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Abstract

This thesis describes pose estimation as an increasingly used area in augmen-
tation and tracking with many different solutions and methods that constantly
undergo optimization and each has drawbacks and benefits. But the aim is
always speed, accuracy or both when it comes to real applications. Pose esti-
mation is used in many areas but primarily tracking and augmentation issues,
where another large area of finding 2D-2D correspondences is crucial research
area today. Software like ARToolKit [11] tracks a flat marker and is able to
draw 3D objects on top of it for augmentation purposes. It is very fast, because
the accuracy is not the largest issue when the eye has to judge if it looks real
or augmented. But the speed must be high for the eye to see it as real as the
background.

There is not really a common standard of how to compare methods for pose
estimation and there is no standard method to compare with. In this thesis
efford is made to get a fair comparison and there is included a simple very
known method as comparator.

In total there is 4 methods tested, they calculate the perspective from known
2D-3D correspondences from image to point cloud. All have different limitations
such as minimum amount of 2D-3D correspondence pairs or sensitivity to noise
that makes it unpredictable in noisy conditions. The benefits and drawbacks
are listed for each method for easy comparison. The 3 methods are nonlinear
CPC, PosIt and PosIt for coplanar points, while DLT is a linear method that is
used because it is easy to implement and good for comparison.

All tests are done on fictive data to allow some extreme cases and to have
ground truth for accurate comparisons. In short the tests made are: Noise
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test, increased number of points, planarity issues, distance to object and initial
guesses.

The findings were many and shows that the methods are working very differently.
So when choosing a method, one has to consider the application of it, and what
data is available to the method.
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Chapter 1

Introduction

This thesis is about various methods for pose estimation and tests to reveal
how they react in common and uncommon situations. A pose is defined as
the position and orientation of the camera in relation to the 3D structure. In
order to estimate a pose, a 2D image, a 3D object and some camera parameters
are needed depends on the method. The 2D image should show the points of
the 3D object, which is called 2D-3D correspondences. A minimum number of
correspondences are required for each method to run. Fischler and Bolles [?]
have used the term ”Perspective n-Point problem” or ”PnP problem”, for this
type of problem with n feature points.

Pose estimation is used in tracking applications in many varieties including
surveillance and augmentation. With the increase in computer power the usage
will expand to other areas where it used to be impossible. For closed environ-
ments at factories, robots can track and handle products at a very fast pace.
Other areas like augmentation the usage is limited to mostly movies and toys at
the moment. Augmentation is about changing a picture, movie or live video by
adding content that follows objects seen. Vincent Lepetit and Pascal Fua made
a compilation of tracking methods and usablities in [12] and Ronald T. Azuma
made an augmented reality survey in [2].Example of augmentation can be seen
on figure 1.1.

Most usages today include simple fixed 2D markers for augmentation in games
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Figure 1.1: Example of augmentation in Ogre.

for example Hitlab developed ARToolKit [11] and they made projects mainly
around helping visual perception by 3D in areas like hospitals, learning and
treating phobias. Another company that makes virtual reality called Total Im-
mersion uses marker tracking but also markerless tracking for movies, airplane
controls, enhanced TV and much more. Common for companies like these is that
their products aim for kids or learning aspects, but also the industry for movies
and presentations. All these areas seems to be focused on luxury but there is
plans for more serious projects in health care with 3D bodies for operations for
example.

Some of the recent projects use structure from motion 1 to go from normal
vacation images to build a 3D model of famous buildings. When a family is
in vacation they should be able to take a picture of a building and the camera
knows what building and provides some info about the buildings history. It
uses GPS to narrow down the search of buildings and from maybe hundreds of
images of one single building it can be pretty sure it guesses the right one.

Tracking people by their faces or body is also going to be the future on normal
streets to find criminals or track suspicious people. On the website Earthcam2

you can log in and see cameras from all over the world in famous places with high
population. This might just be the beginning of a surveillance era where we will
be watched in all public places. England has a very dense camera network in

1http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=3D+reconstruction+from+images
2http://www.earthcam.com/network/
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London that is being tested with face recognition. It was proven to be useful at
the London bombing in 7th july 2005 where images of the terrorists was found
from several cameras around London. China uses face recognition to keep track
of hooligans that serves 1 year for making problems, and they can easy deny
them access to soccer games. This all illustrates the importance of survaillance
and that it might be used for tracking other things than faces in just a matter
of time.

Several algorithms with the same goal have been tested against each other under
various circumstances. The goal for all algorithms was to go from 2D-3D cor-
respondences to a camera pose as seen on figure 1.2. The input for the system
is a known 3D structure made of points and these points have been related to
2D points on an photo taken of the same 3D structure. This step of 2D-2D
matching is not described here but is also a vast area of research today. For the
pose to be defined both translation and rotation needs to be found, and in the
results here both are plotted, because the algorithms proved to not necessarily
give same accuracy for both.

Figure 1.2: Perspective projection illustrated for 4 points observed from camera.

The tested algorithms are CPC(CamPoseCalib) from [3], DLT [4], PosIt [6] and
a planar version of PosIt [5]. There is no single place where all these have been
compared for speed and accuracy nor the special cases where 1 algorithm might
not work properly. So this report is about special cases and common standards
of comparison between such algorithms.
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Chapter 2

Related Work

Many people have come up with innovative ideas for optimizing this process
of finding a pose from 2D-3D correspondences. Ranging from simple ones like
DLT [4] to complex ones like PosIt [6]. Not only complexity vary a lot but also
the approach can be either iteratively like [3] [6] [11] or non iterative like [4] or
[8].

Most of the algorithms are based on a linear or nonlinear system of equations
that needs to be solved, but how they get these equations and how many pa-
rameters to be estimated is very different. All algorithms are not made for the
same purpose, still they all aim for speed and accuracy in their area. For ex-
ample [8] is made to work well for many points since the system of equations
has the same computation time for higher amount of points. The idea is to use
4 control points that are not coplanar, and they define all points according to
these control points so they only need to find the control points.

DLT [4] was first used in photogrametry and then later in computer vision. It
is the simplest method for finding the pose, by finding all the 12 parameters in
the projection matrix it will be slower than any other algorithm. Note that it
is expected to be the weaker of the methods tested and included because it is
often used as a simple method that does not require initial guess and it is easy
to implement.



6 Related Work

PosIt [6] is a method developed by Daniel DeMenthon in 1995 where it was
published as a pose finder in 25 lines of code (mathematica). A fast method that
does not work with perspective projection as most other methods, but instead
uses orthographic projection that is simpler to work with and can approximate
perspective to find the correct pose.

Coplanar PosIt [5] was also made by DeMenthon because PosIt does not work
well for planar or close to planar point clouds. Another issue when dealing with
planar point clouds is that there is often 2 solutions that are very close, and
while normal algorithms choose either one, this planar version returns both.
This is needed in some cases when there is no prior knowledge and a decision
has to be made which pose is the right one. With prior knowledge you can limit
the pose change from each frame in a video sequence so it does not guess the
opposite pose.

CPC stands for CamPoseCalib and is the method from BIAS [10], which is an
image library made in Kiel 2006. It is based on the Gauss-Newton method
and nonlinear least squares optimization, originally published in [3]. A flexible
method, because it has a lot of options that are not described here. However
these additional methods (like outlier mitigation) are not used in the compar-
ison. More about Gauss-Newton and this special implementation can can be
found in chapter 3 of [9].



Chapter 3

Theory

3.1 Overview

The 4 different algorithms have very unique theoretical background and this
is useful for understanding the test outcome in chapter 4. This chapter will
give basic information on notation and coordinate system information before
explaining the tested methods.

1. Notation

2. Pinhole Camera Model

3. Non-linear Least Squares

4. Pose and rigid motion

5. Posit

6. PosIt for coplanar points

7. Projection matrix

8. Direct Linear Transform(DLT)

9. Boxplot
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3.2 Notation

Because of all the algorithms have different origin they come with various nota-
tion that is presented here with one common notation:

s, θ, x ∈ R a scalar value
m ∈ R

2 2D points from perspective projection
M ∈ R

3 3D points
p′ ∈ R

2 2D point from SOP(scaled orthographic projection)
A, R, P ∈ R

n×m matrix of size n × m

functions:
m(θ, p) 3D motion function for point m and parameters θ

Algorithms:
CPC Gauss Newtons method from BIAS [10].
PosIt BIAS version of PosIt [6].
DLT Direct linear transform from [4].

3.3 Pinhole Camera Model

The basic of projection comes from a model where all light from a scene travels
through a small hole 3.1. x

Figure 3.1: Pinhole Camera Model.
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Figure 3.1 shows simple pinhole princip where:

ym

f
=

ya

xa

(3.1)

ym = −
fya

xa

(3.2)

The 3D point a is projected through origin O to imageplane along ym with
normal in x direction to 2D image point m. The coordinate ym found in 3.2 is
the first coordinate of the 2D point in the image, the second can be found in
the same manner by looking from above(along y) and do the same calculations.

3.4 Non-linear Least Squares

The parameters describing a pose are estimated by minimizing an objective
function. The minimization is a non-linear least squares problem and is solved
with Gauss-Newtons method. The objective function depends on the input we
need to estimate. A general non-linear least squares problem reads:

φ̂ = argmin
φ

m
∑

i=1

(ri(φ))2 (3.3)

This minimization is iterative and there are 2 stop criteria: when overall error
is lower than a threshold between image points observed and back projected
points from the 3D model. The threshold is called epsilon and in CPC it is
defined for both the rotational change and the 2D-2D change. The second stop
vriteria is when a certain number of iterations is reached it stops.

3.4.1 Gauss-Newton

CPC from [10] is using the Gauss-Newton method to estimate the pose. This
method uses first order derivatives of the residual (for residual see equation 3.4).

ri(φ) (3.4)

Gauss-Newton approximates the hessian by leaving out the second order deriva-
tives. The method called Newtons method uses also second order derivatives.
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This method works analytically and not numerically, meaning it does not ”shake”
the object to try and find derivatives, instead it already has the function for the
derivative directly. A ”Shake” means a small change in parameters and then
checking how that affected the error rate. The disadvantage about numerical
approach is the size of the ”shake” needs to be predefined and then does not
have to show the actual slope in the parameter space for a given situation.

For minimizing the objective function we need the Jacobian (first order deriva-
tive of the residual functions) and from that update the parameters as seen in
equation 3.5:

θt+1 = θt − (JT J)−1JT r(θt) (3.5)

Where J is the jacobian found according to [9].

3.4.2 Levenberg-Marquardt

This extension to the Gauss-Newton method interpolates between Gauss-Newton
and gradient descend. This addition makes Gauss-Newton more robust meaning
it can start far off the correct minimum and still find it. But if the initial guess
is good then it can actually be a slower way to find the correct pose. This works
like dampening the parameter change that happens each iteration to make sure
that Gauss-Newton always descends in parameter space. More details about
Levenberg-Marquardt in [4].

3.5 Pose and rigid motion

In order to describe an object in 3D space all we need is rotation and translation.
Let aobj be a 3D point in an object we like to know the world coordinates of,
and (α, β, λ) be the Euler rotations around the 3 world axis. Then the aw in
world coordinate system is given by:

aw = (θx, θy, θz)
T + (Rex(α) ◦ Rey(β) ◦ Rez(λ))(aobj) (3.6)

Where (ex, ey, ez) denotes the world coordinate system and the whole thing is
build on a translation and a rotation part.
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Figure 3.2:

This leads to a function that describes the motion from 1 point in space to
another:

m(θ, a0) = (θx, θy, θz)
T + (Rx(θα) ◦ Ry(θβ) ◦ Rz(θλ))(a0) (3.7)

Now to combine the camera projection with the rigid motion described above
we get a transform from a = (x, y, z) in world coordinates, to m′ = (x, y) in
image coordinates:

m′(a, θ) =

(

sx
mx(a,θ)
mz(a,θ

) + cx

sy
my(a,θ)
mz(a,θ) + cy

)

(3.8)

m(a, θ) is the function 2.3, and (sx, sy) is the focal length of the camera in x
and y direction in pixels, and (cx, cy)T is the principal point of the camera.

Now for the actual pose estimation when given a 3D point ai and a 2D image
point m̃i, the relative motion can be described by nonlinear least squares that
minimizes the residual that describes the connection between the 3D and the
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2D (ai, mi).

d = ri(θ) = (m′(ai, θ) − m̃i) (3.9)

Where d is the 2D distance between 2 poses given a change in parameters θ.
This is used for all iterations in CPC to find the next proper pose.

3.6 PosIt

This method is published by Daniel F. DeMenthon and Larry S. Davis in May
1995. PosIt can find the pose of an object from a single image and does not
require an initial guess. It requires 4 or more point correspondences between 3D
and 2D in order to find the pose of the object. The method is split in 2 where the
first part is POS (Pose from Orthography and Scaling) that approximates the
perspective projection with scaled orthographic projection and finds the rotation
matrix and translation vector from a linear set of equations. The second part is
POSIT which iteratively uses a scale factor for each point to enhance the found
orthographic projection and then uses POS on the new points instead of the
original ones until a threshold is met, either the number of iterations or the 2D
pixel difference averaged over all 2D correspondences.

3.6.1 Scaled Orthographic Projection

Scaled Orthographic Projection (SOP) is an approximation to perspective pro-
jection because it assumes that all the points ai with (Xi, Yi, Zi) in camera
coordinate system, have Zi that is close to each other and can be set to the
same Z0 as taken from the reference point a0 on figure 3.3. In SOP, the im-
age of a point ai of an object is a point p′i of the image plane G which has
coordinates:

x′

i = f
Xi

Z0
, y′

i = f
Yi

Z0
(3.10)

While in perspective projection instead of p′i we get mi:

xi = f
Xi

Zi

, yi = f
Yi

Zi

(3.11)
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The ratio called s = f/Z0 is the scaling factor of the SOP. Note that the refer-
ence point a0 is the same in perspective and orthographic projection (x0, y0) =
(x′

0, y
′

0) = (0, 0).

3.6.2 The PosIt coordinate system

Figure 3.3: PosIt coordinate system.

To find the rotation and translation we look first at the rotation matrix:

R =





R1u R1v R1w

R2u R2v R2w

R3u R3v R3w



 =





RT
1

RT
2

RT
3



 (3.12)

Seen on figure 3.3, (a0u, a0v, a0w) are the coordinates of 3D point a1 in the
object coordinate system . If we can find R1 and R2 we can calculate R3 as the
crossproduct R1 × R2. The translation vector T is the vector a0O between the
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center of projection O and origin of object coordinate system a0. a0 should be
visible image point m0 and T is then aligned with Om0 equal to Z0

f
Om0. So

the pose defined by translation and rotation is found when we know R1, R2 and
Z0.

3.6.3 The PosIt Algorithm

Starting with basic perspective projection that consist of a rotation matrix where
RT

1 , RT
2 , RT

3 is the rows vectors of the matrix and a translation vector that is
between the origin O center of the camera and a0 which is 0, 0, 0 in object
coordinates. To project an object point a into image point m:





wx
wy
w



 =





fRT
1 fTx

fRT
2 fTy

RT
3 Tz





[

a
1

]

(3.13)

The coordinates of the image point are homogenous and not affected by mul-
tiplying with constants. All the elements in the perspective projection matrix
are then multiplied with 1/Tz. Also the scaling factor s = f/Tz, that relates
the distance to the object with the view of the camera.

[

wx
wy

]

=

[

sRT
1 sTx

sRT
2 sTy

] [

a
1

]

(3.14)

But now the w is instead:

w = R3· a/Tz + 1 (3.15)

In order for w to become 1 we need Tz to become much larger than R3· a,
and then the projection would be the same for perspective projection. The dot
product R3· a describes the projection of object point a unto the optical axis
of the camera. Where R3 is the unit vector of the optical axis. When the
depth range of the object is small compared to the distance from the object
to the camera the perspective projection becomes the same as orthographic
projection.

[

x
y

]

=

[

sRT
1 sTx

sRT
2 sTy

] [

a
1

]

(3.16)
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The case of s = 1 is pure orthographic projection. The value s being different
from 1 can make up the difference to perspective projection. For each 2D point
PosIt estimates this scaling.

Now the general perspective equation can be rewritten as:

[

X Y Z 1
]

[

sR1 sR2

sTx sTy

]

=
[

wx wy
]

(3.17)

Now when the iterations start we set initial w = 1 and then the only unknowns
are sR1, sR2 and sTx, sTy that can be found with a system of 2 linear equations
assuming the rank of the matrix A is a least 4. So at least 4 points from all
object points have to be non-coplanar.

XsR(1, 1) + Y sR(1, 2) + ZsR(1, 3) + sTx = wx (3.18a)

XsR(2, 1) + Y sR(2, 2) + ZsR(2, 3) + sTx = wy (3.18b)

Where R(1, 1) means the first row and first column in the rotation matrix R.

I =
[

sR1

]

(3.19)

J =
[

sR2

]

(3.20)

So I and J are the scaled rows of the rotation matrix. To make a system of
equations we define K as the matrix we want to find, b as the 2D points and A
as the 3D points:

K =

[

IT sTx

JT sTy

]

(3.21)

A =















X0 Y0 Z0 1
X0 Y0 Z0 1
X1 Y1 Z1 1
...

...
...

...
Xn Yn Zn 1















(3.22)
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b =























x0

y0

x1

y1

...
xn

yn























(3.23)

The problem then simplifies to 3.24:

AK = b (3.24)

This can be solved as system of equations with least squares method. If n is
larger than 4 it is overdetermined:

K̂ = (AT A)−1AT b (3.25)

After finding I and J we can extract s and R1, R2 by the condition that they
must be unit vectors, and R3 as the crossproduct between R1 and R2. Tx and
Ty is found by deviding sTx, sTy with s.

As the iterations continue w from 3.18 for each point, becomes increasingly
accurate until a stabil result is found or max number of iterations is reached.
The scale factor w is updated according to 3.15.

3.7 PosIt for coplanar points

When dealing with planes there rises doubt about the pose because several poses
that are very different have the same orthographic projection 3.4. This planar
version of PosIt is finding all the poses and then choosing the best match. More
specific it finds 2 poses for each iteration and either picks one or continue with
both options. This might look like a tree with n iterations and 2n solutions but
only 2 poses are kept at any time.

If the rank of A 3.22 is 3 instead of the 4 as required for regular PosIt, then we
have points distributed on a plane. Checking if the points are coplanar can be
done by calculating the rank with SVD (Singular Value Decomposition).
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3.7.1 Finding poses

On figure 3.4 is illustrated the case where the object plane can have 2 very
different positions that returns the same 2D image correspondences. This is
object plane 1 and object plane 2 that both can be result of PosIt when dealing
with planarity. Given equation 3.19 and 3.20 if we could find 2 solution for both
I and J that would create 2 poses.

I = I0 + λu (3.26)

Where u is the unit vector normal to D figure 3.4 and λ is the coordinate of the
head of I along u. Same thing for J , µ is the coordinate of the head of J along
u:

J = J0 + µu (3.27)

The unknowns are λ, µ and u. u can be found because it is the normal to the
object plane D thus we know that a0ai. u = 0. u will then be the unit vector
of the null space of the matrix A. SVD and this knowledge can give you u and
then we only need λ and µ. To find them 2 more constrains are needed:

λµ = −I0. J0 (3.28)

Equation 3.28 means I and J are perpendicular. And 3.29 means I and J have
the same length:

λ2 − µ2 = I2
0 − J2

0 (3.29)

Equation 3.28 and 3.29 Now we have 2 equations with 2 unknowns and because
this can be solved using a complex version and it gives 2 different solutions for
both I and J (see more in [7]).

I = I0 + ρcos(θ)u, J = J0 + ρsin(θ)u (3.30)

I = I0 − ρcos(θ)u, J = J0 − ρsin(θ)u (3.31)

The 2 solutions can be illustrated in the following manner:
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Figure 3.4: Shows how object plane 1 and object plane 2 looks the same seen
from the Camera, and the planar version of PosIt returns both these solutions.

The values (I, J) for the first solution is symmetrical to the second solution
(I, J) around the plane parallel to the image plane used to make the SOP
approximation.

Figure 3.5 has different vectors I whose head project onto the plane D in Q
projects unto a0a1 at Hx1. The following equation gives Hxi:

a0Hxi =
x

′

i

|a0ai|
(3.32)

Given that x
′

i = xi(1 − wi) − x0, where wi is the scale factor for each point,
then Hxi can be found with equation 3.32 from the correspondences alone. This
means that if 3 points on a plane defined by the lines a0a1, a0a2 and a1a2

then the corresponding Hx1 and Hx2 will intersect at the vertical line that goes
through Q and this should be a point since we want the head of vector I. This
is the case if 1 more points is added that is not in the same plane, then Hx3 will
intersect u exactly at the head of I. That means for coplanar points there can
be more solutions than 1.

Then find the translation vector that is unique for both pairs of (I, J). And 2
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Figure 3.5: Shows how the vector I is defined by the points ai.

rotation matrices by normalizing I and J we got the 2 first rows and last row is
crossproduct of the first 2 rows. Unlike the regular PosIt these solutions can be
a pose where the camera looks away from the points, easily detected by checking
the sign of all Zi > 0 and discard the pose if any point is behind the camera.

A distance measure E is used to distinguish the poses from one another, distance
between the image points observed and the back projected from the calculated
pose. E has a threshold that is predefined depending on the image noise and
anything lower than the threshold is discarded.

3.8 Projection matrix

In the DLT (Direct Linear Transform) the parameters of the projection matrix
are estimated, so this section will explain what exactly the parameters are.
Perspective projection and the pinhole camera principle is basic knowledge for
understanding this section. The idea is to go from 3D points m to 2D points a
with a projection matrix P :

P =





fx 0 0 0
0 fy 0 0
0 0 1 0



 (3.33)

The transform from 2D point image m = (x, y) to homogenized 3D point a =
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(x, y, z, 1)T , m = Pa then looks like:





mx

my

z



 =





fx 0 0 0
0 fy 0 0
0 0 1 0













ax

ay

az

1









(3.34)

Where z is a scale factor that is used to normalize the 2D point m by mx

z
and

my

z
. The value of fx and fy is the focal length of the camera in x and y direc-

tion respectively. The rest of the projection matrix is rotation and translation
parameters and the whole matrix is defined up to scale so it can be multiplied
with a constant and remains the same. For more information on calibration and
finding these parameters see [13].

3.9 Direct Linear Transform(DLT)

Direct Linear Transform (DLT) is the simple algorithm compared to CPC and
PosIt.

DLT is around 10 times slower than 1 iteration of CPC because it estimates 11
parameters and CPC only 6. After finding the 11 parameters the last one can
be found because the projection matrix P is defined up to scale. This method
is the simplest of the tested methods. It linearly estimates all 12 parameters
in the projection matrix and need at least 6 points to do so. The projection
matrix P can be described by vectors as follows:

P = (qT
1 , q14, q

T
2 , q24, q

T
3 , q34) (3.35)

The 2D image coordinates and 3D object coordinates:

(ai, mi) = ((ai1, ai2, ai3)
T , (ui, vi)

T ) (3.36)

From mi = Pai follows:

qT
1 ai − uiq

T
3 ai + q14 − uiq34 = 0 (3.37a)

qT
2 ai − viq

T
3 ai + q24 − viq34 = 0 (3.37b)
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Because P is defined up to scale we can set the last q in P to 1 and thus:

A =















a11 a12 a13 1 0 0 0 0 −u1a11 −u1a12 −u1a13 −u1

0 0 0 0 a11 a12 a13 1 −v1a11 −v1a12 −v1a13 −v1

...
...

...
...

...
...

...
...

...
...

...
...

an1 an2 an3 1 0 0 0 0 −unan1 −unan2 −unan3 −un

0 0 0 0 an1 an2 an3 1 −vnan1 −vnan2 −vnan3 −vn















(3.38)

Now we can say Aq = 0. To find the q we need to have enough points n in an

and in this case 6 for 12 parameters and more will be over determined. Then
find q with SVD as the smallest eigenvalue under the assumption that |q| = 1.
See [1] for details.

3.10 Boxplot

This plot type is also known as box and whisker plot, it shows median, quar-
tiles and whiskers/outliers. The boxplot was invented in 1977 by the American
statistician John Tukey. Quartile 1 (Q1) is the number which 25% of the data
is lower than, and quartile 3 (Q3) is the number which 25% of the data is higher
than and Q2 is the median value. Now the interquartile range (IQR) is Q3-Q1
and is used to decide which data points are marked as outliers. The standard
value for this is 1.5IQR lower than Q1 or 1.5IQR higher than Q3.

On figure 3.6 from 1 you see 3 axes, the 1st one is boxplot of a standard normal
distribution, 2nd shows how much of the data the different parts of the box-
plot contains and the 3rd axes shows how the standard normal distribution is
presented using variance as comparison to the boxplot method. Note that no
outliers are shown here but later on they will be red X ’s.

1www.wikipedia.org
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Figure 3.6: Shows standard boxplot compared to gaussian spread.



Chapter 4

Experiments

4.1 Tests

Here is a short description of each test and why it is relevant for testing followed
by the actual test. Several angles are approached under each of these sections
to find out what happens to accuracy and time in some extreme cases.

1. Overall algorithm and test setup

2. General limitations for all algorithms

3. Test 1: Increasing noise level

4. Test 2: Increased number of points

5. Test 3: Points shape is morphed into planarity

6. Test 4: Camera is moved very close to the points

7. Test 5: Testing the initial guess for CPC

8. Test 6: Different implementation of PosIt



24 Experiments

4.1.1 Overall algorithm and test setup

These tests were conducted on synthetic data points with values uniformly dis-
tributed between −5 and +5 on x, y and z axis. One of these points will always
be 0, 0, 0 in 3D space because the PosIt implementation requires this. All the
points are projected with a virtual camera position to make the ground truth
and gaussian noise is added to the 2D points to resemble real image noise. The
noise has mean 0 and variance 0.2 as a standard value unless otherwise written
in the specific test.

For making the ground truth projection the following was chosen: Camera was
set to 0, 0,−25 in 3D space. The view direction set to 0, 0, 0 (looking at 0, 0, 0).
Focal length set to 882 on both x and y axis, this is the same as 49 degrees field
of view in y direction. This is chosen because it resembles a real camera focal
length. Image size is defined to be 1200 × 800. Note that for PosIt the points
need to be defined from the center and not upper left corner. (pixel coordinate
600, 400 is 0, 0 for PosIt). The camera perspective can be seen on figure 4.1
(a), and the points including camera position seen from the side can be seen on
figure 4.1 (b). Note that the green surface is only to see the perspective more
clearly:

(a) 10 points(gray) as seen from the camera
perspective.

(b) 10 points(gray) and camera(red) seen
from the side.

Figure 4.1:

To test the accuracy, the run time had to be the same for all algorithms. For
applications that have limited time available and want to find the best possible
accuracy. This was done by setting the stop criteria to maximum number of
iterations and then, because each iteration takes a certain time, it is easy to
align them. The DLT is one iteration so all the other algorithms are aiming for
that same run time. The inaccuracy between run times is limited by iteration
step size in time. This means they are not exactly the same run time but as
close as it gets, on average within 3% of the total run time. For CPC to have
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same run time as PosIt, CPC is run with 9 iterations and PosIt 400. This shows
that PosIt has less to calculate during one iteration than CPC. Also note that
CPC is provided the correct pose estimate at the first run of the test and after
that uses the previous guess, unless otherwise noted in the test description.

PLOTS: 2 types of plots are used for showing the results, one is boxplot as
described in section 3.9, and second is using mean and standard deviation as
area plot. The reason for using standard deviation instead of variance is more
robustness when it comes to scaling and it is easier to interpret. AXES: The
translational error is the Euclidean distance between the perfect translation and
the guessed translation. Result is divided by the distance from the camera to
the world center. A translation error of 1 is then relative to a guessed cam-
era position of 0,0,0 where the correct would be 0,0,-25. The rotational error
is the Euclidean distance between 2 Quaternion. All time measuring is done
in nanoseconds and include only the computation of the result and not the
conversions and initializations.

All the tests are done 100 times.

The descriptions below use above numbers unless otherwise noted.

4.1.2 General limitations for all algorithms

In order to work properly all the algorithms have some basic demands for the
input. This concerns the points but also the parameters required to find poses.

4.1.2.1 CPC requires

1. Initial guess of pose including projection matrix with focal lengths, skew,
image size and center. The implementation also has a function to find a
good initial pose, however this has not been used.

2. 3 or more 2D-3D correspondences.

3. 2D Points are defined from (0, 0) up to the size of the image or (1200, 800)
in this thesis (origin top left).

4. Iteration number and limit on parameter change for rotational and trans-
lation error.
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4.1.2.2 PosIt requires

1. Focal length, which is assumed to be same for x and y.

2. 4 or more non-coplanar 2D-3D correspondences.

3. 1st point must be (0, 0, 0)T in 3D and (0, 0)T in 2D.

4. 2D points are defined from the center of the image as (0, 0) (Origin at
image center).

5. Iteration number and pose accuracy.

6. Stop criteria either iterations or pose accuracy.

4.1.2.3 PosIt Planar requires

Same as PosIt. But for proper result the 3D points sould be perfectly coplanar
see Test 3.

4.1.2.4 DLT requires

1. 2D Points are defined from (0, 0) up to the size of the image or (1200, 800)
in this thesis (Origin at top left).

4.1.3 Test 1: Increasing noise level

The noise level on the 2D points are increased variance from 0.0 to 10.0 (about
3.3 pixels) with 100 steps of size 0.1 on an image of 1200×800 and no possibility
of points being outside the image. A total of 10 points was used.

10.0 noise level means noise with the variance of 10.0 is added to the 2D back
projected ground truth, to get the 2D points passed to the methods. Considering
a gaussian distribution the noise could be more than 10 pixels, but with a very
little likelihood.

On figure 4.2 is a 3D box that illustrates an area with 10 randomly distributed
points, and shows how it is projected on to the 2D image. At the bottom of
figure 4.2 is shown how the noise works on the 2D points as gaussians around
each point.
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Figure 4.2: Test 1 illustrated

Each iteration of the methods takes a certain time and in this test they all have
same run time as seen on figure 4.3.

Figure 4.3: Run time for all algorithms when noise increases. Shown with mean
and standard deviation.
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The run time aimed for in this test is about 0.235 ms. Thats the run time of
DLT and the other methods needs various iteration number to get the same
runtime. Here is the amount of iterations used for each algorithm:

1. CPC 9 iterations

2. PosIt 135 iterations

3. DLT 1

The stop criteria has been set to iterations so it will not stop when it reaches a
specific accuracy.
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(a) CPC translation error for increased
noise.
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(b) PosIt translation error for increased
noise.
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(c) DLT translation error for increased
noise.

Figure 4.4: (a) shows increased noise for CPC. (b) shows PosIt and (c) shows
DLT (see 4.5 for zoom in version).
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Figure 4.4 shows the translation error for increased noise. Note that 0 noise
level means 0 errors for both (a), (b) and (c). CPC (a) performs better than
the 2 other methods and since they are all linear (see figure 4.5 for proof that
the run time of DLT also is linear with number of points) this is the case for
any noise level. PosIt (b) note y-axis larger than (a). DLT (c) shows here to be
very sensitive to noise and the outliers size makes DLT not applicable for high
noise levels at all. See figure 4.5 for DLT zoom in version.

On figure 4.5 is a zoomed version of DLT translation error for better comparison.
DLT is about 5x as inaccurate as PosIt on figure 4.4 (b). And note that there
are no extreme outliers in the beginning with low noise levels.
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Figure 4.5: DLT translation error for increased noise, zoom in version.
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(a) CPC rotational error for increased
noise.
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(b) PosIt rotational error for increased
noise.
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(c) DLT rotational error for increased
noise.

Figure 4.6: This figure shows rotational error for increased noise level. (a) shows
CPC. (b) shows PosIt and (c) shows DLT.

Figure 4.6 shows (a) CPC, (b) PosIt and (c) DLT rotational error for increased
noise level. Note that the y-axes are different and CPC is the better of the 3
methods then PosIt and last DLT.

4.1.3.1 Maximum accuracy

Now for testing the maximum accuracy of a fixed noise level. CPC start at 1
iteration and increases up to 20 iterations. PosIt will start with 15 iterations
that give the same run time as 1 iteration for CPC. Note that the stop criteria
is set to iterations meaning it will not stop when a certain accuracy is reached,
but keep going until all the iterations are complete.

On figure 4.7 is the translation error for increased iterations with mean and
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Figure 4.7: Translation error for increased iterations with mean and standard
deviation.

standard deviation. DLT is removed because it is not iterative and as such
makes no sense to draw it, but it had accuracy of 1.4E-3 for comparison. Note
that PosIt starts at 15 iterations that takes just as long as 1 CPC iteration.
The noise level of 0.2 also sets a limit of how well the methods can calculate the
pose that is why the change here is small.

On figure 4.8 is rotational error for increased iterations with mean and standard
deviation. Interestingly CPC is the most accurate both considering the spread
and the mean. DLT has accuracy of about 8E-4 for comparison. It was expected
to show an improvement in accuracy but the noise limits it.

The time plotted on figure 4.9 is to show that the methods have almost the
same run time. CPC also has less spread and gets accuracy better than PosIt
and DLT according to 4.7. Also notice that PosIt has larger spread when it uses
more iterations, maybe CPC does too but it is less in that case.
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Figure 4.8: Rotational error for increased iterations with mean and standard
deviation.

Figure 4.9: Run time for increased iterations with mean and standard deviation.
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4.1.4 Test 2: Increased number of points

This test is made to find out what happens if we add more points to calculate
the output pose. The result is plotted from 3−6 (depends on the method) points
up to 40 points and you can see the output is for a fixed number of iterations.

The CPC method has the correct projection matrix as initial guess, but because
of the noise added the accuracy will not be perfect.

Figure 4.10: Test 2 illustrated

On figure 4.10 is illustrated how 12 points from the point cloud is captured by
the camera onto the 2D image plane.

It is also interesting to see what happens when the methods are fed with mini-
mum number of points possible for it to run and then increases the number of
points to see how it affects the accuracy and run time. The minimum number
of points the methods need are:

1. CPC 3

2. PosIt 4

3. PosItPlanar 4

4. DLT 6
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This is because CPC estimates 6 parameters and therefore needs 3 points with
x, y. PosIt needs 4 because they must not be planar and 3 points will always
be planar. PosItPlanar should work with 3 point according to the theory, but
version used here is limited to 4 points minimum. PosIt for coplanar points are
not used in this test. To begin with the methods have the same run time but
then the number of points affects them differently.

Figure 4.11: Run time for all methods with increased number of points and
fixed number of iterations. Shown with mean and standard deviation.
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On figure 4.11 is the run time of each algorithm as the number of points increases
to 40 with mean and standard deviation. DLT stands out as the worst method
and more than doubles in time when the number of points is doubled. So DLT
is linearly increasing time for more points added. PosIt and CPC are close but
CPC is the best at handling more points. CPC’s run time becomes 1.84 times
slower from 6-45 points. PosIt’s run time becomes 2.76 times slower from 6-45
points. DLT’s run time becomes 7.92 times slower from 6-45 points.

Figure 4.12 shows all the algorithms translation error with mean and standard
deviation. (a) shows that PosIt spikes up to 0.7 at 4 (the minimum of points to
run) which is bad when a guessed translation of 0,0,0 would be 1 in translation
error. This could be because PosIt is not working properly for coplanar points
(see test 3). PosIt becomes a lot more stable at 5-6 points. Zoomed in on (a)
gives (b) which clearly shows that CPC is the better for any number of points
(3-40).

(a) Translational error for increased
number of points.

(b) translational error for increased num-
ber of points zoomed in version.

Figure 4.12: Translational error for all 3 methods with mean and standard
deviation.
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Figure 4.13 shows the translation error with respect to the number of points,
as boxplots without zooming, and figure 4.14 shows the zoom in versions. CPC
is the most accurate in this test and also works with least amount of points.
Common for the methods is that the minimum amount of points they can run
with has outliers that is extreme and would be a really bad pose estimate. CPC
does not have outliers as extreme as DLT and PosIt with minimum amount of
points and DLT has less extreme outliers for 6 points than PosIt for 4 points.
But overall CPC is the best because it runs for 3 points minimum and the others
4 (PosIt) and 6 (DLT).
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(a) CPC translation error for increased
number of points.
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(b) PosIt translation error for increased
number of points.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

0.2

0.4

0.6

0.8

1

1.2

D
is

ta
nc

e 
to

 g
ro

un
d 

tr
ut

h

Number of points (1−40)

Accuracy Test with Number of points (1−40) (DLT)

(c) DLT translation error for increased
number of points.

Figure 4.13: Translation error for increased number of points.
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Figure 4.14 shows translation error for increased number of points in a zoomed
in version that has same y-axes on (a),(b) and (c). CPC on (a) shows that IQR
(section 3.10) stops between 0.02 and 0.03 while (b) PosIt stops between 0.07
and 0.08. The IQR of DLT(c) is larger than 0.1 worse than the 2 other methods.
So it means CPC is the better choice when pose estimating from many points.
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(a) CPC translation error zoom in for
increased number of points.
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(b) PosIt translation error zoom in for
increased number of points.
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(c) DLT translation error zoom in for
increased number of points.

Figure 4.14: Translation error for increasedn number of points. Note they have
same y-axes.
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Figure 4.15 show rotational error for increased number of points and figure 4.16
shows the zoomed version. On CPC (a) note that the outliers are not as extreme
as neither PosIt(b) or DLT(c). PosIt(b) is actually the least accurate for the
methods minimum number of points.
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(a) CPC rotational error for increased
number of points.
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(b) PosIt rotational error for increased
number of points.
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(c) DLT rotational error for increased
number of points.

Figure 4.15: Rotational error for increased number of points.
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Figure 4.16 shows rotational error for increased number of points. Note that
the y-axes are the same on the 3 plots. The median of (a) CPC is about same
as (b) PosIt but the IQR is much smaller and therefore CPC is the better one.
DLT (c) again stands out as the worst of the 3.
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(a) CPC rotational error zoom in for in-
creased number of points.
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(b) PosIt rotational error zoom in for in-
creased number of points.
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Figure 4.16: Rotational error for increased number of points. Note same y-axes.
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4.1.5 Test 3: Points shape is morphed into planarity

This test has a fixed viewport and all the points are slowly moved into a plane
so there is no volume to exploit by primarily posit.

The point cloud starts as a cube shape and then change into a plane angled 0.25
π towards the image plane. Decreasing the oblongity by 30 % each step (oblong
is how rectangular it is).

Figure 4.17: Test 3 illustrated

Figure 4.17 shows a black box where the points are randomly inside to begin
with. I goes from -5 to +5 on x,y and z. Then at each iteration the cube is
made 30% shorter in 1 diagonal until only 1 diagonal is left.

A few changes have been made to run this test, for example the PosIt method
has lower accuracy just to separate it from the other methods on the plots, it
is plotted for comparison only and not accuracy or time. The planar version of
PosIt runs at 2 iterations.
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In this test is used 10 points starting with a point cloud shape of a cube and
then through 40 iterations it is morphed in to a plane. Every step decreases the
diagonal by 30% and the final thickness of the point cloud is about 1E-30 which
is relatively close to 0. The first figure 4.18 (a) shows that DLT does not work
well when the points are on a plane and it becomes very inaccurate and starts
guessing at a translation of 0,0,0 which is an error of 1. On figure 4.18 (b) is
zoomed in and is proven that PosIt does not work with planar points or close
to planarity it also guess 0,0,0. The coplanar version of PosIt is correctly worse
than posit for nonplanar points but as the points become planar it does not
improve accuracy actually it gets worse. Only at around 130 (1E-19 thickness)
it suddenly drops to a good estimate. With a closer look it is actually better
translation error than CPC and takes the same computation time as seen on
figure 4.19. After trying to increase the number of iterations CPC still was not
as accurate as the planar version of PosIt.
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(a) All methods translation error, for
points moved to planarity.

(b) All methods translation error
zoomed, for points moved to planarity.

(c) All methods translation error, for
points moved to planarity zoomed even
more to show CPC and posit planar
when points are coplanar.

Figure 4.18: Translation error for all methods when point cloud is morphed into
planarity. Shown with mean and standard deviation.



4.1 Tests 43

On figure 4.19 is the run time for all methods as the point cloud is morphed
planar. CPC (red) has the same runtime no matter how coplanar the points are.
PosIt (green) begins with low spread and then increases in error and spread as
the points become planar. It is completely wrong and unstable from 20 morphs
but stabilizes at a wrong pose after 130 morphs. The reason PosIt starts lower
is that it has limit on the epsilon which stops it at a certain accuracy while
the other methods are set to stop only by iterations. PosIt for planar points
(blue) begins at same run time as DLT and CPC but then decreases as the
points become coplanar and the spread becomes very high. After 130 morphs
the planar PosIt again takes the same time as CPC and have low spread. DLT
(yellow) starts at the same run time as PosIt planar and CPC but then drops
as the points becomes planar and it can not find a proper pose.

Figure 4.19: Shows run time for all methods when point cloud is moved to
planarity. Shown with mean and standard deviation.
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Translation for all 4 methods on figure 4.20 as points are morphed into planarity
as boxplots, otherwise same as 4.18. Coplanar PosIt(a) begins stable but with
bad accuracy and then becomes very unstable for about 20 morphs. It becomes
stable at 50 morphs at 1 which is a guess of 0,0,0 translation. At 130 it suddenly
starts working and is more accurate than CPC. PosIt(b) works in the beginning
but after 20 morphs it is unstable and completely wrong as it does not work
for coplanar points. DLT(c) works in the beginning and then becomes very
unstable at about 20 morphs and after that it settles on a pose guess of 0,0,0
because it does not work for planar points. CPC(d) begins with a translation
error of 0.0018 and after about 10 morphs it settles on a translation error of
0.0028.
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Figure 4.20: Translation error for all methods when point cloud is morphed into
planarity. Shown as boxplots.
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Rotational error for all 4 methods on figure 4.21. Coplanar PosIt(a) begins
similar to PosIt with worse accuracy when about 20 morphs to planarity is
over. Then it is wrong until about 130 morphs where it suddenly becomes
better. Not better than CPC but close. PosIt (b) begins with good accuracy
for a box with points because of the volume, then becomes increasingly worse
as the points move into planarity and is not finding anywhere near proper pose
until about 130 where it settles on a fixed error of 0.4. DLT (c) begins with
good accuracy but then gets a lot worse with planar points and suddenly the
result is 0. This is because it guessed a pose with angles 0,0,0 which happens to
be the correct result but it does not mean that DLT works for planar points as
seen on figure 4.20 DLT guesses 0,0,0 as the translation also. CPC (d) is very
affected by coplanar points and becomes less accurate but never unstable as it
settles on 0.0008 rotation error.
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Figure 4.21: Rotational error for all methods when point cloud is morphed into
planarity. Shown as boxplots.
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Conclusion must be that PosIt for planar points must have a planar object and
not an object that is almost planar. PosIt for coplanar points is more accurate
than CPC, PosIt and DLT and even with more iterations CPC can not get more
accurate than it is considering translation error. CPC is still more accurate when
it comes to rotational error. This shows that for planar points the planar version
of PosIt is the better choice.

4.1.6 Test 4: Camera is moved very close to the points

In this test there is a fixed number of points (10) and the viewport is moved
closer to the cloud to see how the increasing depth compared to distance affects
primarily the posit algorithm.

Camera is moved to −12.5 from −25, towards the center and at this position
the first points can be outside the image, so can not move it any further.

Figure 4.22: Test 4 illustrated

Figure 4.22 shows an illustration of camera starting position (black) and an
example pose after moving the camera closer to the point cloud (blue).

This is a test to find out what happens to PosIt mainly, when the SOP image
is very wrong because the points are spread widely on the Z axis. This means
the depths of the points vary a lot, seen from the camera. The point cloud is
standard -5 to 5 and the camera starts at a distance of 25 away and then moved
1 closer each step.
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Figure 4.23 shows translation error when the camera is moved closer to the point
cloud. On (b) it is seen that CPC is the better method but PosIt does not have
problems with the SOP at this very close distance.

(a) Translation error for all methods
when the camera is moved closer to the
points cloud.

(b) Translation error for all methods
when the camera is moved closer to the
points cloud. Zoomed in.

Figure 4.23: Translation error for all methods when camera is moved closer.
With mean and standard deviation.

As seen on figure 4.23 the error slowly decreases as the camera closes in on the
points. This is because of the fixed noise level and pixel size. When the camera
is far from the point cloud, there is more noise relative to the size of the 3D
object than when it is close as seen on figure 4.24.

Figure 4.24: Left square shows a 2D image of a box consisting of 4 points, and
the noise affecting the image is marked as a circle around each of the 4 visible
points. Right square shows a 2D image of the same box and same 4 visible
points but moved closer to the camera and the noise is kept the same.
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(b) PosIt translation error for camera
moved closer to point cloud.
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Figure 4.25: Translation error for camera moved closer to point cloud. Note the
axes are different on the 3 plots.

Figure 4.25 shows boxplots of translation error when camera is moved closer to
the object points. CPC(a) improves by a factor of 1.83 from first step to the last.
PosIt(b) 1.77 and DLT(c) by 2.68. This is expected that DLT is very sensitive
when it comes to noise and PosIt slightly more effected by noise compared to
CPC.
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(a) CPC rotation error for camera
moved closer to point cloud.
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Figure 4.26: Rotational error for camera moved closer to point cloud.

Figure 4.26 shows rotational error when camera is moved closer to the object.
CPC(a) improved rotational error by a factor of 1.857 from first frame to the
last, PosIt(b) by 1.92 and DLT(c) by 3.21. This means that the distance to the
object and the noise are affecting DLT a lot more than the 2 other methods. As
expected CPC did only react on the noise level but PosIt that works because it
can extract the depth did not have problems when depth became large compared
to the camera distance.
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4.1.7 Test 5: Testing the initial guess for CPC

The camera is fixed but the initial guess is moved around the center of the
point cloud and in a full circle for illustrative purpose also because half a circle
would be enough. The camera is always looking at 0, 0, 0 and keeps constant 25
distance to this center position as it goes 360 degrees around the center of the
point cloud.

Each step in the spin is 5.1 degree, from 0 to 360 in 70 steps, so it gets back to
where it started.

Figure 4.27: Test 5 illustrated.

Figure 4.27 shows the fixed camera (black) and an example of rotated initial
guess (blue).
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Previously the initial guess for CPC was given to be the true for the first frame
and after that it would use the previous frame. This is not a complete fair
comparison and that is why this test is made to show what happens when the
initial guess is far from the true pose. The guess starts with being correct as in
previous tests but after that the guessed pose turns around the point cloud 360
degrees. Figure 4.28 shows all methods but only CPC is varying because of the
initial guess. Yet it cannot reach this accuracy when the initial guess is opposite
side of the point cloud but works better than the other methods for angles less
than 90 degrees see figure 4.28 (b) for zoom in version. With an angle less than
30 degrees CPC keeps the same time (see figure 4.30) as the other methods and
also better accuracy (see figure 4.28 and 4.29).

(a) Translation error for all methods
when CPC is given increasingly wrong
initial guess.

(b) Translation error for all methods
when CPC is given increasingly wrong
initial guess. Zoomed in.

Figure 4.28: Translation error for all methods when CPC is given increasingly
wrong initial guess. Shown with mean and standard deviation
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Figure 4.29 shows the rotational error for increasingly wrong initial guess for
CPC. Shown with mean and standard deviation. Note that sometimes it finds
the correct rotation this is because of the point destribution. This can be seen
when looking at the numbers that makes this plot, sometimes it does find the
correct pose with minimal error. Figure (b) shows that after about 90 degrees
CPC is not stable anymore.

(a) Rotational error for all methods
when CPC is given increasingly wrong
initial guess.

(b) Rotational error for all methods when
CPC is given increasingly wrong initial
guess. Zoomed in.

Figure 4.29: Rotation error for all methods when CPC is given varying initial
guess. With Mean and standard deviation.
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On figure 4.30 (a) you can see that CPC uses more and more time for same
number of iterations to try and keep the accuracy and uses the most time
exactly opposite of the correct pose. When the initial guess is worse that 30
degrees CPC starts increasing the time it takes to find a proper pose (seen on
4.30 (b)) but it does find correct pose according to figure 4.29 (b) and 4.28 (b).

(a) Time for all methods when CPC is
given increasingly wrong initial guess.

(b) Time for all methods when CPC is
given increasingly wrong initial guess.
Zoomed in.

Figure 4.30: Time for all methods when CPC is given varying initial guess.
Shown with mean and standard deviation.

Interesting that sometimes CPC finds the correct pose when starting opposite
of the correct pose and sometimes it does not. This can be seen on figure 4.28
because it shows error of 0 at 180 degrees and same for rotation figure 4.29, but
specifically when checking the actual results the plots are based on the error is
close to 0 for both rotation and translation in some cases. In this test the only
thing that changes are the point correspondences so when choosing object for
real application one needs to make sure it is working properly when initial guess
is way off. This is mostly not the case in video sequences because there is not
much change from 1 frame to the next.
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4.1.8 Test 6: Different implementation of PosIt

OpenCV is an open source image library by Intel 1. It is highly optimized and
recommended for fastest version of the PosIt method. The reason not to use
this faster version in this thesis is a fair comparison between CPC and the PosIt
that are both compiled by me and written in BIAS [10]. The OpenCV version
is here tested as in Test 1 for noise increasing to show how fast it is compared
to the PosIt version used in this thesis.
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Figure 4.31: 2 different versions of PosIt plotted run time when the accuracy is
the same.

1http://www.intel.com/technology/computing/opencv/index.htm



4.1 Tests 55

Figure 4.31 shows PosIt from BIAS and PosIt from OpenCV with mean time
for the same number of iterations over 100 runs as the noise increases (noise is
not relevant but the test is taken from Test 1). OpenCV PosIt has an average
time of 0.849 ms and the BIAS version has 2.34 ms that is 2.7 times slower but
otherwise they are exactly the same. CPC could be optimized as well for better
performance by using a different compiler or different compiler settings. But
using the slower version will keep the methods comparable.
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Chapter 5

Conclusion

Gauss-Newton with Levenberg-Marquardt modification, PosIt, PosIt for copla-
nar points and finally the direct linear transform has been tested in various
extremes to reveal positive and negative sides.

First was tested how they were affected by noise. Then tested what happens
when more point correspondences are added. And tested what happens when
the object is at the limit of planarity. Then tested what happens when the
object is close to the camera. Finally tested what happens when initial guess is
very bad for iterative method CPC.

CPC is iterative and relies on minimizing the back projected error of a pose
when changing the parameters of the projection matrix according to first order
derivatives of the residual and the approximated hessian without the second
order derivatives which is considered time consuming.

PosIt is approximating the depth in the image for every 2D point it has corre-
spondence for, starting from pure orthographic projection and then iteratively
improves this to estimate perspective projection.

The planar version of PosIt works like PosIt except it finds 2 rotation matrices
for every previous found pose and keeps choosing the better 2 poses. Ending up
with 2 poses instead of 1 like PosIt.
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DLT uses SVD to linearly find the 11 parameters of the projection matrix and
therefore requires more points than the other methods and it also has other
drawbacks, but it is used as comparison for the other methods.

Noise affect the methods very differently, as expected DLT is the worst but CPC
is slightly better than PosIt handling noise. This is important if the noise level
in a practical application is really high it might not work accurate enough.

When the methods get more point correspondences it mostly affect DLT that
increased run time by a factor 8, CPC only with a factor of 1.84 and PosIt in
the middle with a factor of 2.76.

Interestingly the planarity was affecting all the methods in some way. Mostly
PosIt which error slowly increased as the object became planar. And the planar
version of PosIt that did not work at all for near planar objects but gave a decent
guess for objects with volume, meaning it worked for planar objects and non-
planar but not the transition between these. And CPC became less accurate
when the object was planar.

Important thing about CPC is the initial guess and as proven in Test 5 the point
distribution determines how well the initial guess have to be. Also shown is that
the initial guess has to deviate more than 30 degrees before anything happens
to the run time of CPC.

-CPC is best when you got a movie sequence and know the pose from the last
frame, it is very accurate but can give very wrong results if the initial guess is
more off than 90 degrees.

-PosIt has the drawback of coplanar points but it is almost as fast as CPC and
does not require initial guess which means it is perfect if you got 1 image of
points that are sure not to be coplanar.

-Coplanar PosIt is just as fast and more accurate for translation error compared
to CPC in the case where points are coplanar, it can also give a valuable clue
to how likely the pose is to be the right one by providing the 2 best poses
possible. This is unique for this method and cannot be done by either of the
other methods. Negative that it needs perfectly 2D marker as in ARToolKit.

-DLT was used as a comparator for the other methods. If the 2D-3D correspon-
dences are without noise the DLT works good but extreme sensitivity to noise
makes it a bad choice for any real application.



Appendix A

The Test Program

Because the methods are implemented in C++ it is natual to write the testing
program in that lagnauge also. The values from each test is stored in *.txt and
read by a Matlab program that draws the graphs. Here is a description of all
functions in C++ and their usage.

void init() -Initializes camera position, kalibration matrix and glut camera set-
tings.

void drawFloor(float size, int nrQuadsPerRow) -Makes a green square in the
middle of the points with size 10x10 to give a better 3D effect.

void drawPoint() -Draws 1 point at the current position.

void display() -Glut draws the scene with objects.

void reshape(int w, int h) -Resets the glut camera settings.

void SaveData(const char* file, int type,int x, int y) -Saves the translation error,
rotation error and run time for last run method to *.txt.

void SavePMatrix() -Stores correct projection matrices for each frame to make
ground truth for comparison.
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void AddNoise() -2D points made from ground truth projection of the 3D object
is added noise.

void AddPlanarMovement() -3D points are morphed 30% closer to planarity
parallel to image plane.

void AddPlanarMovement2() - 3D points are morphed in the diagonal 30%
towards planarity, angled 0.25 π.

void ProjectPointsTruth() - Projects the 3D object points with ground truth
projection matrix to make perfect 2D points.

void CamPoseCalib algo() -Gauss-Newton method. Fills matrices with transla-
tion, rotation error and the run time.

void CamPoseCalib algo time(float time limit) -Sets a time limit for CPC so it
increases/decreases number of iteration until it reaches the desired run time.

void OpenCVPoseIT() -PosIt method from OpenCV. Fills matrices with trans-
lation, rotation error and the run time.

void OpenCVPoseIT time(float time limit) -Sets a time limit for PosIt so it
increases/decreases number of iteration until it reaches the desired run time.

void PositWithPlanar() -Both PosIt and PosIt for coplanar points depending on
the variable ”dim”. When dim is 3, it means the points are spread in 3D and it
will use PosIt. If dim is 2, it means the points are on a plane and it runs planar
version of PosIt.

void ARToolkit() -ARToolKit not used.

double arGetTransMatT( ) -ARToolKit not used.

double arGetTransMat2T( double rot[3][3], double ppos2d[][2], double ppos3d[][3],
int num ) -ARToolKit not used.

double arGetTransMat3T( double rot[3][3], double ppos2d[][2], double ppos3d[][3],
int num, double *dist factor, double cpara[3][4] ) -ARToolKit not used.

double arGetTransMat4T( double rot[3][3], double ppos2d[][2], double ppos3d[][3],
int num ) -ARToolKit not used.

double arGetTransMat5T( double rot[3][3], double ppos2d[][2], double ppos3d[][3],
int num, double *dist factor, double cpara[3][4] ) -ARToolKit not used.
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static double arGetTransMatSubT( double rot[3][3], double ppos2d[][2], double
pos3d[][3], int num, double *dist factor, double cpara[3][4] ) -ARToolKit not
used.

void DLT() -Direct Linear transform method. Fills matrices with translation,
rotation error and the run time.

void keyPressed(unsigned char key, int x, int y) -Starts the test chosen when
”f” is pressed. Single methods can be tested with ”i”.

void animation() -Can make things rotate. Not used.

void mousePressed(int button, int state, int x, int y) -Used to move the glut
camera for viewing the points and camera.

void mouseMotion(int x, int y) -If mouse pressed it can rotate the glut camera.

void noiseTest time() -Test 1 with fixed time.

void noiseTest acc() -Test 1 with different number of iterations.

void createSamples() -Creates array with 60 3D points randomly between -5 and
+5 on all 3 axes.

int main(int argc, char** argv) -Sets window size and position. Initaializes the
glut functions for viewing color 3D and more.
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