, b) := δ(g, a, b) ∀g ∈ Q and ∀a, b ∈ Σ
δ′(g, a, ) := δ(g, a, ε) ∀g ∈ Q and ∀a ∈ Σ
δ′(g, , b) := δ(g, ε, b) ∀g ∈ Q and ∀b ∈ Σ
δ′(g, , ) := δ(g, ε, ε) ∪ {g} ∀g ∈ Q2

end3

We will now give an example of the reduction.

Example 3.15. Given a GRMC -framework R = (I, T = (Q,Σ, q0, F, δ), B)
where I is given by Figure 3.7(a), B is given by Figure 3.7(b) and T is given
by Figure 3.7(c).

Running ϕ on the NFA illustrated in Figure 3.7(a) and 3.7(b) results in
the NFA in Figure 3.8(a) and Figure 3.8(b), respectively. As every state has
a blank symbol loop we know that all strings will be of the form

k0a1
k1a2

k2 · · · kn−1am
km .

Applying Ψ on the transducer illustrated in Figure 3.7(c) results in the
transducer illustrated in Figure 3.8(c). All ε have been converted to blank
symbols, and each state got added a blank symbol loop.

4
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Figure 3.7: General RMC framework, with (a) initial set, (b) bad set and (c)
transducer.
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Figure 3.8: A RMC framework, with (a) initial set, (b) bad set and (c)
transducer.

47



Theorem 3.16. Given a GRMC-framework Rg = (Ig, Tg, Bg) and a RMC-
framework R` = (I`, T`, B`) created by the method described in section 3.3.1

Ig ◦ T ∗g ∩Bg 6= ∅ ⇐⇒ I` ◦ T ∗` ∩B` 6= ∅

The time complexity of Algorithm 3 and 4 for the reduction is linear in
the size of the input. The size of the output has at most grown in linear size
of the input, as the only difference are the blank symbol loops.

3.3.2 Correctness of Reduction

To prove Theorem 3.16 we formulate and prove two stronger lemmas.

Lemma 3.17. Let T be a non-length preserving transducer and I be a set
described by a finite automaton. Then

∀n.∀b.∀a1 · · · am ∈ I ◦ T n.∃k0, . . . , km ≥ b.[
k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦Ψ(T )n

]
.

Proof. By induction on n.

Basis Step (n = 0)
Assume a given b.

We have to show that if a1 · · · am ∈ I ◦ T 0 then there are k0, . . . , km ≥ b
s.t. k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦Ψ(T )0.

As ϕ(I) ◦ Ψ(T )0 = ϕ(I) ⊇ L( ∗a1
∗ · · · ∗am ∗) it is apparent that for

k0 = k1 = . . . = km = b we get k0a1
k1 · · · km−1am

km ∈ ϕ(I) ◦ Ψ(T )0. This
shows the base case.

Induction Hypothesis (n)
IH (n) ≡

∀b.∀a1 · · · am ∈ I◦T n.∃k0, . . . , km ≥ b.
[
k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦Ψ(T )n

]
Induction Step (n+ 1)
Assume a given b, and a given string s = a1 · · · am ∈ I ◦ T n+1. We will find
k0, . . . , km ≥ b such that

sϕ = k0a1
k1 · · · km−1am

km ∈ ϕ(I) ◦Ψ(T )n+1.

We know that if s ∈ I ◦ T n+1 then there exists a string s′ = a′1 · · · a′z ∈
I ◦ T n, s.t s′[T ]s.
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Now by IH (n) we know that for all b′ there exists

k′0, . . . , k
′
` ≥ b′ s.t. s′ϕ = k′0a′1

k′1 · · · k′z−1a′z
k′z ∈ ϕ(I) ◦Ψ(T )n.

We now find k0, . . . , km ≥ b such that there is a translation s′ϕ[T ]sϕ.
As s′[T ]s we know that there exists a finite computation of the form

C ≡ q0
α′1/α1−−−→ q1

α′2/α2−−−→ · · · α
′
t/αt−−−→ qf where q0, . . . , qf ∈ Qg and qf ∈ Fg such

that s′ = α′1 · · ·α′t and s = α1 · · ·αt (remember that some α′ and α might be
equal to ε). We see that t is the number of steps in the computation.

Now by choosing b′ = b + t, and by using IH on s′, we know that there
are always enough blank symbols between any two letters to cover the worst
case, where the string only grows between these two symbols.

We now show that there is a translation s′ϕ[Ψ(T )]sϕ. The rules in the

computation C will be of the form qw
a/b−−→ qx, qw

a/ε−−→ qx, qw
ε/b−→ qx or

qw
ε/ε−−→ qx. For each rule in the computation C we can use a number of steps

to match the computation in Φ(T ).

• If qw
a/b−−→ qx:

We know the input symbol can be either a blank or a symbol a. While

the input symbol is a blank, we repeatedly apply the rule qw
/−→ qw.

We know that after matching a number of blanks the symbol a will

come. We know that Ψ(T ) has rule qw
a/b−−→ qx , so we can match with

the same rule.

• qw
a/ε−−→ qx:

We know that there can be blank symbols before the symbol a so we

match them with the rule qw
/−→ qw. When we reach the symbol a, we

can match it by the rule qw
a/−→ qx.

• qw
ε/b−→ qx:

We can match this step by the rule qw
/b−→ qx.

• qw
ε/ε−−→ qx :

We can match it by the rule qw
/−→ qx

We have now shown the corresponding computation in Ψ(T ), and we
know that k1, . . . , kn ≥ b as at most t consecutive spaces where consumed,
because t is the length of the computation C.

By this we have proven Lemma 3.17.
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Lemma 3.18. Let T be a non-length preserving transducer and I be a set
described by a finite automaton. Then

∀n.∀k0, . . . , km.∀ k0a1
k1 · · · km−1am

km ∈ ϕ(I) ◦Ψ(T )n. [a1 · · · am ∈ I ◦ T n] .

Proof. By induction on n.

Basis Step (n = 0)
We have to show that if k0a1

k1 · · · km−1am
km ∈ ϕ(I)◦Ψ(T )0, then a1 · · · am ∈

I ◦ T 0.
Because k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦ Ψ(T )0 = ϕ(I) we need to show

a1 · · · am ∈ I ◦ T 0.
As I ◦ T 0 = I it is apparent that a1 · · · am ∈ I.

Induction Hypothesis (n)
IH (n) ≡

∀k0, . . . , km.
k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦Ψ(T )n. [a1 · · · am ∈ I ◦ T n]

Induction Step (n+ 1)

Assume given k0, . . . , km. Then we have to show that if s =
k0a1

k1 · · · km−1am
km ∈ ϕ(I) ◦Ψ(T )n+1 then u = a1 · · · am ∈ I ◦ T n+1 .

We know that as s is in ϕ(I) ◦ Ψ(T )n+1 then there exists a string s′ =
k′0a′1

k′1 · · · k′
m′−1a′m′

k′
m′ ∈ ϕ(I) ◦Ψ(T )n, s.t. s′[Ψ(T )]s.

Then by IH (n) we have that

u′ = a′1 · · · a′m ∈ I ◦ T n.

Now we have to show that u′[T ]u.
We know that there exists a computation for s′[Ψ(T )]s of the form:

q0
α′1/α1−−−→ q1

α′2/α2−−−→ · · · α′t/αt−−−→ qf , where q0, . . . , qf ∈ Ql and qf ∈ Fl. We

now find a computation for u′[T ]u, by removing all steps on the form q
/−→ q

and by exchanging all blank symbols with ε, in the computation of s′[Ψ(T )]s.
By this we have proved Lemma 3.18.

By proving Lemma 3.18 and 3.17 we know that for each step in the
computation the two frameworks can simulate each other; and so we have
proved Theorem 3.16.
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3.3.3 About the Result

At the time where we where developing this result, we where not aware of the
article “Regular Model Checking Using Interference of Regular Languages”
by Habermehl and Vojnar [13], in which a short remark appear about the re-
lationship between length preserving transducers and non-length preserving
transducers. It includes the sketch of an approach similar to ours. Neverthe-
less the article does not present any proof of this claim.

Our work on this proof is done independently and without any knowledge
of the work in [13].

3.4 Summary

In this chapter we have given three results concerning regular model checking.

Most literature in the area of RMC assumes that in general RMC is
undecidable. However we where not aware of any written proof of this claim,
and for completeness we have provided this.

When doing RMC we mainly look at parametric or infinite state-space
systems. However we have shown that we gain decidability, if we consider
finite initial sets, in fact the problem becomes PSPACE-complete.

The last result is by far the most interesting. Several RMC encodings
use modelling tricks similar to the one we use in this reduction — just take
the proof regarding undecidability of RMC. Even though this modelling trick
is used in many encodings and mentioned for the general case as a remark
in [13], we have no knowledge of any formal description and proof of the
method.

As mentioned; the construction, regarding the relationship of length- and
non-length preserving transducers, only guarantees to preserve the possibility
of verifying safety properties.

When we would like to verify liveness properties in a given length pre-
serving RMC-framework, we ask questions like: given an initial set I, a
transducer T and a property set X, is it the case that for all s0 ∈ I and
all translations c = s0[T ]s1[T ]s2[T ] · · · [T ]sk[T ] · · · that there exists a string
sk ∈ X that is included in all c? Since I is possibly infinite, we can not
check this for every single string in I, but we can search for a counterexam-
ple. Then we would ask questions like: given an initial set I, a transducer
T and a property set X is it the case that there exists a string s0 ∈ I and a
computation c = s0[T ]s1[T ]s2[T ] · · · [T ]sk[T ] · · · [T ]sk[T ] · · · , where we revisit
a string sk, and the set of strings computed until the revisit of sk are disjoint
from X (si /∈ X)? Such a lasso-like computation, as illustrated in Figure 3.4,
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will be a counterexample.

s sk0

Figure 3.9: Lassoing computation

One method, presented to us by T. Vojnar by email correspondence, is
to detect these lassos as follows: instead of a given transducer T it can be
modified to T ′ such that T ′ has a three nondeterministic branches: (1) a copy
of T . (2) a part that copies the input string s into s#s′, s.t. s[T ]s′, and (3) a
transducer part equivalent to T , which works on the string after #. All the
three parts of T ′ can only translate if s, s′ /∈ X. With this new transducer
we ask if we can reach a string of the form w#w for some string w, meaning
we found a lasso.

This works for length preserving transducers and, as we claim, for a sub-
class of non-length preserving ones. If we have a non-length preserving trans-
ducer where some translation sequence revisits some states in the transducer

and grows the string, e.g. q1
α1/α′1−−−→ q2

α2/α′2−−−→ · · ·
αn−1/α′n−1−−−−−−→ qn, where qn = q1

and |α1 · · ·αn−1| < |α′1 · · ·α′n−1|, then the liveness verification might never
end because there is no guarantee that a lasso-like counterexample can be
found, because the translation may repeat it self.

However when we have non-length preserving transducers without such
loops as above i.e. that only grow every string with a certain constant, then
the described method is still theoretically possible.

We suggest using the approach similar to the following, to detect if a
transducer preforms this growth in the transducer. We simply reduce the
problem to a Bellman-Ford shortest path problem. The Bellman-Ford algo-
rithm can do shortest path analysis of possibly negative weighted graph -
and it detects if an arbitrary negative or positive path can be found in the
graph. The idea we present is to give weights to the transitions of a given
transducer so that:

• -1 is assigned if the given transition is growing, q
ε/a′−−→ q′,

• 1 is assigned if the given transition is shrinking, q
a/ε−−→ q′, and

• 0 is assigned if the given transition does not change the length, q
a/a′−−→ q′.
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Now the Bellman-Ford shortest path algorithm can check if our transducer
grows strings to arbitrary sizes, simply by testing whether there is a negative
cycle in the graph or not.
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Chapter 4

Cellular Automaton

In this chapter we will look at an interesting model of states evolution sys-
tems with local communication, called a Cellular automaton (CA). We shall
formally define this model and give some interesting examples.

A (CA) is a simple model that is used to describe a state evolution system
with only local communication. The notion of CA was first used by von
Neumann [21], to model and reason about self-replicating systems. Today
CA have a variety of uses e.g. for election algorithms, artificial life (”Game
of Life”), evolutions of bacteria cultures, and traffic flow. Common to these
models are the element of local communication.

A CA consists of two parts, a cellular space and a transition rule. The
cellular space is a collection of connected cells, where each of these cell is
in some state. The cellular space can be multi-dimensional. The transition
function defines an update signal, that simultaneously updates the states of
all cells. The update of a cell is based on the states of its surrounding cells,
called the neighbourhood.

In the 1970’s a CA named Game of Life became very widely known. The
Game of Life, is a two dimensional, two state CA. In Game of Life cells can
either be alive or dead. A given cell can either die or be born/reborn based
on the cells just next to it [29].

We were originally inspired to have a look at CA, when we encountered
the article “SAT-based Analysis of Cellular Automata” by D’Antonio and
Delzanno [11]. The article presents a way to do bounded reachability analysis
of CA by SAT-solving. The article presents how CA can be encoded as a
SAT problem, and shows how to analyse these encodings using the SAT solver
zChaff [23]. In our work we want to investigate whether we can go beyond
bounded model checking, and preform parametric verification of CA, uring
RMC.

When analysing CA we are interested in reachability properties (whether
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a configuration is reachable from an initial configuration), and inverse reach-
ability (given some configuration, can we ”backtrack” the evolution so that
we will reach the initial configuration).

Our motivation is to examine if RMC is suitable for verification of CA. We
do not know about any other work, doing verification of CA using RMC. Most
other work conserning CA verification, seams to be focusing on simulation of
the CA [11].

4.1 Definitions

In this section we give a formal definition of CA, and define some interesting
restricted CA.

Cellular Automaton

Definition 4.1. A cellular automaton (CA) is a 4-tuple C = (d, S,N, δ)
where

• d ∈ N is the dimension of the cellular space (Zd),

• S is the finite set of states,

• N ⊆ Zd is the neighbourhood, where n = |N |, is the size of the neigh-
bourhood, and

• δ : Sn+1 −→ 2S r ∅ is the transition function.

The number d is called the dimension of the cellular automaton. We use
the term 1D-CA to denote a CA of dimension 1 (d = 1).

If N = {v1, v2, . . . , vn}, then the neighbourhood for a given cell i is ob-
tained by considering the cells {i, i + v1, i + v2, . . . , i + vn}. We implicitly
assume a fixed ordering of the neighbour cells.

A configuration of CA C = (d, S,N, δ) is a function c : Zd −→ S that
assigns a state to each cell of the CA. The set of all configurations is denoted
ζ.

All cells in the CA update there states at the same time, based on the
states of the neighbourhood.

The global evolution function of a cellular automaton C, GC : ζ −→ 2ζ , is
defined by:

GC(c)(i) ∈ δ(c(i), c(i+ v1), . . . , c(i+ vn)) for any c ∈ ζ, i ∈ Zd.
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# Rule
1 nnn −→ n
2 nnt −→ n
3 ntn −→ n
4 ntt −→ n
5 tnn −→ t
6 tnt −→ n
7 ttn −→ n
8 ttt −→ n

Table 4.1: Transition function for CA C.

Given an initial configuration c0, an evolution of c0 in C is an infinite se-
quence, c0, c1, . . . such that ct+1 ∈ GC(ct). By EvC(c0) we denote all possible
evolutions of c0 in CA C.

A configuration c′ is reachable in k steps from configuration c0, written

c0
k−→C c′, if there is an evolution c0, c1, c2, . . . , ck, . . . in EvC(c0), such that

c′ = ck, we write this c0
k−→ c′ if C is clear from the context.

For 1D-CA with neighbourhood N = {+1,−1} we write the rules of the
transition function as abc −→ b′, here a is the left neighbour, b is the cell being
updated and c is the right neighbour, and b′ is the new state of cell b.

♦
Before we defined a CA to be nondeterministic, however a more classical

definition of the CA, is where evolution of the CA is deterministic.

Deterministic Cellular Automaton

Definition 4.2. A deterministic Cellular Automaton (dCA) C = (d, S,N, δ)
is defined as in Definition 4.1 but where |δ(a0 . . . , an)| = 1 for all a0, . . . , an ∈
S. ♦

Example 4.3. Consider the CA C = (1, {t, n}, {+1,−1}, δ) where δ is given
by the rules in Figure 4.1. This is a example of a dCA. The CA implements
a simple token parsing algorithm, as from the Example in Section 2.2, where
a token (T) is passed on the right neighbour, but with the exception that we
in this Example have an infinite numbers of processes.

Given a configuration

c0(i) =

{
t if i = 0
n otherwise

the evolution of this configuration is shown in Figure 4.2. Each line is a
configuration that can be reached from the above configuration.
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step . . . `−2 `−1 `0 `1 `2 `3 . . .
1 . . . n n n t n n n n. . .
2 . . . n n n n t n n n. . .
3 . . . n n n n n t n n. . .
4 . . . n n n n n n t n. . .
... . .

. ...
...

...
...

...
...

. . .

Table 4.2: Evolution of configuration c0 in CA C

We see that from step one the cell `0 evolves from state t to state n. The
neighbours for cell `0 is the cells `−1 and `1. As the neighbours has the state
n, and cell `0 has the state t, the update is done according to rule number 3.
We see that cell `1 evolves from state n to state t based on rule number 5,
and that all other cells keeps the same state by rule number 1.

In the evolution of c0 in C, it is clear that we will never use the rules
4, 6, 7, 8, from now one we will only list the rules that are necessary for the
evolution.

4
We will now look at a special kind of 1D-CA where the cellular space is

connected, forming a ring topology.

Circular Cellular Automata

Definition 4.4. A Circular Cellular Automaton (cCA) of size z ∈ N is
defined as a non-deterministic 1D-CA C = (1, S,N, δC), but where:

• |N | ≤ z, and

• the neighbourhood is obtained by considering the cells
{i, (i+ v1)mod z, (i+ v2)mod z, . . . , (i+ vn)mod z} where N = {v1, . . . , vn}.

Given a configuration c we only consider the cells used in the computation.
We write the configuration c using the notation c = (c(0), . . . , c(z − 1)).

♦

Example 4.5. Consider the cCA C = (1, {t, n}, {+1,−1}, δ) of size 8, with
initial configuration c0 = (t, n, n, n, n, n, n, n) and where δ is given by the
rules in Table 4.3.

This CA implements a simple token passing algorithm, where the token
is passed on to the right neighbour and where the ”processes” are connected
in a ring topology.
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# Rule
1 nnn −→ n
2 nnt −→ n
3 ntn −→ n
4 tnn −→ t

Table 4.3: Transition function for circular CA C, this only considers the
rules used for the evolution of c0, all rules of the CA is given in Table 4.1 on
page 56.

The evolution of configuration c0 is shown in Figure 4.1. The neighbour-
hood of a cell is the right and left cell in the ring. Each layer of the circle
corresponds to one configuration in the evolution. We see that after 8 steps
we will reach the configuration c0 again.

4
We can also restrict the cellular space to be finite, we call this a bounded

cellular automata.

Bounded Cellular Automata

Definition 4.6. A non-deterministic 1D-CA C = (1, S,N, δ) with initial
configuration c0 is called z−bounded or a Bounded Cellular Automata (bCA)
if, z ∈ N and

• S contains a barricade state $ ∈ S, that satisfies:

– δ($, a1, . . . , an) = $ ∀a1, . . . , an ∈ S, and

– δ(a0, a1, . . . , an) 6= $ ∀a0 ∈ S r {$}, ∀a1, . . . , an ∈ S, and

• the configuration c0 is z-bounded, satisfying that for all i ∈ N:

– c(i) = $ if i < 0,

– c(i) = $ if i ≥ z and

– c(i) 6= $ if 0 ≤ i < z.

♦
When looking at a configuration of a bounded CA, we only consider the

part which does not contain barricade symbols. We write a configuration c
of a bCA as c = (c(0), . . . , c(z − 1)).

Consider any z-bounded CA C, with an initial state c0. All configurations
in from EvC(c0) will be z-bounded.
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Figure 4.1: The evolution of cCA with initial configuration c0.

59



# Rule
1 nnn −→ n
2 nnt −→ n
3 ntn −→ n
4 tnn −→ t
5 $tn −→ n
6 $nt −→ n
7 $nn −→ n
8 nn$ −→ n
9 tn$ −→ t
10 nt$ −→ t

Table 4.4: Transition rules for bCA C.

step l0 l1 l2 l3 l4 l5
1 . . . $ t n n n n n $ . . .
2 . . . $ n t n n n n $ . . .
3 . . . $ n n t n n n $ . . .
4 . . . $ n n n t n n $ . . .
5 . . . $ n n n n t n $ . . .
6 . . . $ n n n n n t $ . . .
7 . . . $ n n n n n t $ . . .
...

...
...

...
...

...
...

...
...

Table 4.5: Evolution of configuration c0 in bounded CA C

When ‘$’ represents the barricade state of bounded CA C = (1, N, S, δ),
we will assume implicitly that $ ∈ S and that the transition rules

δ($, a1, . . . , an) = $

is included in δ for all a1, . . . , an ∈ S.

Example 4.7. Consider the bCA C = (1, {t, n}, {+1,−1}, δ) with initial
configuration c0 = (t, n, n, n, n, n, n, n) and where δ is given by the rules in
Table 4.4.

This CA implements a simple token passing algorithm, where the token
is passed on to the right neighbour and the last process keeps the token.

In Table 4.4 we illustrate a subset of the transition rule δ of the bCA C =
(1, {a, b, $}, N = {−1,+1}, δ) with initial configuration c0 = (t, n, n, n, n, n).

The evolution of configuration c in CA C is illustrated in Table 4.5.
4
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Decision Problems

We will now formally define the decision problems for reachability analysis
in CA.

The general reachability problem for the most general CA variant:

Definition 4.8. CA-reach

Instance: A non-deterministic CA C and configurations c0 and c.

Question: Is c reachable from c0 in C?

♦
The decision problem for circular and bounded CA is defines as the deci-

sion problems cCA-reach and bCA-reach.

Definition 4.9. cCA-reach

Instance: A z-circular CA C with configurations c0 and c.

Question: Is c reachable from c0 in C?

♦

Definition 4.10. bCA-reach

Instance: A bCA C with configurations c0 and c.

Question: Is c reachable from c0 in C?

♦
We define the decision problem rcCA-reach as a restricted reachability

problem in cCA, with neighborhood N = {+1,−1}.

Definition 4.11. rcCA-reach

Instance: A z-circular CA C = (1, S,N, δ) with configurations c0 and c
and N = {+1,−1}.

Question: Is c reachable from c0 in C?

♦
We have now formally defined the CA and the reachability question in a

CA.
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4.2 CA Algorithms

In this section we will have a look at some different CA algorithms that will
later be used in the following chapters.

4.2.1 Rule χ

The Rule χ is a class of 256 different deterministic 1D-CA, with only two
state, S = {0, 1}, and with N = {+1,−1}. By Rule χ where 0 ≤ χ ≤ 255,
we mean the CA with the above definition and the rules in Table 4.6, where
the sequence χ1χ2χ3χ4χ5χ6χ7χ8 is the binary encoding of the number χ.

Rule χ
1 1 1 −→ χ8

1 1 0 −→ χ7

1 0 1 −→ χ6

1 0 0 −→ χ5

0 1 1 −→ χ4

0 1 0 −→ χ3

0 0 1 −→ χ2

0 0 0 −→ χ1

Table 4.6: Template Rules for the Rule χ CA

Example 4.12. An example of this is Rule 30. The binary encoding of the
number 30 is “00011110”. Which means that for Rule 30 the values for χ1 to
χ8 are as follows: χ1 = χ2 = χ3 = χ8 = 0 and χ4 = χ5 = χ6 = χ7 = 1.

4
Even though this class of CA seems simple, some of them have quite

interesting behaviours. E.g. Rule 184 has been used to simulate traffic flow
models [20], Rule 30 has been proposed as a random generator and have
even been proposed applied in the field of cryptography[30]. Also Rule 110
turn out to have a complex behaviour, in fact Rule 110 has been proved
Turing Complete [28], with two notable difference from the Turing machine:
the computation continues infinitely, it has no halting state and the initial
configuration of the CA is finite, where the initial configuration of a Turing
machine, has to be finite.

4.2.2 Firing Squad Synchronisation Problem

The Firing Squad Synchronisation Problem (FSSP) is he problem of syn-
chronisation between a number of processes with local communication. The
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problem is normally formulated as: a number of soldiers need to fires the
canons at a enemy city, to be certain that the attack is successful, then need
to fire there canons a exactly the same time. All soldiers can receive a mes-
sage from the solders to the left and right of him. The FSSP is to find a
solution such that all solders firers there cannon simultaneously. We can
encode a solution of this problem using a bCA.

There exists a number of solutions to the problem. A smallest five-state
solution has been shown by H. Umeo and T. Yanagihara [26]. And a minimum
time solution has be show by Waksman [12] using 2n-2 steps, where n is the
number of solders. The website [19] gives the CA rules for different solutions
to the problem.

We consider Jacques Mazoyer’s [16] six-state minimal solution to the
FSSP. This solution works by finding the middle cell, by sending two mes-
sages. One message traveling by speed 1, and one with speed 1/3. When one
cells receives both messages at the same time, we know this is the middle
cell, dividing the cells into two segments. Now the middle of these two cells
is found in a similar way, until a cell reaches the firer state, see Figure 4.2
for an illustration the solution.
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Figure 4.2: Figure of the Jacques Mazoyer’s six-state minimal solution to the
FSSP. source: wikipedia.org
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Chapter 5

Verification of Cellular
Automata

In this chapter we will have a look on how verification of CA can be done
using RMC. We present two results in this chapter. First we show that bCA
and cCA have the same expressiveness up to isomorphism, and then we show
a reduction from cCA to RMC.

5.0.3 Circular vs. Bounded Cellular Automata

In this section we will have a look at the expressiveness of the different types
of CA.

Definition 5.1. Given CA C and configuration c0, we define Conf C (c0) as
the set of all reachable configurations from c0 in C. ♦

Definition 5.2 (Isomorphism). Given CA C, C ′ and configurations c0, c
′
0,

the pairs (C, c0), (C ′, c′0) are isomorphic, (C, c0) ∼=i (C ′, c′0), iff

1. there is a bijection f : Conf C (c0) −→ Conf C ′(c′0), and

2. c1 −→C c2 ⇐⇒ f(c1) −→C′ f(c2) for all the configurations c1, c2 of C.

♦
The relationship between the different 1D-CA, with regards to isomor-

phism, is illustrated in Figure 5.1.
The general CA are of coarse more expressive than the bounded and the

circular ones. This is because bCA and cCA configurations are restricted,
they only evolve to a finite number of different configuration. In Example 4.3
on page 56 we have an example of a CA with an infinite number of reachable
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1D-CA

Circular 1D-CA = Bounded 1D-CA

Figure 5.1: Relationship between different types of CA up to isomorphism.

configurations, and of course this can not have an isomorphic bounded or
circular CA, making it more expressive than any bCA or cCA.

However bCA and cCA are isomorphic

Theorem 5.3. For any 1D-bCA there is an isomorphic 1D-cCA, and for
any 1D-cCA there is an isomorphic 1D-bCA.

To prove Theorem 5.3 we will have to prove that circular CA are as ex-
pressive as bounded CA up to isomorphism and vice versa. This is formulated
in Lemma 5.5 and Lemma 5.6, so by proving these lemmas we prove Theorem
5.3.

First we will prove Lemma 5.5. For the bijective function we will need
the distance of a given neighbourhood.

Definition 5.4. The distance of neighbourhood N in a 1D-CA, denoted
dist(N), is defined as:

max({|vi| | vi ∈ N}).

♦

Lemma 5.5. For any 1D-bCA B and configuration c0 there exists a 1D-cCA
C and a configuration c′0 such that (B, c0) ∼= (C, c′0). Constructing C from B
is possible in linear time.

Proof. Assume a given 1D-bCA B = (1, SB, NB, δB) of size z with configu-
ration c0. We now create 1D-cCA C = (1, SC , NC , δC) of size z′ with config-
uration c′0, that will behave like B.

Given
c = (a0, a1, . . . , az−1) ∈ Conf B(c0),

we define

f(c) = (a0, a1, . . . , az−1,

dist(NB)︷ ︸︸ ︷
$, $, . . . , $).

Note that this means that the size of C will be z′ = z + dist(NB).
The construction of the cCA is very simple, we simply let SC = SB,

NC = NB and δC = δB.
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It is clear from the construction that for each configuration in Conf B(c0)
we will get exactly one configuration in Conf C (f(c0)), making it a bijection.
Because we added dist(NB) ‘$’ in the end of every configuration, we get that
the outer cells in configurations c0 and c′0 has exaclty the same neigbourhood,
and Since SC = SB, NC = NB and δC = δB it is easy to see that

c1 −→B c2 ⇐⇒ f(c1) −→C f(c2).

Regarding the complexity, the only thing we did was to add some extra
cells (in state $) to the configuration c0, which can be done in linear time.

Lemma 5.6. For any 1D-cCA C and configuration c0 there exists a 1D-bCA
B and a configuration c′0 such that (C, c0) ∼= (B, c′0).

Proof. Assume a given 1D-cCA C = (1, SC , NC , δC) of size z with config-
uration c0. We now create 1D-bCA B = (1, SB, NB, δB) of size one with
configuration c′0, that will behave like C.

The idea is to make a state in SB for all different configurations in
Conf C (c0). Note that by doing so, we reduce the configurations (of possibly
many cells) in Conf C (c0) to a single cell representing an entire configuration
from Conf C (c0).

Given configuration c = (a0, a1, . . . , az−1), we define a one-state represen-
tation of c to be 〈c〉 = a0a1 · · · az−1.

Given c = (a0, a1, . . . , az−1) ∈ Conf C (c0), we define f(c) = (〈c〉), that is
a configuration of only one state 〈c〉.

We construct the bounded CA B = (1, SB, NB, δB), so that NB = ∅, SB ={
〈c〉 | for all c ∈ Conf C (c0)

}
, and for all c −→C c′, we add a rule δB(〈c〉) =

〈c′〉, we also add the rule δB($) = $.
From this construction it is clear that for each configuration in Conf C (c0)

we will get exactly one configuration in Conf B(f(c0)), because the only thing
fC does, is reduce a configuration to a single state for every configuration in
Conf C (c0). This defines the required bijection.

Since 1D-bCA B is build to mimic the exact behaviour of 1D-cCA C, it
is clear that from this construction we have that

c1 −→C c2 ⇐⇒ f(c1) −→B f(c2).

Note that the running time of the reduction from cCA to bCA is ex-
ponential in the size, z, of cCA C, the running time of the reduction is
O(|Conf C (c0)|2) = O(|SC |2z).
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5.1 Circular Cellular Automata Verification

using RMC

Recall Definition 4.11 on page 61 of the restrict decision problem of cCA
analysis rcCA-reach. The problem is if a configuration is reachable in a
1D-cCA with neighbourhood N = {+1,−1}.

In this section we will present a reduction from rcCA-reach to RMC . In
Section 5.0.3 we showed how to convert a bCA to a cCA in linear time, so
the following reduction also works for bCA.

Later we will consider how to expand this to greater neighbourhoods and
optimise the reduction for bCA.

5.1.1 Reduction

Given a circular CA C = (1, SC , NC , δC) with neighbourhood NC = {−1,+1}
and configurations c0 and c′, we construct an RMC-framework R = (I, T, B)
such that for every k ∈ N0

c0
k−→ c′ ⇐⇒ I ◦ T k ∩B 6= ∅ .

Idea In CA the evolution of one cell depends on its neighbourhood. Given
a cell i of CA C = (1, SC , NC , δC) with NC = {−1,+1}, we consider the
cells just to the left and just to the right of the cell i to determine the next
state of cell i. In a transducer we only consider one symbol to decide what
the output symbol will be. However the output symbol also depends on the
current state of the transducer. To model a bCA C we will use the states
of the transducer to remember the neighbourhood of the CA. We will name
the states of the transducer (x, y) where x is the symbol just read, and y is
the next symbol we need to read. We call the state name (x, y), as seen ‘x’

and read ‘y’. This means that when we construct the transducer, only
x/α−−→

transitions can be going to the state (x, y) and only
y/α′−−→ transitions can be

going from the state (x, y), where α, α′ ∈ Σ.

Example 5.7. To give an example of this, consider the rule abc→ b′ in a 1D-

bCA. We model this rule by the transition (a, b)
b/b′−−→ (b, c) in the transducer.

This transducer part is illustrated as follows:

b/b′a,b b,c
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4
Now as we consider cCA, we will also have to make sure that the first and

the last symbol is translated according to its neighbour in the opposite end
of the string. As we do not know the value of the last symbol, when we have
to alter the first symbol, we have to make a nondeterministic guess the last
symbol. We know that we have to use one of the rules in the cCA, so we can
make a guess to which rule that fits. Then, when we alter the last symbol,
we will have to remember the first encountered symbol, to what symbol we
guessed was the last. It is okay to end the computation, if we are in a state
where we have seen the symbol we guessed to be the last, and if we are going
to read the symbol we remembered as the first.

For this we extend the naming schema from above so that instead of
naming states of the transducer (x, y) we name them (f, `, x, y), where f is
the first symbol and ` is the last symbol in the string. The state (f, `, x, y),
can be interpreted as: the first symbol is ‘f ’, guessed that the last symbol is
going to be ‘`’, and just seen ‘x’ and read ‘y’ (just as above). This way we
remember the first symbol and guess the last symbol. The final transducer
will nondeterministically choose a part of the transducer that fits the string.

In the reduction we write 〈c〉 = c(0)c(1) · · · c(z − 1) to denote the string
representation of the configuration c = (c(0), c(1), . . . , c(z − 1)).

The algorithm for the reduction is presented in Algorithm 5.

Algorithm 5: Reduction Algorithm from cCA to RMC.

Input: A cCA C = (1, SC , NC , δC) and configurations c0 and c′.
Output: RMC-finite-framework R = (I, T = (QT ,ΣT , δT , q0, FT ), B).
begin1

I := {〈c0〉};2

B := {〈c′〉};3

QT := (S × S × S × S) ∪ {start};4

q0 := start ;5

FT := {(f, `, `, f)|`, f ∈ S} ;6

ΣT := SC ;7

forall abc −→ b′ ∈ δC do8

add to δT the transitions: (f, `, a, b)
b/b′−−→ (f, `, b, c) for all9

f, ` ∈ S ;

add to δT the transition: start
b/b′−−→ (b, a, b, c) ;10

return R11

end12
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In the reduction we create a transducer with at most O(|S|4) states, and
O(|δC | · |S|2) transitions. This makes the reduction polynomial.

Example 5.8. As an example of the reduction, let us have a look at the
token passing ring example, from Example 4.5 on page 57.

Recall the definition of the CA C = (1, SC = {t, n, }, NC = {−1,+1}, δC),
where the significant rules are tnn → t, ntn → n, nnt → n, nnn → n. The
illustration in Figure 5.2 is the transducer resulting from our reduction.

n/t

n/n
n/n

t/n

n/t

t/n

n/t

n/n

n/n

t/n

n/n
t/n

n/t
n/n

n/n
n/n

start

n,t,n,n

n,t,n,t

n,t,t,n

t,n,t,n

t,n,n,n

t,n,n,t

n,n,n,t
n,n,t,n

n,n,n,n

Figure 5.2: Transducer created by the Algorithm 5 on the cCA that imple-
ments a token passing ring.

We can see that by following the transducer on the string nnnt, we get the

translation start
n/t−−→ (n, t, n, n)

n/n−−→ (n, t, n, n)
n/n−−→ (n, t, n, t)

t/n−−→ (n, t, t, n)
- leading to the string tnnn, which is translated to ntnn, which is translated
to nntn, which again is translated to nnnt, just like C would have done.

4

5.1.2 Correctness of Reduction

Theorem 5.9. Given a cCA C = (1, SC , NC , δC) of size z and configurations
c0 and c′, and given a RMC-framework, R = (I, T,B) constructed according
to Algorithm 5, we have
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c0
k−→ c′ ⇐⇒ I ◦ T k ∩B 6= ∅.

To prove Theorem 5.9 we expand the configurations, such that we get the
following claim:

Claim. Given a cCA C = (1, SC , NC , δC) of size z and configurations c0 =
(a0, a1, a2, . . . , am) and c′ = (b0, b1, b2, . . . , bm) (where m = z − 1), and given
a RMC-framework, R = (I, T,B) constructed according to Algorithm 5, we
have

(a0, a1, a2, . . . , am)
k−→ (b0, b1, b2, . . . , bm)

⇐⇒

b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T k.

Proof. By induction on k.

”=⇒-direction”

Basis step (k = 0)

We have to show that if (a0, a1, a2, . . . , am)
0−→ (b0, b1, b2, . . . , bm), then

b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T 0.

As (a0, a1, a2, . . . , am)
0−→ (b0, b1, b2, . . . , bm) = (a0, a1, a2, . . . , am), we have

to show that a0a1a2 · · · am ∈ {a0a1a2 · · · am} ◦ T 0.
Since {a0a1a2 · · · am} ◦ T 0 = {a0a1a2 · · · am}, we have shown the basic

step.

Induction Hypothesis (k)

IH(k) ≡ (a0, a1, a2, . . . , am)
k−→ (b0, b1, b2, . . . , bm)

=⇒ b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T k.

Induction step (k + 1)

We have to show that if (a0, a1, a2, . . . , am)
k+1−−→ (d0, d1, d2, . . . , dm) then

d0d1d2 · · · dm ∈ {a0a1a2 · · · am} ◦ T k+1.

We know that if (a0, a1, a2, . . . , am)
k+1−−→ (d0, d1, d2, . . . , dm) then

(a0, a1, a2, . . . , am)
k−→ (b0, b1, b2, . . . , bm)

1−→ (d0, d1, d2, . . . , dm). Now by IH(k)
we have that b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T k. So it is enough to show
that b0b1b2 . . . bm[T ]d0d1d2 . . . dm.
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We know that when cCA C evolves from (b0, b1, b2, . . . , bm) to
(d0, d1, d2, . . . , dm) then for each cell i, where 0 ≤ i ≤ m and b−1 = bm,
there is a rule bi−1bibi+1 −→ di updating the cell i. Because of the way we
construct T , we will for each rule that fits this pattern have an equivalent
part in the transducer.

Since bi−1bibi+1 −→ di will have transducer parts that are sequentially
connected (illustrated in Example 5.8 ), and since the accepting states are
states that fit (f, `, x, y) where x = ` = s−1 = bm and y = f = s0 = b0,
we will, when C evolves from (b0, b1, b2, . . . , bm) to (d0, d1, d2, . . . , dm), get a
translation from b0b1b2 · · · bm to d0d1d2 · · · dm by T .

This means that we can translate b0b1b2 · · · bm, by using the following

translation b0b1b2 · · · bm[T ]d0d1d2 · · · dm: start
b0/d0−−−→ (b0, bm, b0, b1)

b1/d1−−−→
(b0, bm, b1, b2)

b2/d2−−−→ (b0, bm, b2, b3)
b3/d3−−−→ (b0, bm, b3, b4)

b4/d4−−−→ . . .
bm−1/dm−1−−−−−−→

(b0, bm, bm−1, bm)
bm/dm−−−−→ (b0, bm, bm, b0). As the state (b0, bm, bm, b0) is accept-

ing we have given a translation, showing the induction step.

”⇐=-direction”

Basis step (k = 0)
We have to show that if a0a1a2 · · · am ∈ {a0a1a2 · · · am} ◦ T 0 then

(a0, a1, a2, . . . , am)
0−→ (a0, a1, a2, . . . , am).

Since {a0a1a2 · · · am}◦T 0 = {a0a1a2 · · · am} then of coarse a0a1a2 · · · am ∈
{a0a1a2 · · · am}. And since (a0, a1, a2, . . . , am)

0−→ (a0, a1, a2, . . . , am) we have
shown the base case.

Induction Hypothesis (k)

IH(k) ≡ b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T k

=⇒ (a0, a1, a2, . . . , am)
k−→ (b0, b1, b2, . . . , bm).

Induction step (k + 1)
We have to show that if d0d1d2 · · · dm ∈ {a0a1a2 · · · am} ◦ T k+1 then

(a0, a1, a2, . . . , am)
k+1−−→ (d0, d1, d2, . . . , dm).

If d0d1d2 · · · dm ∈ {a0a1a2 · · · am} ◦ T k+1 then there is a string
b0b1b2 · · · bm ∈ {a0a1a2 · · · am} ◦ T k, s.t. b0b1b2 · · · bm[T ]d0d1d2 · · · dm.

Now by applying IH(k) we know that:

(a0, a1, a2, . . . , am)
k−→ (b0, b1, b2, . . . , bm).
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So we need to show that (b0, b1, b2, . . . , bm)
1−→ (d0, d1, d2, . . . , dm).

We know that as T translates b0b1b2 · · · bm to d0d1d2 · · · dm then there is
a translating computation:

start
b0/d0−−−→ (b0, bm, b0, b1)

b1/d1−−−→ (b0, bm, b1, b2)
b2/d2−−−→ (b0, bm, b2, b3)

b3/d3−−−→
(b0, bm, b3, b4)

b4/d4−−−→ . . .
bm−1/dm−1−−−−−−→ (b0, bm, bm−1, bm)

bm/dm−−−−→ (b0, bm, bm, b0),
where (b0, bm, bm, b0) ∈ F .

Each transition in the translation, corresponds to one cell in the CA
gets state updated. Now we can find a computation in the CA by looking
at the above computation where 1 : bmb0b1 −→ d0, 2 : b1b2b3 −→ d1, . . .,
m : bm−1bmb0 −→ d0.

Now by applying the above rule i to cell i, we get an evolution step

(b0, b1, b2, . . . , bm)
1−→ (d0, d1, d2, . . . , dm), which shows the induction step.

This shows the claim, and thereby also Theorem 5.9.

5.1.3 Greater Neighbourhoods

The reduction from cCA to RMC could easily be extended to greater neigh-
bourhoods. To simplify the proof and reduction idea we have left this out of
the formal description.

The extension can be done by remembering more values in a states of the
transducer, so that for neighbourhood N = {+2,+1,−1,−2} we will name
the states (f, l, n1, n2, n−1, n−2), where n1, n2 is the values of the last read
symbols, and n−1, n−2 is the values we guess will be seen. Recall Definition
5.4 of the distance of a neighbourhood, then we see that the size of the
reduction grows exponentially in the distance of the neighbourhood.

5.1.4 Optimisation for bCA

We have already shown how a bCA can be converted to a cCA, meaning
we can use the cCA reduction for a bCA. However the reduction from bCA
to RMC can be simplified. If we have a bCA, the reduction becomes even
simpler. We do not need to remember and guess the start and end symbol,
we only need to remember the neighbourhood in the states, which reduces
the number of states in the transducer considerately.

We also simplify the start and termination criteria by creating a special

‘end ’-state, which has an in-going transition
$/$−−→ from all states, which is

going to check for the barricade symbol ‘$’. Likewise we create a special
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‘start ’-state, which has
$/$−−→ going to every state that has seen $. The simpler

reduction for bCA is presented in Algorithm 6.

Algorithm 6: Reduction Algorithm from bCA to RMC.

Input: A cCA C = (1, SC , NC , δC) and configurations c0 and c′.
Output: RMC-finite-framework R = (I, T = (QT ,ΣT , δT , q0, FT ), B).
begin1

I := {〈c0〉};2

B := {〈c′〉};3

QT := (S × S) ∪ {start , end};4

q0 := start ;5

FT := {end} ;6

ΣT := SC ;7

forall abc −→ b′ ∈ δC do8

add to δT the transitions: (a, b)
b/b′−−→ (b, c) ;9

forall states ($, y) ∈ QT do10

add to δT the transitions: start
$/$−−→ ($, y) ;11

forall states (x, $) ∈ QT do12

add to δT the transitions: (x, $)
$/$−−→ end ;13

return R14

end15

This reduction creates a transducer that has at most O(|S|2) and at most
O(|δC |) transitions, making the reduction polynomial.

5.2 Summary

In this chapter we have shown how to transform bCA and cCA into RMC-
frameworks. This makes it possible to model check bCA and cCA with RMC.
Our approach is as such more general than the approach from ”SAT-Based
Analysis of Cellular Automata”[11], as we can model an arbitrary number
of evolutions and not just a limited number of evolutions. We also have the
possibility of checking a given bCA or cCA with configurations of arbitrary
length, though this feature comes with the trade-off of undecidability. In
the next chapter we will make a number of experiments to determine the
usefulness and effectiveness of verifying CA with RMC.

The results in this Chapter only considers CA with a cellular space of
one dimension. We do at this time not have any good reduction for higher
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dimension CA, where one evolution in the CA corresponds to one appliance
of the transducer. In the case of CA with larger dimensions, we would start
by investigate a mini-step encoding, where several steps in the transducer,
corresponds to one step in the CA.
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Chapter 6

Experiments

In this chapter we will look at a number of experiments for verification of
CA using RMC. We have made a prototype implementation of the reduction
algorithm presented in Section 5.1, converting a cCA to RMC. The tool reads
a CA file, based on our own file format, and outputs files that can be used
directly for RMC verification in the ARMC tool[6].

For more details about the prototype tool, its implementation and the
CA encoding of the experiments, consult Appendix A. The test computer is
a 3000+ AMD Sempron with 1GB of RAM. We have not used any of the
optimizations, or different settings in the tool to optimize the verification
time.

All experiments is based on a CA algorithm on which we have used our
tool to create transducer for the RMC. In the definition of reachability in CA,
we defined it as, if from one configuration can reach an other. However in
the experiments we are not only interested in weather one configuration can
reach an other, we are also interested, in the more difficult question, whether
for a possible infinite set of configuration, can we, by the evolution in the CA
reach an other, possible infinite, set of infinite configurations?

6.1 Token Passing Protocol

As a proof of concept experiment we have used the Token Passing protocols
from Example 4.7 on page 60, and Example 4.5 on page 57. We have created
the bCA- and cCA-RMC-framework with our tool. Notice that we used
the optimised bCA reduction to construct the transducer for the bCA. For
comparison we have also made an encoding of the protocols by hand, with
the aim of maximum efficiency.

We have for all versions tested the property: “is there always exactly
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one token present at any time?” We have performed the verification for an
unbound number of processes, where the first process holds the token.

The results of the experiments are illustrated in Table 6.1. The column
bCA illustrate test data for the bCA version, and the column bRMC illustrate
the test data for the “hand” encoding of the bounded CA. Similar for the
columns cCA and cRMC only they are data for the circular token passing
protocol. The row “time” shows the CPU running time of the verification in
seconds. The row “states” shows the number of states in the transducer and
the row “transitions” show the number of transitions in the transducers.

bCA bRMC cCA cRMC
states 9 3 10 6
transitions 16 4 20 9
time <0.01 < 0.01 < 0.01 < 0.01

Table 6.1: Experiments for bounded and circular token passing

Our experiments show that all models verify in under 1 second. However
the reduction is a little less efficient in the number of states and transitions,
but in this case not considerably larger.

There is a difference in the degree of difficulty for modelling the algo-
rithms. It is our experience that the CA encoding, especially in the case of
the circular token passing protocol, is considerately easier and more natural,
than by encoding the transducer by hand.

Next we will verify some CA which have a more complex behaviour than
the Token Passing example.

6.2 Rule χ

Recall the Rule χ group of CA, introduced in Section 4.2.1. We have used
Rule 30 and Rule 184 to experiment with the efficiency of our automatic
conversion. We have made a bCA implementation of the rules, details about
this can be found in Appendix A.2.

When analysing the group of Rule χ CA, we are interested if a special
pattern can be reached by the CA. In the case of Rule 184, which can be
used to model traffic flow of cars, it might be that we want to know if we
from some configuration can reach a configuration where there is a queue
with more than 10 cars. We have chosen Rule 30 and Rule 184, because Rule
30 is known as one of the more complex CA in Rule χ, and Rule 184 because
it has an obvious and initiative use case.
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n 1n 1n0n (10)n

2 < 0.01 < 0.01 <0.05
3 <0.01 <0.01 0.10
4 0.1 0.26 0.41
5 0.14 0.3 0.41
6 0.48 4.77 0.76
7 0.46 4.69 1.50
8 0.60 4.94 2.05
9 14.61 > 5m 2.36
10 14.57 - 7.15
11 > 5m - 7.39
12 - - 26.1
13 - - 25.4
14 - - 129
15 - - 120
16 - - 489
17 - - >5m

Table 6.2: Experimental results for Rule 30, n specify the length of the
pattern, and the values is the verification in seconds.

For Rule 30 we have tested, how large patterns of the forms “1n”, “(10)n”
and“1n0n”we can reach. The initial set of the test is described by the regular
expression 0∗10∗. The results for Rule 30 are displayed in Table 6.2. The tests
we ran all verified. The tests marked with ‘-’ means that the instance has
not been tested. The tested sequences are displayed in the columns and each
row shows the length of the sequences. The running time of the verification
is written in used seconds of CPU time.

We see that reaching configurations that include pattern 1n is possible
within a reasonable time limit is possible for n ≤ 10. When comparing
the results for the pattern (10)n with the pattern 1n, we see that the time
used to reach configurations that include the pattern (10)n, where n < 9, is
larger than the time used to reach configurations that include the pattern 1n.
However, for 9 < n < 17 the configurations with pattern (10)n is found faster
than those that include 1n. This is even though the pattern is of the double
size. For the pattern “1n0n”, we can verify the existence of the pattern op to
n = 8. The reason for the faster verification time for the sequences of (10)n

is that the over abstraction works better for this pattern.

For Rule 184 we have tested how long a queue (1n) we can get and how
long a sequence of cars that has exactly sufficient space between each other
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n 1n (10)n

2 B 0.02 B 0.03
3 B 0.04 B 0.05
4 B 0.16 B 0.03
5 B 0.15 B 0.35
6 H 0.12 B 2.00
7 H 0.08 B 3.39
8 H 0.1 B 3.64
9 H 0.12 B 4.31
10 H 0.13 B 4.54

Table 6.3: Experiments results for Rule 184, n specify the length of the
pattern, and the values is the verification in seconds and the answer (B)roken
or (H)olds.

to continue forward ((10)n) we can get. For these experiments we used the
set of initial configurations that is described by

0∗11101111001010010101110000000011101010010∗ .

The results for Rule 184 are displayed in Table 6.3. The column shows the
tested sequence, and each row shows how long sequences are. The values of
the running time for the verification is presented in seconds of CPU time.

The experiments show that from the specified set of initial configurations
we can reach a queue of 6 cars. The pattern of “(10)n” is reachable up to
at least n = 10. The verification time for these problems are all under 5
seconds.

6.3 Firing Squad Synchronisation Problem

Recall the firing squad synchronisation problem from Section 4.2.2. We have
run the experiments trying to verify The rules of the CA where taken from
the website [19].

We tested for the property, “can we reach a configuration where one or
more soldiers are shooting and others are not?”, for the any number of sol-
diers.

We tried several different things and settings of the ARMC tool, to try
verify the property, but the tool did not terminate. After analysing the prob-
lem further we discovered that, because of the nature of the problem, we can
not verify it with RMC. For RMC to be possible it must be possible to de-
scribe the set of configurations with a regular set. However an important step
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n Time
2 0.03
3 >11m

Table 6.4: The results for verification of the FSSP using a restricted initial
set.

n Time
2 0.02
3 0.04
4 0.09
5 0.11
6 0.18
7 16.1
8 17.5
9 260
10 299

Table 6.5: Experiments results for FSSP, n specify the number of soldiers as
solution is found for, and the values is the verification in seconds.

in the FSSP algorithms is to find the soldier in the middle of the configura-
tion, which means the at least the non regular pattern −nM−n is included
in the closure. If the bad set is indeed intersecting, then in ARMC we will
have to refine until we describe every single strings in a given set, which is
possibly infinite — hence this is not possible.

However we might still be able to do some bounded model checking of
FSSP. The first approach is to restrict the initial to only one string of some
length. Even though we might expects a quick answer, based on the decid-
ability result in Section 3.2, this might not be so. Because of the abstract-
refine procedure, we may in fact slow down the process considerably, or even
loop. In Table 6.4 the result of the bounded experiments are presented. The
results shows that we can verify this for up to only two soldiers, with a
reasonable time limit.

In the last test we performed, we changed the property so that we ask
if we can reach a situations where n soldiers fires at the same time. This
way we can verify the existence of a solution for up to n soldiers. We let the
initial set consist of an arbitrary number of soldiers, and the ”bad” set be a
solution of n firing soldiers. Table 6.5 presents the results of these tests. By
increasing the value n, we see that we can verify the existence of a solution
to the FSSP for up to about 10 soldiers, within a reasonable time limit.
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6.4 Alternating Bit Protocol

Finally, we have done experiments with the Alternating Bit Protocol (ABP).
The details can be found in the Appendix A.3. We modelled the simple
ABP as a 1D-bCA. In the CA encoding of the protocol, we made use of non-
deterministic CA, to model the unbounded lossy channels and resend actions
of the sender. We used the bCA optimised reduction to create the transducer.
The ABP CA has 2586 rules, and this gave us a minimised transducer of 64
states, and 1381 transitions.

We provided an infinite number of start configurations, so that the num-
ber of cells representing the two-way lossy channel would be of arbitrary
size. We checked that the model would preserve the order of the messages
transferred by the protocol.

The verification of the model took about 1.69 seconds. The creators of
the ARMC tool, had in the tool test-suite an implementation of the ABP.
For comparison we have used their designed transducer, which has 26 states
and 121 transitions, the verification uses 0.34 seconds of CPU time. Table
6.6 summarise the results.

bCA RMC
states 64 26
transitions 1381 121
time (in sec.) 1.69 0.34

Table 6.6: Data for the ABP Experiments.

We see that the CA-version, compared to the “hand made” (RMC) ver-
sion, is not considerately larger. Neither is the verification time. The problem
designing a correct version of the ABP as a transducer, compared to an au-
tomatic conversion is however worth noticing, but this comes with the price
of three times as many states and ten times as many transitions.

6.5 Summary

The experiments have shown that parametric verification of CA is indeed
possible. Our experiments with the ABP, have shown that we can verify a
nondeterministic bCA, with 2586 rules, using our reduction and the ARMC
tool in under 2 seconds. Also the reduction itself runs in less than 2 seconds.
The price of the automatic reduction is a verification time about 5 times
slower and a larger transducer than the “hand made” version, but still within
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reasonable time. However manually creating the transducer is a slow and
tedious task, and may introduce mistakes into the model.

From our experiments with the Rule χ, we have shown that our reduction
and RMC can be used for behavioural analysis of bCA evolutions. The
experiments show that we can verify the existence of patterns with length up
to about 20-30. The experiments also show that there can be large differences
in when verifying different types of patterns. When verifying the Rule χ, it
would have been a great advantage if we were able to do liveness verification.

The experiments with Jacques Mazoyer’s [16] six-state minimal solution
to FSSP, showed that this kind of CA is not verifiable using this approach.
However, by performing reachability for bounded configurations, we were
able to verify the existence of a solution to FSSP for up to 10 soldiers, within
a reasonable time limit. Unfortunately we were not able to verify that we
cannot reach a configuration where a some number of soldiers fire while other
do not.

We believe, based on our experiments that RMC is a candidate method
to make verification of CA. But before practical usage will be feasible, the
verification times will have to be improved. In general, by our experience
and knowledge of RMC, we deem that RMC is well suited for some domain
specific problems. But we do not think of RMC as a general purpose verifi-
cation technique. Too many times one would encounter problems with real
world problems and algorithms that does not have a state space that can be
described by regular languages.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

This thesis focuses on the area of regular model checking (RMC). The thesis
main contributions are divided into two parts. Part one concerns the expres-
siveness of RMC, where we provide proof of three claims about RMC. The
second part concerns Cellular Automata (CA), the expressiveness of differ-
ent CA variants, and how verification of these can be done using RMC. This
includes a number of experiments.

Considering RMC, in Section 3.1 we provide a proof of the folklore re-
sult that RMC is Turing powerful. Even though this result is well known,
we have no knowledge of any publications that prove this. We prove that
RMC is Turing powerful by giving a reduction from the halt problem of a
two-counter Minsky Machines to RMC. To make the reduction we used a
well known modelling trick. In Section 3.3, we formulated this modelling
trick formally, and prove that no extra power is added to systems modelled
with a non-length preserving transducer instead of a length preserving one.
The reduction preserves the possibility of verifying safety properties. Unfor-
tunately, there is still no way of guaranteeing that liveness properties can be
verified when this modelling trick is used. This is because of the fact that
infinitely many different configurations can occur when a given non-length
preserving transducer translates a given finite string. We have, in Section 3.4
proposed a method that analyses if a given non-length preserving transducer
generates strings of unbounded lengths. If the transducer only grows strings
up to a bounded length, or only shortens the strings, then we will be able to
use the reduction, and preserve the possibility to verify liveness properties.
This extends the previously known applicability of liveness checking in RMC.

In Section 3.2, we have shown that by restricting the initial set so that it
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is finite, we gain decidability in PSPACE — but we obviously trade this for
the ability of verifying parametrised systems. PSPACE-hardness is proven
by using a reduction from reachability in one-safe Petri nets to RMC-finite.
This reduction, also shows how we can encode one-safe Petri nets and that
this encoding technique can easily be extended to any bounded Petri net by
simply extending the alphabet of the transducers.

The second part of the thesis is concerned with RMC as a method for
parametric verification of CA. In particular we are interested in one dimen-
sional bounded (bCA) and circular (cCA) CA.

In Section 5.0.3 we show the obvious fact that bCA can be reduced to
cCA. As a part of this result, we have shown a liner time reduction from
bCA to cCA. We also show the more surprising result that cCA and bCA are
similar up to isomorphism, and show an exponential space reduction from
cCA to bCA.

In Section 5.1 we show a polynomial time reduction from cCA to RMC.
It is obvious that the reduction can also be used for bCA, because of the
result about isomorphism of cCA and bCA. However we in Section 5.1.4 we
show a better reduction that can be used for bCA.

We have successfully implemented a tool automating the reduction from
cCA and bCA to RMC-frameworks. The tool automatically outputs a trans-
ducer file that can be used directly in the ARMC tool (Se Section 2.4). For
details about our prototype tool consult Appendix A.

We have tested the reduction tool on a number of experiments in Section
6. The experiments show examples of how parametric verification of CA
algorithms can be done. We have successfully verified the token passing
protocol, both a bounded and circular version, the CA of Rule 30 and Rule
184 and the Alternating Bit Protocol (ABP) with unbounded communication
channels.

The most interesting result is by fare the verification of the ABP. The
ABP is a non-deterministic bCA, with 2586 rules. By using the reduction,
we could verify the ABP protocol using the ARMC tool, in less than two
seconds. When comparing the transducer generated by our tool, with the
human engineered transducer, we see that the automatic encoding method
has an overhead with regards to the size of transducers. However the running
time for the experiments where not considerately larger for the CA versions.
The experiments also confirms our belief, that modelling algorithms using CA
is often easier than RMC-modelling by hand, and the automatic generation
also excludes potential human mistakes. Also often CA that need verification
are already given, and so they can easily be inserted into our tool and then
verified with the ARMC tool.

In the experiments with verification of a solution to the Firing Squad
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Synchronisation Problem (FSSP), we experienced that we where not able to
verify this CA. We traced this problem back to the fact that the resulting
state-space cannot be described by finite-automata. We were still able to
do some bounded model checking of the FSSP and so verify that the CA
algorithms for FSSP works for at up to ten solders.

After experimenting with CA and RMC, we found that safety properties
often did not describe the most interesting properties of a given CA. Often
we are interested in if a given property holds for all configurations described
by an initial regular set. Which is characterised as a liveness property.

In general, by our experience and knowledge of RMC, we have the impres-
sion that RMC is well suited for some domain specific problems. But RMC
in general is badly suited for verification of general problems and algorithms,
as state space of real world systems are oftently not regular. On basis on
our experiments we suggest to continue working with RMC as a method for
verification of CA algorithms.

We have also defined the CA to be nondeterministic. However in most
literature CA are defined to be deterministic. Often when analysing CA we
are not only interested in the forward reachability question, but also back-
ward reachability: “what initial configuration can lead to this configuration”.
When working with deterministic CA, this is a much more interesting and
harder question, as the problem of backwards reachability often is of non-
deterministic nature. We have however already considered nondeterminism
when doing forward reachability. Our reduction can hence easily be used
for backwards reachability analysis, by simply inverting the transducer, and
performing the verification as usual.

7.2 Future Work

There are several questions in the thesis that could be interesting to examine
in greater details. First of all, in Section 3.4 we gave a short sketch of
how we can detect if a non-length preserving transducer can be converted
into a equivalent length preserving transducer, and preserve the possibility
of verifying liveness questions. It would be interesting to examine this in
greater details and carry on some experiments.

We have in this thesis shown that it is possible to perform parametric
verification of CA. But we also encounter some problems.

First of all, it would be interesting to examine other ways to encode CA
into RMC. We suggest trying a mini-step encoding, where the update of one
cell corresponds to one run of the transducer. This mini-step encoding might
also be useful for verifying CA with dimensions higher than one.
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When verifying FSSP we ran into problems, with a non-regular state
space. We have previously in [8], suggested extending RMC to Visibly Push-
down Language (VPL) model checking. The VPL language class is more
expressive than regular languages yet it has the same closure properties. In
VPL we can e.g. recognise sets of strings described by anbn, where n ∈ N0.
This is useful when we have systems where we want to check if two counters
have the same value, or as in the case of FSSP where we need to find the
middle of a given string. At that point when we first suggested this extension
we did not have any use case to motivate the work. But the work with CA,
has shown to be a good use case for VPL model checking. Notice that just
by using VPL model checking, it will not solve the problems with the FSSP,
we would need to change parts of the encoding for VPL model checking to
make it work.

It seems also be interesting to examine how RMC can be used for bounded
model checking. By the results that RMC-finite is PSPACE-complete we
know that the problem is decidable. Now it is just at matter of accelerating
the calculation of the result. The bounded model checking can be done in
other ways than restricting the initial set. It is imaginable that it is possible
to develop an acceleration technique that calculates the effect of applying a
transducer n times, instead of an arbitrary number of times.

We believe based on our work with RMC, that RMC is well suited for
verification of some special purpose systems. However we do not believe that
RMC will ever become suitable for verification of general purpose programs.
In spite of this RMC is not an outworn theory and we believe that many
interesting appliances and results has yet to be discovered.
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Appendix A

Implementation

A.1 Implementation

This section serves as a overview over the prototype implementation of the
reduction tool. The prototype tool is divided in several sub systems:

• Java CA text-file parser

• Java RMC framework

• Java CA to RMC reduction tool

In extension to our one tool, we use the ARMC tool, and the FSA Prolog
library. In the following we will describe each part of the implementation.

FSA Library FSA [27] is a Prolog library for Finite State Machines (NFA).
It implements different types of NFA and transducers, and there most com-
mon operations. The library also implements a function for drawing the
automata using dot files and functions for reading and writing an internal
file format for automatons.

ARMC tool The tool ARMC is a prototype implementation of the ac-
celeration technique proposed by Bouajjani et al. [6] and Habermehl and
Vojnar [13].

The implementation is done by done by A. Bouajjani, P. Habermehl, T.
Vojnar, and they have kindly lend us there work, for testing out ideas.

We have primly used the [6] part of the tool, as this is one of the fastest
methods known in the field of RMC. [13]. The acceleration method used in
[6] is described in Section 2.4.

The implementation of the ARMC tool is done using YAP Prolog, and
the FSA library for automatons.
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Java RMC Framework This is a Java class library for regular model
checking. It facilitates the building of transducers and automata, as a Java
Objects. The class library can output a transducer and automatons, that
can be read directly by the FSA library.

Java CA Framework This framework is a Java class library for Cellular
automaton. It contains classes for building cCA and bCA. It also contains
implementation of reduction algorithm for cCA and bCA to RMC.

CA parser The CA parser is a small Java parsing for parsing a text-file
describing a CA. The parser is used for building a model of the CA using the
Java CA Framework.

The parser reads two types of files: A simple version where rules are
specified as “a b c -> d”, similar to the notation abc −→ b′, and a more
complex version where the same rules is specified as “ b a c d”. The complex
version also allows the usage of wild cards that expand to all symbols. In
general the parser only work for neighbourhood {+1,−1} but could easily
be extended to larger neighbourhoods. For implementation of the ABP, we
have implemented a special method for generating the CA rules.

A.2 Encoding of Rule χ

We have implemented Rule χ as defined in Section 4.2.1. However as it is
a bounded encoding, we must consider the border cases. We have simply
chosen, to let the border preserve its state by adding the rules:

$ 1 ? −→ 1

$ 0 ? −→ 0

? 0 $ −→ 0

? 1 $ −→ 1

where $ is the barricade symbol, and ? is the wild card symbol.

A.3 The Alternating Bit Protocol

This section describes the implementation of the Alternating Bit Protocol
(ABP). The ABP is a simple network protocol that ensures that messages
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are delivered to a receiver in the correct order on a lossy or corrupting chan-
nel. It does so by altering, or flipping a single sequence bit for each data
message. When the sender sends a message with a sequence bit value, the
receiver should, when the message is received, send an acknowledgement with
a corresponding sequence bit value. Since the channel is lossy, the Sender
does not know if the message is going to be lost, so it will resend the message
until it receives an acknowledgement with the correct sequence bit value.
Then the sender flips the bit and sends a new messages in the same way, but
with the new sequence bit value.

Since the sender resends the same message multiple times, it may occur
that the sender receives an acknowledgement for one data message more than
once. In these cases the sender will simply ignore the acknowledgements for
the old message.

A.3.1 Modelling the ABP as a State System

We will model the ABP with a CA and verify it using RMC. For that we will
describe the sender states, S0, Sa0, S1, Sa1, the receiver states, R0, Rd0, R1,
Rd1, and the messages and acknowledgements, M0, M1, A0, A1.

First we will have a look at the sender states, S0, Sa0, S1,Sa1:

S0: In this state, the sender can send one data message with sequence bit
0, M0; this message can be resend in this state. In this state the sender
acts on received acknowledgements for messages send with sequence
bit 0, A0. When such an acknowledgement is received it goes to state
Sa0. If it receives an acknowledgement with sequence bit 1 A1, the
acknowledgement is ignored and we stay in S0.

Sa0: In this state, where an acknowledgement for a message with sequence
bit 0 has been received, the sender is waiting for a new message. When
such is arrived it goes to state S1 and sends a message with sequence
bit 1 M1.

S1: In this state, the sender can send one data message with sequence bit
1, M1; this message can be resend in this state. In this state the sender
acts on received acknowledgements for messages send with sequence
bit 1, A1. When such an acknowledgement is received it goes to state
Sa1. If it receives an acknowledgement with sequence bit 1 A1, the
acknowledgement is ignored and we stay in S1.

Sa1: In this state, where an acknowledgement for a message with sequence
bit 1 has been received, the sender is waiting for a new message. When
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such is arrived it goes to state S0 and sends a message with sequence
bit 0 M0.

Now let us have a look at the receiver R0, Rd0, R1, Rd1:

R0 In this state the receiver will wait for a data message with sequence
bit 0 M0, to arrive. Then it will go to state Rd0, where it delivers the
message. If it receives a message with sequence bit 1 it just sends an
acknowledgement with that sequence bit A1.

Rd0 In this state the receiver sends the message to the next layer and sends
and an acknowledgement with sequence bit 0 A0 and goes to state R1.

R1 In this state the receiver will wait for a data message with sequence
bit 1 M1, to arrive. Then it will go to state Rd1, where it delivers the
message. If it receives a message with sequence bit 0 it just sends an
acknowledgement with that sequence bit A0.

Rd1 In this state the receiver sends the message to the next layer and sends
and an acknowledgement with sequence bit 1 A1 and goes to state R0.

The transition system for the sender and the receiver is illustrated in
Figure A.1. Here we can see the channel in between the sender and the
receiver.

Now the thing we would like to verify is that the sender can not be in
state Sa0 and the receiver in state Rd1 since that means that the receiver
have received a message with sequence bit 0 and while the sender has send a
message with sequence 1.

A.3.2 Modelling ABP and the Channel as bCA

To model the channel in a CA, we present the channel as a notion of a two way
tape. The messages will move right in the ”top-tape” and the acknowledge-
ments will move left in the ”bottom-tape”. We simulate the two way channel
by combining the data message states and the acknowledgement states and
introducing an empty-state ‘−’. E.g. a data message with sequence bit 0 on
the tape will be the states:

(
M0

−

)
,
(
M0

A0

)
and

(
M0

A1

)
. The rules to model the

channel and the sender and receiver id presented in Table A.1. Here we use
wild card symbols again and the symbols X and Y to denote a wild card
that is going to be fixed within one rule i.e. the rule

(
X
?

)(
?
?

)(
?
Y

)
−→
(
X
Y

)
means

that we do not care what state all the cells are in only that X moves right
and Y moves left.
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!M0

?A0

?ready, !M1

!M1

?A1

?ready, !M0

?M1, !A1

?M0, !A0

!deliver 0

?M0, !A0

?M1, !A1

!deliver 1

S0

Sa0

S1

Sa1

... channel ... R0

Rd0

R1

Rd1

Figure A.1: This diagram illustrates the states of the sender and the receiver.
Here transitions that start with a ‘!’ is output and ‘?’ means output. The
channel can ”handshake” with M0, M1, A0 and A1 and deliver and ready
transitions ”handshakes” with other layers.
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Now the question we would like to verify is:
From configurations

(
$, S0,

(
?
?

)
, . . . ,

(
?
?

)
, R0, $

)
, can vi avoid configurations(

$, Sa0,
(
?
?

)
, . . . ,

(
?
?

)
, Rd1, $

)
?
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# Rule

1 S0

(
?
?

)(
?
Y

)
−→
(−
Y

)
2 S0

(
?
?

)(
?
Y

)
−→
(
M0

Y

)
3 $S0

(
?
−

)
−→ S0

4 $S0

(
?
A0

)
−→ Sa0

5 $S0

(
?
A1

)
−→ S0

6 Sa0
(
?
?

)(
?
Y

)
−→
(
M1

Y

)
7 $Sa0

(
?
?

)
−→ S1

8 S1

(
?
?

)(−
Y

)
−→
(−
Y

)
9 S1

(
?
?

)(−
Y

)
−→
(
M1

Y

)
10 $S1

(
?
−

)
−→ S1

11 $S1

(
?
A1

)
−→ Sa1

12 $S1

(
?
A0

)
−→ S1

13 Sa1
(
?
?

)(
?
Y

)
−→
(
M0

Y

)
14 $Sa1

(
?
?

)
−→ S0

15
(
X
?

)(
M1

?

)
R0 −→

(
X
A1

)
16

(
X
?

)(
?
?

)
R0 −→

(
X
−

)
17

(−
?

)
R0$ −→ R0

18
(
M0

?

)
R0$ −→ Rd0

19
(
M1

?

)
R0$ −→ R0

20
(
X
?

)(
?
?

)
Rd0 −→

(
X
A0

)
21

(
?
?

)
Rd0$ −→ R1

22
(
X
?

)
M0?R1 −→

(
X
A0

)
23

(
X
?

)(
?
?

)
R1 −→

(
X
−

)
24

(−
?

)
R1$ −→ R1

25
(
M0

?

)
R1$ −→ R1

26
(
M1

?

)
R1$ −→ Rd1

27
(
X
?

)(
?
?

)
Rd1 −→

(
X
A1

)
28

(
?
?

)
Rd1$ −→ R0

29
(
X
?

)(
?
?

)(
?
Y

)
−→
(
X
Y

)
30

(
X
?

)(
?
?

)(
?
Y

)
−→
(−
−

)
Table A.1: CA-rules for the alternating bit protocol as a CA.
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